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ABSTRACT

Biology is currently in the midst of a revolution. Great technological advances have led

to unprecedented quantitative data at the whole genome level. However, new techniques are

needed to deal with this deluge of high-dimensional data. Therefore, statistical physics has

the potential to help develop systems biology level models that can incorporate complex

data. Additionally, physicists have made great strides in understanding non-equilibrium

thermodynamics. However, the consequences of these advances have yet to be fully incor-

porated into biology.

There are three specific problems that I address in my dissertation. First, a common

metaphor for describing development is a rugged “epigenetic landscape” where cell fates are

represented as attracting valleys resulting from a complex regulatory network. I introduce

a framework for explicitly constructing epigenetic landscapes that combines genomic data

with techniques from spin-glass physics. The model reproduces known reprogramming

protocols and identifies candidate transcription factors for reprogramming to novel cell

fates, suggesting epigenetic landscapes are a powerful paradigm for understanding cellular

identity.

Second, I examine the dynamics of cellular reprogramming. By reanalyzing all available

time-series data, I show that gene expression dynamics during reprogramming follow a sim-

ple one-dimensional reaction coordinate that is independent of both the time and details

v



of experimental protocol used. I show that such a reaction coordinate emerges naturally

from epigenetic landscape models of cell identity where cellular reprogramming is viewed

as a “barrier-crossing” between the starting and ending cell fates. Overall, the analysis

and model suggest that gene expression dynamics during reprogramming follow a canon-

ical trajectory consistent with the idea of an “optimal path” in gene expression space for

reprogramming.

Third, an important task of cells is to perform complex computations in response to ex-

ternal signals. Intricate networks are required to sense and process signals, and since cells

are inherently non-equilibrium systems, these networks naturally consume energy. Since

there is a deep connection between thermodynamics, computation, and information, a nat-

ural question is what constraints does thermodynamics place on statistical estimation and

learning. I modeled a single chemical receptor and established the first fundamental rela-

tionship between the energy consumption and statistical accuracy of a receptor in a cell.
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1

1 Introduction

The section Epigenetic Landscapes and Cellular Identity has been adapted from Pankaj Mehta’s 2012

NIH New Innovator Grant. The section Statistical Inference by Cells has been adapted from Lan-

dauer in the age of synthetic biology: energy consumption and information processing in biochemical

networks by Pankaj Mehta, Alex H. Lang, and David J. Schwab. arXiv 1505.02474.

1.1 Overview

Biology is currently in the midst of a revolution. The human genome project successfully

sequenced the entire genome and heralded in an era of unprecedented quantitative data at

the whole genome level [1]. While the human genome project took a giant collaboration

over a decade to complete, now microarrays and RNA-Seq have ushered in a new genomic

phase in biology in which any lab can quickly and cheaply produce genomic data. Labs

routinely measure and share whole-genome expression data, leading to terrabytes of data

publicy available to any researcher. This explosion of genomic data has been deemed the

biological Big Data revolution [2].

Parallel theoretical advances have led to an emerging area of biology: systems biology.

Since the discovery of DNA, biology has focused on single genes and their proteins. However,

systems biology shifts the emphasis to the cellular level and is most interested in networks

of interacting genes and proteins and their emergent phenotypic behaviors [3]. This systems

level thinking fits in naturally with statistical physics, the subfield of physics devoted to

thinking about the universal properties of large systems. Therefore, statistical physics has

and will continue to provide novel tools for systems biology and the Big Data revolution.

Physicists have also recently made great strides in understanding non-equilibrium ther-

modynamics. While physicists have mainly focused on simple physical systems such as cold

atoms, biology is fundamentally a non-equilibrium system driven at the cellular level by

ATP. Therefore, the advances made in non-equilibrium thermodynamics need to be fully
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incorporated into biology.

My PhD research focused on two distinct areas. First, I used statistical physics models to

address an outstanding question in systems biology: what is the nature of cellular identity.

This model incorporates gene expression data to explicitly model cellular identity. Second,

I created a non-equilibrium model of a cellular chemical sensor and analyzed its properties,

focusing on the key differences between equilibrium and non-equilibrium sensors.

My thesis is organized as follows. In the Introduction, I will first provide the back-

ground information on epigenetic landscapes and cellular identity in section 1.2, and then I

will give an overview of the intersection of non-equilibrium thermodynamics and biological

implementations of statistical inference in section 1.3. Then in chapter 2 I will introduce the

model for cellular identity landscapes and analyze the static properties. In chapter 3 I will

use the previously introduced model to examines the dynamics of cellular reprogramming.

Finally, in chapter 4 I will introduce a model for non-equilibrium biological sensors and

analyze their properties.

1.2 Epigenetic Landscapes and Cellular Identity

1.2.1 Cellular Reprogramming

Cellular reprogramming, the direct reprogramming of one cell type into another, holds

enormous therapeutic potential for studying and treating human disease [4]. Epigenetic

reprogramming of differentiated cells into embryonic stem cells (ESC), as well as direct

conversion or transdifferentiation into other differentiated cell types, has been achieved by

overexpression of select transcription factors and RNAs [5]. Despite these enormous ad-

vances, cellular reprogramming of differentiated cells to cells resembling ESCs, dubbed,

induced pluripotent stem cells (iPSCs), produces low yields (< 1%) and debate remains

about the fidelity or accuracy of iPSCs vs ESCs [4]. Furthermore, so far direct conversion

protocols only exist for a handful of cell types [6–11]. For this reason, there is a critical

need for new theoretical frameworks and computational tools to understand and manipulate

the genetic networks underlying cellular differentiation. A major goal of the first part of
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this disserataion was to develop new theoretical and computational tools to help facilitate

the development of rational reprogramming strategies between arbitrary cell types. To do

so, we utilized an interdisciplinary approach that combines large-scale genomic and epige-

netic data sets with methods from statistical physics, machine learning, and computational

neuroscience.

The molecular basis of cellular identity and differentiation remains one most the fun-

damental questions in biology. The work of Takahashi and Yamanaka [12] demonstrating

that the overexpression of just four transcription factors is sufficient to convert somatic

fibroblasts to IPSCs has revolutionized the field. Great progress has been made in identify-

ing the molecules and genes that shape cellular identity using modern genomic techniques

such as whole-genome expression studies and epigenetic profiling [13, 14]. Yet, how these

molecular components interact to give rise to the ‘epigenetic landscape’ underlying cel-

lular identity remains elusive due to the large number of genes and molecules involved,

the plethora of interaction between genes, and the importance of stochasticity in cellular

reprogramming [15, 16]. My dissertation research focused on building new probabilistic,

mathematical models for the biomolecular networks underlying cellular identity using ex-

isting genomic and epigenetic data sets. The models build upon insights from statistical

physics and attractor neural networks and are intrinsically stochastic and large scale. De-

spite having no free parameters, our model reproduces known reprogramming protocols to

embryonic stem cells, heart (cardiomyocytes), and liver (hepatocytes) and identifies candi-

date transcription factors for reprogramming to novel cell types, suggesting it represents a

powerful paradigm for understanding cellular identity.

The molecular circuitry underlying cellular differentiation is intricate and involves tran-

scriptional regulation, chromatin regulators, non-coding and micro RNAs, and signal trans-

duction pathways [15, 17]. Transcription factors (TFs) play a crucial role in cell type main-

tenance, cellular differentiation and reprogramming. Transcription factors often act coop-

eratively to regulate genes by forming large protein complexes and recruiting chromatin

regulators [15]. Depending on their chromatin marks, genes can be active, silenced, or
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in a ‘poised state [18]. Active genes are commonly associated with trimethylation of his-

tone H3 lysine 4 (H3K4me3), whereas silenced genes are trimethylated at histone H3 lysine

27 (H3K27me3). Poised genes exhibit ‘bivalent markings with both active and repressive

marks and are thought to be poised for activation in response to appropriate developmen-

tal cues. Importantly, epigenetic modifications are reversible, highly dynamic, and often

change depending on cell type [18].

A given cell type is associated with a typical genome-wide expression and epigenetic pro-

file [19–21]. Consequently, it is common in the literature to think of cell type as a systems-

level property of the genetic regulatory networks underlying cellular identity [15–17]. In

particular, cell type is now thought to arise from the dynamic interaction of components

within a regulatory circuit [17, 22]. This perspective raises new questions. Cell type is an

extremely stable phenotypic trait. Even pluripotent cells such as stem cells can self-renew

and propagate in the absence of external signals [23]. Yet it is possible to reprogram cells

by overexpressing just a few carefully chosen transcription factors. In particular, cellular re-

programming protocols exist for reprogramming between differentiated cells and embryonic

stem cells [12], closely related somatic cells [24], and more recently, between the distantly

related cell types [6–11]. How can one reconcile these two seemingly conflicting observations

with the dynamics of the underlying gene regulatory network? A further complication is

that cellular reprogramming is stochastic with only a small number of cells switching cellular

states [25–27]. Cellular reprogramming can also be incomplete, giving rise to “partially re-

programmed” cells [28, 29]. How do we unite these diverse characteristics and experimental

facts?

1.2.2 Existing Models

In light of these observations, there has been a renewed interest in the idea of an ‘epigenetic

landscape. The idea of an epigenetic landscape, originally introduced by Waddington in

the 1930s to understand development, has become the dominant paradigm for thinking

about cellular identity and reprogramming [30–34]. A cells state is represented by a time-
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dependent vector in a high-dimensional state space that reflects its time-dependent genetic

or epigenetic expression profile [20–22]. In analogy with simple genetic switches [35–37], a

cell type is argued to correspond to a stable attractor for the stochastic dynamics of the

underlying gene regulatory network. In terms of landscapes, these attractors are visualized

as valleys separated by “high-energy” barriers. The barriers ensure robustness of the cell

type phenotype against small changes in gene expression but can be traversed by rare

stochastic fluctuations as in cellular reprogramming [26].

1.2.3 Model Overview

The landscape analogy offers a attractive framework for thinking about cellular identity

and reprogramming. Mounting experimental evidence shows that cell type can be viewed

as a dynamical attractor in a high-dimensional state space [20–23, 25, 26]. Consistent with

this view are experiments showing that cellular reprogramming can occur by any method

that biases gene expression toward a particular attractor including overexpression of tran-

scription factors [12], transfer of the RNA transcriptome [21], or even by expressing cell-

type-specific non-coding RNAs [38]. Yet, a quantitative model of the landscape remains

elusive. Current mathematical models are confined to small networks consisting of a few

genes [39]. This contrasts sharply with experiments that suggest the dynamics of gene reg-

ulatory networks governing cellular identity are intrinsically high-dimensional [22]. While

dimensional reduction techniques such as Principal Component Analysis (PCA) can help

reduce the dimension of the state space, cellular reprogramming between distant cell types

usually requires multiple transcription factors suggesting that any quantitative model must

be intrinsically high-dimensional. Current mathematical models also fail to account for

the complicated epigenetic regulation of genes and the dense web of interactions between

regulatory proteins suggested by experiment [13, 18]. Furthermore, current models cannot

identify transcription factors that bias cells toward a desired cell-type and have no way

of mapping the epigenetic landscape governing cellular identity. These shortcomings high-

light the crucial need for new mathematical and theoretical frameworks for understanding



6

cellular identity and cellular reprogramming on a quantitative level.

The mathematical models proposed here overcome the shortcomings outlined above by

combining techniques from statistical physics and computational neuroscience [40–43] with

publicly available genomic and epigenetic data sets. The data presented in chapters 2 and

3 suggests our model is feasible. It can quantitatively capture most experimental observa-

tions, and most importantly, reproduces current cellular reprogramming protocols. Using

this model, we identify transcription factors for direct cellular programming. This model

utilizes a correlation-based approach, which have been extremely successful in computa-

tional neuroscience and systems biology [40–43]. Underlying a correlation-based approach

is the idea that genes whose expression is strongly correlated across cell types are likely

to be co-regulated. Correlation-based approaches offer three advantages over more tradi-

tional models based on differential equations. First, no explicit knowledge of how genes and

proteins interact is required. This is especially important given our incomplete knowledge

of the complex molecular interactions that regulate cellular identity [15]. Second, unlike

differential equation based approaches, correlation-based approaches are scalable, allowing

for high-dimensional models with many interacting components. Third, these correlation

models can easily incorporate stochastic dynamics. Taken together, these results suggest

that epigenetic landscapes represent a powerful framework for understanding the molecular

circuitry and dynamics that gives rise to cell fate.

1.3 Statistical Inference by Cells

1.3.1 Introduction

Cells live in complex and dynamic environments. They sense and respond to both exter-

nal environmental cues and to each other through cell-to-cell communication. Adapting

to changing environments often requires cells to perform complex information processing,

and cells have developed elaborate signaling networks to accomplish this feature. These

biochemical networks are ubiquitous in biology, ranging from the quorum-sensing [44] and

chemotaxis networks [45] in single-celled organisms to developmental networks in higher
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organisms [46]. Inspired by both these natural circuits and physical computing devices,

synthetic biologists are designing sophisticated synthetic circuits that can perform compli-

cated “computing-like” behaviors. Synthetic biologists have designed gene circuits executing

a wide range of functionalities including switches [35], oscillators [47], counters [48], and

even cell-communicators [49].

Despite these successes, many challenges to harnessing the full potential of synthetic

biology persist [50–55]. While there are guiding principles to synthetic biology [56], actual

construction of synthetic circuits often proceeds in an ad-hoc manner through a mixture

of biological intuition and trial-and-error. Furthermore, the functionality and applicability

is limited by a dearth of biological components [57]. For this reason, it would be helpful

to identify general principles that can improve the design of synthetic circuits and help

guide the search for new biological parts. One promising direction along these lines is

recent work examining the relationship between the information processing capabilities of

these biochemical networks and their energetic costs (technically this is usually a cost in

free energy, but for the sake of simplicity we will refer to this as energy). Energetic costs

place important constraints on the design of physical computing devices [58] as well as on

neural computing architectures in the brain and retina [59], suggesting that thermodynamics

may also influence the design of cellular information processing networks. As the field of

synthetic biology seeks to assemble increasingly complex biochemical networks that exhibit

robust, predictable behaviors, natural questions emerge: What are the physical limitations

(thermodynamic and kinetic) on the behavior and design of these biological networks? How

can one use energy consumption improve the design of synthetic circuits?

In a classic paper written at the advent of modern computing [58], Landauer asked

analogous questions about physical computing devices. He argued that a central compo-

nent of any general purpose computing device is a memory module that can be “reset” to a

predefined state. He pointed out that such a device must obey certain thermodynamic and

kinetic constraints. In particular, he convincingly argued that resetting memory necessar-

ily leads to power dissipation, implying that heat generation and energy consumption are
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unavoidable consequences of the computing process itself. The paper also outlined three

general sources of error resulting from kinetic and thermodynamic considerations: incom-

plete switching between memory states due to long switching times, the decay of stored

information due to spontaneous switching, and what he called a “Boltzmann” error due

to limited energy supplies. Furthermore, the paper showed that there exist fundamental

trade-offs between these types of errors and energetic costs in these memory devices. These

considerations suggested general strategies for designing new devices and parts for physical

memory modules.

The goal of this review is to synthesize recent theoretical work on thermodynamics

and energy consumption in biochemical networks and discuss the implications of this work

for synthetic biology. Theoretical papers in this field are often highly technical and draw

on new results in non-equilibrium statistical mechanics. For this reason, our goal is to

organize the insights contained in these papers [60–83] into a few simple, broadly applicable

principles. We find that energy consumption in cellular circuits tends to serve four basic

purposes: (1) increasing specificity, (2) reducing variability and increasing precision, (3)

signal amplification and (4) erasing information. Furthermore, for each of these categories,

there exist implicit tradeoffs between power consumption and dynamics.

Beyond synthetic biology, biochemical networks offer a unique setting to explore fun-

damental physics questions in non-equilibrium statistical mechanics. Recently there has

been a surge of interest among physicists in the relationship between information and ther-

modynamics [84, 85]. For example, using sophisticated optical traps groups have recently

experimentally tested Landauers principle [86, 87], and there is an active debate on how

to extend Landauers principle to quantum regimes. A flurry of recent works has focused

on extending concepts like entropy and free-energy to non-equilibrium regimes, often using

information theoretic concepts [88–94]. Living systems are perhaps the most interesting

example of non-equilibrium systems, and thinking about information and thermodynamics

in the context of cells is likely to yield new general insights into non-equilibrium physics.
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1.3.2 Increasing Specificity

One common role of energy consumption in biochemical circuits is to increase the specificity

of an enzyme or signaling pathway. The most famous example of this is kinetic proofread-

ing. In a landmark paper [95], John Hopfield showed how it is possible to increase the

specificity of an enzyme beyond what would be expected from equilibrium thermodynamics

by consuming energy and driving the system out of equilibrium. Kinetic proofreading-type

mechanisms are also thought to underlie the exquisite specificity of eukaryotic pathways

such as the TCR signaling network [96], in which a few-fold difference in the affinities be-

tween molecules can lead to several orders of magnitude difference in response. A full review

of kinetic proofreading and all its applications is beyond the scope of this review, but we

highlight some important lessons for synthetic biology.

The first general principle that emerges from kinetic proofreading is that greater speci-

ficity requires greater energy consumption. In particular, the error rate in kinetic proof-

reading depends exponentially on the amount of energy consumed in each step of the proof-

reading cascade. This increased specificity comes at the expense of a more sluggish dynamic

response (see [78, 97] for an interesting exploration of this tradeoff). This highlights a second

general theme about energy consumption: there generally exist trade-offs between greater

specificity and other desirable properties such as a fast dynamical response or sensitivity to

small signals.

The latter trade-off is clearest in the context of non-specific activation of an output in

a synthetic circuit. For example, in a transcriptional synthetic circuit an output protein

may be produced at low levels even in the absence of an input signal. A common strategy

for dealing with such background levels of activation is to place a strong degradation tag

on the protein that increases its degradation rate. This ensures that in the absence of an

activating signal, proteins are quickly degraded. However, increasing the degradation rate

clearly comes at a steep energetic cost as more proteins have to be produced to reach the

same steady-state. At the same time, the gene circuit loses sensitivity to small input signals
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due to their fast degradation.

One of the most interesting recent examples of how energy consumption can be used

to increase specificity is the recent work of retroactivity [98–100]. The central problem

addressed in these papers is the observation that biochemical signal transduction circuits

often have their dynamical behavior altered upon coupling to external outputs due to se-

questration of proteins, a property dubbed “retroactivity”. Such coupling is particularly

undesired when there are a number of downstream outputs. These works demonstrate, both

theoretically and experimentally, that it is possible to introduce insulating elements that

reduce the magnitude of this retroactivity and thereby restore the modular dynamical be-

havior of synthetic circuits. A key property of these insulating elements is that they utilize

enzymatic futile cycles and hence actively consume energy. Moreover, a detailed theoretical

analysis shows that the effectiveness of an insulating element is directly related to its energy

consumption [99].

To demonstrate these concepts, we will consider the simple example of a protein Z that

is produced at a time-dependent rate k(t) and is degraded at a rate δ (see Figure 1.1). In

addition, Z regulates a family of promoters, with concentration ptot, by binding/unbinding

to the promoter to form a complex C at rates kon/off . The kinetics of this simple network

is described by the set of ordinary differential equations

dZ

dt
= k(t)− δZ − τ−1[konZ(ptot − C) + koffC],

dC

dt
= τ−1[konτZ(ptot − C) + koffτC], (1.1)

where we have introduced an overall dimensionless timescale τ for the binding/unbinding

dynamics. Notice that if τ−1 � 1, then the timescale separation between the Z and C

dynamics means that the Z dynamics are well approximated by setting dC
dt = 0 so that

dZ

dt
≈ k(t)− δZ. (1.2)

Thus, when Z is coupled to a system with extremely fast dynamics, the retroactivity term,

τ−1[konZ(ptot − C) + koffC], is negligible.
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This basic observation motivates the idea behind kinetic insulators. Instead of coupling

Z directly to the complex C, one couples Z to C indirectly through an intermediary insu-

lating element with fast kinetics. Similar analysis of this more complex network shows that

this dramatically decreases the amount of retroactivity. In practice, the insulating element

is a phosphorylation/dephosphorylation cycle with fast kinetics (see Figure 1.1). The faster

the intermediary kinetics, and hence the more energy consumed by the futile cycle, the

better the quasi-static approximation and the more effective the insulator (see [99, 100] for

details).

1.3.3 Reducing Variability

Biochemical circuits can also consume energy to reduce variability and increase reproducibil-

ity. One of the best studied examples of this is the incredibly reproducible response of

mammalian rod cells in response to light stimulation (see [101] and references therein).

This reproducibility of the rod cell response is especially surprising given that the response

originates from the activation of a single rhodopsin molecule. A simple biophysically plau-

sible model for an active rhodopsin is that its lifetime is exponentially distributed (i.e.

the deactivation of rhodopsin is a Poisson process). In this case, the trial-to-trial variabil-

ity, measured by the squared coefficient of variation, CV 2 = σ2/µ2, would be equal to 1,

Surprisingly, the actual variability is much smaller than this naive expectation.

Experiments indicate that discrepancy is at least partially explained by the fact that

the shut-off of active rhodopsin molecules proceeds through a multi-step cascade (i.e the

active rhodopsin molecule starts in state 1, then transitions to state 2, etc. until it reaches

state L). If each of these steps were identical and independent, then from the central limit

theorem the coefficient of variation of the L step cascade would be L times smaller than

that of a single step, i.e. σ2/µ2 = 1/L.

Notice that in order for such a multi-step cascade to reduce variability it is necessary that

each of the transitions between the L states be irreversible. If they were not, then one could

not treat the L-steps as independent and the progression of the rhodopsin molecule through
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the various states would resemble a random walk, greatly increasing the variability [101].

For this reason, reducing variability necessarily consumes energy. Consistent with this idea

is the observation that the variability of rhodopsin seems to depend on the number of

phosphorylation sites present on a rhodopsin molecule.

In fact, it is possible to directly compute the coefficient of variation [102, 103] as a

function of the ratio of the forward and backward rates at each step, θ. The logarithm of

this ratio is simply the free-energy consumed at each step, ∆G = log θ. Figure 1.2 shows

that the coefficient of variation is a monotonically decreasing function of ∆G and hence the

energy consumed by the cascade. Note that this decrease in the variability comes at the

expense of a slower dynamic response, since the mean completion time scales linearly in the

cascade length.

Recent calculations have applied these ideas to the problem of a non-equilbrium receptor

that estimates the concentration of an external ligand [104]. It was shown that by forcing

the receptor to cycle through a series of L states, one can increase the signal-to-noise

ratio and construct a biochemical network that performs Maximum Likelihood Estimation

(MLE) in the limit of large L. Since MLE is the statistically optimal estimator, these works

suggest that it should be possible to improve the performance of synthetic biology based

biodetectors by actively consuming energy.

Moreover, this trade-off between variability and energy consumption is likely to be

quite general. Analytical arguments and numerical evidence suggest there may exist a

general thermodynamic uncertainty relation relating the the variance, of certain quantities

in biochemical networks and the energy consumption [105]. In particular, achieving an

uncertainty, σ2, in a quantity such as the number of consumed/produced molecules in a

genetic circuit or the number of steps in a molecular motor, requires an energetic cost of

2kBT/σ
2. This suggest that any strategy for reducing noise and variability in synthetic

circuits will require these circuits to actively consume energy.
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1.3.4 Signal Amplification

Biochemical networks can also consume energy to amplify upstream input signals. Signal

amplification is extremely important in many eukaryotic pathways designed to detect small

changes in input such as the phototransduction pathway in the retina [106] or the T cell

receptor signaling pathway in immunology. In these pathways, a small change in the steady-

state number of input messenger molecules, dI, leads to a large change in the steady-state

number of output molecules, dO. The ratio of these changes is the number gain, often just

called the gain,

g0 =
dO

dI
(1.3)

with g0 > 1 implying the ratio of output to input molecules is necessarily greater than 1.

Before proceeding further, it is worth making the distinction between the number gain,

which clearly measures changes in absolute number, with another commonly employed

quantity used to describe biochemical pathways called logarithmic sensitivity [106]. The

logarithmic sensitivity, d log [O]
d log [I] , measures the logarithmic change in the concentration of an

output signal as a function of the logarithmic change in the input concentration and is

a measure of the fractional or relative gain. Though logarithmic sensitivity and gain are

often used interchangeably in the systems biology literature, the two measures are very

different [106]. To see this, consider a simple signaling element where a ligand, L binds to a

protein X and changes its conformation to X∗. The input in this case is L and the output

is X∗. To have g0 > 1, a small change in the number of ligands, dL must produce a large

change in the number of activated X∗. Notice that by definition, in equilibrium, dX∗

dL < 1

since each ligand can bind only one receptor. If instead n ligands bind cooperatively to

each X, then one would have dX∗

dL < 1/n. Thus, cooperatively in fact reduces the number

gain. In contrast, the logarithmic sensitivity increases dramatically, d log [X]
d log [L] = n. But which

gain is related to energy consumption? The energy is related to the number gain, not the

logarithmic gain. In physics language, since energy is an extensive quantity, it depends on

the actual numbers, not relative gain. In biology language, the fundamental unit of energy
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is ATP and each time an energy consuming reaction occurs, ATP must be used. Therefore,

ATP consumption directly scales with the number and not relative gain. In conclusion, an

important consequence of this is that amplification of input signals necessarily requires a

non-equilibrium mechanism that consumes energy.

In biochemical networks, this signal amplification is accomplished through enzymatic

cascades, where the input signal couples to an enzyme that can catalytically modify (e.g.

phosphorylate) a substrate. Such basic enzymatic “push-pull” amplifiers are the basic

building block of many eukaryotic biochemical pathways, and are a canonical example of

how energy consumption can be used to amplify input signals (see Figure 1.3). A push-pull

amplifier consists of an activating enzyme Ea and a deactivating enzyme Ed that interconvert

a substrate between two forms, X and X∗. Importantly, the post-translational modification

of X is coupled to a futile cycle such as ATP hydrolysis. The basic equations governing a

push-pull amplifier are

dX∗

dt
= Γa(Ea)X − Γd(Ed)X

∗, (1.4)

where Γa(Ea) is the rate at which enzyme Ea converts X to X∗ and Γd(Ed) is the rate at

which enzyme Ed converts X∗ back to X. This rate equation must be supplemented by the

conservation equation on the total number of X molecules,

X +X∗ = Xtot. (1.5)

In the linear-response regime where the enzymes work far from saturation, one can

approximate the rates in (1.4) as Γa(Ea) ≈ ka[Ea] and Γd(Ed) ≈ kd[Ed], with ka = kcat
a /Ka

and kd = kcat
d /Kd the ratios of the catalytic activity, kcat, to the Michelis-Mentin constant,

KM , for the two enzymes. It is straightforward to show that the steady-state concentration

of activated proteins is

X̄∗ =
Xtotka[Ea]

ka[Ea] + kd[Ed]
(1.6)

Furthermore, one can define a “response time”, τ , for the enzymatic amplifier to be the

rate at which a small perturbation from steady-state δX∗ = X∗ − X̄∗ decays. This yields
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(see [106] for details)

τ = (ka[Ea] + kd[Ed])
−1. (1.7)

As discussed above, a key element of this enzymatic amplifier is that it works out of equi-

librium. Each activation/deactivation event where the substrate cycles between the states

X 7→ X∗ 7→ X is coupled to a futile cycle (e.g. ATP hydrolysis) and hence dissipates an

energy ∆Gcycle. At steady-state, the power consumption of the enzymatic amplifier is

P = ka[Ea]X̄∆Gcycle = kd[Ed]X̄∗∆Gcycle. (1.8)

The input of the enzymatic amplifier is the number of activating enzymes Ea and the

output of the amplifier is the steady-state number of active substrate molecules X∗. This is

natural in many eukaryotic signaling pathways where Ea is often a receptor that becomes

enzymatically active upon binding an external ligand. Using (1.8), one can calculate the

static gain and find

g0 = (P/[Ea])τ(∆Gcycle)
−1. (1.9)

This expression shows that the gain of an enzymatic cascade is directly proportional to the

power consumed per enzyme measured in the natural units of power that characterize the

amplifier: ∆Gcycle/τ . This is shown in Figure 1.3 where we plot the gain as a function of

power consumption for different response times.

Notice that the gain can be increased in two ways, by either increasing the power con-

sumption or increasing the response time. Thus, at a fixed power consumption, increasing

gain comes at the cost of a slower response. This is an example of a general engineering

principle that is likely to be important for many applications in synthetic biology: the gain-

bandwidth tradeoff [106]. In general, a gain in signal comes at the expense of a reduced

range of response frequencies (bandwidth). If one assumes that there is a maximum re-

sponse frequency (ie a minimal time required for a response, a natural assumption in any

practical engineering system), the gain-bandwidth tradeoff is equivalent to tradeoff between

gain and response time. For this reason, energy consumption is likely to be an important

consideration for synthetic circuits such as biosensors that must respond quickly to small
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changes in an external input. More generally, the gain-bandwidth tradeoff highlights the

general tension between signal amplification, energy consumption, and signaling dynamics.

1.3.5 Erasing Information

Memory is a central component of all computing devices. In a seminal 1961 paper [58],

Landauer outlined the fundamental thermodynamic and kinetic constraints that must be

satisfied by memory modules in physical systems. Landauer emphasized the physical nature

of information and used this to establish a connection between energy dissipation and

erasing/resetting memory modules. This was codified in what is now known as Landauers

principle: any irreversible computing device must consume energy.

The best understood example of a cellular computation from the perspective of sta-

tistical physics is the estimation of a steady-state concentration of chemical ligand in the

surrounding environment by a biochemical network. This problem was first considered in

the seminal paper [107] by Berg and Purcell who showed that the information a cell learns

about its environment is limited by stochastic fluctuations in the occupancy of the receptors

that detect the ligand. In particular, they considered the case of a cellular receptor that

binds ligands at a concentration-dependent rate and unbinds particles at a fixed rate. They

argued that cells could estimate chemical concentrations by calculating the average time a

receptor is bound during a measurement time.

In these studies, the biochemical networks downstream of the receptors that perform the

desired computations were largely ignored because the authors were interested in calculating

fundamental limits on how well cells can estimate external concentrations. However, cal-

culating energetic costs requires an explicit model of the downstream biochemical networks

that implement these computations. As Feynman emphasized in his book on computa-

tion [108], “Information is physical.”

Recently, we considered a simple two-component biochemical network that directly com-

putes the Berg-Purcell estimator [109]. Information about external ligand concentration is

stored in the levels of a downstream protein (shown in Figure 1.4). Such two-component
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networks are common in bacteria and are often used to sense external signals with receptors

phosphorylating a downstream response regulator. Receptors convert a downstream protein

from an inactive form to an active form at a state-dependent rate. The proteins are then

inactivated at a state-independent rate. Interestingly, one can explicitly map components

and functional operations in the network onto traditional computational tasks (see Figure

1.4). Furthermore, it was shown within the context of this network, that computing the

Berg-Purcell statistic necessarily required energy consumption. The underlying reason for

this is that erasing/resetting memory requires energy (we note that while Landauer empha-

sized that erasing and not writing requires energy [58], a recent paper argues that writing

also requries energy [81]). These results seem to be quite general and similar conclusions

have been reached by a variety of authors examining other biochemical networks.

These ideas have important implications for synthetic biology. Much as memory is

central to the function of modern computers, biological memory modules are a crucial

component of many synthetic gene circuits [110]. Any reusable synthetic circuit must possess

a memory module that it can write and erase. Currently, synthetic circuits use two general

classes of memory modules: protein-based bistable genetic switches [35] and recombinase-

based DNA memory [110]. In both cases, resetting the memory involves consuming energy

by expressing and degrading proteins (proteins involved in bistability and recombinases,

respectively). Although this energy consumption is fundamental to any reusable memory

module, it is desirable to find less energetically costly memories that can still be stable over

many generations. As synthetic circuits become increasingly complex, these energetic costs

are likely to be ever more important.

1.3.6 Using energy consumption to improve synthetic circuits

Energy consumption is a defining feature of most information processing networks found in

living systems. The theoretical work reviewed here provides new insights into biochemical

networks. The greatest difference between equilibrium and non-equilibrium systems is that

in equilibrium, the energy differences between states fundamentally determines the dynam-
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ics of the system, while in a non-equilibrium system the energy differences and dynamics

become decoupled. This can be used in a variety of ways in biochemical network and we

broadly divided up the useful cases into relatively independent roles: increasing specificity,

reducing variability, amplifying signal, and erasing information. We believe that focusing

on examples of each role will allow theorists and experimentalists to establish a common

language and further both non-equilibrium physics and synthetic biology. One beautiful

outcome of the interplay of theory and experiment is the recent work showing that a kinetic

insulator that actively consumes energy can restore modularity and eliminate retroactivity

in a simple synthetic circuit [100].

We believe that the theoretical results can be summarized into several broad lessons on

energy consumption that may prove useful synthetic biology as well as providing theorists

with future connections to experiments.

• Fundamental Trade-Offs. The ultimate limits of response speed, sensitivity, and

energy consumption are in direct competition.

• Saturation of Trade-Offs. Current works suggest that saturation effects are ubiq-

uitous [78, 91, 97] in energy consumption of biochemical networks and therefore only

a few ATP may be enough [104] to nearly achieve the fundamental limits.

• Futile Cycles are NOT Futile. Futile cycles appear to be useless when only

considering energy costs, but can provide benefits in terms of the fundamental trade-

offs.

• Reusable Logic Must Consume Energy. This is just the biological realization

of Landauer’s principle. Memory is especially important for circuits that function in

stochastic environments where it is necessary to time-average over stochastic input

signals.

• Chains are Useful. While it may seem redundant to have long chains of identical

parts, if the chain consumes energy this can improve specificity and reduce variation.
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• Time Reversal Symmetry. While equilibrium systems respect time reversal sym-

metry (forward and backwards flows are equivalent), energy consumption and non-

equilibrium systems necessarily break this symmetry.

• Manipulate Time Scales. Consuming energy can be useful to change the time

scale of dynamics, as illustrated by the example of retroactivity and the introduction

of energy consuming insulators.

• Information is Physical. Theorists should heed Feynman’s advice and always

attempt to translate theoretical advances into actual physical devices.

We will end by focusing on one specific example that we believe is especially timely for

synthetic biology. In naturally occurring biochemical networks, the primary source of energy

for biochemical networks are futile cycles associated with post-translational modifications

such as phosphorylation and methylation of residues. In contrast, energy dissipation in

most synthetic circuits takes the form of the production and degradation of proteins. From

the viewpoint of both energy and dynamics, protein degradation is an extremely inefficient

solution to the problem. Proteins are metabolically expensive to synthesize, especially

when compared to post-translational modifications. This may be one reason that most

of the information processing and computation in eukaryotic signaling pathways is done

through enzymatic cascades. Designing synthetic circuits that can reap the full benefits

of energy consumption requires developing new biological parts built based around post-

translational modification. Such a “post-transcriptional” synthetic biology would allow

to harness the manifold gains in performance that come from actively consuming energy

without the extraordinary metabolic costs associated with protein synthesis. Currently, the

power of this approach is limited by the dearth of circuit components that act at the level

of post-translational modifications. However, recent advances in this area, suggest that it

should be possible to overcome these limitations using recently developed techniques.
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Figure 1.1: Consuming energy to increase modularity. (A) A transcription factor

regulates downstream promoters. Sequestration of the transcription factor upon binding to

promoters can lead to “retroactivity”, i.e. a change in the dynamics of the transcription

factor levels as a result of coupling to outputs. (B) Coupling the transcription factor through

an insulating element consisting of a phosphorylation/dephosphorlyation cycle with fast

dynamics reduces the effect of retroactivity.
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Figure 1.2: Reducing variability in a multi-step cascade through energy con-

sumption. (A) A protein (blue ovals) is repeatedly phosphorylated L times. (B) The

coefficient of variation, defined as the variance over the mean squared of the time it takes

to complete L phosphorylations, as a function of the free-energy consumed during each step

in the cascade, ∆G, for L = 1, 4, 16, 64.
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Figure 1.3: Amplifying signals in a push-pull amplifier by consuming energy.

Schematic illustrates a simple push-pull amplifier where a kinase, Ea, modifies a protein

from X to X∗ and a phosphatase, Ed, catalyzing the reverse reaction. The plot illustrates

that larger gain can be accomplished at the expense of a slower response time τ .
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2 Epigenetic landscapes explain partially reprogrammed

cells and identify key reprogramming genes

The following chapter and the corresponding Appendix and figures have been adapted from: Alex H.

Lang, Hu Li, James J. Collins, Pankaj Mehta. Epigenetic landscapes explain partially reprogrammed

cells and identify key reprogramming genes. PLoS Comput. Biol. (2014) 10(8): e1003734.

2.1 Introduction

Understanding the molecular basis of cellular identity and differentiation is a major goal

of modern biology. This is especially true in light of the work of Takahashi and Yamanaka

demonstrating that the overexpression of just four transcription factors (TFs) is sufficient

to convert somatic fibroblasts into cells resembling embryonic stem cells (ESCs), dubbed

induced pluripotent stem cells (iPSCs) [12]. The idea of using a small set of TFs to re-

program cell fate has proven to be extremely versatile and reprogramming protocols now

exist for generating neurons [6], cardiomyocytes [7], liver cells [8, 9], neural progenitor cells

(NPC) [10], and thyroid [11] (see reviews [5, 111] for more details). Despite these revo-

lutionary experimental advances, cell fate is still poorly understood mechanistically and

theoretically. Recent experiments suggest cell fates can be viewed as high-dimensional at-

tractor states of the gene regulatory networks underlying cellular identity [22]. In particular,

cell fates are characterized by a robust gene expression and epigenetic state resulting from

the complex interplay of transcriptional regulation, chromatin regulators, non-coding and

microRNAs, and signal transduction pathways.

These experiments have renewed interest in the idea of an ‘epigenetic landscape’ that

underlies cellular identity [30–34]. The landscape picture requires several key features to

be consistent with experimental observations (see Figure 2.1). All cell fates must be robust

attractors, yet allow cells to change fate through rare stochastic transitions [5, 112] as in

cellular reprogramming experiments (Figure 2.1A). A common result of reprogramming is
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Signal

1

PRC

B. Cell Stabilized
 by Environment

A. Minimal Landscape C. Cell Switch due
 to External Signal

PRC PRC

2 1 2 1 2

Figure 2.1: Phenotypic Landscape. These are illustrative cartoons of the cell fate

attractor landscape. (A) The minimal cellular identity landscape. Each cell fate is a basin

of attraction (black circles). Reprogramming between different cell fates (1 and 2) can oc-

cur probabilistically via different trajectories (black paths). Partially reprogrammed cells

(PRC) exist as smaller, spurious, basins of attraction (red circle) that can be experimentally

observed by reprogramming experiments (example trajectory in red). (B) Same cellular

identity landscape in the presence of a stabilizing environment (ex. favorable culturing

medium) for cell fate 2. The environment increases the radius and depth of the cell fate 2

basin of attraction. (C) Landscape in the presence of an external signal that gives rise to

differentiation from cell fate 1 to cell fate 2 (ex. growth factors associated with differentia-

tion). Notice the low energy path between the cell fates that drives switching from cell fate

1 to cell fate 2.
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not the desired cell fate, but partially reprogrammed cells [28, 29]. These results suggest

that the landscape is rugged and may contain additional spurious attractors corresponding

to cell fates that do not naturally occur in vivo. In addition, environmental and external

signals can control cell fates. Some environments stabilize particular cell fates (Figure

2.1B). A dramatic example of this is a protocol for reprogramming to neural progenitor

cells (NPCs) that is identical to Yamanaka’s protocol for reprogramming to ESC except

for the culturing media [113]. Other external signals deterministically switch cell fates, as

occurs in normal development (Figure 2.1C) [114]. Together, these imply the landscape is

a dynamic entity that depends on environmental signals.

The recent experimental progress has inspired several different theoretical approaches

to understand the epigenetic landscape and the underlying gene regulatory networks gov-

erning cell fates. One focus has been on explicit construction of landscapes for specific cell

fate decisions such as the erythroid vs myeloid choice in hemopoietic development [115],

pancreatic cell fates [116], or C. elegans vulva development [117]. Other network based

approaches use experimental data to constrain the possible networks [118, 119]. A second

area of work is based on understanding the underlying gene regulatory network [120, 121].

A recent paper [122] attempts to combine the network and landscape picture by using the

network entropy to define a landscape. On a more abstract level, there has been a re-

newed interest in understanding Waddington’s landscape mathematically using ideas from

dynamical systems and nonequilibrium statistical mechanics [34, 123]. Most of these models

focus on in vivo developmental decisions and hence consider the dynamics of a few genes

or proteins.

Here, we present a new modeling framework to construct a global (i.e. all cell fates and

all TFs) epigenetic landscape that combines techniques from spin glass physics with whole

genome expression profiles. We were inspired by the successful application of spin glasses

to model neural networks [40–43] and protein folding landscapes [124]. Here, we construct

an epigenetic landscape model for cellular identity with 63 stable cell fates and 1337 TFs

using cell-fate specific, mouse microarray gene expression data. Each cell fate is a robust
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attractor, yet cells can deterministically switch fates in response to external signals. Our

model provides a unified framework to discuss differentiation and reprogramming. It also

naturally explains the existence of partially reprogrammed cell fates as ‘spurious’ attractors

resulting from the high dimensionality of the landscape. Our model predicts, and we verify,

that partially reprogrammed cells are hybrids that co-express TFs of multiple naturally

occurring cell fates. Finally, our model reproduces known reprogramming protocols to

iPSCs, heart, liver, NPC, and thyroid, and has the potential for designing reprogramming

protocols to novel cell fates. Taken together, these results suggest that epigenetic landscapes

represent a powerful framework for understanding the molecular circuitry and dynamics that

gives rise to cell fate.

The organization of the paper is as follows. First, we explain the motivation for using

an attractor neural network to model the epigenetic landscape. Second, we define the state

space for the model and the actual biological data used to construct the state space. Third,

we give an overview of our landscape model (with details given in Tables A.1 and A.2 and

section A.2. Next, we show that our mathematical model captures the essential experimental

features of cellular identity. We then show that our model naturally explains the existence

of partially reprogrammed cells and makes predictions about their gene expression profiles.

We verify this by reanalyzing experimental data. Finally, we show that our model can

identify key reprogramming genes in existing reprogramming protocols, suggesting it can

be used to identify candidate TF for reprogramming to novel cell fates. We conclude by

discussing the implications of our mathematical model for understanding cellular identity

and reprogramming.

2.2 Results

2.2.1 Motivation from attractor neural networks

The Takahashi and Yamanaka reprogramming experiments [12] are reminiscent of content-

addressable memory and attractor neural networks. First, let us introduce a content-

addressable memory with a paraphrasing of the original Hopfield paper. A content-addressable
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memory allows one to retrieve a full memory based on sufficient partial information. For ex-

ample, suppose the complete stored memory is “John J. Hopfield, Neural networks and phys-

ical systems with emergent collective computational abilities (1982).” A content-addressable

memory is capable of retrieving the full memory based on partial, incomplete input. There-

fore, the details “Hopfield,” “Neural networks,” and “1982” could be enough to recall the

full memory.

In the Yamanaka reprogramming protocol, overexpressing only four TFs is enough for

a fibroblast to “recall” the global TF expression of an ESC. A content-addressable memory

is naturally represented as a basin of attraction in a dynamical system, with partial recall

corresponding to entering the basin of attraction and full recall corresponding to reaching

the minimum of the basin. Hopfield attractor neural networks [40, 41, 43] are a general

method to take an input set of vectors (“memories”) and explicitly construct a unique,

global, landscape such that each input vector is a global minimum and has a basin of

attraction. In what follows, we will exploit the analogy between associative memory in

attractor neural networks and cellular reprogramming to explicitly construct the epigenetic

landscape underlying cellular identity.

2.2.2 The epigenetic landscape

Our goal is to model the global epigenetic landscape involving all cell fates by using genome

wide data. Currently, microarrays are the only technology with genome wide data for a

multitude of cell fates (although RNA-seq and other technologies will likely be useful in

the future). Specifically, we compiled a dataset of 601 mouse whole genome microarrays

(details in section A.1) resulting in the gene expression for N = 1337 transcription factors

for p = 63 cell fates. We restricted our considerations to TFs due to their importance in

cellular reprogramming and differentiation. However, our model can be easily generalized to

include other important genes. To robustly compare microarrays from multiple platforms,

we converted the raw expression data into a rank ordered list. We assumed that gene

expression is log-normal distributed (the minimal-assumption model for positive-definite
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random numbers such as gene expression) and assigned a z-score to each TF. The final

output of this procedure is that it assigns each TF in every cell fate a z-score gene expression.

This continuous gene expression could be used to construct our epigenetic landscapes.

However, for mathematical convenience, we discretize the continuous gene expression data

into high expression (+1 for z-score >= 0) and low expression (−1 for z-score < 0). See

section A.5 for an extended discussion on continuous vs discrete TF expression in attractor

neural networks.

This discretization process is biologically plausible. Cellular identity and differentiation

are largely controlled by epigenetics, especially histone modifications (HMs) [127] (Figure

2.2A). Epigenetics primarily controls the accessibility of DNA and depending on the HM, the

DNA can be stabilized in an open or closed configuration. Using global HM data [125, 126]

and comparing it to microarray data, we created a conditional probability distribution of

having a HM given a TF expression level (Figure 2.2B). We find that between a z-score

of −0.5 to 0.5 there is a sharp threshold which distinguishes genes with the activating

modification of histone 3 tri-methylation at lysine 4 (K4) from genes with the inactivating

modification of histone 3 tri-methylation at lysine 27 (K27) and poised/bivalent genes (both

K4 and K27). This provides a potential biological justification to our discretization. In

summary, we take the continuous gene expression and binarize (Figure 2.2C). These binary

(i.e. on/off) TF data are the only biological input into our model.

In order to precisely describe the landscape results, we need to define the correct way to

measure distances. One possible measure is the overlap (aka dot product or magnetization),

defined for cell fate µ as:

mµ =
1

N

N∑
i=1

ξµi Si (2.1)

where Si is an arbitrary expression state and ξµi is the gene expression in the natural cell

fate µ. The overlap between cell fate µ and state Si for exactly correlated, anti-correlated,

or uncorrelated states is 1, −1, or 0 respectively.

Cell fates from similar lineages (ex. blood) often have similar gene expression patterns.

For example, B cells and T cells have a 77% overlap in their gene expression profiles. Such
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Figure 2.2: Overview of model. (A) Histone K4 is associated with active genes, while

histone K27 is associated with repressed genes. (B) Conditional probability distribution

of HM given TF expression levels derived by comparing microarray data with HM data

from [125, 126]. (C) For mathematical convenience, we take the continuous TF expression

levels and convert it to binary states. (D) An arbitrary state is represented by a vector ~S

of ±1, with each dimension in the vector space representing the state of a TF. The natural

cell fates form a subspace (gray plane). The landscape model is based on the orthogonal

projection of the TF state onto this subspace. (E) The dynamics of the landscape model

for different initial conditions for a fully connected interaction matrix Jij and a diluted

(non-equilibrium) interaction matrix. Plot shows the projection of S on ESC as function

of time. Notice the large basins of attraction (red bracket). Parameters used were β = 2.2

and burst errors of 2% every 5000 spin updates. (F) Simulations showing how a CMP

can differentiate into either GMP or MEP in response to two distinct external signals. All

trajectories used β = 2.2. For signal 1, we set GGMP,CMP = 0.5 and all other Gµν = 0. For

signal 2, we set GMEP,CMP = 0.5 and all other Gµν = 0.
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large correlations between cell fates makes the overlap, m, a poor distance measure. In

order to measure distances between highly correlated vectors, it is helpful to define the

“projection” aµ of a gene expression state Si on a cell fate µ by

aµ =

p∑
ν=1

(A−1)µνmν (2.2)

where A−1 is the inverse correlation matrix and mν is the overlap on cell fate ν and is given

by

Aµν =
1

N

N∑
i=1

ξµi ξ
ν
i (2.3)

The projection aµ measures the orthogonal projection of a state Si onto the subspace

spanned by naturally occurring cell fates, ξ (see Figure 2.2D and section A.5 ), and a

perfect projection onto state µ is given by aµ = 1. In contrast with the overlap, B cells

have zero projection on T cells, and vice versa.

Our landscape assigns an “energy” to every global expression state. We emphasize

that this energy does not correspond to physical energy consumption of ATP; instead it is

an abstract energy that corresponds to stability and developmental potential of cell fates.

The complete landscape H can be thought of as arising from four terms with a simple

interpretation (see Figure 2.1):

H = Hbasin +Hbias +Hculture +Hswitch (2.4)

The first term, Hbasin, ensures that observed cell fates are valleys in our landscape (Figure

2.1A). The second term, Hbias, describes biasing of specific TFs by experimentalists (not

shown in Figure 2.1). The third term, Hculture, increases the radius and depth of cell fates

that are favored by the environment or culturing conditions (Figure 2.1B). Finally, in the

presence of an external signal that gives rise to differentiation (ex. growth factors associated

with differentiation), the fourth term, Hswitch, opens a low energy path between the initial

and final cell fates (Figure 2.1C). We give a complete mathematical description of the model

in the section A.2 and a summary in Tables and .
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Table 2.1: Mathematical model of cell identity landscape. Part 1.

Landscape Term: Index Nota-

tion

Landscape Term: Ma-

trix Notation (dim.)

Biological Interpretation

H = Hbasin+Hbias+Hculture+

Hswitch

Total landscape.

Hbasin = −1
2

N∑
i=1

N∑
j 6=i

SiJijSj Hbasin = −1
2STJS Produces cell basins of attrac-

tion.

Hbias = −
N∑
i=1

BiSi Hbias = −BTS External control of individual

genes, i.e. inducible expres-

sion.

Hculture = −N
p∑

µ=1

bµaµ Hculture = −NbTa External control of specific

cell basins, i.e. culturing con-

ditions.

Hswitch =

−N
2

p∑
µ=1

p∑
ν=1

mµGµνaν

Hswitch = −N
2 mTGa Cell switching by signals, i.e.

in vivo development.

N Number of TFs, labeled by i,

j. In this paper N = 1337.

p Number of cell fates, labeled

by µ, ν. In this paper p = 63.

Si S (N x 1) State (±1) of ith TF.

ξµi ξ (p x N) State (±1) of ith TF in cell

fate µ.

This table provides a summary of the landscape model and the biological interpretation of

each term. The first column is written in index notation, while the second column is the

same term in matrix notation with the dimension of the term given in parenthesis. If no

dimension is listed, the term is a single number.

2.2.3 Cell fates are dynamic attractors that are responsive to signals

We performed self-consistency checks for our model using two in silico experiments (see

details in Materials and Methods: Simulations). To verify that naturally occurring cell
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Table 2.2: Mathematical model of cell identity landscape. Part 2.

Landscape Term: Index Nota-

tion

Landscape Term: Ma-

trix Notation (dim.)

Biological Interpretation

Aµν = 1
N

N∑
i=1

ξµi ξ
ν
i A = 1

N ξξ
T (p x p) Correlation between cell fate

µ and ν.

Jij = 1
N

p∑
µ=1

p∑
ν=1

ξµi (A−1)µνξνj J = 1
N ξ

TA−1ξ (N x

N)

Interaction strength between i

and j.

Bi B (N x 1) External control of ith TF.

bµ b (p x 1) External control of µth cell

fate.

mµ = 1
N

N∑
i=1

ξµi Si m = 1
N ξS (p x 1) Overlap of S on cell fate µ.

aµ =

p∑
ν=1

(A−1)µνmν =

N∑
i=1

ηµi Si

a = A−1m = ηS (p x

1)

Projection of S on cell fate µ.

ηµi = 1
N

p∑
ν=1

(A−1)µνξνi η = 1
NA

−1ξ (p x N) Predictivity of ith TF in cell

fate µ.

Gµν G (p x p) Signal dependent coupling

that drives cell fate ν to cell

fate µ

This table provides a summary of the landscape model and the biological interpretation of

each term. The first column is written in index notation, while the second column is the

same term in matrix notation with the dimension of the term given in parenthesis. If no

dimension is listed, the term is a single number.

fates are dynamic attractors, we randomly perturbed the gene expression profile of cells

from the ESC state and then tracked the gene expression over time. Real biology has many

potential sources of noise, and the asynchronous dynamics introduced above will likely

underestimate the noise. To show that our model is still robust to other large sources of

noise, in our simulations we also add in periodic bursts of noise by flipping a fixed percentage



34

of TF states (2%) to mimic the observation that cellular divisions produce HM errors [128].

Figure 2.2E shows the projection of the TF state on the ESC state as a function of time.

For a large number of starting conditions, after an initial transient, the system relaxes back

to the ESC state (red bracket), explicitly demonstrating the existence of a large basin of

attraction [22]. This is true even when we break detailed balance by making the interaction

matrix asymmetric by randomly deleting 20% of interactions (Figure 2.2E Diluted).

Our model can also deterministically switch between cell fates in response to differentia-

tion signals. For example, the common myeloid progenitor (CMP) is a blood cell fate that in

vivo can differentiate into either granulo-monocytic progenitors (GMP) or megakaryocyte-

erythroid progenitors (MEP). In Figure 2.2F, we show in silico validation where we start the

system in the CMP state and show the trajectories after applying either the GMP (signal

1, blue) or MEP (signal 2, red) differentiation signal, resulting in branching to two distinct

cell fates.

2.2.4 Partially reprogrammed cells as “spurious” attractors

When performing a reprogramming experiment, besides the initial cell fate and the end goal

cell fate, experimentalists often produce “novel cell fates”, dubbed partially reprogrammed

cells [28, 29]. These partially reprogrammed cells have the characteristics of a stable cell fate

(i.e. they can be passaged indefinitely in culture), but may express a mix of key markers

for multiple cell fates and have a global gene expression that does not match any in vivo

cell fate [29].

While the existence of partially reprogrammed cells was surprising to experimentalists,

they have a natural interpretation in our model. One of the most generic properties of all

attractor neural networks is that in addition to the desired attractors, ξµi , the non-linearity

of the dynamical process and topology of high-dimensional (in our case N = 1337) vector

spaces induces additional attractors, which are termed spurious attractors [43]. In our

model, since the natural cell fates are the input vectors, these spurious attractors can be

interpreted as potential cell fates that do not occur in vivo. These spurious attractors are
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predicted to be low-dimensional combinations, or hybrids (see section A.4 and section A.5

for details) that should also be stable attractors but with smaller basins of attraction.

A priori, there are several valid hypotheses for the relationship between partially repro-

grammed cells and natural cell fates. In the original experiments [28, 29], it was expected

that partially reprogrammed cells should be a hybrid of the starting and goal cell fate

only (i.e. have a significant projection only on the starting or ending cell fate). Another

hypothesis was that in a high-dimensional landscape, randomly chosen vectors should be

orthogonal (Figure A.1) (i.e. have a projection of a ≈ 0 with all cell fates). However,

our model predicts that partially reprogrammed cells should be low-dimensional hybrids of

existing cell fates, but that they do not necessarily have to be a combination of the starting

and goal cell fate. Mathematically, we predict that partially reprogrammed cells should

only have a projection |a| > 0.106 (2 std above 0, see Figure A.1) for a small number of

natural cell fates. Reanalyzing existing genome-wide datasets on partially reprogrammed

cells (Table A.3) validates the prediction of our model that partially reprogrammed cells

are low-dimensional hybrids of existing cell fates. This qualitative agreement between the

predicted spurious attractors and the partially reprogrammed states is independent of de-

tails of our landscape function. Importantly, such hybrid states are a generic property of

all attractor-based landscape models and hence represents an important criteria for judging

whether attractor-based models are suitable for describing epigenetic landscapes.

2.2.5 Identifying transcription factors for cellular reprogramming

Our landscape model provides a quantitative method to identify “predictive” TFs for a

given cell fate. These predictive TFs can be used as markers of a cell fate and are potential

candidates for reprogramming protocols. We expect reprogramming TFs to be a subset of

all predictive TFs but not all predictive TFs will lead to successful reprogramming. For

example, cell-specific downstream targets of reprogramming TFs are likely to also be highly

predictive for a cell type but may not lead to successful reprogramming.

Most reprogramming experiments follow an experimental protocol similar to the one
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Table 2.3: Partially reprogrammed cells as spurious attractors. Part 1.

Cell line Start Goal Highest projecting states (projection)

1A2 [28] MEF ESC ESC (0.178), MSC (0.158), myoblast

(0.142), MEP (0.129), blood vessel

(0.113), keratinocyte (0.112), medullary

thymic epithelial (-0.111), adipose - brown

(-0.117), NK (-0.130), CMP (-0.138)

1B3 [28] MEF ESC ESC (0.222), MSC (0.161), blood

vessel (0.139), myoblast (0.138), GMP

(0.127), kidney (0.111), MEP (0.107),

cornea (0.107), NK (-0.129)

BIV1+ [29] B

Cell

ESC myoblast (0.181), prostate (0.164),

MSC (0.154), MEP (0.138), keratinocyte

(0.136), cornea (0.125), ESC (0.111), in-

testine - Paneth cell (-0.111), CMP (-

0.122)

Partially reprogrammed cell lines (first column) and their significant projections (2 std

above noise or |a| > 0.106) onto “natural” cell fates based on microarray data. Bold

indicates 3 std above noise or |a| > 0.159. Abbreviations: CLP, Common Lymphoid

Progenitor; CMP, Common Myeloid Progenitor; EpiSC, epiblast stem cell; ESC,

embryonic stem cell; GMP, Granulocyte-Monocyte Progenitor; MEF, mouse embryonic

fibroblast; MEP, Megakaryocyte-Erythroid Progenitor; MSC, Mesenchymal stem cells;

NK, Natural Killer cells; NSC, neural stem cells.

outlined by Takahashi and Yamanaka in their seminal paper [5, 12]. Initially the starting

cells (usually mouse embryonic fibroblasts, MEFs) are infected with viruses containing all

the TFs of interest. The original Yamanaka experiment over-expressed 24 TFs [12], while

more recent experiments usually start with about 10 TFs [6–10]. Several days after infection,

the cells are switched to culturing conditions that support the desired final cell fate. If an

experiment is successful, cells resembling the desired cell fate will appear after a few weeks.

This original list is then pruned to identify a “minimal” (essential) set of TFs that still
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Table 2.4: Partially reprogrammed cells as spurious attractors. Part 2.

Cell line Start Goal Highest projecting states (projection)

BIV1- [29] B

Cell

ESC ESC (0.382), EpiSC (0.184), MEP

(0.160), myoblast (0.145), NSC (-0.108),

T Cell (-0.115), skeletal muscle (-0.117),

CMP (-0.154)

MCV6 [29] MEF ESC MEP (0.155), myoblast (0.150), ESC

(0.149), keratinocyte (0.145), CLP

(0.107), GMP (0.107), cornea (0.107),

CMP (-0.130)

MCV8 [29] MEF ESC ESC (0.203), MEP (0.191), myoblast

(0.160), cornea (0.119), prostate (0.113),

skeletal muscle (-0.141), CMP (-0.142)

Partially reprogrammed cell lines (first column) and their significant projections (2 std

above noise or |a| > 0.106) onto “natural” cell fates based on microarray data. Bold

indicates 3 std above noise or |a| > 0.159. Abbreviations: CLP, Common Lymphoid

Progenitor; CMP, Common Myeloid Progenitor; EpiSC, epiblast stem cell; ESC,

embryonic stem cell; GMP, Granulocyte-Monocyte Progenitor; MEF, mouse embryonic

fibroblast; MEP, Megakaryocyte-Erythroid Progenitor; MSC, Mesenchymal stem cells;

NK, Natural Killer cells; NSC, neural stem cells.

allows for successful reprogramming. In many cases, the viruses are excised [129] to confirm

that the the reprogramming does not depend on viral expression. Furthermore, recent

experiments indicate that the same TFs can be used to reprogram to a desired cell fate

from multiple initial cell fates [112]. These experiments suggest that reprogramming TFs

should be based on final, not initial, cell fate.

Intuitively, reprogramming candidates should be both highly expressed and highly “pre-

dictive” of the desired cell fate. The TF z-score naturally defines high and low TF expression

levels. Within our landscape, the “predictivity” ηµi of the ith TF for a given cell fate µ, is

measured by its contribution to the potential energy of that cell fate, and is mathematically
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defined as:

ηµi =

p∑
ν=1

(
A−1

)µν
ξνi (2.5)

where A−1 is the cell fate correlation matrix and ξνi is the expression of TF i in cell fate ν.

We note that the projection and predictivity are directly related as can be seen by

aµ =
N∑
i=1

ηµi Si (2.6)

where ηµi is the predictivity of TF i in cell fate µ and Si is an arbitrary gene expression

state.

For a desired target cell fate, TFs that are high (low) in both predictivity and expression

in that cell fate are candidates for over expression (knock out) in reprogramming (see Figure

2.3A). For a simple, single measure of reprogramming efficacy of a TF, the predictivity

and expression can be multiplied together to give a “reprogramming score”, where the top

(bottom) rank order TFs are the best candidates for over expression (knock out). Figure 2.3

shows the expression and predictivity for TFs in a variety of cell fates. In Figure 2.3B, we

have explicitly labeled the TFs used in the original Yamanaka protocol for reprogramming

to ESC. Consistent with our model, these TFs are both predictive and highly expressed.

Figure 2.3C shows TFs that have been successfully used in any reprogramming protocol to

ESCs [5] as well as the pluripotency genes (involved in maintaining stem cell fate) Zfp42

(Rex1 ) [130] and Nr0b1 (Dax1 ) [131]. Once again these genes are highly predictive for

ESCs. As a further check on the biological validity of our predictions, we analyzed the GO

Annotation of our top 50 candidates for ESC reprogramming (Tables and ). Within these

top TFs, 12 have successfully been used in reprogramming, 7 are known pluripotency TFs,

16 are involving in cell differentiation, while 15 have no known function and are intriguing

reprogramming candidates. Taken together this suggest that we are capturing the essential

biology despite minimal biological data for input.

While ESC have been studied in the most detail, recent experiments have reprogrammed

(aka direct conversion) to other cell fates such as cardiomyocytes [7] (Figure 2.3D), liver [8, 9]

(Figure 2.3E), and thyroid [11] (Figure 2.3F). Once again we have explicitly labeled the TFs
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Figure 2.3: Identifying reprogramming candidates. See section 2.4 for extended figure

details.
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that have been successfully used for direct conversion. Notice that all of these TFs (except

Mef2c) are highly predictive and highly expressed. Note that p19Arf [9] used in the direct

conversion to liver was not differentially expressed in our microarrays and therefore was not

included in our model.

We also examined TFs used in direct conversion to neural lineages. As discussed in [6],

these TFs were chosen because they were known to be important in either neurons or neural

progenitor cells (NPC). Figure 2.3F and 2.3G show the expression and predictivity of TFs

for neural progenitor cells (NPC) [10] (Figure 2.3G), and neurons [6] respectively. Induced

NPC were made using a four TF cocktail consisting of Pou3f2 (Brn2 ), Sox2, and Foxg1 [10].

Our analysis shows that the first two of these TFs are predictive for NPCs while Foxg1 is

predictive for neural stem cells (NSC) (see Figure A.3). Induced neurons (iN) can be made

using the TFs Myt1l, Pou3f2, and Ascl1 [6]. Consistent with their experimental design, we

find that Myt1l is highly predictive for mature neurons, while the remaining TFs (Pou3f2,

Ascl1 ) are predictive for NPCs.

While it is not possible to perform statistical tests to test our examples due to the

scarcity of reprogramming protocols, we performed a simple numerical exercise to gauge

the predictive power of our model. The four Yamanaka factors are all in the top 50 when

ranked by their reprogramming score for ESCs (where the reprogramming score of a TF

is defined as the product of the expression and predictivity scores of a TF). We randomly

permuted TF labels and asked how often all four Yamanaka factors remained in the top

50. For a million independent permutations, this occurred only once, confirming that our

model is capturing many essential aspects of cellular reprogramming.

2.3 Discussion

A common biological metaphor used to describe development and cellular reprogramming

is a rugged “epigenetic landscape” which emerges from a complex gene regulatory network,

with cell fates corresponding to attracting valleys in the landscape. Despite decades of

biological innovation, the large number of genes and their complex interactions has pre-
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vented the quantitative modeling of a global epigenetic landscape. To meet this challenge,

we have developed a new quantitative framework of cellular identity to directly model the

global, high-dimensional epigenetic landscape. Using whole genome expression data, we

constructed an epigenetic landscape based on techniques from spin glass physics and neural

networks. Our landscape only depends on the experimentally determined gene expression

of natural cell fates. Yet, it explains the existence of spurious cell fates (known as partially-

reprogrammed cells) and can reproduce known reprogramming protocols to embryonic stem

cells, heart, liver, thyroid, neural progenitor cells, and neurons. More importantly, our

model can be used to identify candidate transcription factors for reprogramming to novel

cell fates.

An interesting question is if spurious attractors are ubiquitous throughout the landscape,

why does standard development not produce partially reprogrammed cells? The key is the

difference in the dynamics. In cellular reprogramming, the starting cell fate is forced to

express a small number of TF and this leads to a stochastic conversion to the desired cell

fate (Figure 2.1A). During this stochastic exploration of the landscape, there is only a weak

bias towards the final state, so it is easy for the cells to get trapped in a metastable state.

However, during standard development, the external signals actively reshape the landscape

and open up low energy valleys between cell fates (Figure 2.1C). This strong bias towards

the final cell state results in a deterministic switch during which the spurious attractors are

only a small road bump on the path to the final cell state. Therefore, it is not a surprise

that partially reprogrammed cells are only found during cellular reprogramming and not

during standard development.

Epigenetic landscapes can also be used to identify important, or predictive, TFs for cell

fates. The predictivity of a TF for a cell fate generalizes the idea of specificity. A TF is

specific to a cell fate if it is expressed only on in a small subset of cell fates. In contrast with

specificity, predictivity weighs the global correlations amongst cell fates when assessing the

importance of a TF for a cell fate. Thus, the predictivity not only picks out important

specific TFs, but also TFs that are lineage markers. For example, Brachyury (T ) [132] is
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a general marker of mesodermal lineages. Since it is highly expressed in large a number

of cell fates, it is not specific to any given cell fate. However, it is predictive because its

expression is a strong indicator that a given cell fate is a mesodermal lineage.

The concept of predictivity also yields new insights into the Yamanaka protocol. When

the Yamanaka factors were first published, two of the four TFs, Pou5f1 (Oct4 ) and Sox2

were known to be important for ESCs. In contrast, the role of the other two TFs, Klf4 and

Myc, was not well understood [133]. It was quickly shown that Myc was was not essential

to reprogramming (Oct4, Sox2, and Klf4 can reprogram alone), but nonetheless enhanced

the efficacy of reprogramming [134]. The importance of Klf4 was surprising given that it

is neither highly expressed nor specific for ESC. However, Klf4 is highly predictive of ESC

(Table A.3). For this reason, our model actually explains why Klf4 is a prime candidate

for reprogramming to ESCs.

We make several experimentally verifiable predictions. First, our model predicts the

partially reprogrammed cells should be hybrids of existing natural cell fates. As more par-

tially reprogrammed cells are studied, if they are found to either have high projection on

only one cell fate (aµ ≈ 1 for one µ) or no projections on any cell fates (aµ ≈ 0 for all µ),

this would call into question whether partially reprogrammed cells are truly the spurious

attractors of an attractor neural network. Second, our model can be used to identify im-

portant, or predictive, TFs for cell fates. TFs with large positive (negative) predictivity

should be positive (negative) markers for a cell fate. Additionally, for cellular reprogram-

ming we predict that TFs with large positive (negative) predictivity and expression could

be over expressed (knocked out) to reprogram to a desired cell fate. Therefore, our model

has several predictions that can be tested against future experimental progress in the field.

Our model has several limitations. First, a generic limitation for any method relying on

microarrays to define gene expression is that one cannot distinguish between direct, causal,

interactions and indirect, correlative, interactions. Therefore, predictivity can establish the

importance of a gene, but further experiments are needed to determine if the predictive

gene is the controller of the cell type or just a passive indicator of a cell type. Second, it
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fails to accurately capture the dynamics of reprogramming. Simulations of reprogramming

with known protocols, such as the Yamanaka protocol, lead to rates of reprogramming that

are comparable to the rates from a reprogramming simulation with a randomly selected

protocol. This is likely due to the fact that cell fates are extremely stable and hence

reprogramming is extremely rare. Third, our model does not directly explain the importance

of the non-specific transcription factor Myc. Many protocols use Myc [5], but it can be

replaced (with no deleterious effect) by short hairpin RNAs (shRNAs) [135], or dropped

completely from protocols at the expense of speed and less efficient reprogramming [134].

This suggests that Myc may have an alternative role and instead of being a biasing field, Bi,

it may instead raise the effective noise of the system (i.e. decrease β). Another limitation is

that based on the currently available experimental data, our landscape construction cannot

definitively be distinguished from alternative constructions. For example, the interaction

network could be constructed by such that it does not weigh each cell fate equally (as

is currently done). This would have the effect of changing the relative stability of cell

fates. Therefore, in the absence of more experimental data, our landscape and a weighted

landscape cannot be distinguished.

A popular approach to inferring landscapes from biology data are “Maximum Entropy”

models. This method has been used to model firing neurons [136], protein configurations

[137, 138], and antibody diversity [139]. The Maximum Entropy approach takes as input

large samples of biological data and a set of constraints and outputs a landscape that

maximizes the entropy. While Maximum Entropy models can be used to infer landscapes

with basins of attraction [140], it can quickly become a computationally challenging problem.

Our approach differs from Maximum Entropy models in the following way. Since our goal

is to model a landscape with basins of attractions, we make the ansatz that the landscape

can be described by a Hopfield neural network. Then we insert real biological data, ξ,

to construct the landscape exactly. Our method requires no computational inference of

parameters.

There are several natural extensions of the model discussed in this paper. The landscape
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could be constructed with additional biological input such as other genes, microRNAs, or

histone modification data. This opens up possibilities of improving upon the high repro-

gramming rates achieved by overexpressing microRNAs [141] or synthetic mRNAs [142].

Another attractive element of the framework presented here is that it allows for a quan-

titative analysis of whole genome-wide expression states (see Tables 2.3 and 2.4). This is

likely to yield a more accurate classification of reprogrammed cells. Finally, directed differ-

entiation protocols [143] attempt to mimic standard development in vitro and have proven

to have high efficiency and fidelity. Future work will try to use our landscape to predict

the necessary signaling factors for rationally designing more efficient directed differentia-

tion protocols. Overall, epigenetic landscapes provide a unifying framework for cell identity,

reprogramming, and directed differentiation, and our results suggest these landscapes can

provide crucial insight into the molecular circuitry and dynamics that gives rise to cell fate.

2.4 Extended Figure 2.3 Caption

For a given cell fate, we plot every differentially expressed transcription factor’s (TF) predic-

tivity (aka energy projection-contribution, ηµi ) vs TF expression level (z-score normalized).

Unless otherwise stated all existing reprogramming protocols to a given cell fate are labeled.

(A) Schematic illustrating predictivity vs expression level plots. The large positive (nega-

tive) predictivity and large positive (negative) gene expression TFs are candidates for over

expression (knock out) in a reprogramming protocol. The TFs with z-score between −0.5

and 0.5 are highlighted in gray because Figure 2.2B suggests these TFs predictivity may be

prone to extra noise induced by the data discretization. (B) Embryonic stem cell, ESC (in-

duced pluripotent stem cells, iPSC). Original Takahashi and Yamanaka factors Pou5f1 (Oct

4 ), Sox2, Klf4, and Myc [12]. (C) Inset of ESC positive predictivity and gene expression.

Zfp42 (Rex1 ) [130] and Nr0b1 (Dax1 ) [131] are pluripotency markers that are not necessary

to overexpress for reprogramming, while combinations of the remaining labeled TFs have

been successfully used in reprogramming protocols [5]. (D) Heart (induced cardiomyocytes,

iCM) [7]. (E) Liver (induced hepatocytes, iHep). There are two published protocols. One
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protocol used Hnf4a plus any of Foxa1, Foxa2, or Foxa3 [8] while another used Gata4,

Foxa3, Hnf1a, and deletion of p19Arf [9]. p19Arf was not differentially expressed in our

microarrays and is not shown. (F) Thyroid [11]. (G) Neural Progenitor Cells, NPC (in-

duced NPC, iNPC) used Pou3f2 (Brn2 ), Sox2, and Foxg1 [10]. With our microarrays we

find that Foxg1 is not predictive for NPC but is predictive of neural stem cells (NSC) (see

Figure A.3). (H) Neurons (induced neuron, iN) [6]. The reprogramming protocol used a

combination of factors that were known to be important to ether mature neurons (Myt1l)

or NPCs (Pou3f2, Ascl1 ). (G) shows that Pou3f2 and Ascl1 are predictive of NPCs.
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3 Cellular reprogramming dynamics follow a simple one-

dimensional reaction coordinate

The following chapter and the corresponding Appendix and figures have been adapted from: Alex H.

Lang, Sai Teja Pusuluri, Pankaj Mehta, and Horacio E. Castillo. Cellular reprogramming dynamics

follow a simple one-dimensional reaction coordinate. arXiv (2015), 1505.03889.

3.1 Introduction

Biology is in the midst of the revolution spearheaded by the pioneering work of Takahashi

and Yamanaka on cellular reprogramming showing that it is possible to reprogram mouse

embryonic fibroblasts (MEFs) to cells resembling embryonic stem cells (ESCs), commonly

called induced pluripotent stem cells (iPSCs), by manipulating the expression of just four

transcription factors (TFs). The idea of manipulating small sets of TFs to alter cell fates

has proven extremely versatile and it is now possible to create iPSCs from a variety of cell

types [5], as well as perform direct conversions between two differentiated cell types such

as MEFs and neurons [6]. Most reprogramming experiments have a similar design [144]

(Fig 3.1A). The starting cell type (e.g. MEF) is engineered with a construct containing the

desired reprogramming genes. These genes are induced at the start of the experiment. After

several days, the cell culturing conditions are switched to a medium favorable to the desired

cell type (e.g. stem cell media). At a later time, typically a few weeks, the exogenous

genes are turned off. If all goes well, a small percentage (≈ 0.01− 1%) of cells successfully

reprogram to the desired cell type.

Significant progress has been made towards understanding the mechanisms underlying

cellular reprogramming [4, 145] (which from now on we will use to include both repro-

gramming to iPSC as well as direct conversion), yet many questions remain. Cellular

reprogramming requires global changes in gene expression involving hundreds of transcrip-

tion factors and thousands of genes, but how cells dynamically alter their gene expression
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profile during reprogramming is still not well understood. Reprogramming rates seem to

depend on the exact protocol used and can be changed by several orders of magnitude

through careful genetic manipulations [26, 146]. Experiments have also measured whole

genome time courses during reprogramming but the high-dimensional nature of the mea-

sured trajectories make them difficult to interpret [147]. Other experiments have examined

gene-level events during reprogramming. Buganim et al [112] analyzed reprogramming dy-

namics at the single-cell level and concluded that reprogramming initially is probabilistic

but ends with a hierarchichal (i.e. ordered), deterministic stage. In contrast, Polo et al [147]

analyzed reprogramming dynamics with both population level and single-cell level measure-

ments and concluded that reprogramming follows an early deterministic phase with many

gene changes, followed by an intermediate phase with fewer changes, and ending with a

deterministic phase with many gene changes. Recently, Chung et al [148] measured single

cell reprogramming dynamics and proposed that the intermediate phase of reprogramming

is a loosely ordered probabilistic phase in which the timing between events is probabilistic,

but the order of events is relatively deterministic. This highlights the need for a better

understanding gene expression dynamics during reprogramming.

Reprogramming involves global changes in gene expression and hence is intrinsically high

dimensional. For this reason, it is common to use dimensional reduction techniques such

as Principal Component Analysis (PCA) to project the dynamics onto a low-dimensional

sub-space. However, dimensional reductions techniques such as PCA have several key limi-

tations. The principal component vectors have no clear biological interpretation, making it

difficult to extract biological meaning from the resulting low-dimensional dynamics. PCA

also depends on the type and quality of the data included in the dataset, making it cum-

bersome to compare dynamical data across experiments and systems.

To overcome these challenges, we introduce a new technique for visualizing high-dimensional

reprogramming dynamics inspired by “epigenetic landscape” models for cellular identity. In

Waddinton’s original landscape idea [30], cell types correspond to basins of attraction in

an abstract cell identity landscape. This idea has been refined by a variety of researchers,
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and has yielded a number of insights into the genetic basis of cellular identity [16, 31–

33, 39, 116, 122, 123, 149–154]. Two of us recently proposed a landscape model [155] that

takes global gene expression profiles (microarrays or RNA-Seq) and uses techniques inspired

by spin physics and the Hopfield model to explicitly construct a cell identity landscape. This

model provided a natural explanation for the existence of partially-reprogrammed cell types

and can identify TFs that have been used to successfully reprogram to multiple cell types. In

this paper, we extend our previous work to analyze reprogramming dynamics. Using a new

linear-algebra based analysis method inspired by our landscape model, we show that the

experimentally observed gene expression dynamics during reprogramming follow a simple,

one-dimensional reaction coordinate. This reaction coordinate emerges naturally in numer-

ical simulations of our landscape model, suggesting that reprogramming can be understood

as a “barrier crossing” between landscape minima.

3.2 Results

3.2.1 Mathematical model and Data Analysis Method

Here, we briefly summarize the relevant features of the landscape model (see section B and

Lang et al. [155] for details). Cell types are stable basins of attraction (minima of the

landscapes) and reprogramming between basins proceeds through stochastic fluctuations

resulting from gene expression noise (Fig 3.1B). The landscape is constructed directly from

the genome wide expression profiles of natural cell types using a curated dataset of microar-

rays for p = 63 cell types and approximately N ∼ 1400 TFs (see section B). This data is

summarized in a cell type matrix, ξµi , whose entries contain the expression level of TF i

in cell type µ (e.g. MEF, ESC). This construction can easily be extended to include genes

beyond TFs.

The global gene expression level of TFs can be summarized using a N -dimensional

expression state vector Si whose entries encode the expression level of TF i with i = 1 . . . N .

Expression levels are treated as continuous variables when analyzing experimental data and

as binary variables which can be either on or off (Si = + ± 1) when performing numerical
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simulations (see section B). To analyze experimental data, it is useful to define a “distance”

measure between an arbitrary expression vector Si and the expression vector, ξµi , for cell type

µ. One natural distance measure in gene expression space is the overlap or dot product,

mµ = 1/N
∑

i Siξ
µ
i , which measures the correlations between Si and ξµi . The overlap

between cell type µ and state Si is 1, −1, or 0 for a perfectly correlated, anti-correlated, or

uncorrelated states, respectively. In practice, the dot product is a poor measure of distance

because cell types are highly correlated with each other. For example, blood cell types share

a common core set of gene expression and thus B cells and T cells have a 87% overlap in

their gene expression profiles.

For this reason, it is useful to introduce an alternative measure of distance we call

projections, with aµ denoting the projection of Si on the expression profile of cell type

µ. The projection has a simple geometric interpretation depicted in Figure 3.1C and is

calculated by first projecting (ie casting a shadow) of S onto the hyperplane defined by the

p cell types in the matrix ξ (represented as the gray plane) and then measuring the distance

to the cell type µ within this cellular subspace. The benefit of this construction is that it

naturally accounts for the correlations between cell types: the projection of a B cell with

itself is one, while a B cell’s projection on T cells is zero, and vice versa. This is in stark

contrast with correlation based measure of distance in gene expression space.

Projections arise naturally when constructing landscape models for cellular identity. In

Lang et. al [155], it was shown that it is possible to define a Lyapunov function (commonly

called an energy), H, that characterizes the landscape. In terms of the projections aµ and

overlaps mµ, the energy or Lyapunov function takes the form (see section B and [155]):

H = Hbasin +Hculture

= −N
2

p∑
µ=1

mµaµ −
p∑

µ=1

bµaµ. (3.1)

We emphasize that this Lyapunov function represents an abstract “cellular identity en-

ergy surface” characterizing the stability of cell states and cannot be directly related to

metabolism or ATP consumption. In this expression, the first term Hbasin arises from the
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“effective” interaction between genes and ensures that all cell types µ = 1 . . . p are attractors

of the dynamics that have large basins of attraction. This can be seen by noting that in a

given cell type (say µ = 1), Si = ξ1
i and a1 = m1 = 1, while the projection on all other cell

types is zero, aν = 0 (ν = 2 . . . p). Plugging these results into Eq. 3.1 shows that each cell

type is a global minimum with energy Hmin = −N
2 . The second term Hculture represents

the stabilizing effect of the culturing conditions on a particular cell type. For example,

when cells are grown in MEF culture, then only bMEF 6= 0, while in ESC culture, only

bESC 6= 0. Finally, to incorporate the fact that some transcription factors are overexpressed

in the experiments (see section B) the dynamics of the variables Si corresponding to over

expressed TF are locked in the “on” state.

3.2.2 MEF reprogramming dynamics

We begin by reanalyzing the experimentally available time series data on reprogramming.

Fig 3.1D, shows the first two principal components (PC) for 10 different reprogramming

trajectories from MEF to iPSC from multiple labs. In the analysis, we have included par-

tially reprogrammed cells (PRC), which are novel cell states only found during unsuccessful

reprogramming experiments. The plot shows dynamics projected onto the first two PCs,

but in reality this system is high-dimensional and it takes 21 PCs to explain 80% of the

variation in the data (see Figure B.3 for details). The PCA plot illustrates several important

findings. First, reprogramming trajectories seem to group into two distinct clusters, and

within each cluster, the starting points (day 0) and ending points (final iPSC) are near each

other. Therefore, even for different experimental protocols, reprogramming seems to follow

only a few paths. Second, these paths are distinct from partially reprogrammed cells (PRC).

While several reprogramming data points seem to be near PRCs, this is an artifact of keep-

ing only two PCs in our visualization. In fact, the PRCs only have a Spearman correlation

of 90% with the closest reprogramming data point and approximately 80% correlation with

the two closest trajectories. Third, the final state of failed trajectories (trajectories that did

not successfully reprogram to iPSCs) is closer to their starting point rather than to iPSCs,
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suggesting that failed trajectories do not leave the basin of attraction of the initial cell type.

While PCA allows easy visualization of the data, the Principal Components have no clear

biological meaning making it difficult to interpret the lower dimensional PCA dynamics.

In Figures 3.1E-3.1G, we have replotted the same time-series data as in the PCA plots

using projections on the starting and ending cell type. As in the PCA plot, the various

symbols represent the actual data, while the lines connecting data show the time order of

experimental points. In these plots, the starting (ending) states for each trajectory are

defined as the initial (final) time point for the corresponding experiment. When calculating

projections, the start (end) states replace MEF (ESC) in our cell type matrix ξ. This allows

us to plot each experiment against its own start and end points. This additional step is

necessary because different experiment define MEFs and iPSs differently.

The result of this analysis is shown in Figure 3.1E. In contrast to the PCA plot which

contained two clusters (Figure 3.1D), the reprogramming trajectories in the projected ba-

sis all follow a similar path. This suggest cells follow a simple one-dimensional reaction

coordinate during reprogramming: a straight line joining the starting cell type with the

ending cell type in projection space. This data collapse is more remarkable when consider-

ing the extreme heterogeneity in reprogramming rates across the plotted experiments. The

Polo et al experiment [147] represents a typical time course with reprogramming taking

approximately two weeks, while Rais et al [146] is the fastest trajectory (8 days) and ST

(Samavarchi-Tehrani et al) [156] is the slowest trajectory in our dataset (30 days).

In order to better understand how trajectories with such different reprogramming rates

can still follow the same coordinate, it is useful to extend the analysis to account for how

reprogramming trajectories project on other cell types besides the starting and ending cell

types. To do so, we introduce a new quantity,

a⊥ =

√√√√ ∑
1≤ν≤p

ν 6=(start,end)

(aν)2, (3.2)

that measures the magnitude of the projections perpendicular to the plane spanned by the

starting and ending cell type. This is shown in Figure 3.1F. Notice that faster trajectories
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have a smaller perpendicular projection on the remaining cell types than slower trajectories.

Furthermore, the difference in speed between experiments arises largely from the fact that

slower trajectories also appear to get stuck at particular points along the reaction coordinate

for as many as two weeks.

To compare these experimental trajectories to our mathematical model, it is useful to

visualize this data in yet another way. In Figure 3.1G, we have replotted the same data

taking the z-axis as the energy per TF, which can be calculated directly from gene expression

profiles using our landscape construction (Hbasin/N). In making these plots we have ignored

the contributions of the culture terms in Eq. 3.1 to the energy in our model (see Figures

B.3 through B.3 and section ). Notice that the faster trajectories follow a lower energy path

while the slowest trajectory (ST) follows a high energy path and appears to spend time

stuck in two different barriers between days 8 and 21. These observation suggest that the

experimentally observed reprogramming dynamics are consistent with the idea of a “barrier

crossing” between the starting and ending cell types in a rough landscape (see Figure 3.1B).

Further evidence for this barrier-crossing picture comes from numerical simulation using

our landscape model (see section B). The insets in Fig. 3.1E-3.1G show failed and success-

ful reprogramming trajectories from Monte-Carlo simulations. There is a striking similarity

between the model trajectories and experiment. Like in experiment, successful reprogram-

ming trajectories in our model follow a simple one-dimensional reaction coordinate in the

projection space and reprogramming requires crossing a significant energy barrier. Sup-

plementary Figures B.3 through B.3 contain more examples of successful and unsuccessful

simulation trajectories.

Finally, we note that the reaction coordinate can also be visualized using more tradi-

tional measures of distances such as the overlap (dot product) of the gene expression profile

with the starting and ending states (see Figure B.3A). However, when using overlaps, each

experiment has its own starting and ending point, making it hard to compare across ex-

periments. Furthermore, overlaps are unable to discern the “barrier crossing” picture that

emerges naturally from using projections (see Figure B.3B).
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3.2.3 B cell reprogramming dynamics

The previous section considered reprogramming from MEF to iPSC. Here, we extend this

analysis to consider two additional reprogramming experiments from B cells to IPSs [157,

158]. In the first experiment, the standard Yamanaka reprogramming protocol (OSKM) [12]

was used to reprogram B cell to iPSC. Unlike in MEFs, in B cells the OSKM protocol re-

sulted in extremely low reprogramming yields. To increase the reprogramming yield, the

protocol was then modified so that OSKM expression was preceded by pulsed expression of

CEBPα (abbreviated C+OSKM). This modified protocol significantly increased the repro-

gramming yield. Figure 3.2A shows that for both experiments, reprogramming trajectories

once again follow a simple reaction coordinate in projection space. Figure 3.2B extends

these plots to the energy vs reaction coordinate plane. Notice, that in both experiments,

the energy of the trajectories first increase and then decrease. The higher yield trajectory

(C+OSKM) makes steady progress over the energy barrier, while the low yield trajec-

tory (OSKM) appears to meander through inefficient directions. Thus the reprogramming

dynamics of B cells are similar to the reprogramming dynamics of MEF: in all cases repro-

gramming follows a simple one-dimensional reaction coordinate and can be understood as

a barrier crossing between minima.

The insets in these figures show results from numerical simulations using the landscape

model. The simulations reveal a simple reaction coordinate. However unlike in experiment,

the simulated trajectories for the two protocols exhibit nearly identical dynamics. This

likely reflects the limitations of the coarse-graining approximation used to construct the

landscape model. In the model, TFs are treated as binary variables and all TFs are treated

on equal footing – no distinction is made between global chromatin remodelers like CEBPα

and more specific downstream factors. Despite these limitations, the phenomenological

model still captures the qualitative phenomena seen in the experiments.

The similarity of the reprogramming trajectories from MEFs and B cells suggest a

universal reaction coordinate for reprogramming: a straight line connecting the starting
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Figure 3.2: Universal Reaction Coordinate.. A. Direct conversion from astart (B Cells)

to aend (iPSC) by Di Stefano et al [157]. OSKM is the standard Yamanaka protocol, while

C+OSKM is a pulse of C/EBPα followed by OSKM which led to higher reprogramming

yield. All insets are simulation data of same data shown in main figure. See Figure B.3

for larger version of simulations. B. Energy landscape of basins of attraction, Hbasin, per

transcription factor (TF) vs reaction coordinate. See Figure B.3 for larger version of simu-

lations. C. Data collapse of trajectories to astart vs aend for both MEF to iPSC (gray) and

B Cell to iPSC (black). See Figure B.3 for larger version of simulations. D. Data collapse of

trajectories when viewed as energy vs reaction coordinate. See Figure B.3 for larger version

of simulations.
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and ending cell type in projection space. This can be seen best in Figures 3.2C and 3.2D

where we have plotted reprogramming dynamics from both MEFs and B Cells on the

same plots. These experimental data are consistent with numerical simulations using our

landscape model which show that reprogramming trajectories always follow a straight line

in projection space for both choices of starting cell type.

3.2.4 Insight into dynamics from our mathematical model

Given the strong agreement between experiment and the landscape model, it is interesting

to ask if the model can provide further insights into reprogramming dynamics beyond those

that can be directly gleaned from analyzing experimental time series. As discussed in the

introduction, there is an ongoing debate in the reprogramming literature about the order

and organization of gene-level events during reprogramming [112, 147, 148]. To address

this, we performed detailed simulations that allowed us to probe gene-level events during

reprogramming from MEF to iPSC (see section B). Experimentally, reprogramming times

(as measured by reporters for pluripotency markers) are well described as a Poisson process,

implying the existence of a single rate limiting step [26]. Our simulation results support the

idea of a single rate limiting step to the turning on of pluripotency markers (see Fig 3.3A).

In our simulations, the time to turn-on pluripotency markers is calculated by measuring

the time it takes a trajectory to have a significant projection on an iPSC state (aend = 0.3)

Additionally, our simulations show that the later phase of reprogramming (defined as the

period of time when trajectories go from having a projection aend = 0.3 to aend = 0.8)

follows a narrowly peaked distribution. Once reprogramming has started, it is very fast:

the median time for the later phase is approximately 40 times shorter than the median

time for the early phase. Consistent with experiment [26, 146], we find that almost all

trajectories eventually reprogram. These results are inconsistent with an “elite” model of

reprogramming [159] in which only a special subset of cells are amenable to reprogramming.

To ask about the order of gene level events, we probed the gene level dynamics of 10

genes known to be specific for either MEFs or ESCs (Snai1, Snai2, Prrx1, Twist2, Twist1
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Figure 3.3: Nature of Reprogramming Dynamics in the Landscape Model.. A.

Cumulative distributions of timing show that the early (aend = 0 to aend = 0.3) and later

(aend = 0.3 to aend = 0.8) stages of reprogramming are respectively a Poisson and a narrowly

peaked distribution. See SI Figure 11 for early (aend = 0 to aend = 0.3), middle (aend = 0.3

to aend = 0.7) and late (aend = 0.7 to aend = 0.8) phases of reprogramming as Poisson,

narrowly peaked and narrowly peaked distributions respectively. In order to study the

complete timing distribution, the data shown here and in Figure B.3 were obtained in a

simulation of duration t = 3× 106 MC steps, which is 30 times longer than the simulations

reported on in all other figures. B. Percentage of trajectories in which a gene is on vs

reaction coordinate. Data shown is a moving average of MEF (ESC) genes turning off (on)

over time. See Figure B.3 for example of non-averaged data.
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and Zfp42, Nanog, Utf1, Lin28a, Sall4, respectively) for 224 successful reprogramming tra-

jectories out of a total of 3000 attempts. Recall, that in our model, each gene is represented

by a binary variable and can either be ‘on’ or ‘off’. Since the dynamics of our landscape

model are stochastic, these genes turn on and off at different values of reaction coordinate

in each of these 224 trajectories. To understand if there is any structure in the gene level

dynamics, we counted the percentage of trajectories for which a gene was on on at a given

reaction coordinate using a moving average (see section B). The results are shown in Fig

3.3B (see Figure B.3 for an example of non-averaged data). The MEF (ESC) genes grad-

ually turn off (on) over time as expected. Furthermore, the order in which genes turn on

and off is relatively stable, at least when averaged over trajectories. In contrast, individ-

ual simulation trajectories show much more variability in the order which genes turn on.

However, if we consider individual pairs of TFs, we find that their ordering tends to be

consistent with what one would expect from Fig 3.3B. For example, Nanog turns on before

Sall4 in 58% of trajectories, and Snai1 turns off before Twist1 in 71% of trajectories, but

for Twist1 and Twist2, there is no clear trend for one or the other to turn off first.

All the qualitative features of our simulations are consistent with the idea that repro-

gramming trajectories correspond to successful “barrier crossing” between two minima in a

landscape. An important qualitative prediction of all barrier crossing is that reprogramming

trajectories should be dominated by a small number of optimal paths, with some amount

of fluctuations around those paths [36, 160]. In particular, the facts that the early phase

of reprogramming is well described by a Poisson process, the later phase is described by a

narrow distribution of times, and that the median time for the early phase is much longer

than the median time for the later phase are all features that would be expected of a simple

barrier-crossing process. Furthermore, these simulations show that in a high-dimensional

barrier crossing, genes can turn on in a temporally ordered manner (at least when aver-

ages over many reprogramming attempts) even though the process is driven entirely by

stochasticity.
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3.3 Discussion

A common metaphor used to describe cellular identity is Waddington’s landscape or the

idea of a rugged “epigenetic landscape” in which cell types are basins of attraction. In

this picture, cellular reprogramming is envisioned as a process in which one cell type is

externally driven out of its basin of attraction, across a barrier, and eventually ends up in

the basin of attraction of the desired cell type. Previously, we used ideas from spin physics

to introduce a model of cellular identity that can be built from genome expression data. In

this paper, we reanalyzed experimental data on reprogramming dynamics in terms of our

model and found good agreement between the experiments and simulations of our model.

Our model provides several interesting insights into reprogramming dynamics. We find

that reprogramming dynamics proceed along a simple one-dimensional reaction coordinate

and must cross a significant energy barrier. Somewhat surprisingly, this reaction coordinate

is independent of reprogramming dynamics. In terms of projections, we can simply describe

the reaction coordinate as a straight line from (astart = 1, aend = 0) to (astart = 0, aend = 1).

What makes this simple picture especially interesting is that we demonstrated its validity

for two different types of reprogramming experiments (MEF or B Cell to iPSC). Based on

simulations with our model, we believe that any cellular interconversion (reprogramming

or direct conversion), will proceed along a similar, universal, reaction coordinate when

described in terms of astart, aend, and energy.

Our model also gives insight into the ongoing debate about the phases of reprogramming

dynamics. A priori, reprogramming dynamics may be either probabilistic or deterministic

with respect to both the timing and order of gene level events. Our simulations show the the

initial phase of reprogramming follows a Poisson distribution – initiating reprogramming is

a rare event. However, once initiated, reprogramming proceeds quickly and efficiently. This

is reflected in our simulations by the observation that the dynamics of the reprogramming

process at later stages are well described by a narrowly peaked distribution. Furthermore,

we find that when averaged over many successful reprogramming trajectories, the order of
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gene level events are relatively reproducible. Our simulations strongly support Chung et

al [148] description of reprogramming as a “loosely ordered probabilistic process”.

Why have different dynamics experiments led to such drastically different conclusions?

So far, each experiment has used different techniques, each of which have their own limita-

tions. GFP reporters (for example [26]) provide precise timing data but are limited to small

numbers of genes. Whole genome expression data (for example [147]) provides data on all

genes, but both microarrays and RNA-Seq require populations of cells. Finally, single cell

gene expression data (for example [112]) provides accurate details of gene expression, but

only for a subset of genes (currently 48 with standard Fluidigm chips [112]). Therefore,

depending on which technique is utilized, each experimentalist rightfully sees a different

picture of reprogramming dynamics. However, viewing reprogramming as a loosely ordered

probabilistic process unifies all of these different experimental pictures.

Besides examining the gene level reprogramming dynamics, our model provides a clearer

picture of the global mechanism behind reprogramming. One of the most surprising aspects

of reprogramming is that the over expression of just a few TFs (out of thousands) can lead

to such drastic changes in the global gene expression profile. Our simulations suggest the

underlying reason for this is the important role played by culturing conditions. In our model,

inducing the OSKM TFs in MEFs only changes the energy by 0.5% , which at the noise levels

considered here, do not lead to any successful reprogramming event. However, by including

the effect of cell culture in our simulations, we achieve 7.43% reprogramming rates. This

suggests that culturing conditions likely play an important role in dictating reprogramming

efficiencies. For example, it is possible to use the OSKM factors, normally used to reprogram

to iPSC, to instead reprogram to blood cells just by changing culture conditions [113]. This

highlights an important issue of experimental design for direct conversions to a given cell

type. Before one searches for TFs to manipulate, it is essential to understand the correct

culturing conditions for the desired cell type. Without the correct medium, direct conversion

may prove exceedingly difficult. In our simulations, we have found that the culture term

for a given cell type decreases the size of the basin of attraction of all the other cell types.
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Figure 3.4: Culture Schematic.. The correct culture conditions plays an essential role in

reprogramming by stabilizing the final cell type.

We even find some reprogramming events when we bias the system just by introducing the

culture term, without forcing expression of the OSKM TFs (this likely reflects the limitations

of the model). However, when we compare simulations of MEF to ESC reprogramming at

a certain noise level and for a certain duration, the ones where expression of the OSKM

TFs is forced and the ESC culture term is present have a success rate 5 times higher than

the ones where the ESC culture term is present but OSKM expression is not forced. In the

future, it will be interesting to further explore this tradeoff between stability and plasticity

of cell types.

The experimental analysis and simulations presented here suggest that reprogramming

can be viewed as a “barrier crossing” in rugged landscape (see Figure 3.4). In all barrier

crossings, the dynamics are dominated by a few “optimal paths”, suggesting that repro-

gramming dynamics are likely to be low-dimensional and fairly reproducible at the gene

level. A natural consequence of this picture is the existence of a simple reaction coordinate

that describes the progress along the optimal path. If the landscape picture is correct, the
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existence of a reaction coordinate is likely to be a generic feature of all reprogramming and

direction conversion protocols. Directed differentiation is a closely related experimental

technique that instead of using TFs to convert between cell types focuses on recapitulating

embryonic development through sequences of signaling molecules [161]. It will be inter-

esting to see if projections are also a useful reaction coordinate for directed differentiation

experiments.

The results presented here are also likely to be applicable to other systems. Recently, it

has been suggested the evolutionary dynamics of viruses such as HIV can also be understood

using a Hopfield-inspired landscape model [162]. In evolutionary landscapes, crossing fitness

valleys in rugged landscapes can naturally be understood in terms of barrier crossings. For

this reason, it is likely that the techniques developed here in the context of cellular repro-

gramming can be adapted to visualize evolutionary data on fitness crossing dynamics. More

generally, landscapes have proven to be an important tool for furthering our understand-

ing a variety of biological problems such a protein folding [124, 163, 164]. The intuitions

developed in the context of these other problems are also likely to be applicable to cellular

reprogramming and in the future, it will be interesting to explore these connections further.

3.4 Extended Figure 3.1 Caption

A. Transient expression of reprogramming genes plus switching culturing conditions prob-

abilistically leads to the desired cell type. B. Reprogramming is commonly described as

the crossing of a barrier in a high-dimensional landscape. C. Our proposed cellular identity

landscape is based on the projection, a, of an arbitrary gene expression, S, onto the sub-

space (gray plane) spanned by the natural cell types, ξ. D. Principal component analysis

(PCA) of reprogramming from mouse embryonic fibroblasts (MEF) to induced pluripotent

stem cells (iPSC) with start marking day 0 and end marking iPSC. Rais [146], Polo [147],

and ST (Samavarchi-Tehrani) [156] are three successful trajectories in which the explicit

time in days is labeled on plots E, F, and G. Other represents additional successful tra-

jectories, PRC are partially reprogrammed cells, and failed trajectories do not reprogram.
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E. Projection onto astart (MEF) and aend (iPSC) only. All successful trajectories follow a

simple reaction coordinate in projection space, a straight line from (astart = 1, aend = 0)

to (astart = 0, aend = 1). Insets in E, F, and G are simulation data with failed trajectories

in red and successful trajectories in gray. See Figure B.3 for larger version of simulations.

F. Measure of projection on all other cell types, a⊥ vs the reaction coordinate. See Figure

B.3 for larger version of simulations. G. Energy landscape of basins of attraction, Hbasin,

per transcription factor (TF) vs reaction coordinate. See Figure B.3 for larger version of

simulations.
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4 Thermodynamics of statistical inference by cells

The following chapter and the corresponding Appendix and figures have been adapted from: Alex H.

Lang, Charles K. Fisher, Thierry Mora, Pankaj Mehta. Thermodynamics of statistical inference by

cells. Phys. Rev. Lett. (2014) 113 (14), 148103.

4.1 Introduction

Cells often perform complex computations in response to external signals. These com-

putations are implemented using elaborate biochemical networks that may operate out of

equilibrium and consume energy [45, 75, 107, 165–168]. Given that energetic costs place im-

portant constraints on the design of physical computing devices [58] and neural computing

architectures [59], one may conjecture that thermodynamic constraints also influence the

design of cellular information processing networks. This raises interesting questions about

the relationship between the information processing capabilities of biochemical networks

and energy consumption [65, 66, 69, 70, 109]. Indeed, we will show that thermodynamics

places fundamental constraints on the ability of biochemical networks to perform statistical

inference. More generally, statistical inference is intimately tied to the manipulation of

information and hence offers a rich setting to study the relationship between information

and thermodynamics [67, 68, 86, 88, 90].

In order for a cell to formulate an appropriate response to an environmental signal, it

must first estimate the concentration of an external signaling molecule using membrane

bound receptors [45, 107, 165–169]. The biophysics and biochemistry of cellular receptors is

highly variable. Whereas some simple receptor proteins behave like two-state systems (i.e.

unbound and ligand bound) with dynamics obeying detailed balance [170], other receptors,

such as G-protein coupled receptors (GPCRs), can actively consume energy as they cycle

through multiple states. This naturally raises questions about how energy consumption by

cellular receptors affects their ability to perform statistical inference. Here, we address these
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questions by analyzing the accuracy of statistical inference (i.e. learning) as a function of

energy consumption in a simple but biophysically realistic model. We show that learning

more accurately always requires expending more energy, suggesting that the accuracy of a

statistical estimator is fundamentally constrained by thermodynamics.

4.2 Results

Cells estimate the concentration of an external ligand using ligand-specific receptors ex-

pressed on the cell surface. A ligand (usually a small molecule), at a concentration c in the

environment, binds the receptor at a concentration-dependent rate, k+c, and unbinds at a

concentration-independent rate, k− [107] (see Fig. 4.1A). Upon ligand binding, the receptor

protein undergoes conformational changes or chemical modifications that alter its activity,

sending a signal that the ligand is bound to downstream portions of the biochemical net-

work. During a time interval T , the receptor can undergo multiple stochastic transitions

between the unbound nonsignaling state and the bound signaling states. This information

is contained in the time series of signaling and nonsignaling intervals (see Fig. 4.1B). After

a time T , the cell converts this time series into an estimate for the external concentration.

A longer time series T always gives a better estimate for the concentration; however the

cell needs to make a decision in a finite time, so we consider T to be fixed to a large but

finite value. In principle, the estimate for the concentration could be computed using one

of many different statistics that can be obtained from this time series (e.g. average bound

time, average unbound time, etc.). Each of the resulting estimators for the external ligand

concentration has a different accuracy. Following Berg and Purcell (BP) [107], we measure

the accuracy of an estimator for the concentration using its “uncertainty,” defined as:

uncertainty :=
〈(δc)2〉
c2 (4.1)

where c is the mean and 〈(δc)2〉 is the variance of the estimated concentration.

Several methods have been proposed for how a cell may estimate the concentration

of the external signaling molecule. In their pioneering paper, Berg and Purcell suggested
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estimating the concentration using the average time the receptor was bound during the

time T [107]. They showed that the minimal uncertainty a receptor could achieve with this

estimator was

〈(δc)2〉
c2 =

2

N
(4.2)

where N is the expected number of binding events during the time interval T . For 30

years, many thought that the BP estimator placed a fundamental limit on the accuracy

of a cellular receptor. However, in 2009, Endres and Wingreen [166] showed that a cell

using maximum likelihood estimation (MLE) based on the average nonsignaling time could

reduce its uncertainty by half to

〈(δc)2〉
c2 =

1

N
. (4.3)

However, the increased accuracy of MLE comes at an energetic cost. Previous work [168]

established that BP sets a limit for the best possible estimator in equilibrium, implying

that any receptor that performs MLE must operate out of equilibrium and consume energy.

In order to study the relationship between thermodynamics and the accuracy of statis-

tical estimators, we introduce a new family of biophysically inspired cellular receptors that

interpolate between BP and MLE. In our model, receptors can actively consume energy by

operating out of equilibrium (for example by hydrolyzing adenosine triphosphate or ATP).

Using this family of models, we show that there is a direct connection between the energy

consumed by a receptor and the uncertainty of the resulting estimator. We find that in or-

der to learn more information (decrease its uncertainty), the receptor must always expend

more energy (increase entropy production). Note that, in this paper, we restrict ourselves

to modeling the receptor and ignore the downstream signaling network that converts the

signal from the receptor into a cellular response [70, 109]. Thus, the energies computed here

represent lower bounds on the total energy consumed by the statistical estimation network.

Fig. 4.1C shows the simple two-state receptor considered by BP. The binding of an

external ligand to the receptor induces a change in the receptor from a nonsignaling state

to a signaling state (see Fig 4.1B). The dynamics of this simple two-state receptor always

obey detailed balance. Thus, in order to model nonequilibrium receptors, we must consider
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receptors with more than two states. Fig 4.1D shows a receptor with three states: one

nonsignaling state to which ligands can bind, and two signaling states to which ligands

cannot bind. With this extra state, the dynamics of the receptor can break detailed balance

by coupling the conformational change in the receptor to another reaction such as the

hydrolosis of ATP. In particular, by consuming energy it is possible to drive the system

preferentially through a series of state changes [171], for example clockwise in Fig 4.1F and

Fig 4.1G. This results in a nonzero probability flux through the state space and positive

entropy production.

In order to relate the thermodynamic properties of these receptors to their ability to

perform statistical inferences, it is useful to represent receptors as Markov chains. For

example, the two-state receptor shown in Fig. 4.1C can be represented as a two-state

Markov chain with a state 0 corresponding to the unbound nonsignaling state and state 1

corresponding to the signaling state (see Fig. 4.1E). We choose the transition rates between

states in the Markov chain to be identical to the transition rates between conformations of

the receptor. The three-state receptor can also be modeled as a three-state Markov chain

with a ring structure, with state 0 once again corresponding to the unbound, nonsignaling

state (Fig. 4.1F). In this more abstract notation, it is easy to generalize the three-state

receptor considered above to a receptor with L+ 1 states (see Fig. 4.1G): L of these states

are signaling states that cannot bind the ligand, while the remaining state, 0, corresponds

to the nonsignaling state that can bind ligands. For ease of analysis, in this paper, we

consider receptors arranged in a ring only. However, our model is a good approximation

for more complicated receptors with multiple pathways, so long as the receptor has a single

path (for example, of length L∗) that dominates the probability flux, see [97] for details. In

that case, the complicated receptor reduces to a single ring of length L∗.

A straightforward calculation shows that for the architectures in Fig 4.1 (see section C

for details), the uncertainty of an estimate for the concentration is given by [166]:

〈(δc)2〉
c2 =

1

N

[
1 +
〈(δτS)2〉
τ2
S

]
≡ E
N

(4.4)
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where N is the number of binding events, τS is the mean time spent in the signaling state

after binding a ligand, and 〈(δτS)2〉 is the variance of the time spent in the signaling states.

In the second equality, we have defined the coefficient E which measures the accuracy of an

estimator; e.g. E = 2 for the Berg-Purcell limit and E = 1 for MLE. For a given estimator

(i.e. a specific architecture and a set of rates ~k), we can calculate the mean and the variance

of the signaling time by a first passage calculation similar to that in [103] and section C.

Here we provide some intuition for Eq. (4.4). Notice that all the information about the

ligand concentration is contained in the event of a ligand binding to the receptor, and the

unbinding of the ligand, or the exiting of the signaling state, is independent of concentration.

Thus, any variation in the duration of the signaling state adds additional noise to the

estimate but does not contain any more information about the concentration. Therefore,

the optimal estimator is one where the signaling intervals are completely deterministic and

〈(δτS)2〉 = 0. Comparing Eqs. (4.4) and (4.3), we see that this corresponds to MLE. This is

consistent with the well-known fact that MLE is the optimal unbiased estimator for large

sample sizes. When the durations of the signaling times are exponentially distributed, like

for a two-state receptor, 〈(δτS)2〉 = τ2
S , then Eq. (4.4) reduces to the BP result given in

Eq. (4.2). Finally, in all cases, the uncertainty scales inversely with the average number of

binding events N during the time interval T . This scaling law follows from the central limit

theorem by treating each binding event as an independent sample of the concentration.

The Markov representation allows us to calculate the energy consumption using ideas

from nonequilibrium statistical physics. We focus on long time intervals, T � 1, with many

binding events, where the receptor dynamics can be modeled by nonequilibrium steady

states (NESS). The entropy production of the Markov process is the energy per unit time

(power) required to maintain this NESS, and therefore calculating the entropy production

is equivalent to calculating the energy consumed by the biochemical network [109, 171]. The

entropy production is given by [172]

ep =
L∑
i=0

L∑
j 6=i

pssi kij ln
kij
kji
, (4.5)
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with pssi is the steady state probability of state i, kij is the transition rate from state i to

state j, and we have set kBT = 1, see section C for details. For the architectures where the

Markov process forms a ring, the entropy production simplifies to

ep = (pss0 k01 − pss1 k10) ln
k01k12...kL0

k0Lk10...kL,L−1
= J ln γ (4.6)

where J is the net flux around the ring and ln γ is the free energy per cycle [171] (see

section C for details). For later reference, the total energy released in ATP hydrolysis is

approximately 20 kBT at room temperature [173]. We note that previous work investigating

trade-offs between accuracy and energy in Markov chains used a non-thermodynamically

feasible energy [174].

Our goal is to find the best performing estimator for a given receptor architecture

and entropy production (energy consumption) rate. However, there are several biological

constraints that need to be considered when optimizing over choices of kinetic parameters.

First, the rate at which a chemical ligand binds to a receptor is set by diffusion limited

binding [107] and hence k01 is not controlled by the cell. Therefore we set k01 = 1 and do not

optimize over this rate. Second, a receptor needs to be specific. In principle, both “correct”

ligands (i.e. the ligands the receptor has evolved to detect) and “wrong” ligands (any other

chemical) can bind the receptor. However, nonspecific ligands quickly unbind and cause the

receptor to switch back to the nonsignaling state. Thus, the specificity of a receptor is set

by the mean duration of the signaling state in the presence of the correct ligand, τS . This

is incorporated by requiring a small nonspecific binding rate (k0L = ε � 1 = k01) and we

do not optimize over k0L. Lastly, since any statistical estimator is always improved with

more samples, to fairly compare different families of estimates, we will fix the sampling

rate, n = N/T , where N is the expected number of samples and T is the signal integration

time. By fixing the nonspecific binding rate (k0L) to be small (see section C for details),

this implies τS ≈ n−1−1. But since we are also fixing the sampling rate, n, this fixes τS . In

summary, our goal is to find the global minima for uncertainty, given the above constraints.

We begin by analyzing the three-state receptor (Fig. 4.1F). Figure 4.2 shows the un-
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certainty as a function of entropy production for the optimal three state receptor for four

different choices of the ligand binding rate, n̄ = N/T . To generate these plots, we have

used an analytic ansatz (see section C for details) for the optimal parameters which we

have checked using simulated annealing (with agreement within 1.25%). Notice that learn-

ing more accurately (reducing uncertainty) always increased energy consumption (entropy

production). At low energy consumption, the receptor approaches the equilibrium BP limit

(E = 2), while at high energy consumption (corresponding approximately to the energy of

ATP hydrolysis) the optimal performance asymptotically approaches the infinite entropy

production analytic limit of

〈(δc)2〉
c2 ∼ 3

2N
(4.7)

One striking observation is that these curves exhibit a data collapse when plotted as

a function of the energy consumption per ligand binding rate, ep/n . The inset of Fig.

4.2 shows the same curves as the main graph as a function of ep/n. Since each ligand

binding event can be viewed as an independent sample of the external concentration, this

data collapse suggests that the natural variable linking thermodynamics and inference is

the energy per independent sample consumed in constructing an estimator.

The three-state receptor is not able to reach the MLE limit of E = 1 for any level of

entropy production. To reach the MLE limit, we consider a receptor with L + 1 states,

L of which are signaling states (see Fig. 4.1G). This Markov chain has 2L independent

parameters, which makes it hard to find the global optimum. For this reason, we analyzed

a simplified, but still biophysically realistic, rate structure (without performing any opti-

mization over parameters) where k01, k0L, k10, kL0 can independently vary but all other

forward rates are fixed to be identical, ki,i+1 = f and all other backward rates chosen so

that ki+1,i = b, where i = 1 . . . L− 1, see section C for details. Once again, for all choices of

L, the optimal uncertainty exhibits a data collapse as a function of the energy consumption

per ligand binding rate, ep/n (see Fig. 4.3). At low energy consumption, the uncertainty

approaches the BP limit (E = 2), while at high energy consumption (corresponding approx-

imately to the energy of ATP hydrolysis) asymptotically approaches the infinite entropy
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production analytic limit of

〈(δc)2〉
c2 ∼

(
1 +

1

L

)
1

N
(4.8)

Thus, receptors with large energy consumption and many signaling states (L� 1) approach

the MLE limit. In order to perfectly achieve the MLE limit, all backward rates b would need

to be 0, leading to infinite entropy production. An interesting feature of these curves is that

beyond some scale (which can be achieved by hydrolysis of only a few ATP), the marginal

gain in improvement that results from consuming more energy becomes negligible. This is

reminiscent of the recently found transition in kinetic proofreading where adding additional

energy only marginally improves the error threshold [97, 102]. It will be interesting to see

if this is a generic feature of many biochemical information processing circuits.

4.3 Discussion

In conclusion, by analyzing the ability of cells to estimate the concentration of an external

chemical signal using nonequilibrium receptors we have established an unexpected link

between statistical inference and thermodynamics. Specifically, we found that the efficacy

of an estimator for the concentration of a ligand depends on the energy consumed per

independent sample by the receptor. Extrapolating this result suggests that there may

be fundamental thermodynamic bounds on statistical inference. The trade-off between

accuracy and energy is general and may be relevant for other signal transduction systems,

such as gene regulation [175], light-activated proteins [101] or ligand-gated ion channels

[176]. We note that following the tradition of Berg and Purcell, in this paper we only

considered estimating a concentration after a long time T . However, in many related cases,

such as transcription [177], the speed is an important trade-off in addition to accuracy

and energy consumption. In the context of phosphorelays, it is likely that the circuits

can respond quickly even for multistep cascades. For example, the four-stage phosphorelay

utilized for phototransduction in the retina can still respond to stimuli in about half a

second [106]. Nonetheless, understanding these trade-offs represents an important future

research direction.
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We conjecture that our observed scaling, (ep/n), reflects a general principle: the effi-

ciency of a statistical estimator is limited by the energy consumed per sample during its

construction. Of course, much more investigation is needed to see if this conjecture holds

in general. In particular, it will be interesting to see if these results change for receptors

modeled by heterogeneous Markov networks that are not strictly ringlike in nature. Recent

work indicates that at large entropy production the dynamics of such networks may be

independent of details of the underlying topology, suggesting that our basic picture should

hold even for more complicated nonequilibrium receptors [178]. An additional extension

to our model would be to consider externally varying concentrations by implementing a

sensory adaptive system (SAS) as was done in recent papers [79, 81]. These papers found

that the accuracy and energy consumption of the SAS depends on the time scale of external

concentration fluctuations. Finally, it is well known that many receptors, such as GPCRs,

actively consume energy in order to operate. Our model presents one possible explanation

for this observation. The energy consumption may help reduce noise in the downstream

signal, allowing cells to more accurately determine external concentrations. Our model also

shows that hydrolysis of only one or two ATP nearly achieves the theoretical minima of

uncertainty. This may explain why cell sensors often require only a few phosphorylation

sites.
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Figure 4.1: Schematic of a cell receptor and our model of a receptor. (A) A

chemical ligand at concentration c binds to the receptor at rate k+c and unbinds at rate

k−. (B) Example time series of a receptor binding. While unbound, the receptor is in

nonsignaling state, but upon ligand binding it transitions to a signaling state. After a

long time T , the receptor has a series of nonsignaling times τNS and signaling times τS from

which to estimate the concentration. (C) Two-state and (D) three-state biochemical models

of a receptor. Upon ligand binding the receptor undergoes a physical change (represented

as a conformational change) that transmits signals to the downstream biochemical network.

(E) Two-state, (F) three-state, and (G) L-state Markov models of a receptor, where the

chain of states 3, 4, . . . L− 1 has been suppressed.
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Figure 4.2: Two signaling state estimator performance. For varying sampling rate

n = N/T , the plot shows estimator performance (E) versus entropy production (ep with

units of kBT = 1). The symbols represent results from simulated annealing, where k01 = 1

and k02 = ε = 10−3 while the other four rates are optimized. The continuous lines represent

our ansatz (see section C for details) for the global minima. At high entropy production

the estimators asymptotically approach 1.5. The inset shows the data collapse when the

estimator performance (E) is plotted versus entropy production per sampling rate (ep/n).

The vertical dashed line corresponds to the approximate energy released by hydrolysis of a

single ATP.
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Figure 4.3: Illustrative example of L signaling state estimator performance. For

a varying number of signaling states L, the plot shows estimator performance (E) versus

energy consumption (ep/n). For an increasing L, at high energy consumption the estimator

approaches the maximum likelihood limit of 1. The following parameters are fixed at

n = 0.99, k01 = 1, k0L = 10−3, α = k10/b = 10−3, and ω = kL0/f = 1, while b was varied to

keep n fixed, and θ = f/b was varied to change the estimator and the energy consumption.

These parameters were chosen for convenience and are not global optima. The vertical lines

correspond to the approximate energy released by hydrolysis of a single ATP (dashes) or

two ATPs (dot dashes).



76

Appendices
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A Epigenetic landscapes explain partially reprogrammed

cells and identify key reprogramming genes

A.1 Data Analysis

An older version of this manuscript, Arxiv v3 [179], has additional microarrays avail-

able that are unused in this version of the text. All microarrays used in this paper

were taken from the public databases ArrayExpress (www.ebi.ac.uk/arrayexpress) or GEO

(www.ncbi.nlm.nih.gov/geo).

There are two datasets, the natural cell fates and the partially reprogrammed cells. For

the natural cell fates, we only used the Affymetrix GeneChip Mouse Gene 1.0 ST platform

due to the large number of available microarrays on ArrayExpress (www.ebi.ac.uk/arrayexpress)

and the better technical design of the platform (1.0 ST has probe matches throughout a gene

in contrast to just the 3’ UTR in Affymetrix GeneChip Mouse Genome 430 2.0). There

is limited data on partially reprogrammed cells so we used microarrays from Affymetrix

GeneChip Mouse Genome 430 2.0.

The raw microarray data was converted to an expression level as follows. Microarray

probe-to-gene map was created with Bioconductor 2.10. All raw microarray files were

initially processed by robust mean averaging (RMA) in MATLAB, and genes with multiple

microarray probes were averaged. We did additional processing of this output for two

reasons. First, we need to compare microarrays from multiple platforms, but the standard

RMA output can vary significantly from platform to platform. Second, since gene expression

is a set of positive definite numbers, the minimal assumption model of gene expression is a

log-normal distribution. Therefore, to make robust comparisons across platforms, we used

order statistics [180]. The RMA output was converted to a rank order. Next, we want

to convert this rank order to the z-score of a log-normal distribution. We converting the

rank to a percentile (for N genes, divide by N + 1), and then this percentile into a normal
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z-score. For later mathematical convenience, we used a biased estimator (normalize by N

not N − 1) since then the Euclidean norm of each microarray gene expression is N .

At this point, the natural dataset consisted of 601 microarrays with 20719 genes. Since

we were interested in cellular identity, only transcription factors, transcription factor co-

factors, or chromatin remodeling genes were kept (for short hand, referred to as transcription

factors (TF) throughout the text) [181], leaving 1715 TFs.

As explained in the main text, since continuous (sigmoidal input) attractor neural net-

works and discrete attractor neural networks are known to have the same stable fixed

points [182], we used the binarized gene expression. We binarized the gene expression by

setting a positive z-score to +1 and a negative z-score to −1. While this was mainly done for

mathematical convenience, this is potentially biologically justified. Histone modifications

(HM) either leave chromatin in an open, accessible configuration or a closed, inaccessible

state [127]. We found global HM data for embryonic stem cells (ESC), mouse embryonic

fibroblasts (MEF), and neural progenitor cells (NPC) [125, 126]. Consequently, we used the

global HM data for these three cell fates and compared them to microarray TF expression

levels. This allowed us to create a conditional probability distribution of each HM for a

given TF expression level (Figure 2B). We found a sharp cutoff (that coincides with a z-score

of 0) which distinguished TFs with the activating modification of histone 3 tri-methylation

at lysine 4 (K4) from TFs with the inactivating modification of histone 3 tri-methylation

at lysine 27 (K27), poised/bivalent TFs (both K4 and K27), and no HM (most likely DNA

methylation). This shows that our mathematical assumption is justified by the HM data.

After the binarization of TF expression, all TFs that were not differentially expressed

across cell fates (i.e. TFs that are always on / always off in every cell fate) were dropped,

leaving 1337 TFs. The binarized TF expression for the 63 cell fates was found by first

binarizing all 601 microarrays and then taking the majority vote for each cell state (with

ties broken by averaging the continuous data). The final result was the binary expression

state for 63 cell fates.

Microarrays for partially reprogrammed cells were on the Affymetrix GeneChip Mouse
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Genome 430 2.0 Array. The same procedure was used to convert raw microarray data

to z-score expression. However, since different microarrays do not have the same genome

coverage, the analysis comparing partially reprogrammed cells and natural cell fates used

the N = 1329 TFs common to both platforms.

Several self-consistency checks were performed on the data. First, the correlation matrix

Aµν (explained in main text and below) was calculated for the original continuous data and

for the binarized data (Figure S1). Both correlation matrices are consistent with each other

showing binarization does not change the global correlations. Note that in the correlation

matrix, cell fates have been grouped by tissue type, leading to a block diagonal form.

Second, the expression state of all cell fates was constructed from multiple microarray

experiments. These different experiments were compared with each other and were within

2 standard deviations (std equal to 1/
√
N ≈ 0.027) for all cell fates. This demonstrates

that microarrays from multiple laboratories can be directly compared.

A.2 Landscape Model

Here we give an overview of our epigenetic landscape model. The model is summarized

in Tables and , and section A.5 provides a supplementary overview of attractor neural

networks.

A.2.1 State Space

Each TF (labeled by i, j) can be in a state Si = ±1 where +1 indicates the TF is active

while −1 indicates it is inactive. A general cell state is given by S, an N = 1337 dimensional

vector. There are p = 63 cell fates (labeled by µ, ν). In cell type µ, the state of TF i is given

by ξµi . The complete cell type data ξ is a p by N matrix determined using our microarray

data described above and these ξ are the only biological input into the landscape.
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A.2.2 Full Landscape

The complete landscape H can be written as the following terms:

H = Hbasin +Hbias +Hculture +Hswitch (A.1)

Our landscape assigns an “energy” to every global expression state. We emphasize

that this energy does not correspond to physical energy consumption of ATP; instead it is

an abstract energy that corresponds to stability and developmental potential of cell fates.

Each of the four terms has a simple interpretation (see Figure 2.1 ). The first term, Hbasin,

ensures that observed cell fates are valleys in our landscape (Figure 2.1A). The second term,

Hbias, describes biasing of specific TFs by experimentalists (not shown in Figure 2.1). The

third term, Hculture, increases the radius and depth of cell fates that are favored by the

environment or culturing conditions (Figure 2.1B). Finally, in the presence of an external

signal that gives rise to differentiation (ex. growth factors associated with differentiation),

the fourth term, Hswitch, opens a low energy path between the initial and final cell fates

(Figure 2.1C).

A.2.3 Landscape Details: Hbasin

The gene expression profiles of naturally occurring cell fates must be minima of our land-

scape. This is ensured by the landscape term

Hbasin = −1

2

N∑
i=1

N∑
j 6=i

SiJijSj (A.2)

In order to guarantee that cell fates are basins of attraction, we need to choose the “effective

interaction” matrix, Jij , which encodes how the jth TF influences the ith TF. Since we have

highly correlated cell fates, we use the projection-method [42] (see section A.5.5 for extended

discussion on this choice), which defines the interaction matrix as:

Jij =
1

N

p∑
µ=1

p∑
ν=1

ξµi (A−1)µνξνj (A.3)

where ξµi are the natural cell fates and A−1 is the inverse of the correlation matrix be-

tween cell fates. Since our construction is based on correlations between gene expression
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profiles, Jij includes the effect of “indirect” interactions between TFs i and j that are

mediated through other TFs (see section A.5 for additional mathematical explanation of

this construction). While the current definition implies Jij is symmetric, this can easily be

generalized to an asymmetric Jij (see later section A.2.8 for details).

A.2.4 Landscape Details: Hbias

The term Hbasin ensures that all cell fates are global minima of the landscape. However,

additional terms in the landscape are needed in order to incorporate key experimental

features.

First, biologists can directly manipulate gene expression. For example, during the Ya-

manaka experiment, the TFs Pou5f1 (Oct4), Sox2, Klf4, and Myc are overexpressed in

fibroblasts. Mathematically, we represent the overexpression of TF i by a local biasing field

Bi that ensures that Si = 1. Therefore the Yamanaka reprogramming protocol enters the

landscape as:

Hbias = −
N∑
i=1

BiSi (A.4)

where for the Yamanaka protocol, BPou5f1 = BSox2 = BKlf4 = BMyc →∞ and for any other

TF i, the field Bi = 0.

A.2.5 Landscape Details: Hculture

Currently, the basins of attraction Hbasin are all set to the same minima value. However,

environmental signals (such as cell culture conditions) can stabilize and destabilize specific

cell fates (see Figure 2.1B). This can be incorporated into our landscape by terms such as:

Hculture = −N
p∑

µ=1

bµaµ (A.5)

= −
N∑
i=1

CiSi (A.6)

where bµ represents the culture biasing, and aµ is the projection onto cell fate µ. This bias

can be equivalently expressed at the level of TFs by defining a culture bias, Ci, for the ith
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TF given by:

Ci =

p∑
µ=1

p∑
ν=1

bµ
(
A−1

)µν
ξµi (A.7)

For example during the Yamanaka protocol, cells are cultured in conditions favorable to

ESC, which is mathematically represented by bESC > 0, while for all other cell fates µ,

bµ = 0.

A.2.6 Landscape Details: Hswitch

During standard development, cells switch fates deterministically in response to external

signals. We mathematically represent this using the term:

Hswitch = −N
2

p∑
µ=1

p∑
ν=1

mµGµνaν (A.8)

= −1

2

N∑
i=1

N∑
j 6=i

SiKijSj (A.9)

where mµ is the overlap on cell fate µ, aν is the projection onto cell fate ν, and the matrix

Gµν is the developmental signal matrix that is a dynamic entity and a function of develop-

mental time and external signals. We can equivalently write this in terms of transcription

factors using the gene-interaction matrix, Kij , defined as:

Kij = − 1

N

p∑
µ=1

p∑
ν=1

p∑
ρ=1

ξµi G
µν
(
A−1

)νρ
ξρj (A.10)

where ξ is the natural cell fate states, Gµν is the developmental signal matrix, and A−1

is the inverse correlation matrix. Since Gµν is asymmetric, Kij is also asymmetric and

explicitly breaks detailed balance (see later section A.2.8 for details).

We now explain the development signal matrix in more details. If Gµν > 0, this opens

up a low energy path between cell fate ν and cell fate µ. For example, during blood

development, the common myeloid progenitor (CMP) can differentiate into either granulo-

monocytic progenitors (GMP) or megakaryocyte-erythroid progenitors (MEP). The compli-

cated external signals that induce switching from a CMP to GMP leads to GGMP,CMP > 0

and all other Gµν = 0, while the signals that induce switching from a CMP to MEP leads to
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GMEP,CMP > 0 and all other Gµν = 0. We emphasize that this term is purely phenomeno-

logical and further research will be needed to directly connect the developmental biology

signals (such as TGFβ, WNT , etc) to the matrix elements Gµν .

A.2.7 Dynamics

We have uniquely defined the landscape H. However, there are multiple ways to implement

dynamics on this landscape. In this paper, we are primarily interested in the behavior of

the stable fixed points and not dynamical trajectories. Therefore, we follow the standard

convention in the attractor neural network literature and update the network by random,

asynchronous updates (Glauber dynamics) [43]. Therefore, at each update, a random TF,

i, is selected and updated according to the probability

P [Si(t+ 1)] =
eβhi(t)Si(t+1)

eβhi(t) + e−βhi(t)
(A.11)

where Si is the expression state of the ith TF, β is an effective noise parameter, hi is the

local field, and t is the time index. The local field hi is the gradient of the landscape

(covariant derivative) defined for the full landscape H as:

hi =

N∑
j 6=i

JijSj +Bi + Ci +

N∑
j 6=i

KijSj (A.12)

where Jij is the basin-inducing interaction matrix, Bi is the experimentally induced bias

on the ith TF, Ci is the culturing-condition specific bias on the ith TF, and Kij is the

developmental interaction matrix.

We have introduced the effective noise parameter β = 1/T (i.e. inverse temperature)

that controls the level of stochasticity resulting from biochemical noise. When β →∞, the

update approaches a deterministic step function, while when β → 0 each state is equally

likely. Based on the currently available static genomic data, this update time cannot be

directly related to biological time. Finally, we emphasize that since in this paper we are

primarily concerned with the structure of the landscape, our results are independent of our

choice of dynamics (see section A.5 for detailed discussion on dynamics).
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A.2.8 Landscape vs Pseudo-Landscape

Currently, the interactions between TFs, Jij , are symmetric. In real biology, this is unlikely

to be true. We can introduce asymmetry into the interactions by randomly deleting inter-

actions (for example Figure 2.2E Diluted). This asymmetry means that influence of TF i

on TF j no longer equals the influence of TF j on TF i. This asymmetry breaks detailed

balance and implies a non-Lyapunov pseudo-potential [39, 43, 123] and has been shown to

be an additional source of noise on the basins of attraction [43].

We also note that the landscape term Hswitch is explicitly non-equilibrium and breaks

detailed balance. Under one set of environmental conditions, Gµν > 0 while Gνµ = 0 driving

switching from ν → µ, while under a different set of environmental conditions, Gνµ > 0

while Gµν = 0 driving switching from µ → ν. Therefore, by including Hswitch we are

actually making our landscape a pseudo-landscape (i.e. non-Lypanouv).

A.3 Simulations

Here we include details of the simulations in this paper. For all simulations, we set β =

1/0.45 ≈ 2.2 and evolved the system for 100, 000 TF updates.

In Figure 2.2E, we demonstrate that we have basins of attraction. The initial condi-

tions were created by taking the ESC expression vector and randomly flipping 15% of the

TFs. After every 5000 updates of asynchronous dynamics, burst errors were introduced by

randomly flipping 2% of TFs. For the asymmetric dilution, the standard interaction matrix

Jij was created. Then 20% of matrix entries were randomly set to 0.

In Figure 2.2F, we demonstrate that the landscape can deterministically switch between

basins. The initial conditions were always the CMP expression vector. For signal 1, we set

GGMP,CMP = 0.5 and all other Gµν = 0. For signal 2, we set GMEP,CMP = 0.5 and all

other Gµν = 0.
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A.4 Spurious Attractors

Here we provide more details on spurious attractors and hybrid cell fates. As explained in

more detail in section A.5, for the traditional Hopfield model, these spurious attractors take

the form of odd-majority vote mixtures [43] (i.e. majority vote at each TF of 3, 5, 7, . . . of

the ξµi ). The projection method also has the additional spurious attractors of any linear

combination of ξµi that spans the discrete state space (see geometric interpretation given in

section A.5) [42]. For convenience, we use the word hybrid as the collective term for either

majority vote mixtures or linear combinations of existing cell fates.

As discussed in the main text, the prediction of spurious attractors in the projection

method inspired us to reexamine data on existing partially reprogrammed cells. Surpris-

ingly, we found that partially reprogrammed cells could be thought of as hybrids of existing

cell fates. However, we are currently only able to obtain qualitative agreement between

partially reprogrammed cells and the predicted nature of the spurious attractors. While

it is known that the projection method retains these odd-majority vote mixtures spurious

attractors, the correlations between states implies these spurious attractors may no longer

be symmetric mixtures. However, the exact nature of these spurious attractors is not known

and will be explored in future work.

A.5 Attractor Neural Networks: Additional Details

This supplementary text gives a brief introduction to Hopfield neural networks [40, 41]

and how they can be adapted to study epigenetic landscapes. We begin by reviewing

the basic principles underlying the original Hopfield neural network. We then show how

to generalize this to continuous spins [182] as well as discrete spins with correlated cell

fates [42] (projection method). For an in-depth introduction to neural networks, please see

the beautiful book by Amit [43].
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A.5.1 Discrete, Standard Hopfield

There are N genes and each gene i is either on or off, with the output denoted by Si = ±1.

Alternatively, we could use the variables S̃ = 1
2(S + 1) = 1, 0 with the corresponding

substitutions in all equations below.

The input to a given gene i is denoted by the local field

hi =

N∑
j 6=i

JijSj +Bi (A.13)

where Jij is the interaction between gene i and gene j and Bi is the external (i.e interaction

independent) bias of gene i. Both Jij and Bi are assumed to be independent of Si.

The landscape H is given by

H = −1

2

N∑
i=1

N∑
j 6=i

SiJijSj −
N∑
i=1

BiSi (A.14)

= −N
2

p∑
µ=1

(mµ)2 −N
p∑

µ=1

bµmµ (A.15)

where in equation A.15 we have introduce the order parameter for the overlap (dot product

or “magnetization”) of a spin configuration with a given cell fate µ asmµ and also introduced

the cell fate bias bµ. The overlap is defined in terms of the cell fate vectors ξµi as:

mµ =
1

N

N∑
i=1

ξµi Si (A.16)

To prove that H is a Lypanov function (i.e. has stable equilibrium states and follows the

standard definition of an “energy”), it is necessary to show that H is a decreasing function

and bounded below. To do so, consider flipping a single Si. The resulting change in H is

∆H = −1

2

 N∑
j 6=i

JijSj +
N∑
j 6=i

SjJji +Bi

∆Si (A.17)

When we have symmetric interactions, Jij = Jji, this simplifies to

∆H = −

 N∑
j 6=i

JijSj +Bi

∆Si = −hi∆Si (A.18)



87

To determine the sign of ∆H we need the relation between hi and ∆Si. For deterministic

(stochastic) dynamics, as long as ∆Si and hi are always (usually) the same sign, we always

(usually) have ∆H < 0. Therefore, any set of dynamics that stochastically matches the

sign of ∆Si and hi will lead to H being a Lypanov function. This implies that any choice of

dynamics leads to the same stable fixed points, but may give rise to different trajectories,

limit cycles, and sizes of basins of attraction for fixed points, see Amit [43] section 2.2

and 3.5 for a detailed analysis. Therefore, in this paper we focus on predictions that are

independent of the exact dynamics. This is equivalent to thinking about the stationary

properties of the model.

We will follow the standard convention for neural networks and physics and implement

Glauber dynamics which is an asynchronous, stochastic update rule. In this update scheme,

at each time step, one gene is selected at random and probabilistically updated according

to its local field

P [Si(t+ 1)] =
eβhi(t)Si(t+1)

eβhi(t) + e−βhi(t)
(A.19)

with hi defined above (or equivalently hi = − ∂H
∂Si

) and t time measured in discrete

updates. Also, β = 1/T is the inverse temperature and characterizes the slope of the

sigmoid function. When β → ∞, the sigmoid approaches a deterministic step function,

while when β → 0 each state is equally likely.

Now we need to specify the gene interaction Jij and establish the global minima of the

system. There are p cell fates and the state of gene i in cell fate µ is given by ξµi . The gene

interaction is a correlation based interaction and in the standard Hopfield neural network

it is defined as

Jij =
1

N

p∑
µ=1

ξµi ξ
µ
j (A.20)

In the standard Hopfield network, the cell fates have two assumptions. First, each cell

fate is assumed to on average be unbiased (i.e. equal number of positive and negative spins)
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1

N

N∑
i=1

ξµi ≈ 0 (A.21)

and second every pair of cell fates is approximately orthogonal

1

N

N∑
i=1

ξµi ξ
ν
i ≈ O

(
1√
N

)
(A.22)

These two assumptions can be relaxed in extensions of the standard Hopfield neural

network, see later sections for one example (the projection method) that can incorporate

correlated cell fates.

Now we can prove that each cell fate is a global minima of the landscape. For no external

fields, the landscape can be written as:

H = −1

2

N∑
i=1

N∑
j 6=i

SiJijSj = −N
2

p∑
µ=1

(
1

N

N∑
i=1

ξµi Si

)2

+
1

2N

N∑
i=1

p∑
µ=1

Siξ
µ
i ξ

µ
i Si (A.23)

This can be rewritten in terms of the overlap as:

H = −N
2

m2 +
1

2
p (A.24)

Then as long as N is large compared to p, whenever we are in a given cell fate the energy

is H = −N/2 and this is the lowest bound since m2 ≤ 1. We have shown that for p� N ,

H is a decreasing, bounded function and hence is a Lypanov function. When p and N are

both large, a full replica calculation shows that H remains a Lypanov function [183].

While we have established that the landscape is a Lypanov function, we also need to

examine the dynamical stability of the cell fates and the existence of spurious attractors. In

the absence of stochastic update noise (β → ∞), we can examine the signal-to-noise ratio

of the cell fates. If a state is dynamically stable, one needs Sihi > 0. When the state is in

a given cell fate (without loss of generality assume cell fate 1), we have that

ξ1
1h1 =

1

N

N∑
j 6=i

p∑
µ

ξ1
1ξ
µ
1 ξ

µ
j ξ

1
j (A.25)
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which can be broken into a signal term (first term) and noise term (second term) as

follows:

ξ1
1h1 =

N − 1

N
+

1

N

N∑
j 6=i

N∑
µ 6=1

ξ1
1ξ
µ
1 ξ

µ
j ξ

1
j (A.26)

For large N , the signal term approaches 1. We can evaluate the noise term by recognizing

that it is an unbiased sum of (N − 1)(p− 1) ≈ Np random steps, and therefore has mean 0

and standard deviation
√
pN , giving us

ξ1
1h1 = 1 +O

(√
p

N

)
(A.27)

Therefore as long as N is much larger than p, every cell fate is a fixed point. This rough

signal-to-noise argument can be made more rigorous by a spin-glass replica calculation [183]

which finds that cell fates are stable (in the case β →∞) as long as the ratio of p/N is less

than 0.138.

Here is an intuitive argument of why the landscape must be rugged, which implies the

scaling of stable states with N . From looking at small systems, a naive guess would be that

the number of stable states should scale with the size of the state space 2N . This scaling

could be achieved if each minima occurred when a single TF state is turned on while all

the other TFs are off. However, this implies that each minima is only marginally stable;

any spin flip will move the state out of the minima. In order to have a basin of attraction,

more TFs are needed to determine the minima. A simple error correction or redundancy

could be implemented by using r redundant TFs, but this would require exponentially more

states rN . Instead, stable states could be determined by overlapping sets of TFs, as in the

Hopfield neural network. This form of error-correction leads to frustration and Gaussian

noise between the stable states, hence the scaling of stable states with N and not 2N .

An unavoidable consequence of the non-linearity (ruggedness) of the Hopfield network is

that in addition to the desired attractors (the input cell fates), there are additional spurious,

metastable, attractors. There are a variety of spurious attractors, but the most common
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are symmetric mixtures of odd states [41], for example without loss of generality we can

make a spurious state with the first three cell types, Sspur = major (ξ1 + ξ2 + ξ3), where

major stands for majority vote (equivalently the sign function) at each spin. The most

common spurious attractor are symmetric mixtures of 3 states (as in the example above).

A signal-to-noise analysis can also be done to establish that these spurious attractors are

stable attractors, but with a smaller basin of attraction than the input cell fates (see Amit

4.3 for details [43]).

A.5.2 Continuous, Standard Hopfield

The previous section describes the basic ideas of Hopfield neural networks. Here, we show

how discrete Hopfield neural networks can be considered a limiting case of continuous dif-

ferential equations of gene expression. We start by defining continuous spins, Σi, that can

take on real number between −1 and 1. For continuous dynamics, we must modify the

dynamics of the corresponding local field. In particular, if the local field decays in time

with a time constant τi we have

dhi
dt

=

N∑
j 6=i

JijΣj +Bi − τ−1
i hi (A.28)

where the Jij are the same as in the discrete case and the spin Σi is related to the local

field by some monotonic function Σi = gi [hi].

Now the landscape is given by

H = −1

2

N∑
i=1

N∑
j 6=i

ΣiJijΣj −
N∑
i=1

BiΣi +
N∑
i=1

τ−1
i

∫ Σi

−1
g−1
i [Σ] dΣ (A.29)

where the first two terms are the same as in the discrete case while the third is the new

term for continuous only. Taking derivatives with respect to time gives us

dH

dt
= −

N∑
i=1

dΣi

dt

 N∑
j 6=i

JijΣj +Bi − τ−1
i hi

 = −
N∑
i=1

dΣi

dt

dhi
dt

(A.30)

Then since hi = g−1
i [Σi], we can relate the derivative of hi to the derivative Σi. Then

using the fact that gi is monotonically increasing we can show that the change in H is
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always negative:

dH

dt
= −

N∑
i

g−1
i [Σi]

(
dΣi

dt

)2

≤ 0 (A.31)

The decrease in H along with the fact that H is bounded below, shows that we have a

Lypanuv function. It is easy to see that every discrete stable point is also a stable point in

the continuous model; however, the continuous Hopfield neural networks can have additional

stable points.

A.5.3 Continuous Gene Expression

A popular approach to model gene interactions is based on the genetic toggle switch [35]

and represents gene interactions by a Hill function. For now, we will use the general variable

σ̃ ∈ [σmin, σmax].

In the most general case, we have that

σ̃i = sign(hi)
ai|hi|ni

knii + |hi|ni
+ bi (A.32)

where the input hi is in the range [−∞,∞] and the output σi is in the range [−ai +

bi, ai + bi].

If we rescale every gene by its dynamic range and center the Hill function at zero, we

get that σ̃ = Σ ∈ [−1, 1] and

Σi = sign(hi)
|hi|ni

knii + |hi|ni
(A.33)

Using the function above for Σi = gi [hi] allows one to relate continuous Hopfield neural

networks to gene expression using Hill coefficients.

A.5.4 Discrete as Limit of Continuous

How can we relate the continuous model of gene expression to the previous discrete model?

There are two limits. First, if we take the discrete time limit with the update time much
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greater than the input memory, we get

hi(t+ 1) =

N∑
j 6=i

JijSj(t) +Bi (A.34)

Second, in the genetic toggle switch language, when the cooperativity is large n � 1,

then Si → ±1. This gives us a deterministic, discrete model of gene expression. If we

introduce stochasticity through Glauber dynamics, we completely recover the discrete Ising

model of gene expression.

A.5.5 Discrete, Projection Method

The standard Hopfield attractor neural network assumes that the “memories” (cell fates)

have nearly no correlations amongst themselves. However, cell fates are highly correlated

(see Figure ). Therefore, instead of the standard Hopfield attractor neural networks, we

will implement the projection method neural networks [42].

The correlation between cell fate µ and ν is given by

Aµν =
1

N

N∑
i=1

ξµi ξ
ν
i (A.35)

Now the inferred correlation-based, TF interaction matrix is

Jij =
1

N

p∑
µ=1

p∑
ν=1

ξµi (A−1)µνξνj (A.36)

Then the landscape can be rewritten as

H = −1

2

N∑
i=1

N∑
j 6=i

SiJijSj = − 1

2N

N∑
i=1

N∑
j 6=i

p∑
µ=1

p∑
ν=1

Siξ
µ
i (A−1)µνξνj Sj (A.37)

= −N
2

p∑
µ=1

mµaµ (A.38)

where in equation A.38 we have introduced the projection order parameter aµ which is the

orthogonal projection of a spin vector onto the subspace spanned by the stable cell fates

aµ =

p∑
ν=1

(A−1)µνmν =

p∑
ν=1

N∑
i=1

(A−1)µνξνi Si (A.39)
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A simple geometric picture illustrates that H makes each cell fate a global minimum of

the landscape. An arbitrary vector can be rewritten in terms of its projection in the cell

fate subspace and its orthogonal component δSi,

Si =

p∑
µ=1

aµξµi + δSi (A.40)

Then, the distance of an arbitrary vector S to the cell fate subspace is given by ∆,

∆ =

(
N∑
i=1

(δSi)
2

)1/2

(A.41)

which can be rewritten as

∆2

N
= 1−

p∑
µ=1

aµmµ (A.42)

This allows us to rewrite the stabilizing term of the landscape as

H = −N
2

+
1

2
∆2 (A.43)

This provides a very clear interpretation of the landscape as the global distance of an

arbitrary vector S to the natural cell fate subspace [42].

Again, let’s examine the signal-to-noise of cell fates in the absence of stochastic update

noise. If a state is dynamically stable, one needs Sihi > 0. When the state is a given cell

fate (without loss of generality assume cell fate 1), we have that

ξ1
1h1 =

1

N

N∑
j 6=i

p∑
µ=1

ξ1
1ξ
µ
1

(
A−1

)µν
ξνj ξ

1
j (A.44)

=

p∑
µ=1

ξ1
1ξ
µ
1

(
A−1

)µν
Aν1 = 1 (A.45)

Therefore, the stability of cell fate 1 has no noise interference from the other cell fates,

and we have that cell fates are stable up to p/N = 1.
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B. Binarized Cell Type Correlation Matrix
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Figure A.1: Cell fate correlation matrices. (A) Correlation matrix between cell fates

for continuous data. (B) Correlation matrix for binarized data.
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Figure A.2: Projection of a random vector on a given cell fate. Ten thousand

binarized random vectors were created in MATLAB and projected onto the cellular sub-

space. The histogram shows the distribution of the projections. The red line is a Gaussian

fit to the histogram. The mean is practically zero while the standard deviation is 0.053.
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Figure A.3: Predictivity vs Expression for NSC. Same type of plot as Figure 2.3.

Labeled TFs are part of reprogramming protocol to NPC [10]. This illustrates that Foxg1

is predictive for NSC, even though it is not for NPC.
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A.6 Additional Tables

A.6.1 Classifying Top ESC Reprogramming Candidates

Tables A.1 and A.2 have top 50 embryonic stem cell (ESC) reprogramming candidates (as

ranked by z-score times predictivity, ηµi ). Classification of each TF is either justified by

paper citation or GO Process term. Reprogramming TFs are in a pre-existing reprogram-

ming protocol, pluripotency TFs help maintain the ESC state but are non-essential for

reprogramming, differentiation TFs are expressed in ESC but help induce cell fate change

in vivo, and unknown TFs have no known function. Abbreviations: biological process (BP),

bone morphogenesis or skeletal system morphogenesis (bone), skeletal muscle cell differenti-

ation or regulation of skeletal muscle cell differentiation (muscle), erythrocyte differentiation

(red blood), regulation of transcription or transcription, DNA-templated or regulation of

transcription, DNA-templated(RT), ectoderm development (ect dev), negative regulation

of transcription (NRT), lung development (lung), neural tube development (neural), em-

bryo implantation (embryo), lateral mesoderm development (mesoderm), genetic imprinting

(GI), chromatin modification (CM), telomere lengthening (telomere), brown fat cell differ-

entiation (brown), and cell differentiation (cell diff).
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Table A.1: Top ESC Candidates. Part 1.

TF Z Score η (10−3) Rank Z∗η Classification Term

Pou5f1 (Oct4 ) 2.77 2.45 1 Reprogramming [5]

Gm13242 1.59 3.98 2 Unknown BP

Nr0b1 2.44 2.59 3 Pluripotency [131]

Nanog 2.30 2.65 4 Reprogramming [5]

Zfp42 2.04 2.74 5 Pluripotency [12]

Hsf2bp 1.42 3.49 6 Unknown BP

Esrrb 1.74 2.49 7 Reprogramming [5]

Zscan4f 1.01 3.86 8 Reprogramming [184]

Klf4 1.04 3.25 9 Reprogramming [5]

Zfp459 0.83 3.98 10 Unknown BP

Zscan4c 0.82 3.86 11 Pluripotency telomere

Zic3 1.17 2.65 12 Pluripotency [185]

Zfp936 1.15 2.66 13 Unknown BP

Zfp229 0.76 3.84 14 Unknown BP

Zfp600 0.71 3.98 15 Unknown BP

Zfp640 1.10 2.55 16 Differentiation bone

Gm10324 1.09 2.55 17 Unknown BP

Zscan10 1.04 2.65 18 Pluripotency [186]

Utf1 2.03 1.30 19 Reprogramming [5]

2610305D13Rik 1.02 2.45 20 Unknown BP

Tfcp2l1 1.26 1.90 21 Pluripotency [187]

Klf8 0.58 4.12 22 Differentiation [188]

Epas1 0.70 3.18 23 Differentiation red blood

Tbx3 1.09 2.03 24 Reprogramming [5]

Tcf15 0.89 2.37 25 Differentiation [189]
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Table A.2: Top ESC Candidates. Part 2.

TF Z Score η (10−3) Rank Z∗η Classification Term

Tcfl5 0.82 2.56 26 Unknown RT

Sall4 1.72 1.17 27 Reprogramming [5]

Zfp553 0.87 2.22 28 Unknown RT

Sox2 1.96 0.97 29 Reprogramming [5]

Grhl3 0.61 2.75 30 Differentiation ect dev

Zbtb10 0.75 2.22 31 Unknown NRT

Mycn 1.90 0.85 32 Differentiation lung

Sap30 0.93 1.72 33 Differentiation muscle

Zbtb8a 0.83 1.88 34 Unknown RT

Klf5 1.23 1.25 35 Differentiation muscle

Sall1 1.30 1.18 36 Differentiation neural

AA987161 0.60 2.36 37 Unknown BP

Klf9 0.70 1.96 38 Differentiation embryo

Myc 0.73 1.86 39 Reprogramming [5]

Rarg 0.87 1.54 40 Differentiation bone

Tead2 1.03 1.15 41 Differentiation mesoderm

Dnmt3b 1.33 0.88 42 Pluripotency GI

Nr5a2 0.67 1.75 43 Reprogramming [5]

Nr1d2 0.74 1.53 44 Differentiation muscle

Cbx7 1.14 0.99 45 Differentiation CM

Bnip3 1.40 0.77 46 Differentiation brown

Rbpms 1.63 0.64 47 Unknown RT

Zfp7 0.91 1.15 48 Unknown RT

Lin28a 0.78 1.31 49 Reprogramming [5]

Zfp423 0.55 1.79 50 Differentiation cell diff
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Table A.3: Examining Yamanaka Factors in Detail

TF (A) Exp. (B) Diff. Exp. (C) Specificity (D) Predictivity (E) Exp*Pred

Oct4 2 1 1.6% 70 1

Sox2 22 11 0.0% 201 29

Klf4 122 124 22.2% 28 9

Myc 213 1183 66.7% 106 39

A.6.2 Examining Yamanaka Factors in Detail

In Table A.3 we reexamine the Yamanaka transcription factors (TFs) in light of our model.

When the Yamanaka results were first published, Klf4 and Myc were counterintuitive fac-

tors [133]. Myc was quickly shown to enhance the efficiency of reprogramming but was

dispensable [134]. Klf4 remained a surprise, but this table demonstrates the power of pre-

dictivity by establishing the importance of Klf4. The columns (A),(B), and (C) are data

about TFs available to Yamanaka, while (D) and (E) are data from our model. Unless

otherwise stated, the numbers represent rank order (out of 1337) relative to the other TFs.

To understand the importance of rank order, the original Yamanaka experiment used 24

TFs while most later studies test around 10 TFs at once. (A) Exp. is TF expression rank

in embryonic stem cells (ESC). (B) Diff. Exp. is the differential expression rank between

ESC and mouse embryonic fibroblasts (MEF), the starting cell fates in the Yamanaka pro-

tocol. (C) Specificity is the percentage of cell fates (out of our 63) which have expression

at the same or higher level as the ESC. (D) Predictivity is the novel measure of TF impor-

tance generated by our model. (E) Exp*Pred is the rank of the product of expression and

predictivity of highly expressed TFs and is an attempt to find a single quantity signifying

reprogramming potential. The data available to Yamanaka illustrates that Pou5f1 (Oct4 )

and Sox2 were natural choices. Myc is an oncogene that enhances proliferation but was

found to be non-essential for reprogramming [134], so we will ignore it. The power of pre-

dictivity is illustrated by examining Klf4 which is not highly expressed (A), differentially

expressed (B), or specific (C). However, it is very predictive of ESC (D) and is a top choice
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when examining Exp*Pred (E). Note that Klf4 illustrates that predictivity is not exactly

the same as specificity. While Klf4 is expressed in many cell fates, since predictivity takes

into account correlations between cell fate expression patterns, predictivity can filter out

the uncorrelated expression pattern and highlight the importance of Klf4 for ESC.
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B Cellular reprogramming dynamics follow a simple one-

dimensional reaction coordinate

B.1 Data Analysis

Here we present details of the data analysis. Microarrays were taken from public datasets

and come from a variety of different microarray platforms. In order to compare the different

platforms, the following analysis was done. The raw microarray data was converted to an

expression level as follows. Microarray probe-to-gene map was created with Bioconductor

3.0. All raw microarray files were initially processed by robust mean averaging (RMA) and

genes with multiple microarray probes were averaged. Since we were interested in cellular

identity, only transcription factors, transcription factor co-factors, or chromatin remodeling

genes were kept (for short hand, referred to as transcription factors (TF) throughout the

text) [190].

While the above analysis was done for both experimental data and simulations, from this

point on the analysis differed between the two cases. For the experimental data analysis,

we only used TFs that were common to all of the different microarray platforms, leaving

N = 994 TFs. In order to make robust comparisons across platforms the RMA output was

converted to a rank order. Next, we wanted to convert this rank order to the z-score of a

log-normal distribution. We converted the rank to a percentile (for N genes, by dividing by

N+1), and then this percentile into a normal z-score. For later mathematical convenience,

we used a biased estimator (i.e. we normalized by N and not N-1) since then the Euclidean

norm of each microarray gene expression was N. Therefore, for the data analysis each sample

is described by a Gaussian distribution with a Euclidean norm of N = 994.

For the simulations, we followed similar steps to produce continuous TF expression

levels for the cell type basis vector. However, in order to reduce the computational cost,

we binarized the gene expression so that each TF is either on (+1) or off (−1). We then
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dropped all TFs that were always on or always off in every cell type, leaving N = 1436 TFs

for the simulations.

B.2 Cellular Identity Landscape

Here we summarize our model for the cellular identity landscape [155]. The N transcription

factors (TF) are labeled by Latin indices i and the p cell types are labeled by Greek indices µ.

When analyzing experiments, we keep the N = 994 TFs common to all of the experimental

datasets. Each sample is a Gaussian distribution with mean equal to 0 and Euclidean norm

equal to N . This implies a standard deviation of N
N−1 ≈ 1. When performing simulations,

we use the complete set of N = 1436 TFs and each TF is either on (+1) or off (−1). A

general network state is represented by a vector Si of length N . A cell type µ is represented

by the vector ξµi . The correlation (dot-product, overlap, or magnetization) between an

arbitrary state and the cell type µ is given by

mµ =
1

N

N∑
i=1

ξµi Si. (B.1)

The correlation matrix between cell types is given by

Aµν =
1

N

N∑
i=1

ξµi ξ
ν
i . (B.2)

The projection onto each cell type is

aµ =

p∑
ν=1

(A−1)µνmν . (B.3)

We require all ξµi to be attractors in the landscape. This is ensured by constructing a

correlation-based interaction network given by

Jij =
1

N

p∑
µ=1

p∑
ν=1

ξµi (A−1)µνξνj (B.4)

with Aµν the correlation matrix between cell types. This interaction network produces

stable basins of attraction and is written in terms of the cellular identity landscape as

Hbasin = −1

2

N∑
ij=1

SiJijSj = −N
2

p∑
µ=1

mµaµ, (B.5)
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which is a Lyapunov function. There is also a culture term

Hculture = −
p∑

µ=1

bµaµ, (B.6)

which stabilizes specific cell types. Normally only one cell type µ is stabilized, by choosing

bµ > 0, and all the other coefficients bµ
′

are zero.

The complete landscape is defined by an abstract energy H, which is composed of the

two terms just discussed:

H = Hbasin +Hculture

= −N
2

p∑
µ=1

mµaµ −
p∑

µ=1

bµaµ (B.7)

In addition, the model allows for certain transcription factors i to be locked, typically by

choosing them to be “on”, i.e. Si = +1.

B.3 Dynamics and Simulations

To numerically study the dynamics of the model, we assume that the TFs can probabilisti-

cally switch states. To save computational effort, we also assume that the expression values

are binarized, i.e. the only possible expression values are +1 and −1. Each TF is biased

towards a state by its interactions with the network through its local field hi = − ∂H
∂Si

. The

evolution is probabilistic and controlled by a global noise parameter β (i.e. inverse tem-

perature β = 1/T ). At each simulation update, u, one randomly chosen TF i is updated.

The probability of the value Si at update u+ 1 is related to the local field hi(u) at update

u by

P [Si, u+ 1] =
eβhi(u)Si

eβhi(u) + e−βhi(u)
. (B.8)

Additionally, as indicated above, in some of the simulations a subset of the transcription

factors is locked at a certain value. Concretely, in many of the simulations we discuss, the

OSKM TFs are fixed to have the value +1 (“on”).

We performed Monte Carlo (MC) simulations of a system containing N = 1436 TFs

using the update rule given by Eq. (B.8), with noise parameter β = 1.62 (i.e. T ≈ 0.617).
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When a culture term was introduced, it was to bias the system towards the ESC cell type,

with bµ = 0.03 for µ = ESC and bµ
′

= 0 for all other cell types.

Most of the results reported in this paper correspond to simulations where the total

number of steps was t = 105. For the case of simulations of MEF to ESC reprogramming,

the OSKM transcription factors were locked “on” for the whole simulation, and the culture

term was present from step t = 5000 until the end. In this case, 3000 trajectories were

simulated, out of which 224 successfully reprogrammed, i.e. the reprogramming rate was

7.43%. For the simulations of B-cell to ESC reprogramming, the protocol was similar, and

in this case 205 trajectories reprogrammed successfully out of a total of 3000, corresponding

to a reprogramming rate of 6.83%.

In order to obtain additional details about the probability distributions of times associ-

ated with the reprogramming, which we show in Figure 3.3A and Figure B.3, we performed

an additional set of simulations of MEF to ESC reprogramming, with the only change being

that the total number of steps was 30 times larger, i.e. t = 3 × 106 instead of t = 105. In

this set of much longer simulations, 2937 trajectories out of 3000 successfully reprogrammed

from MEF to ESC, which corresponds to a reprogramming rate of 97.90%.
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Figure B.1: Principal components and explained variance. This plot provides

extended details of the principal component analysis (PCA) in Figure 3.1D. The cumulative

fraction of explained variance vs principal component shows that in terms of PCA, the

reprogramming dataset is high dimensional.
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culture term Hculture.
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Figure B.5: Alternative reaction coordinate and barrier. A. This figure shows the

same data presented in Fig 3.1E but instead of using projections (a), we have plotted dot

products (m). B. This figure shows the same data presented in Fig 3.1F but instead of

using projections (a), we have plotted dot products (m).
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Figure B.6: Fig 3.2A simulations. Figure 3.2A simulation inset enlarged and with more

trajectories.
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Figure B.7: Fig 3.2B simulations. A. Figure 3.2B simulation inset enlarged and with

more trajectories. B. Figure 3.2B simulations including the small correction due to the

culture term Hculture.
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Figure B.8: Fig 3.2C simulations. Figure 3.2C simulation inset enlarged and with more

trajectories.
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Figure B.9: Fig 3.2D simulations. A. Figure 3.2D simulation inset enlarged and with

more trajectories. B. Figure 3.2D simulations including the small correction due to the

culture term Hculture.
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nate. Nanog is shown as an example where dots represent actual binned data, while the

line is a 20 bin moving time average. This is just an example of the moving averages shown

in Fig 3.3B.
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Figure B.11: Additional Timing Details. A. Cumulative distributions of timing show

that the early (aend = 0 to aend = 0.3), B. middle (aend = 0.3 to aend = 0.7), and C. late

(aend = 0.7 to aend = 0.8) stages of reprogramming are respectively a Poisson, a narrowly

peaked, and a narrowly peaked distribution.
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C Thermodynamics of statistical inference by cells

C.1 Notation

Here we provide more details of the results in the section 4. First, we outline our notation.

The time dependent probability of state i is pi = pi(t), while the steady state probability of

state i is pssi . The Laplace transformed probability of state i is Pi(s). The rate to go from

state i to state j is kij . The probability to transition from state i to state j is qij . The time

it takes to transition from state i to j is τij . The first passage time is given by f(t) while

the Laplace transformed first passage time is F (s). The lifetime of state i is ρi.

C.2 Detailed Derivation of General Uncertainty

Here we derive formulas for the accuracy of statistical inference when the activated signaling

states continuously produce signals. Following Berg and Purcell [107], we will measure the

accuracy of a receptor by the “uncertainty” of the concentration estimate:

uncertainty :=
〈(δc)2〉
c2 (C.1)

where c is the mean and 〈(δc)2〉 is the variance of the estimated concentration.

Let us consider the case where activated signaling states produce downstream signaling

molecules at a rate α. We will define τS as the mean lifetime of the signaling states and

τNS as the mean non-signaling time. Then, we know that the mean number of signaling

molecules u produced after a time T is given by

u = αT

(
τS

τS + τNS

)
≡ αT φ̄ (C.2)

This follows by noting that φ̄ is just the fraction of time the receptor is in the signaling

states. Notice that by definition, α and T are independent of the concentration c. The

signaling time τS , can in principle depend on concentration, and for L signaling states is
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given by

τS =
L∑
i=1

p0iτi0 (C.3)

where p0i is the probability to transition from state 0 to state i, and τi0 is the mean time

to return from state i to state 0. Since we assume the receiving state is strongly biased (i.e.

k01 is much larger than any other rate k0i from non-signaling, 0, to signaling state i), then

the derivative of the signaling time with respect to concentration is:

dτS
dc

= −
L∑
i=2

k0i

k01
(τ10 + τi0) (C.4)

Since this is by assumption small, we will approximate τS as independent of concentration,

and thus all the concentration dependence comes from τNS . Thus, using the usual error-

propagation formulas one has

δu

u
= −dτNS

dc

1

τS + τNS
δc (C.5)

which gives the uncertainty for the concentration:

〈(δc)2〉
c2 =

(
c
dτNS
dc

)−2

(τNS + τS)2 〈(δu)2〉
u2 (C.6)

The formula above reduces the problem to calculating the uncertainty in the number

of signaling molecules produced in a time T . To calculate this, notice that u comes from

on average N = T/(τS + τNS) independent binding cycles (state 0 to state 1 transition).

Thus, the variance in the fraction of time bound during a time T will just be N
−1

times

the variance in a single binding cycle. In particular, the coefficient of variation in a single

cycle is given by

δφ

φ
=

τNS
τS + τNS

[(
δτS
τS

)
−
(
δτNS
τNS

)]
(C.7)

Noting that the signaling and non-signaling events are independent, we get

〈(δu)2〉
u2 =

1

N

(
τNS

τS + τNS

)2 [〈(δτNS)2〉
τ2
NS

+
〈(δτS)2〉
τ2
S

]
(C.8)

Plugging this expressions into (C.6) gives

〈(δc)2〉
c2 =

1

N

(
c
d log (τNS)

dc

)−2 [〈(δτNS)2〉
τ2
NS

+
〈(δτS)2〉
τ2
S

]
(C.9)
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Therefore the complicated response of a receptor is reduced to its mean and variance of

the time in both the signaling and non-signaling states. In this paper, we will examine the

case where there is a single non-signaling state (0) and there are L signaling states arranged

in a ring. In this case, the above expression simplifies to (leading order k0L/k01):

〈(δc)2〉
c2 =

1

N

[
1 +
〈(δτS)2〉
τ2
S

]
(C.10)

For a two state process as considered by Mora and Wingreen [168], there is only the

receiving state and one signaling state. These are just Poisson processes which each have

an uncertainty of 1 and we recover the Berg and Purcell [107] limit

〈(δc)2〉
c2 =

2

N
(C.11)

C.3 General First Passage Time

We need to calculate the first passage properties of the Markov chain, specifically the mean

and variance of the first passage time. This can be calculated as follows [103, 191]. The

master equation that we want to solve is dp
dt = Kp(t).

First apply the Laplace transform

Pi(s) =

∫ ∞
0

pi(t)e
−stdt (C.12)

which leads to the master equation

(s−K)P (s) = p(t = 0) (C.13)

with K the matrix of transitions for the full system but with the transition rates leaving

the absorbing states set to zero.

The first passage time to return to state 0 is

f(t) =
dp0(t)

dt
(C.14)

F (s) = sP0(s) (C.15)
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For our purposes, we only need the mean and variance of the first passage time. This is

easily obtained by the uncentered moments

M (m) =

∫ ∞
0

tmf(t) = (−1)m
dmF (s)

dsm

∣∣∣∣
s=0

(C.16)

where m = 1 is the mean and m = 2 is the uncentered second moment.

In general we know that τx, the spent in state x, is drawn from a mixture where it

can switch to states j = 1, 2, .... The variance of mixtures is X =
∑

iwiXi, where wi are

arbitrary weights and Xi are random variables drawn from distributions with mean µi and

variance σi. Combining equations we get:

Var(X) =
∑
i

wi
[
(µi − µ)2 + σ2

i

]
(C.17)

with µ =
∑

iwiµi.

We can get the time spent in state x, τx, by using the variance mixture formula combined

with τ ix and Var(τix), respectively the mean and variance first passage time of starting in

state i and ending in state x. This gives us

τx =
∑
i

qxiτ ix (C.18)

qxi =
kxi∑
j kxj

= kxiρx (C.19)

ρx =

∑
j

kxj

−1

(C.20)

Var(τx) =
∑
i

qxiV ar(τix) +
∑
i

qxi

(
τ ix −

∑
k

qxkτkx

)2

(C.21)

where qxi is the probability of transitioning from state x to state i, kxi is the rate to go

from state x to state i, and ρx is the lifetime of state x.

In this paper, we have one non-signaling state and the other L states are signaling.

Therefore, we will let state 0 be the absorbing state, and it can initially transition to state
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1 and state L. The above equations then simplify to

τ0 = q01τ10 + q0LτL0 (C.22)

Var(τ0) = q01V ar(τ10) + q0LV ar(τL0) + 2q01q0L (τ10 − τL0)2 (C.23)

q0L = 1− q01 (C.24)

C.4 First Passage Time: 2 Signaling States

Here we calculate the mean and variance of the first passage time to return to state 0 from

either state 1 or 2. The master equation that we need to solve is dp
dt = Kp(t). The matrix

rates are:

Kij =



k10 for i = 0 and j = 1

k12 for i = 2 and j = 1

k20 for i = 0 and j = 2

k21 for i = 1 and j = 2

−(k10 + k12) for i = 1 and j = 1

−(k20 + k21) for i = 2 and j = 2

0 everywhere else

(C.25)

While the initial conditions are set by the rates k01 and k02, for the purposes of the first

passage time calculation, the rates from 0 to 1 (k01) and from 0 to 2 (k02) are both set to

zero, k01 = k02 = 0.

The Laplace transform for the initial condition of starting in state 1 is:

F (s) = sP0(s) = k10P1 + k20P2 (C.26)

with

P1 =

[
Γ1 −

k12k21

Γ2

]−1

(C.27)

P2 =
k12

Γ2
P1 (C.28)

Γi = s+ ρ−1
i (C.29)
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We can obtain mean and variance from

τ = − dF

ds

∣∣∣∣
s=0

(C.30)

Var(τ) =
d2F

ds2

∣∣∣∣
s=0

− τ2 (C.31)

The mean and variance of the first passage time from starting in either state 1 or state

2 is:

τ10 = ρ1
1 + k12ρ2

1− k12k21ρ1ρ2
=
k12 + k20 + k21

ξ
(C.32)

τ20 = ρ2
1 + k21ρ1

1− k12k21ρ1ρ2
=
k10 + k12 + k21

ξ
(C.33)

Var(τ10) = τ2
10

[
1 + 2ρ2

2

k12 (k10 − k20)

(1 + k12ρ2)2

]
= τ2

10 + 2
k12(k10 − k20)

ξ2
(C.34)

Var(τ20) = τ2
20

[
1 + 2ρ2

1

k21 (k20 − k10)

(1 + k21ρ1)2

]
= τ2

20 − 2
k21(k10 − k20)

ξ2
(C.35)

ξ = k10k20 + k10k21 + k12k20 (C.36)

where the second equality holds as long as ξ 6= 0.

C.5 First Passage Time: L Signaling States

C.5.1 Derivation

Here we calculate the mean and variance of the first passage time in a L + 1 state chain.

The master equation that we need to solve is dp
dt = Kp(t). The matrix is indexed from 0 to

L and the rates are:

Kij =



k10 for i = 0 and j = 1

kL0 for i = 0 and j = L

f for i = j + 1 and 1 < j < L

b for i = j − 1 and 1 < j < L

−(f + k10) for i = 1 and j = 1

−(f + b) for i = j and 1 < j < L

−(kL0 + b) for i = L and j = L

0 everywhere else

(C.37)
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While the initial conditions are set by the rates k01 and k0L, for the purposes of the first

passage time calculation, the rates from 0 to 1 (k01) and from 0 to L (k0L) are both set to

zero, k01 = k0L = 0.

For later convenience we define the following ratio of rates:

θ =
f

b
(C.38)

α =
k10

b
(C.39)

ω =
kL0

f
(C.40)

We can use a transfer matrix to find a general solution (for non-degenerate eigenvalues,

i.e. θ 6= 1) to the state probability as

Pi(s) = C+λ
i−1
+ + C−λ

i−1
− (C.41)

Solving for the the expressions 1 < i < L leads to

λ± =
1

2b

(
s+ f + b±

√
(s+ f + b)2 − 4fb

)
(C.42)

=
1

2

(
σ ±

√
σ2 − 4θ

)
=

1

2
(σ ± ψ) (C.43)

σ =
s

b
+ θ + 1 (C.44)

ψ =
√
σ2 − 4θ (C.45)

With the initial condition of starting in P1, the boundary equations for P1 and PL are:

(σ + α− 1) (C+ + C−) = 1/b+ (C+λ+ + C−λ−) (C.46)

(σ + (ω − 1)θ)
(
C+λ

L−1
+ + C−λ

L−1
−

)
= θ

(
C+λ

L−2
+ + C−λ

L−2
−

)
(C.47)

Solving these equations gives

C− = −C+ΛLM (C.48)

C+ =
1

b [λ− + α− 1− (λ+ + α− 1)ΛLM ]
(C.49)

Λ =
λ+

λ−
(C.50)

M =
1 + (ω − 1)λ−
1 + (ω − 1)λ+

(C.51)
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And then the probabilities are

P1(s) = C+

(
1− ΛLM

)
(C.52)

PL(s) = C+λ
L−1
+ (1− ΛM) (C.53)

The full Laplace transform F is:

F (s) =
α(1− ΛLM) + ωθλL−1

+ (1− ΛM)

λ− + α− 1− (λ+ + α− 1)ΛLM
(C.54)

C.5.2 Results

To get the mean and variance of the first passage time, we need

τ10 = − dF

ds

∣∣∣∣
s=0

(C.55)

Var(τ10) =
d2F

ds2

∣∣∣∣
s=0

− τ2 (C.56)

The mean return time to state 0 when starting in state 1 is:

τ10 =
τ10,num

τ10,den
(C.57)

τ10,num = (ωL− ω + 1)θL+1 − (ωL+ 1)θL + (ω − 1)θ + 1 (C.58)

τ10,den = b [θ − 1]
[
ωθL+1 + ω(α− 1)θL + α(1− ω)θ − α

]
(C.59)
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The variance of the return time to state 0 when starting in state 1 is:

Var(τ10) =
Var(τ10)num
Var(τ10)den

(C.60)

Var(τ10)num = θ2L+3
[
ω2(L− 1) + 1

]
(C.61)

+ θ2L+2
[
ω2
(
L2α− L(3α+ 1) + 2α− 3

)
+ 2ω((L− 2)α+ 1) + 2α− 3

]
− θ2L+1

[
ω2
(
2L2α− 4Lα+ L+ 4α− 4

)
+ ω((4L− 6)α+ 4) + 4α− 3

]
+ θ2L [ω(ωL+ 2)(Lα− α+ 1) + 2α− 1]

+ θL+3(ω − 1)
[
2(ω − 1)α+ 3ωL2α+ L(ω(4− 5α) + 4α) + 2

]
+ θL+2

[
−2ω2

(
3L2α+ L(4− 6α) + α− 2

)]
+ θL+2

[
ω
(
9L2α+ L(12− 23α) + 8α− 6

)
+ 6(2L− 1)α+ 6

]
+ θL+1

[
ω
(
−9L2α+ L(19α− 12)− 6α+ 6

)]
+ θL+1

[
ω2(L− 1)((3L− 4)α+ 4) + 6(−2Lα+ α− 1)

]
+ θL

[
α
(
3L2ω − 5Lω + 4L+ 2ω − 2

)
+ (4L− 2)ω + 2

]
− θ3(ω − 1)2(2α− 1)

− θ2(ω − 1)(ω + 4α− 3)

+ θ(−2ω − 2α+ 3)

− 1

Var(τ10)den = b2 [θ − 1]3
[
ωθL+1 + ω(α− 1)θL + α(1− ω)θ − α

]2
(C.62)

While the results here are for initial condition of being in state 1, one can easily find the

results for the initial condition of state L if one makes the following substitutions θ ⇔ 1/θ,

b⇔ f , and α⇔ ω.

C.6 Steady State Probabilities

In general, we are considering a Markov chain with L+ 1 nodes (labeled 0 to L). We have

the master equation

dP (t)

dt
= KP (t) (C.63)
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with K the matrix of transition rates. The rates are labeled as kij where i is the initial

state and j is the final state. For later convenience, define the lifetime of a state as

ρi =

∑
j 6=i

kij

−1

(C.64)

The steady state distributions are easily obtained by solving Kpss = 0. The solution

can be written in a compact form [192] as

P ssi =
zi
Z

(C.65)

Z =
∑
i

zi (C.66)

and zi is the matrix minor of K at (i, i) i.e. the determinant of K with the ith row and

column removed.

For the two signaling state system we have that

pss0 =
ρ−1

1 ρ−1
2 − k12k21

Z
=
k10k20 + k10k21 + k12k20

Z
(C.67)

pss1 =
ρ−1

0 ρ−1
2 − k02k20

Z
=
k01k20 + k01k21 + k02k21

Z
(C.68)

pss2 =
ρ−1

0 ρ−1
1 − k01k10

Z
=
k01k12 + k02k10 + k02k12

Z
(C.69)

Z =
∑
i 6=j

(
ρ−1
i ρ−1

j − kijkji
)

(C.70)

For the L signaling state with the simplified rates, we will just present the result for

state 0:

pss0 =
pss0,num
pss0,den

(C.71)

pss0,num = b(θ − 1)
(
ωθL+1 + ω(α− 1)θL + α(1− ω)θ − α

)
(C.72)

pss0,den = −αε+ αb+ αLε+ ε+ 1 (C.73)

+ θ (αbω − 2αb− αLε+ ω − ε− 1) (C.74)

+ αbθ2 (1− ω) (C.75)

+ θL (bω + αε− Lω − 1− ε− αbω) (C.76)

+ θ1+L (αbω − 2bω + Lω − ω + 1 + ε) (C.77)

+ bωθL+2 (C.78)
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The rates from 0 to 1 is k01 = 1, from 1 to 0 is k10 (with α = k10/b), from 0 to L is

k0L = ε � 1, and from L to 0 is kL0 (with ω = kL0/f). All other forward rates are f and

backward rates are b and the ratio of rates is θ = f/b.

C.7 Average Sampling Rate: n

The average sampling rate is

n =
N

T
= k01p

ss
0 (C.79)

where N is the number of samples (i.e. number of binding events), T is the total integration

time, k01 is the rate from state 0 to state 1, and pss0 is the steady state probability of being

in state 0.

Since we are assuming that k01 = 1 and kL0 = ε� 1, we have the mean signaling time

becomes τS ≈ τ10. With these rates we have

n ≈ (1 + τS)−1 (C.80)

C.8 Entropy Production: ep

For a general Markov process with states labeled by i, steady state probabilities pssi , and

transition rate kij from state i to state j, the non-equilibrium steady state (NESS) entropy

production [109, 172] is given by

ep =

L∑
i=0

L∑
j 6=i

pssi kij ln
kij
kji

(C.81)

where the summation is over both i and j. Alternatively, the entropy production can be

written as a sum over the flux between each connected node as

ep =
L∑
i=0

L∑
j>i

(pssi kij − pssi kij) ln
kij
kji

(C.82)

where now we have an unrestricted sum over i but a restricted sum over j.

Since we are modeling our receptor as a ring, the entropy production simplifies to

ep = (pss0 k01 − pss1 k10) ln
k01k12 . . . kL0

k0Lk10 . . . kL,L−1
= J ln γ (C.83)
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where the flux J = pss0 k01 − pss1 k10 between each neighboring state is equal and the ln γ is

the free energy difference of a cycle.

For 2 signaling states, the entropy production per sampling rate is given by:

ep
n

=

[
1 +

k10

k12
+
k10k21

k12k20

]−1 γ − 1

γ
ln γ (C.84)

γ =
k01k12k20

k10k21k02
(C.85)

For the L signaling states arranged in a ring, the entropy production per sampling rate

is given by:

ep
n

=

[
1 +

α

ω
θ−L + αθ−1 1− θ1−L

1− θ−1

]−1
γ − 1

γ
ln γ (C.86)

γ =
k01ω

k0Lα
θL (C.87)

where ω = kL0/f , α = k10/b, θ = f/b, f is all the forward rates (except k01 and kL0), and

b is all the backward rates (except k10 and k0L).

C.9 Ansatz for 2 Signaling State Receptor

Here are the details of the ansatz for the minimum uncertainty for the 2 signaling state

system.

The rates are as follows:

• k01 = 1

• k10 = k
2 (1− x)

• k12 = kx

• k21 = kδ

• k20 = k

• k02 = ε



125

where ε � 1 (and in this paper ε = 10−3), 0 < x < 1, δ � 1 (and in this paper δ = 0.04),

and k is varied to fix the mean sampling rate n.

For the ansatz, the mean, coefficient of variation, and entropy production simplifies to

τS ≈ 2

k
(C.88)

〈(δτS)2〉
τ2
S

≈ 1− x

1 + x
(C.89)

ep
n
≈

(
1 +

1− x
2x

)−1 γ − 1

γ
ln γ (C.90)

γ =
2x

εδ(1− x)
(C.91)

C.10 Simulated Annealing

Simulated annealing is a meta-heuristic algorithm for global optimization in which one uses

the Metropolis algorithm to perform a random walk in parameter space while periodically

lowering the temperature. We used a simulated annealing algorithm to search for the

parameters of a model describing a receptor with 2 signaling states that minimizes a cost

function given by

cost =
〈(δc)2〉
c̄2

+ λep(ln ep − ln êp)
2 − (λnn̂− 1) lnn− (λn(1− n̂)− 1) ln(1− n) (C.92)

That is, we minimize the uncertainty of the resulting estimator (〈(δc)2〉/c̄2) subject to soft

constraints on the energy production (ep) and sampling rate (n), which are constrained to

êp and n̂, respectively. Here, λep and λn implement the constraints. We chose λep = 20 and

λn = 20/max{n̂, 1− n̂}.

Let Ω1 denote a set of parameters describing a receptor with 2 signaling states (i.e.

all of the various rate constants). A new set of trial parameters Ω2 was generated in the

following way: for each k ∈ Ω1 set the corresponding k′ ∈ Ω2 to ln k′ = ln k + η where η

is a random variable with from a Normal distribution centered at zero. The width of the

Normal distribution was chosen adaptively so that approximately 25% of the steps were

accepted. Making the random perturbations to the logarithm of the rate constants ensures

that they are always positive. The trial move was accepted according to the Metropolis
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criterion with probability min[1, exp((cost(Ω1) − cost(Ω2))/T )]. The temperature T was

initialized to T = 10 and adjusted by T ← 0.95T every 2000 steps. The best solution

obtained during the chain was stored in ΩB, and the chain was re-initialized from Ω1 = ΩB

every 2000 steps to prevent the chain from getting stuck in a poor local minimum. This

simulated annealing algorithm was run until convergence of 〈(δc)2〉/c̄2, ep and n.

C.11 Scaling with Temperature

In the section 4, we worked in the units of kBT = 1. However, here we examine the general

temperature dependence. Experimentally, it is known that rates of biochemical reactions

doubles for every 10 ◦C [193, 194]. Therefore, a general rate k at a temperature T (measured

in degrees Celsius) is related to initial rate k0 and initial temperature T0 by:

k = k02
T−T0

10 (C.93)

Now we need to determine the general scaling of various entities in this paper, which is

summarized below in terms of a general rate k:

• Mean signaling time, τS ∼ k−1

• Variance in signaling time, 〈(δτS)2〉 ∼ k−2

• Coefficient of variation of signaling time, 〈(δτS)2〉
τ2S

∼ 1

• Sampling rate, n ∼ k

• Uncertainity, 〈(δc)
2〉

c2
∼ k−1

• Entropy production, ep ∼ k

While increasing temperature increases both the mean and variance of the signaling

time, since the estimator (E = 1 + 〈(δτS)2〉
τ2S

) only depends on the coefficient of variation

of signaling time, the estimator is independent of temperature. The sampling rate n does

increase with increasing temperature, and therefore increasing temperature decreases the

uncertainty. However, this decrease in uncertainty costs energy. While the free energy per
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cycle (ln γ) remains constant, the probability flux (J) is proportional to a rate, and since

the entropy production is given by ep = J ln γ, we see that that decrease in uncertainty is

directly related to the increase in entropy production.
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Figure C.1: Simplified rate structure considered for L signaling states first passage

time calculation. The rates k01, k10, kL0, k0L are unconstrained, while the remaining

forward rates are equal, f = k12 = k23 = . . . = kL−1,L and the remaining backward rates

are equal, b = k21 = k32 = . . . = kL,L−1.
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Figure C.2: Rate structure for ansatz of minimum uncertainty for the L = 2

signaling state system. The rates are as follows: k01 = 1, k10 = k
2 (1 − x), k12 = kx,

k21 = kδ, k20 = k, and k02 = ε. The mean signaling time is set by k. The other rates are

ε, δ � 1 and 0 < x < 1.
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Lee, and Jae-woo Kim. Krüppel-like factor klf8 plays a critical role in adipocyte

differentiation. PLoS ONE, 7(12):e52474 EP –, 12 2012.

[189] Owen R. Davies, Chia-Yi Lin, Aliaksandra Radzisheuskaya, Xinzhi Zhou, Jessica

Taube, Guillaume Blin, Anna Waterhouse, Andrew J. H. Smith, and Sally Lowell.

Tcf15 primes pluripotent cells for differentiation. Cell Reports, 3(2):472–484, 2 2013.

[190] Hong-Mei Zhang, Teng Liu, Chun-Jie Liu, Shuangyang Song, Xiantong Zhang, Wei

Liu, Haibo Jia, Yu Xue, and An-Yuan Guo. Animaltfdb 2.0: a resource for expres-



151

sion, prediction and functional study of animal transcription factors. Nucleic Acids

Research, 2014.

[191] Sidney Redner. A Guide to First-Passage Processes. Cambridge, 2001.

[192] Richard A. Blythe. Nonequilibrium phase transitions and dynamical scaling regimes.

Master’s thesis, Edinburgh, 2001.

[193] Faiza Hussain, Chinmaya Gupta, Andrew J. Hirning, William Ott, Kathleen S.

Matthews, Krešimir Josić, and Matthew R. Bennett. Engineered temperature com-

pensation in a synthetic genetic clock. Proceedings of the National Academy of Sci-

ences, 111(3):972–977, 2014.

[194] Irwin H Segel. Enzyme kinetics, volume 360. Wiley, New York, 1975.



152

5 Curriculum Vitae



153



154



155



156



157



158



159


