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Abstract

Recent measurements of local-area and wide-area tra�c have shown that network tra�c
exhibits variability at a wide range of scales|self-similarity. In this paper, we examine a mech-
anism that gives rise to self-similar network tra�c and present some of its performance impli-
cations. The mechanism we study is the transfer of �les or messages whose size is drawn from
a heavy-tailed distribution. We examine its e�ects through detailed transport-level simulations
of multiple TCP streams in an internetwork.

First, we show that in a \realistic" client/server network environment|i.e., one with bounded
resources and coupling among tra�c sources competing for resources|the degree to which �le
sizes are heavy-tailed can directly determine the degree of tra�c self-similarity at the link level.
We show that this causal relationship is not signi�cantly a�ected by changes in network resources
(bottleneck bandwidth and bu�er capacity), network topology, the inuence of cross-tra�c, or
the distribution of interarrival times.

Second, we show that properties of the transport layer play an important role in preserving
and modulating this relationship. In particular, the reliable transmission and ow control mech-
anisms of TCP (Reno, Tahoe, or Vegas) serve to maintain the long-range dependency structure
induced by heavy-tailed �le size distributions. In contrast, if a non-ow-controlled and un-
reliable (UDP-based) transport protocol is used, the resulting tra�c shows little self-similar
characteristics: although still bursty at short time scales, it has little long-range dependence. If

�A short version will appear in Proc. Fourth International Conference on Network Protocols, October, 1996.
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Sciences, 1398 Computer Science Building, Purdue University, West Lafayette, IN 47907; park@cs.purdue.edu.
zSupported in part by NSF grant CCR-9308344.
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ow-controlled, unreliable transport is employed, the degree of tra�c self-similarity is positively
correlated with the degree of throttling at the source.

Third, in exploring the relationship between �le sizes, transport protocols, and self-similarity,
we are also able to show some of the performance implications of self-similarity. We present
data on the relationship between tra�c self-similarity and network performance as captured
by performance measures including packet loss rate, retransmission rate, and queueing delay.
Increased self-similarity, as expected, results in degradation of performance. Queueing delay,
in particular, exhibits a drastic increase with increasing self-similarity. Throughput-related
measures such as packet loss and retransmission rate, however, increase only gradually with
increasing tra�c self-similarity as long as reliable, ow-controlled transport protocol is used.
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1 Introduction

Recent measurements of local-area and wide-area tra�c [15, 28, 9] have shown that network tra�c

exhibits variability at a wide range of scales. Such scale-invariant variability is in strong contrast to

traditional models of network tra�c, which show variability at short time scales but are essentially

smooth at large time scales. This e�ect is described statistically as long-range dependence, and

time series showing this e�ect are said to be self-similar. Since self-similarity is believed to have

a signi�cant impact on network performance, understanding the causes and e�ects of tra�c self-

similarity is an important problem.

In this paper, we study a mechanism that induces self-similarity in network tra�c. We show

that self-similar tra�c can arise from a simple, high-level property of the overall system|the

heavy-tailed distribution of �le sizes being transferred over the network. We show that if the

distribution of �le sizes is heavy-tailed|meaning that the distribution behaves like a power law

thus generating very large �le transfers with nonnegligible probability|then the superposition

of many �le transfers in a client/server network environment induces self-similar tra�c and this

causal mechanism is robust with respect to changes in network con�guration. Properties of the

transport/network layer in the protocol stack, however, will be shown to play an important role

with respect to preserving and modulating this causal relationship.

The mechanism we propose is motivated by the ON/OFF tra�c model described in [28]. The

ON/OFF model shows that self-similarity can arise in an idealized context with unbounded re-

sources and independent tra�c sources as a result of aggregating a large number of ON/OFF

tra�c streams whose ON or OFF periods are heavy-tailed. The success of the simple ON/OFF

model in capturing the characteristics of measured tra�c traces [28] is surprising given that it ig-

nores interaction among tra�c sources contending for network resources which in real networks can

be as complicated as the feedback congestion control algorithm of TCP Reno. To apply the frame-

work of the ON/OFF model to real networks, it is necessary to understand whether the model's

limitations a�ect its usefulness, and if not, how those limitations are overcome in practice. These

are questions that can be answered most e�ectively by direct experimentation.

To establish the link between �le sizes and tra�c self-similarity, it is necessary to show that the

degree of self-similarity varies as a direct result of variation in �le size distribution. In addition,

we must examine the behavior of networks with a wide range of characteristics operating under

various network conditions. In this paper, we show that in a \realistic" client/server network

environment|i.e., one with bounded resources leading to the coupling of multiple tra�c sources

contending for shared resources|the degree to which �le sizes are heavy-tailed directly determines

the degree of tra�c self-similarity. Speci�cally, measuring self-similarity via the Hurst parameter

H and �le size distribution by its power-law exponent � (their de�nitions are given later), we show
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that there is a nearly linear relationship between H and � over a wide range of network conditions

when subject to the inuence of the protocol stack. This mechanism gives a particularly simple

explanation of why self-similar network tra�c may be observed in many diverse contexts.

This relationship is robust in the sense that it is present over a wide range of conditions including

changes in bottleneck bandwidth and bu�er capacity, interference from cross-tra�c possessing

dissimilar tra�c characteristics, and changes in the distribution of conversation interarrival times.

For example, if self-similar tra�c is mixed with cross-tra�c that is only short-range dependent|

hence smooth at large time-scales|then self-similarity remains persistent in the aggregated tra�c.

In addition, if the interarrival time distribution is very heavy-tailed, it can amplify tra�c self-

similarity when �le sizes are only moderately heavy-tailed. However, if the �le size distribution

is very heavy-tailed, then the interarrival time distribution has virtually no e�ect on tra�c self-

similarity.

We also discuss a tra�c shaping e�ect of TCP that helps explain how heavy-tailed �le sizes

generate self-similar tra�c. We �nd that, in practice, the presence of self-similarity depends on

whether reliable and ow-controlled communication is employed at the transport layer. For exam-

ple, in the absence of reliability and ow control mechanisms such as when a UDP-based transport

protocol is used, much of the self-similarity of downstream tra�c is destroyed as compared to the

case of upstream tra�c. The resulting tra�c, while still bursty at short ranges, shows signi�cantly

less long-range correlation structure. In contrast, when TCP (Reno, Tahoe, or Vegas) is employed,

the long-range dependence structure induced by heavy-tailed �le size distributions is preserved and

transferred to the link-layer, manifesting itself as scale-invariant burstiness. In essence, this is a

combined e�ect of the input tra�c being ow controlled and conserved through retransmission-

based reliable transport. In the following, we will use \reliability" loosely to refer to both.

We conclude with a discussion of the e�ect of self-similarity on network performance. We �nd

that as self-similarity is increased in an UDP-based non-ow-controlled1 environment, performance

declines drastically as measured by packet loss rate and mean queue length. However, if reliable

communication via TCP Reno is used, packet loss, retransmission rate, and �le transmission time

decline gracefully, i.e., roughly linearly as a function of H. The exception is mean queue length,

which shows the same superlinear increase as in the unreliable non-ow-controlled communication

case. This graceful decline in TCP's performance under self-similar loads comes at a cost: a

disproportionately increased consumption of bu�er space. The sensitive dependence of mean queue

length on self-similarity agrees with previous work [16] showing that queue length distribution

decays more slowly for long-range dependent tra�c than for short-range dependent sources. The

1H-estimates and performance results when an open-loop ow control is active can be found in [20]. Increasing

the degree of throttling at the source has a positive inuence on both the H-values and performance, and one may

think of the non-ow-controlled case as an extreme case and no compensatory actions are taken whatsoever.
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graceful performance decline exhibited by reliable communication is a result of shaping a large

�le transfer into an on-average, \thin" packet train (stretching-in-time e�ect). Stretching-in-time

is e�ected through the joint action of retransmission (or conservation) of lost packets, and the

conservative nature of linear-increase/exponential-decrease feedback congestion control [14]. This

also suggests, in part, why the ON/OFF model has been so successful despite its lack of coupling

among tra�c sources|a principal e�ect of interaction among tra�c sources in an internetworked

environment seems to lie in the generation of lengthy packet trains. Thus, the translation of large

�le transfers into well-behaved elongated packet trains may be related to system-wide tra�c self-

similarity via the multiplexing of a large number of tra�c streams (in our simulations 32 or less

are su�cient to yield high Hurst parameter estimates).

The rest of this paper is organized as follows. In the next section, we discuss related work.

In the following section, we describe the network model and the details of our simulation method.

This is followed by the main section which explores the e�ect of �le size distribution on tra�c

self-similarity, including reliability and the role of the protocol stack, heavy-tailed versus non-

heavy-tailed interarrival time distribution, resource variations, and tra�c mixing. We conclude

with a description of the e�ect of tra�c self-similarity from a performance evaluation perspective,

showing its quantitative and qualitative e�ects with respect to packet loss rate, retransmission rate,

and mean queue length when both tra�c self-similarity and network resources are varied.

2 Related work

Since the seminal study of Leland et al. [15] which set the groundwork for considering self-similar

network tra�c as an important modeling and performance evaluation problem, a string of work

has appeared dealing with various aspects of tra�c self-similarity [1, 2, 11, 12, 16, 18, 22, 28]. The

research avenues may be broadly classi�ed into two categories.

In the �rst category [11, 12, 15, 22, 28], tra�c traces from physical network measurements are

employed to identify the presence of scale-invariant burstiness, and models are constructed capable

of generating synthetic tra�c with matching characteristics. These papers show that long-range

dependence is an ubiquitous phenomenon encompassing both local-area and wide-area network

tra�c. In addition, individual sources such as compressed VBR video streams have been shown to

exhibit self-similarity as an inherent property.

In the second category are papers that have evaluated the e�ect of self-similar tra�c on idealized

or simpli�ed networks [1, 2, 16, 18]. These papers shows that long-range dependent tra�c is likely

to degrade performance. Principal results include the observation that the queue length distribution

under self-similar tra�c decays much more slowly when compared to short-range-dependent sources

(e.g., Poisson). In contrast to these papers, the work we report here presents measurements of
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network performance from detailed transport-level simulations reecting more \realistic" network

environments.

Our work extends the line of work of the �rst category of papers by formulating and verifying

causal mechanisms which may be at play in real networks responsible for generating the self-

similarity phenomena observed in diverse networking contexts. In particular, this paper extends

and complements the framework set out in [28]. In [28], an idealized mechanism was proposed (the

\ON/OFF" model) which was shown to be su�cient to generate self-similar time series as a result

of the superposition of independent 0/1 renewal processes, each of which alternates between an

ON and an OFF state. If the durations of the ON and OFF states are drawn from heavy-tailed

distributions, then as the number of processes increases, the resulting series (formed by counting

at regular intervals the number of processes in the ON state) will approach fractional Gaussian

noise, a perfectly self-similar series. This result, although conceptually simple and elegant, lacks

two important network modeling assumptions; one, resource-boundedness of real networks and the

nonlinearity it induces, and two, feedback congestion control mechanisms employed by protocols

including TCP which may introduce additional nonlinear interactions. This forms the starting

point for our experimental investigations.

The relationship between �le sizes and self-similar tra�c was suggested by the work described in

[9] which showed that self-similarity in World Wide Web tra�c might arise due to the heavy-tailed

distribution of �le sizes present in the Web. Our study uses simulation to show that in a generic

client/server environment which includes systems such as the World Wide Web, there is indeed a

strong functional relationship between �le sizes and tra�c self-similarity.

Finally, an important question is whether �le size distributions in practice are in fact typically

heavy-tailed, and whether �le size access patterns can be modeled as randomly sampling from

such distributions. A de�nitive study of this question seems to not have been done. Previous

measurement-based studies of �le systems have recognized that �le size distributions possess long

tails, but they have not explicitly examined the tails for power-law behavior [24, 26, 19, 5, 23].

However, evidence of heavy tails in the distribution of �le sizes has been noted in some speci�c

contexts. In [9], it is shown that the size distribution of �les found in the World Wide Web appears

to be heavy-tailed with � approximately equal to 1. This result is also in general agreement with

measurements reported in [4]. A general study of Unix �lesystems has found size distributions that

appear to approximate power-law distribution [13]. Additional evidence of power-law behavior is

present in some data on transmission lengths of network transfers. The authors in [7] show that

the sizes of reads and writes to an NFS server appear to show power-law behavior. And, in [22],

it was found that the upper tail of the distribution of data bytes in FTP bursts was well �t to a

Pareto distribution with 0:9 � � � 1:1.
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3 Network model and simulation set-up

3.1 Network model

The network we use is given by a directed graph G = (V;E) consisting of n nodes v1; v2; : : : ; vn

and m links e1; e2; : : : ; em. Each output link ej has a bu�er bj , link bandwidth `j , and latency �j

associated with it. vi is a server node if it has a probability density function pi(X) where X � 0 is

a random variable denoting �le size. We will call pi(X) the �le size distribution of server vi. vi is

a client node (it may at the same time be also a server) if it has two probability density functions

hi(X), di(Y ), X 2 f1; : : : ; ng, Y 2 R+, where hi is used to select a server, and di is the idle

time distribution which is used in determining the time of next request. In the context of reliable

communication, if Tk is the time at which the k'th request by client vi was reliably serviced, the

next request made by client vi is scheduled at time Tk + Y where Y has distribution di. Requests

from an individual client are directed to severs at random, independently and uniformly over the set

of servers. In unreliable communication, this causal requirement is waived2. A 2-server, 32-client

network con�guration with a bottleneck link between gateways G1 andG2 is shown in Figure 1. This

network con�guration is used for most of the experiments reported below. In this con�guration,

the vast majority of tra�c is owing from servers to clients; hence we will refer to the total tra�c

arriving at G2 from servers as upstream tra�c and tra�c between G2 and G1 as downstream tra�c.

S

S

GG

C

C

C

1

2

32

1 2

1

2

...

Figure 1: Network con�guration.

A �le is completely determined by its size X and it is split into dX=Me packets where M is

the maximum segment size. The segments are routed through a packet-switched internetwork with

packets being dropped at bottleneck nodes in case of bu�er overow. The dynamical model is given

by all clients independently placing �le transfer requests to servers where each request is completely

determined by the �le size. Notice that in the reliable communication model, clients independently

determine the time of next request only in the sense that the coin corresponding to the idle time

distribution di is independent from the ones used by other clients. All clients are coupled by when

that coin is allowed to be tossed, i.e., the reliable completion time of the last request Tk which

is a function of network state. We will require �le size distribution pi to be heavy-tailed (formal

2The primary motivation for this requirement was to keep our model as close to the ON/OFF model as possible

making only a minimal set of essential changes.
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de�nition is given later) but we will allow the idle time distribution di to be non-heavy-tailed (e.g.,

exponential).

To put this dynamic model into context, we compare it to the ON/OFF model [28] which

provides theoretical grounding for our approach. The most serious drawback of the ON/OFF

model|also the very feature which makes it simple and tractable|is the superposition of inde-

pendent ON/OFF sources resulting in a linear system which ignores possible interactions among

multiple tra�c streams. However, in a real network, individual actions by the tra�c sources can

be as complicated as TCP Reno's congestion control algorithm, and it is interesting that in spite of

this signi�cant di�erence, the tra�c modeling aspect (for which the ON/OFF model was intended)

has been so successful.

To provide a framework for discussing the data presented in later sections and partly address

this question, we will make use of the following notions. Let B > 0 be a constant denoting the

bottleneck link bu�er size in bytes, and let (X(t))t�0 be a nonnegative sequence representing o�ered

load (bytes arriving at the bottleneck link per unit time). The clip of X(t), X�(t), is de�ned as

X�(t) = max fX(t) �B; 0g:

That is, X�(t) is just byte loss due to bu�er overow at time t. If s denotes the volume of data

that is to be reliably transferred, then a minimum requirement on X(t) for it to have serviced this

request by time T (starting at time 0) can be expressed as

Z T

0
X(t) dt � s + 2

Z T

0
X�(t) dt:

Notice that the factor 2 is crucial in capturing a form of conservation or reliability (reecting

original data plus retransmissions).

This can be turned into an (static) optimization problem as follows. Assume there are n

components making up the aggregate tra�c stream, X(t) =
Pn

i=1Xi(t), each with its own reliable

data volume si (s =
Pn

i=1 si) that is to be transferred satisfying its private inequality. We seek

the least T such that all n inequalities are satis�ed. In a noncooperative game theory setting, each

tra�c component may be modeled as trying to minimize its own least completion time Ti. It is

not di�cult to see that per-session window-control of TCP implements such a greedy strategy. We

will refer to the preference of sel�sh sources to minimize individual transfer time as stretching in

space (i.e., making most of idle e�ective bandwidth), and the reliability or conservation constraint

as stretching in time. Some consequences of the previous discussion to tra�c self-similarity can be

summarized as follows:

(i) Under unreliable communication, X�
i (t) large (i.e., high packet loss) has a similar e�ect as

sampling si from a less heavy-tailed distribution than pi with respect to the downstream

tra�c.
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(ii) Under reliable communication, X�
i (t) large is compensated by stretching in time thus pre-

serving the heavy-tailedness property of the downstream tra�c.

(iii) The larger the stretching in space, the weaker the long-range dependence (as de�ned in

Sec. 4.2) of the down-stream tra�c.

The third point can be understood by considering an extreme case where B = 1 and sources are

maximally greedy leading to a process where the transfer of a �le of size s is concentrated at a

single point in time. With our assumption of non-heavy-tailed idle time distribution di, this leads

to a stochastic process X(t) in which all of the dependency structure is attributable to di; i.e., X(t)

is only short-range dependent. In Section 4, in tandem with showing that �le size distribution by

itself is su�cient to generate self-similarity, we will see various aspects of the interactions captured

in (i){(iii).

3.2 Simulation set-up

We have used the LBNL Network Simulator (ns) as the basis for our simulation environment [10]. Ns

is an event-driven simulator derived from S. Keshav's REAL network simulator supporting several

avors of TCP (in particular, TCP Reno's congestion control features|Slow Start, Congestion

Avoidance, Fast Retransmit/Recovery) and router scheduling algorithms. Although not production

TCP code, we have found ns's emulation of TCP satisfactory for the purposes of studying congestion

control as well as emulating reliable transport. A test suite description can be found in [10].

We have modi�ed the distributed version of ns to model our interactive client/server envi-

ronment. This entailed extending the one-way data ow restriction of a single ns TCP session

to full-duplex, and implementing our client/server nodes as separate application layer agents. A

UDP-based unreliable transport protocol was added to the existing protocol suite, and an ag-

gressive opportunistic UDP-based agent was built to service �le requests when using unreliable

communication. In addition to the tracing functions that native ns provides, we added utilities for

monitoring an expanded set of network statistics including provisions for detecting retransmission,

reliable throughput, and computing �le transmission completion times.

Our simulation results were obtained from several hundred runs of ns. Each run executed for

10000 simulated seconds, logging tra�c in each 10 millisecond interval. The result in each case is

a timeseries of one million data points; using such extremely long series increases the reliability

of statistical measurements of self-similarity. Although most of the runs reported here were done

with a 2-server/32-client bottleneck con�guration as shown in Figure 1, other con�gurations were

tested including performance runs with the number of clients varying in the range 1{132. The

bottleneck link was varied from 1:5 Mbps up to OC-3 levels, and bu�er sizes were varied in the

range of 1K{128K. Non-bottleneck links were set at 10 Mbps the latency of each link was set to
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15ms. The maximum segment size was �xed at 1K for most runs. For any reasonable assignment

to bandwidth, bu�er size, mean �le request size, and other system parameters, it was found that

by either adjusting the number of clients or the mean of the idle time distribution di appropriately,

any intended level of network demand could be achieved. This enabled us to carry out performance

evaluations by varying the two main network resources: bottleneck bu�er size and bandwidth.

4 File size distribution and tra�c self-similarity

As discussed in the Introduction and in Section 3.1, the mechanism we propose in this paper for

the genesis of self-similarity is the repeated, interactive transfer of �les over the network, when the

sizes of those �les are drawn from a heavy-tailed distribution. In this section we show that such a

mechanism su�ces to create self-similar network tra�c, and we show that there is a tight functional

relationship between the tail weight of the �le size distribution and link-level self-similarity.

4.1 Heavy-tailed distributions

An important characteristic of our proposed mechanism for tra�c self-similarity is that the sizes of

�les being transferred are drawn from a heavy-tailed distribution. A distribution is heavy-tailed if

P [X > x] � x�� as x!1

where 0 < � < 2. That is, regardless of the behavior of the distribution for small values of the

random variable, if the asymptotic shape of the distribution follows a power law, we will call it

heavy-tailed. One of the simplest heavy-tailed distributions is the Pareto distribution. The Pareto

distribution is power-law over its entire range; its probability density function is given by

p(x) = �k�x���1

where �; k > 0, and x � k. Its distribution function has the form

F (x) = P [X � x] = 1� (k=x)�:

The parameter k represents the smallest possible value of the random variable.

Heavy-tailed distributions have a number of properties that are qualitatively di�erent from

distributions more commonly encountered such as the exponential or normal distribution. If � � 2,

the distribution has in�nite variance; if � � 1 then the distribution has also in�nite mean. Thus,

as � decreases, a large portion of the probability mass is present in the tail of the distribution. In

practical terms, a random variable that follows a heavy-tailed distribution can give rise to extremely

large �le size requests with non-negligible probability. Our simulations are based on heavy-tailed

distributions of the requests made for �les in a client/server system; although this is not the same
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thing as a heavy-tailed distribution of available �les, the di�erence is not signi�cant in the context

of this work.

4.2 E�ect of �le size distribution

First, we demonstrate our central point: that interactive transfer of �les whose size distribution

is heavy-tailed will generate self-similar tra�c|even when realistic network dynamics, including

resource limitations and the ow control mechanisms of TCP, are taken into account.

Figure 2 shows time series plots of network tra�c measured at the output bu�er of a bottleneck

link, i.e., from gateway G2 to G1 in Figure 1. Each plot shows downstream tra�c (i.e., tra�c

owing on the link from G2 to G1), measured in bytes per time unit, as a function of time.

The �gure shows plots which span �ve orders of magnitude in time scale and four di�erent

�le size distributions. The time units used vary from 10 ms in the lowest row to 100 sec in the

uppermost row. The four columns show how tra�c varies when the underlying �le size distribution

is Pareto with � = 1:05 (\very heavy-tailed," extreme left), through � = 1:35 and � = 1:95 (not

very heavy-tailed, second from right). The column of plots on the extreme right shows the e�ects

of using an exponential distribution for �le sizes. For each of the cases � = 1:05; 1:35; 1:95; and

exponential, the mean of the distribution is held constant at � 4.1kB3 and identical exponential

distributions with mean 600 msec are used for idle time (\OFF" period). As a result, although the

tra�c patterns are very di�erent, the mean o�ered load4 on the network is the same in all plots.

Following [15, 28], these plots depict visually when self-similarity is present (or absent) in a

time series, and they show how �le size distribution can a�ect tra�c burstiness. All plots appear

roughly the same in a qualitative sense at the 10 ms level. However, progressing upward in the �gure

toward greater degrees of aggregation, the presence of self-similarity becomes evident, and as the

tail weight of the �le size distribution increases, the signs of scale-invariant burstiness become more

pronounced. At the 100 sec aggregation level, the di�erence between long-range dependent tra�c

(on the left) and short-range dependent tra�c (on the right) is quite clear. In addition, comparing

the two columns on the right-hand-side of the �gure shows that the tra�c pattern of a heavy-tailed

distribution with � close to 2.0 is not signi�cantly di�erent from that of an exponential distribution

when tra�c is aggregated over time. That is, both are smoothed out at higher aggregation levels

consistent with the lack of long-range dependence.

Although the time series plots shown in Figure 2 are quite helpful in gaining an intuitive picture

of the e�ects of �le size distribution on network tra�c, a quantitative measure of self-similarity can

3This particular �le size was used because of the di�culties in generating random variates with a given mean as

�! 1. As � approaches 1, the distributional mean diverges rapidly; the particular mean chosen in this case was one

that could be produced as the sample mean in a number of datasets based on di�erent random seeds.
4O�ered load is the total �le size requests (in bytes) generated by the clients over the 10000sec simulation interval.
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Figure 2: TCP run: � = 1:05; 1:35; 1:95, and exponential. Inter-request idle time of 0.6 second and

32 clients.
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Figure 3: Hurst parameter estimates (TCP run): R/S and Variance-Time for � = 1:05; 1:35; 1:65,

and 1:95. Base run (left), large bandwith/large bu�er (middle), large bu�er (right)

be obtained using the Hurst parameter. The Hurst parameter H expresses the speed of decay of a

series' autocorrelation function. A time series with long-range dependence has an autocorrelation

function of the form

r(k) � k�� as k !1

where 0 < � < 1. Thus the autocorrelation function of such a process decays according to a power-

law, as compared to the exponential decay exhibited by traditional tra�c models. As � ! 0, the

autocorrelation function decays more slowly, and the series has stronger long-range dependence.

The Hurst parameter is related to the rate of decay of the series' autocorrelation function by

H = 1�
�

2
:

Hence, for self-similar series, 1=2 < H < 1. As H ! 1, the degree of self-similarity increases. Thus

an important test for self-similarity of a time series reduces to the question of determining whether

H is signi�cantly di�erent from 1=2.

In this paper we use two methods for testing self-similarity.5 These methods are described

more fully in [6] and are the same methods used in [15]. A summary of the relative accuracy of

these methods on synthetic data sets can be found in [27]. The �rst method, the variance-time

plot, relies on the slowly decaying variance of a self-similar series. The variance of X(m) is plotted

against m on a log-log plot where X(m) is the random variable of the aggregated time series at level

(or block size) m; a straight line with slope � between �1 and 0 is consistent with self-similarity,

which translates to H via H = 1 � �=2. The second method, the R=S plot, uses the fact that

for a self-similar data set, the rescaled range or R=S statistic grows according to a power law with

5A third method based on the periodogram was also used; however this method is believed to be sensitive to low

frequency components in the series, which led in our case to wide spread in its estimates; it is omitted here.
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exponent H as a function of the number of points included. Thus the plot of R=S against this

number on a log-log scale has a slope which is an estimate of H. Figure 3 shows H-estimates based

on variance-time and R/S methods for three di�erent network con�gurations. Each plot shows H

as a function of the Pareto distribution parameter for � = 1:05; 1:15; 1:25; 1:35; 1:65 and 1:95. Each

point on the plot is the average of 3 estimates based on di�erent random seeds, and the error bars

show the spread of the maximum and minimum in the estimates obtained.

Figure 3 (left) shows the results for our baseline TCP Reno case, in which network bandwidth

and switch bu�er size are both somewhat limited (1:5 Mb/s and 6K), resulting in a � 4% packet

drop rate for the most bursty case (� = 1:05). The plot shows that the Hurst parameter estimates

vary with �lesize distribution in a roughly linear manner. That is, in spite of the presence of limited

network resources and the consequent interaction among the 32 tra�c streams as they contend for

those resources, the tail weight of the �le size distribution directly determines link-level tra�c self-

similarity of the downstream tra�c. The line, H = (3��)=2, shows the values of H that would be

predicted by the ON/OFF model in the idealized case corresponding to a fractional Gaussian noise

process. Although their overall trends are similar (nearly coinciding at � = 1:65), clearly, the slope

of the simulated system with resource limitations and reliable transport layer running TCP Reno's

congestion control is slightly less than �1, with an o�set below the idealized line for � close to 1

and above the line for � close to 2. Figure 3 (middle) shows similar results for the case in which

there is no signi�cant limitation in bandwidth (155 Mb/s) leading to zero packet loss. There is

noticeably more spread among the estimates which we believe to be the result of more variability in

the tra�c patterns, since tra�c is less constrained by bandwidth limitations. However, the nearly

linear relationship between H and � remains essentially unchanged. Figure 3 (right) shows the

results when bandwidth is somewhat limited, as in the baseline case, but bu�er sizes at the switch

are made large (64kB). Again, a consistent roughly linear relationship between the heavy-tailedness

of �le size distribution (�) and self-similarity of link tra�c (H) is observed.

In order to show that this relationship is not due to speci�c characteristics of the TCP Reno

protocol, we repeated our baseline experiments using TCP Tahoe and TCP Vegas. The results are

shown in Figure 4. The �gures show trends that are essentially the same as in the baseline case

for TCP Reno which indicates that speci�c di�erences in implementation of TCP's ow control

between Reno, Tahoe, and Vegas do not signi�cantly a�ect the resulting tra�c self-similarity.

Figure 5 (top) shows the relative �le size distribution of client/server conversations over the

10000 second simulation time interval, organized into �le size buckets (or bins), when each �le

transfer request is weighted by its size in bytes before normalizing to yield the relative frequency.

The top-left �gure shows that the Pareto distribution with � = 1:05 generates �le size requests

which are dominated by �le sizes above the 64kB range during the 10000sec interval. On the other

hand, the �le sizes for Pareto with � = 1:95 and the exponential distribution (top-middle, top-right)
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Figure 4: Hurst parameter as a function of � for TCP Tahoe runs (left) and TCP Vegas runs (right)

for the baseline set-up.

are concentrated on �le sizes below 64kB, and in spite of their �ner di�erences, their aggregated

behavior (cf. Figure 2) is indistinguishable with respect to self-similarity6. Figure 5 (bottom)

depicts the same graphs except that now �le size requests are not weighted by their size. That is,

the relative frequencies indicate the frequency of �le size requests over the 10000sec simulation time

interval. The bottom-left �gure shows that small �le sizes (300{700 bytes) occur most frequently

even though the tra�c during the simulation time is taken up by relatively few conversations whose

durations dominate the network tra�c due their large size. The bottom-middle and bottom-right

�gures show distributions which correspond more closely to their weighted counterparts in contrast

to the \invserse" shape for the top-left/bottom-left pair.

Taken together these plots indicate that �le size distribution, is able to directly a�ect the char-

acteristics of downstream tra�c with respect to self-similarity. They also indicate that the conclu-

sion of the ON/OFF model|generation of self-similarity through the aggregation of heavy-tailed

ON/OFF sources|applies at the high-level perspective of interactive �le or message transfers in a

client/server network environment when taking into account the inuence of the transport/network

layer in the protocol stack and the nonlinearity induced by tra�c sources sharing bounded network

resources.

4.3 E�ect of idle time distribution and tra�c mixing

The previous section showed that �le size distributions are strongly correlated with tra�c self-

similarity. In this section we show that the relationship holds under a variety of network conditions.

6This also leads us to believe that subtle di�erences in how \small" �le sizes are actually modeled are inconse-

quential to the conclusions at hand.
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Figure 5: Top: Relative frequency of weighted �le size distributions obtained from three 10000 sec-

ond TCP runs|Pareto with � = 1:05 (left), with � = 1:95 (middle), and exponential distribution

(right). Bottom: Relative frequency without weighting by �le size.

4.3.1 Idle time distribution: Exponential vs. Pareto

As noted earlier, all the runs so far were obtained with an exponential idle time distribution

with mean 600 msec. Consistent with recent results reported in [29] we have found that in our

simulations a heavy-tailed idle time distribution is not needed: a heavy-tailed �le size distribution

by itself is su�cient to produce self-similarity. Figure 6 (left) and (middle) show the H-estimates

of the baseline con�guration when the idle time distribution is exponential with mean 0.6 sec, and

when idle time distribution is Pareto with � = 1:05 and mean 1.197 sec, while keeping the �le

size distribution Pareto. As the H-estimates show, the e�ect of a Pareto-modeled heavy-tailed idle

time distribution is to boost long-range dependence when � is close to 2, decreasing in e�ect as �

approaches 1.

This phenomenon may be explained as follows. For �le size � close to 2, the correlation structure

introduced by heavy-tailed idle time is signi�cant relative to the contribution of �le size distribution,

thus increasing the degree of self-similarity as reected by the Hurst parameter. As �le size �

approaches 1, however, the tail weight of the �le size distribution becomes the dominating term, and

the contribution of idle time with respect to increasing dependency is insigni�cant in comparison.
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Figure 6: TCP run: Exponential idle time vs. Pareto idle time with Pareto �le size distributions|

Variance-Time (left), R/S (middle); Pareto idle times with exponential �le size distribution (right)

Figure 6 (right) shows the Hurst parameter estimates when the �le size distribution was ex-

ponential with mean 4.1kB, but the idle time distribution was Pareto with � ranging between

1.05{1.95 with mean 1.197 sec at � = 1:05. A positive trend in the H-estimates as the idle time

distribution is made more heavy-tailed (�! 1) is clearly discernible. However, the overall level of

H-values is drastically reduced from the case when the �le size distribution was Pareto indicating

that the �le size distribution is the dominating factor in determining the self-similar characteristics

of network tra�c.

4.3.2 Tra�c mixing

Figure 7 shows the e�ect of making one of the �le size distributions heavy-tailed (� = 1:05)

and the other one exponential in the 2-server system. Downstream throughput is plotted against

time where the time unit is 100 seconds. The left plot shows the case when both servers are

Pareto with � = 1:05. The right plot shows the case when both servers have exponential �le size

distributions. The middle plot is the combined case, where one server has a Pareto distribution

with � = 1:05 and the other server has an exponential distribution. Figure 7 shows that the mixed

case is less \bursty" than the pure Pareto case but more bursty than the pure exponential case.

Performance indicators such as packet drop rate and retransmission rate (not shown here) exhibit

a smooth linear degradation when transiting from one extreme to the other. That is, the presence

of less bursty cross-tra�c does not drastically smooth out the more bursty one, nor does the latter

swallow up the smooth tra�c entirely. Tra�c mixing was applied to all combination pairs for

� = 1:05; 1:35; 1:65; 1:95 keeping one server �xed at � = 1:05. A similar \additive" mixing was

observed with respect to performance. The H-values for the three cases are approximately 0.86,

0.81, and 0.54, respectively.

15



0

5e+06

1e+07

1.5e+07

2e+07

2000 4000 6000 8000 10000

th
ro

u
g

h
p

u
t 

(b
y
te

s
)

time (sec)

100s aggregation (alpha 1.05)

0

5e+06

1e+07

1.5e+07

2e+07

2000 4000 6000 8000 10000

th
ro

u
g

h
p

u
t 

(b
y
te

s
)

time (sec)

100s aggregation (Pareto/expo)

0

5e+06

1e+07

1.5e+07

2e+07

2000 4000 6000 8000 10000

th
ro

u
g

h
p

u
t 

(b
y
te

s
)

time (sec)

100s aggregation (expo)

Figure 7: Tra�c mixing e�ect for two �le size distributions Pareto � = 1:05 and exponential at

100 second aggregation level: Both servers are Pareto (left); one server is Pareto, the other one is

exponential (middle); both servers are exponential (right).

4.4 E�ect of network topology

In this subsection, we examine the e�ect of changing the network topology. Figure 8 shows a

variation in network topology in which the 32 clients are organized in a caterpillar graph with

4 articulation points (gateways G3, G4, G5, G6), each containing 8 clients, where tra�c volume

intensi�es as we progress from gateway G6 to G2 due to the increased multiplexing e�ect. Link

S

GGC
1

3 2

1

S
2

G
1

C
8

C
32

C
25

C
24

C
17

C
16

C
9

G
4

G
5 G

6

Figure 8: Variation in network topology.

tra�c was measured at the bottleneck link between G3 and G2 which was set at 1.544Mbps. All

other links were set at 10Mbps. Figure 9 compares the Hurst parameter estimates of the extended

topology against the H-values of the base topology. We observe that for both V-T and R/S, the

degree of self-similarity is not signi�cantly di�erent.
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Figure 9: Hurst parameter estimates for extended topology: V-T (left) and R/S (right).

4.5 Protocol stack and tra�c self-similarity

In this subsection, we will explore the role of the protocol stack with respect to its e�ect on tra�c

self-similarity. We will concentrate on the functionality of the transport layer and its tendency

to inuence the characteristics of downstream tra�c via its two end-to-end mechanisms: reliable

packet transport and congestion control.

4.5.1 Clipping

Clipping was de�ned in Section 3.1 as packet loss due to bu�er overow. We will further restrict

our attention to packet loss where total tra�c is not conserved|that is, dropped packets are not

retransmitted to achieve reliability.7 If X(t) is a tra�c stream and X�(t) its clip (the time series of

dropped packets), then an easy consequence of X�(t) being large is the reduction in self-similarity

of the down-stream tra�c due to its \equivalence" to the source having sampled from a less heavy-

tailed �le size distribution (observation (i) of Section 3.1).

Figure 10 shows the Hurst parameter estimates for a 32-client/2-server system with exponential

idle time distribution and Pareto �le size distributions for � = 1:05; 1:35; 1:65, and 1:95. In these

experiments, communication is unreliable; they use a UDP-like transport protocol which is driven by

an extremely greedy application whose output rate, upon receiving a client request, was essentially

only bounded by the local physical link bandwidth. Referring back to Figure 1 in Section 3.1,

tra�c was measured on the outlinks going from S1 and S2 to the bottleneck node G2 (upstream

tra�c), and upon leaving on the bottleneck link traversing from G2 to G1 (downstream tra�c) after

being multiplexed at G2. The network con�guration was such that when the �le size distribution

7We note that for this de�nition to be precise, further assumptions need to be made to handle situations such

as reliable transmission through error-correcting codes where information content as captured by the description

(Kolmogorov) complexity of an object may be signi�cantly smaller than its encoded size. However, this distinction

does not a�ect the present discussion.
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was Pareto with � = 1:95, very little packet loss occurred at the bottleneck node, with source

burstiness (as represented by decreasing �) being the sole control variable. The H-estimates show

that as source burstiness is increased, the estimated Hurst parameter of the down-stream tra�c

decreases relative to its value in the upstream tra�c, indicating a clipping e�ect.
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Figure 10: UDP run: Erosion of long-range dependence through excessive bu�er overow; Variance-

Time (left) and R/S (right).

Another interesting point is the already low Hurst estimate of the up-stream tra�c at Pareto

� = 1:05. We believe this is due to the stretching in space e�ect discussed in Section 3.1. That

is, given an exponential idle time distribution, the extremely greedy nature of the UDP-based

application encourages tra�c to be maximally stretched out in space, and stretching in time is

achieved only for very large �le size requests. For UDP-based applications, �les need at least s=B

seconds to be transferred, where s is the �le size and B denotes the local physical link bandwidth

(the interface bu�er size was made su�ciently large so as to accommodate the maximum link rate

B without packet loss). By observation (iii) of Section 3.1, stretching in space, by concentrating

more of its mass on a shorter time interval, decreases the dependency structure at lower time scales,

making the tra�c less self-similar. Of course, when very large �le sizes occur with non-negligible

frequency (� close to 1), stretching in space will be achieved proportional to s=B, producing long-

range dependence, albeit at a reduced level when compared with reliable communication.

4.5.2 Stretching

The previous section explored the stretching e�ect (in space or time) in the context of unreliable

communication, and found that for extremely greedy, unreliable communication, stretching in time

occurs only for very large �le transfers, the amount of stretching being proportional to �le size.

Here, we explore the stretching issue when resources at gateways are allowed to vary.

First, consider the case when the bottleneck link output bu�er is allowed to vary. The primary
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performance e�ect of increasing the bu�er size lies in reducing packet loss (see Section 4.6 for

performance evaluations). In both reliable and unreliable communication, the increased \reservoir"

allows for more packets to be in-waiting, thus by the \reverse" �le size sampling argument increasing

the dependency structure of the downstream tra�c. Figure 11 shows an upward trend in the Hurst

parameter as bu�er size is increased when unreliable communication is employed. The gap is most

pronounced between the Hurst parameter estimates when the smallest (3kB) and the largest (64kB)

bu�er sizes are compared. However, little can be said about their magnitude due to the size of the

variations in the estimators relative to the magnitude of the shift. Figure 12 (top row) shows a

similar e�ect when packet transport is reliable. Again, only a general trend is discernible with the

shift e�ect most evident between the largest and smallest bu�er sizes.
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Figure 11: UDP run: Hurst parameter estimates for � = 1:05; 1:35; 1:65, and 1:95 as bottleneck

bu�er size is varied. Variance-Time (left) and R/S (right)

Second, let us consider the case when the bottleneck link bandwidth is varied while keeping

everything else �xed. If the bandwidth is large, then stretching in space is encouraged which

results in decreased self-similarity in the downstream tra�c. Figure 12 (bottom row) shows a

slight decreasing trend in the H-estimates as link bandwidth is increased when reliable commu-

nication is employed. Thus, even though increasing either resource results in smaller packet loss

and improved performance, their e�ect on the characteristics of downstream tra�c is dissimilar.

Whereas increased bu�ering is conducive to preserving dependency in the downstream tra�c, in-

creasing bandwidth has the opposite e�ect albeit less pronounced due to the measured nature of

TCP Reno's ow control.8 The cost of the latter (stretching-in-space) is reected by an increase in

uncorrelated large bursts which without further control actions may lead to severe packet loss and

8Although Fast Retransmit/Recovery somewhat alleviates TCP Reno's conservative stretching-in-time policy for

achieving stability, the reliance of Congestion Avoidance on packet loss detection for triggering compensatory ac-

tions causes retransmit waits which further add to the stretching-in-time e�ect. TCP Vegas' enhanced Congestion

Avoidance feature may be viewed as counteracting this tendency [8, 3].
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performance degradation (cf. Figure 11 in Section 4.5.1 and Figure 16 in Section 4.6.1). The e�ect

of prolonged stretching in time, on the other hand, is conducive to amplifying long-range depen-

dency by generating long packet trains which in the presence of multiple sources is prone to result

in self-similar tra�c patterns. The previous observation also points to why the linear ON/OFF

model may have been successful in modeling the output characteristics of a complicated nonlinear

system. In some sense, the e�ect of the unaccounted-for nonlinearity seems to be reected back

as a stretching e�ect, thus conforming with the model's original suppositions. That is, interaction

among tra�c sources contending for network resources seems to result in mutual stretching-in-time,

generating elongated packet trains with \holes and dips" due to retransmit waits.

The resiliency of reliable communication under self-similar tra�c conditions is achieved by

stretching a conversation over time so as to reduce the probability of packet loss thus attaining

e�cient reliable transmission in the sense of Section 3.1. The conservativeness inherent in additive-

increase/multiplicative-decrease feedback algorithms including TCP Reno [14] suggests that too

much time-stretching is already being done, whereas theoretical characterizations on the di�culty

of achieving stability and optimality in a rate-controlled dynamic queueing network [25, 17, 21]

suggest that perhaps not very much can be done to alleviate this problem in a fundamental way.

4.6 Network performance

In previous sections we showed that even though a number of the simplifying assumptions underly-

ing the ON/OFF model are unrealistic in general, the e�ect of reliable, ow-controlled transmission

as facilitated by TCP Reno lies in preserving the long-range dependence of the input tra�c by

stretching the transmission over time. In part, this has the e�ect of \incorporating" the interaction

among multiple tra�c streams|ignored in the ON/OFF model|by subsuming one of its main

consequences (i.e., stretching in time) via conformation with the heavy-tailedness assumption of

ON/OFF packet trains. In this section, we show performance results which further corroborates

this point. A more complete study of the performance implications of self-similarity is presented

in [20]. We �rst present performance characteristics of TCP Reno under a self-similar load; then

in the next section we contrast this behavior with a UDP-like transport protocol.

4.6.1 Performance evaluation under reliable communication

Control variables: bottleneck bu�er size and self-similarity. The smooth performance

degradation of TCP in the presence of extremely bursty tra�c as bottleneck bu�er size and tra�c

self-similarity are varied is shown in Figure 13. The leftmost plot in the top row of the �gure shows

packet loss rate as � is varied for bu�er sizes ranging from 2kB to 64kB. It shows that for small

bu�er sizes, packet loss rate is virtually una�ected by the self-similarity of tra�c; however, when

20



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

H
 e

st
im

at
e

alpha

V-T buffer 3
V-T buffer 6

V-T buffer 10
V-T buffer 64

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

H
 e

st
im

at
e

alpha

R/S buffer 3
R/S buffer 6

R/S buffer 10
R/S buffer 64

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

H
 e

st
im

at
e

alpha

V-T BW 1.5
V-T BW 9

V-T BW 155

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

H
 e

st
im

at
e

alpha

R/S BW 1.5
R/S BW 9

R/S BW 155

Figure 12: TCP run: Hurst parameter estimates for � = 1:05; 1:35; 1:65, and 1:95 as bottleneck

bu�er size is varied (top row), and bottleneck bandwidth is varied (bottom row)|Variance-Time

(left column) and R/S (right column).

bu�er sizes get large, � = 1:95 tra�c shows virtually no packet drops while strongly correlated

tra�c incurs a drop rate of about 1%. A similar e�ect is shown in the middle plot of the top row

of the �gure, which depicts packet retransmission rate for the same range of conditions. What is

striking about these two �gures is the lack of drastic change in the two performance variables as

self-similarity is varied. Figures 13 (left, bottom row) and (middle, bottom row) show the same

data set but with bu�er size in the abscissa. For any �xed �, a saturation e�ect is visible as bu�er

size is increased. It also again shows that for small bu�er sizes, there is little performance di�erence

between highly self-similar (� � 1:05) and less bursty tra�c (� � 1:95).

Figure 13 (right, top row) gives some evidence of why TCP is able to avoid drastic increases in

the packet drop rate. The plot depicts the average bu�er occupancy for the same range of bu�er

sizes. Unlike the case of packet loss and retransmission rate, the bu�er occupancy when bu�er size

is 64kB increases sharply with increasing self-similarity. In other words, when the bu�er size is

small such that weakly correlated tra�c is su�cient to a�ect signi�cant packet loss, increasing self-

similarity has little additional e�ect with respect to future packet drops since TCP Reno's feedback
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Figure 13: TCP run. Top row: Packet loss rate, packet retransmission rate, and mean queue length

as a function of �. Bottom row: Packet loss rate (left), packet retransmission rate (middle) as a

function of bu�er size; bottleneck bu�er utilization (right) as a function of �.

control is already causing the transmission rate to back o�. However, when the bu�er size is large

so that the higher burstiness of long-range dependent tra�c is allowed to make a di�erentiated

e�ect and \stand out," a proportionately larger bu�er occupancy is required to yield a smooth

degradation in performance. That is, the marginal utility of additional bu�er space is exhibiting

diminishing returns. Figure 13 (right, bottom row) is another depiction of the data in the top-right

�gure where the ordinate represents mean bu�er occupancy normalized by the bu�er capacity.

Likewise, our measurements of reliable throughput (not shown) indicate a similarly smooth, linear

degradation in throughput for all bu�er sizes as � decreases.

Control variables: bottleneck bandwidth and self-similarity. Whereas in the previous case

the bottleneck bu�er capacity was the main control variable in conjunction with the degree of tra�c

self-similarity, in this case we vary bottleneck bandwidth and evaluate its e�ect. Figure 14 (left,

top row) shows the e�ect of varying � for bandwidths in the range 1.5Mbps{9Mbps with respect

to packet loss rate. A gradual (linear to sublinear) change in performance as a function of � is

observed. Figure 14 (right, top row) shows an analogous plot with packet retransmission rate in
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Figure 14: TCP run. Top row: Packet loss rate (left) and packet retransmission rate (right) as

a function of �. Bottom row: Packet loss rate (left) and packet retransmission rate (right) as a

function of bandwidth.
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Figure 15: TCP run. Mean queue length as a function of � for di�erent bottleneck bandwidths.

place of packet loss rate. The bottom row plots of Figure 14 depict the same data set with the

abscissa representing link bandwidth. For any �xed �, a saturation e�ect kicking in between 1.5

Mbps{3 Mbps is visible. Figure 15 shows the mean queue length when bu�er size is 6kB for di�erent

values of � and bottleneck link bandwidth. Whereas in Figure 13 (right, top row) the curvature of

the mean queue length curve increases as bu�er size is increased (64kB) corresponding to simulation

runs with link bandwidth �xed at 1.5 Mbps, increasing the link bandwidth while keeping the bu�er

capacity �xed at 6kB does not carry an analogous e�ect. Even though both bu�er size 64kB/link

bandwidth 1.5Mbps and bu�er size 6kB/link bandwidth 9Mbps runs yield low packet loss rates

of 1.1%, 0.4%, respectively (for � = 1:05), the latter does not seem to induce an increased bu�er

occupancy as � is decreased.

4.6.2 Performance evaluation under unreliable communication

To highlight the performance-moderating e�ects of TCP, we contrast its performance with that of

a UDP-like protocol in this section.

Figure 16 (left) shows the packet loss rate as � is varied for di�erent values of bottleneck bu�er

capacity. Compared to the smooth, linear increase seen in Figure 13 (left, top row) for the TCP

Reno case, unreliable transport induces a drastic, superlinear increase in packet loss as � ! 1.

That is, the high burstiness associated with self-similar tra�c is directly reected in high packet

drops at the bottleneck link, without the intervention of TCP's reliable transport mechanism and

congestion control to stem the ow. In Section 4.5.1, we have shown an e�ect of this tra�c clipping

to be a reduction in self-similarity of downstream tra�c as reected by the decrease in the Hurst

parameter. However, the o�ered load still shows the e�ects of strong self-similarity, as shown in

Figure 16 (right). This �gure shows a superlinear degradation in link utilization as self-similarity

is increased. Also, notice the extremely low utilization level (1{6%) despite the massive packet

drops indicated by the plots on the right side of the �gure. Link utilization in the TCP Reno case
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(not shown here) is in the range of 60-70%, and is much more level due to its tra�c-shaping e�ect.

Finally, Figure 17 also shows the increasing curvature of the mean queue length graphs as bu�er

size is increased. This behavior is very similar to that in the case of TCP as seen in Figure 13 (right,

top row). It indicates that, regardless of transport protocol, queue length distribution for highly

self-similar tra�c is much more slowly decaying than weakly self-similar tra�c and Poisson sources

which is consistent with the observations made in [16, 18].
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Figure 16: UDP run: packet loss rate and link utilization as a function of � and bu�er size (top).

Same data with the abscissa denoting bu�er size instead of �.

5 Conclusion

In this paper, we have shown that self-similarity in network tra�c can arise due to a particularly

simple cause: the reliable transfer of �les drawn from heavy-tailed distributions. Such a high-

level explanation of the self-similarity phenomenon in network tra�c is appealing because there

is evidence that �le systems indeed possess heavy-tailed �le size distributions [9, 4, 13, 22]. It

also relates a networking problem|tra�c characterization|to a system-wide cause which has

traditionally been considered outside the networking domain. The growth and prevalence of multi-

25



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

m
ea

n 
qu

eu
e 

le
ng

th
 (b

yt
es

)

alpha

link buffer 3 kB
link buffer 6 kB

link buffer 10 kB
link buffer 28 kB
link buffer 46 kB
link buffer 64 kB

Figure 17: UDP run. Mean queue length as a function of � and bu�er size.

media tra�c only aggrevates the situation by facilitating the structural conditions for inducing

self-similar network tra�c, and our work supports recent e�orts directed at managing network

resources in a more integrated way (\Middleware" research) in which issues such as caching and

server selection may turn out to be relevant in formulating e�ective solutions for congestion control.

We have shown that the relationship between �le size distribution and tra�c self-similarity is not

signi�cantly a�ected by changes in network resources, topology, tra�c mixing, or the distribution of

interarrival times. We have also shown that reliability and ow control mechanisms in the transport

layer of the protocol stack give rise to a tra�c-shaping e�ect that preserves self-similarity in network

tra�c. This helps explain why the ON/OFF model [28], in spite of ignoring tra�c interactions

through resource limitations and feedback control, may have been successful in modeling observed

tra�c characteristics. The coupling between tra�c sources sharing and contending for common

network resources leads to a stretching-in-time e�ect which reects back to the ON/OFF model by

conforming, at a qualitative level, to its simplifying suppositions.

Finally, we have shown that network performance, as measured by packet loss and retransmission

rate, declines smoothly as self-similarity is increased under reliable, ow-controlled packet transport.

The only performance indicator exhibiting a more sensitive dependence on self-similarity was mean

queue length, and this concurs with the observation that queue length distribution under self-similar

tra�c decays more slowly than with Poisson sources. In contrast, we showed that performance

declines drastically with increasing self-similarity when a UDP-like unreliable transport mechanism

was employed. This gives a sense of the moderating e�ect of TCP on network performance in the

presence of highly bursty tra�c. A more detailed study of the performance evaluation question

including quality-of-service (QoS) trade-o�s under self-similar tra�c conditions and the relative

e�ectiveness of increasing link bandwidth and bu�er capacity can be found in [20].
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