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Abstract—Wholesale Day Ahead Markets (DAMs) dominated
by renewable generation can improve social surplus by driving
unit commitment (UC) and security constrained economic dis-
patch (SCED) in a novel systematic uncertainty aware manner.
A new robust uncertainty aware DAM model can anticipate
worst-case output of renewable generation and use a system
reliability constraint involving an uncertainty set of renewable
capacity realizations. The uncertainty set yields unique worst-case
renewable capacities, which can be written as linear functions of
a tentative, most-recent, SCED. A few repetitions of the UC-
SCED converge to the optimal DAM clearing under the new
system reliability constraint, endogenously determining reserve
requirements, and potentially prices for energy and reserves. This
paper focuses on constructing the uncertainty set essential to this
new uncertainty aware Market paradigm and illustrates it on a
realistic size Balancing Area with hundreds of wind farms.

Index Terms—Power Markets, Robustness, Uncertain Systems,
Wind Energy Integration.

I. INTRODUCTION

Wholesale Day Ahead Markets (DAMs) in renewable gener-
ation dominated Balancing Areas are increasingly challenged
by uncertainty and volatility. At the same time, the evolution
of demand to include flexible storage-like loads, such as
distributed energy resources, provides new opportunities to
use versatile and spatiotemporally granular dynamic prices
to coordinate renewable generation with schedulable flexible
demand. Revision of DAM that can take advantage of flexible
demand requires (i) systematic modeling of renewable gener-
ation uncertainty based on detailed forecasts of their available
capacity, and (ii) pricing of associated requisite reserves to
elicit efficient demand response to renewable uncertainty.

Forecasts are routinely generated by sophisticated vendors
for multiple locations looking up to two days ahead on a 5-
minute time scale. Forecasts are re-estimated during the day
enabling a better understanding of how uncertainty evolves as
a function of the look ahead horizon. We argue that systematic
quantification of renewable generation uncertainty anticipated
at DAM gate closure can increase social surplus by improving
unit commitment (UC) and security constrained economic
dispatch (SCED) so as to decrease overall costs. To this end,
we reimagine a new robust uncertainty aware DAM model that
anticipates worst-case realizations of renewable generation and
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translates it to more efficient UC and Energy and Reserves
schedules. The resulting DAM model is augmented by a new
hourly system reliability constraint, relying on the proposed
uncertainty set to be made robust and overcome computa-
tionally intractable stochastic optimization approaches. We
argue that an appropriately constructed uncertainty set can
anticipate worst-case renewable generation expressed as linear
functions of a tentative, most-recent, SCED. A few repetitions
of the mixed integer linear programming (MILP) problem are
sufficient for the requisite iterative market clearing to converge
to the optimal UC-SCED solution and provide energy and
reserve prices consistent with optimal demand response.

This paper focuses on the construction of the aforemen-
tioned uncertainty set represented by a hyper-ellipsoid (posi-
tive definite quadratic form) with desired properties, namely,
the determination of a unique renewable generation worst case
obtainable in closed form from the uncertainty set parameters.
The literature contains various alternatives surveyed below,
which we believe do not dominate our approach. Ref. [1]
employs a two-stage adaptive robust method for solving the
UC problem, where the final solution remains feasible for
all random variable realizations residing in the uncertainty
set represented by uncertainty budget constraints. It does not
account for pairwise correlations across wind farms rendering
it possibly unacceptable by individual wind farms. Ref. [2]
uses principal component analysis (PCA) with kernel smooth-
ing to extract uncertainty information for the construction
of polytope uncertainty sets, but it lacks transparency on
how individual wind farms contribute to the system worst
case. Ref. [3] derives ellipsoidal uncertainty sets for wind
generation and provides a complex feedback mechanism to
leverage knowledge of historical wind speed observations. It
asserts that ellipsoidal uncertainty sets perform better than
competing box sets and budget uncertainty sets demonstrating
a higher ratio of probabilistic guarantee to uncertainty set
volume. Nevertheless, it is applied to a system with only a
few wind farms and does not investigate, as we do, issues
that arise with singular covariance matrices. Ref. [4] proposes
a data-driven uncertainty set used for Robust Optimal UC
exploring temporal and spatial correlations outperforming box
and budget uncertainty sets; its use of temporal correlations
and historical data might complement our approach.



Our proposed uncertainty set construction addresses the
undesirable singularity of the individual renewable genera-
tion covariance matrix by reducing dimensionality through
aggregation into clusters. For a specific hour, the resulting
cluster uncertainty is captured by a non-singular positive
definite covariance matrix estimated from forecast data. The
uncertainty set is then instantiated by (i) its ellipsoidal shape
corresponding to the quadratic form associated with the inverse
covariance matrix, and (ii) its size represented by the ellip-
soid’s radius calibrated by a probabilistic guarantee that the
uncertainty set includes renewable capacity realizations. Given
the uncertainty set’s shape and size, a unique worst case of
cluster outputs is then estimated, ratios of worst case to sched-
uled capacity are calculated and assigned to the individual
wind farms aggregated to each cluster. Numerical illustrations
are provided on sanitized data from about 200 wind farms of a
large U.S. Balancing Area. Our main contribution involves the
construction of an uncertainty set that enables robust modeling
of a system reliability constraint, representing an endogenous
determination of reserves imposed by renewable generation
uncertainty, and potentially the discovery of energy and reserve
prices eliciting efficient flexible demand response.

The rest of this paper evolves as follows. Section II sketches
a system reliability constraint, which motivates the uncertainty
set construction presented in Section III. Section IV discusses
the numerical results, and Section V concludes the paper.

II. UNCERTAINTY SET MOTIVATION

While current practice uses the expected value of variable
renewable generation as its available capacity for scheduling
it in the DAM, an uncertainty aware DAM model should be
able to model the fact that the anticipated average capacity of
generator g scheduled for energy and reserves at the DAM,
qEg (τ), and qRg (τ) for τ = 1, 2, 3, . . . , 24 is likely to take a
different value in real time. A system reliability constraint is
introduced to model renewable generation available capacity
at a future hour as a random variable. We use tilde to denote
future uncertainty, i.e., q̃Eg (τ), and q̃Rg (τ), and add in the
uncertainty aware DAM model a system reliability constraint
that should hold for each hour τ for any uncertain realization
of the tilded random variables. We define the uncertainty set,
U(τ), as the hour specific set that contains all realizations
q̃Eg (τ) + q̃Rg (τ) during this hour at a reasonable probabilis-
tic guarantee. Dropping the hour designation for notational
simplicity, and assuming without loss of generality that the
energy bid of demand d, qEd , is deterministic, we write the
system reliability constraint as follows:∑

g∈V
(q̃Eg + q̃Rg ) +

∑
g∈C

(qEg + qRg )−
∑
d∈D

qEd ≥ QR,

∀ q̃Eg , q̃Rg ∈ U , (1)

where V is the set of renewable/random-variable-available-
capacity generators, C the set of conventional firm capacity
generators, D the set of demand resources, and QR the
contingency reserve requirement.

Constraint (1) is difficult to enforce as it must hold true
for all possible random variable realizations, thus introduc-
ing computational burden. We convert the uncertainty aware
market clearing problem to an algorithmically deterministic
problem by considering the worst-case value (or values if more
than one) over the uncertainty set and solving the problem:

min
q̃Eg ,q̃Rg ∈U

∑
g∈V

(q̃Eg + q̃Rg ). (2)

Denoting the preferably finite solutions of problem (2) by
the superscript “wc” for worst case, the system reliability
constraint can be written as:∑

g∈V
(qE,wc

g + qR,wc
g ) +

∑
g∈C

(qEg + qRg )

−
∑
d∈D

qEd ≥ QR → λSR, (1′)

where qE,wc
g , qR,wc

g span the solution set of (2), and λSR

is the dual variable at the respective SCED. A desirable
uncertainty set would have a unique solution allowing us to
consider a single system reliability constraint in each hour. If
that unique solution could be written in terms of the optimal
value of the decision variables, we might be able to aim for
a deterministic iterative algorithm converging to the optimal
uncertainty aware DAM clearing solution. Next, we show that
this is possible for an appropriately constructed uncertainty
set, adopting the established and generally accepted ellipsoid
concentration set [5] derived from the inverse of the hourly
wind farm covariance matrix, which we can estimate from
wind farm available capacity forecasts.

III. UNCERTAINTY SET CONSTRUCTION

In this section, we describe the wind farm clustering (in
Subsection III-A) and the cluster uncertainty set construction
(in Subsection III-B).

A. Wind Farm Clustering

Given the incidence of relatively high magnitude pairwise
correlations and the usually smaller number of forecasts (about
50 ensembles) than the number of wind farms (hundreds
in large Balancing Areas) the covariance matrix estimate is
positive semi-definite, hence non-invertible. It is therefore nec-
essary to cluster highly correlated wind farms into a number
of clusters that is smaller than the number of forecasts.

Algorithm 1 details the wind farm clustering and cluster
seeding. We decide the number of clusters, K, by evaluating
the number of the full covariance matrix eigenvalues and their
rate of decline. Once the number of clusters is set, we follow
the initialization method based on k-means++ [6]. Starting
with the pairwise correlations of all wind farms, we select
first the highest pairwise correlated pair and seed the first
cluster. We proceed with finding the most distant correlation-
wise wind farm and seed the second cluster and continue until
all clusters have been seeded. Then, we iteratively assign the
wind farms to clusters. Each iteration begins by calculating
the Pearson correlation coefficient between each of the wind



Algorithm 1 Clustering Method
1: Inputs: Wind farms W , clusters K, empty cluster sets

Wk, k = 1, . . . ,K, threshold θ.
Cluster Seeding:

2: Assign the pair of wind farms with the highest pairwise
correlation, r, to W1.

3: for k = 2, ...,K do
4: Calculate correlation rwk′ between wind farm w and

cluster k′ total output, ∀w ∈ W \Wk′ , k′ < k.
5: dw = min

k′<k
(1− |rwk′ |),∀w ∈ W \Wk′ , k′ < k.

6: Assign wind farm w′ ∈ arg max
w∈W\Wk′ ,k′<k

dw to Wk.

7: end for
Iterative Assignment to Clusters:

8: repeat
9: Calculate correlation rwk between wind farm w ∈ W

and the total output of cluster k, k = 1, . . . ,K.
10: if ∃w ∈ Wk, k = 1, . . . ,K such that rwk′ > rwk,

k′ ̸= k, then assign wind farm w to Wk′ ,
11: else assign wind farm w ̸∈ Wk, k = 1, . . . ,K, with

rwk′ > θ and k′ ∈ arg max
k′′=1,...,K

rwk′′ , to Wk′ ,

12: end if
13: until all rwk < θ, w ̸∈ Wk, k = 1, . . . ,K.
14: Assign remaining wind farms to Uncorrelated set, WK+1.
15: Output: Cluster sets Wk, k = 1, . . . ,K, and WK+1.

farms and the clusters. The wind farms that have already
been assigned to a cluster are confirmed to have the highest
correlation with their assigned cluster. If this is not true for any
wind farms, they are reassigned to their most highly correlated
cluster. Otherwise, the unassigned wind farm, which is most
highly correlated to any cluster, is assigned to that cluster
as long as that correlation is above a threshold, θ. Once all
the unassigned wind farms have correlations below θ, the
loop stops, and the remaining wind farms are assigned to
the Uncorrelated Cluster. The output of Algorithm 1 is the
K clusters and their constituent wind farms, including the
Uncorrelated Cluster.

B. Cluster Uncertainty Set Construction

After cluster population has converged, we construct the
cluster ellipsoidal uncertainty set defined as

U = {q̃ : (q̃− q̄)
T
Σ−1(q̃− q̄) ≤ ρ2}, (3)

where q̃ is the vector of values for the total generation of
each cluster, q̄ is the cluster output mean across all forecasts,
Σ−1 is the inverse of the covariance matrix of cluster output
across all forecasts. Note that Σ−1 determines the shape of
the uncertainty set, whereas the radius of the ellipsoid, ρ,
determines its size and quantifies a probabilistic guarantee.
The boundary of the ellipsoid is a quadratic form with Σ−1 a
positive definite symmetric matrix, where the positive definite
property is guaranteed by the clustering process reduction of
dimensionality. The radius is estimated as follows.

1) Estimation of Radius: The radius of the ellipsoid is de-
termined so as to enforce a reasonable probabilistic guarantee
that a realization of a total hourly cluster output is contained
in that hour’s ellipsoid. This is estimated by ensuring that the
ellipsoid includes all forecasts after excluding some outliers.
The radius magnitude needed associated with hour τ for the
uncertainty set to contain forecast i is:

ρi =

√
(q̃i − q̄)

T
Σ−1(q̃i − q̄), (4)

where q̄i is the vector of total cluster outputs associated
with the ith forecast and hour τ . Algorithm 2 details the
estimation of the maximum radius, ρmax. The ρi values are

Algorithm 2 Maximum Radius Estimation
1: Inputs: forecasts I , cluster output forecasts q̃i, mean clus-

ter output q̄, inverse covariance matrix Σ−1, parameters
a and t, hour τ .

2: Calculate ρi using (4), i = 1, . . . , I .
3: Exclude the largest m(τ) = a+ ⌊τ/t⌋ values (outliers) of

ρi, i = 1, . . . , I .
4: Identify the largest remaining value of ρi as ρmax.
5: Outputs: ρmax.

ordered in increasing magnitude, the m(τ) largest magnitudes
are excluded and the remaining maximal ρ value is selected.
We use m(τ) = a + ⌊τ/t⌋, where a and t are adjustable
parameters. The a and the t are parameters that control the
number of outliers excluded every hour, and the additional are
excluded due to increasing uncertainty as the day progresses,
respectively. The rationale of estimating the radius magnitude
in this manner is that we exclude outliers in increasing
numbers as the hour is further removed from the time the
DAM closed and the forecasts were estimated. Indeed, the
later in the day ahead horizon, the larger the forecast error —
this is clearly evidenced in our data set.

2) Calculation of Cluster Output Worst Case: For the
Uncorrelated Cluster set, WK+1, we use the minimum forecast
to calculate the wind farm worst-case value. For the first K
Clusters, the worst case is the solution to the linear objective
function convex quadratic constraint problem:

min
q̃g∈U

∑
g

q̃g. (5)

Proposition 1. For a positive definite cluster output covari-
ance matrix Σ, the unique solution to problem (5) is

qwc = −ρmax
Σ1√
1TΣ1

+ q̄, (6)

where qwc is the vector of generation values for each cluster
at ρmax estimated by Algorithm 2, and 1 is an appropriate
dimension vector of ones.

Proof. Given a closed ellipsoid defined by (3) and seeking
to minimize (5), a closed-form solution can be obtained by
noting that the extreme point must lie on the boundary of
the ellipsoid and be where the cost vector, c, is normal



to the ellipsoid boundary. Writing the ellipsoid boundary as
f(q̃) = (q̃ − q̄)

T
Σ−1(q̃ − q̄) ≤ ρ2, the gradient is then

∇f(q̃) = 2Σ−1(q̃ − q̄). Let this be a multiple of the cost
vector, c, 2Σ−1(q̃ − q̄) = γc, and solve for the point
q̃ = γ

2Σc+ q̄. To find the value of the coefficient, γ, we solve
for the boundary of the ellipsoid, (γ2Σc+q̄−q̄)TΣ−1(γ2Σc+

q̄ − q̄) = ρ2, which yields
(
γ
2

)2
(Σc)TΣ−1(Σc) = ρ2.

Because Σ is a covariance matrix, it is symmetric, and
hence

(
γ
2

)2
cTΣTΣ−1(Σc) = ρ2, and solving for γ we have

γ = ±2ρ/
√
cTΣc. To find the minimum, we take the negative

value of γ, i.e., q̃wc = −ρΣc/
√
cTΣc+ q̄. Replacing c with

the all ones vector and ρ with ρmax, we get (6).

Proposition 2. The worst-case sum

1Tqwc = −ρmax

√
1TΣ1+ 1Tq̄, (7)

changes only through adjusting ρmax, as
√
1TΣ1 and 1Tq̄

are invariant to clustering and outlier selection.

Proof. We show that the quantities
√
1TΣ1 and 1T q̄ in

(7) are invariant to clustering. The latter is easy to see as
expectation is a linear operator, so clustering does not change
the sum of means:

∑
i E[q̃i] = E[

∑
i q̃i]. To prove the

invariance of the first quantity, we introduce some notation:
M is the W × I zero mean data matrix, where W is the
number of wind farms and I is the number of forecasts; C
is the clustering matrix, where Ckw is 1 if wind farm w
is in cluster k, otherwise 0. C is K × W where K is the
number of clusters. In this notation, the covariance matrix is
Σ = 1

I−1MMT . Therefore, the clustered covariance matrix
is ΣC = 1

I−1 (CM)(CM)
T
. The clustered covariance matrix

is K ×K, so we pre- and post- multiply by the ones vector
of length K: 1T

KΣC1K = 1
I−11

T
KCMMTCT1K . Because

each wind farm is only assigned to one cluster, the columns
of C have only one nonzero entry. Therefore, 1T

KC = 1T
W .

Using this identity, we have: 1T
KΣC1K = 1

I−11
T
WMMT1W ,

i.e., 1T
KΣC1K = 1T

WΣ1W . The sum of all elements of the co-
variance matrix remains constant regardless of clustering.

3) Worst-Case Assignment to Individual Farms and Estima-
tion of Risk Coefficients: Risk coefficients can be estimated
from cluster worst cases and inherited by individual wind
farms. More importantly, the risk coefficients can be used to
write the worst-case values in the system reliability constraint
as a linear multiple of the SCED decision variable qg , namely
substituting into (1′) qwc

g = αgqg we get:∑
g∈V

αg(q
E
g + qRg ) +

∑
g∈C

(qEg + qRg )−
∑
d∈D

qEd ≥ QR → λSR,

(1′′)

where αg is obtained from αg = qwc
g /q̂prevg , with q̂prevg being a

tentative dispatch decision, say from a previous iteration. The
Uncertainty Aware DAM is cleared with the system reliability
constraint and the first iteration of coefficients. The dispatch
is used to update risk coefficients, and the process continues
until SCED decisions converge. We have observed that q̂prevg

converges reasonably fast to the final optimal decision and
with it converges the risk coefficient as well, which quantifies
the price that a wind farm ought to obtain from the dual
of the reliability constraint, i.e., λSR derated by αg just
like a binding transmission constraint dual is derated by the
shift factor. Note that the risk coefficients must be in [0, 1];
otherwise, e.g., when the worst case is bigger than the dispatch
because of a binding transmission capacity constraint resulting
in αg = qwc

g /q̂prevg > 1, they are clipped to 1.

IV. NUMERICAL RESULTS

We demonstrate the proposed uncertainty set construction
using sanitized data from a large U.S. Balancing Area. We
consider two days, one in December 2021 (Day 1), and one
in July 2022 (Day 2), with 192 and 206 available wind
farms, respectively, and 54 hourly forecasts. For both days,
we selected K = 4 clusters, threshold value θ = 0.15, and
outlier parameters a = 5 and t = 3. Algorithms 1 and 2 were
implemented in Python 3.8.13.

In Fig. 1, we present the 25 largest eigenvalues of the
covariance matrix for both Days, Hour 1. Notably, the largest
four eigenvalues capture 65%-95% of the explained variance,
justifying the selection of four clusters! The large first eigen-
value means that one of the clusters is much larger than the
others. Similar results are observed across all hours.
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Fig. 1. Largest 25 eigenvalues for Day 1 and 2, Hour 1, covariance matrix,
and cumulative explained variance of the largest eigenvectors.

In Fig. 2, we illustrate the application of the clustering
method (Algorithm 1) for Day 1, Hour 1. The left heat map
shows the pairwise correlation matrix of the wind farms before
assignment to a cluster. The right heat map shows the output
of Algorithm 1, where wind farms are clustered in four definite
boxes with high intra-cluster correlations (e.g., in the largest
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Fig. 2. Heat maps of wind farm pairwise-correlations for Day 1, Hour 1;
unclustered (left, random order), and clustered (right, output of Algorithm 1).



cluster, the median correlation coefficient is 0.7) and low inter-
cluster correlations.

In Fig. 3, we illustrate the maximum radius estimation
(Algorithm 2) for Day 1, Hours 1, 12, and 24. The ρ values
are sorted, and the excluded outliers are marked in red. As
the hours grow later, more outliers are excluded according to
Algorithm 2, which is the desired outcome due to growing
forecasting uncertainty.
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Fig. 3. Illustration of Algorithm 2 for Day 1, Hours 1, 12, and 24.

In Fig. 4, we compare our clustering method to a PCA
method, which reduces the dimensionality of the forecasts
according to the eigenvectors of the 4 largest eigenvalues of the
data covariance matrix and is similar to [2]. For comparison
purposes, instead of polytope uncertainty sets used in [2],
we use an ellipsoid as described in Eq. (3) and Algorithm
2. Interestingly, both methods give similar total hourly worst
cases, although our clustering method distributes them to
individual wind farms in a manner that is more likely to be
acceptable to renewable generation market participants. In Day
1, our clustering method tracks the minimum forecast closely
in the morning hours and is less than the minimum forecast
in the later hours of the day. The profile for Day 2 shows a
greater differentiation between the minimum forecast and the
clustering worst case, because the wider range of forecasts
leads to higher ρ values.
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Fig. 4. Comparison of worst-case wind generation output calculated with the
Clustering and PCA methods.

In Fig. 5, we present the risk coefficients for Day 1,
calculated assuming the wind plants are scheduled at their
mean forecast (left) and their max forecast (right). The size of
the circles corresponds to the relative percentage of wind gen-
eration available in each cluster. Note, the clusters are reseeded
every hour and so the membership of the clusters changes. We
also mention that after a couple of iterations, SCED decisions
remained within 1% tolerance. Throughout the day, the risk
coefficients of the mean forecast are generally higher than
those of the max forecast, which schedules more uncertain
capacity. This is also reflected in the higher additional reserve
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Fig. 5. Risk coefficients and additional reserve requirements calculated using
the Clustering Method for Day 1.

requirements. In the morning, risk coefficients hover around
0.9 indicating that the worst case is relatively close to the
forecast, but around noon, risk coefficients decrease sharply
corresponding to the separation of the worst case from the
forecast observed in Fig. 4. The decrease in the max forecast
scenario is more drastic thus requires a greater increase in
reserves in the afternoon.

V. CONCLUSION

In order to incorporate uncertainty awareness in the DAM
MILP problem, a new system reliability constraint has been
proposed, which relies on estimated uncertainty sets. We
propose and explore an ellipsoidal uncertainty set construction
applicable to systems with hundreds of wind farms. This
yields a worst-case performance of individual wind farms
and in a large system application compares favorably with
other approaches such as PCA and quantifies risk coefficients
impacting dynamic reserve requirements and pricing. Future
work on the assignment of system risk to individual risky
assets and consumption may be useful. The paper improves on
current non-risk aware dispatch by incorporating risk measures
in the DAM clearing process and provides the basis for future
uncertainty related DAM payments. Work is in progress to
quantify the benefits from the proposed DAM clearing model,
which includes the new system reliability constraint, compared
with the current practice, as well as evaluate the performance
of alternative approaches to constructing uncertainty sets.
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