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ABSTRACT 

To extract content and meaning from a single source of sound in a quiet background, the 

auditory system can use a small subset of a very redundant set of spectral and temporal 

features. In stark contrast, communication in a complex, crowded scene places enormous 

demands on the auditory system. Spectrotemporal overlap between sounds reduces mod­

ulations in the signals at the ears and causes masking, with problems exacerbated by re­

verberation. Consistent with this idea, many patients seeking audiological treatment seek 

help precisely because they notice difficulties in environments requiring auditory selective 

attention. In the laboratory, even listeners with normal hearing thresholds exhibit vast 

differences in the ability to selectively attend to a target. Understanding the mechanisms 

causing these supra-threshold differences, the focus of this thesis, may enable research that 

leads to advances in treating communication disorders that affect an estimated one in five 

Americans. 

Converging evidence from human and animal studies points to one potential source of 

these individual differences: differences in the fidelity with which supra-threshold sound is 

encoded in the early portions of the auditory pathway. Electrophysiological measures of 

sound encoding by the auditory brainstem in humans and animals support the idea that 

the temporal precision of the early auditory neural representation can be poor even when 

hearing thresholds are normal. Concomitantly, animal studies show that noise exposure 
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and early aging can cause a loss (cochlear neuropathy) of a large percentage of the af­

ferent population of auditory nerve fibers innervating the cochlear hair cells without any 

significant change in measured audiograms. 

Using behavioral, otoacoustic and electrophysiological measures in conjunction with 

computational models of sound processing by the auditory periphery and brainstem, a 

detailed examination of temporal coding of supra-threshold sound is carried out, focusing 

on characterizing and understanding individual differences in listeners with normal hearing 

thresholds and normal cochlear mechanical function. Results support the hypothesis that 

cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this 

manifests as deficits both behaviorally and in subcortical electrophysiological measures in 

humans. Based on these results, electrophysiological measures are developed that may 

yield sensitive, fast, objective measures of supra-threshold coding deficits that arise as a 

result of cochlear neuropathy. 
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Chapter 1 

Introduction 

The ability to attend to a sound source of interest while ignoring irrelevant sounds is 

vital for successfully navigating the complex acoustic environments that we find ourselves 

in on an everyday basis. Yet, aging and even modest hearing loss impair the ability to 

direct selective attention leading to a disproportionately severe handicap in navigating 

crowded, noisy settings such as restaurants, cocktail parties and busy streets (Dubno, 

1984; Gatehouse and Noble, 2004). In addition, some listeners , despite their clinical normal 

hearing status and seemingly sufficient cognitive prowess, seek audiological help precisely 

because they find it difficult communicating in such noisy environments (Hind et al., 2011; 

Dawes and Bishop, 2009; Chermak and Musiek, 1997; Saunders and Haggard, 1992; Catts 

et al., 1996). 

Clinically, normal hearing is defined based on pure-tone threshold audiometry. Hearing 

threshold is the level of the faintest tone that a listener can detect at a given frequency. A 

diagnosis of hearing loss is given only when a listener 's thresholds exceed normal levels by a 

criterion amount (typically 20 dB HL). However, being able to listen effectively in a complex 

environment conceivably requires a lot more than just being able to detect faint tones. 

Thus , it is not surprising that having normal thresholds does not guarantee the ability to 

successfully communicate in everyday settings. In laboratory setting, this is manifested as 

large individual differences in tasks that mimic everyday listening conditions (Ruggles and 

Shinn-Cunningham, 2011 ; Ruggles et al., 2011 , 2012). 

Unlike listening to a single source of sound in a quiet background, selective attention 

is a complex neuropsychological process that places enormous demands on the auditory 
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system (Cherry, 1953). First, acoustic information about both the target sounds and the 

irrelevant signals in the environment has to be robustly encoded by the auditory periphery 

and the early neural pathway. This encoded neural information must then be effectively 

parsed and used to form coherent perceptual "objects" (Shinn-Cunningham, 2008; Shinn­

Cunningham and Best , 2008). Throughout this process, resources such as prior experi­

ence, working memory, language ability, etc., are continuously drawn upon. Consequently, 

differences across individuals can arise at one or more stages of this processing hierar­

chy. Indeed, individual differences in general cognitive ability, working memory, familiarity 

with the target sounds etc., can contribute to individual differences in selective attention 

performance (e.g., see Conway et al., 2001; Colflesh and Conway, 2007; Kidd et al., 2007; 

Surprenant and Watson, 2001; Drennan and Watson, 2001). However, individual differences 

in auditory sensory encoding may also lead to individual differences in selective attention 

ability, because, deficient encoding places a fundamental limit on performance (Ruggles 

and Shinn-Cunningham, 2011; Ruggles et al., 2011, 2012). 

Though sensory encoding is in general not a phenomenon of purely "bottom-up" pro­

cesses, it is useful to consider its role separately (Gilbert and Sigman, 2007; Pessoa et al., 

2003; Shinn-Cunningham, 2008). A permanent threshold shift, that is identified clinically 

as hearing loss, is an example of deficiency in sensory encoding that impacts listening 

in complex environments. However, the seemingly high prevalence of difficulties in noisy 

environments among listeners with normal hearing thresholds (NHTs) and the apparent 

disproportionate difficulties among middle-aged and older listeners with NHTs or modest 

threshold elevations (Hind et al., 2011 ; Chermak and Musiek, 1997; Saunders and Haggard, 

1992; Fitzgibbons and Gordon-Salant, 2010; Snell et al., 2002; Catts et al., 1996), suggest 

that sensory encoding deficits may exist in the general population beyond the mechanisms 

leading to clinical hearing loss and threshold elevation. 

This thesis is dedicated to the study of individual differences among NHT listeners and 

documents "supra-threshold" differences in electrophysiological measures (1.1) of sensory 

encoding of acoustic information and its contribution to individual differences in listening 
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in a complex scene. Taken together, the results of the various experiments and modeling 

efforts provide evidence that a dominant contribution to individual differences in supra­

threshold perceptual abilities of NHT listeners comes from differences in a very early neural 

component of sensory encoding. In addition, these differences are consistent with cochlear 

neuropathy that has been shown to occur in noise-exposure and early aging in animal 

models. 

Each chapter is written in the format of a journal article with sufficient background 

and discussion to stand on its own. The remaining sections of this introductory chapter 

describe the organization and contents of the chapters to follow. 

1.1 Sensory encoding - Electrophysiological measures 

A significant portion of this thesis is devoted to the development and application of elec­

trophysiological measures of brainstem responses to sounds. While different perceptual 

attributes of sound are related to different spectro-temporal acoustic features, many de­

pend on temporal information. As a result of cochlear filtering, each auditory nerve fiber 

(ANF) is essentially driven by a narrow frequency band of sound energy. Thus, the tem­

poral information encoded by the ANFs can be logically separated into two parts; the 

temporal fine-structure (TFS), corresponding to the timing of the nearly sinusoidal nar­

rowband carrier fluctuations, and the slower temporal envelope of that carrier, whose tem­

poral fluctuations are limited by the bandwidth of the corresponding cochlear filter. For 

low-frequency cochlear channels, ANFs convey both TFS and envelope information; neural 

spikes are phase- locked to the carrier and the instantaneous firing rate, in steady-state 

approximately follows the envelope. At higher frequencies, ANFs do not phase lock to the 

TFS; however, responses convey temporal information by phase locking to envelope fluc­

tuations. Several aspects of sound perceptions, such as perception of speech (Zeng et al:, 

2005), source location (Blauert, 1997), grouping of acoustic constituents into objects (El­

hilali et al., 2009), and release from various kinds of maskers (Moore, 2008; Christiansen 
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et al., 2013), depend on using TFS and ENV cues. 

Subcortical steady state responses (SSSRs), frequently referred to as frequency following 

responses (FFRs), are the scalp-recorded responses originating from sub-cortical portions 

of the auditory nervous system and provide an objective correlate of temporal encoding. 

These responses phase lock to periodicities in the acoustic waveform and to periodicities in­

duced by cochlear processing (Glaser et al. , 1976). The responses specifically phase locked 

to the envelopes of amplitude modulated sounds are sometimes called amplitude modula­

tion following responses (AMFRs) or envelope following responses (EFRs) (Dolphin and 

Mountain, 1992; Kuwada et al., 2002). Responses to amplitude-modulated sounds origi­

nating from both the sub-cortical and cortical portions of the auditory pathway are also 

collectively referred to as auditory steady-state responses (ASSR) (Rees et al., 1986). In 

contrast to auditory brainstem responses (ABRs; the stereotypical responses to sound on­

sets and offsets; Jewett et al., 1970), SSSRs are the sustained responses to ongoing sounds. 

SSSRs have been used extensively in basic neurophysiologic investigation of auditory func­

tion and sound encoding (e.g., Aiken and Picton, 2008; Kuwada et al., 1986; Gockel et al., 

2011, also see Chandrasekaran and Kraus, 2010; Krishnan, 2006; Picton et al. , 2003a, for 

reviews). Given the frequency specificity possible with SSSRs, they have also been recom­

mended for objective clinical audiometry (Lins et al., 1996). 

A detailed examination of temporal coding at the level of individual listeners using 

SSSRs requires that SSSRs be acquired for several stimulus manipulations. This is the 

subject of Chapter 2. This chapter was published as a peer-reviewed journal article in 

Clinical Neurophysiology (Bharadwaj and Shinn-Cunningham, 2014). 

1.2 Cochlear neuropathy - Evidence, consequences for supra-threshold 

sensory coding, and predictions for subcortical steady responses 

The much-studied component of sensory encoding deficiencies is the degradation in the 

mechanics and associated changes in the functioning of the so called "cochlear amplifier" . 
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This type of "cochlear hearing loss" is often associated with the interrelated phenomena of 

elevated thresholds, loss of cochlear gain at low sound levels, loss of cochlear-compression 

at mid-levels, loudness recruitment, loss of frequency selectivity, etc. (see Moore, 2007 for 

an in-depth treatment of the subject) . Correlates of cochlear mechanical function include 

psychophysical measures of gain and tuning (Oxenham and Shera, 2003; Glasberg and 

Moore, 1990) and otoacoustic emissions (Shera and Guinan Jr, 1999; Neely et al., 2003). 

Deficits in basilar membrane flmction resulting in cochlear mechanical dysfunction and 

hearing loss are often associated with the loss of outer hair cells of the organ of Corti 

while the inner hair cells, the site of the origin afferent neural process are spared (Stebbins 

et al., 1979). However, following the work of Kujawa and Liberman (2009), it has come 

to light that even when the inner hair cells and afferent nerve cells are themselves intact, 

noise exposure and aging can result in the loss of (a significant proportion of) synapses 

and unmyelinated terminals of the cochlear nerve ("cochlear neuropathy") innervating the 

inner hair cells without permanent elevation of thresholds. Further, these findings also 

suggest that the cell bodies in the spiral ganglia remain intact for a considerable period 

(about 10-20% of average lifespan) following terminal loss, further bringing to question the 

implications of the earlier observation that noise-exposure spares afferent nerve cells. 

Chapter 3 is dedicated to review of the evidence for and implications of cochlear neu­

ropathy on supra-threshold sensory coding and was published as a peer-reviewed journal 

article in Frontiers in Neuroscience (Bharadwaj et al., 2014b). Please refer to the preamble 

of Chapter 3 for the details regarding author contributions. Quantitative models of sound 

processing by the auditory nerve (Zilany and Bruce, 2006; Zilany et al., 2009, 2014) and 

brainstem neurons (Nelson and Carney, 2004) are combined to create models of population 

responses (Dau, 2003; R0nne et al., 2012). These models are used to design stimuli and 

make predictions about SSSRs in the context of cochlear neuropathy. 
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1.3 Relationship between cochlear mechanics, early neural encoding and 

behavior 

Chapter 4 presents the results of the detailed characterization of sensory coding differences 

across individual listeners. Objective and behavioral correlates of both cochlear mechani­

cal function and sub-cortical temporal coding are obtained and the relative contributions 

of the two factors to individual differences in listening in a complex scene are evaluated. 

Distortion product otoacoustic emission measures (DPOAEs) are used as objective cor­

relates of cochlear gain and compression across listeners. SSSRs are used to obtain an 

electrophysiological correlate of temporal coding. Stimulus regimes and manipulations are 

designed based on model predictions from Chapter 3. 

Finally, a concluding chapter summarizes the major findings and suggests future work. 



Chapter 2 

Rapid acquisition of subcortical steady-state 

responses with multichannel recordings 

Preamble 

This chapter develops a novel data acquisition and signal extraction approach to record 

subcortical steady-state responses (SSSRs) efficiently and discussed the implications both 

for clinical and basic neurophysiological research. The work was completed between Sep 

2011 and Oct 2013 and published as a peer-reviewed journal article in Clinical Neurophys­

iology (Bharadwaj and Shinn-Cunningham, 2014). The documented software accompany­

ing the manuscript was made publicly available at http: I lnmr. mgh. harvard. edul -haril 

ANLffr I and was used for all the analyses leading to the results presented in Chapter 4. 

Abstract 

Auditory subcortical steady state responses (SSSRs), also known as frequency following 

responses (FFRs), provide a non-invasive measure of phase-locked neural responses to 

acoustic and cochlear-induced periodicities. SSSRs have been used both clinically and in 

basic neurophysiological investigation of auditory function. SSSR data acquisition typically 

involves thousands of presentations of each stimulus type, sometimes in two polarities, with 

acquisition times often exceeding an hour per subject. Here, we present a novel approach 

to reduce the data acquisition times significantly. Because the sources of the SSSR are deep 

compared to the primary noise sources, namely background spontaneous cortical activity, 



8 

the SSSR varies more smoothly over the scalp than the noise. We exploit this property 

and extract SSSRs efficiently, using multichannel recordings and an eigendecomposition 

of the complex cross-channel spectral density matrix. Our proposed method yields SNR 

improvement exceeding a factor of 3 compared to traditional single-channel methods. It 

is possible to reduce data acquisition times for SSSRs significantly with our approach. 

The proposed method allows SSSRs to be recorded for several stimulus conditions within a 

single session and also makes it possible to acquire both SSSRs and cortical EEG responses 

without increasing the session length. 

2.1 Introduction 

Subcortical steady state responses (SSSRs), frequently referred to as frequency following 

responses (FFRs), are the scalp-recorded responses originating from sub-cortical portions 

of the auditory nervous system. These responses phase lock to periodicities in the acoustic 

waveform and to periodicities induced by cochlear processing (Glaser et al., 1976). The 

responses specifically phase locked to the envelopes of amplitude modulated sounds are 

sometimes called amplitude modulation following responses (AMFRs) or envelope following 

responses (EFRs) (Dolphin and Mountain, 1992; Kuwada et al. , 2002). Responses to 

amplitude-modulated sounds originating from both the sub-cortical and cortical portions 

of the auditory pathway are also collectively referred to as auditory steady-state responses 

(ASSR) (Rees et al., 1986). In contrast to auditory brainstem responses (ABRs; the 

stereotypical responses to sound onsets and offsets; Jewett et al. , 1970), SSSRs are the 

sustained responses to ongoing sounds and include responses phase-locked to both the fine 

structure and the cochlear induced envelopes of broadband sounds. Since the term FFR, 

originally used to denote phase locked responses to pure tones, is suggestive of responses 

phase-locked to the fine-structure of narrowband or locally narrowband sounds, here we 

will use the term SSSR to describe the sustained responses originating from subcortical 

portions of the auditory pathway. This name distinguishes them from transient onset-
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offset related responses and responses generated at the cortical level. SSSRs have been 

used extensively in basic neurophysiologic investigation of auditory function and sound 

encoding (e.g., Aiken and Picton, 2008; Kuwada et al., 1986; Gockel et al., 2011, also 

see Chandrasekaran and Kraus, 2010; Krishnan, 2006; Picton et al., 2003a, for reviews). 

Given the frequency specificity possible with SSSRs, they have also been recommended for 

objective clinical audiometry (Lins et al., 1996). 

SSSRs are traditionally recorded with a single electrode pair placed in either a vertical 

or a horizontal montage (which differ in which underlying generators are emphasized; see 

Krishnan, 2006; Skoe and Kraus, 2010). To achieve an adequate signal-to-noise ratio (SNR) 

when measuring the SSSR, the stimulus is typically repeated thousands of times. Often, 

stimuli are presented in opposite polarities to separate the response components phase 

locked to the envelope from those phase locked to the fine structure of the acoustic waveform 

(Aiken and Picton, 2008; Ruggles et al., 2012). Since many studies require SSSR data 

acquisition for multiple conditions or with multiple stimuli, this often results in recording 

sessions exceeding an hour per subject. 

Multichannel electroencephalography (EEG), which is widely used for the investigation 

of cortical processing, uses the same basic sensors as SSSR measurements, but requires 

many fewer trials because the cortical response generators are closer to the scalp and 

produce stronger electric fields. EEG systems with high-density arrays include as many 

as 64, 128, or sometimes even 256 scalp electrodes. Although the frequency response 

characteristics of some cortical EEG systems are not always optimized for picking up 

subcortical signals (which typically are at 80 Hz and above), these multi-electrode setups 

can nonetheless be used to record SSSR data from multiple scalp locations. 

Given this, it is possible to simultaneously record subcortical and cortical processing 

of sounds with the high-frequency portions analyzed to yield SSSRs and the low-frequency 

portions representing cortical activity (Krishnan et al., 2012). The primary source of noise 

for the high-frequency SSSR portion of the recordings is background cortical activity (i.e., 

neural noise). Since the SSSR sources are deep compared to the dominant sources of 
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noise (in the cortex), the SSSR varies more smoothly over the scalp than the noise (for a 

discussion of the physics of the measurement process and how scalp fields relate to neural 

activity, see Hamiiliiinen et al., 1993). Scalp fields arising from cortical sources can cancel 

each other out if they are out of phase (Irimia et al. , 2012). This can be exploited to help 

separate cortical and subcortical responses from the same EEG recordings by combining 

information obtained from a dense sensor array. Here, we propose and evaluate one method 

for combining measurements from multiple scalp channels to improve the SNR of SSSRs 

measured using cortical EEG arrays. 

Although SSSRs can provide insight into auditory function and subcortical encoding, 

interpreting them can be a challenge. Multichannel recordings of brainstem responses have 

been used primarily in the analysis of the sources of the onset ABR, in which the activity 

from different generators can be temporally separated, into stereotypical responses known 

as waves I, III, and V (Grandori, 1986; Parkkonen et al., 2009; Scherg and Von Cramon, 

1985). In contrast, since the SSSRs represent sustained activity, temporal separation of the 

activity from different generators is not possible. Moreover, in any narrow frequency band, 

particularly at high frequencies, multiple SSSR sources likely contribute to the aggregate 

measured response, each of which is a phase-locked response at a different phase. This no­

tion is consistent with the observation that there are spectral notches and occasional phase 

discontinuities in the SSSR as a function of modulation frequency for amplitude modulated 

stimuli (Dolphin and Mountain, 1992; Kuwada et al., 2002; Purcell et al., 2004). This is 

also consistent with the observation that responses are attenuated but not eliminated in 

studies inducing isolated lesions of single auditory nuclei (Smith et al., 1975; Kiren et al., 

1994). This multisource population activity produces scalp potentials that are different 

mixtures of the source activity at different scalp locations, depending on the geometry of 

the generators, the recording electrodes, and the volume conductor in between (Hubbard 

et al., 1971; Okada et al., 1997; Irimia et al., 2013). Consistent with this notion, the steady­

state phase of the summed, observed response at a given frequency varies across different 

channels, as illustrated in Figure 2.1. 
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Unfortunately, time-domain methods to combine multichannel recordings, such as sim­

ple across electrode averaging or principal component analysis (PCA) , assume that the 

signal is at the same phase across sensors. For instance, time-domain PCA involves re­

combination of multiple measurements with real-valued weights based on the covariance 

matrix. As a result, these methods lead to signal attenuation when the signal components 

in each sensor are not at the same phase. In other fields of analysis, complex principal 

component analysis ( cPCA) in the frequency domain has been used to effectively com­

bine multiple measurements when the signal components are correlated, but have phase 

differences (Brillinger, 2001; Horel, 1984). In contrast to traditional time-domain PCA, fre­

quency domain cPCA recombines measurement channels using the complex-valued weights 

obtained by decomposing the complex cross-channel spectral density matrix. The weights 

thus include channel-specific magnitudes and phases in each frequency bin; the phases of 

each complex weight specifically adjust for phase differences between responses measured 

at different sites to optimally combine responses across multiple sensors. Here we apply 

cPCA to multichannel EEG recordings, thereby accounting for phase discrepancies across 

the scalp and extract SSSRs efficiently. We show that compared to single-channel record­

ing, this approach reduces the data acquisition required to achieve the same SNR, both 

when applied to simulations and when analyzing real multichannel SSSR recordings. 

2.2 Methods 

First, we describe the steps involved in the cPCA method. Then, we describe our procedure 

to validate the method using simulated data. Finally, using EEG-data acquired from 

normal-hearing human listeners, we demonstrate how to apply the approach to extract 

SSSRs from multi-electrode recordings. 
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Figure 2.1: (A) A schematic illustration of the possible origin of phase differences of the 
SSSR recorded from different scalp electrodes. Each neural generator, shown as three dif­
ferent colored arrows, is phased-locked to the stimulus , but at a different unique phase. 
Moreover, the generators contribute different amounts to different scalp locations, as illus­
trated by the proportion of the ellipses shaded with the corresponding colors. This results 
in phase misalignment between the effective total response at different recording sites. (B) 
Real SSSR obtained from a typical subject from two qistinct scalp locations (relative to 
the average potential between the two earlobes) showing phase differences in the response. 
The data is filtered between 90 and 110 Hz to emphasize the response at the fundamental 
stimulus frequency of 100 Hz. 

2.2 .1 Complex principal component analysis (cPCA) 

Frequency-domain P CA can be used to effectively reduce t he dimensionality of vector-

valued time-series in t he presence of between-component dependencies at delayed time 

intervals (Brillinger, 2001). As illustrated in Figure 2.1, for any frequency component, 

responses at different scalp locations occur with different effective phases. This is unlikely 

to be due to conduction delays between the recording site and the sources since the brain 

t issue and head together can be treated as a pure conductor (no capacitive effects) for 

frequencies below about 20 kHz. That is, the forward model that relates the measured 

potentials to the source currents can be treated as quasi-static (Hamiiliiinen et al. , 1993). 

Because each subcortical source contributes a different amount to each scalp sensor, de-
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pending on their geometry relative to the recording electrodes, the shapes and conductivity 

profiles of the different tissues in between, the choice ofreference etc. (Hubbard et al. , 1971; 

Okada et al., 1997; Irimia et al., 2013) , the resultant signal in each sensor will have a dif-

ferent phase. For multivariate time-series, the cross-spectral density matrix captures up 

to second-order dependencies between the individual components of the time-series, and 

therefore has information we can exploit to account for these phase differences in the sig­

nal across the sensors. First, we apply a discrete prolate-spheroidal taper sequence, wk(t), 

to the recorded/simulated signals (Slepian, 1978). We then estimate the complex-cross 

channel spectral density matrix, M(f), at each frequency bin, from which we estimate the 

principal eigenvalue, Ak (f), and the corresponding eigenweights, vk (f), using a diagonal-

ization procedure. For a given frequency resolution, the use of the Slepian taper minimizes 

the bias introduced due leakage of frequency content from other frequencies outside the 

resolution bandwidth into the estimate of the passband content (Thomson, 1982). Con­

sequently, t he Slepian taper minimizes the bias in the estimates of the eigenvalues, >.(!), 

which result from the spectra being colored (Brillinger, 2001). Thus, for recording epochs 

of duration T, we have: 

T 

:2: wk(t)xi(t)exp{-j27!-jt} (2.1) 
t=O 

(xi (f)XJ (f)) (2.2) 

where Xi(!) denotes the tapered Fourier transform of the data xi(t) in the ith recording 

channel, Mij (f) denotes the cross-spectrum between channels i and j, corresponding to the 

iyth element of the full cross-channel spectral density matrix M(f) , superscript * denotes 

complex-conjugate, and (.) denotes averaging over trials. The tapers Wk, k = 1, 2, ... , Ntap 

form an approximate basis for signals that are limited to a duration-bandwidth product of 

2TW, and satisfy an eigenvalue equation: 
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~ sin27rW(t- s) ( ) ( ) 
LJ . ( ) Wk S = CkWk S sm1r t- s 
s=l 

(2.3) 

where the eigenvalues Ck ~ 1 for k :S Ntap = 2TW - 1 are the concentrations of the 

tapers within the band -W :S f :S W (Slepian, 1978). The estimates of >.k(f) obtained 

using the Ntap tapers (indexed by k) are then averaged together to reduce the variance of 

the estimate without additional bias from spectral leakage from frequencies outside of the 

bandwidth W: 

Ntap 

>.(!) = 2: >.kU) (2.4) 
k=l 

By construction, M(f) is Hermitian and positive semi-definite. Thus, M(f) has real, non-

negative eigenvalues, and can be diagonalized using a Cholesky factorization procedure: 

M(f) = Q(f)A(f)QH (f) (2.5) 

where Q(f) is the unitary matrix of complex eigenvectors of M(f), A(!) is the diagonal 

matrix of real eigenvalues and superscript H denotes conjugate-transpose. Note that a 

separate cross-channel spectral density matrix is estimated at each frequency bin and the 

eigendecomposition is also performed at each frequency bin separately. This is not redun­

dant because, by the central limit theorem, for a stationary signal, the estimated frequency 

coefficients are uncorrelated and asymptotically Gaussian distributed. The principal eigen­

value >.(f) =Au (f) estimates the power spectrum of the first principal component signal 

(Brillinger, 2001) and the phase of the corresponding eigenvector v (f) = Q .1 (f) estimates 

the phase delays that need to be applied to individual channels in order to maximally align 

them. Here Q.l denotes the first column vector of Q, composed of the first element of all 

the rows of the matrix. 

SSSRs are often appropriately analyzed in the frequency domain as they represent 

steady-state mixtures of subcortical source activity (Aiken and Picton, 2008; Gockel et al. , 
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2011; Krishnan, 1999, 2002). The eigendecomposition of the cross-spectral matrix is thus 

convenient for SSSR analysis in the sense that the principal eigenvalue directly provides a 

metric of the SSSR power at a given frequency without further processing being necessary. 

Moreover, the phase-locking value (PLV) (Lachaux et al. , 1999) is a normalized, easily 

interpreted measure of across-trial phase locking of the SSSR at different frequencies and 

also has convenient statistical properties (Dobie and Wilson, 1993; Zhu et al., 2013). The 

use of the normalized cross-spectral density matrix CP1v(f) (see below) instead of M(f) 

allows for the direct estimation of PLV through the eigendecomposition. An analogous 

modification can be used to obtain estimates of inter-trial coherence (ITC) (see Delorme 

and Makeig, 2004; Dobie and Wilson, 1994) by using Cite(!), as defined below: 

1 xi (f)XJ (f) ) 
\ \Xi(f)\\XJ(f)\ 

(xi (f)XJ (f)) 

(\Xi(!)\) (\XJ(f)\) 

(2.6) 

(2.7) 

where Cij (f) denotes the i/h element of the corresponding normalized cross-spectral den­

sity matrix C(f) and (.) denotes averaging over trials. The set p(f) of the largest eigenval­

ues of C(f) at each frequency bin then provides the PLV or the ITC of the corresponding 

first principal component directly. The variance of the PLV and ITC estimates depend only 

on the number of trials included in the estimation (Bokil et al., 2007; Zhu et al., 2013). In 

the absence of a phase-locked signal component, both the mean (bias) and the variance of 

the estimated PLV (i.e., the noise floor) are directly related to the number of trials. Taking 

advantage of this, in order to compare the SNR obtained using the cPCA method to the 

SNR from a single channel and from time-domain PCA, we normalize the PLV measure 

so that the noise floor is approximately normally distributed with a zero-mean and unit 

variance: 



16 

PLVz(f) = PLV(f)- J..tnoise 
a noise 

(2.8) 

where J..tnoise and anoise denote the sample mean and standard deviation of the noise floor 

estimated from the PLV or the ITC spectrum p(f) using a bootstrap procedure (Zhu et al., 

2013) . Alternately, similar estimates of noise can be obtained from p(f) by excluding the 

frequency bins that have stimulus-driven response components. PLVz(f) gives the PLV as 

a function of frequency measured in z-scores relative to the noise floor and hence quantifies 

the SNR obtained using different methods, allowing them to be compared directly. 

2.2.2 Simulations 

Simulated SSSR recordings were produced by generating 32 channels of data with each 

containing a 200 ms burst of a 100 Hz sinusoid at a different randomly chosen phase 

(distributed uniformly around the circle). Background EEG-like noise was added to gen­

erate 200 simulated trials of raw EEG data . The noise had the same spectrum and spatial 

(between-channel) covariance as resting state EEG (note that the background cortical EEG 

activity is itself one of the primary sources of noise for SSSR measurements). The phase 

of the 100 Hz sinusoid (the SSSR signal of interest), though not aligned across channels, 

was kept constant across trials within each channel. The root-mean-squared (RMS) SNR 

for a single trial in each channel was set at -40 dB. This is comparable to typical SNRs 

for SSSRs obtained with our EEG setup, where the SSSR amplitude is typically on the 

order of hundreds of nanovolts, while the background, narrowband EEG amplitude is on 

the order of tens of microvolts. The SSSR was then extracted from the simulated data 

using traditional time-domain PCA as well as cPCA. 
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2.2.3 EEG Data 

2.2.3.1 Participants 

Nine participants aged 20 to 40 were recruited from the Boston University community 

in accordance with procedures approved by the Boston University Charles River Campus 

Institutional Review Board and were paid for their participation. For all subject, pure­

tone audiometric thresholds were measured from 250 Hz to 8000 Hz at octave intervals. 

All participants had hearing thresholds within 15 dB of normal hearing level in each ear at 

all tested frequencies, and none had any history of central or peripheral hearing deficits. 

2.2.3.2 Stimuli, Data Acquisition and Processing 

Stimuli were generated offiine in MATLAB (Natick, MA) and stored for playback using a 

sampling rate of 48,828 Hz. Each trial consisted of a train of 72 J.LS-long clicks presented at 

a repetition rate of 100Hz for a burst period of 200 ms. The inter-trial interval was random 

and uniformly distributed between 410 ms and 510 ms. This 100 ms jitter ensured that 

EEG noise that is not in response to the stimulus occurs at a random phase between -7f 

and 1r for frequencies above 10 Hz. For eight of the nine participants, for a randomly chosen 

set of 500 out of the 1000 trials presented, the polarity of the click-trains was reversed. 

This allows responses phase-locked to the cochlear-induced envelopes to be separated from 

the responses phase-locked to the temporal fine structure of the acoustic input (Aiken and 

Picton, 2008; Ruggles et al., 2011). For one participant, the total number of trials was 

increased to 1500 (half presented in each polarity) to allow for a more detailed analysis of 

how the noise level varied with the number of trials for different analysis approaches (see 

section 2.2.3.3). Scalp responses to the click-train stimuli were recorded in 32 channels 

at a sampling rate of 16,384 Hz in a sound-shielded room using a BioSemi ActiveTwo 

EEG system. The measurements were then re-referenced offiine to the average potentials 

recorded at the two earlobes using additional surface electrodes. An additional reference 

electrode was placed on the seventh cervical vertebra ( C7) to allow for offiine construction 
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of a vertical montage channel for comparison (Gockel et al., 2011; Krishnan, 2006; Marsh 

et al., 1975). The continuous recording from each electrode was high-pass filtered in MAT­

LAB at 70 Hz using an FIR filter with zero group-delay to minimize signal contributions 

from cortical sources before epoching (Kuwada et al., 2002; Dolphin and Mountain, 1992; 

Herdman et al., 2002). Response epochs from -50 ms to 250 ms relative to the stimulus 

onset time of each trial were segmented out from each channel with the epochs going from 

-50 ms to 250 ms relative to the stimulus onset time of each trial, resulting in 300ms long 

epochs. Epochs with signals whose dynamic range exceeded 50J1Y in any channel were 

excluded from further analysis to remove movement and muscle activity artifacts. 

2.2.3.3 Analysis 

The epoched 32 channel data were processed using the cPCA method described above 

to provide estimates of PLV and PLVz. In order to taper the 300ms long epochs for 

frequency analysis, the time-bandwidth product was set to obtain a resolution 2W = 

6.66 Hz in the frequency domain. This allowed the use of one Slepian taper that had a 

spectral concentration c ~ 1. The vertical-montage single channel (Fz - C7) was used 

for comparison. In addition to comparing the cPCA result to the single channel, we also 

combined the 32 channels using traditional time-domain PCA and estimated the PLV from 

the combined result. Two separate analyses were performed to (1) compare the SNR across 

single-channel, time-domain PCA and the cPCA methods and (2) to estimate the number 

of cPCA trials needed using the cPCA method to roughly obtain similar noise floor levels 

as the single-channel approach for individual subject results. 

To compare the SNR across methods for a given number of trials, a bootstrapping 

procedure (Ruggles et al., 2011; Zhu et al., 2013) was used to generate estimated PLV dis­

tributions for each analysis approach that are approximately Gaussian distributed. This 

allowed simple, direct comparisons across the analysis methods. For each method (ver­

tical montage, time-domain PCA and cPCA), 200 trials of each polarity were drawn at 

random 800 times with replacement and the PLV values estimated for each draw. The 
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PLV estimates from different draws were then averaged in order to make the result more 

normally distributed before transforming them to z-scores to yield PLVz(f). The value of 

the z-score at the fundamental frequency (Fo = 100 Hz) was used as a measure of SNR, 

given that the noise distributions were equalized across the different methods. We then 

systematically evaluated the effect of increasing the number of recording channels on the 

SNR of the extracted SSSRs. 

In order to get an idea of the number of trials needed to obtain similar noise-floor levels 

as the more traditional, single-channel approaches at the level of an individual subject, 

we estimated the noise floor for a fixed pool of trials from the one subject for whom we 

measured responses to 1500 trials. For this analysis, we parametrically varied the number 

of trials we analyzed to determine how the noise floor varied with the trial pool size. The 

overall procedure is described step by step as follows: 

1. Fix the analysis pool to the first Npool trials acquired from the subject. 

2. From the fixed pool of Npool trials, draw Npool trials with replacement. 

3. For each draw, estimate the PLV spectrum using the cPCA method or for the vertical 

montage channel. 

4. Repeat the drawing (with replacement) and PLV estimation procedure for a total of 

M draws with the same fixed pool of Npool trials. 

~ 

5. Estimate the variance of the noise floor CT2 (Npool), for the fixed pool of trials using 

the plugin formula (Bickel and Freedman, 1981) 

2( ) - 1 2 
IJ Npool - M _ 

1 
S 

where s2 is the sample sum of squared central deviations over theM draws. 

(2.9) 

6. Repeat the procedure for different pool sizes by progressively increasing Npool to 

obtain the noise-floor estimate curves for the cPCA and the single-channel methods. 
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We performed this analysis while varying Npool from 100 to 1500 in steps on 50, with 

the variance estimate calculated using M = 50 draws for each trial pool. By using an 

individual subject's data and by fixing the pool of trials at each stage, this procedure 

allows us to estimate how many trials are needed using a given analysis method to achieve 

a given amount of noise suppression. This analysis also allows us to compare the noise 

floor obtained using the traditional single-channel montage with that obtained using our 

multichannel approach, for a fixed number of trials. 

2.3 Results 

2.3.1 Simulations 

Figure 2.2A show sample SSSRs obtained by averaging 200 trials on a single channel (top 

panel), using time-domain PCA (middle panel), and using the cPCA methods (bottom 

panel). Though the SSSR extracted by time-domain PCA shows some improvement in 

SNR relative to using a single electrode, the gain in SNR using the cPCA method is 

greater. This is further elucidated in Figure 2.3A, which shows the relationship between 

the phase delays estimated using the cPCA method and the original simulated phase delays 

for a typical simulation. The estimated signal phase at a given channel corresponds very 

closely to the true simulated phase of the signal in that channel. This shows that the 

complex eigenweights v(f) obtained from the cross-channel spectral density matrix M(f) 

capture the relative phase shifts between the individual channels. Figure 2.3B shows the 

relationship between the errors in the estimation of phase shift and the magnitude of 

the eigenweights across the different channels. The magnitude of the phase estimation 

error is inversely related to the channel weight magnitudes. This result shows that the 

channels with poor SNR have the largest phase estimation errors. Thus, using this method, 

the relative contribution of a given channel to the final extracted SSSR and estimate of 

PLV depends on the reliability of the channel; the channels that have poorly estimated 

phases contribute relatively little to the final signal estimate. Finally, an assessment of 
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Figure 2.2: Simulation results: (A) The trial-averaged response at a single simulated chan­
nel (top panel), the extracted SSSR using time-domain PCA (middle panel), and the 
extracted SSSR using cPCA (bottom panel) are shown. Though the time-domain PCA 
has a greater SNR compared to any single channel, the cPCA method produces SSSRs of 
significantly higher SNR than does time-domain PCA. (B) The normalized eigenweights 
for the different principal components using traditional time-domain PCA (top panel) and 
cPCA (bottom panel) for the simulated EEG data. The cPCA method captures most of 
the signal energy in one component, showing that one weight vector accounts for both the 
magnitude and phase variations across channels. 

the number of significant principal components shows that , in contrast to time-domain 

PCA, where multiple components are needed to capture all signal energy (top panel of 

Figure 2.2B) , with the cPCA method, the majority of the signal energy is captured by 

the single extracted principal component (bottom panel of Figure 2.2B). This makes sense, 

given that the only parameters that distinguish between channels, namely the channel SNR 

and relative phase, are both accounted for by the complex weight vector obtained in the 

cPCA method. The magnitudes of the eigenweights account for the relative SNRs and 

between-channel correlations; the phase of the eigenweights accounts for the discrepancies 

in the phase alignment. 
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Figure 2.3: Simulation results: (A) Relationship between the true simulated phase and 
the phase shifts ·estimated using the cPCA method for a typical simulation. The cPCA 
method produces accurate estimates of the phase delay necessary to align the channels. (B) 
Phase estimation errors are inversely related to t he channel weights (shown for a typical 
simulation). Specifically, the channels with larger phase estimation error have a lower 
relative weight, and hence contribute weakly to the final extracted SSSR, while channels 
with accurately estimat ed phases are weighted more strongly. 



23 

2.3.2 Human EEG Data 

We applied the cPCA method to SSSR recordings obtained in response to click trains with 

a fundamental frequency of 100 Hz and harmonics up to 10 kHz. Estimates of the cross­

channel spectral density matrices were obtained using 300 ms epochs and a time-bandwidth 

product of 2. This yielded an estimate of the complex cross-spectral density matrix M(f), 

with a frequency resolution of 6.66 Hz. For a different, larger choice of frequency resolution, 

multiple, orthogonal tapers can be obtained that have the same time-bandwidth product, 

providing a multitapered estimate. Here, we used only a single taper, yielding the maximum 

possible frequency resolution. 

The top, middle, and bottom panels of Figure 2.4A show the SSSR phase locking 

values obtained using the vertical montage channel, traditional time-domain PCA, and 

cPCA, respectively, for a representative subject. All three methods produced comparable 

phase-locking estimates. However, analogous to the simulation results , the variance of 

the noise floor (seen at the non-harmonic frequency bins where there is no signal) for the 

individual channnels and the traditional PCA method were significantly higher than for 

the cPCA method. This is quantified for all nine subjects in Figure 2.4B, which shows the 

variance of the noise floor for the single-channel montage and for the multichannel estimate 

using the cPCA method. It is clear from visual inspection that for each subject, the cPCA 

method using 32 channels reduced the noise-floor variance, rendering the stimulus-related 

response peaks at the fundamental and harmonic frequencies more easily distinguishable 

from the noise floor. 

This was tested statistically using a permutation procedure; the variances of the PLV 

estimates (one estimate per subject per method, i.e. three numbers per subject) obtained 

from the bootstrap PLV procedure for the different analysis methods (single-channel, time­

domain PCA and cPCA; labelled method) were pooled together. For every subject, the 

method labels associated with the three variance estimates were randomly permuted. For 

each permutation, the within-subject difference in variance between pairs of methods was 
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calculated. These within subject variance differences between method pairs were pooled 

across subjects and across permutations to obtain null distributions for the differences in 

variance across the methods. The null distribution thus obtained is the non-parametric 

analog of the null distribution assumed in parametric within-subject tests (such as the 

paired t-test) and represents the variance differences that would have been obtained if the 

methods yielded the same variance on an average. The differences between the variances 

obtained from the correctly labelled methods were then compared to the generated null 

distribution to yield a p-value. For the same pool of trials, the cPCA method yielded 

significantly lower variance than both a single-channel analysis (p < 0.001) and the time­

domain PCA (p < 0.01). 

The statistical superiority of the cPCA method is illustrated further in Figure 2.5A, 

which shows, the PLVz estimates obtained using the noise-normalization procedure previ­

ously described for one representative subject. At each of the harmonics of 100 Hz, the 

z-scores are higher for the cPCA method than for traditional methods, indicating a gain 

in SNR. In order to quantify the gain in SNR further, the PLVz values from the 100 Hz 

bin are compared to the PLVz values obtained using the best channel for each subject by 

computing the ratio of the z-scores. This procedure allows us to quantify parametrically, 

the gain in SNR as more recording channels are included for both the traditional time­

domain PCA and the cPCA methods. Figure 2.6 shows the comparison as the number of 

recording channels is increased from 1 to 32, averaged over 9 subjects. For this plot, the 

channels were ordered as follows: Channel 1 is the best channel for the individual subject. 

Channel 2 provides the maximum gain in SNR out of the remaining 31 channels when 

added to channel 1. Channel 3 provides the maximum SNR gain out of the remaining 30 

channels when added to channels 1 and 2, and so on for each method. The theoretical 

gain in SNR that would be obtained when combining independent identically distributed 

measurements is shown in red for reference. The SNR increases as more and more channels 

are added for both the traditional PCA and the cPCA methods. Initially, the gain in SNR 

is rapid as more channels are included in the SSSR extraction, almost reaching the the-
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Figure 2.4: (A) Raw phase-locking value (PLV) scores obtained from a representative 
subject using a single channel (top) , time-domain PCA (middle), and cPCA (bottom) 
for a 100 Hz click-train burst stimulus. The PLV obtained using the three methods are 
comparable at signal frequencies (multiples of 100 Hz), but differ in the variability of the 
noise floor. The cPCA method hence produces PLV values that are statistically more 
robust than the other methods. (B) The noise floor variance estimated using the bootstrap 
procedure is shown for each of the nine subjects for the single-channel montage and for 
the multichannel estimate using the cPCA method. It is clear from visual inspection, 
and confirmed using the permutation procedure, that the noise-variance was smaller using 
cPCA that for the other methods for every subject, rendering the responses more easily 
distinguishable from noise. 
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oretical maximum achievable when each channel has independent, identically distributed 

noise. However, the gain appears to plateau as the electrode-density on the scalp increases. 

From Figure 2.6, it is evident that the cPCA method outperforms time-domain PCA for 

all array sizes (p < 0.0001; permutation test). Morever, on average, SNR gains of about 3 

can be obtained with as few as 10 sensors if the optimal arrangement was somehow known 

a priori. However, it has to be acknowledged that here, the sorting of channels is done 

a posteriori, optimally selecting each channel that is added. Thus in practice the gain 

in SNR that one would achieve by increasing the number of sensors is likely to be more 

gradual, with the plateau not being reached until larger array sizes. Nevertheless, to obtain 

a fixed SNR using multichannel recordings with typical EEG array sizes, the duration of 

the recording session could be significantly shorter when multiple recording channels are 

combined than for either single-channel recordings or using time-domain PCA. 

To obtain a better understanding of the actual reduction in the number of trials that 

need to be presented to obtain similar noise suppression as 1000 presentations with a single­

channel montage at the level of the individual subject, the variance estimation procedure 

with fixed data pools was employed as described in section 2.2.3.3. Figure 2.5B shows the 

results obtained. In both the cPCA and the vertical-montage cases, the variance drops 

inversely as the number of trials (Npool) increases. The best fitting 1/Npool functions are 

superposed to guide the eye. It is evident that the cPCA method needs only about 250 

trials to reduce the noise floor to the same level as 1000 trials with the single channel 

montage. The procedure was repeated with the remaining 8 subjects to estimate the 

number of trials required with the cPCA procedure to achieve the same noise variance as 

the single channel montage. On average, the cPCA allowed for a 3.4 fold reduction in the 

number of trials needed. Thus, real data confirm the efficacy of using complex PCA with 

multichannel recordings to increase the SNR of SSSR recordings and significantly reduce 

data acquisition time. 



A Single Channel 

I40~ 
QJ 20 
Ul 
·a . 
c Oc_~~~~~~~~~~~~~ 
~ 100 200 300 400 500 600 

-~ Time Domain PCA 

~40~ 
'(' 20 

1:::!-
QJ 0 
~ ~1~00~~2~0~0~=3=00~~4~0~0~~5~0=0~~60~0~ 

> 
g> Complex PCA 

~40liLuJ :a 20 
.<:: 
a. 
a~~~~~~~~~~~~~~ 

100 200 300 400 500 600 
Frequency (Hz) 

27 

~ ·;:: 
;:J 

20.30 
;:J 

0 
1l 0.25 
ca 
* 
"" Q,0.20 
8 
::; 
0..0.15 
-c 
~ 
ca 
§-0.10 
VI 

B 

I 
I 
I 
I 
I 
I 
I 
IO 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I •. . . . . . ' 

' •• . •, .... , . 
'•, 

~­

1: 
Complex PCA 1 

Vertical Montage Channell 

'0 
eo.os 
c • • ............ !. 

·~ .........._._ .................. ;-- ...... ! .. 

~ 0 .00~----;;:;;-;:;-~~=:;:::;;::;;~::;:;;~~~-:=:_·_J 
0 200 400 600 800 1000 1200 1400 1600 

Number of Trials 

Figure 2.5: Individual subject results: (A) Z-scored PLV values obtained from a representa­
tive subject using a single channel (top), time-domain PCA (middle), and cPCA (bottom) 
for the 100 Hz click-train burst stimuli. Here the noise-floor in all three cases has been 
normalized to have a mean of zero and a variance of one (scaling the PLV into a z-score). 
The z-scores at the harmonics of 100 Hz thus indicate the SNR obtained using the three 
methods. The cPCA method has a significantly higher SNR than both a single-channel 
and the time-domain PCA. (B) Comparison of noise floor variance estimates as a function 
of the number of trials between the cPCA method and the traditional vertical montage 
channel from individual subject data. The arrow highlights the number of trials that may 
be required using the cPCA approach to obtain similar levels of noise suppression as from 
1000 trials using the traditional approach. 
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Figure 2.6: Real EEG results: The gain in SNR as the number of recording channels is 
increased, quantified as the gain in z-score relative to using a single channel, time-domain 
PCA, and cPCA methods. As more channels are added, both the t ime-domain PCA 
and the cPCA methods provide a gain in SNR, but the cPCA method produces larger 
improvements. The theoretical gain t hat would be obtained by combining independent, 
identically distributed measurements is shown in red for reference. Initially, the SNR 
gain approaches t he reference curve, but then quickly plateaus. This suggests that the 
noise source activity captured in different channels are nearly independent when there 
are a small number of (optimally selected) channels included, but that as the electrode 
density increases, the noise in the different channels become correlated. Note, however 
that the rapid increase and subsequent plateau in SNR with increasing number of channels 
is obtained given the a posteriori knowledge of the best channels to select. In practice, the 
gain in SNR with increasing number of channels would be more gradual, since the channels 
would not be selected optimally from among a large set, but would instead be selected a 
priori. 
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2.4 Discussion 

Brainstem steady state responses are increasingly being used to investigate temporal coding 

of sound in the auditory periphery and brainstem. Here, we demonstrate the advantages 

of multichannel acquisition of SSSR.s, which are traditionally acquired with a single chan­

nel montage. Our novel approach combines the information from multiple channels to 

obtain a significant gain in response SNR using complex frequency domain principal com­

ponent analysis. We illustrate the efficacy of the method using simulated data. In order 

to demonstrate that the method is applicable and advantageous in practice, we also apply 

the analysis to human EEG recordings from a cohort of nine subjects . The multichannel 

approach makes it possible to obtain significantly higher SNR for a given number of tri­

als, or equivalently to significantly reduce the number of trials needed to obtain a fixed 

noise-level. 

2.4.1 Clinical use 

In addition to use in basic neurophysiological investigation of auditory function, the re­

duction in data acquisition time afforded by our multichannel approach renders the SSSR 

significantly more suitable for clinical use. ASSRs in general, and SSSR.s in particular, have 

been suggested for clinical use for objective, frequency-specific assessment of the early au­

ditory pathway including for assessment of hearing sensitivity, sensorineural hearing loss, 

and auditory neuropathy /dys-synchrony (see Picton et al., 2003a; Krishnan, 2006; Starr 

et al., 1996, for reviews). While the cortical-source 40-Hz ASSR amplitude depends on the 

state of arousal (e.g., it changes if the subject is asleep or under anesthesia) , the higher­

frequency SSSRs are relatively unaffected (Cohen et al., 1991; Lins et al., 1996; Picton 

et al., 2003b). This, along with the fact that SSSRs can be recorded passively, makes the 

SSSR suitable for objective clinical assessment of auditory function in special populations 

including infants and neonates (Rickards et al., 1994; Cone-Wesson et al., 2002). There 

appears to be an emerging consensus that the ASSR will play an important role in clinical 
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audiology in the future (Korczak et al., 2012). 

2.4.2 Set-up time versus recording length 

The obvious downside to using multichannel recordings to improve the SNR for a given 

recording duration is the additional time required to place multiple scalp electrodes. For 

a trained graduate student setting up 32 recording channels with our Biosemi Activeii 

EEG system, we find that set up takes about 15 minutes on average. On the other hand, 

the use of multichannel recordings with the cPCA method allows us to obtain stable PLV 

and ITC measurements (i.e., much smaller noise levels than obtained with the 1000 trials 

using single channel measurements) with about 7-10 minutes of recording for the typical 

stimuli we use (typically, 200-300 ms bursts of amplitude modulated tones, click trains, 

spoken syllables or the like, with inter-stimulus gaps of about 0.5 seconds), allowing us to 

obtain responses to as many as six different experimental manipulations within our typical 

recording session of 1 hour. 

2.4.3 The role of raw-signal narrowband SNR and other sources of variability 

We have shown that the SNR of the extracted SSSR using the cPCA method is greater 

than when using a single channel or time-domain PCA. However, it is important to note 

that the SNR in the raw recordings (at each frequency bin) directly affects PLV estimates. 

For clarity, we shall refer to this raw-signal SNR in the frequency domain as the narrow­

band SNR. While the relationship between the narrowband SNR and conventional response 

analysis metrics such as time domain amplitude or spectral power is straightforward, met­

rics of phase locking such as PLV and ITC depend non-linearly on the narrowband SNR. 

However, since the distributions of the PLV and ITC only depend on the narrowband SNR 

and the number of trials used to calculate them, the effects are easy to simulate. To illus­

trate the effect of narrowband SNR on PLV at a particular frequency bin, the signal phase 

¢8 in the frequency bin was modelled as coming from a von Mises distibution (a circular 

normal density) and the noise phase ¢n as coming from a uniform distribution in ( -7r, 7r). 
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Note that the use of a 100 ms jitter in stimulus presentation ensures that for the SSSR 

frequencies of interest, the noise phase is indeed distributed uniformly over the circle, as 

modeled here. 50 independent simulations were performed, each with 400 independent 

draws of signal and noise phase. The narrowband SNR (20logwA) was set by adding the 

two phasors with the appropriate relative amplitude to obtain the simulated measurement, 

Xsim(f), in the frequency bin: 

(2 .10) 

The value of A was then systematically varied; the resulting growth of the PLV with 

narrowband SNR is shown in Figure 2.7. For a signal with phase ¢8 drawn from the von 

Mises density j(B JJ.L, K), where f-L is the mean phase parameter and K parametrizes the 

concentration of the phase distribution around the mean, the true PLV can be calculated 

analytically: 

j(BJJ.L, K) 
e~cos(O-J.L) 

(2.11) 
21r IoK 

PLV JE(ej6)1 (2 .12) 

h(K) 
(2.13) 

Io(K) 

where Io and h are the oth and the pt order modified (hyperbolic) Bessel functions of 

the first kind and E(.) is the expectation operator with respect to the density j(BJJ.L, K). 

As seen in Figure 2.7, once the narrowband SNR is sufficiently large, the PLV quickly 

asymptotes to the true phase locking value and then becomes insensitive to the SNR. 

Morover, we find that this behavior does not change if we draw the signal phase from 

distributions with higher skew or kurtosis. Thus, in this sense, the PLV estimates yield the 

"true" phase locking values for sufficiently high narrowband SNR. This observation reveals 

another benefit of using multichannel recordings along with the cPCA method. Since the 



32 

PLV = 0.33 -- true 

·- ·- ·- PLVtrue = 0.25 

o~----~----~----~----~----~----~ 
-30 -20 -1 0 0 1 0 20 

Narrowband SNR (dB) 
30 

Figure 2. 7: Simulations showing the effect of narrowband SNR in the raw recording on the 
non-linear relationship between the estimated PLV and the true PLV. At sufficiently high 
narrowband SNR, the PLV estimates converge to the true PLV. Since the cPCA method is 
more likely to push the narrowband SNR into this convergence region, the PLV calculated 
from the SSSR extracted using the cPCA method is more likely to represent the true PLV 
of the underlying response than are traditional methods. 

cPCA method effectively combines channels optimally before the PLVs are computed, it is 

more likely to push the narrowband SNR of single trials into the saturation region of the 

PLY-narrowband SNR curve (Figure 2.7). As a result, the PLV estimate is more likely to 

lie closer to its true underlying value and be less biased by the noise in the measurements. 

This makes comparisons of phase-locking across conditions and individuals more reliable. 

In summary, not only does the cPCA method produce PLV estimates with a lower variance, 

it also increases the likelihood that these estimates are closer to the true underlying PLV. 

Further study is needed to assess if in practice, the narrowband SNR is indeed in the 

saturation region. 

Another important factor to be considered in interpreting the efficacy of the cPCA 

method is the inherent session-to-session physiological variability of the SSSR itself. This 

can be accomplished by systematically studying the test-retest reliability of the PLV es-

timates for a given stimulus across multiple recording sessions. We are not aware of any 
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studies reporting the across-session variability of the SSSR. If the inherent session-to-session 

variability of the SSSR is very large, the improvement in SNR obtained using multichannel 

measurements might not be useful for studies comparing groups of subjects, since the im­

provement in SNR when extracting the SSSR from single-session data might be irrelevant 

in the face of large session-to-session variability that (if present) would would undermine 

meaningful comparisons of measurements across subjects. On the other hand, for within­

subject, across-condition comparisons, the improvement in SNR is likely to be very useful 

in three ways: 

1. The cPCA method allows many more stimulus manipulations or conditions to be pre­

sented in a single session, thereby removing any across-session variability confounds 

that may otherwise reduce the power of across-stimulus comparisons. 

2. By reducing the variance of the PLV estimates (within session but across different 

subsets of trials, i.e., primarily owing to background noise) , within-subject differences 

across conditions can be more more robustly compared. 

3. By allowing for fewer trials to be presented, the cPCA method also helps to reduce 

any non-stationary effects of long-term adaptation and learning that are likely to be 

present when it is necessary to collect a large number of trials. 

Indeed, in cases where cortical and subcortical data can be gathered simultaneously, the 

benefits of cPCA are likely to be particularly appreciated, reducing the number of trials 

necessary to estimate brainstem responses so that they can be obtained "for free" while 

cortical responses are gathered. 

2.4.4 Source separation versus cPCA 

Here, we combine recordings from multiple channels to yield a single SSSR and correspond­

ing phase locking value estimates with low variance, so that comparisons across conditions 

are more reliable than traditional methods. However, when multiple generators are indeed 
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active, the physiological interpretation of what this SSSR represents is tricky. For frequen­

cies in the range of 70- 200 Hz, the group delay of the SSSR is consistent with a dominant 

generator coming from a neural population in the rostral brainstem/midbrain, likely the 

inferior colliculus (IC) (Dolphin and Mountain, 1992; Herdman et al., 2002; Smith et al., 

1975; Sohmer et al., 1977; Kiren et al., 1994). Data from single-unit recordings of responses 

to amplitude-modulated sounds suggests that a transformation from a temporal to a rate 

code occurs as the signals ascend the auditory pathway, with the upper limit of phase­

locking progressively shifting to lower modulation frequencies (Frisina et al., 1990; Joris 

et al., 2004; Joris and Yin, 1992; Krishna and Semple, 2000; Nelson and Carney, 2004). 

Because, for broadband sounds, the SSSRs are dominated by responses phase-locked to 

cochlear-induced envelopes (Gnanateja et al., 2012; Zhu et al., 2013), it is likely that the 

dominance of response generators higher up along the auditory pathway decreases at higher 

response frequencies. Thus, at higher modulation frequencies, more peripheral sources con­

tribute appreciably to the SSSR, consistent with non-linear phase-response curves obtained 

at higher frequencies (Dolphin and Mountain, 1992). 

One approach in SSSR data analysis would be to try and separate the multiple sources 

contributing to the SSSR at a given frequency. However, since the spatial resolution of 

EEG is poor, particularly for subcortical sources, separating the sources based on geometry 

alone is not feasible (Pascual-Marqui, 1999; Baillet et al., 2001). The source segregation 

problem is ill-posed in the sense that multiple source configurations can yield the same 

measured fields at the scalp level. Though it may be possible to sufficiently constrain the 

source estimation with the use of an elaborate generative model of the SSSR that takes into 

account the physiological properties of the neural generators along the auditory pathway 

(Dau, 2003; R¢nne et al., 2012; Nelson and Carney, 2004), at present, not enough data 

is available from human listeners to specify such a model. Thus, we take the alternate 

approach of not trying to separate the sources contributing to the total observed signal. 

Instead, we combine measurements in order to extract a SSSR response that is robust 

and has low variance. This compound SSSR allows for more reliable comparisons across 
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stimulus manipulations than traditional acquisition/ analysis approaches. 

2.4.5 Optimal recording configuration 

As shown in Figure 2.6, as more recording channels are added, the SNR gain is initially steep 

and then plateaus. This suggests that the noise in the different electrodes are correlated 

when the number of channels is high (i.e., high channel density on the scalp). This begs the 

question as to what the best recording configuration would be in terms of the number of 

channels and their locations on the scalp. Answering this question involves consideration 

of two aspects of the measurements: (1) correlation of the noise between channels and 

(2) the variation of the signal strength itself across the channels. To appreciate a simple 

trade-off that exists between these two aspects, consider a pair of channels from distant 

scalp locations, with one channel having good sensitivity to the signal of interest and the 

other with poor or moderate sensitivity. When these two channels are combined with 

similar weights, though the noise is cancelled better, the signal would also be diluted by 

the inclusion of the channel with poor sensitivity. The sensitivity of different channels to 

the signal also depends on the choice of the reference and the tissue geometry of individual 

subjects, further complicating the discovery of an optimal recording configuration. Thus, 

though the results of the current study do not reveal an obvious recommendation for 

a subject-invariant, optimal configuration of electrodes for a small number of channels, 

typical EEG array sizes and configurations such as the standard 32 channel montage provide 

a large increase in SNR. 

2.5 Conclusions 

The cPCA approach to extracting SSSRs from multichannel measurements yields results 

that are significantly more reliable and robust than traditional single channel measure­

ments. As a result, it is possible to record brainstem steady-state responses efficiently. 

This increased efficiency allows for SSSRs to be acquired simultaneously with cortical au-



36 

ditory responses without a significant increase in the length of the recording session. 



Chapter 3 

Cochlear neuropathy and the coding of 

supra-threshold sound 

Preamble 

This chapter presents a detailed review of the findings that noise-exposure and aging can 

result in the loss of auditory nerve fibers even when cochlear hair cells and audiometric 

thresholds are intact. The implications of these findings to supra-threshold sound coding 

are discussed and a connection between such cochlear neuropathy and individual differences 

in normal hearing listeners in hypothesised. In addition a quantititive model of subcor­

tical steady state responses is developed and used to make predictions that are tested 

in Chapter 4. The work was completed between Sep 2011 and Oct 2013 and published 

as a peer-reviewed journal article in Frontiers in Neuroscience (Bharadwaj et al., 2014b) . 

Co-authors Luke Shaheen and Charles Liberman wrote the sections reviewing the animal 

literature on cochlear neuropathy. Sarah Verhulst made important contributions to the 

writing of the sections involving otoacoustic emissions. Barbara Shinn-Cunningham made 

important contributions to the introduction and several other sections of the writing. The 

manuscript is reproduced here without revision. 

Abstract 

Many listeners with hearing thresholds within the clinically normal range nonetheless com­

plain of difficulty hearing in everyday settings and understanding speech in noise. Con-
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verging evidence from human and animal studies points to one potential source of such 

difficulties: differences in the fidelity with which supra-threshold sound is encoded in the 

early portions of the auditory pathway. Measures of auditory subcortical steady-state re­

sponses in humans and animals support the idea that the temporal precision of the early 

auditory representation can be poor even when hearing thresholds are normal. In humans 

with normal hearing thresholds, behavioral ability in paradigms that require listeners to 

make use of the detailed spectra-temporal structure of supra-threshold sound, such as 

selective attention and discrimination of frequency modulation, correlate with subcorti­

cal temporal coding precision. Animal studies show that noise exposure and aging can 

cause a loss of a large percentage of auditory nerve fibers without any significant change 

in measured audiograms. Here, we argue that cochlear neuropathy may reduce encod­

ing precision of supra-threshold sound, and that this manifests both behaviorally and in 

subcortical steady-state responses in humans. Furthermore, recent studies suggest that 

noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate 

nerve fibers. Based on our hypothesis, we suggest some approaches that may yield par­

ticularly sensitive, objective measures of supra-threshold coding deficits that arise due to 

neuropathy. Finally, we comment on the potential clinical significance of these ide~ and 

identify areas for future investigation. 

3.1 Introduction 

A significant number of patients seeking audiological treatment have normal hearing thresh­

olds (NHT) , but report perceptual difficulties in some situations, especially when trying 

to communicate in the presence of noise or other competing sounds (e.g., Hind et al., 

2011). Such listeners are typically said to have central auditory processing disorders, more 

recently known simply as auditory processing disorders (CAPD / APD; Catts et al., 1996; 

Chermak and Musiek, 1997), a catchall diagnosis testifying to how little we know about 

the underlying causes. 
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In some ways, the fact that having NHTs does not automatically predict good perfor­

mance in these conditions is not particularly surprising. Audiometric thresholds measure 

the lowest intensities that a listener can detect. In contrast, the ability to analyze the 

content of sound requires a much more precise sensory representation of acoustic features 

across a large dynamic range of sound intensities. Specifically, current audiometric screen­

ings test the lowest level of sound listeners can hear at various frequencies, but they do 

not test whether they can make judgements about the spectral or temporal content of the 

sound, analogous to seeing an eye doctor and being asked whether you can tell that light 

is present, without worrying about whether or not you can tell anything about the object 

the light is coming from. 

Consistent with the idea that analysis of supra-threshold sound differs amongst NHT 

listeners, many APD patients seek help precisely because they notice difficulties in situ­

ations requiring selective auditory attention (Demanez et al., 2003), which places great 

demands on the auditory system. Moreover, recent laboratory evidence suggests that the 

prevalence of NHT listeners with APD-like symptoms may be greater than one might pre­

dict based on the number of people seeking audiological treatment. Specifically, in the lab, 

NHT listeners have vastly different abilities on the types of tasks that typically frustrate 

APD listeners. One recent study shows that when NHT subjects are asked to report spo­

ken digits from one direction amidst otherwise similar speech, performance ranges from 

chance levels to nearly 90% correct, with the bottom quartile of listeners falling below 60% 

correct (Ruggles and Shinn-Cunningham, 2011). Crucially, when subjects made errors, 

they almost always reported a digit coming from a non-target direction rather than an un­

spoken digit, suggesting that differences were unlikely due to higher-level deficits involving 

language such as differences in speech intelligibility. Instead, the errors appeared to be due 

to failing to select the target stream from amidst the maskers. Yet none of the listeners in 

the study complained of hearing difficulties, even those at the bottom of the distribution; 

moreover, none had entertained the idea of seeking audiological treatment. 

Differences in higher-order processing clearly contribute to individual differences in 
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complex tasks such as the ability to selectively attend, process speech, or perform other 

high-level tasks (for instance see Surprenant and Watson, 2001). However, in this opinion 

paper, we focus on how low-level differences in the precision of spectra-temporal coding 

may contribute to differences in performance. We argue that poor sensory coding of supra­

threshold sound is most likely to be revealed in complex tasks like those requiring selective 

attention, which helps to explain the constellation of symptoms that lead to APD diagnoses. 

Selective auditory attention hinges on segregating the source of interest from competing 

sources (object formation; see Bregman, 1990; Darwin and Carlyon, 1995; Alain et al., 2000; 

Carlyon, 2004), and then focusing on that source based on its perceptual attributes (object 

selection; see Shinn-Cunningham, 2008; Shinn-Cunningham and Best, 2008) . Both object 

formation and object selection rely on extracting precise spectra-temporal cues present in 

natural sound sources, which convey pitch, location, timbre, and other source features. 

Given this, it makes sense that listeners with poor supra-threshold coding fidelity notice 

problems in crowded social settings, an ability that depends upon robust coding of supra­

threshold sound features. Here, we argue that the fidelity with which the auditory system 

encodes supra-threshold sound is especially sensitive to the number of intact auditory nerve 

fibers (ANFs) encoding the input. In contrast, having NHTs likely depends only on having 

a relatively small but reliable population of ANFs that respond at low intensities . Indeed, 

one recent study shows that, in animals, audiometric thresholds can be normal even with 

only 10-20% of the inner hair cells (IHCs) of the cochlea intact (Lobarinas et al., 2013). 

Our hypothesis is that the convergence of multiple ANFs, while possibly redundant for 

detecting sound, is critical for analyzing supra-threshold sound. 

In this paper, we first consider how supra-threshold sound content is normally encoded, 

focusing particularly on temporal coding. We then review animal evidence for cochlear 

neuropathy, a reduction in the number of ANFs responding to supra-threshold sound. We 

argue that this neuropathy can help explain why some listeners have difficulty performing 

selective attention and other supra-threshold tasks, despite having NHTs. We discuss 

evidence that lower-spontaneous rate ANFs (lower-SR ANFs; i.e. , those with rates below 
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about 18 spikes/s) may be especially vulnerable to damage. We hypothesize that lower-SR 

ANFs may play a critical role in coding supra-threshold sound features, particularly under 

challenging conditions. We then discuss the use of the subcortical steady-state response 

(SSSR) to quantify temporal coding in the Frontiers in Systems Neuroscience early portions 

of the auditory pathway, including the challenges inherent in interpreting the SSSR and 

relating it to single-unit neurophysiology. With the help of simple models of brainstem 

responses, we suggest measures that may emphasize the effect of neuropathy on the SSSR. 

Using these ideas, we suggest future experiments to (1) test our hypothesis that cochlear 

neuropathy contributes to the supra-threshold coding deficits seen in some listeners; and 

(2) develop sensitive, objective correlates of such deficits that may be useful, clinically. 

3.2 Coding of supra-threshold sound 

3.2.1 The diversity of auditory nerve fibers 

ANFs comprise the sole conduit for information about the acoustic environment, carrying 

spike trains from the cochlea to the central auditory system. As schematized in Figure 3.1A, 

each ANF contacts a single IHC via a single synapse. At each synapse, an electron-dense 

ribbon sits near the pre-synaptic membrane surrolmded by a halo of glutamatergic vesicles. 

Sound in the ear canal leads to cochlear traveling waves that deflect IHC stereocilia, causing 

the opening of mechanoelectric transduction channels and a graded change in the IHC 

membrane potential. At the IHC's synaptic pole, this sound-driven receptor potential 

drives an influx of calcium causing an increased probability of fusion of synaptic vesicles 

with the IHC membrane in the region of the ribbon. Glutamate released into the synaptic 

cleft binds to the AMP A-type glutamate receptors at the post-synaptic active zone, causing 

depolarization and action potentials in the ANF. Between 10 and 30 ANFs synapse on each 

IHC, depending on species and cochlear location (Figure 3.1B), and there are roughly 3500 

IHCs along the 35 mm cochlear spiral in humans. Thus, all the information we receive about 

our acoustic world is carried via the roughly 30,000 ANFs emanating from each cochlea. 
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ANFs in the mammalian inner ear can be subdivided into three functional groups. The 

classification is based on spontaneous discharge rate (SR; i.e., the spike rate in the absence 

of sound), because it is easy to quantify, but the key functional differences are in the 

sensitivity to sound. High-SR fibers have the lowest thresholds, low-SR have the highest 

thresholds, and medium SR thresholds are intermediate between the two (Figure 3.2A). 

The distribution of SRs is fundamentally bimodal (Figure 3.2B) with roughly 40% in the 

lower peak (SR < about 18 spikes/second), which includes both low-SR and medium-SR 

fibers (15% and 25% of all ANFs, respectively) and 60% in the higher peak (Liberman, 

1978). In this paper, we shall use the term lower-SR ANFs to refer jointly to the low- and 

medium-SR groups, which are sometimes distinguished in the literature. 

Anatomical studies suggest that all three ANF types can innervate the same IHC, how­

ever, lower-SR fibers have thinner axons, fewer mitochondria, and tend to synapse on the 

modiolar side of the IHC. In contrast, high-SR fibers have thicker axons, more mitochon­

dria, and synapse on the pillar side (Liberman, 1982). There are also systematic differences 

in the sizes of presynaptic ribbons and post-synaptic glutamate-receptor patches (Liber­

man et al., 2011). All three ANF types send their central axons to the cochlear nucleus 

(CN), where they branch, sending collaterals to the anteroventral, posteroventral, and dor­

sal subdivisions. Although branches from all SR types are present in each CN subdivision, 

low- and medium-SR fibers give rise to more endings than high-SR fibers , especially in 

the small-cell cap of the anteroventral CN (Ryugo and Rouiller, 1988; Liberman, 1991). 

Hence, lower-SR fibers may have more downstream influence than suggested by the fact 

that they make up less than half of the population at the level of the auditory nerve (AN). 

The diversity of ANF threshold sensitivity is believed to be important in intensity coding 

in the auditory system, where level discrimination abilities are near-constant over a range 

of 100 dB or more (Florentine et al. , 1987; Viemeister, 1988). This large dynamic range 

may be mediated, at least in part, by the differing dynamic ranges of low-, medium-, and 

high-SR fibers . As represented in Figure 3.2C, high-SR fibers, whose response thresholds 

are at or near behavioral detection threshold, likely determine the ability to detect sounds 
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in a quiet environment. However, 20-30 dB above threshold, their discharge rate saturates. 

By virtue of their higher thresholds and extended dynamic ranges, the lower-SR fibers 

may be particularly important for extending the dynamic range of hearing. Possibly more 

important is their contribution to hearing in a noisy environment. Activity of high-SR 

fibers is relatively easy to mask with continuous noise, as schematized in Figure 3.2D. Be­

cause they are so sensitive to sound, even near-threshold noise increases the background 

discharge rate of high-SR fibers. This continuous activation causes synaptic fatigue (i.e., 

vesicle depletion) and thus also decreases their maximum discharge rate to tone bursts or 

other transient signals that might be present (Costalupes et al., 1984; Costalupes, 1985). 

By virtue of their higher thresholds, the lower-SR fibers are more resistant to background 

noise. Thus with increasing levels of continuous broadband masking noise, lower-SR fibers 

likely become increasingly important to the encoding of acoustic signals, because they will 

increasingly show the largest changes in average discharge rate in response to transient 

supra-threshold stimuli (Figure 3.2D; also see Young and Barta, 1986). 

3.2.2 Temporal coding and its importance for auditory perception 

As a result of cochlear filtering, each ANF is driven by a narrow frequency band of sound 

energy. Thus, the temporal information encoded by the ANFs can be logically separated 

into two parts; the temporal fine-structure (TFS), corresponding to the timing of the 

nearly sinusoidal narrowband carrier fluctuations, and the slower temporal envelope of 

that carrier, whose temporal fluctuations are limited by the bandwidth of the corresponding 

cochlear filter. For low-frequency cochlear channels, ANFs convey both TFS and envelope 

information; neural spikes are phase-locked to the carrier and the instantaneous firing rate 

follows the envelope. At higher frequencies, ANFs do not phase lock to the TFS; however, 

responses convey temporal information by phase locking to envelope fluctuations. 

Although different perceptual attributes of natural sound are encoded by different 

spectra-temporal cues, many depend on reliable timing information. For instance, the 

computation of interaural time differences (ITD), important for spatial per- ception of 
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sound, requires temporal precision on the order of tens of microseconds (Blauert, 1997). 

While perceptually, TFS information in low-frequencies is the dominant perceptual cue 

determining perceived location (at least in anechoic conditions; Wightman and Kistler, 

1992), for broadband and high-frequency sounds, ITDs can be conveyed by the envelope 

alone. Moreover, high-frequency envelope ITDs can be perceived nearly as precisely as 

low-frequency TFS ITDs (Bernstein and Trahiotis, 2002). In addition, envelopes may play 

a significant role in space perception in everyday settings such as rooms, where reverberant 

energy distorts TFS cues (Bharadwaj et al., 2013b; Dietz et al. , 2013). The coherence of 

the temporal envelope across channels helps to perceptually bind together different acous­

tic constituents of an object in the auditory scene (Elhilali et al. , 2009; Shamma et al., 

2011). Coding of pitch and speech formants also may rely, at least in part, on both TFS 

and envelope temporal information, although the precision needed to convey this informa­

tion is less than that needed to extract ITDs (see Plack et al., 2005, for a review). On 

an even slower time scale, speech meaning is conveyed by fluctuations in energy through 

time. Thus, a range of temporal features in both TFS and envelopes are necessary to 

enable a listener to parse the cacophonous mixture of sounds in which they commonly 

find themselves, select a sound source of interest , and analyze its meaning. Importantly, 

almost all of these tasks, when performed in everyday settings, require analysis of tem­

poral information at supra-threshold sound intensities. To exacerbate matters, everyday 

settings typically contain competing sound sources and reverberant energy. Both degrade 

the temporal structure of the sound reaching a listeners ears, reducing the depth of signal 

modulations and interfering with the interaural temporal cues in an acoustic signal. If 

amplitude modulation is weakly coded in a listener with cochlear neuropathy, degrada­

tions in the input signal modulations due to competing sound and reverberant energy may 

render spatial information diffuse and ambiguous, pitch muddy, and speech less intelligible 

(e.g., see Stellmack et al., 2010; J0rgensen and Dau, 2011). TFS cues convey information 

important for speech intelligibility in noise (Lorenzi and Moore, 2008). Envelope cues are 

important for speech-on-speech masking release (Christiansen et al., 2013). Given all of 
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this, a listener with degraded coding of envelope and TFS is most likely to notice per­

ceptual difficulties when trying to understand speech in challenging settings, even if they 

do not notice any other deficits and have no difficulty in quiet environments. Thus, we 

hypothesize that differences in the fidelity with which the auditory system encodes supra­

threshold TFS and amplitude modulation accounts for some of the inter-subject differences 

that NHT listeners exhibit in tasks such as understanding speech in noise or directing se­

lective auditory attention (also see Section 3.3.2). Based on this idea, we argue that a 

method for measuring supra-threshold temporal coding fidelity may have important clini­

cal applications, enabling quantification of supra-threshold hearing deficits that affect how 

well listeners operate in everyday environments, but that are not commonly recognized 

today. 

3.2.3 Consequences of cochlear neuropathy for temporal coding 

One consequence of cochlear neuropathy (i.e., a reduction in the number of ANFs conveying 

sound) will be a reduction in the fidelity of temporal coding of supra-threshold sound. 

For instance, convergence of multiple, stochastic ANF inputs leads to enhanced temporal 

precision in the firing pattern of many CN cells (e.g. , see Joris et al., 1994; Oertel et al., 

2000). Thus, a reduction in the overall number of ANFs will reduce the precision with 

which both TFS and envelope temporal information are con- veyed to higher centers (see 

also Lopez-Poveda and Barrios, 2013) . While the importance of TFS coding for various 

aspects of sound perception cannot be overstated, we only briefly discuss TFS coding here. 

We focus primarily on the implications of cochlear neuropathy on the fidelity with which 

envelope information is conveyed. This focus is motivated particularly by recent data from 

guinea pigs and mice that suggest that noise-induced neuropathy preferentially damages the 

higher-threshold, lower-SR cochlear nerve fibers (Furman et al., 2013), rendering envelope 

coding especially vulnerable, as explained below. 

Damage to lower-SR ANFs is likely to be especially detrimental to supra-threshold 

coding of sound envelopes, as high-SR fibers cannot robustly encode envelope timing cues 
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in sounds at comfortable listening levels. Specifically, the average firing rate of high-SR 

ANFs (ignoring the temporal pattern of the response) saturates at levels roughly 20-30 

dB above threshold, around the sound level of comfortable conversation (see red solid line 

in Figure 3.2E). In addition, both measures of phase locking to the envelope (namely the 

modulated rate, which is the magnitude of the frequency domain representation of the post­

stimulus time histogram of the ANF response, evaluated at the fundamental frequency of 

the input signal; see dashed red line in Figure 3.2E) and the synchronization index (also 

known as the vector strength, calculated as the modulated rate normalized by one half of 

the average rate; see red line in Figure 3.2F) of high-SR neurons drop off as sound levels 

approach and exceed comfortable listening levels. This drop off is particularly detrimental 

for relatively intense sounds with shallow modulation depths, where both the crests and 

troughs of the envelope of the signal driving the high-SR ANFs fall in the saturation range 

of intensities, resulting in relatively poor modulation in the temporal response of these 

fibers (Joris and Yin, 1992). In contrast, lower-SR fibers are more likely to encode these 

envelope fluctuations because they are likely to be at an operating point where the firing 

rate (in the steadystate) is still sensitive to fluctuations in the sound level. If noise exposure 

causes a selective neuropathy that preferentially affects lower-SR fibers, then the ability 

to analyze envelopes at conversational sound levels is likely to be impaired. Both theoret­

ical simulations and preliminary experimental evidence from envelope-following responses 

(EFRs, described in Section 3.2.4) recorded in mice and humans are consistent with this 

reasoning, as discussed in Section 3.3. 

3.2.4 Objective measures of subcortical temporal coding 

Many psychophysical studies have been devoted to the development and discussion of 

behavioral measures to assess temporal coding in both NHT and hearing-impaired lis­

teners (Moore, 2003; Strelcyk and Dau, 2009). On the other hand, SSSRs pro- vide an 

objective window into how the subcortical nuclei of the ascending auditory pathway encode 

temporal information in sound. While behavioral characterizations are important indica-
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Figure 3.2: Response differences among cochlear nerve fibers of the three SR groups . A: 
Threshold tuning curves of a high- medium- and low-SR fiber (see key in C) are superim­
posed on a scatterplot of thresholds at the characteristic frequency for all the fibers sampled 
from one animal. Data from cat (Liberman, 1978). B: Distribution of spontaneous rates 
in large samples of cochlear nerve fibers before (red and blue bars) vs. after (black line) a 
noise exposure causing a reversible elevation of thresholds. Data from guinea pig (Furman 
et al., 2013). C,D: Schematic rate-vs-level functions for high- medium- and low-SR fibers 
to tone bursts at the characteristic frequency, in quiet (C) and in continuous background 
noise at a fixed 0 dB spectrum level (D). Data from cat (Liberman, 1978; Costalupes et al., 
1984). The insets in panel C show schematic peri-stimulus time histograms of the response 
to a moderate-level tone burst: onset rates are higher in the high-SR fiber than in the 
low-SR fiber. E,F: Responses to SAM tones in high- vs low- SR fibers expressed as average 
rate and modulated rate (E) or average synchrony (F; see text for definitions). Responses 
are to carrier tones at the characteristic frequency, amplitude modulated at 100 Hz. Data 
from cat (Joris and Yin, 1992) . 
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tors of everyday hearing ability, in order to limit the length and scope of this opinion paper 

and still provide substantial discussion, here we focus on objective, physiological measures 

that can quantify the temporal coding precision of supra-threshold sound in the individual 

listener. Such measures may also be helpful in identifying some of the mechanisms that 

lead to individual differences in behavioral ability. 

SSSRs refer to the scalp-recorded responses originating from subcortical portions of 

the auditory nervous system. These responses phase lock both to periodicities in the 

acoustic waveform and to periodicities induced by cochlear processing (Glaser et al., 1976). 

SSSRs are related to auditory brainstem responses (ABRs; the stereotypical responses 

to sound onsets and offsets; Jewett et al., 1970); however, whereas ABRs are transient 

responses to sound onsets and offsets, SSSRs are sustained responses to ongoing sounds 

that can include responses phase locked to both the fine structure and the cochlear-induced 

envelopes of broadband sounds. SSSRs have been used extensively in basic neurophysiologic 

investigation of auditory function and sound encoding (e.g., Kuwada et al., 1986; Aiken 

and Picton, 2008; Gockel et al., 2011; also see Krishnan, 2006; Chandrasekaran and Kraus, 

2010, for reviews). Given the frequency specificity possible with SSSRs, they have also 

been proposed as a potential tool for objective clinical audiometry (Lins et al., 1996) . In 

addition, SSSRs have been shown to be sensitive to deafferentation in that IHC loss leads 

to degraded SSSRs, especially at moderate sound levels (Arnold and Burkard, 2002). 

While there are many studies of SSSRs, confusingly, different branches of the scientific 

literature use different names to refer to the same kinds of measurements. Periodic re­

sponses to amplitude-modulated sounds originating from both the sub-cortical and cortical 

portions of the auditory pathway are often collectively referred to as auditory steady-state 

responses (ASSRs Galambos et al., 1981; Stapells et al., 1984; Rees et al., 1986). However, 

brainstem SSSRs can be distinguished from responses generated at the cortical level by 

virtue of their relatively high frequency content; practically speaking, cortical and SSSR 

responses can be extracted from the same raw scalp recordings by appropriate filtering (e.g., 

see Krishnan et al., 2012; Bharadwaj et al., 2014a). The responses that specifically phase 
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lock to the envelope of amplitude modulated (AM) sounds have been referred to as EFRs or 

amplitude modulation following responses (AMFRs, Dolphin and Mountain, 1992; Kuwada 

et al., 2002). In the recent literature, SSSRs are most commonly referred to as frequency 

following responses (FFRs), a term originally used to denote responses phase locked to 

pure tones (Marsh et al., 1975). Since the term FFR hints that responses are phase locked 

to the acoustic frequency content of input sound (i .e., the fine-structure of narrowband 

or locally narrowband sounds), here we will use the term SSSR to describe the sustained 

responses originating from subcortical portions (at frequencies > 80 Hz or so in humans) 

of the auditory pathway. More specifically, we will focus on EFRs: SSSRs that are locked 

to the envelope. 

While EFRs provide a convenient non-invasive measure of subcortical envelope coding, 

there are several difficulties in interpreting them. First, they represent neural activity that 

is the sum of a large population of neurons, filtered by layers of brain tissue, skull, and scalp. 

Depending on the stimulus parameters, thousands of neurons in each of multiple subcortical 

nuclei may contribute to the EFR (Kuwada et al., 2002). Neurons from several regions 

along the tonotopic axis could contribute to the EFR for high-level sounds due to spread 

of excitation, even for narrow-band sounds. Thus, relating EFR results to physiological 

responses of single neurons is not straightforward. ANF modulation frequency responses 

are uniformly low pass; high characteristic frequencies (CFs) fibers (l,lO kHz) have cutoff 

frequencies around 1 kHz in cat (Joris and Yin, 1992). Below 10 kHz, cutoff frequency 

is dependent on CF, suggesting a limit imposed by an interaction between the content of 

the input signal and the bandwidths of cochlear filters (Joris and Yin, 1992). As signals 

ascend the auditory pathway,. they are transformed from a temporal to a rate code, with 

the upper limit of phase locking progressively shifting to lower modulation frequencies 

(summarized in Figure 9 of Joris et al., 2004; see also Frisina et al., 1990; Joris and Yin, 

1992; Krishna and Semple, 2000; Nelson and Carney, 2004). Modulation frequencies in 

the 70 to 200 Hz range elicit phase-locked responses in a cascade of subcortical auditory 

structures, from cochlear hair cells to inferior colliculus (IC) neurons, suggesting that many 
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sources can contribute to the EFRs in this frequency range. Luckily, compared to the IC, 

the more peripheral EFR generators generate relatively weak responses, both because they 

drive smaller synchronous neural populations and because they are more distant from the 

measurement site. Based on single-unit data, reversible inactivation studies, irre- versible 

lesion studies, and studies analyzing EFR group delay, it has been argued that the dominant 

generators of the EFR move from caudal (AN and CN) to rostral (inferior colliculus or IC) 

as modulation frequency decreases (Sohmer et al., 1977; Dolphin and Mountain, 1992; Kiren 

et al., 1994; Herdman et al., 2002; Kuwada et al., 2002). These studies provide evidence 

that the IC dominates EFRs at modulation frequencies between about 70 and 200 Hz, in all 

species tested. Changes in the slope of the response phase vs. input modulation frequency 

can be used to calculate apparent latency of the sources and thereby infer changes in 

the relative strengths of different neural generators in the mixture (Kuwada et al., 2002); 

regions where the slope is constant indicate regions where the mixture of generators is 

constant. Above 200 Hz, the pattern of these changes varies across species , probably due 

to differing head sizes and shapes. Humans, rabbits, and mice exhibit regions of constant 

phase slopes out to 500, 700, and 1000Hz, respectively (Kuwada et al., 2002; Purcell et al., 

2004; Pauli-Magnus et al., 2007); in contrast, in gerbils, the phase slopes above 200 Hz 

are not constant (Dolphin and Mountain, 1992). These differences in phase slopes indicate 

that the specificity of EFRs is species-dependent. However, in all species it is clear that 

manipulation of modulation frequency can be used to bias responses towards more rostral 

or more caudal sources. 

Despite these complications, all acoustic information is conveyed to the brain through 

the ANFs; moreover, deficiencies at the level of the ANF can be expected to have an ef­

fect downstream, in higher-order processing centers. Therefore, EFRs originating in the 

brainstem/mid-brain are likely to reflect the consequences of ANF neuropathy. Indeed, by 

using different stimuli, it may be possible to emphasize the contribution of different sub­

cortical sources (by changing the modulation frequency of the input) or different portions 

of the cochlear partition (by changing the acoustic carrier of the signal). In particular, 
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metrics such as the phase-locking value (PLV) can be calculated to quantify the robustness 

of temporal coding in the EFR, akin to using the vector-strength to assess temporal coding 

in single-unit physiology studies (Joris et al., 2004). 

When analyzing the temporal precision of signals, the PLV has a straightforward inter­

pretation. The details of the PLV computation and its statistical properties are described 

in a number of previous studies (e.g., see Lachaux et al., 1999; Bokil et al., 2007; Ruggles 

et al., 2011; Zhu et al., 2013). Briefly, the PLV quantifies the consistency of the response 

phase across repetitions of the stimulus presentation (trials). For a given frequency bin, 

the response to each trial can be represented as a unit vector (phasor) in the complex plane 

whose phase equals the response phase. The PLV then equals the magnitude (length) of 

the vector average of the phasors, averaged across trials (Figure 3.3A). If the response is 

consistently at or near a fixed phase, then the resulting average has a magnitude near one 

and the PLV is high (top panel, Figure 3.3A). On the other hand, if the response phase 

relative to the stimulus is random over the unit circle, the phasors cancel, the resultant 

vector has a small magnitude, and the PLV is near zero (bottom panel of Figure 3.3A). 

An example of the PLV spectrum (computed for EFRs from 400 repetitions of a 100 Hz 

transposed tone at a carrier frequency of 4kHz and 65 dB SPL) is shown in Figure 3.3C. 

Strong peaks are evident at the fundamental and harmonic frequencies of the envelope. 

The PLV thus is one way of assessing the temporal coding fidelity of the EFR, and of 

subcortical encoding of supra-threshold sound. 

3.3 Evidence for cochlear neuropathy 

3.3.1 Neuropathy and selective loss of lower-SR fibers in animals 

Recent studies in both mice and guinea pigs show that noise exposure that causes a tem­

porary increase in threshold sensitivity (e.g., initial threshold elevations of as much as 40 

dB that completely recover over 3-5 days) nevertheless can cause a rapid loss of 40-50% 

of the ANF synapses on IHCs as well as a slow death of the ANF cell bodies (spiral gan-
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glion cells) and central axons (Kujawa and Liberman, 2009; Maisonet al., 2013). Despite 

the extent of effects of such exposure on synapses and ganglion cells, it does not typically 

cause any loss of hair cells. Single-unit recordings in the guinea pig indicate that this noise­

induced loss is selective for lower-SR fibers (Furman et al., 2013). Pharmacological studies 

suggest that this neuropathy is the result of a type of glutamate excitotoxicity, brought 

on by glutamate overload at particularly active synapses (Pujol et al., 1993). In the cen­

tral nervous system, glutamate excitotoxicity is mediated by an increase in intracellular 

calcium concentration (Szydlowska and Tymianski, 2010). Since mitochondria comprise 

an important intracellular calcium buffering system, the relative paucity of mitochondria 

in the lower-SR fibers (Liberman, 1980) may contribute to their special vulnerability to 

glutamate excitotoxicity caused by noise exposure. 

In aging mice, there is a steady degeneration of ANFs. Indeed, 3040% of IHC synapses 

are lost by roughly 3/4 of the lifespan, an age at which threshold elevation is modest 

(typically less than 10 dB), but there is no significant loss of hair cells (Sergeyenko et al., 

2013). Previous neurophysiological studies of age-related hearing loss in the gerbil suggest 

that this neurodegeneration is also selective for lower-SR fibers (Schmiedt et al., 1996). 

Unfortunately, relatively little is known about how aging impacts ANF synapses in humans. 

The only study that counted IHC synapses in the human inner ear (Figure 3.1B) found 

relatively low numbers of IHC synapses; however, this low count may reflect a significant 

degree of age-related neuropathy rather than a species difference, given that the tissue 

was obtained from a relatively old individual (63 years of age). Indeed, counts of spiral 

ganglion cells in an age-graded series of human temporal bones show degeneration of 30%, 

on average, from birth to death, even in cases with no hair cell loss (Makary et al., 2011). 

The marked delay between synaptic death and spiral ganglion cell death (12 years in mouse, 

and possibly much longer in humans) suggests that the loss of cochlear nerve synapses on 

IHCs is almost certainly significantly greater than 30%, on average, in the aged human ear. 

Considering that only a small number of sensitive, intact ANFs may be needed for 

detection in quiet (Lobarinas et al., 2013), it seems likely that even considerable neuropathy 
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would not change thresholds for tones in quiet, and thus would not be detected by standard 

threshold audiometry. This is even more likely the case if the neuropathy is selective for 

ANFs with higher thresholds, which are not active near perceptual thresholds. It also 

seems likely that a loss of a large population of high-threshold ANFs could dramatically 

affect auditory performance on complex tasks that require analysis of supra-threshold sound 

content , such as those requiring the extraction of precise timing cues or extracting a signal 

in a noisy environment, as discussed above. Thus, we hypothesize that cochlear neuropathy 

in general - and possibly selective neuropathy of high threshold fibers in particular - is one 

of the reasons that aging often is found to degrade human performance on tasks requiring 

analysis of the content of supra-threshold sound. 

3.3.2 Human data consistent with the neuropathy hypothesis 

While there is no human data yet to directly support the neuropathy hypothesis, a series 

of studies from our lab are consistent with the hypothesis that cochlear neuropathy causes 

difficulties with coding of supra-threshold sound for humans and accounts for some of the 

individual variability seen in listeners with normal audiometric thresholds. NHT listeners 

exhibit marked differences in how well they can utilize precise temporal information to 

direct selective attention, from near chance levels to almost perfect performance (Ruggles 

and Shinn-Cunningham, 2011). As discussed in Section 3.2.3, cochlear neuropathy could 

result in degraded coding of both TFS and envelope information. In line with this hypoth­

esis, differences in EFR phase locking accounts for some of this inter-subject variability in 

performance. Figure 3.4A shows the relationship between performance in a spatial atten­

tion task in reverberation and the PLV calculated from EFRs obtained separately (data 

from Ruggles et al., 2011, 2012). Pooled over age groups, listeners with higher EFR phase 

locking performed better in the selective attention task (Kendall T = 0.42, p = 0.002). 

Though age by itself did not correlate with performance in anechoic conditions, when 

temporal cues in the acoustic mixture were degraded by adding reverberation, middle-aged 

listeners showed a bigger drop in performance than younger listeners (Ruggles et al., 2012) , 
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as if timing cues are encoded less robustly in middle-aged listeners than in young adults. 

In addition, as shown in Figure 3.4B, performance also correlated with thresh- olds for 

low-rate frequency modulation (FM) detection, a task known to rely on robust temporal 

coding of TFS (Kendall T = 0.5,p = 0.001, data from Ruggles et al., 2011, 2012). Cru­

cially, all listeners in these studies had pure-tone audiometric thresholds of 15 dB HL or 

better at octave frequencies between 250 Hz and 8 kHz. The small differences in hearing 

threshold (within the NHT range) that did exist were not correlated with selective atten­

tion performance; similarly, reading span test scores (a measure of cognitive ability) were 

unrelated to performance. These results suggest that both TFS and envelope cues are 

important in everyday listening under challenging conditions, since individuals with poor 

TFS and envelope coding (as measured by FM detection thresholds and EFR phase locking 

respectively) perform poorly in a spatial attention task. (For a complete description of the 

spatial attention task, the FM detection t ask and the EFR measures, see Ruggles et al., 

2011 , 2012). 

Several other studies have reported that some listeners with normal thresholds (partic­

ularly older participants) perform poorly on certain behavioral tasks , sometimes even on 

par with hearing-impaired subjects. Yet other studies show that temporal processing of 

both TFS and envelope degrades with aging and manifests independently of hearing loss 

(see Fitzgibbons and Gordon-Salant , 2010 for a review). In NHT listeners, sensitivity to 

lTD varies greatly across the population, with some listeners performing as poorly as older 

hearing-impaired subjects (see Grose and Mamo, 2010; Strelcyk and Dau, 2009). Recent 

studies have also demonstrated abnormal speech processing among hearing-impaired listen­

ers even when the frequency content of the speech was limited to regions where thresholds 

are normal, pointing towards supra-threshold coding deficits (Horwitz et al., 2002; Lorenzi 

et al., 2009; Leger et al., 2012). 

Older listeners also have been shown to exhibit deficits specific to envelope process­

ing across a range of tasks, including speech recognition in the presence of modulated 

noise maskers (Dubno et al., 2003; Gifford et al., 2007) and temporal modulation sensi-
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Figure 3.4: A: An illustration of the phase-locking value (PLV) metric computation. The 
SSSR from each trial is represented by a vector (phasor, shown as a black arrow) with 
unit magnitude and with phase equal to the EFR phase at the frequency bin of analysis. 
The vector average of these phasors is computed; the magnitude of the resultant vector 
(shown as red arrow) yields the PLV. The top panel is an example with high PLV: the 
phase of the responses varies over a narrow range across trials. The bottom panel is an 
example with low PLV: response phase relative to stimulus onset is essentially random over 
the unit circle. B: Relationship between the single-trial SNR of the measurement in the 
frequency bin of interest and the estimated PLV for a simulated signal in additive noise. 
At sufficiently high SNR values, the estimated PLV converges to the true PLV (aside from 
a small sample bias that depends on the number of trials). At lower SNRs, the estimate is 
biased to be lower than the true value. This is an important consideration when comparing 
PLVs across sound levels or individuals, since the SNR depends on the magnitude of the 
true underlying response, the geometry of the generators, and the volume conductor in 
between. C: Sample PLV spectrum obtained in response to a 100 Hz transposed tone at a 
carrier frequency of 4kHz at 65 dB SPL (RMS). Strong peaks are evident in the PLV at 
multiples of the envelope frequency. 
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tivity(Purcell et al., 2004; He et al., 2008). Consistent with this, the highest modulation 

frequency to which EFRs exhibit phase locking decreases with age (Purcell et al., 2004; 

Leigh-Paffenroth and Fowler, 2006; Grose et al., 2009), supporting the hypothesis that the 

robustness of supra-threshold modulation coding is reduced with aging. Using measures of 

both gap detection and word recognition on a sizeable cohort of young and old listeners, 

Snell and Frisina (2000) concluded that age-related changes in auditory processing occur 

throughout adulthood. Specifically, they concluded that deficits in temporal acuity may 

begin decades earlier than age-related changes in word recognition. Though not direct evi­

dence that neuropathy causes these perceptual difficulties, these results are consistent with 

our hypothesis, especially given animal data suggesting that both aging and noise-exposure 

degrade ANF responses (especialy lower-SR fibers) and degrade supra-threshold temporal 

coding without affecting thresholds (Schmiedt et al., 1996; Kujawa and Liberman, 2009; Lin 

et al., 2011a; Furman et al., 2013). If neuropathy underlies deficits in temporal encoding 

that predict behavioral differences, it may be possible to develop even more sensitive phys­

iological metrics to capture an individual listeners supra-threshold coding fidelity. Section 

Diagnosing Cochlear Neuropathy is devoted to the discussion of this idea. 

3.4 Diagnosing cochlear neuropathy 

The degree of deafferentation in cochlear neuropathy can be studied directly in animals 

using invasive methods in combination with histological evaluation, or in humans using 

post-mortem studies (e.g., Makary et al., 2011). However, assessment in behaving humans 

must be non-invasive, and therefore must employ indirect methods. Given that neuropathy 

should impact supra-threshold temporal coding, individual behavioral assessment of enve­

lope and TFS coding of sound at comfortable listening levels may prove useful in assessing 

neuropathy. In order to expose supra-threshold deficits and individual differences, selective 

attention tasks in adverse conditions (e.g., in a noise background or in a complex, crowded 

scene) may be most effective. However, given that aging and noise exposure cause outer 
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hair cell loss, elevated thresholds, and other (much-studied) effects, assessment of cochlear 

function is necessary to ensure that supra-threshold deficits are attributable to neuropathy. 

Measures of brainstem temporal coding, like the ABR and SSSR, may be helpful in as­

sessing neuropathy objectively and passively; exploring these metrics at high sound levels 

and low modulation depths (which stresses coding of modulations akin to those important 

when listening in a crowded scene) may be particularly useful (see Section 3.4.2). In order 

to develop and interpret effective, sensitive tests using these types of non-invasive physi­

ological measures, quantitative models that provide testable predictions will be vital. In 

this section, we consider some of these points, with a focus on objective measures. 

3.4.1 Measuring brainstem coding: ABRs versus SSSRs 

In animal work, the preferential loss of higher-threshold (lower-SR fibers) leads to a de­

crease in the supra-threshold growth of the amplitude of wave I of t he ABR, without a 

change in ABR threshold (Kujawa and Liberman, 2009; Furman et al. , 2013). In both 

noise-exposed mice and noise-exposed guinea pigs, the proportional decrement in the mag­

nitude of wave I at high levels (i.e., 80 dB SPL) closely corresponds to the percentage 

of loss of auditory-nerve synapses. However, by limiting the analysis to animals without 

permanent threshold shifts in the noise-exposed ear, these experiments remove the con­

found that changes in hearing threshold are likely to affect wave I amplitude; by design, 

the supra-threshold changes in ABR amplitude found in these experiments cannot be due 

to differences in threshold sensitivity, but instead reflect differences in the number of fibers 

responding to supra-threshold sound. Even in populations with normal thresholds, inter­

subject variability in ABR amplitudes complicates analysis. One past study showed that 

in age- and gender-matched mice, the variance in normal ABR amplitude measures is rela­

tively low (Kujawa and Liberman, 2009); however, the mice in this study were genetically 

identical. In age- and gender-matched guinea pigs, the variance in ABR amplitude is sig­

nificantly higher. In the genetically heterogeneous guinea pigs, neuropathy-related changes 

in ABR amplitude are revealed clearly only when data are analyzed within subject, mea-
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suring the effects of noise exposure by normalizing the post-trauma amplitude responses 

by the responses from the same ear before exposure (Furman et al., 2013). Of course, such 

a before-and-after approach is unlikely to prove useful for human clinical testing, except in 

extraordinarily rare circumstances. 

The above studies suggest that the ABR may be useful for assessing neuropathy. How­

ever, there are a number of reasons why the electrophysiological responses to an AM carrier 

tone, i.e., the EFR, might be better suited to the assessment of lower-SR neuropathy than 

the ABR. For one thing, ABR wave I, generated by tone pips, is proportional to the size of 

the onset responses in the AN. Since, as schematized in Figure 3.2C, the onset responses of 

lower-SR fibers are small compared to high-SR fiber onset responses (Taberner and Liber­

man, 2005; Buran et al., 2010) , they make a relatively small contribution to the total onset 

response, rendering the metric fairly insensitive to the integrity of the lower-SR population. 

In contrast, the steady-state rates of the three SR groups are of more similar magnitude; 

a loss of lower-SR fibers should thus cause a greater change in steady-state measures like 

the SSSR or EFR than transient responses like the ABR. Furthermore, as noted above (see 

Figure 3.2F), lower-SR ANFs synchronize more tightly to the envelope of an AM tone than 

their high-SR counterparts, especially at moderate and high sound intensities (Johnson, 

1980; Joris and Yin, 1992). Synchronization in response to AM-tones can be assessed both 

by the modulated rate (the amplitude of the peri-stimulus time histogram at the stimu­

lus modulation frequency) and synchronization index (or vector strength; see J oris et al., 

2004 for a discussion about different measures of envelope coding). The synchronization 

index of lower-SR fibers can be larger than that of high-SR fibers of similar best frequency. 

Indeed, preliminary results suggest that in noise-exposed mice, amplitude decrements in 

EFR responses to an amplitude-modulated carrier tone presented at the frequency region 

of maximum cochlear neuropathy are a more sensitive measure of deficit than decrements 

in ABR wave I amplitude (Shaheen et al. , 2013). Perhaps more importantly, a phase-based 

analysis like the PLV can be used to analyze EFR strength, which can be a more robust 

and more easily interpreted metric than amplitude measures of these far-field potentials, 
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which have a weak signal-to-noise ratio (SNR) and depend on factors such as tissue and 

head geometry. 

3.4.2 Emphasizing the contribution of lower-SR auditory nerve fibers to the 

envelope following response 

As previously discussed (Section 3.2.3), one likely consequence of cochlear neuropathy is 

a reduction in the fidelity of temporal coding in the brainstem. The idea that cochlear 

neuropathy may preferentially target lower-SR fibers (Schmiedt et al., 1996; Furman et al., 

2013) may be exploited to devise EFR measures that are more likely to capture the effects 

of neuropathy. Focusing on responses to high-frequency envelopes could prove to be an 

effective way to assess neuropathy, because envelope fluctuations cannot drive saturated 

high-SR fibers effectively. Even for transposed tones (a modulated high-frequency signal 

whose envelope mimics the rectified sinusoidal drive of a low-frequency tone operating at 

low-frequency portions of the cochlea; see van de Par and Kohlrausch, 1997), phase locking 

of high-SR fibers is reduced at mid to high sound levels (Dreyer and Delgutte, 2006). This 

effect is likely to be particularly strong for a relatively high-intensity modulated signal 

with a shallow modulation depth. For such signals, the input intensity of the driving signal 

will fall within the saturation range of high-SR fibers at all moments; the only fibers that 

could encode the shallow modulations are the lower- SR fibers. Thus , measures of EFR 

phase locking to high-frequency, high-intensity, amplitude-modulated signals with shallow 

modulation may be especially sensitive when assessing lower-SR-fiber status. 

Here, we use a simple model of brainstem responses to illustrate why EFRs to shallow 

amplitude modulations and high sound levels are likely to emphasize the contribution of 

lower-SR fiber responses to the measurements. Given that EFR responses reflect responses 

at the level of the brainstem/midbrain, likely the IC, we built a model of IC responses 

(Figure 3.5A) by combining an established model of the ANF responses (Zilany and Bruce, 

2006; Zilany et al., 2009) with previous phenomenological models of amplitude-modulation 

processing in the IC (Nelson and Carney, 2004). Updated, humanized, ANF model pa-
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rameters were used for the simulation (Zilany et al., 2014). This model has been shown to 

predict ANF single-unit envelope response data quite well (Joris and Yin, 1992). Consid­

ering that the simulations included stimuli with high sound levels (as in Dau, 2003; R0nne 

et al., 2012), a tonotopic array of ANFs (and corresponding IC cells) were included to al­

low for off-frequency contributions. ANFs with 50 CFs uniformly spaced along the basilar 

membrane according to a place-frequency map were simulated. For each CF, lower- and 

high-SR fibers were simulated. In order to obtain a population response at the level of the 

IC, responses to IC cells driven by lower- and high-SR ANFs were averaged with weights 

proportional to known population ratios ( 40% Lower-SR fibers and 60% high-SR fibers, 

see Liberman, 1978). At the level of the IC, the resulting population response is treated 

as a proxy for the signal driving the EFR. Responses were simulated for a sinusoidally 

amplitude modulated (SAM) tone with a carrier frequency of 4 kHz and a modulation 

frequency of 100 Hz. In order to attenuate the contribution of off-frequency neurons to 

the population response, a broadband noise masker with a notch centered at 4 kHz and 

extending 800 Hz on either side was added to the SAM tone, as can be done with real 

EFR measurements in the laboratory. The SNR for the simulations was fixed at 20 dB 

(broadband root mean square (RMS)). The IC model parameters were set to the values 

used in Nelson and Carney (2004), which ensured that the 100 Hz modulation frequency 

was within the band-pass range of the IC cells. Neuropathy was simulated by progressively 

attenuating the weights given to the IC population driven by lower-SR ANFs, leaving the 

high-SR population unchanged. 

Figure 3.5 shows the absolute population response magnitude following the 100 Hz 

modulation in logarithmic units. Results are shown for different amounts of neuropathy, 

both for different stimulus levels (Figure 3.5B) and for different modulation depths (Fig­

ure 3.5C). As seen from the figures, neuropathy has the greatest effect on the population 

response for stimuli at mid to high sound levels and relatively low modulation depths. This 

is consistent with the idea that the modulated firing rate of high-SR ANFs is drastically 

attenuated at moderate to high sound levels and low-modulation depths (Joris and Yin, 
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1992; Dreyer and Delgutte, 2006). Similar results were obtained (not shown) presenting 

"transposed" tones to this model as well as when using the R0nne et al. (2012) model, 

where the EFR is obtained by convolving the ANF population response with a "unitary­

response" that is designed to aggregate and approximate all transformations of the ANF 

population response before being recorded in the EFR. In both model approaches, lower­

and high-SR ANF driven IC responses were summed linearly to generate the population 

response. When the lower- and high-SR ANF responses were mixed non-linearly using a 

coincidence detection process (i.e., a geometric average instead of an arithmetic average) 

before being delivered to the IC model, the effects of the lower-SR fiber neuropathy were 

even larger (not shown). This analysis supports the idea that EFR responses to shallow 

amplitude modulation at high levels may provide a sensitive, objective correlate of neu­

ropathy. Apart from emphasizing the contribution of lower-SR ANFs, high sound levels 

are more likely to reveal differences in the number of intact ANFs even if neuropathy is 

not specific to lower-SR fibers because larger populations of ANFs are recruited overall. 

These results are also consistent with the report that the ABR wave I amplitude in noise­

exposed mice closely corresponds to the amount of neuropathy when the sound level is 

high (80 dB, Furman et al., 2013) as well as preliminary data from our lab that suggest 

that individual differences in the EFR are largest at high stimulus levels (Bharadwaj et al., 

2013a). In addition, inspection of Figure 3.5B, C suggests that the sizes of the change (i.e., 

slopes) in the population response with level and with modulation depth both reflect the 

level of neuropathy. Thus, either of these changes, along with behavioral measures, could 

be used to assess the ability of the listener to process supra-threshold sound. However, 

in practice, manipulating modulation depth with the level fixed at a high value may lead 

to more easily interpreted results than measuring how the EFR changes with overall level 

(see Section Using Envelope Following Responses to Assess Supra-threshold Coding Fi­

delity). As explained above, we suggest that individual listeners with normal audiometric 

thresholds could differ in the number of intact ANFs due to differences in noise exposure, 

genetic predisposition to hearing damage, and other factors. Given the already-discussed 
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importance of supra-threshold temporal coding for operating in everyday social settings 

(understanding speech in noise, directing selective auditory attention, etc.), assessment of 

neuropathy by measurement of EFRs may have a place in audiological practice, especially 

because such measures are objective and can be recorded passively (making them suitable 

for use with special populations in which behavioral assessment is not easy). 

3.4.3 Isolating cochlear neuropathy 

As noted above, in order to assess neuropathy, it is critical to rule out or otherwise ac­

count for cochlear dysfunction. One of the most basic characteristics of cochlear function 

is the frequency selectivity of the basilar membrane (BM). BM frequency selectivity is 

correlated with cochlear gain at low sound levels (Shera et al., 2002, 2010) and typically 

decreases with hearing impairment. BM frequency selectivity can be estimated psychophys­

ically (Patterson, 1976; Glasberg and Moore, 1990; Oxenham and Shera, 2003); however, it 

is possible that such measures may include small contributions from extra-cochlear factors 

(such as neuropathy). Alternatively, distortion product otoacoustic emissions (DPOAEs) 

in response to fixed-level primaries (DPgrams; e.g., see Lonsbury-Martin and Martin, 2007) 

can be used to assess cochlear function. Because OAEs are generated within the cochlea 

as a consequence of outer-hair-cell activity and do not depend on afferent processing, 

measuring them may be preferable to measuring psychophysical tuning curve measures. 

Specifically, normal DPgrams can be used to establish that poor supra-threshold coding 

arises post transduction (e.g., via cochlear neuropathy) rather than from outer-hair-cell loss 

or other problems with cochlear amplification (an approach taken in the animal studies of 

Kujawa and Liberman, 2009; Furman et al., 2013). To test that cochlear compression is 

intact at the frequencies tested, either stimulus-frequency OAEs (SFOAEs; Schairer et al., 

2006) or DPOAE growth functions can be used (Kummer et al. , 1998; Neely et al., 2003). 

DPOAE suppression tuning curves (Gorga et al., 2011; Gruhlke et al., 2012) or SFOAE 

phase gradients at low stimulus levels (Shera et al., 2002) can provide estimates of cochlear 

filter tuning.Henry and Heinz (2012) recently demonstrated the importance of considering 
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Figure 3.5: A simple model of the population response of inferior colliculus (IC) cells to 
envelope fluctuations. The model comprised of ANFs (simulated using the Zilany et al., 
2009 model) driving the cochlear nucleus (CN), which in turn drives the IC. CN and 
IC processing of envelope were simulated using the Nelson and Carney (2004) model. 
A tonotopic array of 50 CFs was used. High-, and lower-SR ANFs were simulated at 
each CF and the corresponding IC responses were combined with weigths equal to the 
proportion of each group in the population ( 60% High- and 40% Lower-SR, Liberman, 
1978). Neuropathy was simulated by reducing the weight given to the lower-SR driven 
response. B: Level curves for the population response with different levels of neuropathy 
for a 100 Hz SAM tone at 4 kHz, with a 60% modulation depth and added broadband 
noise with a notch centered around 4 kHz and 800 Hz wide on each side. The SNR 
was fixed at 20 dB (broadband RMS) at all levels. The differences between the levels 
of neuropathy are most accentuated in the population response at higher stimulus levels. 
This also suggests that slopes of the level curve at high levels may reflect the level of 
neuropathy. C. Population response as a function of modulation depth for different levels 
of neuropathy for an 80 dB SPL SAM tone in notched noise (SNR = 20 dB broadband 
RMS). The differences between the levels of neuropathy are accentuated better for smaller 
modulation depths. In addition, this suggests that the slope of the population response 
strength as a function of modulation depth may be sensitive to the level of neuropathy. 
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differences in cochlear function in order to interpret differences in measures of temporal 

coding fidelity properly. As this work shows, establishing that participants have normal 

cochlear sensitivity by measuring both OAEs and audiometric thresholds is crucial when 

trying to attribute individual differences in SSSRs and psychoacoustic measures to deficits 

in supra-threshold coding of sound due to neuropathy. 

3.5 Future Experiments 

A growing body of evidence suggests that (1) NHT listeners vary significantly in how well 

their auditory systems encode supra-threshold sound; and (2) Noise exposure and aging 

can lead to considerable amounts of neuropathy without affecting audiometric thresholds. 

We have argued that cochlear neuropathy in general, and selective neuropathy of lower-SR 

ANFs in particular, may help explain some of the supra-threshold differences in NHT lis­

teners. Although we believe that the diversity of evidence consistent with this hypothesis 

is compelling, further experiments are necessary to truly establish these ideas and to un­

derstand potential implications for audiological practice. Here, we propose a few key areas 

that we believe merit future investigation. 

3.5.1 Accounting for individual differences in cochlear mechanical function 

As discussed in Section Isolating Cochlear Neuropathy, exper- iments seeking to impli­

cate cochlear neuropathy in human perception must account for individual differences in 

cochlear processing. There are a number of objective metrics of cochlear health including 

DPOAE and SFOAE growth functions (Kummer et al., 1998; Schairer et al., 2006), DPOAE 

suppression tuning curves (Gorga et al., 2011; Gruhlke et al., 2012), and SFOAE group de­

lay measurements (Shera et al., 2002; Shera and Bergevin, 2012). However, there are prac­

tical concerns that may limit the utility of many of these methods. For instance, using OAE 

methods to study neuropathy in patients with elevated hearing thresholds may be difficult, 

as SFOAE amplitudes critically depend on cochlear gain (Shera and Guinan Jr, 1999). 
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DPOAE methods depend more on cochlear compression, rather than cochlear gain (Shera 

and Guinan Jr, 1999), and thus may prove to be a more robust method for assessing contri­

butions of cochlear function to perception in heterogeneous subject populations (Gruhlke 

et al., 2012). Experiments are needed to determine what tests best quantify cochlear func­

tion, enabling such factors to be teased out when appraising cochlear neuropathy, and 

developing such tests into clinically useful tools. 

3.5.2 Developing quantitative models of envelope following responses 

Because any human measurements of EFRs only indirectly reflect the responses of ANFs, 

quantitative models of the subcortical generators of the measured response are critical for 

understanding results and using them to quantify supra-threshold envelope coding. Data 

suggest that EFRs primarily reflect responses from the mid-brain, and are dominated by 

responses in the IC (Smith et al., 1975; Sohmer et al., 1977; Dolphin and Mountain, 1992; 

Kiren et al., 1994; Herdman et al., 2002). However, further experiments are needed to 

assess if current physiological models capture the behavior of real EFRs. When applied 

to modulated high-frequency sounds, simple models of IC responses predict a graded loss 

in the population response with cochlear neuropathy (see Figure 3.5), consistent with the 

idea that the observed heterogeneity of EFR responses in NHT subjects reflects, in part, 

differences in ANF survival. Instead of modeling individual neurons, others have modeled 

brainstem responses (ABRs and FFRs) directly using a kernel method (e.g., Dau, 2003; 

R¢nne et al., 2012). In this approach, all subsequent transformations of the AN responses 

are modeled by a linear system approximation; model AN responses are used to deconvolve 

click-ABRs to obtain a unitary response that aggregates all of the transformations occurring 

from the nerve through to the electrode (including processing within the midbrain nuclei 

and any summation and filtering influencing what is recorded on the scalp). Despite the 

obvious simplifying assumptions of such an approach, model predictions capture many of 

the observed properties of ABRs and FFRs in response to simple stimuli. A slightly more 

elaborate model of EFRs that combines both these approaches (taking into account single-
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unit level phenomena such as in the model in Figure 3.5 as well as scalp- recording properties 

of the measurements as in Dau, 2003), may be considered. For instance, one recent study 

explored the consequences of cochlear sensitivity and selective cochlear neuropathy on the 

latency of simulated ABR responses (Verhulst et al., 2013). Further development , testing, 

and refinement will ensure that results of EFR experiments are interpreted appropriately 

in the context of these models. Hence, we identify this as a key area for future efforts 

devoted to interpreting EFR measures. 

3.5.3 Using envelope following responses to assess supra-threshold coding fi-

delity 

A selective loss of lower-SR fibers would likely cause phase locking of the EFR to degrade at 

high sound levels, in line with the model results presented here (Figure 3.5B). As suggested 

in Figure 3.5, if neuropathy underlies some supra-threshold deficits, the rate of change of 

the EFR PLV with sound level (akin to the rate of change of ABR wave I in Furman et al., 

2013) would correlate with perceptual abilities on tasks requiring analysis of the envelope 

of supra-threshold sounds, such as envelope lTD discrimination, spatial selective auditory 

attention, and related tasks. Preliminary data support this idea (Bharadwaj et al., 2013a) . 

Further experiments are needed to corroborate our hypothesis that neuropathy (especially 

neuropathy that preferentially affects lower-SR fibers) contributes to individual differences 

in the ability to analyze complex auditory scenes. The use of narrowband stimuli such 

as transposed tones (van de Par and Kohlrausch, 1997) with off-frequency maskers may 

allow for a frequency specific assessment of EFR phase locking at different CFs (i.e., at 

different frequency channels of the auditory pathway). If the neuropathy hypothesis proves 

correct, this approach may allow for a frequency-specific diagnosis of cochlear neuropathy 

from non-invasive physiological measures. 

Despite the potential of EFRs (especially the EFR-intensity slope) for assessing cochlear 

neuropathy, there are some limitations. The EFR is a measure of multi-source population 

activity and produces scalp potentials that are different mixtures of the source activity at 
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different scalp locations. These measures depend on the geometry of the generators, prop­

erties of the recording electrodes, the volume conductor in between, the level of unrelated 

electrical activity from cortex and from muscles, and other subject-specific factors (Hub­

bard et al., 1971; Okada et al., 1997). All of these parameters cause inter-subject variability 

in the absolute magnitudes of the measured EFRs. This makes interpretation of the raw 

EFR magnitude difficult . While phase-based metrics such as the PLV are normalized and 

have a straight-forward interpretation (Zhu et al., 2013) , their absolute strength is still 

influenced by the same factors. Specifically, PLV estimates are biased by the within-band 

SNR in the raw responses that go into the PLV computation. 

This is illustrated in Figure 3.3B, which shows the relationship between estimated and 

true PLVs for simulated data (signal phase drawn from a von Mises distribution with known 

concentration and additive noise) as a function of SNR, under the assumptions that the 

noise phase in any trial is independent of the signal phase (something that can be guaran­

teed experimentally by jittering the stimulus presentation across trials). In Figure 3.3B, 

at sufficiently high SNRs, the estimated PLVs converge to the true PLV of the simulated 

signal, and are insensitive to absolute magnitudes of both signal and noise. However, at 

intermediate SNR values, the EFR PLV estimates are negatively biased (see Bharadwaj 

et al., 2014a). This has implications when trying to account for individual differences across 

subjects, whose raw responses may well have different SNRs. Even in within-subject com­

parisons, if two experimental manipulations produce responses with very different SNRs, 

the values of the EFR PLVs will have different biases. This is particularly important when 

assessing the change in PLV as a function of sound level, since high-level sounds are likely 

to produce stronger responses (higher SNR measurements) than low-level sounds. While 

an increase in response power at the stimulus modulation frequency is meaningful in itself, 

it is not easy to dissociate increases in PLV that result from increases in response synchrony 

(phase consistency) vs. from increases in response level. Minimally, using recordings in 

the absence of stimuli might serve to provide estimates of background noise and SNR that 

can then be used to extract metrics to compare fairly across subjects and conditions. How 
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important and robust such corrections will prove depends in no small part on where on the 

SNR curve a particular experimental measurement falls (Figure 3.3B). Additional experi­

ments are needed to characterize these effects in human listeners across different types of 

stimuli and experimental procedures. 

Another limitation is that physiologically, the change in the basilar membrane excitation 

pattern with sound level also complicates the interpretation of both EFR and psychophys­

ical results. In particular, when seeking to assess cochlear neuropathy within a specific 

frequency channel using PLY-level growth curves, effects of the spread of excitation are 

a confounding factor. Use of off-frequency maskers such as notched noise may ameliorate 

these effects. However, it has also been reported that at least for mid-frequency stimuli 

(around 1kHz), the SSSR at the stimulus component frequency can be attenuated by noise 

even if the peripheral interaction between the signal and the masking noise is expected to 

be minimal (Gockel et al. , 2012). 

Alternately, EFRs can be measured in response to narrow- band stimuli with a fixed 

peak pressure presented at different modulation depths. For deep modulations, high-SR 

fibers can entrain to the modulation. At shallow modulation depths with a high sound 

level (carrier level), even the valleys in the signal will have sufficient energy to keep high­

SR fibers saturated; thus, the strength of phase locking to shallow modulations may better 

reflect the contribution of lower-SR ANFs. By computing how the EFR PLV strength 

changes as the modulation depth is reduced, the spread-of-excitation confounds associated 

with manipulating the stimulus level may be avoided. Moreover, the approach of fixing 

the peak sound pressure and progressively decreasing the modulation depth serves to fix 

the point of operation on the ANF rate-level curve, so that any reduction in PLV with 

decreasing modulation depth can be interpreted as being related to a drop in synchrony 

rather than a change in average rate causing a lower SNR. The model results in Figure 3.5C 

are consistent with this notion. However, as discussed in Section Developing Quantitative 

Models of EFR Generators, further work is needed to relate EFR results to physiological 

responses of single neurons. These issues further underscore the importance of combining 



71 

electrophysiological, behavioral, and modeling approaches. 

3.6 Summary and Conclusions 

Human listeners with normal audiometric thresholds exhibit large differences in their abil­

ity to process supra-threshold sound features . These differences can be exposed in the 

laboratory by challenging behavioral tasks that necessitate the use of temporal informa­

tion in supra-threshold sound (e.g., segregating and selecting one auditory object out of 

a complex scene). While some NHT listeners seek audiological help for difficulties of this 

sort (a population labeled as having APD), a significant percentage of ordinary, NHT lis­

teners recruited for psychophysical studies in the laboratory, none of whom have known 

hearing problems, show similar deficits under carefully designed, challenging conditions. 

These observations hint that perceptual problems with supra-threshold sounds are more 

widespread than is currently appreciated and that there may be a continuum of abilities 

across NHT listeners, amongst those who seek audiological help and amongst the general 

population. 

Recent animal work shows that noise exposure and aging can result in a loss of signifi­

cant proportion of ANFs without any permanent shift in detection thresholds. Moreover, 

this kind of neuropathy appears to preferentially affect lower-SR ANFs. Both physiological 

responses to AM stimuli in animals and simplistic computational model simulations suggest 

that lower-SR fiber loss will degrade temporal coding of sound envelopes at comfortable 

conversational levels, where high-SR fibers are saturated and therefore unable to entrain 

robustly to envelopes in input sounds. 

A number of studies show that individual differences in the perception of supra-threshold 

sound are correlated with the strength of brainstem responses measured noninvasively on 

the scalp (especially SSSRs and EFRs driven by signal modulation). While the absolute 

strength of EFRs correlates with perceptual abilities, sensitivity of such physiological mea­

sures may be improved by using stimuli that mimic conditions akin to adverse listening 
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conditions, such as high levels and shallow modulations. In addition, differential mea­

sures that consider how EFR phase locking changes with stimulus intensity or modulation 

depth may be especially sensitive when quantifying supra-threshold hearing status, helping 

to factor out other subject-specific differences unrelated to neuropathy. Interpretation of 

such measures requires assessment of cochlear function, as well as development of quanti­

tative models of brainstem responses to establish the correspondence between population 

responses such as EFRs and single-unit physiology. 

There are many challenges in trying to relate behavioral and EFR results to underlying 

physiological changes such as neuropathy, a number of which are due to gaps in current 

knowledge. However, converging evidence supports the hypothesis that deficits in supra­

threshold coding fidelity are relatively common in the population of NHT listeners, and 

account for at least part of the important differences in how well these listeners can com­

municate in difficult everyday social settings. Here, we argue that the neuropathy seen 

in aging and noise-exposed animals may also be occurring in humans and that it may 

explain observed supra-threshold individual differences. We have also proposed some ob­

jective metrics that, based on our hypothesis, should be sensitive measures of the integrity 

of ANFs, allowing individual assessment of supra-threshold hearing status, and have dis­

cussed some of the limitations of the metrics. Still, there remains a large set of questions 

to be answered, ranging from what mechanisms cause synaptic loss that preferentially af­

fects lower-SR fibers to what physiological or perceptual tests may be most sensitive for 

assessing neuropathy. We believe these questions should be addressed immediately, given 

the potential clinical significance of these ideas. 



Chapter 4 

Individual differences in supra-threshold auditory 

perception are consistent with early effects of 

noise-exposure and aging 

Abstract 

Clinical audiometry involves determining the faintest levels of tones that a listener can de­

tect at different frequencies spanning the normally audible range. Hearing loss is diagnosed 

only when these hearing thresholds, measured by the audiogram, are elevated. Nonethe­

less, many listeners with thresholds within the normal hearing range often complain of 

difficulty hearing in everyday settings and understanding speech in noise. In laboratory 

settings, listeners with normal thresholds exhibit wide variability in tasks that are engi­

neered to require the use of precise temporal cues. Converging evidence from behavioral and 

electrophysiological measures point to one one potential source of such difficulties: deficits 

in sound encoding by the early portions of the auditory pathway. Concomitantly, animal 

studies of the effects of early aging and noise exposure reveal that a significant proportion 

of the cochlear nerve fiber population could be lost without any discernible changes in the 

audiogram. Here, using multiple behavioral, otoacoustic and electrophysiological measures 

in conjunction with computational models of sound processing by the auditory periphery 

and brainstem, individual differences among listeners with normal hearing thresholds are 

characterized with a focus on supra-threshold coding of temporal information. Results 

are consistent with the hypothesis that hidden hearing loss occurring at a very early neu-
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ral portion of the auditory pathway contributes significantly to supra-threshold individual 

differences in auditory perception. 

4.1 Introduction 

A long-standing tradition in clinical audiology is the characterization of "normal hearing" 

and hearing loss using threshold audiometry. However, many listeners with normal hearing 

thresholds (NHTs) complain of difficulty in everyday settings, i.e. , in the presence of noise, 

multiple sound sources, and room reverberation. In the clinic, such listeners are labeled 

with a range of diagnoses such as obscure auditory dysfunction (Saunders and Haggard, 

1992), King-Kopetzky syndrome (Zhao and Stephens, 1996), or more generally as having 

(central) auditory processing disorders (CAPD/APD, Chermak and Musiek, 1997; Catts 

et al., 1996; Dawes and Bishop, 2009). The non-specific nature of these labels underscores 

how little we understand about the mechanisms underlying such supra-threshold deficits. 

Estimates of the prevalence of such symptoms in adults range from 5-15% of patients 

seeking audiological help (Cooper Jr and Gates, 1991; Kumar et al., 2007; Hind et al., 2011). 

In conjunction with the estimated prevalence of hearing loss of one in five individuals in 

the United States (Lin et al., 2011a), these numbers suggest that supra-threshold hearing 

deficits may be an important public-health concern that is not currently acknowledged, let 

alone understood. 

Given that threshold audiometry only involves detection, it is not surprising that hav­

ing NHTs does not guarantee good performance in tasks requiring a detailed analysis of 

supra-threshold spectro-temporal sound features. Consistent with this notion, complex, 

crowded environments such as cocktail parties, noisy restaurants, and busy streets pose 

special challenges, and are disproportionately frustrating for some NHT listeners as well 

as for aging listeners and for people with mild hearing loss (Dubno, 1984; Gatehouse and 

Noble, 2004; Dawes and Bishop, 2009). Several studies have reported that some NHT listen­

ers, particularly older participants, perform poorly on behavioral tasks requiring temporal 
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acuity, sometimes even on par with hearing impaired listeners (e.g., Grose and Mamo, 

2010; Strelcyk and Dau, 2009). Aging is known to degrade auditory temporal perception, 

seemingly independently of hearing loss (see Fitzgibbons and Gordon-Salant, 2010, for are­

view). Ruggles and Shinn-Cunningham (2011) showed that NHT listeners exhibit marked 

differences in how well they can use precise temporal information to direct selective atten­

tion, from near chance levels to almost perfect performance. In addition, simple behavioral 

and electrophysiological measures of coding of temporal fine-structure (TFS) and envelope 

(ENV) correlated with performance in the complex attention task (Ruggles et al., 2011, 

2012). Using measures of both gap detection and word recognition on sizeable cohorts of 

young and old listeners, Snell and Frisina (2000) concluded that age related changes in 

auditory processing occur throughout adulthood and that deficits in temporal processing 

may begin decades earlier than age-related changes in word recognition. Subsequenctly, 

they showed a dissociation between threshold sensitivity and temporal processing in adults 

with NHTs or with mild high-frequency hearing loss (Snell et al., 2002). Thus, a consis­

tent picture appears to be emerging; there are deficits in temporal processing that lead to 

difficulties in complex everyday environments to which threshold audiometry is insensitive. 

Reports of insensitivity of pure-tone thresholds to supra-threshold deficits in processing 

complex signals date back as early as 1955. Schuknecht and Woellner (1955) reviewed cases 

of patients who showed abnormally poor speech discrimination scores in relation to their 

thresholds and hypothesized that cochlear nerve fiber loss may underlie those deficits, con­

sistent with their observation of modest or absent changes in thresholds following cochlear 

nerve lesions in cats. They reasoned that although only small numbers of cochlear nerve 

fibers are required to carry the threshold response, more fibers may be required to carry 

complex signals such as speech. Indeed, one recent study shows that, in animals, thresholds 

can be normal with only 10-20% of the inner hair cells (IHCs) of the cochlea intact (Lobari­

nas et al., 2013). This observation is particularly important given recent studies revealing 

the presence of cochlear-nerve degeneration as a result of noise-exposure and aging. Us­

ing groups of unexposed and noise-exposed mice, Kujawa and Liberman (2009) showed 
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that noise exposure that only leads to reversible/temporary threshold shifts nothetheless 

leads to an immediate, (seemingly permanent) loss of a considerable proportion (40-50%) 

of cochlear-nerve terminals innervating the IHCs. While factors associated with cochlear 

mechanical function and outer hair cell activity such as thresholds for auditory brainstem 

responses (ABRs), and distortion-product otoacoustic emissions (DPOAEs) recovered in 

a couple of days, counts of synaptic ribbons remained reduced and were accompanied by 

supra-threshold reductions in ABR amplitudes. This finding was later replicated in age­

netically diverse pool of noise-exposed guinea pigs (Lin et al. , 2011b; Furman et al., 2013) 

using a before-after type within-ear design. Similarly, in animals, aging has also been 

shown to lead to a reduction in the cochlear-nerve fiber population with an early-onset 

loss of nerve terminals followed by a delayed degeneration of cell bodies (Schmiedt et al., 

1996; Sergeyenko et al. , 2013). Recently, using an age-graded series of human temporal 

bones, a steady degradation of spiral ganglion cell counts with age was also demonstrated 

in humans (Makary et al., 2011) with about a 30% loss by the age of 70. Given the marked 

delay between loss of terminals and the loss of cell bodies (Kujawa and Liberman, 2009; 

Sergeyenko et al., 2013), it is likely that deaffarentation and associated functional impair­

ment is more severe than suggested by the modest erosion of spiral ganglion cell density. 

Furthermore, both in aging and acoustic overexposure, the cochlear neuropathy appears 

to be selective to fibers with low spontaneous discharge rates (SR < 20 spikes/s, Schmiedt 

et al., 1996; Furman et al., 2013). Given the higher threshold sound levels associated with 

these low-SR fibers , this may be an additional factor contributing to the insensitivity of 

the threshold audiogram to such nerve fiber loss. 

Considering the insensitivity of pure-tone thresholds to such cochlear neuropathy, we 

wondered if portions of the individual differences in supra-threshold auditory ability among 

NHT listeners could be attributed to such hidden hearing loss (for a detailed articulation 

of the hypothesis, see Chapter 3). Indeed, given that convergence of, and pooling across 

multiple fibers underlies an enhancement in the fidelity of temporal coding at higher nuclei 

along the auditory pathway (Joris et al., 1994; Oertel et al., 2000; Joris and Smith, 2008), it 
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is likely that a decrease in the size of the nerve population would degrade temporal coding of 

both TFS and ENV (Lopez-Poveda and Barrios, 2013), and would lead to elevated thresh­

olds and degraded performance in several perceptual tasks under a model of fixed-variance 

internal noise (Jepsen et al., 2008; MacDonald et al., 2010). Although different perceptual 

attributes of natural sounds are encoded by different spectra-temporal acoustic cues, many 

depend on reliable timing information. For instance, perception of speech (Zeng et al., 

2005), source location (Blauert , 1997) , grouping of acoustic constituents into objects (El­

hilali et al., 2009), and release from various kinds of maskers (Moore, 2008; Christiansen 

et al. , 2013), all depend on using TFS and ENV cues. Thus, degraded temporal coding 

is likely to affect perception in complex acoustic environments. In addition, considering 

the relative robustness of low-SR fibers to masking (Costalupes et al., 1984; Costalupes, 

1985; Young and Barta, 1986) and better synchrony to amplitude-modulations at moderate 

to high sound levels (Joris and Yin, 1992), a selective low-SR neuropathy would further 

increase the likelihood of perceptual difficulties in processing supra-threshold sound. 

Here, we sought to characterize cochlear mechanical function, supra-threshold tempo­

ral coding, and selective attention performance with complex stimuli, in the same group 

of individual NHT listeners. As described in section 4.2, we characterized supra-threshold 

temporal coding using behavioral measures of amplitude modulation detection and discrim­

ination of envelope based interaural time differences (ITDs) in addition to objective electro­

physiological measures using envelope following responses (EFR). We used psychophysical 

tuning curves and DPOAEs to characterize cochlear mechanical function. Finally, we use a 

spatial selective attention task with complex stimuli that were mixtures of speech and noise 

to evaluate the differential contributions of supra-threshold temporal acuity and cochlear 

mechanical function to individual differences in perception in a complex scene. 
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4.2 Methods 

Given the empirical observation that noise induced temporary and permanent threshold 

shifts often appear as notches around 4kHz (Yost, 2007), probably owing to the resonance 

of the outer ear (Pierson et al., 1994), we designed out methods and stimuli attempt­

ing to focus on that tonotopic region of interest. All measures were obtained with the 

participants seated in an acoustically and electrically shielded booth (single-walled Eckel 

C-14 booth, Cambridge, MA). For passive measures (DPOAEs and EFRs), participants 

watched a silent, captioned movie of their choice, ignoring the acoustic stimuli. A personal 

desktop computer controlled all aspects of the experiment, including triggering sound de­

livery and storing data. Special-purpose sound-control hardware (System 3 real-time signal 

processing systems, including D /A conversion and amplification; Tucker Davis Technolo­

gies, Gainesville, FL) presented sound through insert phones (ER-1 , Etymotic, Elk Grove 

Village, IL) coupled to foam ear tips. For otoacoustic emission measures sounds were 

presented and recorded using insert earphones and microphones coupled to foam eartips 

(ER-10, Etymotic, Elk Grove Village, IL). All sounds were digitized at a sampling rate 

of 48828 Hz. For all active behavioral experiments, subjects responded by simple button 

presses and we given feedback after each trial. 

4.2.1 Participants 

Thirty subjects (thirteen female), aged 20- 40, were recruited from the Boston University 

community. All subjects had pure tone hearing thresholds better than 15 dB HL in both 

ears at octave frequencies between 250Hz and 8kHz. Subjects provided informed consent 

in accordance with protocols established at Boston University. Two subjects (aged 27 and 

29) with mild high-frequency hearing loss were recruited in order to evaluate the sensitivity 

of the measures used to characterize cochlear-mechanical function. While the goal was to 

obtain each of the measures was every subjects, some data points were missing. Table 4.2.1 

summarizes the measures acquired from each individual participant. 
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Table 4.1: A summary of which subject performed which test. While some data points 
could not be acquired because of subject availability constraints, most measures were ob-
tained in a majority of subjects to allow for a correlational analyses and multiple regres-
sions. Key: ENVITD - Envelope lTD discrimination thresholds, AM- Amplitude modula-
tion detection thresholds, ERB- Psychophysical tuning curve measures, PTA - Pure-tone 
audiometry, OAE - Distortion product otoacoustic emission growth curve measures, ATT 
- Spatial (ITD based) attention task, EFR- Envelope following responses. 

SNo. ENVITD AM ERB PTA OAE ATT EFR 
1 X X X 

2 X X X X X X 

3 X X X X X X X 

4 X X X X X 

5 X X X 

6 X X X X X X X 

7 X X X X X X 

8 X X X X X X X 

9 X X X X X X X 

10 X X X X X X X 

11 X X X X X X X 

12 X X X X 

13 X X X X X 

14 X X X X X X 

15 X X X X X X X 

16 X X X X 

17 X X X 

18 X X X X X X X 

19 X X X X X 

20 X X X 

21 X X X X X X X 

22 X X X X X 

23 X X 

24 X X X X X X X 

25 X X 

26 X X X X X 

27 X X X X X 

28 X X X X X X 

29 X X X X X 

30 X X X X X 
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4.2.2 Characterization of cochlear-mechanical function 

4.2.2.1 Psychophysical tuning curves 

An important aspect of basilar membrane responses is frequency selectivity. Psychophysi­

cal tuning curves were measured at a fixed low probe tone sensation level of 10 dB SL using 

the notched-noise method (Patterson, 1976) in a forward-masking paradigm (Oxenham and 

Shera, 2003). This approach avoids non-linear cochlear effects that are known to affect tun­

ing measurements obtained using simultaneous masking procedures (Moore and Vickers, 

1997) and has been shown to produce measurements that correspond to physiological mea­

sures of tuning more closely than other methods (Shera et al., 2002, 2010). The stimulus 

parameters were identical to those used by Oxenham and Shera (2003), with the one mod­

ification that discrete prolate-spheroidal sequences (DPSS, Slepian, 1978) were used as 

ramping function for the noise and the probe in order to limit spectral leakage (Thom­

son, 1982). Filter equivalent rectangular bandwidths (ERBs) were estimated by fitting a 

roex(p, w, t) function, as in Oxenham and Shera (2003). 

4.2.2.2 DPOAE input-output curves 

To obtain an objective correlate of cochlear-mechanical compression, DPOAE growth func­

tions were measured as a function of level of the f2 primary tone (!2 =4kHz, Neely et al., 

2003). The frequency the level of the f1 tone were varied according to the formula pro­

vided by Johnson et al. (2006) to maximize the level of the DPOAE for each level of the 

f2 tone. No artifact rejection was performed; instead, to obtain robust estimates despite 

artifacts, trials were combined by calculating the sample by sample median instead of the 

mean. The DPOAE level was calculated using a DPSS-tapered spectral estimate at the 

distortion frequency of 2f1- f2. The primary (!2) level at which the DPOAE level was 

0 dB SPL was quantified as the DPOAE threshold for each subject. 
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4.2.3 Behavioral measures of temporal coding 

Based on the hypothesis that cochlear neuropathy underlies supra-threshold individual 

differences in temporal coding fidelity, we argued t hat stimuli at relative high levels are 

more likely to expose differences than quieter stimuli , because higher level stimuli are more 

likely to recruit larger proportions of the overall population of nerve fibers (Bharadwaj 

et al. , 2014b ). In addition, focusing on envelope coding at high levels is more likely to 

emphasize the contribution of low-SR fibers (see also Joris and Yin, 1992). Given the 

observed low-SR selective neuropathy in both noise exposure and aging (Figure 4.1) , we 

hypothesized that these stimuli would further increase the likelihood of exposing any supra­

threshold temporal coding deficits that may arise as a result of neuropathy (Bharadwaj 

et al., 2014b). 

Guinea Pigs, CF > 4 kHz 
~ 80.----~-----~---, 

~ - Low-SR 
:§ - High-SR 
~ 60 
:::> 
c. 
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0 
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0 
Unexposed Control 

N = 367 fibers, 
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Gerbils, CF > 6 kHz 
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N = 11 animals 

Aged 
N = 10 animals 

Figure 4.1 : Effects on population distribution of cochlear nerve fibers with low- and high­
spontaneous discharge rates in acoustic overexposure (left, Furman et al. , 2013) and ag­
ing (right, Schmiedt et al., 1996) . While the split of low- and high-SR fiber counts is roughly 
50-50 in both control groups (unexposed guinea pigs and young gerbils respectively), both 
noise-exposure and aging appear to lead to a selective neuropathy of low-SR fibers . As 
argued by Bharadwaj et al. (2014b) , t his selectivity may be used to design stimuli that are 
more likely to be sensitive to supra-threshold temporal coding deficits that arise as a result 
of neuropathy. 

Thus, detection thresholds for amplitude modulation (AM) were obtained using a 

broadband noise stimulus at 80 dB SPL (root-mean-square (RMS), Viemeister, 1979). 
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A 500 Hz wide band centered at 4 kHz was modulated at 19 Hz to create a modulated 

target. The unmodulated bands of the noise above and below the carrier served as maskers 

to reduce off-frequency cues. Reference signals were identical but had no modulation. The 

stimuli were presented diotically in a two alternatives-forced-choice (2AFC) paradigm ((i.e. , 

one interval with the reference signal and another with the target signal) for different mod­

ulation depths sampled randomly between 0 and 100%. By using noise stimuli, spectral 

cues for AM detection were eliminated. Threshold depths for detection were determined 

using a bayesian approach by fitting the parameters of sigmoidal psychometric function 

to the responses from 1500 trials and calculating the posterior mean threshold using a 

monte-carlo markov chain (MCMC) sampling procedure from the posterior density (Kuss 

et al., 2005). As in Kuss et al., 2005, a normal and log-normal prior were used for the 

location (threshold) and the slope parameters respectively. The chance level was fixed at 

50% and a beta prior was used for the lapse rate parameter. 

In order to obtain a binaural measure of temporal coding, we used an envelope lTD 

discrimination task. A "transposed" tone (van de Par and Kohlrausch, 1997; Bernstein 

and Trahiotis, 2002) with a carrier at 4 kHz and a modulation frequency of 40 Hz was 

used. The carrier phase was identical in the two ears and the lTD was only applied to 

the 40 Hz envelope. The envelope was ramped slowly (and simultaneously in the two 

ears) over a 100 ms time window to minimise the use of onset-only cues. The stimulus 

level was set at 75 dB SPL. Off-frequency notched-noise (notch width of 800Hz) maskers, 

realized independently in each trial and uncorrelated across the two ears were presented 

at an SNR of 10 dB (broadband-RMS). The off-frequency masker extended to 20 Hz on 

the low-frequency side and 20kHz on the high frequency side and served to attenuate off­

frequency cues, including cues from distortion products. Each trial consisted of a sequence 

of two intervals with the second interval having no lTD. The stimulus in the first interval 

had an lTD sampled uniformly from the set {50, 100, 200, 400, 800} f.tS with the leading 

ear randomized across trials. In each trial, the subjects were asked to indicate whether 

the sound moved from "left to center" or "right to center" . As with the AM threshold 
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measurement, the threshold was determined by fitting a sigmoidal-psychometric function 

to responses from 1200 trials and estimating the posterior mean using MCMC sampling. 
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Figure 4.2: A: A simple model of the population response of inferior colliculus (IC) cells 
to envelope fluctuations. The model comprised of ANFs (simulated using the Zilany et al., 
2009 model) driving the cochlear nucleus (CN), which in turn drives the IC. CN and IC 
processing of envelope were simulated using the Nelson & Carney, 2004 model. A tonotopic 
array of 50 CFs was used. High-, and lower-SR ANFs were simulated at each CF and the 
corresponding IC responses were combined with weights equal to the proportion of each 
group in the population (60% High- and 40% Lower-SR, Liberman 1978). Neuropathy was 
simulated by reducing the weight given to the lower-SR driven response. B: Degradation of 
the population response with neuropathy for different levels of a 100 Hz SAM tone at 4kHz, 
with a 60% modulation depth and added broadband noise with a notch centered around 
4 kHz and 800 Hz wide on each side. The population response degrades more rapidly 
with neuropathy for higher level stimuli. C. Degradation of the population response with 
neuropathy for an 80 dB SPL SAM tone for different modulation depths. The population 
response degrades more rapidly with neuropathy for shallower modulations. 

4.2.4 Electrophysiological measure of temporal coding 

Envelope following responses (EFR) were measured to 100 Hz transposed tones with a 

carrier frequency of 4kHz at a level of 75 dB SPL and for varying modulation depths (m). 

Off-frequency notched-noise maskers were applied at an SNR of 20 dB (broadband-RMS) 
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with a notch width of 800Hz to attenuate off-frequency contributions. The noise level was 

fixed based on pilot experiments which consisted of many more trials than presented to 

actual test subjects and showed that effect of the noise level on the attenuation of the EFR 

of the was drastic at initially, i.e., at low noise levels and became a progressively weaker 

exhibiting a "knee-point" at about an SNR of 20 dB. Attenuations at higher-noise levels 

were consistent with interactions between noise and signal in measurement space, rather 

than physiologically, i.e., the differential attenuation of the EFR was proportional to the 

differential elevation of the noise-floor in the measurements . EFRs were obtained using a 

32 channel EEG system (Biosemi Active II system, Amsterdam, Netherlands) using 1000 

presentations of each stimulus with half in each polarity. The off-frequency noise was real­

ized independently in each trial. The EFR power was estimated in the frequency domain 

using a complex-principal component analysis approach to combine across channels. This 

approach allows to combine measurements from multiple channels with adjustments for 

phase disparities and has been shown to improve the SNR of the extracted EFR signifi­

cantly (Bharadwaj and Shinn-Cunningham, 2014). 

Under the hypothesis the cochlear neuropathy underlies some of the individual dif­

ferences in temporal coding, using a simple model of the EFR as a summed population 

of response of model inferior colliculus cells (Nelson and Carney, 2004), Bharadwaj et al. 

(2014b) suggested that stimuli at high-levels and shallow modulation depths might be most 

effective in accentuating the effects of low-SR fiber loss across listeners. In addition, they 

suggested that changes in EFR amplitude with modulation depth might also be sensitive 

as a self-normalized measure (Figure 4.2). EFRs were recorded for six different m values 

with 20log(m) varying in steps of - 4 dB starting with a value of 0 dB (100% modulation). 

A multichannel-estimate of phase-locking-value (PLV) was used to infer whether a signifi­

cant EFR peak above the noise-floor was present. The PLV is convenient for this purpose 

because the noise-floor distribution depends only on the number of trials that go itno the 

PLV computation and is independent of the frequency bin of analysis and the distribution 

of background-noise levels (Zhu et al., 2013). Because more than half of the subjects did 
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not show a significant EFR peak at the modulation frequency of 100 Hz for modulation 

depths of -12, -16 and -20 dB, only the EFRs in response to stimuli with the largest three 

m values was used for further analyses. As suggested by Bharadwaj et al. (2014b), the 

slope of the EFR amplitude with modulation depth, i.e., the drop in EFR strength for a 

4 dB drop in stimulus modulation was computed by fitting a straight line over the three 

data points corresponding to 20log(m) = 0, -4 and -8 dB respectively. 

4.2.5 lTD based attention task 

To evaluate the contributions of individual differences in cochlear-mechanical function and 

supra-threshold temporal coding to differences in listening performance in a complex task, 

a "spatial" attention task similar to Bharadwaj et al. (2014a) was used. Spoken digits 

recorded in house in the voice of a female speaker were monotonized to 184 Hz (close to 

the natural pitch of the voice) using PRAAT (Boersma and Weenink, 2009). To emphasize 

the use of high-frequency cues, the digits were high-pass filtered at 1500Hz using FIR filter 

designed to have 60 dB attenuation at 1000 Hz. Further, uncorrelated low-pass filtered 

noise (cut-off of 3kHz) was added to each ear. The stimuli were spatialized using ITDs 

(broadband). Each trial consisted of two simultaneous sequences of three spoken digits 

each, with the streams differentiated only with ITDs (Figure 4.3). A visual cue presented 

2 seconds before the onset of the sound streams identified the target (left or right) stream. 

The lTD values in each trial were drawn uniformly from the set 50, 100, 200, 300, 400, 

800 fLS. The target location was randomized on each trial. At the end of each trial a 

visual response circle cued the subjects to indicate the target sequence by a sequence of 

button presses and were given visual feedback. The effect of cochlear-mechanical function 

and supra-threshold temporal coding fidelity on performance in the attention task were 

determined using a multiple-regression analysis. 
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Figure 4.3: A schematic illustration of the lTD based attention task. Each trial began with 
the subject visually fixated at the center of the screen. A visual cue (left or right arrow) 
appears two seconds before the onset of the sounds identifying the direction of the target 
stream (left or right, based on ITDs) . Two simultaneous sequences of digits spoken by 
the same speaker and monotonized to the same pitch were then presented. Then, a visual 
response circle cued the subject to respond and indicate the three digits in t he target 
sequence by means of button presses. Finally, feedback is given to the subject as follows: 
a green circle indicating that all three digits were identified correctly (or) a blue circle 
indicating that two of the three digits were identified correctly (or) a red cross indicating 
that fewer than two response digits match the correct target sequence. 

4.3 Results 

4.3.1 Correlates of peripheral processing 

Figure 4.4A shows the DPOAE growth function results for the individual NHT listeners 

(gray dotted lines) and for the two subjects with hearing loss (solid red lines). The mean 

and standard error of the mean over the NHT cohort are shown in blue for reference and 

appear to be in good agreement with published DPOAE input-output curves for NHT 

listeners (Neely et al., 2003; J ohnson et al., 2006). There appear to exist differences across 

individual listeners in both the shape and overall location of t he DPOAE curve leading to 

differences in thresholds as defined by the primary level at which a DPOAE of 0 dB SPL is 

obtained. The relatively large attenuation in the DPOAE for t he two subjects with hearing 
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loss testifies to the sensitivity of the measure to cochlear-mechanical function deficits. 

The horizontal axis of Figure 4.4B shows the distribution pure tone thresholds at 4 

kHz for the cohort NHT listeners. As shown, there are small differences in the thresholds 

(average across the two ears) across listeners. Psychophysical filter widths also produced 

results comparable to published literature (Oxenham and Shera, 2003) with a mean ERB of 

249Hz and a standard error of 24Hz. Importantly, the three measures of cochlear amplifier 

function correlated with each other (ERB versus pure-tone-thresholds: r = 0.5l,p << 0.01, 

DPOAE versus pure-tone-thresholds: r = 0.42 ,p < 0.01) , suggesting that the variance in 

these measures across subjects in not dominated by measurement noise. 
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Figure 4.4: A: Results of the DPOAE growth function measurements in the cochort of NHT 
listeners and two subjects with elevated 4 khZ pure tone thresholds. An examination of 
the curves corresponding to individual listeners reveals some individual differences in this 
objective threshold measure (the primary level at which a DPOAE of 0 dB SPL is elicited). 
The observation that the DPOAE threshold are much elevated in the subjects with hearing 
loss suggest that the DPOAE measure is sensitive to deficiencies in cochlear mechanical 
function. B: Relationship between pure-tone thresholds (averaged across ears) at 4 kHz 
and threshold for AM detection. While some individual differences exist in the audiogram 
within the NHT range, they appear to be unrelated to the differences in temporal coding 
fidelity as measured by AM detection. 

4 .3.2 Correlates of temporal cod ing fid e lity 

The vertical axis of Figure 4.4B shows the AM detection thresholds for individual sub-

jects. Similar to previous reports of large individual differences in temporal coding in NHT 
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listeners (Ruggles et al., 2011, 2012), large individual differences are also seen in the AM 

thresholds. The thresholds appear to be considerably higher than typical number reported 

for AM thresholds with noise stimuli (e.g., Viemeister, 1979), and are likely due to nar­

rowband nature of the modulation employed in this study along with the unmodulated 

off-frequency bands at the same spectral level. Crucially, these differences in AM thresh­

olds appear to be unrelated to the small individual differences in pure-tone thresholds at 

4kHz. 

Comcomitantly, large individual differences are also seen in the binaural measures of 

temporal coding. As shown, in Figure 4.5A, envelope lTD sensitivity for a carrier frequency 

of 4 kHz varies over a wide range of 46 dB to 59 dB re: 1J.,Ls, i.e., about 200j..ts to 900j..ts. 

This range also appears to be larger with values higher than typical reports (e.g., Bernstein 

and Trahiotis, 2002), but can be reconciled considering the high off-frequency noise masker 

levels employed in this study (see Bernstein and Trahiotis, 2008). While neither measure of 

temporal coding fidelity correlated with the audiogram, they exhibited strong correlation 

with each other (r = 0.71,p << 0.01, Figure 4.5). In addition, psychophysical tuning 

curve bandwidths (ERBs) did not correlate with AM thresholds (r = O.ll,p > 0.05) or 

envelope-lTD thresholds (r = 0.21,p > 0.05) at the 5% false-alarm-rate level. 

4.3.3 Envelope following response results 

As discussed in section 4.2, EFR magnitudes were extracted using frequency-domain prin­

cipal component analysis for the highest three modulation depths (0 dB, -4 dB and -8 

dB). A straight line was fit to calculate the slope of the EFR magnitude as a function of 

modulation depth. As shown in Figure 4.5B, slopes varied from close to 0 dB per 4 dB 

drop to 12 dB per 4 dB drop. As predicted by the model (Figure 4.2) , the slope of the 

EFR magnitude as a function of modulation depth was a strong correlate of perceptual 

AM thresholds. Subjects whose EFR magnitude dropped precipitously with drop in input 

modulation showed higher AM thresholds. While the EFR magnitude at any one modula­

tion depth also correlated with the perceptual AM thresholds (e.g., EFR at -4 dB versus 
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AM thresholds: r = 0.51,p < 0.01), the slope exhibited a stronger correlation with the 

perceptual thresholds (r = 0.68,p << 0.01). To compare the correlations, we used the 

T2-test (Williams, 1959), which has been shown to perform well when comparing depen­

dent correlations (Steiger, 1980). Based on this test, the slope metric was a significantly 

stronger correlate of AM thresholds than the EFR at any one modulation depth (p < 0.05). 

4.3.4 Relationship between attention task performance and correlates of cochlear 

amplification and supra-threshold temporal coding 

Results of the spatial attention task revealed significant individual differences in perfor­

mance ranging from chance level to ceiling, as in Ruggles and Shinn-Cunningham (2011). 

An examination of the errors made by subjects suggested the errors were a result of se­

lecting the masker instead of the target, rather than lapses in intelligibility or memory; 

91% of the incorrectly reported digits were the digits from the masking stream at the same 

position in the sequence. This suggested that sensory encoding limitations in being able 

to select the right digit based on lTD were in play. 

In order to evaluate the relative contributions of peripheral processing and neural tem­

poral coding to individual differences in the spatial (lTD based) attention task with broad­

band speech and noise stimuli, we entered the data into a multiple regression analysis. 

Because the different measureses (audiogram, psychophysical tuning curves and DPOAE 

thresholds) of cochlear amplifier function were correlated with each other, we summarized 

all the metrics together by a single factor obtained using principal component analysis 

(PCA). The same was done for the measures of temporal coding (AM threshold, envelope 

lTD thresholds and EFR slopes). Before entering the different measures into the PCA, they 

were each centered (by subtracting across subject average) and normalized (by dividing 

by the across subject standard deviation) in order to bring them to a common scale. The 

two factors, one corresponding to peripheral processing and one corresponding to neural 

temporal coding, were then entered into a multiple-regression analysis. Results revealed 

that individual differences in temporal coding accounted for a significant fraction of the 
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across-subject variance in performance in the attention task (49%, p << 0.01), whereas 

peripheral processing correlates did not (9%, p > 0.05). Thus it appears that for this 

particular design of the spatial attention task, individual differences in temporal coding 

dominated the variance in performance. Similar results were obtained when using only the 

objective measures of peripheral processing and temporal coding (DPOAE thresholds and 

EFR slopes, respectively). 
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Figure 4.5: A: Results of t he behavioral measures of temporal coding. Large individual 
differences are seen in both AM thresholds and in thresholds for discrimination of envelope 
lTD. Importantly, there exists a strong correlation between the two measures across indi­
vidual listeners. Subjects with higher sensitivity to shallow modulations are also able to 
use envelope timing information better to discriminate interaural temporal differences. B : 
Relationship between EFR based measure of temporal coding fidelity and behavioral AM 
t hresholds. The slope of the EFR with modulation depth, i.e., a drop in EFR power at 
the modulation frequency for a 4 dB drop in modulation depth in the stimulus, correlates 
strongly with behavioral AM sensitivity. 

4.4 D iscussion 

In our high-level task designed to expose individual differences in sensory encoding, large 

individual differences emerge in performance. Our main finding is that a significant pro-

portion of the variance of which could be accounted for by individual differences in supra­

threshold temporal coding of acoustic information. Importantly, measures of cochlear am­

plifier function, though correlated with each other, accounted for very little of the variabil-
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ity in performance in the attention task and were uncorrelated with measures of temporal 

coding fidelity. In addition, EFR-based metrics that were designed to be more sensitive to 

supra-threshold temporal coding based on the neuropathy hypothesis, were indeed stronger 

correlates of behavioral differences. Taken together, these results support the idea that en­

coding at a very early neural (as opposed to cochlear mechanical) portion of the auditory 

pathway may be affected in NHT listeners in a manner consistent with early effects of 

noise-exposure and aging. 

For a high-level task such as selective attention, extra-sensory factors, such as differ­

ences in language, familiarity of target sounds, memory etc., would likely contribute to 

performance, and in some cases dominate (e.g., see Surprenant and Watson, 2001; Kidd 

et al., 2007; Conway et al., 2001). However, in this study, we are concerned with sensory 

factors that may not be reflected in the audiogram, with a focus on examining "hidden 

hearing loss" that may exist in the general NHT population. Accordingly, we designed 

the spatial attention task such that sensory encoding limitations are more likely to be 

exposed. Errors made by the subjects were consistent with this notion. Clinically iden­

tified hearing loss (i.e., a permanent threshold shift) is thought to reflect deficiencies in 

the function of the cochlear amplifier, reflecting primarily outer hair-cell integrity (e.g., see 

Stebbins et al., 1979). Recent animal studies, in contrast, identify afferent terminal loss 

following moderate noise-exposure and early aging even though the hair cells (and pre­

sumably cochlear mechanical function) themselves remain intact (Kujawa and Liberman, 

2009; Lin et al., 2011a; Makary et al., 2011; Sergeyenko et al., 2013). These findings sug­

gest that traditional definitions of hearing loss are inadequate. Here, under the hypothesis 

that this cochlear neuropathy may be present in the general NHT population (Bharadwaj 

et al., 2014b), we employed measures which might be more sensitive to supra-threshold 

differences in temporal coding than previously used (Ruggles et al., 2011, 2012). To this 

end, we used stimuli with relatively high sound levels and examined electrophysiological 

responses with varying modulation depths. In that these modifications indeed resulted 

in stronger electrophysiological correlates of behavioral measures, the data are consistent 
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with the neuropathy hypothesis. 

While many studies seek to understand the effects of hearing loss and other neuro­

logical disorders on auditory temporal processing, unfortunately, not many studies have 

been conducted that quantify /describe the normal variability that may exist in the NHT 

population or what the sources of such variability may be. With the aging of world pop­

ulations in a civilization of incessant noise exposure, the question of how much of the 

"normal" variability may be due to biophysical processes like neuropathy is one of impor­

tance. Indeed, an estimated 17% of the general population, are exposed to noise levels 

that produce temporary threshold shifts (and lead to considerable neuropathy in animal 

models) in occupational settings, and experience hearing difficulties that can be attributed 

to such exposure (Tak and Calvert, 2008; Tak et al., 2009). Recreational noise exposure 

on an individual basis on the other hand is more difficult to estimate and quantify. Noise 

exposure levels from recreational, household, hobby and transportation noise have been es­

timated in several studies (see Clark, 1991; Clark and Bohne, 1999, for reviews) and often 

exceed 100 dBA. Thus it is plausible that a considerable amount of the inter-individual 

variability may originate in hidden neural loss owing to noise exposure or its interactions 

with aging and genetic predisposition to such noise susceptibility (Kujawa and Liberman, 

2006; Davis et al., 2001, 2003). 

While aging and noise exposure history likely contribute to deficiencies in supra-threshold 

temporal processing, inherent variability from genetic, epigenetic and experiential factors 

no doubt play a role in individual outcomes. Indeed, literature exists to suggest that ex­

perience and training dependent long term plasticity effects might exist at several levels of 

the auditory system (Polley et al., 2006; Karmarkar and Dan, 2006) . Studies also suggest 

that such long-term plasticity effects modulate subcortical temporal coding as reflected 

by the EFR and that this translates to benefits in behavioral performance in auditory 

tasks (see Chandrasekaran and Kraus, 2010; Anderson et al., 2010; Musacchia et al., 2008; 

Russo et al., 2005). Further studies are needed to assess the relative contributions of such 

long-term effects to individual differences in electrophysiological measures such as the EFR 
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in the general NHT population. 

Finally, notwithstanding the findings of strong and meaningful correlations across the 

multitude of measures employed in this study, the sample size is relatively small for a study 

seeking to understand the sources of inter-subject variability in supra-threshold listening. 

While our results suggest that supra-threshold temporal coding differences dominate in­

dividual differences in such listening conditions as employed in this study, differences in 

cochlear mechanics may well be important and account for a significant portion of the 

individual differences if a larger cohort of listeners is studied. 

4.5 Conclusions 

Individual differences in supra-threshold auditory perception amongst NHT listeners are 

revealed in difficult environments where sensory limitations in encoding of precise spectra­

temporal features are exposed. In our NHT listeners, these differences appear to be unre­

lated to functioning of the cochlear amplifier as measured by DPOAEs and psychophysical 

tuning curves, consistent with the insensitivity of the audiogram to such differences. In­

stead, results suggest that there are differences in the fidelity with which temporal features 

are encoded by very early levels of the neural pathway and are consistent with differences 

in surviving sizes of the cochlear-nerve populations responding to sound. Considering the 

phenenomenology of these individual differences in NHT listeners and the implication in the 

context of occupational/recreational noise exposure and early aging, these results suggest 

that considerable effort must be directed towards their study. 



Chapter 5 

Conclusions and Future Work 

5.1 Summary of findings 

Aim 1: Electrophysiological measures of supra-threshold temporal coding 

Chapter 2 demonstrated how to apply a multichannel approach to acquire subcortical 

steady state responses efficiently. This approach provides a significant improvement in 

SNR for a given recording session length; equivalently, this approach reduces the data 

acquisition time by a factor of about three. This improvement makes it feasible to acquire 

SSSRs in response to several stimulus manipulations within a single session, allowing for 

a detailed examination of supra-threshold temporal coding in a large cohort of individual 

listeners. 

Aim 2: Model predictions and the cochlear neuropathy hypothesis 

Chapter 3 reviews in detail evidence for cochlear neuropathy, a loss of synapses and affer­

ent nerve terminals that carry information from the inner hair cell to the central nervous 

system. The consequences of the same for supra-threshold temporal coding are discussed 

and evidence for such temporal coding deficits in humans is reviewed. Taken together, 

evidence suggests that individual differences in supra-threshold temporal coding among 

listeners with normal thresholds may be the first indications of the hidden hearing loss 

from noise-exposure and aging, thereby explaining the constellation of symptoms affecting 

NHT listeners seeking audiological help. We present a phenomenological model of pop­

ulation responses that represent the sources of the SSSR (the EFR in particular), built 
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based on existing models of auditory nerve and inferior collicuhis processing of amplitude 

modulated sounds. The model predicts that examination of envelope coding at high levels 

and shallow modulations might best expose temporal coding deficits that arise as a result 

of neuropathy. In addition, the model predicts that the change in the EFR as a function of 

modulation depth would be a sensitive correlate of supra-threshold temporal coding under 

the neuropathy hypothesis. These predictions are put to test in chapter 4. 

Aim 3: Relationship between correlates of cochlear mechanical function, supra­

threshold temporal coding and spatial attention 

Using an array of objective and behavioral measures on a cohort of 30 listeners, the find­

ings in chapter 4 suggest that supra-threshold temporal coding differences are dominant 

contributors to individual differences in performance in complex listening tasks where sen­

sory coding limitations are exposed in listeners with normal hearing thresholds. Cochlear 

mechanical function differences as measured by DPOAEs, thresholds and psychophyisical 

tuning curves account only for a small fraction of supra-threshold differences. On the other 

hand, as predicted in chapter 3, the change in the EFR for a given drop in input stimulus 

modulation depth accounts for more then 50% of the individual differences in behavioral 

measures. In addition, behavioral differences in binaural and complex listening (spatial at­

tention) tasks are partly accounted for by simpler monaural temporal coding measures such 

as AM detection thresholds. Thus, the data support the hypothesis that suprathreshold 

sensory deficits arise from a very early neural portion of the auditory pathway, consistent 

with the cochlear neuropathy effects seen in noise-exposure and early aging. 

5.2 Significance 

Given that the reported research was conducted using a cohort of NHT listeners with no 

known hearing deficits or complaints, these findings suggest the possibility that supra­

threshold effects of noise-exposure and aging may be widespread in the general population, 
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further implying that "normal-hearing" really spans a continuum of abilities. The estab­

lishment of a mechanistic link between measurable supra-threshold coding deficits and 

heretofore clinically unexplained hearing difficulties is very significant. The identification 

of fast, objective measures that can assess supra-threshold ability may prove important, 

clinically. The link between noise-exposure and supra-threshold temporal coding deficits 

has tremendous implications and provides new considerations for occupational exposure 

regulations and the use of hearing protection, and points to the importance of educating 

the general population about the irreversible consequences of noise exposure. 

5.3 Future research 

Our results suggest that noise-exposure and aging may lead to hidden hearing loss that 

affects communication in social settings. Because these experiments were conducted with 

a relatively small cohort of NHT listeners recruited from the local community, the ability 

to control or assess the levels of prior noise-exposure was limited. While occupational noise 

exposure can be quantified, recreational noise exposure is difficult to assess. However, the 

clinical significance of these results merit a detailed study of a large sample of listeners 

spanning the spectrum of occupational and recreational exposures. The statistical power 

gained from studying such a large and diverse sample may make it possible to tease apart 

the effects of various kinds of exposures. 

As discussed in chapter 3, our knowledge of the relationship between the neurophysi­

ology of single-units and gross population measures such as the EFR are limited. Further 

experiments and quantitative models are needed in order to help interpret the results of 

such non-invasive in vivo measure as the EFR. 

This thesis focused on sensory coding differences in the periphery and early neural 

portions of the auditory pathway in NHT listeners. Further research is needed in order to 

understand the consequences of such sensory differences for higher order processing and 

vice-versa. A wealth of experiments could be conducted studying individual differences in 
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sensory coding and its relationship to top-down control that may serve to illuminate the 

neural mechanisms of selective attention and cocktail-party listening. 

Finally, the relationship between such neural supra-threshold deficits and cochlear hear­

ing loss needs to be examined in order to be able to design more effective assistive devices 

and treatments. 
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