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Abstract—Pricing models for virtualized (cloud) resources are
meant to reflect the operational costs and profit margins for
providers to deliver specific resources or services to customers
subject to an underlying Service Level Agreements (SLAs). While
the operational costs incurred by cloud providers are dynamic
– they vary over time, depending on factors such as energy
cost, cooling strategies, and overall utilization – the pricing
models extended to customers are typically fixed – they are
static over time and independent of aggregate demand. This
disconnect between the cost incurred by a provider and the
price paid by a customer results in an inefficient marketplace.
In particular, it does not provide incentives for customers to
express workload scheduling flexibilities that may benefit them
as well as cloud providers. In this paper, we propose a new
dynamic pricing model that aims to address this marketplace
inefficiency by giving customers the opportunity and incentive to
take advantage of any tolerances they may have regarding the
scheduling of their workloads. We present the architecture and
algorithmic blueprints of a framework for workload colocation,
which provides customers with the ability to formally express
workload scheduling flexibilities using Directed Acyclic Graphs
(DAGs), optimizes the use of cloud resources to collocate clients’
workloads, and utilizes Shapley valuation to rationally – and
thus fairly in a game-theoretic sense – attribute costs to customer
workloads. In a thorough experimental evaluation we show the
practical utility of our dynamic pricing mechanism and the
efficacy of the resulting marketplace in terms of cost savings.

I. INTRODUCTION

Motivation: Cloud computing in general and Infrastructure
as a Service (IaaS) in particular have emerged as compelling
paradigms for the deployment of distributed applications and
services on the Internet due in large to the maturity and wide
adoption of virtualization. By relying on virtualized resources,
customers are able to easily deploy, scale up or down their
applications seamlessly across computing resources offered
by one or more infrastructure providers [1]. Cloud Providers
incur a significant capital investment as part of creating and
providing these services. These investments can be divided
into two major categories: capital expenditures and opera-
tional expenditures. Capital expenditures are the initial fixed
costs for setting up the data center infrastructure, including
servers, network devices, transformers, cooling systems, etc.
Operational expenditures, on the other hand, are the recurring
costs throughout the lifetime of the data center, including
power, maintenance, and labor costs. A data center’s return
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on investment (ROI) relies heavily on decreasing its overall
cost through efficient cooling and energy conservation [2], [3],
while increasing its overall utilization as customers’ adoption
of cloud services increases.

Minimizing the overall cost involves a non-trivial optimiza-
tion that depends on many factors, including time and location
dependent factors. For example, in some cities, the cost of
energy is variable depending on time of day [4], [5], while the
cost of cooling might be higher during summer than winter,
or during peak utilization times. The physical location of
allocated resources in the data center can also be a crucial
factor in cost reduction. An efficient allocation can lead to
powering down different server and network resources [2], or
in decreased cost of cooling [6]. These approaches are but
examples of what cloud providers must consider in order to
decrease their overall operational costs.

Despite these complexities, the pricing models extended to
cloud customers are typically fixed – they are static over
time and independent of aggregate demand. For example,
the pricing model of IaaS providers such as Amazon and
Rackspace [7], [8] for leasing resources is in the form of
fixed-price SLAs, which do not vary with resource availability,
seasonal peak demand, and fluctuating energy costs. From
the customers’ perspective, fixed pricing has its advantages
due to its simplicity and the fact that it provides a sense of
predictability. That said, fixed pricing has many disadvantages
for customers and providers alike due to the fact that it does
not allow both of them to capitalize on customer-side elasticity.

Under a fixed pricing model, customers do not have any
incentive to expose (and do not have any means to capitalize
on) the elasticity of their workloads. By workload elasticity,
we refer to scheduling flexibilities that customers may be able
to tolerate. This customer-side demand elasticity could be seen
as an asset that may benefit both customers and providers,
in the same way that provider-side supply elasticity proved
to be instrumental in the development of an entire industry.
From the provider’s perspective, demand elasticity could be
seen as an additional lever in the aforementioned optimization
of operational costs, whereas from the customer’s perspective,
demand elasticity could be seen as a feature of their workloads
that should translate to cost savings. Fixed pricing models do
not enable demand elasticity to play a role in the marketplace,
effectively resulting in an inefficient marketplace.

Leveraging customer-side demand elasticity requires the
development of dynamic (as opposed to fixed) pricing mech-



anisms and associated flexible SLA models that provide cus-
tomers with proper incentives and assurances. In particular, the
pricing mechanism must provably reward (and certainly never
mistreat) customers for expressing the scheduling flexibilities
in their workloads.

Scope and Contribution: In this paper, we propose a frame-
work (a flexible SLA model and an associated dynamic pricing
mechanism) that achieves the above-stated goals by giving cus-
tomers both the means and incentive to express any tolerances
they may have regarding the scheduling of their workloads.
Our framework improves IaaS pricing transparency, enhances
credibility of IaaS providers, and increases customer confi-
dence in the IaaS marketplace. It does so by ensuring that
resources are allocated to customers who value them the most.
Our pricing model consists of two major components: a fixed
component, reflecting the fixed costs associated with the acqui-
sition and maintenance of the infrastructure, and a time-variant
amortized component, reflecting variable operational costs.
Our framework incorporates a resource specification language
that provides customers not only the ability to state the cloud
resources they require, but also to express their scheduling
flexibilities. Realizing that more efficient resource utilization
could be achieved by appropriately colocating applications
from multiple IaaS customers on the same set of resources, we
develop techniques that optimize the colocation of customer
workloads to maximize the efficient use of IaaS resources. Our
techniques are based on a pricing mechanism that not only
attributes accrued costs rationally – and thus fairly in a game-
theoretic sense – across customers, but also provides incentives
for customers to declare their flexibilities by guaranteeing that
they will not be mistreated as a consequence. Our framework
could be incorporated into an IaaS offering by providers; it
could be implemented as a value-added proposition by IaaS
resellers; or it could be directly leveraged in a peer-to-peer
fashion by IaaS customers. We note that our framework is
generic enough to be applicable to any market-based resource
allocation environments, with IaaS being a specific instanti-
ation. Results from extensive simulations using synthetically
generated workloads, selected from a set of representative real
workload models, highlight the practical utility of our dynamic
pricing mechanism, the efficacy of our algorithm in colocating
workloads, and the rationally fair distribution of costs among
customers.

Paper Overview: The remainder of this paper is organized as
follows. In Section II, we present a resource cost model. In
Section III, we present the basic concepts underlying our colo-
cation framework, along with the set of components required
for efficient optimization of resources and fair allocation of
cost among customers. In Section IV, we present experimental
results that demonstrate the promise from using our colocation
framework to manage the colocation of different types of
workloads. In Section V, we review relevant related work.
We conclude in Section VI with closing remarks and future
research directions.

II. IAAS RESOURCE COST MODEL

As we alluded before, fixed resource pricing does not
reflect the time-variant expenses incurred by providers and
fails to capitalize on the scheduling flexibilities of customers.
Expenses incurred by providers are affected by different cri-
teria such as datacenter utilization, efficient cooling strategies,
ambient temperature, total energy consumption, and energy
costs. Indeed, studies indicate that the amortized cost of energy
and physical resources account for 30% and 45% of the cost of
datacenters, respectively [1], [9]. In addition, it is becoming
a norm for datacenters to be charged a variable hourly rate
for electricity [4], or for peak usage [9]. Accordingly, in this
paper, we consider two factors to be the primary determinants
of the costs incurred by providers: (1) the variable cost of
electricity as a function of the time of the day, and (2) the level
of utilization of resources, and hence the power consumption,
at each point in time.

In order to pursue this notion further, we need an accurate
model of resource energy consumption. Recent work on en-
ergy [3], [10], [11] suggest that a physical machine’s power
consumption increases linearly with the system load, with a
base idle power draw of 60%. Under this simple model one can
already observe a generic notion of fixed and variable costs. In
addition, Ranganathan et al. [12] suggest a linear relationship
between watts consumed for powering and watts consumed
for cooling. Using this knowledge, it is reasonable to assume
that the total expense of operating a resource j during time t
is:

Pj + f(t, Uj(t))

where Pj reflects the fixed cost of the resource j. The function
f(t, Uj(t)) is the energy cost consumed by resource j at time
t under utilization Uj(t). we define f(t, Uj(t)) as follows:

f(t, Uj(t)) = α(t)(v0 + (1− v0)Uj(t) ∗Rj)

where α(t) is a coefficient reflecting the energy cost at time
t, and v0 is the energy fraction consumed by the resource
when idle,1 and Rj is the fixed capacity of resource j which
is generic enough to reflect a single host, a single rack, or an
entire datacenter.2 Note that f(t, Uj(t)) has also a fixed part
reflecting the cost of operating the resource while idle.

III. COLOCATION: FRAMEWORK

We assume a general setting consisting of any number of
possibly heterogeneous resources, (e.g. physical machines).
Each resource is characterized by a number of dimensions
(e.g., CPU, network, memory, and disk space) which constitute
dimensions of the resource capacity vector. To achieve an
efficient scheduling of resources, we observe that the major
underlying property to exploit is how different applications
are assigned to a resource in the datacenter. This assignment,
has implications on the aggregate expense of the provider,
and consequently the overall customer cost. Our approach is

1Throughout this paper, we take v0 to be 60% [3], [10], [11].
2Although we take energy as an example of time variant cost, our model

could apply to any other time variant cost.



to design a framework which has three major components: (1)
a workload specification language that enables customers to
specify their workloads as a Directed Acyclic Graph (DAG),
where each node represents a multi-dimensional utilization
vector,3 (2) a colocation strategy based on optimization theory
that generates an efficient colocation of workloads, and (3) a
cost distribution component which allocates the total cost of
resources among customers in a rationally fair manner.

A. Colocation: Workload Specification

We propose an expressive model for customer workloads,
which allows them to declare their quantitative resource re-
quirements as well as any associated temporal flexibilities.
A workload is represented as a DAG. A node in the graph
represents a single task to be mapped to a resource, and
consumes some of the resource dimensions.4 A task has two
attributes: The total number d of time slots during which the
task must remain on the same resource, and a quantitative
resource request matrix V m×d, consisting of d vectors, where
m represents the different dimensions required during each
period. The directed edges in the graph represent the temporal
dependencies between tasks. An edge between node k and o
dictates that task k needs to finish execution before task o
starts execution. The weight on an edge w ≥ 0 designates the
maximum delay a customer can tolerate between releasing a
resource by task k and acquiring a resource for the execution
of task o. In addition, a customer i specifies an execution
window (T si , T

e
i ), where T si is the workload earliest start time,

and T ei is a deadline for the completion of the workload. This
formally declared temporal flexibility by a customer will be
exploited by our framework to achieve better colocation.

This model is expressive enough for various types of
applications. Figure 1 (a) shows a sample specification for a
batch workload. Such a workload is representative of bulk data
transfer or backup applications. The workload consists of six
tasks with different utilization levels and durations. The tasks
are not temporally dependent, thus there are no edges between
them, implying that they may be satisfied in any order within
the exeuction window. Specifying a web server, which requires
the workload to execute on the same resource would result in
representing the workload as one node with a duration equal
to 24 and volume Vm×24 that varies accordingly. Figure 1 (b)
illustrates a pipelined workload with 24 nodes, where tasks
need to execute in sequence throughout an entire day with
different utilizations, and the delay between the execution of
two consecutive tasks is zero. These two examples illustrate
scenarios in which the customer has no scheduling flexibilities.
Figure 1 (c) illustrates a typical MapReduce workload, where
a scheduling task needs to execute, followed by a set of un-
correlated map tasks, and finishing with a reduce task. Figure

3We note that our workload specification language allows customers to
specify additional dimensions associated with each node (e.g., location,
operating system, etc.). Without loss of generality, in this paper, we only
consider dimensions related to consumable physical resources.

4Conveniently, and without loss of generality, one might view each task as
underlying a virtual machine.

Fig. 1. An example illustrating different workload models.

1 (d) is a constrained version of the MapReduce workload,
where some communicating tasks need to run concurrently.
We introduce a marker node, (in red), that has a duration of
zero and a utilization of zero; it forces a number of tasks to
run concurrently once the marker node is scheduled.

B. Colocation: Optimization Problem

In the previous section, we presented our workload spec-
ification language, which allows IaaS customers to describe
their workloads. In this section, we formulate the colocation
problem and present a linear programming optimization so-
lution. The objective of the system is to fulfill the requests
of all customers while incurring the minimal total cost. The
aggregate load on the system can be represented by the
graph G =< V,E >, representing the union of the DAGs
Gi =< Vi, Ei > representing the workloads of all customers
i ∈ U – namely, V =

⋃
∀i Vi and E =

⋃
∀iEi.

We define Y (t, j) to be a binary decision variable that
equals to one when resource j is in use at time t. We also
define X(j, t, k, l) to be a binary decision variable such that

X(j, t, k, l) =


1 If resource j at time t is assigned to

node k’s duration l.

0 Otherwise



We formulate our colocation optimization problem as fol-
lows, (verbal description to follow):

min
∑
∀t,j

(Y (t, j)× Pj + Y (t, j)× α(t)× v0

+ α(t)× (1− v0)Uj(t)×Rj)

Subject to:∑
∀l

X(j, t, k, l) ≤ Y (j, t) ∀t, j, k (1)

∑
∀k,1≤l≤dk

X(j, t, k, l)× u(k, l) ≤ Rj ∀j, t (2)

∑
∀j,t

X(j, t, k, l) = 1 ∀k ∈ V, 1 ≤ l ≤ dk (3)

X(j, t, k, l) = X(j, t+ 1, k, l + 1) (4)
∀j, t, k ∈ V, 1 ≤ l < dk

X(j, t, k, l) = 0 ∀j, k ∈ Vi, t < T si , 1 ≤ l ≤ dk (5)

X(j, t, k, l) = 0 ∀j, k ∈ Vi, t > T ei , 1 ≤ l ≤ dk (6)

∑
j,t<t′

X(j, t, k, dk) ≥
∑
j′

X(j′, t′, o, 1) (7)

∀t′, (k, o) ∈ E∑
j

X(j, t′, k, dk) ≤
∑

j′,t′<t≤t′+We+1

X(j′, t, o, 1) (8)

∀t′, (k, o) ∈ E

where Pj and Rj are the cost and capacity of a specific
physical resource j, Uj(t) is the total utilization of resource j
at time t, v0 is the energy consumed by resource j while idle,
α(t) is the cost of energy at time t, and u(k, l) is the utilization
request of a nodes k’s duration l. This formulation is a general
enough to model different types of resources. Intuitively, the
optimization problem aims to minimize the cost of resources
across time. The objective function is the sum of three parts,
reflecting the cost of leasing the resource: Y (t, j)×Pj reflects
the fixed cost of leasing the resource, Y (t, j) × α(t) × v0 is
the initial cost of energy to run the resource at an idle state,
and α(t)× (1− v0)Uj(t)×Rj stands for the additional as a
consequence for utilizing the resource.

Equation (1) ensures that a resource j is utilized at time
t, – Y (j, t) is set to one – if that resource is used to service
the requests of any customer. Equation (2) ensures that the
utilization of a single resource does not exceed a fixed capacity
Rj . Equation (3) guarantees that all periods of each task are
fulfilled exactly once. Equation (4) ensures that a task’s periods
are allocated consecutively on the same resource. Equation (5)
and (6) ensure that the time of execution of customer i’s tasks
are between the start time T si and end time T ei specified by

the customer. Finally, Equation (7) and (8), guarantee that the
allocation of resources respects the client’s edge constraints. In
particular, Equation (7) constrains the allocation of a request o
to follow the resources allocated to request k, while Equation
(8) guarantees that such an allocation happens within the
specified client’s delay We on edge (k, o).

C. Colocation: Polynomial-time Solution

The optimization problem defined in the previous section is
a variant of mixed-integer programming, which is known to
be NP-hard in general. Therefore, in this section, we propose
a polynomial-time greedy algorithm that results in solutions to
our colocation problem, which we show to be effective in our
experiments. The algorithm starts from an initial valid solution
and iterates over several greedy moves until it converges.

The initial solution is created by randomly assigning work-
loads to resources, such that each workload’s specific con-
strains are satisfied. Naturally, the initial solution’s total cost
is far more expensive than an optimal solution.

At each greedy move, the algorithm chooses a workload
which has the highest current-to-optimal cost ratio r among all
workloads. Calculating an optimal cost of a workload is not
trivial, however, we can calculate the Utopian cost, a lower
bound on the optimal workload cost efficiently, where the
utopian cost of a workload reflects only the cost of energy and
resources that the workload actually uses. The utopian cost is
calculated under the assumption that there is a perfect packing
of the workload, with the energy cost being the minimum
throughout the customer’s specified workload start and end
times. The algorithm relocates the workload such that r is
minimized. If such a relocation results in a total cost-reducing
solution, then the move is accepted, the solution is updated,
and the process is repeated. Otherwise, the algorithm chooses
the workload with the second highest ratio r and iterates. The
algorithm stops when the iteration step fails to find a move
for any of the workloads.

D. Fair Pricing Mechanism

The colocation framework is designed to minimize the total
aggregate cost of using resources. However, we need a pricing
mechanism to apportion (distribute) this total cost across all
customers. Such a pricing mechanism needs to ensure that
the interests of customers, particularly fairness in terms of
costs that customers accrue for the resources they acquire,
and provides guarantees of no mistreatment of a customer’s
elasticity.

There are many ways to apportion the total cost across
customers. For instance, one option would be to divide the cost
equally among customers. Clearly, this mechanism will not be
fair as it does not discriminate between customers with large
jobs and customers with small jobs. Another option would be
to charge each customer based on the proportional cost of each
resource they utilize. As we will show next, such an option is
also not fair.

Consider an example of two customers A and B each
with a single task workload with 50% resource utilization.



Customer A is constrained to run during the highest energy
cost period. Customer B has no such constraint. Let cl be the
cost of running during low energy period, and ch be the cost
of running during high energy period. An optimized solution
would colocate customer A and B to run during the highest
energy cost period with a total cost of ch. Assuming the cost
of ch > 2 × cl. A proportional share pricing mechanism
would divide the total cost across both customers, thus forcing
customer B to pay more than what he/she would have paid
had he/she run by herself at the lowest energy cost period.

A “rationally fair” pricing mechanism allocates the total
cost over the customers in accordance with each customer’s
marginal contribution to the aggregate cost of using the
resources. Such mechanism should take into consideration
not only the actual customer workload demands, but also the
effects of the workload constraints.

To quantify per-customer contribution, we resort to notions
from economic game theory. In particular, we adopt the
concept of Shapley value [13], which is a well defined concept
from coalitional game theory that allows for fair cost sharing
characterization among involved players (customers).

Given a set of n customers U , we divide the total cost of the
system C(U) by ordering the customers, say u1, u2, · · · , un,
and charging each customer his/her marginal contribution to
the total system cost. Thus, u1 will be charged C(u1), u2

will be charged C(u1, u2) − C(u1), etc. Since the ordering
of customers affects the amount they will be charged, a fair
distribution should take the average marginal cost of each
customer over all possible ordering permutations. Then the
marginal cost of φ(C) of each customer u is defined as
follows:

φu(C) =
1
N !

∑
π∈SN

(C(S(π, u))− C(S(π, u) \ u)) (9)

where S(π, i) is the set of players arrived in the system
not later than u, and π is a permutation of arrival order of
those customers. Thus player u is responsible for its marginal
contribution v(S(π, u)) − v(S(π, u) \ u) averaged across all
N ! arrival orders of π.

Looking back at the previous example of two customers A
and B, there are two possible ordering: B,A and A,B. For
the first, the cost of B = cl and the cost of A = ch − cl.
For the second, the cost of A = ch, and the cost of B = 0.
After averaging both costs, we end up with a rationally fair
individual cost distribution: B = cl

2 and A = ch − cl

2 .
By adopting Shapley value as a rationally fair mechanism

for allocating costs, customers have the incentive to declare the
flexibility (if any), because the pricing mechanism guarantees
that a customer’s cost will not increase because of flexibility.
We formalize this notion in the following theorem.

Theorem 1. The fair pricing mechanism under Shapley value
guarantees no mistreatment as a result of customer flexibility,
i.e., φi(C)−φi(C)F ≥ 0, where φi(C) is the cost of customer
i and φi(C)F is the cost of flexible customer i under Shapley
value.

Proof: The proof is by contradiction. Assuming that the
opposite is true, i.e., φi(C) − φi(C)F < 0, implies that
there exists at least one permutation where C(S(π, i)) −
C(S(π, i) \ i)−C(S(π, i))F −C(S(π, i) \ i)F < 0. Since the
configuration of other players did not change, then C(S(π, i)\
i)F = C(S(π, i) \ i). Thus, C(S(π, i)) − C(S(π, i))F < 0.
This implies that the optimization solution OPT (i) result-
ing in C(S(π, i)) is better than the optimization solution
OPT (i)F resulting in C(S(π, i))F . But if OPT (i) is better
than OPT (i)F then the optimization should have found it,
since the flexibility of the customer contains the constrained
version as well – a contradiction.

While computing the exact cost for each customer using
Equation (9) is straightforward for small number of customers,
finding the exact cost becomes infeasible as the number of
customers increases. Thus, we resort to computing an estimate
of the Shapley value.5 We utilize Castro’s [15] polynomial
time estimation of Shapley value, which not only achieves
a good estimation of the original Shapley value, but also
provides bounds on the estimation error.

Let Sh = (φ1(C), φ2(C), · · ·φn(C)) be a vector represent-
ing the Shapley value of all customers based on all possible
N ! permutations; let the estimated Shapley value based on m
sample permutations be Sĥ = (φ̂1(C), φ̂2(C), · · · , φ̂n(C)).
Sĥ. Using the central limit theorem, Castro’s technique cal-
culates the number of permutations m needed such that
P (|φi(C)− φ̂i(C)| ≤ ε) ≥ 1−α, where ε is the error bound,
and α is the confidence factor. Calculating the number of
samples m required to achieve the bound P (|φi(C)−φ̂i(C)| ≤
ε) ≥ 1 − α requires knowing the standard deviation σ,
which is an unknown value. In our setting, to calculate σ, we
first (conservatively) take the standard deviation σi of each
customer to be ωh − ωl: ωl reflects the cost incurred by the
customer under the assumption that there is an optimal packing
of the workload with minimum cost of energy, and ωh reflects
the cost incurred by the customer under the assumption that the
workload is the only workload in the system with a maximal
cost of energy. A worst case value on σ could be calculated
by taking σ = max(σ1, σ2, · · · , σi) for all customers i.

Let φ̂i(C)F be the flexibility of a customer using a Shapley
value sampling technique. The mistreatment guarantee by the
system no longer holds. However, as we show in Theorem 2,
we can bound the mistreatment of the customer based on the
original Shapley value.

Theorem 2. The fair pricing mechanism under an estimated
Shapley value bounds the mistreatment of a customer as a
result of his/her flexibility from the original Shapley value to
be ≤ ε i.e., P (φ̂i(C)F − φi(C) ≤ ε) ≥ 1− α

2 , where φ̂i(C)F
is the sampled cost of flexible customer i, φi(C) is the cost of
customer i under Shapley value, ε is the error bound, and α
is the confidence factor.

Proof: Using a Shapley value sampling technique, we

5Estimating Shapley value has proven to be effective in calculating the
contribution of customers to the effective network peak demand [14].



have P (|φ̂i(C)F − φi(C)F | ≤ ε) ≥ 1−α, thus, P (φ̂i(C)F −
φi(C)F ≤ ε) ≥ 1 − α

2 . But we know from Theorem 1 that
φi(C)F ≤ φi(C), thus, P (φ̂i(C)F − φi(C) ≤ ε) ≥ 1− α

2 .
Since comparison against Shapley valuation is impractical

because of it computational inefficiency, which might not
provide confidence for customer to be flexible, A further
motivation is provided by bounding the flexible Shapley value
with the estimated Shapley value.

Theorem 3. The fair pricing mechanism under estimated
Shapley value bounds the mistreatment of a customer as a
result of his/her flexibility to be ≤ ε1 + ε2, i.e. φ̂i(C)F ≤
φ̂i(C) + ε1 + ε2 with probability (1− α

2 )2, where φ̂i(C)F is
the sampled cost of flexible customer i, φ̂i(C) is the sampled
cost of customer i, ε1 and ε2 are the sample error bounds,
and α is the confidence factor.

Proof: Using the Shapley value sampling technique,
we have the following results: |φi(C) − φ̂i(C)| ≤ ε1 and
|φ̂i(C)F − φi(C)F | ≤ ε2 with probability (1 − α). Thus,
P ((φi(C)−φ̂i(C)) ≤ ε1) ≥ 1− α

2 and P (φ̂i(C)F−φi(C)F ≤
ε2) ≥ 1− α

2 . Since the sampling process is independent, The
probability of (φi(C)−φ̂i(C)) ≤ ε1 and φ̂i(C)F−φi(C) ≤ ε2
is equal to (1− α

2 )2.
In addition, from Theorem 1, we have φi(C)F ≤ φi(C).

Therefore we have φ̂i(C)F ≤ ε2 +φi(C)F ≤ ε2 + φ̂i(C)+ ε1
with probability (1− α

2 )2.
Finally, an added property of Shapley and sampled Shapley

value is budget balance i.e. the total cost of customers is
always equal to the total cost of the resources used. This
property works as incentive for providers or resellers, since it
guarantees that they are going to get a revenue which covers
the resources they lease.

IV. EXPERIMENTAL EVALUATION

In this section, we present results from extensive experimen-
tal evaluations of our colocation framework. Our main purpose
is to establish the feasibility of our proposed framework as an
underlying mechanism to make effective use of a provider’s
IaaS and still achieve a fair allocation of costs among cus-
tomers, by (1) establishing the efficacy of our greedy heuristic
by comparing it to optimally packed workloads, (2) evaluating
the cost incurred by the customer to use such a system to
allocate a workload compared to the utopian cost, and (3)
measure the benefit of a customer from flexibility.
Workload models: To evaluate our experiments, we syn-
thetically generate workloads based on the workload models
(shown in Figure 1), such as batch, and mapReduce workloads.
We generate two pipeline workload versions: Webserver which
has a single node with an execution length equal to the length
of the epoch, and a chain workload which has a variable
number of sequential tasks.6 In addition, we enrich our set of
workloads with two additional High Performance Computing
workloads (c.f. Figure 2) for Protein annotation workflow
(PAW), and Cognitive Neuroscience (fMRI) [16]. We believe

6We vary the length of the chain workload in our experiments.

that this set of workload models is representative for many
cloud based applications. We assume homogeneous resources
with a fixed cost of 10 cents per hour, a resource capacity
equal to one, and an epoch consisting of twenty four hours.
To calculate the number of samples m required to estimate
a Shapley costs, we take ε = 0.1, and α = 0.05. Based on
available server power consumption measurements provided
by Koomey [17], specifically for mid-range server, we assume
that a physical resource’s power consumption is 500 watts per
hour.

Fig. 2. High Performance Computing Workloads

Energy Cost: To model the energy cost for our colocation
framework, we use real energy costs from the Ameren website
[5]. Ameren publishes energy costs daily on an hourly basis.
We get energy cost for a one month period (from 08/01/11
to 08/31/11) and average them per hour. Figure 3 shows the
average price of energy for this period over a 24-hour period.
The cost of energy reflects a diurnal pattern – higher during
the day and cheaper at night.

Efficacy of our greedy heuristic: In this experiment, we
evaluate the performance of our greedy heuristics compared
to an optimal colocation of tasks. Since knowing an optimal
colocation is difficult (bin packing is NP-hard), we resort to
generating workloads for which we know (by construction)
that an optimal colocation exists.

We do so by lining up a set of resources for the duration of
an epoch, and repeatedly creating fragments to fill a resource
to it full capacity. We generate fragments based on a uniform
distribution between zero and one, thus the average number of
fragments per resources is two.7 Similar results for resource
fragmentation were observed given other distributions but were
omitted due to lack of space. We proceed in a round-robin

7If the generated fragment is greater than the leftover resource capacity,
then we assign the fragment the remaining resource capacity.



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  5  10  15  20

C
os

t $

Hours

Fig. 3. Energy Cost (KW/H)

fashion over the set of workload models in our disposal
(except the batch), and greedily embed each workload over
the resource epoch lineup. Once no more workloads can be
embedded, we assign the remaining unembedded fragments
as part of a batch workload. By construction, we know that
a “perfect” colocation exists (with every resource being fully
utilized for the entire epoch).

We set the start time and end time of all workloads to be the
beginning and end of the epoch, respectively. Next, we place
the resulting workloads to be the input to our greedy heuristic.
Our purpose from this experiment is to evaluate how far our
heuristic is from an optimal colocation. Therefore, we assume
that the cost of electricity is fixed (i.e., independent of time).
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Figure 4 shows the ratio of packing achieved using our
algorithm relative to an optimal colocation. The x-axis shows
the number of bins used, and the y axis shows the ratio of
workload colocation achieved using our heuristic over that
of an optimal colocation. The results are reported with 95%
confidence. The figure shows that our algorithm’s performance
is highly comparable to the optimal. Furthermore, as we
increase the number of bins, the ratio decreases.

Fair pricing scheme vs. utopian customer cost: Unlike the
pervious experiment, which aimed to show the efficacy of
our heuristic by comparing its performance to an optimally-
colocated set of workloads, the purpose of this experiment is
to highlight the fairness of our game-theoretic inspired pricing
scheme in comparison to the utopian cost of the customer. As
we alluded before, the utopian cost is the (possibly unrealistic)
minimal possible cost – reflecting only the cost of the energy
and resources the customer actually uses.

To generate workloads, we start by selecting a workload
model based on a uniform distribution where each work-
load type: HPC (fMRI, PAW), WebServer, MapReduce (MR),
Chain, and batch get equal percentages (20%) of the total
workload population. Once a workload is selected, we generate
a start time randomly for the workload to execute, and set the
end time of the workload to be the start time plus the length
of execution of the workload. This is an easy step since all
of the workload except chain have fixed structures. For chain
workloads, we generate the number of consecutive resource
requests based on an exponential distribution with a mean of
six. If the end time is greater than the duration of the epoch,
then we exclude that workload, and proceed to generate a new
one, otherwise we accept the generated workload as part of
the overall workload population.

To model the utilization of the webserver workload, we use
a standard method of generating the workloads based on an
exponential distribution whose mean is modulated by a Sine
function. This is done to model the diurnal pattern of higher
web server load during the day, and lower web server load
at night. For the remaining workload models, we generate the
utilization of requests based on a uniform distribution between
0.2 and 1.
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Figure 5 shows the distribution of costs based on sampled
Shapley value for 30 workloads, where all workload types
have equal percentage of workload population (20%). We also
show the utopian cost, as well as the cost incurred by the
customer had she opted to execute her workload by herself



(i.e. no colocation), which we denote as Worst cost. As shown,
approximate Shapley value is close to the utopian cost. An
interesting observation is the ratio between the utopian and
approximate cost is highest for webserver workloads, while
batch workloads are very close to the utopian. In fact, we
also observe that batch workloads can even pay less than
their utopian. This is due to the fact that batch workloads
are the least restrictive workloads in terms of modeling (no
edges between tasks), and have complete time flexibility, while
webservers have the least flexibility.
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To further investigate this phenomena, we proceed to mea-
sure the sensitivity of workload costs to fluctuation in energy
costs. To model variability in energy cost, we use the distri-
bution of energy highlighted in Figure 3, and modulate it by
multiplying it with α, where α varies between 0 and 2.5. For
each workload model, we generate 25 workloads and calculate
the cost of colocation using the modulated energy cost. We
generate two additional variations of chain workloads with
length based on exponential distribution with mean 12 and
18 respectively. We define the efficiency ration as the ration
between the actual customer cost over the utopian cost. Figure
6 highlights our results. The x-axis plots the changing values
of α. For α = 1, the cost of energy reflects the actual cost
shown in Figure 3. As highlighted, inflexible workloads, such
as the webserver suffer most as a result of increase in energy
cost with overall increase of more than 20 percent, while batch
workloads do not show any increase.

Given the fluidity (maximal elasticity) of batch workloads,
we investigate their effect when colocated with other workload
models. We performed experiments using the same settings
as the previous experiment: set the value of α = 1, and for
each workload type, we mix it with different percentages of
batch workloads. Figure 7 shows the measured efficiency ratio
for different percentages of batch workload mix. We observe
that pipeline based workloads like chain and webserver are
a better fit for batch workloads than HPC or MR workloads.
One reason which is based on observing the actual colocation
outcome is due to the existence of parallel branches in MR
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and HPC models, which provides an additional opportunity
for colocation.

Benefit from flexibility: To measure the effect of flexibility
on the overall reduction in cost, we performed experiments
using the same setting as before, while allowing the extension
of start time and end time of workloads by σ, for different
values of σ (hours). Figure 8 shows the effect of customer
flexibility on workloads.8 As expected, the more flexible a
workload is, the better the efficiency ratio.
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V. RELATED WORK

Economic models for resource management: Many resource
management techniques have been developed for large-scale
computing infrastructures based on various micro-economic
models such as auctions, commodity markets, double-auctions,
and iterative combinatorial exchange [18]–[21]. Amazon EC2
spot instance is a prime example of one of these mechanisms
[22]. Customers are allowed to bid for resources, and will be
allocated such resources as long as the bid is higher than the

8We do not include models of webserver and chains with average length
18 since they do not allow for much flexibility in a 24-hour epoch.



market price at the time of allocation. Once the demand for
resources increases thus increasing the market price, Amazon
redistributes these resources to other customers. Unlike EC2
spot instance, in our model, a customer is guaranteed to
execute throughout the entire time of his/her allocation. More,
importantly, our approach is not subject to collusion.

The work by Londono et al [23] outline a colocation game
which allows for task colocation. In that setting, a customer’s
workload consists of a single task and colocation interactions
are driven by the rational behavior of customers, who are
free to relocate and choose whatever is in their best interest
(minimize their workload’s cost). In our Setting, a customer’s
workload consists of multiple tasks and we optimize the
allocation of resources and apportion costs using the game-
theoretic-inspired Shapley concept – what we devise is a
pricing mechanism and not a game. As a result, each customer
ends up paying a marginal cost.

Unlike all of the models referenced above, our framework
allows for an explicit consideration of the flexibility of cus-
tomers (as opposed to having such a flexibility be expressed
through the strategic choices of customers).
Data center energy management: Minimizing the operating
cost of data centers is a very active research topic. Along these
lines, there has been significant breakthroughs in terms of
optimizing the use of resources through efficient server power
management [3], [11], [24], optimized workload distribution
and consolidation which results either in powering off unused
resources [2] or better cooling [25]. Qureshi et al [4], suggest
migrating service requests from a data center to another such
that the computation cost is minimized, without violating
delay constraints. In [3], the authors highlight the need for
coordination among different energy management approaches
since in the absence of coordination, these approaches are
likely to interfere with one another in unpredictable (and
potentially dangerous) ways. The authors propose and validate
a power management solution that utilizes control theory for
coordination of different approaches. A common characteristic
in the above-referenced, large body of prior work (which
we emphasize is not exhaustive) is that the IaaS provider
is the one who is doing the optimization, which does not
provide any incentive for customers. In our model, we aim
to minimize the overall operational cost of the datacenter, and
provide the transparency that allows customers to move their
requested computations to run during hours where energy cost
is minimum.
Service Level Agreements (SLAs): There has been a signifi-
cant amount of research on various topics related to SLAs. The
usage of resource management in grids have been considered
in [26], [27]; issues related to specification of SLAs have been
considered in [28]; and topics related to the economic aspects
of SLAs usage for service provisioning through negotiation
between consumers and providers are considered in [29], [30].
An inherent assumption in such systems is that the customer’s
SLAs are immutable. We break that assumption by allowing
the customer to provide multiple yet functionally equivalent
forms of SLAs. Our framework utilizes this degree of freedom

to achieve significantly better colocation.
Languages and execution environments: Workflow/dataflow
languages have been proposed since the sixties, with IBM job
control language [31] a prime example. Since then, different
languages and execution engines have been developed [32]–
[35]. These languages modeled coordination or dependencies
among tasks as DAGs. In these models, task dependencies
were defined in terms of data dependency. In our model,
workloads are defined in terms of resource requests and
dependencies are modeled in terms of temporal tolerance or
flexibility of the customer.

Lubin et al [36] describe resource requests in the form of
a tree based bidding language (TBBL), where resources are
mapped to the leaves of the tree, and inner nodes model logical
operations among customer requests. Although we believe that
our model can be described using TBBL, such description
would be inefficient due to the exponential increase in the
number of nodes as a result of a customer’s variability.
Workflow scheduling: Different workflow management and
scheduling tools have been proposed that focus on scheduling
DAGs with the purpose of optimizing the makespan and
consider QoS properties like deadlines and/or budget con-
straints [16], [37]–[39]. Henzinger et al [40] provide a static
scheduling framework that is based on small state abstractions
of large workloads. Similarly to previous work, Our model
aims to minimize the overall operational cost of the datacenter.
However, our scheduling framework utilizes customer flexibil-
ity to achieve a better optimization of workloads. In addition,
we provide a fair pricing mechanism which distributes the cost
of leasing resource over customers and provides them with the
incentive to declare their flexibility.

VI. CONCLUSION

In this work, we proposed a new pricing model for cloud re-
sources that better reflects the costs incurred by IaaS providers,
and gives cloud customers the opportunity and incentive to
take advantage of any scheduling flexibilities they might have.
We presented the architecture and algorithmic blueprints of a
generic framework for colocation of customer workloads. Our
framework provides (1) a resource specification language that
allows customers to formally express their flexibility, (2) an
algorithm that optimizes the use of cloud resources, and (3)
a game-theoretic inspired pricing mechanism that achieves a
rationally fair distribution of incurred costs over customers.
We presented performance evaluation results that confirm the
utility and potential of our framework.

Our on-going research work is pursued along three dimen-
sions. Along the first, we are investigating extensions to our
SLA model to allow for yet more expressive forms of SLAs –
e.g., non-parametric constraints, such as geographic location.
Our second line of work is focusing on extending our model
to allow for resource allocation with uncertainty, i.e., account
and provide cost for resource failures. Our third line of work is
focusing on providing customers with a choice construct that
allows them to specify alternative workload configurations and
physical resource flexibilities.
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