OpenBU

Cortical Dynamics of Visual Motion Perception: Short-Range and Long-Range Apparent Motion

OpenBU

Show simple item record

dc.contributor.author Grossbergy, Stephen en_US
dc.contributor.author Rudd, Michael E. en_US
dc.date.accessioned 2011-11-14T18:21:48Z
dc.date.available 2011-11-14T18:21:48Z
dc.date.issued 1991-04 en_US
dc.identifier.uri http://hdl.handle.net/2144/2073
dc.description.abstract This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams Vl --> V2, Vl --> MT, and Vl --> V2 --> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-ofcontrast and insensitive to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to directionof-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion; split motion; gamma motion and reverse-contrast gamma motion; delta motion; visual inertia; the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's Laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes. en_US
dc.description.sponsorship Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (AFOSR-90-0083); Hughes Aircraft Company (S1-903136) en_US
dc.language.iso en_US en_US
dc.publisher Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems en_US
dc.relation.ispartofseries BU CAS/CNS Technical Reports;CAS/CNS-TR-1991-018 en_US
dc.rights Copyright 1991 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission. en_US
dc.subject Vision en_US
dc.subject Neural network en_US
dc.subject Motion perception en_US
dc.subject Visual cortex en_US
dc.subject Boundary contour system en_US
dc.subject Apparent motion en_US
dc.subject Form perception en_US
dc.subject MT en_US
dc.subject V1 en_US
dc.subject V2 en_US
dc.title Cortical Dynamics of Visual Motion Perception: Short-Range and Long-Range Apparent Motion en_US
dc.type Technical Report en_US
dc.rights.holder Boston University Trustees en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search OpenBU


Browse

Deposit Materials

Statistics