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INSIGHTS FROM CITIZEN SCIENCE INTO THE 

SPATIOTEMPORAL DYNAMICS OF BATESIAN MIMICRY 

IN THE CONTEXT OF CLIMATE CHANGE 

JESSICA HERRMANN 

ABSTRACT 

Climate has a demonstrable impact on species distributions, with changes in climatic 

oscillations often producing complex downstream effects due to species-specific 

tolerances to changes in temperature and precipitation. In general, barring physiological 

or environmental barriers, species are predicted to migrate polewards, and possibly also 

upwards in elevation, in response to general equatorial warming (Walther et al. 2002). A 

major challenge to substantiating this predicted relationship between temperature and 

distribution, especially for highly mobile or nomadic species, has been the lack of 

suitable techniques for tracking species distributions with sufficiently high resolution to 

assess for evidence of range shifts over decadal timescales. However, the recent rise in 

the volume and availability of citizen science data has demonstrated its strong potential 

as a tool for elucidating responses to environmental change on large temporal and spatial 

scales (Champion et al. 2018; Hurlbert & Liang 2012; Soroye et al. 2018). Here we 

assessed the strengths and weaknesses of three different citizen science datasets in 

addressing questions relating to historical range shifts in two butterfly species endemic to 

the eastern United States: the pipevine swallowtail (Battus philenor) and its Batesian 

mimic, the red-spotted purple (Limenitis arthemis astyanax). Motivated by the prediction 

that there would be a quantifiable northward latitudinal range shift in both B. philenor 
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and L. a. astyanax in response to historical regional warming, we ultimately analyzed 

twenty-four years of observational survey data from the North American Butterfly 

Association and found evidence to suggest that, surprisingly, from 1998 to 2021, there is 

no indication of a directional range shift in either the model or its mimic. However, 

consistent with expectations from classic mimicry theory we found evidence of a tight 

historical correlation between the ranges of B. philenor and L. a. astyanax over the years 

surveyed. Furthermore, we found that the annual variance in the ratio of models to 

mimics is significantly lower at the model’s northern range limit than in other parts of its 

range. This suggests that phenological coupling between these two species is subject to 

more intense selection at the range edges and that climate-induced changes in phenology 

likely have stronger fitness consequences in areas where the model species, Battus 

philenor, is relatively rare. Taken together, our results support the potential of citizen 

science data as a powerful resource for tracking historical spatiotemporal changes in 

highly vagile insect populations, particularly in tracking patterns linked to the long-term 

effects of climate change.  
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INTRODUCTION 

Climate Change and Monitoring Dispersive Species 

Anthropogenic climate change can have complex ecological consequences. Shifting 

seasonal and annual temperatures and increasing severity of meteorological events have 

been shown to contribute to phenological shifts in many species (Walther et al. 2002). 

Examples include earlier first occurrence and breeding time for avian and insect species 

(Stemkovski et al. 2022), earlier spawning time in amphibians (Carey & Alexander 

2003), and earlier shooting of flowering plants (Piao et al. 2019). However, predicting 

the timing and severity of impact due to regionally shifting climate regimes remains 

challenging due to the complexities of short- and long-term environmental stochasticity 

as well as population- and community-level processes at play (Walther et al. 2002). 

Previous work has furthermore demonstrated that the downstream effects of climate 

change vary by species, often presenting as phylogenetically biased patterns of species 

loss (Willis & Primack 2008). Therefore, addressing the downstream implications of 

climate change often must be done on a per-species basis. 

The urgency of the global climate crisis necessitates methodological advancements 

for both characterizing historical trends and predicting future population-level changes in 

endangered, threatened, and indicator species. However, due to differences in anatomy 

and life history, certain species have proven more challenging to monitor than others. 

Accurately characterizing the spatial distributions of migrant and nomad species remains 

especially difficult due to their high mobility and sometimes unpredictable, opportunistic 

migratory behaviors (Runge et al. 2014; Runge et al. 2015). The issue is further 
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complicated by the fact that environmental stressors have the potential to quickly reshape 

the year-to-year spatial distributions of these very same populations, an adaptive behavior 

that is seen in numerous nomadic species (Dostine et al. 2014; Runge et al. 2014). Even 

when possible, traditional tracking methods such as banding and radio telemetry – 

common techniques for monitoring birds – have low return rates and are frequently 

inadequate in capturing movements across large areas (Donovan et al. 2006). Advances 

in satellite telemetry may be promising for tracking migratory patterns in larger species 

but are ill-suited for smaller species such as insects (Webster et al. 2002). Other more 

contemporary methods such as genetic analysis and stable isotope chemistry have 

potential to be used in tandem with satellite data but are often insufficient on their own 

due to the high level of variability in genetic differences across populations and 

biogeochemical variations across localities (Webster et al. 2002). 

Study Species and Predictions of Mimicry Theory 

This study uses citizen science data to interrogate historical trends in species 

distributions by mapping changes in sighting locations over time. We specifically chose 

to focus on the mimetic relationship of two species of butterfly, the pipevine swallowtail 

(Battus philenor) and its Batesian mimic, the red-spotted purple (Limenitis arthemis 

astyanax), as a lens for examining the interplay between ecological and evolutionary 

dynamics in the context of climate change. 

Batesian mimicry occurs when a palatable species (the mimic) co-opts a warning 

signal, via convergent evolution, from a defended species (the model) in order to deceive 

potential predators (Bates 1862, p. 511; Ceccarelli 2018; Pfennig & Mullen 2010). The 
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core prediction of Batesian mimicry theory is that the mimic’s protection from predation 

will erode in the absence of the model, or when the mimic becomes more abundant 

relative to the model, in relation to the model’s level of unpalatability (Pfennig & Mullen 

2010; Pfennig et al. 2007). As a consequence, the distribution of a mimetic species is 

predicted to be geographically confined by the distribution of its model (Pfennig et al. 

2001). In reality, mimetic relationships are highly nuanced, and many examples of 

allopatric mimics exist, posing a paradox to the original theory (Conant & Collins 1998; 

Pfennig & Mullen 2010; Prudic et al. 2002). Hypotheses for why allopatric mimicry 

occurs are numerous. For example, in some instances, it is possible that selection 

incidentally favors the mimetic phenotype beyond the range of the model. This scenario 

is most likely to occur if both the model and mimic species have independently 

converged on the same phenotype for reasons other than protection from predation or 

because predator behavior, such as innate, unlearned avoidance of a general aposematic 

phenotype, is the driver for allopatric mimicry. Alternatively, changes to the ecological 

niches of the model or the mimic populations could also play a role in the persistence of 

allopatric mimicry. For instance, if a model population experiences a sudden range 

contraction, the mimic population may be unable to maintain sympatry with the model. 

Finally, it has been hypothesized that gene flow from a sympatric population of mimics 

to a neighboring allopatric population could maintain the mimetic phenotype beyond the 

extent of the model’s range (Pfennig & Mullen 2010). 

The relationship between the B. philenor and its mimic, L. a. astyanax, is one such 

example of allopatric Batesian mimicry. This relationship has been clearly demonstrated 
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both in early ecological and behavioral studies (Brower 1958; Brower & Brower 1962; 

Platt & Brower 1968) and in more recent work involving observational field data (Ries & 

Mullen 2008). Limenitis arthemis is a polytypic species complex including the mimetic 

subspecies L. arthemis astyanax and its conspecific, the non-mimetic white admiral (L. 

arthemis arthemis). The former phenotypically resembles the highly toxic pipevine 

swallowtail, as both species are characterized by predominantly black melanization on 

the forewings and hindwings, with blue-green iridescent scales on the distal regions of 

the hindwings (Fig. 1a – b). Both L. a. astyanax and B. philenor exist largely 

sympatrically in the eastern United States (Ries & Mullen 2008). 

Applications of Citizen Science Data 

As previously mentioned, a fundamental constraint to answering questions dealing 

with historical changes in distribution and abundance lies in the dearth of available 

techniques for tracking entire populations of highly abundant, vagile species (El Sheikha 

2019; Kokko & Sepulcre 2006). Given these limitations, there is a strong interest in using 

citizen science data to leverage the statistical power offered by large historical data sets 

(Tulloch et al. 2012). 

Citizen science is most concisely defined as the engagement of the public in a 

scientific project (Kobori et al. 2016). Such projects are typically either organized field-

based censuses or less structured, opportunistic data collection events conducted by 

casual volunteers (Tulloch et al. 2012). Records from citizen science projects have 

potential to offer novel insights into the nuanced life-histories of a wide range of 

populations and communities. For example, some historical records, such as the annual 



 

 

5 

cherry blossom blooms in Kyoto, Japan, date as far back as 1200 years (Aono & Kazui 

2007). In the United States, the National Audubon Society’s Christmas Bird Count and 

the Xerces Society’s Fourth of July Butterfly Counts have occurred annually, 

respectively, since 1900 and 1975. Both are nationwide, volunteer-based community 

censuses (Swengel et al. 1990; Tulloch et al. 2012). Volunteer-based citizen science 

projects have also been shown to exceed most federal-funded studies in the sheer breadth 

of their temporal and taxonomic extent, and these projects can furthermore amount to 

billions in their equivalent economic value in labor and resources (Theobald et al. 2015). 

Citizen science projects have also become increasingly well-funded in recent years, as 

prominent research funding agencies have begun to place more emphasis on the necessity 

of public engagement in their research funding goals (Golumbic et al. 2017). For these 

reasons, citizen science data has great potential to both provide historical context for 

long-term studies and act as a powerful statistical framework for answering questions on 

both ecological and evolutionary timescales. 

Purpose of This Study 

In order to persist, theory predicts that mimicry complexes require spatial and 

temporal overlap between the model and mimic species. Consequentially, climate change 

may have an especially strong effect on this type of interspecific dynamic, particularly on 

the phenological synchrony of the actors involved (Hassall et al. 2019). Climate data 

obtained from NOAA indicates a generalized increase in both precipitation and annual 

temperatures in the eastern United States over the past 30 years, from 1991 to 2020 

(NOAA 2023). These findings prompted our interest in identifying regional changes to 
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species spatiotemporal relationships over the same time period. 

Butterflies are particularly suitable model organisms for studying climate change 

because they are ectothermic animals that thermoregulate through a combination of 

behavioral, physiological, and phenotypic traits. Past studies have demonstrated that 

different species of Lepidopterans respond uniquely to climate change; some expand their 

ranges, while others experience range contractions (Hill et al. 2021). Greater wing 

melanism – as seen in both of our study species – has also been shown to increase the risk 

of thermal stress under increasing temperatures (Kingsolver & Buckley 2015). Because 

ectotherms display temperature-limited growth (Belitz et al. 2020), and because species 

tend to migrate polewards in response to general warming (Walther et al. 2002), we 

initially predicted that there would be significant northward range expansions in both B. 

philenor and L. a. astyanax due to the rise of regional annual temperatures over the 

aforementioned time period. We furthermore sought to identify potential hotspots within 

the mimicry complex at potentially greater predisposition to stress under the effects of 

rising annual temperatures. We did so by quantifying annual variability in the relative 

frequency of models versus mimics, predicting that lower variability in relative 

abundance of the two species would be seen at the northern edge of the model’s range. 

This exploratory study presents a novel approach to testing classic mimicry theory 

using citizen science data. Because most of the existing literature on the sympatry of 

model and mimic species is based on field experiments, anecdotal observations, and 

museum records (Harper & Pfennig 2007; Pfennig et al. 2001), citizen science data may 

prove a strong additional resource for modeling large-scale trends in population 
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dynamics, with additional potential to be used in tandem with more targeted monitoring 

strategies (Whipple et al. 2022). By examining the strengths and limitations of three 

different citizen science datasets that employ contrasting methods of data collection, we 

were able to address the efficacy of each of these data sources in representing current 

trends and predicting future changes to the spatial distributions and relative abundance of 

two species of mimetic butterfly. In working with the historical citizen science datasets 

used in this study, our objectives were threefold: (1) to test for geographical overlap and 

(2) evidence of historical range shifts in our study species, and (3) to compare variance in 

the ratio of models to mimics within different regions of the mimicry complex. 
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MATERIALS AND METHODS 

We began our analysis by collecting summary statistics on each of the three datasets 

to determine their usefulness in answering these two fundamental questions. From there, 

we selected the data source with sufficient historical records for historical analysis. With 

this data, we analyzed minimum convex polygon (MCP) range approximations using the 

adehabitatHR package in R (ver. 4.2.1) to determine if there was evidence of 

geographical range overlap and historical range shifts in either species (Calenge 2006). 

Following methods outlined by Ries & Mullen (2008), we furthermore calculated the 

variance in relative abundance of models to mimics at selected focal sites within the 

mimicry complex in order to identify patterns of change over time in model-mimic 

frequency across the model’s geographic range. To further support our findings, we also 

generated a linear regression model relating variance in the ratio of relative abundance to 

distance from the heart of the model’s range. 

Assessment of Citizen Science Datasets 

We initially analyzed three separate data sets from Butterflies and Moths of North 

America (BAMONA), iNaturalist, and the North American Butterfly Association 

(NABA) for suitability in our study of model-mimic temporal dynamics. BAMONA is a 

North American citizen science project primarily based on photographic submissions 

from the volunteers and supplemented by historical records from museum specimens, 

personal collections, and published literature. This dataset is easily available upon 

request, and quality control for data is provided by lepidopterists who act as regional 

coordinators. The data is further verifiable due to the fact that recorded sightings are 
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typically accompanied by either a photograph or an indication that the specimen belongs 

to a collection. Species that cannot be distinguished by phenotype alone require a 

specimen for identification (BAMONA 2023). Of the three datasets evaluated in this 

study, the BAMONA dataset also contains the most historical data, with the oldest record 

dating back to 1824. However, due to the comparatively small size of this dataset 

(437,717 dated observations) and the lack of data collection protocols for participants, 

there were statistical drawbacks to using this dataset as a stand-alone resource. A cursory 

overview of historical data also revealed that locational data may be approximate at best 

for older specimens. Coordinate data for sighting locations occasionally reflect the 

current location of the specimen — such as the location of the museum in which the 

specimen is currently housed — rather than the true original site of collection. These 

biases were some of the factors we took into consideration when assessing the viability of 

this data source for the purposes of our study. 

Unlike BAMONA, iNaturalist is not exclusive to Lepidoptera and is also a much 

more recent citizen science dataset. Established in 2002, iNaturalist is a globally 

available, app-based citizen science platform that allows users to directly upload GPS-

tagged observations of flora and fauna. According to the organization’s website, 

observations are deemed “verifiable” if they are: dated, georeferenced, have photos or 

sounds, and are not a captive or cultivated organism (iNaturalist 2023). When at least two 

of three identifiers agree on taxon, an observation is deemed “research-grade”. Only 

research-grade observations were used in this study. iNaturalist is a robust resource due 

to the sheer size of its dataset, with over 14 million recorded observations of butterflies 
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and moths to date (iNaturalist 2023). The data is also free to the public and can be pulled 

directly from iNaturalist’s website. Prior to download, data can easily be culled to include 

only research-grade observations. Most observations are additionally corroborated with 

either a photograph or an audio recording for further independent verification of 

taxonomic identification. However, similar to BAMONA, this dataset presents its own 

challenges due to the high variability of data collection methods. Because absences of a 

particular species at a given time and location are not recorded, this type of data is 

considered “presence-only”. For the purposes of population-level data analysis, absences 

of data points cannot be interpreted as true zeros, as they would be with pure survey data. 

Furthermore, due to the app-based nature of this platform, submissions may potentially 

be limited by availability of cell service, internet connection, or general access to 

technology. 

The third dataset used in our initial analysis came from the North American Butterfly 

Association (NABA). NABA is a purportedly non-profit organization that has run annual 

butterfly counts since 1993. The data provided by NABA is exclusively privately 

accessible. Approximately 450 yearly NABA counts occur at established count sites in 

the United States, Canada, and Mexico. During a count event, volunteers record all 

sightings of butterflies and moths within a 15-mile diameter circle of the count site 

center, and all data is collected within a one-day period. The center of the count site is 

used as an approximate location for all sightings recorded during the count event. Some 

count sites may be surveyed by multiple parties within a given day, and the total number 

of survey hours are tracked and recorded for each count event (NABA 2017; NABA 
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2021). In comparison with BAMONA and iNaturalist, the NABA dataset is collected 

under the most standardized protocols and therefore qualifies as true survey data. As the 

NABA data is not “presence-only”, species absences can be interpreted as true zeros. 

However, due to the fact that NABA survey data cannot be corroborated with specimens, 

photographic evidence, or sound files, observations are not independently verifiable. 

Despite this shortcoming, the NABA dataset is a larger historical dataset than the dataset 

provided by BAMONA, and of the three datasets in this study, it is based on the most 

consistent collection techniques. Because NABA provides data from as early as 1977, 

their dataset also offers a more consistent historical perspective than either the BAMONA 

or iNaturalist datasets. 

To understand the distribution of data and compare sample sizes across all three 

datasets, we first plotted total observations per year for each entire dataset using the 

ggplot package in R. This initial analysis revealed that, although BAMONA provided the 

farthest-reaching historical records (with the oldest recorded specimen collected in 1824), 

the sample size for historical data was too small to be useful in this study. BAMONA’s 

entire dataset only became consistently robust enough for historical analysis in the early 

2000s. Similarly, the iNaturalist dataset did not provide adequate sample sizes until 

around 2019 (Fig. 1c – d). Of the three, the NABA dataset provided the best record for 

analysis of historical trends, with consistent sample sizes from about 1998 through 2021. 

Since NABA also provides estimates of sampling effort, recorded as total party hours per 

survey event, we created a linear regression model to compare party hours per year with 

the number of annual observations for the NABA data used in this study. We found 
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trends in the number of observations to be unrelated to the total party hours per annum 

(R2 = 0.007). Therefore, we were confident that annual variations in sighting frequency 

were unrelated to yearly sampling effort with this dataset (Fig. S1). Because the NABA 

dataset was the only dataset of the three with a sufficient number of annual observations 

for examining historical trends, we chose to conduct the remainder of this study 

exclusively using this dataset. 

 

 

  Figure 1. Study species and data source summary statistics. (a) A model, Battus 

philenor, and its Batesian mimic, (b) Limenitis arthemis astyanax. Photographs © 

2022 by Abby Robinson and Jessica Herrmann, taken at the McGuire Center for 

Lepidoptera & Biodiversity, Gainesville, FL. (c) Comparison of annual sightings 

across all three data sources. Vertical dashed line marks the year 1998, beyond which 

point there was a consistently high enough number of annual observations in the 

NABA dataset for our historical analysis. (d) Annual sightings per data source for 

the years 1998 – 2021. 
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Data Quality Control and Filtering 

To correct data entry errors, we created a filtered dataset that corrected for errors (e.g. 

GPS location input errors). We also filtered the dataset to reduce the likelihood of 

artificial inflation of total yearly observations of B. philenor and L. a. astyanax in the 

southern regions of their home ranges. Due to climatic differences in the northern versus 

southern regions of both species’ ranges, the populations in the eastern United States 

typically have one to two summer flight periods in the northern parts of their ranges 

(from approximately June through August) and are multivoltine throughout the year in 

the southern parts of their ranges (LeGrand & Howard 2023; North American Moth 

Photographers Group 2022). Since NABA typically only surveys each site once per year, 

their data was unsuitable for studying phenological trends. We instead used data from 

iNaturalist for further verification by comparing the number of monthly sightings of B. 

philenor and L. a. astyanax in the northern and southern regions of their overlapping 

home ranges (Fig. S2). In order to control for these temporal differences across both 

species’ ranges, we used the lubridate package to subset the entire dataset to exclusively 

include observations from the months of June through August, peak season for both B. 

philenor and L. a. astyanax. 

To accurately assess temporal changes in geographic ranges across our 24-year 

period, we only included site locations that were sampled every year between 1998 and 

2021. We began by excluding data from NABA sites that were not repeatedly surveyed 

each year throughout our 1998 – 2021 study period so that inconsistent site sampling, or 

potential additions of new survey locations throughout the duration of the time course, 
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would not bias the observed trends in sighting locations. This step was especially crucial 

to our calculations of species range limits. And since the range of the mimicry complex is 

limited to the eastern US and southern Canada, we chose to filter by US states and 

Canadian provinces encompassing the extent of the mimicry complex. These were: Ohio, 

Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, 

Pennsylvania, New York, New Jersey, Delaware, Maryland, West Virginia, Virginia, 

Kentucky, Tennessee, North Carolina, South Carolina, Georgia, Florida, Mississippi, 

Alabama, and Ontario, Canada. We found that there were 34,937 observations of 

butterflies and moths at sites within this region sampled annually from 1998 through 

2021, within the summer months. In total, there were thirty-seven NABA sites matching 

our criteria, and of the initial thirty-seven, one or both of our species of interest had at 

least one recorded observation at a total of thirty sites within the chosen twenty-four-year 

timeframe (Fig. 2a). 
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Figure 2. MCP range overlap estimates. (a) A map of all thirty NABA sites 

encompassing the B. philenor mimicry complex, 1998 – 2021. (b) An MCP plot of 

cumulative estimated species home ranges for the years 1998 – 2021. Red and blue 

polygons represent the distributions of B. philenor and L. a. astyanax, respectively. 

The purple polygon enclosed by dashed lines indicates estimated home range overlap 

between the two species. (c) – (d) MCP plots estimating species distributions for 

1998 – 2000 and 2019 – 2021, respectively. 
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Species Home Range Percent Overlap Estimates 

To examine small-scale temporal trends in species distribution, we grouped the data 

into eight three-year increments as follows: 1998 – 2000, 2001 – 2003, 2004 – 2006, 

2007 – 2009, 2010 – 2012, 2013 – 2015, 2016 – 2018, and 2019 – 2021. Due to the size 

of the dataset, smaller grouping of one to two years would have provided an insufficient 

number of sightings. We then used the adehabitatHR package to plot minimum convex 

polygons (MCPs) of each species’ distribution for every three-year increment. MCPs are 

typically used to estimate species home ranges and are generated by connecting the 

outermost coordinate points in a dataset, thereby providing putative range boundaries 

based on the available coordinate data for a given species. Because NABA’s data are 

collected at fixed sampling sites, we could not soundly interpolate population density at 

locations between sites or beyond the range of the outermost sites. Therefore, we opted 

not to use kernel density estimations (KDEs) and instead calculated the total MCP areas 

and percentage overlap between the B. philenor and the L. a. astyanax MCPs for each of 

the three-year time periods. Percentage overlap was calculated as the percentage of the B. 

philenor MCP occupied by the L. a. astyanax MCP, a proxy for the degree of sympatry 

between the model and the mimic. We also calculated the minimum and maximum 

observed latitude for each species at each three-year interval. 
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Annual Variance in Ratio of Relative Abundance 

We next tested our prediction that the variance in the relative ratio of models to 

mimics should decrease with greater distance from the heart of the model’s range. To 

investigate changes in relative abundance over time, we calculated the yearly ratio of 

models to mimics (hereafter referred to as ratio of relative abundance) for each of the 

thirty sites of interest. Because absences are not recorded in survey data, we were missing 

Figure 3. Variance in mimic-model ratio of relative abundance. (a) Variance in 

model-mimic proportion across all 24 years. Triangles outline each three-site cluster 

used to compare the different regions of the model’s range. (b) Variance in ratio of 

model-mimic relative abundance across all 30 NABA sites encompassing the 

mimicry complex. (c) Linear regression model demonstrating a negative correlation 

between distance from the heart of the model’s range and variance in the ratio of 

model-to-mimic relative abundance. 
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years for which neither the model nor the mimic were observed at a given site. For this 

reason, the dataset for all thirty sites was modified to include years in which there were 

no sightings of either B. philenor or L. a. astyanax. 

Next, we selected three sites that fell within the heart of the model’s range and three 

sites at the northern edge of the model’s range. An additional three-site cluster that fell 

between these two locations was chosen to represent an intermediate latitude between the 

heart and edge of B. philenor’s range. Relative locations of each representative cluster 

were based on preliminary range maps for both species created using the BAMONA, 

iNaturalist, and NABA datasets, as well as on species distribution data from LeGrand & 

Howard 2023 and the North American Moth Photographers Group. The sites comprising 

each three-site cluster were chosen based on relative proximity, and each cluster was 

intended to be an approximate spatial replica of the others. However, given the limited 

number of suitable survey locations, the exact distance between sites within each cluster 

varied. The total area covered by each cluster ranged from 194,425.3 km2 to 3,919,519.6 

km2. Our selected sites in the heart of the model’s range were located in Fincastle, Peaks 

of Otter, and Maidens, Virginia. The sites we chose to represent the edge of the range 

were located in Farmington Valley and Southern New Haven County, Connecticut, and 

Springdale, New Jersey. The intermediate sites, all located in Ohio, were Adams County, 

Shawnee State Park and Forest, and Western Hamilton County Parks. We first calculated 

the average ratio of model-to-mimic relative abundance per three-site cluster. Next, we 

calculated the average variance in this ratio over the twenty-four-year timespan for all 

nine representative sites and compared the variance of this ratio across each of the three-
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site clusters. We then used a two-sided F-test to test for significance in the differences 

between variance values calculated for all three locations. 

To further substantiate our findings, we additionally modelled the relationship 

between distance from the heart of the model’s range and variance in the ratio of relative 

abundance. We first identified the NABA site in Roan Mountain, Tennessee, as the site 

with the highest average and maximum recorded sightings of B. philenor over the years 

of interest. This site was selected to represent the heart of the model’s range. Note that 

this site was not included in the three-site cluster representing the heart of the range 

because there was an insufficient number of neighboring sites to pair with it in the 

previous test. We then used the coordinates for the Roan Mountain site as an estimated 

centroid for the model’s range and used the distm function in the geosphere package in R 

to calculate the distance in kilometers of each of the remaining twenty-nine NABA sites 

from this central site. Next, we plotted a linear regression model to test the relationship 

between distance from the central site and variance in the model-mimic ratio over the 

twenty-four-year timespan. 
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RESULTS 

Based on the evidence in this preliminary study, our data revealed no clear evidence 

in support of a historical range shift in either B. philenor or L. a. astyanax from the years 

1998 through 2021. MCP estimates of total range area for both the model and the mimic 

remained consistent throughout the study period, with only a slight decrease in the range 

area for B. philenor between the years 2001 and 2009 (Fig. 2b – d). The percentage 

overlap of L. a. astyanax’s range with B. philenor’s range remained consistently in the 

low 90% range, with the exception of the years 1998 through 2000, in which the 

percentage overlap was an estimated 81.1%. The average percent overlap for all twenty-

four years, 1998 – 2021, was 93.1%. The upper and lower range limits for both species 

also remained consistent throughout the time course of this study. The lowest observed 

latitudes for B. philenor remained between 27.43ºN and 28.78ºN, and the upper range 

limit for the species remained consistently between 40.23ºN and 41.07ºN. As expected, 

the range for L. a. astyanax trended more northward than the range of B. philenor, with a 

lower range limit between 28.5ºN and 29.67ºN and an upper limit between 42.15ºN and 

43.21ºN. Despite a lack of evidence for large-scale directional trends in the ranges of B. 

philenor and L. a. astyanax over our selected time course, there was evidence of small-

scale annual fluctuation in the ranges of both species. 

As expected, our analysis of model-to-mimic relative abundance further suggested 

that the proportion of B. philenor to L. a. astyanax was significantly more variable for 

sites located in deep sympatry than for the sites in edge sympatry, with respect to the 

model’s range (Fig. 3a – b). The average ratios of models to mimics in the sites 
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representing the heart and middle of the model’s range were 0.51 and 0.68, respectively. 

Conversely, the average ratio at the edge of the range was 0.01. The average variance in 

the ratio of relative abundance seen at the intermediate sites was also greater than the 

variance at the edge of the model’s range. The mean variance in ratios for the sites in 

both the heart and middle of the model’s range (σ2 = 0.092) was significantly greater (P = 

2.2 x 10-16) than the mean variance (σ2 = 0.002) calculated for the sites at the northern 

edge of B. philenor’s home range. Though less indicative of a strong trend (R2 = 0.023), 

our linear regression model also revealed a negative correlation between distance from 

the centroid of the model’s range and variance in the ratio of relative abundance (Fig. 

3c). 
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DISCUSSION 

Here, we analyzed two publicly available data sets and one privately accessible data 

set to investigate the hypothesis that there has been an appreciable historical shift in the 

range of B. philenor and its mimic, L. a. astyanax, over the years 1998 through 2021. Our 

results indicate that, consistent with classical expectations of Batesian mimicry theory, 

there is a strong historical correlation between the geographic ranges of B. philenor and 

L. a. astyanax. We also found that the yearly variation in model-to-mimic relative 

abundance was lower in sites located closer to the edge of the model’s home range. This 

suggests potentially tighter phenological coupling at the range edge, presumably due to 

stronger natural selection on the mimic in areas where the model is generally rare, than in 

the heart of the model’s range where inter-annual variation in the model’s relative 

abundance has less effect on the mimic’s overall fitness. Surprisingly, we found no clear 

evidence of a directional range shift in either species over the time period of interest. 

While this result is contradictory to our expectation that climatic warming should 

facilitate range expansions of Battus philenor, and subsequently a northward expansion 

of the selective advantage for the mimetic form of Limenitis arthemis, it may indicate a 

lag between rapid warming of annual temperatures, happening on an ecological 

timescale, and the evolutionary response of these two butterfly populations. However, 

further assessment of this hypothesis will require statistically modeling of species 

occupancy to address some of the limitations of the citizen science data sets, detailed 

below. 
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Strengths and Weaknesses of Citizen Science Data 

We found significant heterogeneity in the quality and consistency of our citizen 

science data, resulting in inconsistent correlations across our three data sets. These 

inconsistencies were largely due to variability in data collection methodologies. Due to 

the lack of formalized collection methods, BAMONA and iNaturalist data are potentially 

affected by significant ascertainment bias. Data sets from these sources, which provide 

information about species presence but no confirmation of absence, are therefore 

challenging to analyze for changing patterns in species distribution and abundance over 

time because they may contain a large number of false negatives (e.g. examples where 

species were present but not reported). Secondarily, the low data density, or complete 

lack of historical data, from the two datasets precluded us from drawing meaningful 

conclusions about spatial trends over timescales extending more than a few years before 

present. This contrasts with standardized climate records (such as NOAA climate 

normals), that are typically summarized over thirty-year periods (NCEI 2023). Given 

these limitations, we based the majority of our statistical analyses on the historical survey 

data provided by NABA, as this organization provided the most robust and uniformly 

collected historical Lepidoptera data. 

Model-Mimic Home Range Overlap 

Because the spatial relationship between model B. philenor and mimic L. a. astyanax 

represents a known case of allopatric mimicry (Pfennig & Mullen 2010), we did not 

expect perfect overlap in the ranges of these two species. Despite this, our results indicate 

that there has been a highly consistent historical overlap between the home ranges of the 
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model and its mimic from at least the late 1990s through the present. As predicted, the 

majority of the mimic’s range coincides with the range of the model. However, consistent 

with Ries & Mullen (2008), we found that L. a. astyanax’s range extends beyond the 

northern range limit of B. philenor. This finding is important because it confirms the 

utility of citizen science data for addressing fundamental question about species ranges 

and supports a core prediction classic mimicry theory. Furthermore, this pattern 

demonstrates that protection for the mimic quickly erodes beyond the outer reaches of the 

model’s range, as predators that do not regularly encounter the model also do not 

recognize the warning coloration of the mimic (Pfennig & Mullen 2010). 

Despite expectations, our data did not provide evidence of a clear directional shift in 

the home ranges of either B. philenor or L. a. astyanax over the twenty-four-year time 

frame of interest. We did, however, see evidence of small-scale range shifts in both 

species, though it was difficult to decisively correlate these minute range shifts. It is 

likely that the small-scale changes we observed result from numerous ecological factors 

at play, namely environmental stochasticity, host plant availability, and year-to-year 

variation in climate and precipitation. Since inter-seasonal environmental variability can 

limit a population’s evolutionary responses to climate change (MacLean et al. 2016), it 

may have been the case that the time frame referenced in this analysis was simply not 

broad enough to reveal the full long-term effects of climate change on our two species of 

interest. This result was not entirely unexpected, given that previous studies of North 

American and European butterflies have shown no evidence of universal northward range 
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expansions in response to climate change. Rather, only a subset of butterfly species has 

exhibited a quantifiable pattern of northward colonization (Parmesan & Yohe 2003). 

Variability of Model-Mimic Relative Abundance is Influenced by Degree of Sympatry 

with Respect to the Model’s Distribution 

Though the data did not reveal evidence of a historical range shift, there was evidence 

to point towards future hotspots for climate-driven phenological change within the 

mimicry complex. Our comparison of variance in the ratio of models to mimics 

throughout B. philenor’s home range produced results that agreed with our prediction. 

Because the population density of a model is highest in the heart of its range, mimicry 

theory predicts strong protection for mimics because predators are expected to frequently 

encounter and quickly learn to avoid the convergent warning signals of the model and 

mimic. Therefore, selection pressure against mimics is expected to be lower in the heart 

of the model’s range than at the range edges (Harper & Pfennig 2007). If so, annual 

fluctuations in the relative abundance of the model, as long as the model is relatively 

common, should not erode protection for the mimic because of predator learning and 

avoidance. This is what we found. Our analysis indeed gives evidence to suggest that the 

highest variance in model-to-mimic relative abundance occurs in the heart of the model’s 

range, the region in which the model and mimic are in deep sympatry with one another. 

In regions of edge sympatry, where L. a. astyanax was present but B. philenor was 

relatively scarce, there was a notably lower degree of annual variation in the relative 

proportion of models to mimics. 

However, due to the limited number of suitable count sites included in this study, 
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there is still some possibility that our chosen site clusters were not fully representative of 

the relative abundance of B. philenor to L. a. astyanax across the entirety of B. philenor’s 

range. There were several variables we were unable to thoroughly control for in this part 

of our study: location of sites, area covered by each three-site cluster, topography within 

and across sites, and relative sample sizes in the north compared to the south. In general, 

there were fewer NABA sites that coincided with the heart of the model’s range, as 

compared to the number of sites representative of the edge of the range. Therefore, our 

representations of the heart, middle, and northern edge of the model’s range are 

approximate at best. The statistical power of our linear regression model was likely also 

weakened by the low number of suitable study sites used to model the relationship 

between distance from the center of the model’s range and variance in the relative 

proportion of models to mimics. Variation in area covered by each cluster of sites was 

another variable we were unable to completely account for in this study. As such, there is 

a significant range in area covered by each representative cluster of sites. Differences in 

elevation across sites and within individual sites may also have affected the trends we 

observed, given that butterflies with higher wing melanism – such as our study species – 

tend to be found in greater abundance at higher elevations, where darker coloration is a 

physiological advantage conferring more efficient thermoregulation and higher UV 

protection (Clusella-Trullas et al. 2020). Finally, it is important to acknowledge that 

differences in annual sample size for both species in different regions of the model’s 

home range may also have affected the apparent trends in the ratio of relative abundance. 

Because both species (particularly B. philenor) are less abundant in the north, low 
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variance in the apparent ratios of relative abundance may have been an artifact of lower 

sample sizes in this region. Future work should address this issue, potentially by directly 

the comparing raw number of observations of both species, rather than calculating 

variance in a ratio of their relative abundance. 

Nonetheless, these findings highlight areas of the mimicry complex that are at a 

potentially heightened risk for future perturbation due to the downstream effects of 

climate change. In particular, the model’s northern range limit is a likely candidate for 

future phenological instability because: (1) there is a lower threshold for annual 

fluctuation in the relative abundance of models to mimics in this region, and (2) there is 

also preliminary evidence of tighter phenological synchrony in this part of the model’s 

range (Fig. S2). These two factors suggest that future shifts in regional climate regimes 

may have stronger impact on the model and mimic subpopulations at the edge of the 

model’s range, as the relationship between these two species in this particular region is 

characterized by a relatively more rigid ecological and phenological relationship than 

seen elsewhere in the model’s range. 
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CONCLUSION 

Here, we have demonstrated the potential advantages of citizen science data as a tool 

in the analysis of spatial and temporal trends in large, vagile insect populations. 

Despite the wealth of valuable information citizen science data has to offer, working 

with this type of data also presents unique statistical challenges. Because of the lack of 

protocols and participant training, there is no standardization in sampling effort, area 

surveyed, and best practices for data collection. For many members of the scientific 

community, this lack of standardization disincentivizes the use of citizen science data in 

publication-grade research (Burgess et al. 2016; Sullivan et al. 2013). It is likely that the 

average citizen scientist is more likely to report conspicuous, charismatic species more 

often than less eye-catching or highly ubiquitous species, leading to significant 

ascertainment bias. Data contributed by hobbyists and collectors has an even greater 

likelihood of bias towards certain specific taxa of interest. Some collectors may engage in 

“community sampling” or sampling all species at a given site regardless of taxon, 

whereas others may only be interested in only a particular taxon or species, known as 

“targeted sampling” (Shirey 2021). Ascertainment bias is also compounded by the fact 

that a greater density of data points will correspond to areas of greater human population 

density (Cornell Lab of Ornithology 2023), as well as to areas with greater access to 

technology and awareness of citizen science programs. Another major pitfall 

accompanying the lack of standardized data collection procedures is the “presence-only” 

nature of the data. When species go unreported, there is no certainty that they were not 

present, only that they were not accounted for. As such, zeroes in citizen science datasets 
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cannot be treated as true non-detections. Understanding true absences is critical to 

painting an accurate picture of species’ distribution and abundance. Therefore, it is 

necessary to either restructure citizen science data collection protocols — or more 

feasibly — build models that retroactively estimate absence data and account for 

inconsistencies in sampling effort. In this study, we circumvented the above issues by 

opting to use volunteer-collected survey data from the NABA dataset. However, in the 

interest of supporting citizen science projects and the wealth of free, open-source data 

they provide, future work should include the use of models bespoke to citizen science 

data in order to substantiate and build upon the findings of this preliminary study. 

Future Directions 

Occupancy-detection models, or occupancy models, offer a new strategy for dealing 

with citizen science datasets by incorporating statistical methods to account for 

inconsistencies in collection effort through space and time. Occupancy modeling involves 

incorporation of the probabilities of community sampling events and sampling history 

frequencies to construct a model built upon “occupancy intervals”. Occupancy intervals 

are records grouped by space and time that allow for the retroactive estimation of discrete 

sampling events, therefore allowing one to model true non-detections from a presence-

only dataset (Shirey 2021). The use of occupancy modeling would open doors to the 

future use of open-source datasets such as BAMONA and iNaturalist for research 

purposes. Especially in an era of increasingly rapid environmental change, there is a 

greater need to understand large-scale spatiotemporal trends affecting population and 

community structures. Expanding the accessibility of citizen science projects to the 
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public also provides a powerful way to ensure community involvement and interest in 

conservation and the natural sciences. Furthermore, encouraging the use of citizen 

science data within the scientific community yields access to a vast array of specialized 

datasets that, as of yet, go widely underutilized. 
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SUPPLEMENTARY MATERIALS 

 

 

 

 

Figure S1. Comparison of sightings to sampling effort. (a) A linear 

regression model (blue line) showing negligible correlation between the 

number of sightings and party hours (sampling effort) per sampling event. 

The red line represents the null hypothesis, a significant positive correlation 

between sightings and sampling effort. Plot generated from NABA data used 

in this study, from the years 1998 – 2021. 

 



 

 

32 

 

 Figure S2. Distribution of sightings. (a) Distribution of annual sightings 

of B. philenor and L. a. astyanax in Pennsylvania, representative of the 

northern region of both species’ ranges. (b) Annual sightings of both 

species in Tennessee, representative of the southern region of both species’ 

ranges. Both plots were generated using all research-grade iNaturalist data 

for each species. Note that the northern subpopulations of each species 

exhibit historical bivoltinism, whereas the southern subpopulations are 

multivoltine and appear to be less phenologically synchronous. 
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