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FORENSIC ANALYSIS OF PLANT BASED DRUGS OF ABUSE  

BY DART-MS  

 

CRYSTAL NICHOLE HART 

 

ABSTRACT 

Many plant species around the world are known to contain various psychoactive 

compounds. Due to their effects when consumed, many of these plants are used as a part 

of religious and ritualistic practices in many different cultures. As with any psychoactive 

compounds, these plants have the potential to be used in a recreational manner. In the 

United States, plant based drugs of abuse, such as marijuana, have become commonly 

abused substances. Although marijuana is currently regulated by the federal government, 

many of the plant materials containing potential drugs of abuse are not, and can be 

purchased legally from various online sources.   

The goals of this research were to develop methods for the analysis of a wide 

variety of plant based drugs of abuse by Direct Analysis in Real Time – Mass 

Spectrometry (DART-MS) and to apply the methods in an effort to differentiate between 

multiple strains of a single seed species. DART is an ambient ionization technique that 

allows for rapid analysis of samples while eliminating the need for sample preparation 

considerations for many applications. Analytes of interest can be detected within the 
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complex plant matrix of ground up seeds, with no need for further extraction or isolation 

of the analytes. 

For this study, fourteen different seed samples, including twelve different species, 

reported to have psychoactive effects on the user were obtained and analyzed. Physical 

examination was performed, in which average measurements were obtained to describe 

the length, width, thickness, and mass of each seed species, followed by analytical 

analysis by DART-MS.  

The seeds were prepared for analysis by DART-MS by grinding to expose the 

middle of the seed containing the analytes of interest, and embedding the powder onto 

QuickStrip™ cards (IonSense, Inc.). To optimize the method for analysis, three different 

DART carrier gas temperatures (250°C, 300°C, and 350°C) were investigated for each 

seed sample by considering the signal to noise ratio, ion abundance, and presence of the 

analyte of interest at each source temperature using a single quadrupole mass 

spectrometer. The analytes detected were then subjected to MS
n
 fragmentation in a 

quadrupole ion trap to confirm the identity of the analytes being detected. Fragmentation 

patterns were then compared to fragmentation patterns reported in the literature through 

methods such as chemical ionization, atmospheric pressure chemical ionization, and 

electrospray ionization.    

Thirteen of the fourteen seed samples were known to contain compounds with 

psychoactive properties. One of the species contained no known hallucinogenic 

compounds, however it was reported to have psychoactive effects when ingested or 
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smoked. Protocols were developed for each sample and the identification of the analytes 

of interest was successful in twelve of the fourteen samples.   

DART-MS is a powerful technique for the detection and identification of a variety 

of plant based drugs of abuse, including tetrahydrocannabinol, lysergic acid amide, and 

numerous others. The ability to rapidly analyze a large number of samples makes DART-

MS a technique with great potential in forensic laboratory settings, such as forensic drug 

analysis, where case backlog is often an area of concern. The majority of the samples 

explored in this study are not considered common substances of abuse. However, as their 

abuse is becoming more common, the high throughput nature of the analytical methods 

and techniques discussed will become increasingly important.  
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1. Introduction  

Psychoactive substances have long been an important aspect of many cultures, 

both spiritually and religiously. Many of those substances eventually make their way into 

the hands of individuals who treat them differently than their traditional use. In the 

United States (U.S.) today, many teenagers and young adults turn to illicit drugs to fulfill 

some part of their life. Many of these drugs include substances that were originally used 

in other parts of the world for very different reasons, such as religious or ceremonial 

purposes, including communicating with the supernatural or deceased individuals
1
. Many 

individuals use drugs for reasons such as peer pressures, to escape from reality, or as a 

form of entertainment. Since the 1960’s drug use in the U.S. has become an issue of 

concern and continues to increase in popularity
2
.  

1.1 Prevalence of Drug Use in the United States 

The National Survey on Drug Use and Health (NSDUH) is administered annually 

by the Substance Abuse and Mental Health Services Administration (SAMHSA). 

NSDUH/SAMHSA collects data on drug use through annual interviews, with 

approximately 67,500 individuals aged 12 and older. In 2012, it was estimated that about 

9.2% of the population (23.9 million Americans) were current drug users, meaning that 

they admitted to consuming at least one illicit substance within the month prior to the 

survey
3
. Illicit drugs included any psychoactive substance used for non-medical purposes, 

such as marijuana, hashish, cocaine (including crack cocaine), heroin, hallucinogens, 

inhalants, and prescription drugs
3
. Hallucinogens, which are found naturally in plants, 
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were reported by the National Forensic Laboratory Information System (NFLIS) to 

represent 4% of all reported drug cases in 2012
4
.       

Drug use is a common feature when analyzing crime statistics in the U.S. A 

substantial number of crimes are committed while under the influence of drugs or to 

enable a drug habit. According to a special report by the Bureau of Justice in 2006, about 

one third of state and one quarter of federal prisoners in 2004 had committed their crimes 

while under the influence of drugs; these numbers have essentially remained unchanged 

since 1997
5
. Additionally, approximately 21% of state prisoners and 55% of federal 

prisoners were incarcerated due to violations of drug laws, such as drug possession, 

distribution, or trafficking
5
.  

1.2 Significance of Drugs of Abuse in Forensic Science  

 Testing for drugs of abuse is a significant area in forensic science. The Federal 

Bureau of Investigation (FBI) Uniform Crime Report (UCR) estimated that in the U.S., 

approximately 1,841,200 arrests for drug violations occurred in 2007
6
. Once an arrest is 

made, it is the responsibility of investigators to prove that the drug violation is accurate 

and just. One important aspect of proof is to demonstrate that the offender was in 

possession of a controlled substance. Although field tests are oftentimes performed 

before the arrest is made, such tests are considered preliminary, and confirmatory testing 

in a forensic laboratory must be conducted to verify the presence of a controlled 

substance.  
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According to a survey of Crime Laboratory Drug Chemistry and Controlled 

Substances sections conducted by NFLIS in 2013, there were 163,806 drug cases 

backlogged during 2012
7
. A backlogged case was defined as one that had not been 

analyzed for 30 days or more since the evidence was submitted to the lab. About 90% of 

all state and local forensic laboratories in the U.S. participated in the survey; federal 

forensic laboratories were not included. Additionally, about one third of the labs reported 

that they had seen an increase in total drug cases compared to the previous year. While a 

number of factors contributed to the increased backlog, including a decrease in the 

number of analysts and an increase in the total number of cases, the survey reported that 

61% of laboratories cited sudden increases in emerging drugs as a primary reason for the 

increase. Emerging drugs are defined as any substance, controlled or uncontrolled, that 

had first been detected in the laboratories within the last five years. Additionally, 

emerging drugs oftentimes require the development of new testing methods, which was 

reported by about 14% of laboratories to also be contributing to the backlog
7
. Many of 

these emerging drugs are uncontrolled substances, not subject to any legal regulations or 

consequences. Uncontrolled substances were identified by about 86% of laboratories
7
. 

Although there are no criminal consequences associated with the possession of an 

uncontrolled substance; testing of such compounds takes up time and resources. With 

emerging drugs continually presenting themselves in the community, forensic labs need 

to obtain standards and validate new procedures with limited resources to devote to such 

challenges. Obtaining standards and validating procedures were reported as the most 

important issues regarding the testing of emerging drugs by 92% and 66% of state and 
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local labs, respectively
7
. As seen in the NFLIS data, drug use is prevalent in the U.S., and 

new compounds and substances continue to be introduced into the community. 

 1.3 Classes of Drugs of Abuse 

  Drugs of abuse can be divided into three classifications: synthetic, semi-synthetic, 

and natural. Synthetic drugs are those that are manufactured in a laboratory and are 

synthesized to mimic the effects of other drugs. Examples of synthetic drugs are synthetic 

cannabinoids such as K2, Spice, and “bath salts” 
8,9

. Synthetic cannabinoids and other 

synthetic drugs such as bath salts/cathinones became popular, in part, because they were 

seen as a legal alternative to marijuana and other drugs while still providing the same 

high. Often, these compounds are labeled and sold as “not for human consumption” so 

that they can avoid the regulations set forth by the Food and Drug Administration 

(FDA)
5
. As regulations expand to include new variations of synthetic drugs, the 

manufacturers of these compounds make slight chemical changes, resulting in the 

creation of analogs and by inclusion of various functional groups, allowing the new drugs 

to stay just out of reach of the laws restricting them. The Controlled Substance Analogue 

Enforcement Act of 1986 originally sought to deal with this issue by defining a controlled 

substance analogue as a compound with a chemical structure that is “substantially similar 

to the chemical structure of a controlled substance”
10

. In 2012, Congress passed the 

Synthetic Drug Abuse Prevention Act of 2012, which added synthetic drugs to schedule I 

of the Controlled Substances Act
11

. However, the efforts by these manufacturers exploit 

the ambiguity of what can be considered an analog and represents a major concern of 
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enforcement agencies to overcome the legal challenges to demonstrate illegality.  

 Semi-synthetic drugs contain compounds that are found in nature but are then 

chemically processed to make them more potent, increase the ability for the compounds 

to be absorbed into the body, or improve the way in which the compound is metabolized. 

The two most common examples are heroin and cocaine. Both drugs are synthesized 

from naturally occurring plant material. Heroin is derived from opium in Papaver 

somniferum, which is a member of the poppy family and cocaine is derived from the 

leaves of the South American Erythroxylon coca plant
12

.  

 Natural drugs include compounds that occur in nature and are pharmacologically 

active in their natural state. Most natural drugs can be classified as hallucinogens. 

Common examples of natural drugs are marijuana, salvia, psilocin/psilocybin, 

dimethyltryptamine (DMT) and salvia.  

1.4 Goals of Thesis Research 

The two main goals of this research were to develop analytical methods for the 

analysis and identification of potential plant based drugs of abuse using Direct Analysis 

in Real Time – Mass Spectrometry (DART-MS) and to determine whether three types of 

seeds from different strains of the same plant species could be differentiated from one 

another. The ability to detect the drug analytes of interest within the plant based matrix 

was investigated while minimizing the sample preparation and time required for the 

complete analysis of a sample. Although methods were developed for each of the 

samples, identification was only possible within twelve of the plant matrices.  
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1.5 Chemical Components Commonly Associated with Plants 

 Plant material represents an extremely complex matrix. Plants can contain 

thousands of diverse compounds, including many different alkaloids, amino acids, 

amines, proteins, glycosides, phenolics, volatile oils, and polysaccharides
13

. Although 

different species of plants contain unique chemical components, many compounds are 

common among all plants. Many of these compounds are essential for plant growth, 

reproduction, and protection. Although the relative concentration of each component may 

vary from seed to seed, all seeds need some combination of these compounds to function. 

The main function of plant seeds is reproduction
14

. In addition, seeds are able to store 

fats, oils, waxes, sterols, glycolipids, phospholipids, and fat-soluble vitamins which 

provide the plant with energy, aid in the structural composition of the cell membranes, 

and participate in cell signaling
13

. Each plant species may differ in the exact chemical 

composition found in the seeds, however, the chemical composition may also be 

influenced by the season, parent plant, temperature, soil nutrients, and water 

availability
13

.  

 Although slight differences may be detectable in the exact composition of 

common compounds that could be useful for larger concerns such as species 

differentiation, the focus of this study was on development of a rapid screening method 

for detection of emerging, natural psychoactive compounds and the detection of potential 

drugs of abuse present within the seeds. The analytes of interest for each species is 

discussed in the following section.  
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1.5 Plant Based Drugs of Abuse 

Many plants contain potential drugs of abuse. As previously mentioned, 

marijuana is the most commonly used drug in the U.S. However, many other plants 

containing psychoactive compounds have not yet been widely abused or regulated. In 

recent years, Salvia divinorum, or salvia, has gained popularity in the U.S.
15

. The plant 

grows naturally in the tropical rainforests of Mexico, and the Mazatec Indians of Oaxaca, 

have used the leaves as a part of various rituals for their hallucinogenic properties
16,17

. In 

the U.S., salvia is not currently regulated under the Controlled Substances Act. However, 

as of 2010, many states had passed laws controlling the plant
18

.  

The internet has become an area of significant interest when it comes to 

information about psychoactive plants and drug use. Many websites are available to the 

public that allow users to ask questions and discuss individual experiences with the 

substances. Many of the websites also discuss where and how to obtain the plant 

materials. In 2008, Hoover et al. performed an internet based study on salvia and found 

that half of the websites investigated were either selling S. divinorum or were linked to 

other sites that were selling the plant. The study also found that about 78% of the sites 

were advocating for the use of the drug, often with false information about its use
19

, 

which can have detrimental effects on the public as the websites are often used as a guide 

for new users. As the availability and effectiveness of other plants containing 

psychoactive compounds become better known in the U.S., it is likely that the pattern 

seen with the use of salvia will be seen with other plants as well.  
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1.5.1 Anadenanthera colubrina (Cebil) 

1.5.1.1. Background and Traditional Uses 

Anadenanthera colubrina, also known as cebil, is a tree that grows in South 

American countries such as Brazil, Argentina, Bolivia, Brazil, Paraguay, and Peru. It is 

very closely related to the Anadenanthera peregrina tree, which is referred to as Yopo
20

. 

Cebil trees produce flat seed pods that appear gray to black in color which break open to 

expose three to ten reddish-brown flat seeds.  

Many different cultures have reported using the plant seeds in various ways to 

fulfill their needs
21,1

. Traditionally, cebil and yopo seeds are used to produce a snuff 

which can then be smoked or inhaled through the nose. The seeds have also been used as 

enemas in many cases
21,1

. The use of an enema in this case was not only for medicinal or 

therapeutic reasons, but as a way to alter the users state of mind and provide a connection 

with the supernatural
1
.  One group of shamans, the Mataco, prefer to smoke the roasted 

seeds, believing that smoking the seeds allows them to experience other realities
22

.  

1.5.1.2. Reported Effects and Active Components 

 The seeds of this plant have been reported for use to induce rapid intoxication and 

instantaneous visual and auditory sensations that are associated with direct 

communication with the spirit animals, deceased individuals, or other supernatural 

sensations
1
. The experience is generally very short, about 20-30 minutes

22
, but it can 

affect different individuals in vastly different ways, including the intensity and 
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psychoactive effects experienced. Today, cebil is still used as part of shamanistic rituals, 

however it is also often used recreationally in South American cultures
1
. 

The hallucinogenic properties of cebil seeds have been reported to be due to a 

number of compounds. The main psychoactive ingredient is bufotenine (5-hydroxy-N,N-

dimethyltryptamine), and it has been reported that the cebil seeds may contain up to 4% 

bufotenine by weight
16

. Bufotenine, shown in Figure 1, is a tryptamine alkaloid that is 

found in the skin of some toads
23

, mushrooms
24

, plants
25

, and mammals
26

. It is a 

hallucinogenic serotonin analog and has been widely studied by many researchers. 

Although some studies have shown that the seeds contain only bufotenine, there are 

studies showing that other derivatives such as N,N-dimethyltryptamine (DMT), N-

methyltryptamine (NMT), and 5-methoxy-N-methyl-(α,N-trimethylene)tryptamine (5-

MeO-MPMI) may be present
16,1

. The structures are shown in Figure 2.  

 

Figure 1. Chemical Structure of Bufotenine.   



10 

 

 

Figure 2. Structures of other tryptamine compounds reportedly found in the seeds 

of the cebil plant.  

1.5.2 Voacanga africana (Voacanga)    

1.5.2.1. Background and Traditional Uses 

Voacanga africana is a tropical tree indigenous to Africa. It has been reported that 

this tree and many other varieties of the Voacanga genus have been used as 

hallucinogens, aphrodisiacs, and medicines
16

. In some parts of Africa, the bark of the 

plant is used to aid in hunting by providing a stimulating experience for the hunters
22

. In 

other places across Africa, reported reasons for use range from its potent aphrodisiac 

effects to a substitute for marijuana
22

. The Voacanga plant is known to plays an important 

role when it comes to the ritualistic practices in African cultures, but not many details are 

known about the specific uses of the plant
22

.   

1.5.2.2. Reported Effects and Active Components 

The bark and seeds of the Voacanga plant contain up to 10% indole alkaloids, 

which are linked to enhancing visionary experiences. The main active ingredient in the 

seeds and the bark is voacamine, shown in Figure 3. The seeds also contain ibogaine, 

voacamine-N-oxide, voacangine, and significant amounts of tabersonine as shown in 
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Figure 4
27,28

. Tabersonine is readily converted to vincamine derivatives which are shown 

to improve performance in animals with cognitive dysfunctions
29,30

.   
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Figure 3. Structure of Voacamine, the main compound responsible for psychoactive 

effects of Voacanga Africana seeds.  
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Figure 4. Structures of additional psychoactive compounds reported to be found in 

the seeds of the Voacanga Africana plant. 

1.5.3 Rivea corymbosa (Ololiuqui) 

1.5.3.1. Background and Traditional Uses 

 The Rivea corymbosa vine is a part of the morning glory family known as 

Convolvulaceae
22

. Many plant species are very closely related to ololiuqui, but only a 

few of them have been studied. The plant is believed to have originated in tropical 
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regions of Mexico, but is now common in Cuba, the West Indies, the Gulf Coast of North 

America, the Philippines, and Central America
22

. 

 Although the use of the ololiuqui plant for ritualistic and medical purposes can be 

traced back to the 1500’s, it was not until 1940 that the botanical identity of the plant was 

clarified
16,22

. Up until that point, it was believed that the ololiuqui plant was related to the 

poppy species due to its narcotic properties
22

. Today, the seeds of the plant are present in 

many cultures for purposes of divination and witchcraft
16

. 
 

1.5.3.2. Reported Effects and Active Components 

The ololiuqui seeds have been reported to contain various ergot alkaloids, 

including, but not limited to lysergic acid amide (LSA), or ergine, and lysergic acid 

hydroxyethylamide
16

. Ergot alkaloids are compounds that are similar in structure and 

activity to the hallucinogenic lysergic acid diethylamide, or LSD. LSD was discovered 

when Albert Hofmann, the chemist synthesizing the compound, accidentally ingested it 

and experienced a distortion of reality, in which he saw intense colors, unusual images, 

and a disconnect with time and dimension
31

. 

Ergot alkaloids all have the same moiety and vary in the substituents. The three 

main compounds known to be present in ololiuqui seeds are ergine, ergometrine, and 

ergosinine and are shown in Figure 5. Although these compounds are common in 

morning glory species, there are many more ergot alkaloids that could be present
16

.   
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Figure 5. Ergot alkaloids: ergine, ergometrine, and ergosinine commonly found in 

ololiuqui seeds.    

1.5.4 Ipomoea violacea (Morning Glory) 

1.5.4.1. Background and Traditional Uses 

The morning glory plant originated in the tropics of Mexico, but is now common 

around the world
22

. Although it has not been scientifically proven, the morning glory 

plant is likely the same plant that the Aztec people called tlitliltzin, which has been used 

in divinations and healing rituals since the late 16
th

 century
22

. Traditionally, a dosage 

consisted of 26 seeds ground up before being mixed with water. This process is believed 

to allow the seeds to “speak”
22

. Although many different cultures reported using the plant 

materials in religious rituals for its psychoactive properties, the intended outcome is very 

similar among all of them.
 

1.5.4.2. Reported Effects and Active Components 

 Various parts of the morning glory plant possess psychoactive components. The 

leaves and seeds contain ergot alkaloids such as ergine and many ergine derivatives such 

as ergometrine, ergosinine, elymoclavine, chanoclavine and hydroxyethylamide
22

.     
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The psychoactive components of morning glory seeds are very similar to that of 

the ololiuqui seeds. The structures for ergine, ergometrine, and ergosinine, which are 

reported to be present in morning glory seeds, can be seen in Figure 5 in the Ololiuqui 

section.  

1.5.5 Argyreia nervosa (Hawaiian Baby Woodrose) 

1.5.5.1. Background and Traditional Uses 

The Hawaiian Baby Woodrose plant originated in India, but is now common in 

the Pacific Islands. The plant is a perennial vine that produces purple colored flowers and 

fruits containing smooth, brown seed capsules, each with up to four seeds
22

. In India, the 

plant material has been used medicinally since Ancient times. Although there are no 

documented traditional uses for the plant material, the seeds and roots of the Hawaiian 

Baby Woodrose plant are reported to contain psychoactive materials
22

. Additionally, 

there have been reports of individuals using the plant material as an alternative to 

marijuana or other intoxicating substances. For example, in Australia today, the seeds are 

regularly used recreationally as a psychedelic
22

.    

1.5.5.2. Reported Effects and Active Components 

 The Hawaiian Baby Woodrose seeds contain about 0.3% ergot alkaloids, making 

it the most potent of all vines containing drugs
22

Many alkaloids have been identified as 

constituents of the seeds, including but not limited to ergine, isoergine, chanoclavine, 

elymoclavine, lysergol, ergometrine (ergonovine), and ergometrinine
22,32

. Due to the 

similarities in the compounds present in the Hawaiian Baby Woodrose seeds, morning 
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glory seeds, and ololiuqui seeds, the effects due to consumption of the seeds was 

expected to be simila
33

. The structures of ergine, ergometrine, and ergosinine are shown 

previously in Figure 5. Structures of lysergic acid and lysergol are shown in Figure 6.  

 
Figure 6.Additional ergot alkaloids found in seeds of Hawaiian baby woodrose 

seeds.  

1.5.6 Entada rheedii (African Dream Herb) 

1.5.6.1. Background and Traditional Uses 

The African Dream Herb is a climbing vine that is native to tropical regions such 

as the coastlines of Madagascar, Southern African, Asia, and Australia
34

. The plant is 

most known for the large seeds that it produces. The seed pods can grow to be over 5 feet 

long and each pod contains 12 or more seeds.  The seeds are round with a diameter of 

approximately 2 inches. Each seed is protected by a thick, dark brown casing containing a 

lighter brown seed that is hollow in the center. Traditionally, the African Dream Herb has 

been used for many centuries by tribes for its medicinal healing properties; although, 

reports do not indicate the specific effects or traditional practices. In South Africa, the 

plant is used to induce vivid dreams that were believed to be a way to communicate with 

the spiritual world. 
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1.5.6.2. Reported Effects and Active Components 

Very little scientific research has been done on the active components of the 

African Dream Herb seeds. Based on studies of the Entada species, the plant likely 

contains psychoactive alkaloids, phenylacetic acid derivatives, and essential oils
35

, but no 

scientific reports were found to suggest any specific compounds present in the African 

Dream Herb seeds. Based on anecdotal sources, the seeds are generally believed to aid in 

sleep that allows the user to experience more vivid dreams and provide an increased level 

of awareness during REM sleep, allowing a more lucid dream experience.  

Based on several recent studies, components within the seeds have begun to be 

investigated, but none of them are being studied as a possible source for hallucinogenic 

properties
34,36

. Currently, studies are focusing on the tryptophan derivatives in the plant 

and their effect on cell viability and HIV infections
34

 and the antiproliferative and 

antioxidant properties of triterpene saponins found in the Entada rheedii plant
36

.    

1.5.7 Peganum harmala (Syrian Rue or Harmel) 

1.5.7.1. Background and Traditional Uses 

Peganum harmala is a plant that grows in many parts of the world, including the 

eastern Mediterranean region, Mongolia, Manchuria, Yemen, the Negev Desert, and parts 

of California
22

. The Syrian rue plant has traditionally been used by cultures in the Middle 

East, Central Asia and South America for ritualistic and medicinal purposes
22,37

In ancient 

literature, the plant was referred to as peganon, likely after the word Pegasus from Greek 

mythology
22

. Syrian rue was also a sacred plant in the Middle East, where it is stated in 
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the Koran that, “every root, every leaf of harmel, is watched over by an angel who waits 

for a person to come in search of healing”
22,38

. In North Africa, the seeds are used as 

incense, in which the smoke is inhaled to cure headaches and other diseases
22,37,38

.  

1.5.7.2. Reported Effects and Active Components 

Syrian rue seeds contain psychoactive compounds, specifically the β-carbolines 

harmine and harmaline shown in Figure 7. Harmine is reported to make up about 4.3% 

weight/weight (w/w) of the dry seeds, and harmaline is 5.6% (w/w)
38

. Harmol, harmalol, 

and ibogaine have also been reported as being components of the seeds
37,38

. Ingestion of 

the seeds is reported to cause improved imagination and dream-like effects.  

 

Figure 7.Structures of psychoactive compounds reported to be in Syrian rue seeds.  

 

1.5.8 Hyoscyamus niger (Black Henbane) 

1.5.8.1. Background and Traditional Uses 

Black henbane grows naturally in Scandinavia, North America, and Australia and 

is distributed throughout the world, including Europe, Asia, and North Africa
22,39

. The 

plant has been used for medicinal purposes since ancient times. Henbane is a member of 

the Nightshade family, which is often associated with witchcraft in Europe
16

.  In Persia, 
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the plant was called banha, which is the term often associated with psychoactive plants, 

including marijuana
22

. Reportedly, a Persian prince drank a mixture of henbane and wine 

and experienced three days of deep sleep while his soul experienced religious travels
22

. 

Henbane also played an important role in the ritualistic practices of the Vikings and 

multiple cases have been reported in which the seeds were recovered from graves of 

Vikings
22

. Overall, the plant has a long history of practice for purposes of inebriation 

related to witchcraft and superstition
16

.      

1.5.8.2. Reported Effects and Active Components 

The primary active ingredients in henbane are hyoscyamine, atropine, and 

scopolamine, shown in Figure 8
16,22,39,40

. Hyoscyamine is an isomer of atropine and is not 

shown. Each of these compounds is found throughout the entire plant, although they are 

reported to be most highly concentrated in the seeds and roots
16

. Atropine and 

scopolamine are different than most hallucinogens because they are extremely toxic, 

causing temporary anterograde amnesia while under the influence
16,41

. Henbane 

intoxication generally results in pressure headaches, blurred and distorted vision, and 

visual hallucinations. The user often experiences hallucinations related to taste and smell 

as well
16

.     
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Figure 8. Psychoactive compounds found in henbane seeds, atropine and 

scopolamine.  

1.5.9 Ephedra sinica (Ma-Huang) 

1.5.9.1. Background and Traditional Uses 

Ephedra sinica is a perennial plant native to northern China and grows at altitudes 

of almost 5,000 feet
22

. Traditionally, the Chinese have used the plant material to treat 

asthma, diseases of the lungs and bladder, fevers, headache, and hayfever
22

. The Chinese 

and Mongolian shamans used ma-huang for magical, medicinal, and ritualistic purposes 

22
, but no scientific sources were found to describe the specific details of how it was used. 

In recent years, the plant was distributed throughout the world to be used in dietary 

supplements, but was banned by the FDA for use in supplements in the U.S. in 2004
22,42

. 

In addition to use in supplements, the plant material is still used in tonics and 

aphrodisiacs due to its stimulating effects
22

. 

1.5.9.2. Reported Effects and Active Components 

Of all the ephedra species, Ephedra sinica has the highest alkaloid content. The 

dried plant material contains up to 2.5% alkaloids including ephedrine, pseudoephedrine, 

and norephedrine
22,42

. The structure of each compound is shown in Figure 9.  Ephedrine 
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is the most abundant compound and accounts for up to 60% of the total alkaloid content 

in the plant
42

. Many studies have been conducted to investigate different aspects of 

ephedrine including its stimulating effects, potential for use as a precursor to 

methamphetamine, and performance enhancing properties within the athletic 

community
43,44

. Consumption of the plant material results in constricted blood vessels 

and increased pulse, causing a stimulating effect. Although studies state that the dried 

plant material and stems possess psychoactive properties, no reports address any 

psychoactive alkaloids in the seeds
22,42

.  
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Figure 9. Structures of compounds reported to be present in Ephedra sinica plant 

material.  

1.5.10 Mucuan pruriens (Cowage) 

1.5.10.1. Background and Traditional Uses 

Cowage can be found throughout the world in areas near forests and oceans in 

Africa, Asia, and Central and South America
45,22

. Many cultures use the seeds or seed 

powder for different purposes including the prevention of eye inflammation in infants, to 

increase semen production, to remove venom after a scorpion bite, to treat nervous 

disorders, or to remove parasites from the body
11,22

. In addition to consumption for their 
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therapeutic properties, the seeds are also consumed as a source of nutrients by poor 

populations in Africa and Asia
46

.   

1.5.10.2. Reported Effects and Active Components 

Cowage seeds are reported to contain DMT, bufotenine, serotonin, and L-3,4-

dihydroxyphenylalanine (L-dopa)
22

. DMT and bufotenine produce psychoactive effects 

including hallucinations and a sense of euphoria, but DMT must be consumed in 

combination with a monoamine oxidase inhibitor in order for it to be active
47

. L-dopa, 

which is the precursor to dopamine and has been shown in numerous studies to aid in the 

treatment of Parkinson’s disease
45,48

. The structures of DMT and L-dopa are shown in 

Figure 10.  
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Figure 10. Figures of compounds of interest reported to be present in cowage seeds.  

 

1.5.11 Argemone mexicana (Mexican Poppy)  

1.5.11.1. Background and Traditional Uses 

The Mexican poppy is a plant that grows to about three feet in height and 

produces several small black seeds contained within the fruit
22

. The leaves, flowers, 

capsules, and dried latex contain psychoactive ingredients, although the plants’ use for its 
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psychoactive properties is unknown
22

. Limited research was found to suggest the 

psychoactive use of the seeds, but they were associated with the underworld by the 

Aztecs and were used in various rituals
22

. The plant has been utilized as a “nourishment 

of the dead” in some cultures, including the Aztecs and other Mesoamerican people, and 

food for various ceremonies was often prepared using portions of the Mexican poppy 

plant
22

. The plant has also been used by various cultures for medicinal practices. For 

example, in Peru, muscle pain is treated with a plaster made from the plant
22

.   

1.5.11.2. Reported Effects and Active Components 

 Very little research has been done on the effects of the plant material, especially 

the seeds. The seeds have been reported to produce an effect similar to that of cannabis
49

. 

Additionally, reports in Mexico state that smoking the dried leaves of the plant produces 

an aphrodisiac and euphoric effect
22

. Specifically, the seeds contain berberine and 

protopine
22,49

, which may be responsible for the effects noted upon consumption. The oils 

obtained from the seeds also contain the compounds sanguinarine and 

dihydrosanguinarine
49,50

. The structures of all compounds of interest are shown in Figure 

11.    
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Figure 11. Figures of compounds reported to be found in the seeds and seed oil of 

the Mexican poppy plant.  

1.5.12 Celastrus paniculatus (Intellect Tree)  

1.5.12.1. Background and Traditional Uses 

The intellect tree is a plant that is native to Southern Asia. Although there is 

limited research describing the plant or its use, reports suggest that the plant was used to 

improve memory
51,52

and treat various diseases such as epilepsy, insomnia, rheumatism, 

gout, and dyspepsia
53

. Specific details describing the practices were not found.   

1.5.12.2. Reported Effects and Active Components 

Many studies have indicated the use of the seed and flower extracts to improve 

the memory and learning abilities in mice and as a source of anti-inflammatory and 
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analgesic properties
51,54

. No studies were found to suggest a specific compound that may 

be responsible for the properties observed; although there are various anecdotal reports 

available online suggesting the psychoactive effects of consuming the seeds. In addition, 

a webpage entitled “Entheology Preserving Ancient Sacred Knowledge” has a page 

dedicated to describing the seeds. The site states that the seeds contain up to 50% oils, 

which contain active alkaloids including celastrine and paniculatin
55

. No studies were 

found to suggest the properties of either compound.  The structure of each compound is 

shown in Figure 12.   

O

O

O

O
OH

OH

OH

OH

OH
OH

OH

OH

OH

OHOH

O

O

O

CH3

O

CH3

CH3CH3

O

O

OCH3

Paniculatin

MW 594 g/mol

Celastrine

MW 572 g/mol
 

Figure 12. Structures of possible alkaloids found in Intellect tree seeds, although no 

scientific evidence was found to support the existence of these compounds in the 

seeds. 

 

1.6 Direct Analysis in Real Time – Mass Spectrometry (DART-MS) 

Direct analysis in real time (DART) is an ambient ionization technique that allows 

for high-throughput analysis of a wide variety of samples and analytes. Since its 

invention in 2003, DART has been applied to a wide variety of applications, including 

but not limited to analysis of controlled substances
56,57

, synthetic cannabinoids
58

, 
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chemical warfare agents
59,60

, pesticides on produce and food products
61,62

, and food 

quality based on oil content
63

.   

The DART ionization source consists of a carrier gas inlet, glow discharge region, 

grounded perforated electrode, a grid electrode, gas heater region, and a ceramic insulator 

cap at the atmospheric exit, as shown in Figure 13.  

 
Figure 13. DART schematic of gas flow through the source to create metastable 

species. Photo provided courtesy of IonSense, Inc.   

 

The gas, often helium or nitrogen, enters the DART source where it is introduced 

to an electric potential, creating ions, electrons, and excited state metastable species. The 

gas then continues through the source where a counter electrode is used to remove all 

ions, leaving only the metastable species. The metastable species then travel into a region 

of the DART source where they can be heated before exiting through the final grid 

voltage and the insulator cap into the ambient atmosphere
64

. Once the metastable species 

are exposed to the open atmosphere, a series of competing mechanisms take place 

through which ionization occurs
65

. One reaction that occurs is the ionization of water 

vapor in the air through Penning ionization and the creation of a protonated water cluster 

and a hydroxyl radical, as shown in He* + H2O  H3O
+
 + OH

-
 + He   

 Equation 1. Penning ionization occurs with any compound present in the 
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atmosphere that has an ionization energy that is lower than the internal energy of the 

excited metastable
65

.   

He* + H2O  H3O
+
 + OH

-
 + He    Equation 1 

       H3O
+
 + nH2O  [(H2O)nH]

+
  

Once the water clusters in the atmosphere are protonated, proton transfer to the 

sample (M) will occur if the analyte has a ionization potential greater than that of the 

water cluster
65

, resulting in the formation of an [M+H]
+
 species, as shown in Equation 2. 

Although it is also possible to observe hydride abstraction of electrophilic species to form 

negative ions
65

, negative ion mode was not investigated in this study.  

Equation 2 

Two advantages of DART are that it requires little to no sample preparation and 

ionization occurs in the open atmosphere
64,66

. Solid, liquid, or gas samples can be 

analyzed directly by placing the sample in the open air sample region between the DART 

source and the mass spectrometer. Depending on the specific application of the analysis, 

many different sample introduction methods are available, including sampling 

apparatus’s for tablets
57

, glass capillaries
67

, TLC plates
68

, tweezers
67

, and sorbent 

swabs
61

. One method of introducing the sample was developed by IonSense, Inc. 

(Saugus, MA), in which a linear rail enclosure (LRE) is fitted into the open air gap 

between the DART and mass spectrometer. A consumable metal mesh Quick Strip
TM

 is 

then placed into a metal holder in the LRE and can be passed in front of the DART 

source in an automated manner, allowing for rapid analysis of multiple samples in a short 
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period of time. The consumable Quick Strip
TM

 and LRE set-up are shown in Figure 14 

and Figure 15.    

 

Figure 14. DART Quick Strip™ card in metal holder. Image courtesy of Drew 

Horsley. 

 

Figure 15. Linear Rail Enclosure attached between MS inlet (left of image) and 

DART ionization source (right of image) with Quick Strip™ card in holder. Image 

courtesy of Drew Horsley. 

Although not a requirement, the most common position of the DART source 

relative to the mass spectrometer (MS) inlet is directly in-line, which allows the carrier 

gas to travel from the source, interact with the sample, and continue into the inlet of the 

MS. The DART source can be coupled to various MS instruments including time of flight 
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(TOF)
62,68,69

, quadrupole mass spectrometers
70

, and quadrupole ion trap mass 

spectrometers
23,62

. DART allows for ionization and fragmentation patterns similar to 

those commonly observed when using soft ionization techniques such as atmospheric 

pressure chemical ionization and electrospray ionization.    

2. Materials and Methods 

2.1 Materials 

Fourteen different samples including twelve different species of plant seeds were 

obtained from various online sources including shamansgardern.com, 

bouncingbearbotanicals.com, and ethnobotanicals.com. The seeds analyzed in this study 

were Anadenanthera colubrine (Cebil), Voacanga africana (Voacanga), Rivea 

corymbosa (Ololiuqui), Ipomoea violacea (Morning Glory), Peganum harmala (Syrian 

Rue), Entada rheedi (African Dream Herb), Argyreia nervosa (Hawaiian baby 

woodrose), Hyoscyamus niger (Henbane), Ephedra sinica (Ma huang), Mucuan pruriens 

(Cowage), Argemone mexicana (Mexican Poppy), and Celastrus paniculatus (Intellect 

tree). Three strains of Hawaiian baby woodrose were obtained from a single online 

source in an attempt to conduct studies that would allow an analyst to differentiate 

between the strains by chemical components unique to each strain.  

Each seed was prepared through the use of a mortar and pestle and a Bertin 

Technologies Minilys Homogenizer (France) prior to analysis with a DART ionization 

source (IonSense, Inc. Saugus, MA) coupled to a modified single quadrupole mass 

analyzer by Agilent Technologies with Enhanced MSD ChemStation E.02.02.1431 data 



29 

 

analysis software by Agilent Technologies. Additional information was obtained through 

analysis with a DART ionization source coupled to a Finnigan quadrupole ion trap mass 

analyzer followed by data analysis with XCaliber
TM 

Qual Browser 2.2 by Thermo Fisher 

Scientific.    

2.2 Physical Characterization of Seed Samples 

 Each seed type was characterized by taking digital photographs, followed by 

physical measurements including average mass, length, width, and thickness. Some of the 

seeds were too small to measure with digital calipers and physical measurements of the 

length, width, and thickness were not obtained. For the remaining seeds, random samples 

of fifteen seeds were measured using a digital caliper. Each of the 15 seeds was weighed 

using an analytical balance (Denver Instrument). From the recorded measurements, the 

average and standard deviation for each seed was calculated. 

 For the seeds that were not measured with calipers, average mass determinations 

were the only physical measurements collected. An average mass was determined by 

weighing 25 seeds in triplicate. For each trial, the average mass of a single seed was 

calculated. The average masses determined in the three trials were then averaged and a 

standard deviation was determined based on the data from all three trials.     
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2.3 DART-MS Method Development for Plant Based Drugs of Abuse 

2.3.1 Sample Preparation 

 In order to provide a representative sample of each seed, multiple seeds were 

ground with a mortar and pestle. Once the seeds were crushed, they were placed into 

small plastic tubes containing metal balls ranging in size from 5/32 to 1/8 inches to be 

used in the homogenizer. Each sample was then homogenized on the medium speed 

setting for approximately one minute. Once the samples were homogenized, the powders 

were removed from the plastic tubes and placed into individual labeled black top vials.  

To prepare the samples for analysis by DART-MS, a small amount of the powder 

was placed onto a Quickstrip
TM

 (IonSense, Inc., Saugus MA, USA) to create an 

approximately 3mm square sample area. The powder was then ground into the mesh 

using a metal spatula to ensure the sample was embedded into the mesh. The 

Quickstrip
TM

 was then tapped against the table to remove any excess loose powder before 

being placed into the LRE for analysis.  

2.3.2 DART Source Temperature Profile 

In order to determine the optimal source temperature for each seed sample, a 

temperature profile was collected for each sample using the DART/single 

mass analyzer. The analysis was performed in positive mode using helium as the 

gas. The parameters for the experiment can be seen in  

Table 1.  
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Table 1. Quadrupole mass spectrometer and DART parameters for the DART 

source temperature profile.   

Capillary Inlet 78.8 V 

Skimmer Focus 60.0 V 

Skimmer 12.0 V 

Ion Guide Offset 8.3 V 

Ion Guide Exit Lens 5.9 V 

MSD Focus Lens -299.0 V 

MSD Quad Entrance Lens -27.0 V 

RF Voltage 480 V 

Capillary Temperature 150°C 

Grid Voltage 250 V 

DART Source Temperature 250°C, 300°C, 350°C 

Linear Rail Speed 0.8 mm/s 

 

Three samples were analyzed at each temperature (250°C, 300°C, 350°C) and an 

average was taken of the resulting spectra for comparison to determine the optimal source 

temperature. The analysis at all three temperatures was performed using samples on a 

single QuickStrip™, with a space on the mesh between each temperature to serve as a 

blank. An example of this set-up is shown in Figure 16. The optimal source temperature 

was determined based on the abundance of the ions of interest for each sample, the 

amount of noise, and the abundance of any other ions present in the spectra.   
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Figure 16. Diagram of Quickstrip used to perform temperature profiles for each 

seed.  

2.3.3 Fragmentation 

After the optimal source temperature was determined and the ions of interest were 

identified, more information was necessary before identification could be made, based on 

SWGDRUG guidelines as to what is required for a confirmatory identification. Using the 

DART/quadrupole ion trap, MS
2
 fragmentation was performed on the molecular ions of 

interest to obtain fragmentation patterns for each compound. The MS parameters used are 

shown in .  
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Table 2.  

 

 

 

 

 

 

 

 

Table 2. Ion trap MS Parameters used throughout the fragmentation experiments. 

MS Capillary Temperature 200°C 

MS Voltage 15 V 

Multipole 1 Offset -6.8 V 

Lens Voltage 23.00 V 

Multipole 2 Offset -8.0 V 

Multipole RF Amplitude 400 V 

Entrance Lens Voltage -46 V 

Electron Multiplier Voltage -1090.0 V 

The DART source was set at the optimal temperature determined for each sample 

and the percent collision energy (CE) used to induce MS
n
 fragmentation was varied to 

determine the optimal CE for each compound of interest.  

Data was collected at multiple CE percentages and the optimal value was 

determined when the most abundant fragment ion occurred without complete loss in 
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abundance of the parent ion. The structure of the compound was studied in an attempt to 

understand where the resulting fragments were likely originating. The fragmentation 

patterns observed were also compared to patterns reported in the literature.    

2.4 Identification 

Based on the data collected, the major compounds present in each sample were 

identified through analysis of the fragmentation patterns along with the compounds that 

were reported to be present in each of the plant seeds. In some cases, past studies were 

able to provide known fragmentation patterns for the compounds suspected to be present 

in the seed samples. In cases where no studies could be found discussing fragmentation, 

suggestions were made as to the source of each fragment observed based on the structure 

of the compound of interest. Although identifications were made for each sample, no 

standards were analyzed to confirm the results.  

3. Results and Discussion 

3.1 Physical Characterization  

Digital photographs were taken of each seed for visual comparison and 

identification of macroscopic details for the entire seed. The photos of each seed type are 

shown in Figure 17,Figure 18, Figure 19, andFigure 19Figure 20. A scale with centimeter 

measurements was included in each of the photographs for a reference. The cebil seeds 

(Figure 17A) were flat, circular black seeds with a thin, smooth outer shell. The voacanga 

seeds (Figure 17B) were oblong and brown with a noticeable node at each end. The 
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surface of the seeds was rough and textured. The morning glory seeds (Figure 17C) were 

black and oblong with a defined ridge running along the length of the seed on one side. 

The Syrian rue seeds (Figure 17D) were very small, irregular in shape, and brown in 

color. 

 

Figure 17. Images of seeds analyzed. A) Cebil seeds, B) Voacanga seeds, C) Morning 

Glory seeds, and D) Syrian Rue seeds 

 

 The henbane seeds (Figure 18A) were very small, round, and light brown in 

color. No physical measurements other than weight were able to be obtained for the 
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henbane seeds. The ololiuqui seeds (Figure 18B) were light brown and oval in shape with 

a width and thickness that were very similar. The Ephedra sinica seeds (Figure 18C) 

were very dark, almost black in color. The seeds were mostly flat with smooth surfaces.   

 

Figure 18. Images of seeds analyzed. A) Henbane seeds, B) Ololiuqui seeds, and C) 

Ephedra sinica seeds. 

 

 The African dream herb seeds (Figure 19A) were very large in comparison to the 

other seeds examined. The seeds were circular with a smooth dark brown to black outer 

covering. When opened, the seeds were hollow in the center. The cowage seeds (Figure 

19B) were also oval in shape and dark colored in color. The color ranged from a mix of 

black and brown to solid black. On one edge of the seed, there was a small brown layer, 

likely the location in which the seed was connected to the plant. The Mexican poppy 

seeds (Figure 19C) were very small, round black seeds that came to a point at one edge. 

No physical measurements other than weight were able to be obtained for the Mexican 

poppy seeds. The Intellect tree seeds (Figure 19D) were round in shape with a two splits 

in the middle, dividing the seed into three sections. They were a reddish-brown color.   
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Figure 19. Images of seeds analyzed. A) African Dream Herb seed, B) Cowage seeds, 

C) Mexican Poppy seeds, D) Intellect Tree seeds. 

The three strains of Hawaiian Baby Woodrose seeds were visually different. The 

Ghana strain (Figure 20A) appeared more light brown to orange in color while the 

Hawaiian (Figure 20B) and Indian strain (Figure 20C) are more of a darker brown to gray 

color. The visible differences may be due to the environments in which they were 

obtained, including differences in soil composition and moisture content. Although the 

seeds were sold under the label of Hawaiian, Ghana, or Indian strain the environmental 

conditions or specific origins of each seed was unknown.  
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Figure 20. Three different strains of Hawaiian Baby Woodrose seeds. A) Ghana 

Strain, B) Hawaiian Strain, C) Indian Strain.  

The seeds were physically measured using digital calipers. The length and width 

were determined based on nodes at either end of the seed. The length was measured from 

the node to the opposite side. The width was measured at approximately half way 

between the node and the end of the seed. The thickness of the seed was measured by 

placing the caliper on the front and back of the seed and measuring at the same point on 

the seed that the width was taken, as this was approximately the middle of the seed. Each 

seed was also weighed individually using an analytical balance to obtain a mass in grams. 

Once all fifteen seeds were measured, the average and standard deviation were 

calculated.  

The seeds examined as part of this study ranged in size from approximately 0.77 

mg to 20515 mg. With the exception of the voacanga, intellect tree, and ephedra sinica 

seeds, the mass of each seed had a standard deviation of less than 20%, with several 

being less than 10%. The length of the seeds measured ranged from approximately 2.86 
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to 39.34 mm with standard deviations of 4.8% to 17.5%. The width of the seeds 

measured ranged from approximately 3.34 to 44.31 mm with standard deviations of 4% 

to 11.6%. The thickness of the seeds measured ranged from approximately 1.44 to 18.63 

mm with standard deviations less than 20% with the exception of the Intellect tree seeds 

which had a standard deviation of 32.6%.      

A summary of the average and standard deviations calculated for each seed type 

is shown in Table 3.  

Table 3. Summary of physical measurements of each seed.  

Sample Average Mass 

(mg) 

Average 

Length (mm) 

Average 

Width (mm) 

Average 

Thickness 

(mm) 

Yopo Seed  99.66 ± 15.52  12.13 ± 0.71 10.52 ± 0.83 1.44 ± 0.21 

Voacanga Africana Seed 39.18 ± 10.68 7.15 ± 0.65 3.97 ± 0.31 3.16 ± 0.32 

Ololiuqui Seed 3.34 ± 0.18 4.80 ± 0.35 3.34 ± 0.17 3.35 ± 0.23 

Morning Glory Seed 34.65 ± 7.00 6.43 ± 0.92 3.52 ± 0.29 2.50 ± 0.50 

Syrian Rue Seed*  2.28 ± 0.14 --- --- --- 

African Dream Herb 20515 ± 2590 39.34 ± 3.27 44.31 ± 2.97 18.63 ± 1.66 

Cowage 1463 ± 233 12.28 ± 0.72 17.73 ± 1.06 9.36 ± 0.72 

Hawaiian Baby Woodrose - 

Hawaii 104.58 ± 7.29 6.25 ± 0.33 7.02 ± 0.28 4.61 ± 0.33 

Hawaiian Baby Woodrose - 

Ghana 108.79 ± 8.53 5.85 ± 0.62 6.80 ± 0.35 4.68 ± 0.31 

Hawaiian Baby Woodrose - 

Indian 97.43 ± 14.39 6.18 ± 0.30 7.76 ± 0.49 4.40 ± 0.37 

Henbane*  0.77 ± 0.01 --- --- --- 

Intellect Tree 42.77 ± 15.87 4.63 ± 0.81 6.01 ± 0.70 3.47 ± 1.31 

Ephedra sinica 9.92 ± 2.18 2.86 ± 0.27 5.00 ± 0.51 1.65 ± 0.15 

Mexican Poppy Seed* 2.04 ± 0.15 --- --- --- 

(* indicates that three measurements were taken of 25 seeds at once and an average was 

calculated based on that value. This was done for very small seeds) 
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3.2 DART Source Temperature Profiles 

For each sample, data was collected while the DART source temperature was 

varied. Data was collected at 250°C, 300°C, and 350°C and comparisons were made 

between the quality of the spectra as well as the relative abundance of the ions of interest. 

Unlike typical GC data, there is no separation of the components within a sample. Rather 

than obtaining a chromatogram, the analysis results in a plot of ion abundance as a 

function of time in minutes, also known as a Total Ion Chronogram (TIC). In Figure 21A, 

each peak represents a point in time where the ion abundance showed a significant 

increase. This correlates with the time in which a crushed cebil seed sample was ionized 

by DART and carried into the mass spectrometer for detection. The separation between 

peaks can vary based on the sample introduction method, including the speed of the 

linear rail which is carrying the sample into the ionization region. For all of the 

experiments in this study, the linear rail was set to proceed at 0.8 mm/s to ensure baseline 

resolution of each sample being analyzed.  

Due to variations in ion intensity based on precise placement of the sample on the 

QuickStrip™ relative to the DART and the detector, averages were taken by measuring 

from the start of the peak, where signal increased above the baseline, to the end of the 

peak, where signal decreased into the baseline. Figure 21B-D shows the data collected for 

crushed cebil seeds at the three different carrier gas temperatures. The data is an average 

of three trials all analyzed on a single QuickStrip™. The analyte of interest in cebil seeds 

is bufotenine which would exhibit an [M+H]
+
 peak at m/z 205. With a DART source 
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temperature of 300°C, the peak at m/z 205 had the greatest abundance at approximately 

120,000 counts. As the source temperature increased or decreased, the abundance of the 

m/z 205 peak decreased. The optimal source temperature for the analysis of cebil seeds 

was determined to be 300°C, and was utilized later for future fragmentation experiments. 

The detection of a peak at m/z 205 was used as a presumptive positive identification of 

bufotenine. 
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Figure 21. A) Total Ion Chronogram of crushed cebil seeds at 250°C, 300°C, and 

350°C. The split in the peaks represents two different spaces on the QuickStrip™ 

being passed in front of the DART source. Mass spectral data collected during 

DART source temperature profiles for the analysis of crushed cebil seeds at B) 

250°C, C) 300°C, and D) 350°C.  
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The analysis of Voacanga africana seeds produced very similar results with a 

source temperature of 300 and 350°C. The main ions of interest for these seeds were 

voacamine, voacangine, tabersonine, and ibogaine which have [M+H]
+
 values of m/z 705, 

369, 337, and 311, respectively. Error! Reference source not found.Although the TIC 

is not shown, the total abundance of ions remained approximately the same as the source 

temperature is increased from 250°C to 300°C and tended to decrease at 350°C. Ion 

abundance may be an important trend to note, but the mass spectral data must be 

considered, as the total abundance of ions does not necessarily correlate to the ions of 

interest present, and ion abundance can vary greatly with DART. Differences in 

background noise and the signal to noise ratio must be considered in order to determine 

the optimal source temperature for Voacanga. As can be seen in Figure 22, the abundance 

of the peak at m/z 337 is the most abundant peak at all three source temperatures. At 

300°C, the abundance of m/z 337 is the greatest and the peak at m/z 369 is present. In 

addition, a peak at m/z 353 is present. Although this could not be associated with any 

compounds known to be main components in the seeds, the ion may be due to 

akuammidine, which has a molecular weight of 352 g/mol. Akuammidine is not well 

documented as being a component of Voacanga Africana seeds; however it is reported to 

be a compound in other Voacanga species
71

. The optimal source temperature for 

Voacanga was determined to be 300°C, although 250°C was sufficient to ionize the 

analytes of interest. The two additional peaks in the spectrum collected with a source 

temperature of 250°C could not be associated with any known compounds. Although 

voacamine and ibogaine are also present in the Voacanga africana seeds, no ions were 
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detected that could be associated with either of the compounds. The absence of expected 

compounds may be due to the inability of DART to ionize these compounds, or the 

compounds may have been present in such low concentrations that they were not detected 

using this method. It is also possible that voacamine and ibogaine were not present in the 

sample.  

 

Figure 22. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed voacanga seeds at A) 250°C, B) 300°C, and C) 350°C. 
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The main ion of interest in ololiuqui seeds was ergine which has an [M+H]
+
 value 

of m/z 268 and ergometrine which would produce a peak at m/z 326. As shown in Figure 

23, the ion at m/z 268 was most abundant relative to other ions when the source 

temperature was set to 350°C. Also, as the source temperature was increased, other ions 

that were present at the lower source temperature became less apparent.  

Even as the source temperature was adjusted, no peak at m/z 326 was detected. 

The absence may be due to a low concentration or absence of ergometrine in the sample 

of seeds analyzed, or that the analyte is unable to be ionized by DART within the specific 

plant matrix. Although the specifics of the exact plant matrix are unknown, many 

compounds have the ability to suppress the ionization of compounds that would ionize in 

alternative settings. Ion suppression effects are observed when there are analytes that are 

preferentially excited by the DART source, reducing the ability of the analyte of interest 

to be detected. Smaller molecular weight compounds may be suppressed by larger 

compounds, and polar compounds are more susceptible to ion suppression effects
72,73

. 

Experiments could be designed in which the analyte of interest is isolated from the plant 

matrix and then analyzed. The ion abundance should increase as there are no matrix 

effects limiting the detection of the ions.  

Although the identity of the other peaks is unknown, the detection and 

identification of ergine is essential for the purposes of drug identification in a forensic 

setting.  
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Figure 23. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed ololiuqui seeds at A) 250°C, B) 300°C, and C) 350°C. 

Similar to ololiuqui seeds, the main ions of interest for morning glory seeds were 

ergine and ergometrine/ergonovine which have [M+H]
+
 values of m/z 268 and 326, 

respectively. As shown in Figure 24, the ion at m/z 268 was present at all three 

temperatures, but was most abundant when the source temperature was 350°C. The ion at 

m/z 326 was not distinguishable from the baseline until the source temperature reached 

350°C. At lower source temperatures, the mass spectrum contained a significant number 
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of peaks whose identities were unknown, indicating that there are other compounds 

present in the seeds that ionize more readily than what is suspected to be ergometrine. 

This may be useful in species determination or aiding in the determination of origin, but 

not for the purpose of identifying potential drugs of abuse. Not only does ergometrine 

become present when the source temperature reaches 350°C, the number of other ions 

present decreases, making the ions of interest more apparent, which may be due to the 

lack of thermal stability of the compounds as the carrier gas temperature was increased. 

The optimal source temperature for the analysis of morning glory seeds was determined 

to be 350°C even though an ion at m/z 359 becomes apparent and cannot be associated 

with a specific analyte present in the seeds.  
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Figure 24. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed morning glory seeds at A) 250°C, B) 300°C, and C) 

350°C.  

Syrian rue seeds contain harmine and harmaline which have [M+H]
+ 

values of m/z 

213 and 215, respectively. As shown in Figure 25, peaks at m/z 213 and 215 were present 

at all three source temperatures, indicating that the compounds ionize relatively easily by 

DART. Also, it can be noted that as the source temperature increased, the abundance of 

harmine in comparison to harmaline decreased. Although harmaline is known to be 
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oxidized to form harmine in the presence of heat
74

, no explanation for the reverse 

reaction was found. Due to the drastic decrease in the abundance of the peak at m/z 213, 

the optimal source temperature for analysis of Syrian rue seeds was determined to be 

250°C. Like with many of the other samples, peaks are present that cannot be associated 

with any known components of the seed.    

 

Figure 25. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Syrian rue seeds at A) 250°C, B) 300°C, and C) 350°C. 

The MS data inserted in the top right corner is zoomed in on the region from 210 to 

220m/z to show the ions of interest.  



50 

 

The African dream herb seeds were unique in that no compounds of interest were 

known before analysis. Determination of the optimal source temperature in this case was 

based on the signal to noise ratio as well as the abundance of the ions that were most 

prominent in the spectra. Based on the analysis of previous samples and studies, any 

hallucinogenic compounds present at significant concentrations would be among the most 

abundant ions produced. As shown in Figure 26, the peak at m/z 142 was seen at all 

temperatures in relatively high abundances. Additionally, a peak at m/z 116 was present 

at all three source temperatures. Because these peaks were seen at all three source 

temperatures and were the most abundant ions in each of the spectra, remainder of the 

analysis was focused on the identification of the ions. Therefore, the optimal source 

temperature for the analysis of African dream herb seeds was 300°C, assuming m/z 142 

and 116 were the ions of interest. Upon further investigation on common components in 

plant materials, proline was reported to oftentimes accumulate in the seeds
75

. Proline is 

an amino acid with a molecular weight of 115g/mol, which would exhibit an [M+H]
+
 

peak at 116g/mol
76

. Further testing would be necessary to confidently identify proline 

within the African dream herb samples. 
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Figure 26. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed African Dream Herb seeds at A) 250°C, B) 300°C, and C) 

350°C. 

Cowage seeds reportedly contain a variety of compounds including DMT, L-

dopa, serotonin, and nicotine. Each of these would result in [M+H]
+
 values of m/z 189, 

198, 177, and 163, respectively. As can be seen in Figure 27, when the source 

temperature was 250°C, the most abundant peaks occurred at m/z 116 and 298. As the 

source temperature increased, the peak at m/z 116 became the only ion present, which 

may indicate ion suppression or that the other compounds are not as thermally stable as 
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the source temperature is increased. The species at m/z 116 may ionize so readily that it 

does not allow the other analytes of interest to be observed. At this point, the identity of 

this ion is unknown; however, as discussed above, it may be due to proline accumulation 

in the seeds
75

. Another possibility is that the ions of interest in cowage seeds are not 

readily ionizable by DART given the complex plant matrix. Identification of the other 

analytes of interest may have been possible by first preparing a sample extract in 

methanol to remove the analytes from the plant matrix, but this was not done in this 

thesis, as the goal was to minimize the sample preparation requirements.     
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Figure 27. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Cowage seeds at A) 250°C, B) 300°C, and C) 350°C. 

 

Henbane seeds reportedly contain atropine and hyoscyamine which would result 

in a [M+H]
+
 peak at m/z 290. Although this method would not differentiate between 

atropine and hyoscyamine, detection of either compound is important in the preliminary 

identification of the henbane seed. At all three source temperatures, other peaks are 

present at high abundances. As the temperature was increased, the number of other ions 

decreased, but the peak at m/z 308 remained relatively abundant in comparison to the ion 
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of interest at m/z 290, as shown in Figure 28. The other peaks are likely due to other 

compounds present in henbane seeds due to the lack of chromatographic separation by 

DART. The identification of all peaks present in the spectra was outside the scope of this 

thesis, although it may be an area of interest to aid in identification of unknown samples 

when the amount of the target drug analyte is found in lower abundances.     

 

Figure 28. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Henbane seeds at A) 250°C, B) 300°C, and C) 350°C. 
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Hawaiian Baby Woodrose seeds are reported to contain ergine and ergometrine 

(ergonovine) which would result in [M+H]
+
 peaks at m/z 268 and 326, respectively. As 

can be seen in Figure 29, the spectrum for the Hawaiian strain lacked clearly defined 

peaks when the source temperature was 250°C. As the source temperature was increased, 

the ions of interest become distinguishable from the baseline. Both analytes of interest 

(m/z 268 and 326) were present in high abundances at source temperatures of both 300°C 

and 350°C. However, the abundance was significantly higher at 350°C, which was 

determined to be the optimal source temperature for the analysis of Hawaiian Baby 

Woodrose seeds - Hawaiian strain. Similar to the data for other seeds, ions were present 

that were not associated with the drug analytes and were unable to be identified.  
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Figure 29. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Hawaiian Baby Woodrose Hawaiian strain seeds at A) 

250°C, B) 300°C, and C) 350°C. 

 

The analysis of the Hawaiian Baby Woodrose seeds - Indian strain did not show 

any significant differences as the source temperature was increased, as shown in Figure 

30. At 250°C, the ions of interest at m/z 268 and 326 were abundant and no other peaks 

interfered with the spectrum. As the source temperature was increased, the abundance of 

the peaks almost doubled and no additional peaks were observed. Because a source 
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temperature of 300°C and 350°C provided results that were essentially equal, either 

source temperature would be ideal for the analysis of the Indian strain.  

 

Figure 30. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Hawaiian Baby Woodrose Indian Strain seeds at A) 

250°C, B) 300°C, and C) 350°C. 

The analysis of the Hawaiian Baby Woodrose seeds - Ghana strain provided 

results that were significantly different than the other two strains. As seen in Figure 31, 

numerous ions were present in addition to the ion of interest (m/z 268). A peak at m/z 326 

was not apparent in any of the spectra, which may indicate that ergometrine is either not 
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present in the seeds or is present in concentrations below the limit of detection, or that ion 

suppression is occurring. In addition, the spectra obtained showed more significant 

baseline noise than was detected for the Hawaiian or Indian strains, which may be due to 

the nature of the sample and/or the concentration of the analytes of interest in this 

particular strain of seeds. Although, extraction and concentration procedures may have 

been helpful in detecting the analyte of interest, no further steps were performed as one of 

the goals was to reduce or eliminate the need to perform any extensive sample 

preparation measures and to decrease the time required for complete analysis. A source 

temperature of 350°C was used when analyzing the Ghana strain in subsequent tests. 

 All three of the Hawaiian Baby Woodrose seed samples were expected to exhibit 

the same analytes of interest when analyzed under similar conditions, but this was not the 

case, as can be seen in Figure 32 comparing the data collected for each of the strains at 

350°C. 
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Figure 31. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Hawaiian Baby Woodrose Ghana Strain seeds at A) 

250°C, B) 300°C, and C) 350°C. 
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Figure 32. Mass Spectral data collected with a DART source temperature 350°C for 

Hawaiian Baby Woodrose A) Hawaiian Strain, B) Indian Strain, and C) Ghana 

Strain.   

Intellect Tree seeds are reported to contain celastrine and paniculatin. Each of 

these compounds have two to three times more mass than the previously tested analytes, 

making them harder to ionize by DART, as DART is ideal for small, polar compounds. 

Celastrine would result in [M+H]
+
 of m/z 573, and paniculatin would result in a [M+H]

+
 

peak at m/z 595. Both of these compounds are relatively unknown in terms of their 

chemical properties and pharmacokinetics. The analysis of the seeds with varying source 
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temperature can be seen in Figure 33. The analytes of interest were not observed at any of 

the source temperatures. Based on the structures (Figure 12) and molecular weights of the 

two analytes of interest, the compounds may not be ionized by DART and that the ions 

observed at m/z 524 and 534 may be associated with other compounds present in the 

seeds or are fragments of larger unknown compounds. No resources were found to 

suggest any other compounds present in the seeds.  

 

Figure 33. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Intellect Tree seeds at A) 250°C, B) 300°C, and C) 350°C.  
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Ephedra sinica plant material is reported to contain a variety of compounds 

including ephedrine, pseudoephedrine, and norephedrine. Ephedrine and 

pseudoephedrine are diastereomers and cannot be differentiated from one another using 

mass spectrometry techniques alone. However, for the purposes of this study, detection 

and identification of either one was sufficient without knowing whether one or both 

compounds was being detected. Either ephedrine or psudoephedrine would result in a 

[M+H]
+
 peak at m/z 166. Norephdrine would result in a [M+H]

+
 peak at m/z 152. As 

shown in Figure 34, neither of the analytes of interest were detected. The most abundant 

peak occurs at m/z 128. The analyte of interest may not be present in the Ephedra sinica 

seeds, which would be consistent with other reports that state that the psychoactive 

properties are present in the leaves and stems of the plants rather than the seeds.       
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Figure 34. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Ephedra Sinica seeds at A) 250°C, B) 300°C, and C) 

350°C.  

 

Mexican poppy seeds are reported to contain sanguinarine, dihydrosanguinarine, 

berberine and protopine. Sanguinarine and dihydrosanguinarine are the two most 

abundant compounds reportedly found in the seeds of the Mexican poppy. These 

compounds would result in [M+H]
+ 

peaks at m/z 333 and 334 respectively. Berberine 

would result in a [M+H]
+
 peak at m/z 337 and protopine would be detected at m/z 354. As 
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can be seen in Figure 35, the most abundant peak is observed at m/z 334. The peak at m/z 

319 may be due to another analyte that is readily ionizable in the sample, or it may be a 

product of fragmentation due to the loss of a methyl group from the analyte at m/z 334. 

Additional fragmentation information is necessary to draw any conclusions. Based on the 

abundance of the two peaks, it was determined that the optimal source temperature for 

the analysis of Mexican poppy seeds was 300°C.  

 

Figure 35. Mass spectral data collected during DART source temperature profiles 

for the analysis of crushed Mexican Poppy seeds at A) 250°C, B) 300°C, and C) 

350°C.  



65 

 

3.3 MS
2
 Fragmentation Data 

After the source temperatures were optimized for the analytes of interest, the next 

step in identifying the compounds found in each of the seed samples was to perform MS
n
 

fragmentation using a quadrupole ion trap. Each ion of interest was fragmented at the 

optimized source temperatures, while adjusting the percent collision energy (CE) to 

maximize fragmentation, in order to provide as much unique structural information as 

possible.  Fragmentation patterns were determined for each of the analytes and compared 

to the literature for each specific compound.  

For the cebil seeds, analysis was performed at 300°C and the ion of interest was 

m/z 205, which was preliminarily associated with bufotenine. The fragment at m/z 205 

was imparted with 20%, 23%, and 25% collision energy. At 23% CE, the ion at m/z 205 

is still present, but is reduced in abundance almost to the baseline noise as the CE is 

increased to 25%. A CE of 25% was ideal for fragmentation of the m/z 205 peak, as is 

seen in Figure 36.  

 

Figure 36. MS
2
 fragmentation data of m/z 205 for crushed cebil seeds with a 

normalized collision energy of 25%.  
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The main fragment produced was at m/z 160, which can be explained due to the loss of 

the - (CH3)2NH side chain. Based on previous research, bufotenine, like most 

compounds, behaves in a specific manner when exposed to various ionization and 

fragmentation conditions. McClean et al. proposed the fragmentation pattern of 

bufotenine for electrospray ionization/ion trap mass spectrometry as shown in Figure 

37
23

. When compared to other studies that involve the fragmentation of bufotenine, the 

peak at m/z 160 further fragments to form a fragment at m/z 132, but the pattern was not 

observed using this method.  

N
H

NH
+

CH3

CH3

OH

N
H2

+

OH

CH2

N
H2

+

CH2

-(CH3)2NH

- 45 - 28

- CO

Bufotenine 

205 m/z

160 m/z 132 m/z

 

Figure 37. Suggested fragmentation pattern of bufotenine by electrospray ionization 

– ion trap mass spectrometry as suggested by McClean et al.
23

  

 

Analysis of Voacanga africana seeds was performed at 250°C and the ions of 

interest were m/z 337, 353, and 369, which were preliminarily associated with 

tabersonine, akuammidine, and voacangine, respectively. The peak at m/z 337 was 

imparted with 28%, 30%, and 32% CE. At a CE of 30% the peak at m/z 337 was still 

present, but other fragments became more abundant. As the CE was increased to 32%, 

the abundance of the peak at m/z 337 decreased and was only slightly above the baseline 
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noise, as shown in Figure 38. In both cases, the most abundant fragment peaks occur at 

m/z 305 and 228. No studies could be found that documented the fragmentation patterns 

for tabersonine to support the identification. The peak at m/z 353 was imparted with 20%, 

25%, and 30% collision energy. At a CE of 20% and 25%, no fragmentation occurred. 

When the CE was increased to 30% the peak at m/z 353 was still apparent, but other 

fragments became more abundant, as shown in Figure 39. The most abundant fragment 

peaks occurred at m/z 321, 228, 210, and 144. No studies could be found that documented 

the fragmentation patterns for akuammidine to support a positive identification. The peak 

at m/z 369 was bombarded with a CE of 30%, which resulted in fragment peaks at m/z 

337, 325, 309, and 210 as shown in Figure 40. No studies were found that documented 

the fragmentation patterns for voacangine to support identification. The fragment 

resulting in a loss of 60 mass units to produce m/z 309 may be the result of the loss of the 

protonated COOCH3 substituent. Additionally, all three parent ions produced a fragment 

that was the result of a loss of 32 mass units, suggesting that the same fragmentation 

mechanism is occurring with each compound.  

 
Figure 38. MS

2
 fragmentation data of m/z 337 for crushed Voacanga africana seeds 

with a normalized collision energy of 32%.  
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Figure 39. MS
2
 fragmentation data of m/z 353 for crushed Voacanga africana seeds 

with a normalized collision energy of 30%.  

 

Figure 40. MS
2
 fragmentation data of m/z 369 for crushed Voacanga africana seeds 

with a normalized collision energy of 30%. 

The analytes of interest in ololiuqui seeds were ergot alkaloids, specifically ergine 

and ergometrine which have [M+H]
+
 values of m/z 268 and 326. However, no peaks 

associated with ergometrine were detected in the initial experiments. Only the peak at m/z 

268 was investigated in this part of the experiment, in an attempt to further identify it as 

ergine. Normalized collision energies of 30% and 38% were used to fragment the analyte. 

At a CE of 30%, the peak at m/z 268 was still abundant, although a significant fragment 

peak at m/z 223 was present. As the CE was increased to 38%, the abundance of the 

fragment ion increased and the ion at m/z 268 significantly decreased almost into the 

baseline noise, as expected (Figure 41). In addition, a peak at m/z 208 becomes apparent. 
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Based on known fragmentation patterns, the ion at m/z 268 can be identified as ergine. 

The fragment at m/z 223 can be explained by the loss of the amide side chain, and the 

fragment at m/z 208 is due to the loss of the methyl attached to the amine, as shown in 

Figure 42.  

 

Figure 41. MS
2
 fragmentation data of m/z 268 for crushed ololiuqui seeds with a 

normalized collision energy 38%. 
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Figure 42. Suggested fragmentation of ergine as reported by Lehner et al. 

70
.  

 

Similar to the ololiuqui seeds, the analytes of interest in morning glory seeds were 

ergine and ergometrine. The peaks at m/z 268 and 326 were investigated in this part of 

the experiment, in an attempt to further identify the analytes as ergine and ergometrine, 
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respectively. At a normalized CE of 30%, the peak at m/z 268 was not very abundant and 

a significant fragment peak at m/z 223 was present, as seen in Figure 43. A fragment at 

m/z 208 was also observed. Since it is the same compound, the fragmentation pattern 

observed for ergine in morning glory seeds was expected to be very similar to that of the 

compound in ololiuqui seeds (Figure 42). The fragmentation of the analyte at m/z 326 

was most prevalent with a CE of 32%, and produced fragment ions at m/z 308, 283, 265, 

251, 223, and 208 (Figure 44). The ions produced were consistent with past reports on 

fragmentation patterns of ergometrine. The peak at m/z 223 is due to the loss of the side 

chain, and the peak at 208 is the result of the loss of the methyl group attached to the 

amine, as shown in Figure 45
70

. Although identification of all peaks in the spectra was 

outside the scope of this thesis, some predictions can be offered based on the structure 

and what is known about ergot alkaloids. The fragment seen at m/z 308 may be due to the 

loss of water from the end of the compound, which is common in the fragmentation of 

ergot alkaloids
70

. The peak at m/z 197 may be due to the 223 fragment losing an alkyne, 

as suggested by Lehner et al.
70

.  

 

Figure 43. MS
2
 fragmentation data of m/z 268 for crushed morning glory seeds with 

a normalized collision energy of 30%. 
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Figure 44. MS
2
 fragmentation data of m/z 326 for crushed morning glory seeds with 

a normalized collision energy of 32%. 
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Figure 45. Suggested fragmentation pattern for ergometrine (m/z 326) to form 

fragments at m/z 223 and 208. 

Syrian rue seeds are reported to contain harmine and harmaline, which produce 

peaks at m/z 213 and 215, respectively. A source temperature of 250°C was proven 

sufficient to ionize both compounds, as shown in the previous experiments, and was used 

for MS
2
 experiments. Harmine was fragmented with normalized collision energy of 55% 

and 60%, as seen in Figure 46. At 55%, the peak at m/z 213 remained the most abundant 

and showed very little fragmentation, although a small fragment at m/z 198 was present. 

As the CE was increased to 60%, the fragment peak at m/z 198 became abundant and the 

peak at m/z 213 decreased into the baseline. A CE between 55% and 60% is ideal for the 

fragmentation of harmine. Based on the structure of harmine, the fragment observed can 
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be associated with the loss of the terminal methyl of the ether functional group, as shown 

in Figure 47. Studies have shown that harmine is often metabolized to form harmol, 

which results in a peak at m/z 198
37,77,78

. Due to the similarities in the data collected in 

this study and the data collected in other studies, the analytes can be confidently 

identified as harmine.   

 
Figure 46. MS

2
 fragmentation data of m/z 213 for crushed Syrian rue seeds with 

normalized collision energy of A) 55% and B) 60%. 
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Figure 47. Suggested fragmentation of harmine. The loss of the methyl group to 

form a hydroxyl substituent would result in a fragment at m/z 198, likely associated 

with the formation of harmol through demethylation.  
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Harmaline was fragmented with normalized collision energy of 55% and 60%, as 

seen in Figure 48. At 55%, the peak at m/z 215 remained the most abundant and showed 

some fragmentation, to form peaks at m/z 200 and 174. As the CE was increased to 60%, 

the fragment peak at m/z 198 became more abundant and the peak at m/z 215 decreased 

into the baseline. Similar to harmine, a CE between 55% and 60% was ideal for the 

fragmentation of harmaline. Due to the similarities between the structures of harmine and 

harmaline, the fragments produced would likely be due to similar fragmentation 

mechanisms. The loss of the terminal methyl of the ether group to form either a ketone or 

hydroxyl substituent would result in the fragment at m/z 200. In addition, a rearrangement 

and loss of a carbon and nitrogen would result in the formation of the fragment at m/z 

174. Although the exact fragmentation mechanism was outside the scope of this study, 

the pattern observed is consistent with past studies on the metabolism of harmaline into 

harmalol
37,77,78

. The suggested fragmentation of harmaline is shown in Figure 49. 

Additionally, harmaline is often metabolized to harmine
37

, although no peak is observed 

at m/z 213. 
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Figure 48. MS
2
 fragmentation data of m/z peak at 215 for crushed Syrian rue seeds 

with normalized collision energy of A) 55% and B) 60%. 
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Figure 49. Suggested fragmentation of harmaline. The loss of the methyl group to 

form a ketone would result in a fragment at m/z 200. Alternatively, rearrangement 

resulting in the loss of a CH3CN would result in a compound responsible for m/z 

174. Both fragments have been shown in previous studies to be related to the 

metabolism of harmaline.   
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The African Dream herb was unique in this study in that there were no known 

psychoactive ingredients present in the seeds. The approach to analysis of these seeds 

was slightly different, in that there were no analytes of interest to focus on or optimize 

the method for. Based on the data from the source temperature profile experiments, the 

peaks at m/z 116 and 142 were the peaks of interest and further attempts were made to 

identify the analytes. Figure 50 shows the fragmentation of m/z 116 with a CE of 45% 

and 50% with a source carrier gas temperature of 300°C. At CE 45%, there was minimal 

fragmentation, although peaks at m/z 88 and 98 were present. As the CE was increased to 

50%, the parent peak decreased into the baseline and the fragments at m/z 88 and 98 

increased. Also, a small fragment at m/z 70 was present. Due to limitations of the 

instrument, further fragmentation of these peaks was unable to be done as the instrument 

is unable to reliably detect small fragments below m/z 55. Through a search of general 

compounds present in plant materials, it was suggested that proline may be present in 

high concentrations within seeds
75

.  Although no references were found to suggest the 

fragmentation pattern specific to proline, it was shown that m/z 70 is a fragment 

commonly associated with amino acids
69

. Based on the ions observed and the known 

structure of proline, there were only two options as to how the compound would fragment 

to produce the given results
79

. The suggested fragmentation pattern is shown in Figure 

51. It is possible that the peak at m/z 98 was due to the loss of H2O
79

 from the parent peak 

of proline, likely from the carboxyl substituent. Additionally, the species observed at m/z 

98 could be due to the loss of 28 mass units in the form of CO or CH2N
79

.  
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Figure 50. MS

2
 fragmentation data of m/z 116 for crushed African Dream herb 

seeds with normalized collision energy of A) 45% and B) 50%. 
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Figure 51. Suggested fragmentation pattern of proline (m/z 116) to form fragments 

at m/z 70 and 46.  

 

The peak at m/z 142 was fragmented with normalized CE of 40%, 45% and 50%. 

At CE 40%, there was no apparent fragmentation of the parent peak. As the CE was 

increased to 45% and 50%, the parent peak decreased and the fragment at m/z 124 

became more abundant. Normalized CE of 50% produced the maximum fragmentation 
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while still maintaining the presence of the parent peak at m/z 142, as shown in Figure 52. 

Based on the loss of m/z 18, a terminal hydroxyl group may be a part of the molecular 

structure that is being protonated and fragmented. Up to this point, no studies have been 

found to support the identification of this peak as any known compound present in the 

seeds. Further research would be necessary to draw any conclusions.   

 
Figure 52. MS

2
 fragmentation data of m/z 142 for crushed African Dream herb 

seeds with normalized collision energy of 50%. 

 

Cowage seeds were fragmented with a source temperature of 300°C. Based on the 

temperature profiles obtained in the first part of the experiment, the analytes of interest 

for fragmentation were L-dopa (m/z 198) and potentially proline (m/z 116). An additional 

peak at m/z 298 was observed in low abundances as well. The peak at m/z 116 was 

fragmented with a CE of 40% and 45%. At 40% CE, there was very minimal 

fragmentation observed. As it was increased to 45%, the fragment at m/z 70 became more 

abundant, as shown in Figure 53. Further fragmentation of the analyte with m/z 70 was 

not done due to limitations of the instrument to detect small fragment ions.      
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Figure 53. MS
2
 fragmentation data of m/z 116 for crushed cowage seeds with 

normalized collision energy of 45%. 

The peak at m/z 198, which was suspected of being L-dopa, was fragmented with 

CE 50% and 55%. At a CE of 50%, the parent ion was the most abundant and a low 

abundance of fragments at m/z 181 and 152 were present. As the energy was increased to 

55%, the parent ion abundances decreased almost into the baseline, while the fragment 

peaks at 181 and 152 increased, as shown in Figure 54. It was determined that 55% CE 

was ideal for obtaining the most information about the fragmentation pattern of the 

compound. When compared with known fragmentation patterns of L-dopa, peaks at m/z 

181 and 152 have been observed previously
80–82

. It is suggested that the peak at m/z 181 

is due to the loss of NH2 and the peak at m/z 152 is the result of fragmentation H2O and 

CO from the side chain
81,82

. The suggested fragmentation patterns are shown in Figure 

55. Although the analysis only provides a presumptive identification, it is very likely that 

the parent ion is the result of the ionization of L-dopa.       
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Figure 54. MS
2
 fragmentation data of m/z 198 for crushed cowage seeds with 

normalized collision energy of 55%. 
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Figure 55. Suggested fragmentation of L-dopa, resulting in [M+H]

+
 fragments of m/z 

181 and 152. 

 

When analysis was conducted using the DART/ion trap MS, an additional ion was 

present at m/z 298 that was only seen with a source temperature of 250°C in the 

temperature profile experiments. This ion was not able to be preliminarily associated with 

any known compound present in the seed. Fragmentation was performed in an effort to 

identify the analyte. The ion was fragmented with a normalized CE of 45% and 50%. At 

45% CE, very little fragmentation was observed, and no ions were abundant in 

comparison to the baseline. When the CE was increased to 50%, multiple fragments were 

produced (Figure 56), making it difficult to distinguish where the fragments may be 
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coming from. Some of the ions observed had masses that were greater than the parent 

peak. The ion observed at m/z 316 may be due to a water adduct forming ([(M+H)+H2O]
 

+
), since the ionization is performed in the open air, which would result in an addition of 

18 mass units. In previous studies, water adducts have sometimes been observed as the 

most abundant peaks in the mass spectra
83,84

. However, this cannot be concluded with 

absolute certainty as no tests were done as confirmation. In addition, when the CE was 

increased to 50%, the abundance of the ions seen significantly decreased. Identification 

was unable to be made for the analyte responsible for the peak at m/z 298. Further 

experimentation utilizing MS
n
 would be necessary to elucidate additional structural 

information.      

 

Figure 56. MS
2
 fragmentation data of m/z 298 for crushed cowage seeds with 

normalized collision energy of 50%. 

Based on data from the temperature profile analysis of henbane seeds, the 

fragmentation experiments were conducted with a source temperature of 350°C. The ions 

present were m/z 290 and 308. The ion at m/z 290 was determined to likely be associated 

with atropine or hyoscyamine. The ion was fragmented with at 45%, 55%, and 57% CE. 

At 45% CE, minimal fragmentation was observed and a small peak at m/z 124 began to 
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form. As the CE was increased, the abundance of the fragment ions increased, and the 

parent ion decreased, as expected. Additionally, a fragment at m/z 160 became apparent. 

A 57% CE was ideal, based on the abundance of the fragment ions relative to the parent 

ion, as shown in Figure 57. Previous research has found that atropine/ hyoscyamine 

fragments to form an ion at m/z 124, as shown in Figure 58
85

.     

 

Figure 57. MS
2
 fragmentation data of m/z 290 for crushed henbane seeds with 

normalized collision energy of 57%. 
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Figure 58. Suggested fragmentation of atropine to form fragments at m/z 124 and 

166. Only the fragment at m/z 124 is observed in this study.   
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When the peak at m/z 308 was fragmented with a CE of 45%, 55%, and 57% the 

only species observed was m/z 290, indicating that the ion may be due to the loss of a 

water molecule that was forming the adduct (Figure 59), which is a phenomenon 

sometimes observed in DART-MS analyses
83,84

. A confirmative identification was unable 

to be made for the analyte responsible for the peak at m/z 308. Further experimentation 

would be necessary.      

 

Figure 59. MS
2
 fragmentation data of m/z 308 for crushed henbane seeds with 

normalized collision energy of 57%. 

Ephedra sinica plants were reported to contain ephedrine and norephedrine. 

Based on results of the source temperature profiles, neither of the analytes of interest 

were detected in the seeds using this method. Instead, ions with m/z 128 and 332 were the 

most abundant. Fragmentation was performed on each of the ions in an attempt to 

provide identification for the compounds observed. The peak at m/z 128 was fragmented 

with 55% and 57% CE. At 55% CE, there was very minimal fragmentation. When the CE 

was increased to 57%, a large fragment ion was produced at m/z 82, as shown in Figure 

60. No further fragmentation was performed on the fragment due to limitations of the 
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instrument at low mass values. Because there was no preliminary identification of the 

parent ion, no fragmentation patterns resulting in a loss of 46 mass units were suggested.  

 

Figure 60. MS
2
 fragmentation data of m/z 128 for crushed ephedra seeds with 

normalized collision energy of 57%. 

The second ion observed in the source temperature profiles for Ephedra sinica 

seeds was m/z 332. This ion was fragmented with normalized CE of 50% and 55%. As 

shown in Figure 61, a 55% CE resulted in three main fragment ions, m/z 272, 183, and 

142. Because the parent ion was not associated with any known compounds, no 

fragmentation mechanisms were suggested.   

 

Figure 61. MS
2
 fragmentation data of m/z 332 for crushed ephedra seeds with 

normalized collision energy of 55%. 
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Mexican poppy seeds were reported to contain two main compounds sanguinarine 

and dihydrosanguinarine, only one of which was observed in the temperature profile 

experiments. Although the two compounds may not have been completely differentiated 

from one another due to the lack of separation and the vast similarities between the 

compounds, only dihydrosanguinarine (m/z 334) was studied in this section. Upon 

fragmentation with a normalized CE of 50%, the analyte fragmented to form ions at m/z 

319 and 304, as shown in Figure 62. The fragment at m/z 319 can be explained by the 

loss of a methyl group as shown in Figure 63. Based on the loss of 15 from the m/z 319 

fragment, the fragment is likely the result of a demethylation reaction. However, no 

methyl groups are present that would likely be cleaved. The fragment may be a result of 

the loss of CH2O (-30 mass units) from one of the terminal rings of the parent compound 

to form a hydroxyl or ketone. Further experimentation would be necessary to determine 

the structure of the peak at m/z 304.   

 
Figure 62. MS

2
 fragmentation data of m/z peak at 334 for crushed Mexican poppy 

seeds with normalized collision energy of 50%. 
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Figure 63. Suggested fragmentation of dihydrosanguinarine to form a fragment 

with m/z 319 through the loss of a methyl group. 

 

In addition, the peak at m/z 319 was fragmented with normalized CE of 45%, 

48%, and 55%. At 45% and 48% CE, the abundance of the parent peak remained more 

prominent than either fragment at m/z 290 and 260. At 55% CE, the abundance of the 

fragments increased, as shown in Figure 64.  

 
Figure 64. MS

2
 fragmentation data of m/z 319 for crushed Mexican poppy seeds 

with normalized collision energy of 55%. 

 

Limited research has been done on Intellect tree seeds. Based on the data 

collected from carrier gas temperature profiles, the major ions produced with this method 

were m/z 534 and 524. However, these ions did not correlate to any of the compounds 

reported to be present in the seeds, and fragmentation of these ions did not aid in 
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identification. The ion at m/z 534 fragmented to form m/z 515, 473, and 399, as shown in 

Figure 65, which was a loss of 19, 61, and 135 mass units, respectively. No research was 

found to support the identification of the compound based on the fragmentation pattern 

obtained. More research would be necessary to draw conclusions about the identity or 

ideal conditions for analysis of the analytes and the seeds as a whole. Similarly, the peak 

at m/z 524 was fragmented with 45%, 50%, and 55% CE. At 50% and 55%, multiple 

fragment ions were produced, resulting in a loss of 19, 61, and 75 mass units (Figure 66), 

although none of them were able to be associated with known compounds. Based on the 

similarities in fragmentation patterns obtained for the ions of interest, it is likely that the 

two parent compounds are similar in structure to one another.     

 
Figure 65. MS

2
 fragmentation data of m/z 534 for crushed Intellect tree seeds with 

normalized collision energy of 50%. 

 
Figure 66. MS

2 
fragmentation data of m/z 524 for crushed Intellect tree seeds with 

normalized collision energy of 55%. 
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Hawaiian baby Woodrose seeds are reported to contain various ergot alkaloids. 

Based on the source temperature profiles, ergine and ergometrine (m/z 268 and 326) were 

being detected and preliminarily identified in the Hawaiian and Indian strains. The 

fragmentation of m/z 268 for the Hawaiian strain can be seen in Figure 67. Normalized 

CE of 50% resulted in a significant amount of fragmentation, producing fragments with 

m/z 251, 223, and 208. Each of these fragments was consistent with previous research on 

the chemical behavior of ergine.
70

 The fragment at m/z 223 is due to the loss of the -

CONH3 side chain. The remaining fragment is further fragmented to form m/z 208 

through the loss of a methyl group. The fragmentation pattern is shown in Figure 42. 

Although not specifically reported, the fragment at m/z 251 may be due to the loss of –

NH3 from the end of the compound.  

 
Figure 67. MS

2
 fragmentation data of m/z 268 for crushed Hawaiian Baby 

Woodrose (Hawaiian strain) seeds with normalized collision energy of 50%. 

The fragmentation of m/z 326 for the Hawaiian strain can be seen in Figure 68. 

Normalized CE of 50% and 55% resulted in a significant amount of fragmentation. Both 

conditions produced fragments at m/z 308, 283, 265, 251, 223, 208, and 197. Because 

ergometrine is very similar in structure to ergine, some of the same fragments were 
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expected to be under similar conditions. The peak at 223 is due to the loss of the side 

chain, and the peak at 208 is the result of the loss of a methyl group, as shown in Figure 

45
70

.  

 
Figure 68. MS

2
 fragmentation data of m/z 326 for crushed Hawaiian Baby 

Woodrose (Hawaiian strain) seeds with normalized collision energy of 55%. 

 

Similar to the Hawaiian strain, the Indian strain of Hawaiian baby woodrose was 

identified as containing ergine and ergometrine (m/z 268 and 326, respectively). The 

fragmentation was performed at slightly higher collision energies; however the same 

fragments (m/z 251, 223, and 208) were produced, as shown in Figure 69. The suggested 

fragmentation can be seen previously in the discussion on the analysis of the Ololiuqui 

seeds. (Figure 42) The compound being detected at m/z 268 can be positively identified 

as ergine.  
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Figure 69. MS
2
 fragmentation data of m/z 268 for crushed Hawaiian Baby 

Woodrose (Indian strain) seeds with normalized collision energy of 53%. 

 

The fragmentation of what was preliminarily identified as ergometrine was 

performed in the same manner as the fragmentation of the Hawaiian strain. In both cases, 

the same fragmentation occurred, resulting in m/z 308, 283, 265, 251, 223, 208, and 197, 

as shown in Figure 70. The suggested fragmentation pattern can be seen previously in the 

discussion on the analysis of the morning glory seeds (Figure 45). The compound being 

detected at m/z 326 can be positively identified as ergometrine.  

 

Figure 70. MS
2
 fragmentation data of m/z 326 for crushed Hawaiian Baby 

Woodrose (Indian strain) seeds with normalized collision energy of 55%. 
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Analysis of the Ghana strain revealed the presence of what was suspected to be 

ergine, but lacked any mass spectral data that could be associated with the presence of 

ergometrine. When fragmenting the peak at m/z 268 (Figure 71), the same fragments 

were produced as with the Hawaiian and Indian strains.  

In comparison to the other strains of Hawaiian baby Woodrose, the lack of 

ergometrine is a significant difference in the chemical composition. The lack of 

ergometrine may be because the Ghana strain has a low concentration of ergometrine in 

comparison to the other strains, so it is not detected within the plant matrix using this 

method. A peak representative of ergometrine may have been absent due to ion 

suppression effects caused by other compounds within the plant matrix that are not 

present in the other two strains. No further testing was done as part of this study.    

 
Figure 71. MS

2
 fragmentation data of m/z 268 for crushed Hawaiian Baby 

Woodrose (Ghana strain) seeds with normalized collision energy of 55%. 

 

A summary of the data collected throughout this study, including the carrier gas 

temperature, normalized collision energy, fragments observed, and analyte identification 

is contained in Table 4. 
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Table 4. Summary of data collection and conclusions for each seed type.  

Seed Sample Source 

Temperature 

(°C) 

Ions  

(m/z) 

Collision 

Energy (%) 

Fragment  

Ions (m/z) 

Possible Identification 

Cebil 300 205 25 160 Bufotenine 

Voacanga  250 

337 32 305, 228 Tabersonine 

353 30 
3221, 228, 210, 

144 
Akuammidine 

369 30 
337, 305, 309, 

210 
Voacangine 

Ololiuqui 350 268 38 223, 208 Ergine (LSA) 

Morning Glory 350 

268 30 251, 223, 208 Ergine (LSA) 

326 32 

308, 283, 265, 

251, 223, 208, 

197 

Ergometrine 

Syrian Rue 250 
213 55 - 60 198 Harmine 

215 55 - 60 200, 198, 174 Harmaline 

African Dream 

Herb 
300 

116 50 98, 88, 70 Proline 

142 50 124 --- 

Cowage 300 

116 45 70 Proline 

198 55 181, 152 Levodopa 

298 50 316, 267, 223 --- 

Hawaiian Baby 

Woodrose - 

Hawaii 

350 

268 50 251, 223, 208 Ergine (LSA) 

326 55 

308, 283, 265, 

251, 223, 208, 

197 

Ergometrine 

Hawaiian Baby 

Woodrose - 

Indian 

300 or 350 

268 53 251, 223, 208 Ergine (LSA) 

326 55 

308, 283, 265, 

251, 223, 208, 

197 

Ergometrine 

Hawaiian Baby 

Woodrose - 

Ghana 

350 268 55 
251, 223, 208, 

136 
Ergine (LSA) 

Henbane 350 

290 57 260, 124 Atropine/Hyoscyamine 

308 57 290 
Atropine/Hyoscyamine + 

H2O 

Intellect Tree 350 
524 55 505, 463, 449 --- 

534 50 515, 473, 399 --- 

Ephedra Sinica 300 
128 57 82 --- 

332 55 272, 183, 142 --- 

Mexican 

Poppy 
250 

319 55 290, 260 
Dihydrosanguinarine – 

CH3 

334 50 319, 304 Dihydrosanguinarine 
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4. Conclusion 

DART proved to be an effective technique in tentatively identifying many 

different compounds present within several complex plant matrices. Limited sample 

preparation was done prior to analysis of the samples. Analysis was able to be performed 

in a manner that was significantly faster than the traditional gas chromatography-mass 

spectrometry (GC-MS) methods employed in routine drug analysis. On average, a set of 

twelve samples could be collected in approximately 2-3 minutes, unlike a typical 20-30 

GC-MS method. The ability to rapidly analyze samples would be extremely important in 

a forensic drug laboratory where increasing case backlogs and increasing caseloads is an 

issue.    

Methods were determined for the successful analysis and identification of at least 

one analyte of interest for eleven of the thirteen samples that had known compounds with 

psychoactive properties. Ephedra sinica and Intellect tree seeds contained compounds 

that were not detected through DART-MS techniques. The inability to detect the analytes 

may be due to other compounds present in the plant matrix suppressing the ionization and 

subsequent detection, or that the compounds are present in such low concentrations that 

other analytes within the matrix are preferentially analyzed and detected. The African 

Dream herb seeds had no compounds known to be responsible for the psychoactive 

effects experienced by users. Although two ions were able to be detected, there were no 

reports to support the findings of either ion within the seeds and no confirmatory 

identification was determined.  
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Initial findings suggested that there may be detectable differences between 

different strains of Hawaiian baby Woodrose seeds. Although the same compounds were 

expected to be present in each of the strains, ergometrine was not detected in the Ghana 

strain, representing a significant difference when compared to both the Hawaiian and 

Indian strains. Differences in the mass spectral data may indicate that the concentration of 

ergometrine in the Ghana strain is below the limit of detection or that there are other 

compounds present that are causing the ergometrine to remain unionized or undetected. 

Further studies would be necessary to determine the cause.  

Overall, DART-MS is an easy to use, effective technique that allows for rapid 

analysis of a wide variety of compounds within a complex plant matrix. DART-MS 

should be considered in laboratories where case backlog is an increasing area of concern. 

A typical GC-MS analysis of a suspected drug of abuse and a correlating blank may take 

an hour or more to analyze, while a DART-MS analysis can be completed in a matter of 

minutes including set-up, sample analysis, and the analysis of blanks or control samples.  

5. Future Directions 

Further research should be done to optimize other aspects of DART analysis for 

the plant seeds utilized in this study, including possible analysis of the seed material as a 

whole rather than ground up. Overall, further research should be performed to reduce and 

eliminate the need for any sample preparation in order to obtain the most time efficient 

and accurate analysis of the samples. Additionally, a standard procedure that would allow 

for the analysis and identification on any unknown seed would be very useful in a 



94 

 

forensic setting. The standard procedure should include one set of instrumental 

parameters that would be successful with the analysis of a wide variety of samples, which 

may include a temperature profile analysis of each sample rather than selecting a single 

optimum source temperature to be used with each individual sample.    

More research should be done to confirm the preliminary identifications of the 

compounds being detected throughout this study. Confirmatory analysis could include the 

use of high resolution instrumentation, analysis of standards, or subsequent analysis by 

GC-MS which would allow for the use of a spectral library database, assuming the 

analytes of interest are a part of the library. 

Analysis of the Hawaiian Baby Woodrose seeds in an attempt to differentiate 

between the different strains should be continued. If more data was collected, statistical 

modeling software could be used to more confidently determine whether the differences 

observed in the mass spectral data were significant or not. Statistical modeling may also 

be able to detect small variations in the spectra of the different strains that are not obvious 

to the naked eye.   

The analysis of plant based drugs of abuse by DART-MS should be continued to 

include plant leaves, stems, and flowers that are reported to contain psychoactive 

compounds. Expanding this type of analysis to the identification of poisonous compounds 

contained within plant materials and in the identification of synthetic cannabinoids that 

have been incorporated into a plant matrix may also be beneficial. 
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