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ABSTRACT
Network alignment is the problem of matching the nodes of two

graphs, maximizing the similarity of the matched nodes and the

edges between them. �is problem is encountered in a wide array

of applications—from biological networks to social networks to

ontologies—where multiple networked data sources need to be

integrated. Due to the di�culty of the task, an accurate alignment

can rarely be found without human assistance. �us, it is of great

practical importance to develop network alignment algorithms that

can optimally leverage experts who are able to provide the correct

alignment for a small number of nodes. Yet, only a handful of

existing works address this active network alignment se�ing.

�e majority of the existing active methods focus on absolute
queries (“are nodes a and b the same or not?”), whereas we argue

that it is generally easier for a human expert to answer relative
queries (“which node in the set {b1, . . . ,bn } is the most similar to

node a?”). �is paper introduces two novel relative-query strate-

gies, TopMatchings and GibbsMatchings, which can be applied

on top of any network alignment method that constructs and solves

a bipartite matching problem. Our methods identify the most infor-

mative nodes to query by sampling the matchings of the bipartite

graph associated to the network-alignment instance.

We compare the proposed approaches to several commonly-used

query strategies and perform experiments on both synthetic and

real-world datasets. Our sampling-based strategies yield the high-

est overall performance, outperforming all the baseline methods

by more than 15 percentage points in some cases. In terms of accu-

racy, TopMatchings and GibbsMatchings perform comparably.

However, GibbsMatchings is signi�cantly more scalable, but it

also requires hyperparameter tuning for a temperature parameter.

KEYWORDS
network alignment; graph matching; active learning

1 INTRODUCTION
�e network-alignment problem, also known as graph matching

[40] or graph reconciliation [18], asks to �nd a matching between

the nodes of two graphs so that both (i) node-a�ribute similari-

ties and (ii) structural similarities between the matched nodes are

maximized. �is is an ubiquitous problem with application areas

ranging from biological networks [8] to social networks [14, 41],

ontologies [36], and image matching in computer vision [9]. For

instance, in the case of social networks, one might be interested in

aligning the friendship graphs of two social-networking services

in order to suggest new friends for the users.

Typically, some of the network nodes are easy to align auto-

matically if they, for example, share a unique name. Other nodes

�is is a pre-print of an article appearing at CIKM 2017.

can be considerably more ambiguous and thus fully-automatic

methods are likely to align them incorrectly. In the active version of

the network-alignment problem, such di�cult cases are redirected

to human experts who act as oracles. In this way, the alignment

process is judiciously enhanced by involving humans in the loop.

�e idea of algorithms that select which data to be labeled in

order to improve accuracy is not new; in fact, this is the main

focus of active learning. Research in this area aims to identify

e�ective ways for utilizing access to labeling oracles, such as human

experts. Although there is a lot of research in active learning for

classi�cation or clustering problems, few studies have tackled the

problem of active network alignment.
To the best of our knowledge, active network-alignment methods

appear mostly in the domain of ontology matching [16, 32, 35].

�ese methods ask the human experts to assess whether two given

nodes are a match or not, and thus, focus on identifying the most

useful pair of nodes to query. �e limitation of this approach is that

absolute yes/no questions can be very hard to answer for a human

if no context about alternative candidate matches is provided.

In this paper, we obtain human feedback, where questions are

asked in the following form: “Given node v and a set of candidate
matches C , which node in C is the most likely match for v?”. To

answer such relative questions, an expert needs to make only com-

parative judgments, which are less challenging for humans [23],

despite the fact that the expert needs to consider more nodes at

once. Additionally, the expert may be given an opportunity to say

that none of the candidate matches is correct. In this scenario, the

querying is more similar to the absolute querying scheme, but it

may still be easier for the expert since more context is provided to

answer the question.
1

Although in certain scenarios the absolute

querying scheme may be more appropriate, this work focuses only

on comparing di�erent relative approaches.

Given the above relative querying scheme, our framework for

active network alignment is based on a novel algorithmic idea for

identifying the best questions to ask to the experts. Since access to

experts is typically costly, the objective is to maximize the alignment

accuracy for a given number of queries.

A well-established approach in active learning is to label the

data points for which the current model is least certain as to what

the correct output should be [33]. Accordingly, we introduce novel

ways of quantifying the uncertainty introduced by each node in the

network-alignment process. Using these measures we ask queries

that resolve most of the uncertainty, and therefore, only few queries

su�ce to obtain an alignment of high accuracy.

1
An interesting parallel to the absolute vs. relative querying issue is found in the

psychology literature regarding eyewitness identi�cations. Some experimental studies

show that simultaneous lineups, where suspects are shown to an eyewitness simulta-

neously, result in a higher true positive rate, whereas sequential lineups result in a

lower false positive rate [6].
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In the classic (non-active) network-alignment problem the input

consists of two networks: a source network Gs = (Vs ,Es ) and

a target network Gt = (Vt ,Et ). Finding an alignment is o�en

reduced into the problem of �nding a matching on a weighted

bipartite graph H = (Vs ,Vt ,Eh ), where the weights incorporate

both a�ribute and structural similarities. Examples of such methods

include L-Graal [27], Natalie [12, 17], NetAlignMP++ [3], and

IsoRank [37].

In this paper we propose a new approach for active network

alignment, which can be employed on top of any matching-based

(non-active) network-alignment method. �e main idea is to sample

a set of matchingsM` , use the resulting distribution to quantify the

certainty of each node, and identify which node to query based on

this certainty. We study and experiment with two alternative meth-

ods for obtaining a set of sampled matchings, GibbsMatchings,

where Gibbs sampling is employed to sample matchings according

to their score, and TopMatchings, where the top-` matchings are

taken in the sample. We also experiment with di�erent methods

for estimating node certainty, using entropy, the expected certainty

of the unlabeled nodes, as well as a consensus-based criterion.

Our experiments with real and synthetic data show that the

proposed strategies perform consistently well and in some cases

they outperform our baseline methods by more than 15% in ac-

curacy. �e baseline methods include three previously proposed

query strategies as well as random querying. When comparing

the two proposed methods, GibbsMatchings and TopMatchings,

we obtain a robustness-scalability trade-o�: GibbsMatchings is

signi�cantly more scalable but it is also sensitive to the choice of a

temperature parameter β .

Our main contributions are summarized as follows.

• We formalize a relative-judgment framework for active network

alignment.

• We develop an active-querying framework, which can be em-

ployed on top of any network-alignment method that �nds an

alignment using maximum-weight bipartite matching. Indeed,

several state-of-the-art network-alignment methods follow this

approach. We also explore two algorithms that instantiate this

framework: GibbsMatchings and TopMatchings.

• We conduct experiments with real and synthetic datasets, demon-

strating the superiority of our algorithms compared to several

previously proposed baseline methods. We also show that our

algorithms can be parallelized without signi�cantly compromis-

ing the accuracy of the methods.

• �e code and the data used in the experiments are publicly

available at: h�ps://github.com/ekQ/active-network-alignment

Roadmap: �e paper is organized as follows. In Section 2 we

review the related work. Our problem formulation is provided in

Section 3 and our algorithm in Section 4. Section 5 presents the

experimental evaluation of our method and a comparison with

baselines. We conclude in Section 6.

2 RELATEDWORK
Numerous methods have been developed for the non-active network-

alignment problem. �e problem has drawn particular a�ention

in the bioinformatics domain [12, 15, 17, 21, 24, 27, 37], due to the

interest in the the task of matching protein-protein interaction net-

works; a recent survey in the area is provided by Elmsallati et al. [13].

Non-active network alignment methods are classi�ed according

to how the matching cost is de�ned and how they algorithmically

proceed to �nding a solution. For example, IsoRank [37] and Iso-

RankN [24], which are among the earliest-developed methods, uti-

lize a PageRank-type computation to recursively compute node sim-

ilarity via the similarity of the nodes’ neighbors. Natalie [12, 17]

formulates the alignment task as a quadratic assignment problem,

which it then solves using Lagrangian relaxation combined with a

subgradient optimization; more details are given in Section 4.2. �e

Graal [21, 22, 27] family of alignment methods enhance the match-

ing scoring function with topological similarity features, such as

graphlet degree signatures [30]. L-Graal [27] is a recent algorithm

in the Graal family, which incorporates the Lagrangian-relaxation

framework of Natalie, and is shown to outperform several other

state-of-the-art methods.

In addition to bioinformatics, the non-active network-alignment

problem has been studied in di�erent application areas, such as

ontology matching [1, 11] and social-network matching [18].

As discussed earlier, our active network-alignment framework

can be employed on top of any non-active method that maps the

alignment problem into a weighted bipartite graph-matching prob-

lem. Many of the methods discussed above fall in this category,

e.g., L-Graal [27], Natalie [12, 17], NetAlignMP++ [3], and Iso-

Rank [37]. In our experimental evaluation we use Natalie and

NetAlignMP++, which are state-of-the-art methods that have been

shown to have a robust performance in several independent stud-

ies [3, 8, 12, 27].

�e problem of active network alignment has been previously

studied by Cortés and Serratosa [10]. Compared to our work, they

focus on a more limited class of network-alignment methods that

return a probability matrix for di�erent matches, making the quan-

ti�cation of uncertainty more straightforward. However, some of

their query strategies are also applicable to our se�ing and thus,

in our experiments, we adopt two baseline strategies from their

work, namely lccl and Margin. Another closely-related line of

work is active ontology matching. Shvaiko and Euzenat [36] list

it as one of the important areas for future work in their recent

survey on ontology matching. Existing work on active ontology

matching focuses on absolute queries [16, 32, 35], and thus, not

directly comparable with our approach.

Active-learning approaches have been developed also for other

related problems. Charlin et al. [7] develop an active-learning

method for many-to-many matching problems encountered in rec-

ommender systems, comparing di�erent absolute-querying strate-

gies. Another area where active learning has been studied and

where data is in a network format is the inference problem for

Gaussian �elds [25, 42]. Macskassy [25] �nds an empirical risk

minimization (erm) to be the best method to �nd the next instance

to query but due to the high computational complexity of erm, he

proposes to use the betweenness centrality as a �lter to select a

subset of nodes for which erm is applied to. Finally, Bilgic et al. [4]

introduce an active learning method for collectively classifying

networked data.

2
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Figure 1: An illustration of the network-alignment prob-
lem. �e task is to align two input networks Gs and Gt .
Some nodes and/or edges from either network may be le�
unmatched. Letters and colors are used to indicate the sets
of candidate matching nodes, e.g., CA = {A1,A2,A3}, CB =
{B1,B2}, and CC = {C1,C2}.

3 PROBLEM FORMULATION
Before de�ning the active network alignment problem, we �rst

discuss the non-active version of the problem.

Network alignment: In the standard network-alignment problem

we consider two input graphs Gs = (Vs ,Es ) and Gt = (Vt ,Et ), the

source and the target graph. �e adjacency matrices of the two

graphs are denoted by As and At , respectively. �roughout we

assume that the smaller graph is aligned to the larger one, that

is, |Vs | ≤ |Vt |. In addition, we consider that a similarity function

σ : Vs ×Vt → R is available, which measures the similarity between

pairs of nodes i ∈ Vs and j ∈ Vt . �e similarity function σ depends

on the application at hand.

�e objective of the network-alignment problem is to �nd a

matching between the nodes of the two networks. More speci�cally,

we want to align the nodes of the source graphVs to the nodes of the

target graph Vt . Formally, we want to �nd M = {(i, j)} ⊆ Vs ×Vt
so that each node of Vs and Vt appears at most one time in M .

A high-quality alignment should satisfy the following properties:

(i) nodes in Vs should match to similar nodes in Vt , according to σ ,

and (ii) the endpoints of each edge in Es should match to nodes in

Vt that are connected by edges in Et .

For each node v ∈ Vs we consider a set of candidate matching
nodes Cv ⊆ Vt . �ose are the only nodes in Vt that v can be

matched to. In this paper we assume that the sets Cv are given.

In practice, the sets Cv are computed by a simple heuristic, e.g.,

considering all nodes inVt whose feature-based similarity tov ∈ Vs
exceeds a certain threshold. When the candidate sets are small

compared to Vt , the problem is sometimes called sparse network
alignment.

Global network-alignment methods formulate an objective func-

tion that captures the above properties, and then devise algorithms

for optimizing this objective.

In some applications, it is desirable to leave nodes unmatched if

no suitable match is found. �is can be achieved without having to

change the problem formulation by adding a special “gap” node to

the target graph for each node in the source graph. �e gap nodes

are isolated and the user has to de�ne a similarity value (which

can also be negative) between the source nodes and the gap nodes,

which controls the cost of leaving a source node unmatched.

An example of the network-alignment problem is shown in Fig-

ure 1. We use le�ers and colors to indicate sets of matching nodes.

Indicatively, in an application of aligning social networks, one can

think of A = Andres, A1 = Andre, A2 = Andrew, A3 = Andreas,

while B = Brendon, B1 = Brenden, B2 = Brendan, etc.

Active network alignment: Assume now that we have access to

an oracle, for example, a human expert, with whom we can interact

in the form of queries and obtain partial information about the

correct alignment of the two networks Gs and Gt .

As already discussed, we focus on interaction with the oracle

that takes the form of the following queries:

Given a node v in the source network Gs , and a set of candidate
matches Cv in the target network Gt , which node from Cv should be
matched to v?

�e oracle returns an answeru ∈ Cv and the algorithm proceeds

to aligning Gs with Gt given that v ∈ Vs is matched with u ∈ Vt .

Depending on the application, one of the candidate matches Cv
may be the gap node of v .

�e problem of active network alignment is to select the most

informative node v ∈ Vs for which to ask the oracle to reveal the

correct matched node u ∈ Vt . More speci�cally, we aim to solve

the following problem.

Problem 1 (ActiveNetworkAlignment). Given a source net-
work Gs = (Vs ,Es ) and a target network Gt = (Vt ,Et ), select the
node v ∈ Vs for which to ask an oracle to reveal the correct matched
node u ∈ Vt so that the alignment accuracy for the remaining nodes
in Vs is maximized.

�e alignment accuracy in Problem 1 is computed by �xing the

alignment of v to u, then aligning the remaining nodes using a

standard (non-active) network alignment method, and �nally by

computing the fraction of correctly aligned unqueried nodes in Vs .

A natural way to approach Problem 1 is to design a function

Cert (v | Gs ,Gt ) that quanti�es the certainty associated with each

v ∈ Vs with respect to its match in Vt . Nodes with low certainty

scores are good candidates for being the query node, since these

nodes would otherwise be more likely to decrease the alignment

accuracy. �e active-learning framework provides general princi-

ples for designing such a function. We deploy these ideas in order

to design and experiment our Cert function. More details on this

are given in Sections 4 and 5.

In the example of Figure 1, we see that A in Gs is most similar

to A1, A2, and A3 in Gt . If A is matched to A1 or A2, then B should

be uniquely matched to B1. If A is matched to A3, then B should

be uniquely matched to B2 and C to C2. �us, matching node A
�rst, to a large extent, determines the rest of the alignment. On the

other hand, matching B or C �rst does not determine the rest of

the alignment with the same level of certainty. We conclude that,

in this example, it is a good strategy to ask the oracle to provide us

with the correct alignment for node A.

4 MATCHING-BASED ACTIVE NETWORK
ALIGNMENT

In this section, we present the proposed strategy for active network

alignment. Our strategy identi�es which node v ∈ Vs to query via

a novel approach for quantifying the certainty of each node. �e

3



Algorithm 1 �e general active network alignment framework.

Input: Gs = (Vs ,Es ), Gt = (Vt ,Et ), candidate matches C, and

query budget k .

Output: An alignment between Vs and Vt .

1: for i = 1, . . . ,k do
2: H = NetworkAlignment(Gs ,Gt | C)
3: v̂ = argminv ∈Vs Cert (v | H ,Gs ,Gt )
4: û = Oracle�ery(v̂,Cv̂ ), with û ∈ Cv̂
5: Cv̂ = {û} . Update candidate matches.

6: for v ∈ Vs \ {v̂} do
7: Cv = Cv \ {û}
8: H = NetworkAlignment(Gs ,Gt | C)
9: return BipartiteMatching(H )

main idea is as follows: instead of solving the alignment problem

to �nd only a single matching (the optimal network alignment),

we sample a number of high-quality matchings (near-optimal net-

work alignments), and then, compute the certainty of each node by

considering the distribution of its matched nodes on the sampled

matchings.

We study two di�erent methods for sampling matchings; Gibbs-

Matchings, where matchings are sampled according to their score

(so be�er matchings have higher probability of being included in

the sample), and TopMatchings, where the top-` matchings are

considered. We also consider di�erent alternatives for computing

node certainty based on the sampled matchings.

We now discuss our approach in more detail. We start by describ-

ing our strategy at a high level, and then proceed to the description

of each of its components and di�erent alternatives.

4.1 Overview
�e general active network alignment approach, in which nodes are

queried iteratively, can be summarized as follows: In every iteration

pick a node v̂ ∈ Vs . �e node v̂ together with its set of candidate

matching nodes Cv̂ ⊆ Vt is shown to the (human) oracle, and the

oracle selects a node û ∈ Cv̂ as the best match for v̂ . Assert that

û is the best matching for v̂ by updating the candidate node sets

so that Cv̂ = {û}, and removing û from all other sets of candidate

nodes. When the budget of oracle queries is exhausted, solve the

remaining network alignment problem to align the unqueried nodes.

Pseudocode for this approach is shown in Algorithm 1 (di�erent

steps of the algorithm are explained later in this section).

Our main contribution, is the methodology for quantifying the

certainty of the candidate nodes to be queried at every iteration of

Algorithm 1. Our approach consists of the following steps.

Step 1. Construct a weighted bipartite graph H = (Vs ,Vt ,Eh ) that

forms the basis for the matching-based network-alignment al-

gorithm.

Step 2. Sample a setM` of ` high-quality matchings in H .

Step 3. For each nodev ∈ Vs , estimate the certainty we have about

the correct match for v . �ese certainty values, Cert(v), are

computed using the information in the set of sampled match-

ingsM` .

Step 4. Identify the node v̂ ∈ Vs with the least certainty, and query

the oracle for selecting the best match of v̂ among the set of

candidate matching nodes Cv̂ ⊆ Vt .

For sampling a set of matchingsM` we consider two alternatives:

GibbsMatchings (sample matchings according to their score) and

TopMatchings (take the top-` matchings); those are discussed in

Section 4.3. We also consider three di�erent ways of estimating

node certainty (Step 3) presented in Section 4.4. First we discuss

how to construct the weighted bipartite graph H = (Vs ,Vt ,Eh ) on

which the set of sampled matchingsM` is obtained.

4.2 Constructing the bipartite graph H
Our strategy is applicable to any NetworkAlignment algorithm

that is based on solving a bipartite-matching problem. In our exper-

iments, we use Natalie [12] and NetAlignMP++ [3], two state-of-

the-art algorithms. Both methods aim to solve the following qua-

dratic integer program, adopting, however, di�erent approaches.

Integer-programming formulation: �e IP formulation of Natalie

and NetAlignMP++ introduces a variable xi j for each pair of nodes

i ∈ Vs and j ∈ Vt . �e variable xi j is set to 1 if i is matched to j,
while it is set to 0 otherwise. We also use ∆(v), for v ∈ Vs ∪Vt , to

denote the set of all pairs {(i, j)} for whichv = i orv = j , and As ;ik
(At ;ik ) to denote whether there is an edge between nodes i and k
in the source (target) graph.

max

x

∑
(i, j)∈Vs×Vt

σ (i, j)xi j

+ д
∑

(i, j)∈Vs×Vt

∑
(k, `)∈Vs×Vt

As ;ikAt ;j`xi jxk` ,

such that

∑
(i, j)∈∆(v)

xi j ≤ 1, for all v ∈ Vs ∪Vt ,

xi j ∈ {0, 1}, for all (i, j) ∈ Vs ×Vt .
In the above integer program, each pair of matched nodes i and j
contributes a reward of value σ (i, j), while an additional reward

of value д is given if an edge in Es is matched to an edge in Et .

�e user-de�ned parameter д quanti�es the relative importance

between correctly-matched nodes and correctly-matched edges,

and it is typically set based on prior knowledge or cross-validation.

�e inequality constraint ensures that the solution is a matching.

Solution via Lagrangian relaxation: Natalie, originally proposed by

Klau [17], solves the quadratic integer program by �rst linearizing it

and then employing a Lagrangian relaxation technique. Klau shows

that the original integer program is NP-hard, but remarkably, by

relaxing a symmetry constraint for the linearized quadratic terms,

the problem becomes solvable in polynomial time via multiple

maximum-weight bipartite matchings.

Natalie iteratively updates the Lagrangian multipliers λ for the

relaxed constraints using subgradient optimization. �e solutions of

the relaxed problem provide upper bounds for the original problem,

whereas the feasible solutions, which can be directly extracted from

the relaxed solutions, provide lower bounds.

�e best feasible solution found provides the bipartite graph H
for our active strategy.

Solution via message passing: �e NetAlignMP++ algorithm, pro-

posed by Bayati et al. [3], solves the same optimization problem

4



using a belief propagation (BP) approach. �is approach makes

local, greedy updates by passing messages between the neighboring

nodes. To obtain an integral solution, NetAlignMP++ constructs

and solves a maximum-weight matching problem based on the BP

messages at every iteration of the algorithm.

Again, we set H to correspond to the matching problem that

gives the best solution.

Due to space constraints, we do not discuss in detail how the

weights of the edges of the bipartite graphs are set. Note, however,

that the weights aim at capturing both the feature-based and struc-

tural similarities of the matching nodes, and the higher the weight

the more similar the nodes are. For more details we refer the reader

to the original papers [3, 12].

4.3 Sampling matchings
Next we present two approaches for sampling matchings: Gibbs-

Matchings, which �rst de�nes a probability distribution over the

space of matchings and then employs Gibbs sampling to draw

samples from this space, and TopMatchings, which computes the

top-` matchings.

Gibbs sampling for matchings: Markov chain Monte Carlo tech-

niques are popular for drawing samples from complex multi-dimen-

sional distributions [5]. In order to apply these methods to sample

matchings M , we need to de�ne a probability distribution over the

space of matchings induced by the bipartite graph H . Similar to

Volkovs and Zemel [38], we use the standard Gibbs form

P (M | H ) = 1

Z (M, β) exp

(
− 1

β
E(M,H )

)
=

1

Z (M, β) exp
©« 1

β

∑
v ∈Vs

Hv,M (v)
ª®¬ , (1)

where M(v) denotes the node to which v is matched to in M ,

Z (M, β) is the partition function that normalizes the distribution,

and β is a “temperature” constant that de�nes the smoothness of

the distribution. �e value of β is optimized using a training dataset,

as discussed in Section 5.3.

We sample ` matchingsM` = {M1, . . . ,M`} from this distribu-

tion as follows: we initializeM with the maximum-weight matching.

�en at each iteration i , we go through the nodes in Vs in a ran-

dom order and for each node v ∈ Vs , we pick one of the candidate

matching nodes u ∈ Cv uniformly at random. Next we consider

re-assigning v to u and v ′ to M(v) where v ′ is the node currently

matched to u if any. If M(v) is not among the candidate matches

of v ′, we pick another node u uniformly at random among the

remaining candidates of v until a possible re-assignment has been

found (v can always be re-assigned to its current match M(v)). �e

new matching M ′, which would result from the re-assignment, is

realized and the update M ← M ′ performed with probability

P
(
M ′ | M, H

)
=

exp

(
− 1

β E(M
′, H )

)
exp

(
− 1

β E(M, H )
)
+ exp

(
− 1

β E(M ′, H )
)

=
exp

(
1

β
(
Hv,u + Hv ′,M (v )

) )
exp

(
1

β
(
Hv,M (v ) + Hv ′,u

) )
+ exp

(
1

β
(
Hv,u + Hv ′,M (v )

) ) . (2)

Once each node has been processed, we let i-th sample be Mi ← M .

�en, we generate a new random permutation of the nodes Vs

and repeat the process until ` samples have been drawn. We call

this method GibbsMatchings.
2

Assuming that each node has c
candidate matches, the worst-case complexity of GibbsMatchings

is O(`c |Vs |).
Volkovs and Zemel [38] note that Gibbs sampling is o�en found

to mix slowly and get trapped in local modes. In our case, such slow

mixing implies that we will end up exploring only the areas around

the maximum weight matching, which is the starting point of the

sampling. However, even if this happens, we do not expect it to

be a problem as we indeed are interested in sampling high-quality

matchings close to the optimal solution.
3

Top-`maximum-weightmatchings: To compute the top-` max-

imum-weight matchings M` , we use an algorithm invented by

Murty [29] in 1968. �is algorithm �rst computes the best maximum-

weight matching in H , then splits the problem into O(n) smaller

matching problems and reconstructs the second best matching

based on the solutions of the smaller problems. �e process is re-

peated until ` matchings have been discovered, and in total, the

algorithm has a running time of O(`n4), wheren is the total number

of nodes in the graph, i.e., in our case n = max{|Vs |, |Vt |}. Using a

modi�cation by Miller et al. [28], the algorithm runs in time O(`n3).

4.4 �antifying certainty and identifying the
node to query

Using uncertainty to determine which data points should be labeled

is a standard active-learning strategy [33]. �e idea is to select for

labeling the data points for which we are the least certain as to what

the correct output should be.

A natural approach for quantifying the uncertainty of a match

M(v) of node v ∈ Vs is to consider the marginal distribution

P (M(v) = u | H ), where u ∈ Vt . Given the set of sampled match-

ingsM` , the marginal distribution can be obtained simply by com-

puting the fraction of samples for which node v is matched to u.

We then de�ne the certainty of node v as

Cert(v) = max

u ∈Cv
P (M(v) = u | H ) . (3)

�e intuition for Equation (3) is that when a node v is matched

to the same node u in most of the matchings inM` , then there

is li�le uncertainty; based on the evidence in the set of sampled

matchingsM` , u is a good match for v and no extra information

will be gained by querying v . On the other hand, if the evidence

inM` is inconclusive with respect to the best match for v , then v
should be queried. Accordingly, the proposed strategy is to query

the node v̂ with the least certainty, i.e.,

v̂ = argminv ∈Vs Cert(v). (4)

To obtain further intuition for the proposed method, consider

again the example in Figure 1. �e bipartite graph H for this exam-

ple is shown on the le� in Figure 2.

2
A limitation of this swap-based approach is that if the problem at hand has nodes

with partially overlapping sets of candidate matches, there will be some states that are

unreachable by the Markov chain (i.e. the chain is non-ergodic).

3
We also tested the sequential matching sampler proposed by Volkovs and Zemel [38]

which outperformed a Gibbs sampler in their experiments. However, in our case, this

approach su�ered from extremely low acceptance rates, even a�er adjusting parameter

ρ [38]. �is might be related to the distribution of the weights in H or to the small

sizes of the graphs studied in [38].
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Figure 2: �e instance of the network-alignment problem in Figure 1 is transformed to an instance of a maximum-weight
matching problem. Computing the setM` of ` = 5 matchings helps to quantify the uncertainty of a node in network align-
ment.

Now assume that we draw a sample of ` matchings in this bipar-

tite graph. A sample of �ve matchings is shown in Figure 2. For

each node v ∈ Vs we can compute the distribution of the nodes in

Vt that v is matched to in these �ve matchings. A node with high

uncertainty is a node that is matched to many di�erent nodes in

Vt and the distribution of matches is well-balanced. In the exam-

ple of Figure 2, the distribution of matchings for nodes A, B, and

C is {A1 : 40%, A2 : 40%, A3 : 20%}, {B1 : 80%, B2 : 20%}, and

{C1 : 40%, C2 : 60%}, respectively. From these distributions one

can argue that node A has the highest uncertainty.

An alternative measure for the certainty of a node would be to

study entropy, which is commonly used in active learning [31, 34].

However, in our experiments we found that Equation (3) consis-

tently outperformed a method which de�ned certainty as the nega-

tive entropy of the marginal distribution. �us we do not report

experimental results using the entropy-based method.

A limitation of Equation (3) is that it measures certainty only

locally and thus it does not capture the e�ect that knowing the

matching for a given node v would have on the remaining align-

ment. �erefore, we consider also another alternative query strat-

egy which queries the node v̂ such that once v̂ is queried and its

match is known, the expected certainty of the remaining nodes is

maximized. �at is,

v̂ = arg max

v ∈Vs

∑
u ∈Cv

©«P (M(v) = u | H )
∑

v ′∈Vs \v
Cert(v ′)ª®¬ . (5)

�is approach is inspired by previous works in sensor placement [19,

20] and active learning [25]. As pointed out by the previous works,

a limitation of this approach is its high computational complexity,

which in our case is given by O(c2 |Vs |2), assuming that each node

has c candidate matches. In our initial experiments, it performed

similarly to the simpler query strategy given in Equation (4), which

is why we only consider the la�er herea�er.

4.5 Batch querying
Instead of �nding the best query to ask at every iteration of Algo-

rithm 1 we can adopt a “batch” approach, where in each iteration

we identify a batch of queries to ask — the ones that correspond to

the nodes with the smallest Cert values. When considering batches

of size k ′ < k , where k is the total number of queries to be made,

we can achieve a speedup of the order d kk ′ e.
We can readily employ all the query strategies studied in this

paper to query in batches. However, these strategies might yield

nodes that strongly depend on each other (that is, if we knew the

alignment for one node, we could easily align another node). �us,

developing more sophisticated methods for batch querying remains

an interesting avenue for future research.

5 EXPERIMENTAL EVALUATION
We evaluate a number of di�erent network-alignment query strate-

gies on networks where the correct alignment is known. Our

methodology is as follows: First, we solve the network-alignment

problem with a non-active alignment method and report the align-

ment accuracy, that is, the fraction of correctly aligned nodes. �en

we start simulating the oracle queries by �xing the nodes to their

correct matches. A�er each query we solve the network-alignment

problem given the current correct matches and report the align-

ment accuracy on the unqueried nodes. �is process is repeated

for each query strategy separately with the same initial graphs. A

good strategy should use as few queries as possible to reach the

desired alignment accuracy.

As mentioned earlier, the query strategies discussed in this pa-

per can be applied on top of any (non-active) network-alignment

method that results in solving a bipartite-matching problem. In the

experiments, we employ the query strategies on top of two state-of-

the-art alignment methods, Natalie [12, 17] and NetAlignMP++
[3] (see Section 4.2 for a brief discussion). �e query strategies

as well as the non-active network alignment methods used in the

experiments support leaving nodes unmatched, but in our experi-

ments, there is always a match for each node of the source graph.

Next we describe our datasets and present an empirical compari-

son between GibbsMatchings, TopMatchings, and four baseline

query strategies.

5.1 Datasets
We use three types of datasets. In all datasets, there is a su�cient

degree of ambiguity in the node a�ributes so that for each node in

one graph there are several candidate matches in the other graph.

Furthermore, the edges of the graphs may have been corrupted.
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Preferential-attachment graphs: We generate a network using

the preferential-a�achment model [2], which captures some of the

key characteristics of social networks and has been previously used

to study network-alignment methods [18]. �e network consists of

1 000 nodes and 2 edges per new node. For each node, we sample a

label from a set of 33 unique labels and treat the labels as a�ributes

so that the similarity between two nodes is set to 1 if their labels are

the same and 0 otherwise. Only the nodes with the same label are

considered candidate matches, resulting in 30 candidate matches

per node on average.

We make two copies of the network and in each copy we inde-

pendently corrupt the edges to further complicate the alignment

task. We �rst discard 60 % of the graph edges chosen at random

and then add 50 % more edges again selected at random.

Social networks: We use the the multiplex dataset from Aarhus

University [26], which contains �ve networks between the employ-

ees of the Department of Computer Science. We select two of these

layers, the Facebook and the lunch networks, and try to align the

former to the la�er. Since the dataset only contains anonymized

user identi�ers, we again sample a label for each node so that on

average there are three people with the same label. �e lunch net-

work contains 60 people, whereas the Facebook network covers

only a subset of 32 of them. While this dataset is small, it makes an

interesting case study since it contains two very di�erent types of

real-world networks and the correct alignment is known.

Family trees: Aligning family trees is an import problem encoun-

tered in various online genealogy services where di�erent people

provide family tree fragments, which then, ideally, get merged into

a single large family tree. We have obtained a family tree
4

con-

taining 64 208 people constructed by an individual genealogical

researcher. We sample a subgraph of this network by randomly

picking a seed person and doing a random walk until 1 000 distinct

people have been discovered.

For each person we only consider the �rst name, last name, and

birth year. Birth year is corrupted by rounding it to the nearest ten.

Some of the �rst and last names are randomly replaced by their

alternative spellings based on a list of common name variations.

For example, the name Felix Ahlrooth might get replaced by Feeliks
Alroot. Such name variations are frequently encountered in histor-

ical documents used in genealogical research. From both graphs

independently, we discard 50% of the edges at random.

�e task is to align the subgraph into the larger graph. When

selecting candidate entities for each individual in the subgraph, we

�nd people from the larger graph born in the same decade and

select four of them with the most similar names in addition to the

groundtruth match. Name similarity is computed as the average

Jaro-Winkler similarity [39] between the �rst names and between

the last names.
5

5.2 Baseline query strategies
We compare the performance of the sampling-based query strate-

gies to four baseline strategies.

4
Note that in the graph-theoretic sense family trees are not trees since they contain

cycles such as Mother–FirstChild–Father–SecondChild–Mother.
5
�e Jaro-Winkler similarity is a popular choice for de-duplicating name records.

Margin: �erying data samples with a small score di�erence (mar-
gin) between the two most probable labels is a common approach

in active learning [33]. In the context of active network alignment,

this method has been previously used by Cortés and Serratosa [10].

�us, given the bipartite graph H , Margin computes Cert(v)
for every v ∈ Vs by �rst �nding the two edges incident to v with

the largest weights w1(v) and w2(v) in H . �en the node is scored

according to

Cert(v) = w1(v) −w2(v).
Intuitively, the larger the di�erence between w1(v) and w2(v), the

less uncertainty there is with respect to the best match for node v .

lccl: �e Least Con�dent given the Current Labelling query strategy

ranks nodes according to

Cert(v) = Hv,M (v),

where M is the current matching (the maximum-weight matching

in H ) and Hv,M (v) is the weight between node v and its current

match. �is method was reported to yield the highest precision of

the four uncertainty sampling based methods studied by Cortés

and Serratosa [10].

Betweenness: �is method queries a previously unqueried node

with the highest betweenness centrality in Gs . �e method has

been previously used by Macskassy [25].

Random: �is method queries nodes from Vs in a random order.

5.3 �ery strategy comparison
Here we perform an empirical comparison of the di�erent query

strategies. For each dataset, we run a minimum of 30 random ini-

tializations of the input graphs and average the results; for the

preferential-a�achment graphs, we generate a new pair of input

graphs at each initialization, for social networks, we sample new

node labelings and for family trees a new subgraph at each initial-

ization.

Adjusting hyperparameters: �e number of matchings ` in Top-

Matchings is set to 30. We also tried larger values up to 3000

but this did not seem to have a signi�cant e�ect on the results. In

GibbsMatchings, we set the number of samples ` to 3000. Addi-

tionally, we have to choose the value of the temperature parameter

β . If the value is set too high, the distribution becomes close to a

uniform distribution, whereas if it is set too low, the distribution

becomes very concentrated and the swaps to a lower energy state

will always fail. �erefore, we �rst normalize the bipartite graph H
by dividing its values with the di�erence of the average minimum

and maximum value of the di�erent rows of H . �en we optimize

β using a separate training dataset. �is dataset is generated using

the preferential-a�achment model, as described in Section 5.1 but

with only 50 nodes per graph and 5 unique labels. Among the

values we tried, {0.001, 0.01, 0.1, 1}, we found β = 0.1 to produce

the most accurate predictions for the training data, and thus we �x

this value for the rest of the experiments.

Results: �e alignment accuracies are shown in Figure 3. On the

x-axis, we have the number of queried nodes and on the y-axis, the

alignment accuracy for the unqueried nodes, that is, the fraction of

correctly aligned unqueried nodes.

In the top row of Figure 3, we see that by querying the 400 best

nodes according to GibbsMatchings, TopMatchings, or lccl, the
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Figure 3: Alignment accuracy of the unqueried nodes for three datasets: preferential attachment graphs (top), social networks
(middle), and family trees (bo�om). In most cases, the proposed methods (GibbsMatchings and TopMatchings) achieve a high
accuracy with fewer queries than the four baseline methods. Furthermore, the proposed active-querying strategies clearly
improve the initial solution obtained by a non-active alignment method.
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remaining 600 nodes get correctly aligned when using Natalie,

whereas the other query strategies require at least 800 queries for ob-

taining a perfect alignment. For social networks (Figure 3; middle)

Margin clearly outperforms lccl, while GibbsMatchings and Top-

Matchings outperform both of them except for when querying 26

nodes or more and using TopMatchings with NetAlignMP++. Fi-

nally, in family trees (Figure 3; bo�om), GibbsMatchings and Top-

Matchings consistently outperform the other methods when using

Natalie. With NetAlignMP++, lccl and Margin outperform the

sampling methods a�er querying half of the nodes, and in contrast

to the other experiments, GibbsMatchings performs clearly worse

than TopMatchings within the �rst half of the queries. To under-

stand this di�erence be�er, we ran GibbsMatchings with di�erent

temperatures and noticed that with β = 0.001, GibbsMatchings

obtains a comparable performance with TopMatchings. �is sug-

gests that the optimal β value is sometimes problem dependent.

A surprising observation is that in most cases Betweenness is

outperformed even by random querying. �is is probably explained

by the fact that Betweenness queries central nodes that have

many neighbors and are thus less uncertain since the neighbors

help inferring their correct alignment.

We conclude that the best overall performance is obtained us-

ing the GibbsMatchings and TopMatchings methods; lccl and

Margin are both competitive baselines but in some cases they

yield more than 15 percentage point lower accuracies, whereas the

sampling methods perform consistently well.

5.4 Batch querying and scalability
When aligning large networks with the help of human experts,

ge�ing the responses from the humans easily becomes the bo�le-

neck of the algorithm. To circumvent this problem, we can query

batches of nodes as discussed in Section 4.5. To study the e�ect of

batch querying on GibbsMatchings, we run an experiment on the

preferential-a�achment graphs and vary the batch size. Figure 4

shows the e�ect of the batch size on the alignment accuracy. With

a batch size of 10, the accuracy is hardly a�ected, and even when

batch size is increased to 100 nodes, the accuracy decreases by no

more than 3.5%. �is shows that we can obtain accurate network

alignments even when querying the experts in parallel.

Another potential bo�leneck is computing the nodes to query.

Table 1 lists the running times for computing a query node us-

ing TopMatchings and GibbsMatchings combined with Natalie,

when aligning two preferential-a�achment graphs with a varying

number of nodes. �e number of matchings is set to ` = 30 with

both methods (note that in the main experiments, we used 3 000

samples with GibbsMatchings). With networks of up to 1 000

nodes, TopMatchings is not yet a signi�cant bo�leneck but when

the number of nodes becomes 10 000, TopMatchings takes already

2.6 hours.
6
GibbsMatchings, on the other hand, scales well so

that and even for graphs with 100 000 nodes it only takes 10 min-

utes to sample 30 matchings. Furthermore, GibbsMatchings can

be parallelized in a straightforward manner by running multiple

independent Markov chains simultaneously.

6
We use the original algorithm proposed by Murty [29] for TopMatchings instead

of the optimization by Miller et al. [28]. However, instead of the standard Hungarian

algorithm, we employ a bipartite matching solver optimized for sparse graphs, available

at: h�ps://www.cs.purdue.edu/homes/dgleich/codes/netalign/

0 200 400 600 800 1000

# of queried nodes

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy
 (

u
n
q
u
er

ie
d
 n

o
d
es

)

GibbsMatchings

Batch size 10

Batch size 50

Batch size 100

Batch size 200

Batch size 300

Figure 4: �e e�ect of querying nodes in batches to the over-
all alignment accuracy.

Table 1: Running times for the proposed querymethods and
for the network alignment method Natalie.

Number of

nodes

TopMatchings

query time

GibbsMatchings

query time

Alignment

time

100 1.2 sec 0.03 sec 3.9 sec

1 000 21.7 sec 0.13 sec 11.0 sec

10 000 9240.5 sec 5.10 sec 48.1 sec

100 000 – 621.90 sec 372.9 sec

Finally, we also discovered that Natalie can be optimized when

employing it multiple times for a sequence of similar problems.

More speci�cally, a�er we have queried a node and �xed its align-

ment, otherwise keeping the problem unaltered, we can leverage

the solution of the previous problem for solving the current prob-

lem. �is is achieved by initializing the Lagrangian multipliers

corresponding to the relaxed constraints by the optimal values of

the multipliers in the previous run of Natalie. In our initial experi-

ments, this strategy provided speed ups of more than 60% for the

convergence of the subgradient optimization. However, since Na-

talie is typically not the bo�leneck of the proposed active network

alignment approach, we have omi�ed these results.

6 CONCLUSIONS
In this paper we formalized an active-learning framework, which

allows us to incorporate human feedback into the network align-

ment problem (also known as graph matching). In this framework,

we obtain human feedback by asking relative queries to make in-

teraction with experts easier, whereas most of the existing works

on active network alignment rely on absolute queries. Moreover,

we develop a scheme for selecting which nodes to obtain human

feedback for. Our approach relies on sampling a set of matchings

in a transformed bipartite graph, and quantifying the certainty of

each node using the marginal distribution of the node. We study

two alternative methods for sampling matchings, GibbsMatchings,

where matchings are sampled according to their score, and Top-

Matchings, where the top-`matchings are taken in the sample. �e

9
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two proposed methods are shown to outperform several previously-

proposed baseline methods, while o�ering a robustness-scalability

trade-o�.

�is study opens many possibilities for future work. First, sam-

ples of matchings could be used for not only relative but also for

absolute queries. It would be interesting to perform an experimental

comparison between the two query strategies (absolute vs. relative)

but in order to quantitatively compare their e�ectiveness, we would

need to develop a model to compare the cognitive load induced by

the di�erent type of human expert queries. Second, in this work

we assume the oracle to always provide the correct alignment for a

node but it would be useful to study how the results change given

an imperfect oracle. �ird, it would be useful to develop methods

for tuning the temperature parameter β in GibbsMatchings so

that GibbsMatchings would generalize be�er to di�erent types

of networks. One possibility would be to compute the maximum

likelihood estimate for β based on the results of the previous oracle

queries and adaptively update the estimate when new oracle results

are received.
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[22] Oleksii Kuchaiev and Nataša Pržulj. 2011. Integrative network alignment reveals

large regions of global network similarity in yeast and human. Bioinformatics
27, 10 (2011), 1390–1396.

[23] Donald Laming. 2003. Human judgment: the eye of the beholder. Cengage Learning

EMEA.

[24] Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and Bonnie Berger.

2009. IsoRankN: spectral methods for global alignment of multiple protein

networks. Bioinformatics 25, 12 (2009), i253–i258.

[25] Sofus A Macskassy. 2009. Using graph-based metrics with empirical risk mini-

mization to speed up active learning on networked data. In KDD.

[26] Ma�eo Magnani, Barbora Micenkova, and Luca Rossi. 2013. Combinatorial

analysis of multiple networks. arXiv:1303.4986 (2013).
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[30] Nataša Pržulj. 2007. Biological network comparison using graphlet degree

distribution. Bioinformatics 23, 2 (2007), e177–e183.

[31] Nicholas Roy and Andrew McCallum. 2001. Toward optimal active learning

through monte carlo estimation of error reduction. In ICML.

[32] Cristina Sarasua, Elena Simperl, and Natalya F Noy. 2012. Crowdmap: Crowd-

sourcing ontology alignment with microtasks. In ISWC.

[33] Burr Se�les. 2010. Active Learning Literature Survey. Technical Report. University

of Wisconsin–Madison.

[34] Burr Se�les and Mark Craven. 2008. An analysis of active learning strategies for

sequence labeling tasks. In EMNLP.

[35] Feng Shi, Juanzi Li, Jie Tang, Guotong Xie, and Hanyu Li. 2009. Actively Learning

Ontology Matching via User Interaction. In ISWC.
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