OpenBU

Brain Learning, Attention, and Consciousness

OpenBU

Show simple item record

dc.contributor.author Grossberg, Stephen en_US
dc.date.accessioned 2011-11-14T19:00:10Z
dc.date.available 2011-11-14T19:00:10Z
dc.date.issued 1999-01 en_US
dc.identifier.uri http://hdl.handle.net/2144/2220
dc.description.abstract The processes whereby our brains continue to learn about a changing world in a stable fashion throughout life are proposed to lead to conscious experiences. These processes include the learning of top-down expectations, the matching of these expectations against bottom-up data, the focusing of attention upon the expected clusters of information, and the development of resonant states between bottom-up and top-down processes as they reach an attentive consensus between what is expected and what is there in the outside world. It is suggested that all conscious states in the brain are resonant states, and that these resonant states trigger learning of sensory and cognitive representations. The model which summarize these concepts are therefore called Adaptive Resonance Theory, or ART, models. Psychophysical and neurobiological data in support of ART are presented from early vision, visual object recognition, auditory streaming, variable-rate speech perception, somatosensory perception, and cognitive-emotional interactions, among others. It is noted that ART mechanisms seem to be operative at all levels of the visual system, and it is proposed how these mechanisms are realized by known laminar circuits of visual cortex. It is predicted that the same circuit realization of ART mechanisms will be found in the laminar circuits of all sensory and cognitive neocortex. Concepts and data are summarized concerning how some visual percepts may be visibly, or modally, perceived, whereas amoral percepts may be consciously recognized even though they are perceptually invisible. It is also suggested that sensory and cognitive processing in the What processing stream of the brain obey top-down matching and learning laws that arc often complementary to those used for spatial and motor processing in the brain's Where processing stream. This enables our sensory and cognitive representations to maintain their stability a.s we learn more about the world, while allowing spatial and motor representations to forget learned maps and gains that are no longer appropriate as our bodies develop and grow from infanthood to adulthood. Procedural memories are proposed to be unconscious because the inhibitory matching process that supports these spatial and motor processes cannot lead to resonance. en_US
dc.description.sponsorship Defense Advance Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657); National Science Foundation (IRI-97-20333) en_US
dc.language.iso en_US en_US
dc.publisher Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems en_US
dc.relation.ispartofseries BU CAS/CNS Technical Reports;CAS/CNS-TR-1999-002 en_US
dc.rights Copyright 1999 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission. en_US
dc.subject Learning en_US
dc.subject Expectation en_US
dc.subject Attention en_US
dc.subject Adaptive resonance en_US
dc.subject Neural network en_US
dc.subject Procedural memory en_US
dc.subject Consciousness en_US
dc.subject Object recognition en_US
dc.subject Speech perception en_US
dc.title Brain Learning, Attention, and Consciousness en_US
dc.type Technical Report en_US
dc.rights.holder Boston University Trustees en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search OpenBU


Browse

Deposit Materials

Statistics