2013-08

2013 REU Poster: Modulation of Indolic Plant Defense compound Synthesis by Tryptophan Analogs

https://hdl.handle.net/2144/12985

Boston University
Modulation of Indolic Plant Defense compound Synthesis by Tryptophan Analogs

Marie Prisca Sanon
Celenza Lab/ Boston University

Abstract
Like bacteria and fungi, plants are able to synthesize aromatic amino acids Tyrosine (Tyr), Phenylalanine (Phe) and Tryptophan (Trp). Those amino acids are used in plants not only for protein synthesis, but also for a variety of compounds that control development and defense. Arabidopsis thaliana uses Trp to produce distinct secondary metabolites that function as deterrents to herbivory (indole glucosinolates), as defense against microbial pathogens (camalexin) and as growth regulators (indole-3-acetic acid). To better understand the relationship between Trp biosynthesis and indole glucosinolate (IGs) production, we have tested different analogs of Trp on Columbia, a wild-type Arabidopsis accession. We found that α-methyl tryptophan cannot be incorporated into IGs and in fact inhibits IG synthesis.

Arabidopsis thaliana (A. T.)
• A small flowering plant native to Europe, Asia and northwestern Africa
• Member of the Brassicaceae family
• informally known as mustards, mustard flowers or cruciferae

Aromatic Amino Acids in A. T.

Tryptophan Metabolism in A. T.

The enzymes CYP79B2 and CYP79B3 decarboxylate Trp and then N-hydroxylate to form indole-3-acetaldoxime from which derive IG, IAA and CAM.

Hypothesis
We expected that the α-positioned methyl group on Trp (α-MT) would interfere with the reaction by preventing the enzymes (CYP79B2 and CYP79B3) from cleaving off the carboxyl group. As a result, the indole-3-acetaldoxime, which is necessary for glucosinolate synthesis, could not be formed.

IG Biosynthetic Pathways

• HPLC run is an increasing acetonitrile gradient
• Different desulfoglucosinolates were detected by their absorbance at 229nm.
• For quantification, peak areas were normalized to plant tissue weight and a known weight standard

Results
Indole glucosinolates production at varying induction times with 100 µM of α-MT

The longer the treatment the lesser I3M production.

Conclusion
• α-MT cannot be efficiently incorporated
• α-MT inhibits IG synthesis

Future Goals
• Extend the treatment time to confirm a decrease in 1MOI3M and 4MOI3M production
• Incorporate α-MT directly into leaves
• Expose the treated plants to potential herbivores to determine if differences in indolic glucosinolate production are really significant
• For 5- and 6-MT confirm the structure of the putative methylated IGs that comes off at 26.6 min

Acknowledgments
• Dr. John Celenza
• Dr. John Snyder
• Sandra Zolj
• Frank Wong
• Luisa Ocampo
• Massasoit Community College
• Michael Quintin

Reference