
Boston University

OpenBU http://open.bu.edu

BU Open Access Articles BU Open Access Articles

2017-06-28

WCET derivation under single core

equivalence with explicit memory budget assignment

R. Mancuso, R. Pellizzoni, N. Tokcan, M. Caccamo. 2017. "WCET Derivation Under Single

Core Equivalence With Explicit Memory Budget Assignment." 29th Euromicro Conference on

Real-Time Systems (ECRTS 2017). Dubrovnik, Croatia, 2017-06-27 - 2017-06-30. https://doi.org/10.4230/LIPIcs.ECRTS.2017.3

https://hdl.handle.net/2144/44918

Downloaded from DSpace Repository, DSpace Institution's institutional repository

WCET Derivation Under Single Core Equivalence
With Explicit Memory Budget Assignment∗

Renato Mancuso1, Rodolfo Pellizzoni2, Neriman Tokcan3, and
Marco Caccamo4

1 University of Illinois at Urbana-Champaign, Urbana, IL, USA
rmancus2@illinois.edu

2 University of Waterloo, Waterloo, Canada
rpellizz@uwaterloo.ca

3 University of Illinois at Urbana-Champaign, Urbana, IL, USA
tokcan2@illinois.edu

4 University of Illinois at Urbana-Champaign, Urbana, IL, USA
mcaccamo@illinois.edu

Abstract
In the last decade there has been a steady uptrend in the popularity of embedded multi-core
platforms. This represents a turning point in the theory and implementation of real-time systems.
From a real-time standpoint, however, the extensive sharing of hardware resources (e.g. caches,
DRAM subsystem, I/O channels) represents a major source of unpredictability. Budget-based
memory regulation (throttling) has been extensively studied to enforce a strict partitioning of
the DRAM subsystem’s bandwidth. The common approach to analyze a task under memory
bandwidth regulation is to consider the budget of the core where the task is executing, and
assume the worst-case about the remaining cores’ budgets.

In this work, we propose a novel analysis strategy to derive the WCET of a task under
memory bandwidth regulation that takes into account the exact distribution of memory budgets
to cores. In this sense, the proposed analysis represents a generalization of approaches that con-
sider (i) even budget distribution across cores; and (ii) uneven but unknown (except for the core
under analysis) budget assignment. By exploiting the additional piece of information, we show
that it is possible to derive a more accurate WCET estimation. Our evaluations highlight that
the proposed technique can reduce overestimation by 30% in average, and up to 60%, compared
to the state of the art.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases real-time multicore, WCET, single-core equivalence, DRAM manage-
ment, certification

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.3

1 Introduction

Multi-core system-on-chip (SoC) are mainstream products. In multi-core platforms, applica-
tions can concurrently access shared hardware resources, such as: DRAM, memory bus(es),
shared cache(s), and I/O channels. From a real-time perspective, the extensive sharing of

∗ The material presented in this paper is based upon work supported by the National Science Foundation
(NSF) under grant numbers CNS-1302563 and CNS-1646383, NSERC DG 402369-2011 and CMC
Microsystems. Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the NSF and other sponsors.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Renato Mancuso, Rodolfo Pellizzoni, Neriman Tokcan, and Marco Caccamo;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 3; pp. 3:1–3:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 WCET Derivation Under SCE With Explicit Memory Budget Assignment

hardware resources shakes a fundamental assumption of traditional real-time theory, i.e. that
the composition of individually analyzed real-time tasks could be used to reason about the
system as a whole. Many factors affect the composability of multi-core systems. There is
a large consensus, however, that unregulated contention at the level of memory resources
(caches, buses, DRAM banks) represents a major source of unpredictability. In fact, when
one or more of these resources creates a bottleneck, it causes severe inter-core interference.
When a given shared resource becomes a bottleneck with respect to overall system’s activity,
the worst-case execution time (WCET) of a task on a core can be significantly impacted.
Clearly, without imposing a deterministic regulation strategy to cope with high memory
resource utilization, interference-induced delays can be hard to model, forcing WCET and
schedulability analysis to be more pessimistic.

In recent years, there has been a downtrend in the production and availability of high-
performance single-core chips. On the other hand, avionic and automotive industries possess
a large base of certified software developed for single-core chips. As such, an en-masse
migration of industrial players in the safety-critical systems domain are due to a migration to
multi-core SoCs. Unfortunately, due to inter-core interference, schedulability analysis results
derived for single-core systems cannot be reused when migrating to multi-core platforms. As
a part of our previous work, we proposed Single Core Equivalence technology (SCE) [21].
Under SCE, access to shared memory resources are strictly partitioned using a set of OS-
level techniques. SCE exploits budget-based memory bandwidth regulation to cope with
concurrent activity of tasks on the DRAM subsystem. In our previous work [21, 28], we
considered even memory budget assignment across cores, and proposed an analytic model of
SCE to estimate the WCET(m) of a task under analysis given the knowledge of its behavior
in isolation. In this work, we derive the WCET analysis by making the following extensions:
(i) we relax the assumption that the main memory controller bandwidth is evenly distributed
among the different cores; and (ii) we consider the exact distribution of memory budgets to
cores, and derive a more accurate WCET estimation. Hence, in this paper, we discuss how
to calculate the WCET based on the specific budget assignment Q known at system design
time. Only the m active cores have a non-zero budget assignment in Q. It follows that the
new WCET(Q) implicitly depends on m, but also takes into account the specific setup of a
per-core memory bandwidth regulation mechanism. We detail the derivation of WCET(Q)
for a real-time task given a knowledge of its behavior in isolation. This is the first work to
derive a WCET analysis with uneven and explicitly known memory budget distribution for
tasks that run on top of a performance isolation framework for COTS multi-core systems.
Thereby, this work makes the following contributions:

Analysis of WCET for tasks under budget-based memory bandwidth regulation with
explicit per-core budget assignments;
Extension of response-time analysis to incorporate the new WCET derivation for tasks
that are scheduled synchronously (bound) or asynchronously (unbound) with respect to
the memory regulation period;
Simulation-based evaluation to compare the derived analysis with exact (brute-force)
analysis and state-of-the-art analysis for uneven memory budgets, as proposed in [37].

The rest of the paper is organized as follows. Section 2 provides an overview of the
related work. We first briefly review the key components of the SCE framework in Section 3.
Next, we discuss the system model and assumptions in Section 4. Section 5 details the
proposed WCET(Q) analysis, while scheduling considerations are discussed in Section 6.
Simulation-based evaluation is presented in Section 7. The paper concludes in Section 8.

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:3

2 Related Work

The problem of inter-core interference in multi-core architectures is well known and has
been largely studied in literature. As a result, several different ways of approaching the new
challenges introduced by multi-core platforms have been proposed. Static analysis has been
widely adopted to model the behavior of shared caches in [35, 17, 12] and shared memory
buses [26, 14]. A system-wise static analysis for an abstracted multi-core platform that takes
into account CPU pipelines, a shared cache and a main memory bus has been proposed
in [6], on top of which a unified WCET framework has been formulated [5]. Static analysis
certainly represents a promising approach to the problem of determining the WCET of tasks
in a multi-core system. Nonetheless, at the current level of refinement, strong assumptions
are needed to carry out static analysis, e.g. a LRU cache policy, TDMA-based buses, or the
presence of a fixed workload in the system.

A different approach consists in designing multi- and many-core architectures to implement
deterministic resource sharing schemes to provide better guarantees on the WCET of real-
time tasks. The precision timed (PRET) architecture [9, 4] embeds runtime control and
deadline enforcement at the level of processor instruction set while proposing a set of
hardware modifications to achieve good performance without sacrificing predictability. In
the context of PRET, Reineke et al. proposed a PRET DRAM controller [25] that prevents
contention at the level of memory controller by partitioning the physical address space.
Specific hardware support in the memory subsystem was also proposed in [22] to lower the
pessimism in WCET estimation. Predator, a predictable DRAM controller that internally
implements bandwidth regulators was proposed in [2]. Similarly, predictability is enhanced
in the MERASA project [32] by reducing inter-core interference at the hardware level.

This work targets commercially available systems, and effectively improves the analysis
of a software-based memory bandwidth regulation technique, namely MemGuard [40, 41].
The most related work in this area concerns the design and analysis of protocols for access to
shared (memory) resources. Time division multiple access (TDMA) was proposed in [26] as an
arbitration protocol for shares buses. A timing analysis for TDMA arbitration was presented
in [27]. By using code re-factoring, the PRedictable Execution Model (PREM) [23, 20] allows
high-level co-scheduling of clusters of memory requests and CPU execution. PREM has been
extended to multi-core systems in [36], and a similar model was adopted in [30, 33, 31] in the
context of scratchpad-based platforms. The memory regulation technique (MemGuard) that
we analyze belongs to a class of budget-based memory regulation techniques [39]. The key
insight is that to each task is assigned a server, so that a fraction of the shared resource’s
available bandwidth is reserved. CPU resource sharing under periodic resource reservation
was considered to derive hierarchical scheduling analysis [29, 8].

Our work has a number of similarities with [3], as both propose a way to estimate a
task’s WCET on multi-core platforms with shared DRAM subsystem. Three main differences
however set the works apart. First, in [3] it is assumed that the exact behavior of a task is
known in the form of a trace of executed instructions and memory references. Conversely we
hereby assume that only the number of DRAM memory accesses is known, and then derive
the arrangement of memory accesses and execution that leads to the worst-case. Second, [3]
considers a non-arbitrated DRAM subsystem, while we explicitly account for the effect of
memory bandwidth regulation. Third, unlike [3], we only focus on the problem of extending
the WCET experimentally calculated in isolation (single-core case) to the multi-core case.

The work in [24] introduced a memory server for multicore systems that can provide
better predictability by controlling at a fine granularity internal parameters of the DRAM

ECRTS 2017

3:4 WCET Derivation Under SCE With Explicit Memory Budget Assignment

subsystem. WCET analysis for the considered bandwidth regulation technique was originally
proposed in the context of SCE [21, 28], under the assumption that equal budget is assigned
to each core. Yao et al. in [37] proposed an analysis for MemGuard considering uneven
bandwidth assignment. In [37, 24], however the analysis is carried out assuming that only
the budget of the core under analysis is known, while the budgets assigned to other cores are
not. Conversely, we relax this assumption and show that major improvements in terms of
WCET calculation can be obtained.

3 Background about SCE Components

In this section, we briefly introduce few background concepts about each of the integrated
resource management techniques comprising SCE: Colored Lockdown for shared cache
management; MemGuard for DRAM bandwidth reservation; PALLOC for DRAM bank
partitioning.

3.1 Colored Lockdown – Cache Assignment
SCE leverages Colored Lockdown [19] to mitigate inter-core interference at the cache level by
allocating (locking) application memory areas in last-level cache. Colored Lockdown involves
two main stages: an offline profiling stage; and an online cache allocation stage. During the
offline stage, the task is analyzed to build a profile. The generated profile is effectively a list
of memory pages ranked by access frequency. During the online stage, the most frequently
accessed (hot) pages in the profile, up to a cutoff threshold, are locked in cache. By varying
the cutoff threshold from 0 to the number of entries of the profile1, it is possible to derive
a progressive lockdown curve (PLC) [21]. The PLC plots the WCET of a task as function
of the number of hot memory pages allocated in cache. In other words, if x is the number
of profile pages to allocate for an application, the output of PLC(x) contains two pieces
of information: (1) a corresponding value of WCET C for the task running in isolation
(single-core scenario); and (2) a residual maximum number of cache misses µ, corresponding
to accesses to all those profile pages not allocated in cache. As we show in Section 4, the C
and the µ parameters obtained at this step represent the starting point to derive the value
of WCET under memory bandwidth regulation with m active cores. Finally, note that the
PLC could also be derived using static analysis tools.

3.2 MemGuard – Memory Bandwidth Partitioning
Similarly to shared caches, DRAM memory is one of the main sources of inter-core interference.
To improve isolation, SCE uses MemGuard [40]. The goal of MemGuard is to provide
bandwidth reservation on a per-core basis. MemGuard uses a series of per-core regulators that
are responsible for monitoring and enforcing the memory bandwidth allocation. Each regulator
monitors the amount of DRAM transactions performed by each core (or alternatively, the
number of last-level cache misses) via hardware-specific performance monitoring capabilities.
By considering the worst-case latency Lmax for a single memory request to be serviced, it
is possible to derive a worst-case (guaranteed) bandwidth at which the memory subsystem
can operate. MemGuard operates as follows: it is configured to enforce the bandwidth
assignment at a given period P . Based on Lmax, it is possible to compute a total budget

1 Or up to the maximum number of pages that can be locked in cache.

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:5

in terms of number of memory transactions that can be globally performed during P . This
parameter, namely Q, can be computed as Q = P

Lmax
. From the global budget, per-core

budgets Qi can be assigned arbitrarily, as long as their total does not exceed Qi. At the
beginning of each period, MemGuard configures the hardware performance counters to
trigger an event when any of the cores exceeds its Qi threshold of completed DRAM memory
requests. To enforce the strict bandwidth assignment, upon reception of a budget-exhausted
event, MemGuard idles the associated core. Any idled core resumes its activity at the
beginning of the next replenishment period P . The length of the regulation period P is a
system-wide parameter and should be much smaller than the minimal application task period.
In our current implementation, P = 1 ms, matching also the OS scheduler tick interval.
MemGuard also offers different schemes to share reserved yet unused memory bandwidth
across cores to achieve significant average-case performance improvements. In this paper, we
are only concerned with strict bandwidth assignment, while additional details on bandwidth
reclaiming and sharing mechanisms can be found in [40].

3.3 PALLOC – DRAM Bank Partitioning
The DRAM structure is organized into ranks, banks, rows and columns [13]. Whenever a
given row is accessed in a bank, subsequent accesses on the same row (row-hits) can be
serviced with a small latency. Conversely, if a subsequent access requires data in a different
row (row-miss), a significant increase in the latency is introduced. Different banks of the same
DRAM chip can satisfy requests in parallel [38, 15]. In a multi-core scenario, several cores
can potentially access the same DRAM bank. In this case, (i) the row-miss ratio of a task can
increase as multiple cores access the same bank; and (ii) requests originated by the core under
analysis can be re-ordered after other cores’ requests, introducing additional delay [15, 24].
To mitigate inter-core interference at the level of DRAM banks, private banking can be used.
Under private banking, non overlapping sets of DRAM banks are assigned to different cores.
SCE uses a DRAM bank-aware OS-level memory allocator, namely PALLOC [38], which
allows system designers to assign specific DRAM banks to cores (or applications) and to
enforce private banking. This way, tasks running in parallel do not collide on DRAM banks
and do not suffer inter-core conflicts at this level, as long as there is a sufficient number of
banks to accommodate them. A detailed discussion on how PALLOC works can be found
in [38].

4 System Model and Assumptions

In this section, we discuss the considered system model as well as the assumptions under
which the analysis is performed. Table 1 summarizes the list of parameters that will be used
throughout the paper to calculate the WCET(Q) of a task in a system where m represents
the number of active cores and Q = {Q1, . . . , Qm} represent the budget assignment to the
cores. The budgets in Q are sorted in ascending order. The parameter P represents the
budget replenishment period of MemGuard such that the memory access budget for each core
i will be restored to Qi every P time units. Qi represents the number of memory accesses
that a given core i is allowed to perform within each MemGuard period of length P .

The parameter C captures the WCET of the considered task running in isolation once
the last-level cache assignment for the task has been determined using Colored Lockdown.
Under this scenario, the maximum value of residual cache misses µ can be obtained. The
values of C and µ can be derived by using either static analysis or an experimental approach.
Static analysis can be used whenever a micro-architectural model for the considered platform

ECRTS 2017

3:6 WCET Derivation Under SCE With Explicit Memory Budget Assignment

Table 1 Summary of parameters for SCE response-time analysis.

Param. Interpretation
m Number of active cores in the system
P MemGuard budget replenishment period
C WCET for the considered task in isolation
µ Number of residual misses after last-level cache assignment
E Execution-only time in slots of length Lmax

Lmin Minimum amount of time for a single memory request
Lmax Maximum amount of time for a single memory request
Qi Maximum number of memory requests for core i over P
Q Maximum number of memory requests that can be globally performed in P

is available [7, 1]. On single-core systems, it is common industrial practice to experimentally
derive the value of WCET. Hence, C could be derived by reusing the same practices on a
multi-core platform by idling all but one cores. Existing tools that adopt this approach are
part of the industry practice toward WCET determination on single-core platforms [34, 16].

Prefetchers, branch predictors, and speculative execution units are assumed to be disabled.
Thanks to private banking, the DRAM requests from a core under analysis are never re-
ordered after a group of requests from a different core. Each core is allowed to have more
than one outstanding memory request, and we assume that the DRAM controller globally
implements a round-robin2 scheduling policy. In other words, read (write) memory requests
reach the DRAM controller. Requests are then dispatched to DRAM banks, and their
responses from the banks are forwarded on the bus in a round-robin scheme (single memory
server). We assume that read and write requests are treated equally. We also assume that
the maximum time to complete a memory transaction Lmax is also the maximum delay
introduced by other cores’ individual requests. Note that this is not true in general, as the
latter value can be significantly smaller than Lmax. Albeit significant improvements can
be obtained on the final WCET estimation, assuming a delay value different from Lmax
complicates the mathematical formulation without fundamentally impacting the general
approach. For this reason, we leave this discussion as part of our future work. The best-case
memory access latency is captured by the parameter Lmin. It follows that the time to
perform a single transaction is bounded between Lmin and Lmax.

It is important to distinguish between time spent in memory and time spent for pure
execution on the CPU Ce. For in-order processors, where each memory request is blocking,
there is no overlapping in time between memory and computation. Hence, a safe upper-bound
on Ce can be computed as: Ce = C − µ · Lmin. For out-of-order processors, the overlapping
could range from 0 to µ · Lmax. Hence Ce = C is always a safe upper-bound, but it could
be significantly improved using static analysis to reduce the pessimism on the amount of
computation/memory overlapping. Since the granularity at which we conduct our analysis is
Lmax, we will often consider pure computation time (no memory) in slots of length Lmax.
The resulting slotted computation time E can be derived as E =

⌈
Ce

Lmax

⌉
.

We do not address the problem of contention at the level of shared cache bus and
controller. The cache bus is normally on-chip and features a much higher bandwidth

2 Many modern COTS multi-core chips (e.g. Freescale MPC56xx and MPC57xx chip families) designed
for safety-critical operations typically implement a round-robin policy on the main memory controller
arbiter.

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:7

compared to the main memory bus. Contention at this level has been found to affect some
modern platforms [10]. However, due to its high bandwidth capabilities, cache buses are
normally able to sustain, without hitting the saturation point, the simultaneous activity of
several CPUs. According to our benchmarks, on the Freescale P4080 platform used for our
evaluations, contention at this level produces no visible effects up to 4 active cores and yields
negligible slowdowns with 8 active cores.

Additionally, COTS architectures are often not time-composable between CPU pipeline
and cache hierarchy [18]. This means that under certain circumstances, a local reduction
of execution time (e.g. a cache hit) can produce a global increment in the execution time
and vice versa, determining what is known as timing anomaly. If an experimental approach
is used, the effect of timing anomalies is largely embedded in the experimentally derived
WCET. This is because, thanks to Colored Lockdown, there is no variation in the sets of
accesses that hit/miss in cache. Nonetheless, recent studies [11] suggest that the timing
effect arising from timing anomalies can be statically analyzed and accounted at design time
without significantly pessimistic overestimation.

In this work, we assume that per-core budgets Qi are assigned at design-time to each core
and are thus explicitly known. Moreover, we assume that the total bandwidth assignment
does not exceed the guaranteed bandwidth. In other words, it must hold that:

m∑
i=1

Qi = P

Lmax
. (1)

The analysis performed in the next sections will be done on each core i individually. We will
indicate parameters that are core-specific with the i subscript (e.g. Qi). To avoid overloading
the notation, we will omit any index on per-task parameters (e.g. C, µ).

5 Worst-Case Derivation

In this section, we discuss how WCET derivation can be performed using the assumptions
made in Section 4.

5.1 Memory/CPU Configurations
A distinctive aspect of our analysis is that we explicitly consider the effect that bandwidth
regulation has on the behavior of the cores. For instance, suppose that our core under
analysis (Core 2) has budget Q2 = 2. Now consider a task running on core 2 that wants to
perform 2 memory accesses back-to-back. Now, assume that there is only one more core in
the system (Core 1), with budget Q1 = 1. Thanks to the regulation mechanisms, Core 1 can
interfere with only one of the two memory requests performed by Core 2, because Core 1
will be regulated after interfering once.

In order to study the worst-case execution time of tasks under analysis, it is fundamental
to understand all the possible worst-case memory access patterns within a single MemGuard
period P . Since we consider round-robin arbitration, the possible memory access patterns
within a single regulation period can be derived combining (i) round-robin arbitration of
resources from different cores; and (ii) the effect of regulation. In order to explain how this
can be achieved, let us consider an example setup.

In our example, we consider m = 4 cores and a period of length P = 2 ms. Assuming a
value of Lmax = 0.2 ms, the number of memory transactions that can be performed at the
guaranteed bandwidth within a regulation period is: Q = P

Lmax
= 10. Let us assume that

ECRTS 2017

3:8 WCET Derivation Under SCE With Explicit Memory Budget Assignment

Figure 1 Possible memory access patterns within a regulation period P for Core 4 with budget
assignment Q = {1, 2, 3, 4}.

the bandwidth assignment to cores is the following: Q1 = 1, Q2 = 2, Q3 = 3 and Q4 = 4. In
order to visualize the possible patterns for Core i = 4, consider Figure 1.

In Figure 1a, a generic task running on core 4 only performs execution, hence, it suffers
no interference from other cores. For this reason, the task will execute for an amount of time
that corresponds to the length of 10 memory transactions of length Lmax. In order to carry
out our analysis, we consider time spent for execution (no memory) at a granularity that
is useful for our calculations. For this reason, we consider execution as if it progresses in
slots of length Lmax. In this sense, the pattern in Figure 1a can be interpreted as if the task
under analysis performs 10 execution slots of size Lmax.

In Figure 1b, the task under analysis performs one memory transaction. Since memory
transactions are satisfied following a round-robin policy, in the worst case the task will suffer
interference on that single transaction from all the other cores. The corresponding pattern
consists of 6 execution slots and a single memory transaction. From the point of view of
Core 4 (core under analysis), The rest of the time in P is wasted due to the activity of other
cores (contention).

In Figure 1c, the task under analysis performs 2 memory transactions. However, since
Q1 = 1, Core 1 will only interfere with either the first or the second transaction before
being regulated by MemGuard. Hence, 3 cores will interfere on one memory transaction,
but only 2 cores (Core 2 and 3) will interfere on the other memory transaction. Similarly,
in Figure 1d, the same reasoning applies. Moreover, after the second memory transaction,
Core 2 is regulated as well, leaving only Core 3 to interfere on the third transaction of the core
under analysis. Finally, in Figure 1e, it can be seen that after three memory transactions, all
the cores except the core under analysis are regulated, allowing an interference-free memory
transaction (two consecutive m-slots in the figure). Each of the patterns in Figure 1 captures
a different worst-case given that a task wants to perform a certain number of memory
requests, say M ∈ {0, . . . , Qi} within P . Three observations can be made to clarify why
each pattern captures the worst-case, given that the number M of memory requests to be
performed in a given regulation period is known:
1. each request takes Lmax;
2. unless the other cores are regulated, they always interfere with the memory transactions

of the core under analysis;
3. the amount of execution performed by the core is the minimum under any scenario that

allows M memory requests to be performed within P . Here, the minimum is considered
because the final objective is to maximize the number of periods across which computation
is performed.

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:9

Given a known budget assignment Q that meets the constraint in Equation 1, it is possible
to derive all the possible (worst-case) patterns of memory and computation as in Figure 1.
We refer to such set of possible patterns as memory/computation configurations, or simply
as M/C configurations. A single M/C configuration can be expressed as a pair of the
form 〈M,C〉, where M represents the number of performed memory transactions while C
represents the number of executions slots performed within the considered regulation period.

The set Zi of all the possible M/C configurations for a task running on a given core i can
be constructed as follows. First, we define the cumulative interference operator |Q|h. This
operator considers a given bandwidth-to-core assignment of the form Q = {Q1, . . . , Qm} and
returns the number of cores whose bandwidth assignment is greater or equal than the threshold
h. For instance, consider the example in Figure 1. In this case, |Q|1 = 4, |Q|2 = 3, |Q|3 = 2
and |Q|4 = 1. Next, we construct Zi as follows:

Zi =
Qi−1⋃
h=0
{〈Mh, Ch〉} ∪ {〈Qi, 0〉}, (2)

where Mh = h, C0 = Q and Ch = Q−
∑h
j=1 |Q|j . Hence, the set Z4 derived for the system

presented in Figure 1 will be: Z4 = {〈0, 10〉, 〈1, 6〉, 〈2, 3〉, 〈3, 1〉, 〈4, 0〉}. Note that the quantity
Q− Ch −Mh =

∑h
j=1 |Q|j −Mh captures the maximum interference suffered by a task on

a given pattern with index h in the ordered set Zi. Clearly, the trend of Mh is linear as
one more memory access is considered as the index h increases. Conversely, the trend of Ch
depends on the amount of interference suffered by the core and the regulation, as we discuss
below.

5.2 Objective Formulation
Once the M/C configurations Zi for a given core i are known, they apply to all the tasks
scheduled on the considered core. Next, we reason on a single task’s parameters to formulate
the objective for the worst-case execution time calculation, i.e. WCET(Q). The work in [37]
analyzed the WCET of a task under memory bandwidth regulation by calculating a stall
term to be added to the task WCET obtained in isolation. In this paper, we adopt a different
strategy. Instead of computing a stall term, we derive the maximum number of regulation
periods required to complete a given task. The problem of deriving the worst-case execution
time of a task WCET(Q) can be thought as the problem of finding the longest memory
access pattern, given the parameters Q, E, µ and the index of the considered core i.

From the way they are constructed, M/C configurations are in a discrete domain. How-
ever, the problem of finding the maximum number of regulation periods in the
discrete domain becomes a combinatorial problem. Instead, we reason in a con-
tinuous domain and use Theorem 4 to show that what obtained in the continuous
domain represents an upper-bound on the value of WCET(Q). In other words, by
only reasoning on continuous M/C curves, we show how to calculate an upper bound on
the maximum number of regulation periods through which µ memory requests and E slots
of computation can span.

I Definition 1. We define a sequence of regulation periods as memory access pattern.
A memory access pattern, spanning through L regulation periods, is structured in the
following way: the first L− 1 periods consume memory and computation according to some
〈Mh, Ch〉 ∈ Zi. Each of the L− 1 periods can use a different 〈Mh, Ch〉 element. During the
L-th period, any leftover computation/memory is performed. In fact, for the last period we

ECRTS 2017

3:10 WCET Derivation Under SCE With Explicit Memory Budget Assignment

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Memory Configuration Index

0

2

4

6

8

10
Memory Configurations

C(r)1

C(r)2

C(r)3

C(r)4

M(r)4

Figure 2 Trend of M(r) = r and C(r). Note the convex trend of the connecting line between the
Ch components for C(r)4.

can consider any element in Zi with some Ch and Mh components that are both larger than
the computation and memory leftover, respectively.

I Definition 2. We define the length of a memory access pattern as the number L of
regulation periods that compose the pattern.

The following transformation is used to convert the problem from the discrete domain
into the continuous domain. Specifically, we consider each component of each element of Zi
as a point along a computation consumption curve C(r) and a memory consumption curve
M(r) for Ch and Mh components, respectively, with r ∈ R. For both the curves, the domain
depends on the MemGuard budget assignment for the core under analysis. Specifically,
r ∈ [0, Qi]. Since the memory consumption trend is always linear, M(r) can be simply
defined as the connecting line among Mh components, or simply M(r) = r. Conversely, C(r)
is defined as follows:

C(r) =
{
Cr if 〈Mr, Cr〉 ∈ Zi
Ch + (Ch+1 − Ch)(r − h) if Ch < r < Ch+1 : 〈Mh, Ch〉, 〈Mh+1, Ch+1〉 ∈ Zi

(3)

In other words, C(r) is defined as the connecting line between the components Ch in Zi,
as depicted in Figure 2. In the figure, we consider m = 4 cores and a fixed budget assignment
Q = {1, 2, 3, 4}, and show the resulting C(r) curves for each core, labeled as C(r)1, . . . , C(r)4.
In the figure, only M(r)4 is depicted, since it is similar on all the cores and only varies in
the length of its domain.

Consider C(r)4 and M(r)4 depicted in Figure 2. In this example, the two functions
are piece-wise continuous and convex curves. Note that M(r)i always exhibits a linear
trend, hence it is always convex. C(r)i has a convex trend when we consider the core(s) i
with the highest budget assignment in Q. Highest-budget cores will never suffer regulation.
This sufficient condition can be simply expressed as Qi = max{Q}. If this condition is not
satisfied, C(r) could be still convex. It is the case of C(r)3 in Figure 2. Nonetheless, in
general, this property cannot be assumed if Qi 6= max{Q}. C(r)2 in Figure 2 falls in the

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:11

latter case. If both functions are convex, it means that in a single period, a linear increase in
execution slots results in a more-than-linear decrease in memory requests, and vice-versa.
We first discuss how an upper-bound on the worst-case execution time can be derived in case
of convexity. Next, we discuss how non-convexity can be handled in Section 5.4.

5.3 Max Length for Memory Access Pattern (convex case)

We now focus on identifying the worst-case access pattern under the hypothesis of convex
M/C configurations. Let us now introduce the quantity P (r) as the upper-bound on the
length L of the memory access pattern when performing C(r) slots of computation and
M(r) memory requests per period. P (r, E, µ) is defined according to Lemma 3. Note that
P (r, E, µ) depends on three parameters. Since E and µ are constant for a given task, we
abuse the notation and only denote this function (and successive derivations) as P (r).

I Lemma 3. Consider a point r ∈ [0, Qi] in the domain of continuous M/C curves. When
C(r) slots of computation andM(r) memory transactions are performed during each regulation
period, the resulting length of the memory access pattern is P (r):

P (r) =

P e(r) if E

C(r) <
µ

M(r)

Pm(r) if E
C(r) >

µ
M(r)

max{P e(r), Pm(r)} if E
C(r) = µ

M(r)

(4)

where P e(r) and Pm(r) are defined as follows:

P e(r) =
⌈

E

C(r)

⌉
+
⌈
µ−M(r)

⌈
E
C(r)

⌉
Qi

⌉+
(5a)

Pm(r) =
⌈

µ

M(r)

⌉
+
⌈
E − C(r)

⌈
µ

M(r)
⌉

Q

⌉+
(5b)

and the operator df(x)e+ = max{df(x)e, 0}.

Proof. Let us first focus on the condition between the first two cases. E/C(r) represents
the (decimal) number of regulation periods to complete the amount of computation slots
E. Similarly, µ/M(r) expresses the number of regulation periods to perform all µ memory
transactions. The first case in Equation 4 represents the case in which E computation slots
are completed before µ memory transactions are performed. The second case captures the
opposite case.

Case E/C(r) < µ/M(r): In this case, execution is completed within the first Pinit =
dE/C(r)e regulation periods. After that point, only memory requests are left to be performed.
However, some memory requests have been performed in the initial Pinit periods. This
amount is at mostM(r) ·Pinit. If the quantity µ−M(r) ·Pinit is positive, then this represents
the amount of memory transactions that are left to be performed. Since execution slots
have been completed, the memory transactions after the first Pinit periods will be performed
back-to-back. Since core i under analysis is subject to regulation with budget Qi, it will
take at least Pleft =

⌈
µ−M(r)·Pinit

Qi

⌉
to complete the leftover memory requests (if any) with

budget Qi. Equation 5a is obtained by summing Pinit + Pleft.

ECRTS 2017

3:12 WCET Derivation Under SCE With Explicit Memory Budget Assignment

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Continuous M/C Index (r)

44

46

48

50

52

54

56

58

E
C(r)

<
µ

M(r)
E
C(r)

>
µ

M(r)

Trend of P(r) and P̂(r) functions

P(r)

P̂(r)

Figure 3 Trend of P (r), P̂ (r) for a system with m = 4, Q = {1, 2, 3, 4}, and a task on core i = 4
with parameters E = 200, µ = 100.

Case E/C(r) > µ/M(r): This case is analogous to the first case, by swapping the role of
memory and computation. In fact, in this case Pinit = dµ/M(r)e is the number of periods to
entirely perform µ memory requests at a per-period rate of M(r). The leftover computation
is E − C(r) · Pinit, if this quantity is positive. Once memory has been entirely performed,
the remaining regulation periods are entirely filled with computation since no regulation is
suffered. Hence, Q execution slots per period will be performed after Pinit. The leftover (if
any) computation is completed in Pleft =

⌈
E−C(r)·Pinit

Q

⌉
. The sum of Pinit + Pleft provides

the length of the memory access pattern in this case and is equivalent to Equation 5b.

Case E/C(r) = µ/M(r): Finally, in this point, the value of P (r) is simply the maximum
between Equation 5a and 5b. J

To find an upper-bound on WCET(Q), we first find the value of r that maximizes P (r).
Since C(r) is defined as a piece-wise linear curve, an easy way to reason independently on
each segment and find the value of r on each segment that maximizes the function. In order
to find the maximum value of P (r), we reason on each of the individual segments of the C(r)
curve individually. In practice, this can be significantly optimized by considering that the
changes of slope in C(r) is less than or equal to i− 1. Due to space constraints, we do not
discuss possible optimization. Consider an arbitrary (integer) value of h ∈ {0, . . . , Qi − 1}.
Clearly M(r) = r. We can also write C(r) in the domain r ∈ [h, h+ 1] as:

C(r) = Ch + (Ch+1 − Ch) · (r − h) = βr + γ, (6)

where γ = α− hβ, α = Ch, and β = (Ch+1 − Ch). Note that α, β and γ are all constant in
the considered segment of C(r). Furthermore, note that γ ≥ 0 and β ≤ 0.

Let us focus on the case where the second term of P e(r) and Pm(r) is non-zero. By
expanding Equation 4 in the considered segment, we can rewrite the two terms of P (r),

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:13

i.e. P e(r) and Pm(r), locally as3:

P e(r) =
⌈⌈

E

βr + γ

⌉(
1− r

Qi

)
+ µ

Qi

⌉
(7a)

Pm(r) =
⌈⌈
µ

r

⌉(
1− βr + γ

Q

)
+ E

Q

⌉
(7b)

Furthermore, since it always holds that df(x)e ≤ f(x) + 1, it is possible to upper-bound
each term in P (r) and remove the inner ceiling by considering P̂ e(r) and P̂m(r) defined as
follows:

P̂ e(r) =

⌈

E

βr + γ

⌉
if
⌈

E

C(r)

⌉
>

µ

M(r)⌈(
E

βr + γ
+ 1
)(

1− r

Qi

)
+ µ

Qi

⌉
otherwise

(8a)

P̂m(r) =

⌈
µ

r

⌉
if
⌈

µ

M(r)

⌉
>

E

C(r)⌈(
µ

r
+ 1
)(

1− βr + γ

Q

)
+ E

Q

⌉
otherwise

(8b)

Note that Equation 8a (resp., Equation 8b) has two cases. The first case is used when
the second term of Equation 5a (resp., Equation 5b) is zero; otherwise, the second case is
used with the simplification performed in Equation 7a (resp., Equation 7b) and following
upper-bounding. By using P̂ e(r) and P̂m(r), we define P̂ (r) ≥ P (r) as:

P̂ (r) =

P̂ e(r) if E

βr + γ
<
µ

r

P̂m(r) if E

βr + γ
>
µ

r

max{P̂ e(r), P̂m(r)} if E

βr + γ
= µ

r

(9)

Note that P̂ (r) is a function with one variable (r). Moreover, the value r∗ that maximizes
P̂ (r) can be found by reasoning without the outer ceiling in P̂ e(r) and P̂m(r). Within each
segment, it is possible to find its critical points using the first-derivative test. The first two
terms of Equation 9 are used according to a condition on r that can be rewritten as:

E

βr + γ
<
µ

r
=⇒ r <

µγ

E − µβ
. (10)

The value rsw where the condition in Equation 10 changes, represents a first critical point:

rsw = µγ

E − µβ
. (11)

Whenever Equation 10 is satisfied, the first term of Equation 9 is considered; otherwise
the second term of the equation is used. Let us reason on these two terms of P̂ (r) separately.
For the first term, the values of r that constitute critical points are:

r1,1 = −
√
−EβQi − Eγ + γ

β
; r1,2 =

√
−EβQi − Eγ − γ

β
. (12)

3 We rely on the property that ddxe+ ye = dxe+ dye, with x, y ≥ 0.

ECRTS 2017

3:14 WCET Derivation Under SCE With Explicit Memory Budget Assignment

Note that r1,1 and r1,2 are real numbers only when Eγ ≤ −EβQi. The functions P̂ e(r)
and P̂m(r) have a point where the derivative may not exist in r2 and r3, respectively:

r2 = −γ
β

; r3 =

√
µ(Q− γ)

β
, (13)

under the condition that γ ≥ Q. Finally, the function has a point where the derivative may
not exist in r4 = 0.

Recall that P̂ (r) is defined over the closed interval [h, h + 1], and it has a different
expression as the selected segment h ∈ {0, . . . , Qi − 1} changes. The boundaries of the
interval constitute additional test-points for the maximum. It follows that, for a given
segment h, the maximum L∗h of P (r) can be found as:

L∗h = max
r∈{h,h+1,rsw,r1,1,r1,2,r2,r3,r4}

{P̂ (r)}. (14)

Clearly, the points r1,1, r1,2 and r2 do not need to be evaluated if they do not satisfy
Equation 10, or they lie outside the interval (h, h+ 1); similarly, r3 and r4 do not need to be
tested if they satisfy Equation 10, or they lie outside the range (h, h+ 1). Moreover, r1,1,
r1,2 and/or r3 need to be removed from the set of test-points if they are not real numbers.
Conversely, rsw is always evaluated. Finally, an upper-bound on the global maximum L∗ of
P (r) can be found as follows:

L∗ = max
h∈{0,...,Qi−1}

{L∗h}. (15)

Equation 15 not only provides an upper-bound on the length of the worst-case memory
access pattern in the continuous case; but also the rate r∗ such that the worst-case memory
access pattern can be constructed by a sequence of identical L∗ regulation periods, during
which C(r∗) (resp., M(r∗)) units of computation (resp., memory requests) are performed.
Theorem 4 allows us to use the obtained result in case of memory access patterns where each
regulation period consumes resources according to discrete M/C configurations.

I Theorem 4. Consider a task τ that performs E units of computation and µ memory
transactions. Consider the maximum length L∗d of any memory access pattern of τ constructed
using discrete and convex M/C configurations. An upper bound on L∗d is given by the maximum
length L∗c of a pattern computed using P (r) (see Equation (4)) for a task τ ′ that performs
E +Q units of computation and µ+Qi memory transactions, with continuous and convex
M/C configuration.

Proof. The theorem follows from the fact that C(r) and M(r) are convex curves. Let us
assume that the longest memory access pattern for τ constructed using a sequence of discrete
M/C configurations has length L∗d. Consider the structure of a task that performs E units of
computation and µ memory transactions. It is a sequence of L∗d regulation periods. Let us
use ah (non-negative integers) to count how many times the element 〈Ch,Mh〉 ∈ Zi appears
in the sequence. We have this relation:

E ≤ Etot = a0C0 + . . .+ aQiCQi ≤ E +Q (16a)
µ ≤Mtot = a0M0 + . . .+ aQiMQi ≤ µ+Qi (16b)

where a0 . . . aQi are integer coefficients that represent how many times a certain (discrete)
M/C configuration appears in the pattern. Recall that, by Definition 1, any M/C configuration

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:15

can be considered in the last regulation period, as long as the leftovers in computation and
memory are both equal or smaller than the considered last-period configuration. This choice
does not violate the conditions Etot ≤ E +Q and Mtot ≤ µ+Qi. It follows that:

Qi∑
i=0

ai = L∗d. (17)

Consider a transformation that translates the non-repeating pattern composed by a sequence
of discrete M/C configurations into a repeating pattern with continuous M/C configurations.
In the transformed pattern, in each period we perform C(rc) and M(rc) units of computation
and memory respectively, where rc is selected as follows:

rc =
∑Qi
i=0 ai · i
L∗d

. (18)

Consider the amount of computation performed in each period:

C

(∑Qi
i=0 ai · i
L∗d

)
= C

(Qi∑
i=0

ai · i∑Qi
i=0 ai

)
. (19)

Recall that the definition of a convex function f(x) imposes that:

λi ∈ N s.t.
∑
i

λi = 1 =⇒ f

(∑
i

λixi

)
≤
∑
i

λif(xi). (20)

Further, note that:
Qi∑
i=0

ai∑Qi
i=0 ai

= a0

a0 + . . .+ aQi
+ . . .+ aQi

a0 + . . .+ aQi
= 1. (21)

Since C(r) is convex, it holds that:

C

(Qi∑
i=0

ai · i∑Qi
i=0 ai

)
≤

Qi∑
i=0

ai · C(i)∑Qi
i=0 ai

=⇒ C(rc) ≤
Etot
L∗d

. (22)

From this result, it follows that:

L∗d ≤
Etot
C(rc)

≤ E +Q

C(rc)
, (23)

and, by repeating the convexity considerations, that:

L∗d ≤
Mtot

M(rc)
≤ µ+Qi
M(rc)

. (24)

Recall that P̂ (r) is actually defined with three parameters: P̂ (r, E, µ), and that P̂ (r, E, µ)
can only increase when both the values of E and µ are increased. Take r∗ as the value that
maximizes P̂ (r∗, E +Q,µ+Qi), it must hold that:

L∗c = P̂ (r∗, E +Q,µ+Qi) ≥ P̂ (rc, E +Q,µ+Qi) (25)

Moreover, it follows directly from from Equations 5a and 5b that:

P̂ (rc, E +Q,µ+Qi) ≥
E +Q

C(rc)
if E +Q

C(rc)
<
µ+Qi
M(rc)

(26a)

P̂ (rc, E +Q,µ+Qi) ≥
µ+Qi
M(rc)

if E +Q

C(rc)
>
µ+Qi
M(rc)

(26b)

ECRTS 2017

3:16 WCET Derivation Under SCE With Explicit Memory Budget Assignment

In case of equality (E + Q)/C(rc) = (µ + Qi)/M(rc), Equations 26a and 26 are both
satisfied. Due to what expressed in Equations 23-26, it follows that L∗c ≥ L∗d, which proves
the theorem. J

The following corollary can be used to formalize the calculation of WCET(Q) based on
Theorem 4.

I Corollary 5. Consider a task τ that performs E slots of computations and µ memory
transactions on core i. Then, an upper-bound on WCET(Q) can be computed as:

WCET(Q) = P · P̂ (r∗, E +Q,µ+Qi), (27)

i.e., by finding the value r∗ that maximizes P̂ (r, E +Q,µ+Qi).

Proof. The proof simply follows from Theorem 4. Note that WCET(Q) is expressed in time
by multiplying the maximum number of regulation periods P̂ (r∗, E + Q,µ + Qi) by the
length of each period P . J

5.4 Max Length for Memory Access Pattern (non-convex case)
Whenever the core under analysis is not one of the cores with the highest memory budget
assignment, i.e. when Qi 6= max{Q}, the curve C(r) may not be convex, but it will be convex
until the (Qi − 1)-th component in Zi.

In order to upper-bound the WCET(Q) in this case, we use the following observation.
Suppose that the length of the worst-case (longest) memory access pattern is L∗. In this
pattern, L∗ − k are periods without regulation, where, in each period, computation and
memory is consumed according to an element in Zi \ 〈0, Qi〉. The remaining k periods are
regulation-only periods, where 0 computation slots are performed and Qi memory transactions
are performed, with k varying between 0 and

⌊
µ
Qi

⌋
.

Following this observation, an upper-bound on WCET(Q) can be calculated as:

max
k∈[0,b µQi c]

{P̂ (r∗k, E+Q,µ+Qi−k ·Qi)+k} = max
k∈[0,b µQi c]

{P̂ (r∗k, E+Q,µ+Qi(1−k))+k}, (28)

where r∗k is the value of the variable r that maximizes P̂ (r) when the amount of computation
slots and memory requests to perform is set to E +Q and µ+Qi(1− k), respectively.

6 Schedulability Analysis

Once an upper-bound on WCET(Q) is derived according to what described in Section 5, it
is possible to compute the schedulability of a task-set under fixed-priority scheduling and
SCE resource partitioning. First, let us make explicit the parameters with which WCET(Q)
is invoked, and use the notation WCET(Q, C, µ) to indicate an upper bound on the time to
perform C execution time units and µ memory transactions under the budget assignment
Q. For the purpose of the analysis, we consider a set of implicit-deadline tasks τ1, . . . , τn,
where each task τk is characterized by a period Tk, a WCET in isolation Ck, and a maximum
number of residual last-level cache misses after lockdown µk. We assume that the scheduling
policy is based on tasks’ fixed priority assignment (e.g. Rate Monotonic) upon a partitioned
multi-core system; this is a common practice used in industrial applications. Next, we
consider a level-k busy interval.

We consider two cases: (i) all the tasks’ releases and deadlines are aligned with system’s
tick (inbound case); and (ii) tasks’ releases and deadlines may not be aligned with system’s tick

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:17

(outbound case). In general, since MemGuard regulation period is synchronized with system’s
tick, it is a good design practice to have inbound tasks. This has two main benefits: first,
a tasks is never released when the MemGuard budget has been exhausted by a previously
running task; second, it is possible to derive the response time of tasks by individually
considering their WCET = WCET(Q, Ck, µk). This is because tasks are never preempted
in the middle of a regulation period.

6.1 Analysis of Inbound Tasks
In order to check the schedulability of inbound tasks, it is enough to reuse typical response-
time analysis. Specifically, for a task under analysis τk, it is possible to derive its response-time
by finding the first h such that R(h+1)

k = R
(h)
k or such that R(h)

k > Tk, given that:

R
(0)
k = WCET(Q, Ck, µk) (29a)

R
(h+1)
k = WCET(Q, Ck, µk) +

∑
τj∈hp(τk)

⌈
R

(h)
k

Tj

⌉
·WCET(Q, Ck, µk), (29b)

where hp(τk) represents the set of tasks with priority higher than the task under analysis τk.
Intuitively, if there exist a h such that R(h+1)

k = R
(h)
k and R(h)

k ≤ Tk, the considered task is
schedulable and it is non-schedulable otherwise.

6.2 Analysis of Outbound Tasks
The analysis of outbound tasks is slightly more complicated because tasks can not only be
activated in the middle of a regulation period, but also preempted within a regulation period.
This, in turn, makes the behavior of a task dependent upon other tasks’ memory access
patterns. For this reason, instead of reasoning on tasks as separate entities, it is easier to
consider the overall worst-case memory access pattern of a level-k busy interval as a whole.
When we consider a set of outbound tasks, we can effectively merge the execution (and
memory accesses) of an instance of the task under analysis with all the interfering instances
of higher priority tasks. In this case, R(0)

k and R(h+1)
k can be calculated as follows:

R
(0)
k = WCET(Q, Ck, µk) +Bi. (30a)

R
(h+1)
k = WCET(Q, Chep(τk), µhep(τk)) +Bi, (30b)

where hep(τk) denotes the set of tasks with priority greater than or equal to task τk. The
operators Chep(τk) and µhep(τk) are defined as follows:

Chep(τk) =
∑

τj∈hep(τk)

⌈
R

(h)
k

Tj

⌉
· Cj , (31a)

µhep(τk) =
∑

τj∈hep(τk)

⌈
R

(h)
k

Tj

⌉
· µj . (31b)

Finally, the term Bi is a blocking term that represents the maximum amount of time that a
task must wait if it is activated immediately after the MemGuard budget has been exhausted
by a previously running task. Since core i is stalled once it has consumed its allocated budget
Qi. The term Bi can be calculated as: Bi = P −Qi · Lmin.

ECRTS 2017

3:18 WCET Derivation Under SCE With Explicit Memory Budget Assignment

7 Evaluation

In this section, we evaluate the pessimism of the derived WCET(Q) bound compared to the
exact worst-case memory access pattern found in the discrete case. We also compare the
quality of the derived bound with respect to the analysis in [37].

7.1 Budget generation
A key component of our evaluation is the distribution of budgets to cores. The proposed
analysis, in fact, exploits the full knowledge about the assigned budgets to account for
regulation of interfering cores. In fact, if even budgets are assigned to all the cores, no
benefits are observed compared to the method proposed in [21] and [37]. Thus, we introduce
a metric of variance of the budget assignment, namely δ. Consider a total budget Q. The
distribution of Q to cores follows a linear trend where δ is the slope of the increase. The
total budget assigned to all the cores, however, is always less than or equal to Q. For
instance, consider a system with m = 8 cores and a value of Q = 100. When δ = 0,
the assignment Qδ=0 = {12, 12, 12, 12, 13, 13, 13, 13}. Conversely, for δ = 0.035 we have
Qδ=0.035 = {1, 4, 8, 11, 14, 17, 21, 24}.

7.2 Analysis of Pessimism
To compare the discussed bound with the theoretical optimum, we have implemented a
back-tracking algorithm that uses a brute-force approach to explore all the possible memory
access patterns and to find the maximum. Clearly, the algorithm has a large complexity and
its runtime explodes quickly with realistic system parameters. For this reason, we compare
the proposed analysis and the exact (brute-force) algorithm on system instances with small
parameters. We consider a system with m = 8 cores, with Lmax = 0.1 ms, P = 10 ms, such
that Q = 100. We inspect the system with δ ∈ [0, 0.035], with randomly-distributed values
of E ∈ [1, 110] and µ ∈ [1, 110]. Each sample consists of 100 different task parameters. Each
of the 100 randomly generated tasks is evaluated on all the 8 cores.

Figure 4 depicts the relative overestimation compared to the exact case in the considered
δ range. Given a core and a value of δ, the figure reports the average of the overestimation
percentage between the exact derivation and the proposed analysis. To increase the readability
of the plot, we omit cores 3,4 and 6 that exhibit intermediate trends. Three characteristics
can be noted. First, for low values of δ, tasks behave similarly on all the cores, since budget
is evenly distributed. Second, the overestimation is high, starting at 80% on the left of the
figure. This, however, is an artificial effect because the randomly generated tasks span across
few regulation periods. Unfortunately, performing an evaluation of the brute-force algorithm
on larger task parameters becomes computationally unfeasible. Third, as we move toward the
right of the figure, there is a sharp drop in overestimation for the low-budget cores. This is
because, as less budget is assigned, the length of the task increases; hence the overestimation,
which remains constant, has a proportionally smaller weight on the task length.

To validate the last claim, i.e. that the overestimation added by our analysis is roughly
constant compared to the exact case, consider Figure 5. In this figure, we use the same tasks
generated to plot Figure 4. For each core, the bar at 0 reports the number of tasks with the
exact same length in both the brute-force algorithm and our analysis; the bar at 1 counts the
number of tasks that are longer by 1 regulation period compared to the exact case; and so on.
It can be noted that in all the cases, the overestimation does not exceed 5 regulation periods.
Moreover, especially, when the cores with intermediate budgets are considered, tasks are
mostly overestimated only by 3 regulation periods.

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:19

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Value of δ

0

20

40

60

80

100

120
% of overestimation

Core 1
Core 2
Core 5
Core 7
Core 8

Figure 4 Relative (%) overestimation compared to exact (brute-force) derivation on cores 1, 2, 7
and 8 as a function of δ. Higher y-values correspond to larger overestimation.

7.3 Performance Comparison

In order to understand the benefit of explicitly considering the bandwidth regulation on all
the cores, we compare the proposed approach against the analysis in [37]. Both ours and
the analysis in [37] share many fundamental assumptions about the system model. The
main difference is that the analysis proposed in this work explicitly considers the budget
assignment Q to all the cores. Without this extra piece of information, the analysis in [37] is
necessarily more pessimistic, as the worst-case corresponds to the case where the remaining
budget is evenly distributed among the remaining cores.

The goal of this experiment is to quantify the gain in terms of WCET derivation. Since the
complexity of our analysis is pseudo-polynomial with respect to budgets and task parameters,
in this experiment we use system and task parameters that are reflective of a realistic use-case.
These parameters are aligned with the evaluation conducted in [21]. We consider m = 8,
Lmax = 4.96×10−8 s, P = 1 ms, such that Q = 20161. We inspect the system with δ ∈ [1, 7],
with randomly-distributed values of E ∈ [1, 300000] and µ ∈ [1, 200000]. Once again, each
sample consists of 100 different task parameters. Each of the 100 randomly generated tasks
is evaluated on all the 8 cores.

The results for this experiment are reported in Figure 6. Three main aspects are relevant
to mention. First, for highly differentiated budget assignments (larger values of δ), the
proposed algorithm outperforms the analysis in [37], with a reduction of about 30% (left –
average), and up to 60% (right – max) in the overestimation of the task’s WCET. Second, for
lower values of δ, the two algorithms behave almost identically. Third, a slight performance
degradation (around 1%) can be observed for high values of δ and low-budget cores. This
arises from the fact that in order to upper-bound the WCET, an additional Q and Qi units
of computation and memory, respectively, are added to the task (see Corollary 5). We also
believe that different budget assignment schemes, e.g. with exponential increase as opposed
to linear, may significantly affect the analysis performances.

ECRTS 2017

3:20 WCET Derivation Under SCE With Explicit Memory Budget Assignment

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Core 1

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Core 2

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Core 3

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Core 4

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Core 5

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Core 6

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Core 7

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Core 8

Absolute Overestimation

Number of additional regulation periods

N
u
m

b
e
r

o
f

sa
m

p
le

s
(x

1
0
0
0
)

Figure 5 Absolute overestimation, in terms of additional regulation periods, compared to exact
(brute-force) derivation on cores 1 to 8.

1 2 3 4 5 6
Value of δ

5

0

5

10

15

20

25

30

35
% of bound improvement (average)

Core 0
Core 3
Core 4
Core 5
Core 6
Core 7

1 2 3 4 5 6
Value of δ

0

10

20

30

40

50

60

70
% of bound improvement (max)

Figure 6 Percentage of WCET improvement over analysis proposed in [37] as a function of δ on
cores 1 to 8. Higher y-values means better improvements.

8 Conclusion and Future Work

In this work, we discussed an improved analysis strategy to derive the WCET of a task under
memory bandwidth by exploiting exact knowledge of budget-to-core assignments. In this way,
we show that it is possible to derive a more accurate WCET estimation, with performance
gains that go from 30% in average up to 60%, compared to the state of the art.

As a future work, we plan to validate our analysis on a commercial multi-core platform,
and to study how different budget assignment strategies affect the performance of the WCET
estimation. Additionally, we plan to extend this work with more in-depth considerations
about algorithmic complexity as well as possible optimizations.

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:21

References
1 AbsInt. aiT worst-case execution time analyzers, 2014. URL: http://www.absint.com/

ait/.
2 B. Akesson, K. Goossens, and M. Ringhofer. Predator: A predictable SDRAM memory con-

troller. In Proceedings of the 5th IEEE/ACM International Conference on Hardware/Soft-
ware Codesign and System Synthesis, CODES+ISSS’07, pages 251–256, New York, NY,
USA, 2007. ACM. doi:10.1145/1289816.1289877.

3 S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke. A generic and
compositional framework for multicore response time analysis. In Proceedings of the 23rd
International Conference on Real Time and Networks Systems, RTNS’15, pages 129–138,
New York, NY, USA, 2015. ACM. doi:10.1145/2834848.2834862.

4 D. Bui, E.A. Lee, I. Liu, H. Patel, and J. Reineke. Temporal isolation on multiprocessing
architectures. In Proceedings of the 48th Design Automation Conference, DAC’11, pages
274–279, New York, NY, USA, 2011. ACM. doi:10.1145/2024724.2024787.

5 S. Chattopadhyay, C. L. Kee, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk. A
unified wcet analysis framework for multi-core platforms. ACM Trans. Embed. Comput.
Syst., 13(4s):124:1–124:29, April 2014. doi:10.1145/2584654.

6 S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling shared cache and bus in
multi-cores for timing analysis. In Proceedings of the 13th International Workshop on
Software & Compilers for Embedded Systems, SCOPES’10, pages 6:1–6:10, New York, NY,
USA, 2010. ACM. doi:10.1145/1811212.1811220.

7 P. Cousot. Abstract interpretation based formal methods and future challenges. In Inform-
atics – 10 Years Back. 10 Years Ahead., volume 2000 of Lecture Notes in Computer Science,
pages 138–156, London, UK, UK, 2001. Springer-Verlag. doi:10.1007/3-540-44577-3_
10.

8 R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority pre-emptive
systems. In 2006 27th IEEE International Real-Time Systems Symposium (RTSS’06),
RTSS’06, pages 257–270, Washington, DC, USA, 2006. IEEE Computer Society. doi:
10.1109/RTSS.2006.42.

9 S.A. Edwards and E.A. Lee. The case for the precision timed (PRET) machine. In 44th
Annual Design Automation Conference, DAC’07, pages 264–265, New York, NY, USA, 2007.
ACM. doi:10.1145/1278480.1278545.

10 G. Gracioli and A. Fröhlich. On the influence of shared memory contention in real-
time multicore applications. In Proceedings of the IV Brazilian Symposium on Comput-
ing Systems Engineering (SBESC), Washington, DC, USA, 2014. IEEE Computer Society.
doi:10.1109/SBESC.2014.8.

11 S. Hahn, M. Jacobs, and J. Reineke. Enabling compositionality for multicore tim-
ing analysis. In Proceedings of the 24th International Conference on Real-Time Net-
works and Systems, RTNS’16, pages 299–308, New York, NY, USA, 2016. ACM. doi:
10.1145/2997465.2997471.

12 D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-core
processors with shared instruction caches. In Proceedings of the 2009 30th IEEE Real-Time
Systems Symposium, RTSS’09, pages 68–77, Washington, DC, USA, 2009. IEEE Computer
Society. doi:10.1109/RTSS.2009.34.

13 B. Jacob, S. Ng, and D. Wang. Memory systems: cache, DRAM, disk. Morgan Kaufmann,
2007.

14 T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. Bus-aware
multicore wcet analysis through tdma offset bounds. In Real-Time Systems (ECRTS),
2011 23rd Euromicro Conference on, pages 3–12, July 2011. doi:10.1109/ECRTS.2011.9.

ECRTS 2017

http://www.absint.com/ait/
http://www.absint.com/ait/
http://dx.doi.org/10.1145/1289816.1289877
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1145/2024724.2024787
http://dx.doi.org/10.1145/2584654
http://dx.doi.org/10.1145/1811212.1811220
http://dx.doi.org/10.1007/3-540-44577-3_10
http://dx.doi.org/10.1007/3-540-44577-3_10
http://dx.doi.org/10.1109/RTSS.2006.42
http://dx.doi.org/10.1109/RTSS.2006.42
http://dx.doi.org/10.1145/1278480.1278545
http://dx.doi.org/10.1109/SBESC.2014.8
http://dx.doi.org/10.1145/2997465.2997471
http://dx.doi.org/10.1145/2997465.2997471
http://dx.doi.org/10.1109/RTSS.2009.34
http://dx.doi.org/10.1109/ECRTS.2011.9

3:22 WCET Derivation Under SCE With Explicit Memory Budget Assignment

15 H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R.R. Rajkumar. Bounding
and reducing memory interference in COTS-based multi-core systems. Real-Time Systems,
52(3):356–395, 2016. doi:10.1007/s11241-016-9248-1.

16 L. Kosmidis, E. Quiñones, J. Abella, G. Farrall, F. Wartel, and F. J. Cazorla. Containing
timing-related certification cost in automotive systems deploying complex hardware. In
Proceedings of the 51st Annual Design Automation Conference, DAC’14, pages 22:1–22:6,
New York, NY, USA, 2014. ACM. doi:10.1145/2593069.2593112.

17 Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing analysis of con-
current programs running on shared cache multi-cores. Real-Time Systems, 48(6):638–680,
November 2012. doi:10.1007/s11241-012-9160-2.

18 T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled micropro-
cessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium, pages 12–, Wash-
ington, DC, USA, 1999. IEEE Computer Society. doi:10.1109/REAL.1999.818824.

19 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time
cache management framework for multi-core architectures. In Proceedings of the IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), RTAS’13, pages 45–
54, Philadelphia, PA, USA, April 2013. IEEE Computer Society. doi:10.1109/RTAS.2013.
6531078.

20 R. Mancuso, R. Dudko, and M. Caccamo. Light-prem: Automated software refactoring for
predictable execution on cots embedded systems. In Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2014 IEEE 20th International Conference on, pages
1–10, Aug 2014. doi:10.1109/RTCSA.2014.6910515.

21 R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun. WCET(m) estimation in
multi-core systems using single core equivalence. In Real-Time Systems (ECRTS), 2015
27th Euromicro Conference on, pages 174–183, July 2015. doi:10.1109/ECRTS.2015.23.

22 M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero. Hardware Support for
WCET Analysis of Hard Real-time Multicore Systems. SIGARCH Comput. Archit. News,
37(3):57–68, June 2009. doi:10.1145/1555815.1555764.

23 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A
predictable execution model for COTS-based embedded systems. In Proceedings of the
2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
RTAS’11, pages 269–279, Washington, DC, USA, 2011. IEEE Computer Society. doi:
10.1109/RTAS.2011.33.

24 R. Pellizzoni and H. Yun. Memory servers for multicore systems. In 2016 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 1–12, April 2016.

25 J. Reineke, I. Liu, H.D. Patel, S. Kim, and E.A. Lee. PRET DRAM controller:
bank privatization for predictability and temporal isolation. In Proceedings of the sev-
enth IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis, CODES+ISSS’11, pages 99–108, New York, NY, USA, 2011. ACM. doi:
10.1145/2039370.2039388.

26 J. Rosén, A. Andrei, P. Eles, and Zebo Peng. Bus access optimization for predictable imple-
mentation of real-time applications on multiprocessor Systems-on-Chip. In Proceedings of
the 28th IEEE International Real-Time Systems Symposium, RTSS’07, pages 49–60. IEEE
Computer Society, 2007. doi:10.1109/RTSS.2007.13.

27 A. Schranzhofer, J. J. Chen, and L. Thiele. Timing analysis for tdma arbitration in resource
sharing systems. In 2010 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 215–224, April 2010. doi:10.1109/RTAS.2010.24.

28 L. Sha, M. Caccamo, R. Mancuso, J. E. Kim, M.K. Yoon, R. Pellizzoni, H. Yun, R.B.
Kegley, D.R. Perlman, G. Arundale, and R. Bradford. Real-time computing on multicore
processors. Computer, 49(9):69–77, Sept 2016. doi:10.1109/MC.2016.271.

http://dx.doi.org/10.1007/s11241-016-9248-1
http://dx.doi.org/10.1145/2593069.2593112
http://dx.doi.org/10.1007/s11241-012-9160-2
http://dx.doi.org/10.1109/REAL.1999.818824
http://dx.doi.org/10.1109/RTAS.2013.6531078
http://dx.doi.org/10.1109/RTAS.2013.6531078
http://dx.doi.org/10.1109/RTCSA.2014.6910515
http://dx.doi.org/10.1109/ECRTS.2015.23
http://dx.doi.org/10.1145/1555815.1555764
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1145/2039370.2039388
http://dx.doi.org/10.1145/2039370.2039388
http://dx.doi.org/10.1109/RTSS.2007.13
http://dx.doi.org/10.1109/RTAS.2010.24
http://dx.doi.org/10.1109/MC.2016.271

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo 3:23

29 I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees. In
RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003, pages 2–13, Dec 2003. doi:
10.1109/REAL.2003.1253249.

30 R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Cac-
camo. A real-time scratchpad-centric OS for multi-core embedded systems. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2016 IEEE 22th, April
2016. doi:10.1109/RTAS.2016.7461321.

31 R. Tabish, R. Mancuso, S. Wasly, S. S. Phatak, R. Pellizzoni, and M. Caccamo. A reliable
and predictable scratchpad-centric OS for multi-core embedded systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2017 IEEE 23th, April 2017.

32 T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quinones,
M. Gerdes, M. Paolieri, J. Wolf, H. Casse, S. Uhrig, I. Guliashvili, M. Houston, F. Kluge,
S. Metzlaff, and J. Mische. MERASA: Multicore execution of hard real-time applications
supporting analyzability. IEEE Micro, 30(5):66–75, 2010. doi:10.1109/MM.2010.78.

33 S. Wasly and R. Pellizzoni. A dynamic scratchpad memory unit for predictable real-time
embedded systems. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on,
pages 183–192. IEEE, 2013. doi:10.1109/ECRTS.2013.28.

34 I. Wenzel, R. Kirner, B. Rieder, and P. Puschner. Measurement-based worst-case execution
time analysis. In Third IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS’05), pages 7–10, May 2005. doi:10.1109/SEUS.2005.12.

35 J. Yan and W. Zhang. WCET analysis for multi-core processors with shared L2 instruction
caches. In Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Applic-
ations Symposium, RTAS’08, pages 80–89, Washington, DC, USA, 2008. IEEE Computer
Society. doi:10.1109/RTAS.2008.6.

36 G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-centric scheduling
for multicore hard real-time systems. Real-Time Systems, 48(6):681–715, November 2012.
doi:10.1007/s11241-012-9158-9.

37 G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha. Schedulability ana-
lysis for memory bandwidth regulated multicore real-time systems. IEEE Transactions on
Computers, 65(2):601–614, February 2016. doi:10.1109/TC.2015.2425874.

38 H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. PALLOC: DRAM Bank-Aware Memory
Allocator for Performance Isolation on Multicore Platforms. In Proceedings of the IEEE Intl.
Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS),
Berlin, Germany, April 2014. doi:10.1109/RTAS.2014.6925999.

39 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control in mul-
tiprocessor for real-time systems with mixed criticality. In Proceedings of the 2012 24th
Euromicro Conference on Real-Time Systems, ECRTS’12, pages 299–308, Washington, DC,
USA, 2012. IEEE Computer Society. doi:10.1109/ECRTS.2012.32.

40 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In Proceedings
of the 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), RTAS’13, pages 55–64. IEEE Computer Society, 2013. doi:10.1109/RTAS.2013.
6531079.

41 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory bandwidth manage-
ment for efficient performance isolation in multi-core platforms. IEEE Transactions on
Computers, 65(2):562–576, February 2016. doi:10.1109/TC.2015.2425889.

ECRTS 2017

http://dx.doi.org/10.1109/REAL.2003.1253249
http://dx.doi.org/10.1109/REAL.2003.1253249
http://dx.doi.org/10.1109/RTAS.2016.7461321
http://dx.doi.org/10.1109/MM.2010.78
http://dx.doi.org/10.1109/ECRTS.2013.28
http://dx.doi.org/10.1109/SEUS.2005.12
http://dx.doi.org/10.1109/RTAS.2008.6
http://dx.doi.org/10.1007/s11241-012-9158-9
http://dx.doi.org/10.1109/TC.2015.2425874
http://dx.doi.org/10.1109/RTAS.2014.6925999
http://dx.doi.org/10.1109/ECRTS.2012.32
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/TC.2015.2425889

