2016

Examining the potential of anti-A(beta) antibodies as Alzheimer's therapeutics

Pham, Sean

http://hdl.handle.net/2144/14595

Boston University
EXAMINING THE POTENTIAL OF ANTI-A(BETA) ANTIBODIES
AS ALZHEIMER’S THERAPEUTICS

by

SEAN PHAM

B.S., University of California, Irvine, 2014

Submitted in partial fulfillment of the requirements for the degree of
Master of Science
2016
Approved by

First Reader
Karen Symes, Ph.D.
Associate Professor of Biochemistry
Assistant Dean of Student Affairs

Second Reader
Gwynneth Offner, Ph.D.
Associate Professor of Medicine
Assistant Dean of Admissions
DEDICATION

I would like to dedicate this work to my family, who have been so supportive of me thus far and continue to do so in all that I strive for.
ACKNOWLEDGMENTS

I would like to thank Dr. Charles Glabe for giving me the opportunity to work as an integral member of his research lab and for teaching me along the way. I would also like to acknowledge the help from my colleagues in the Glabe lab – Dr. Jorge Mauricio Reyes-Ruiz, Ricardo Alay, Margaret Ho, and Roula Arch. Finally, I would like to thank my advisor and mentor at Boston University, Dr. Karen Symes, who worked and guided me through every step of the graduate program. Without the aid of these individuals, I would not have been able to get where I am today.
EXAMINING THE POTENTIAL OF ANTI-A(BETA) ANTIBODIES
AS ALZHEIMER’S THERAPEUTICS

SEAN PHAM

ABSTRACT

Alzheimer’s disease results from an accumulation of aggregated amyloid beta peptide into oligomeric forms. Soluble oligomers are neurotoxic species, which are believed to be the pathophysiological cause of Alzheimer’s neurodegeneration. Amyloid β species (Aβ) are formed via normal physiological cleavage of amyloid precursor protein by β and γ secretases. Cleaved isoforms aggregate further to form oligomeric configurations of Aβ peptide. To target toxic soluble Aβ oligomers, monoclonal antibodies have been synthesized. Experimental analysis demonstrates the ability of these antibodies to recognize synthetic and endogenous oligomers. In transgenic mice designed to overexpress oligomeric isoforms of Aβ, the antibodies were able to reduce the cerebral amyloid load with proceeding improvements in cognitive abilities. However, large-scale clinical trials corroborated results indicating diminished amyloid load, but failed to produce observable improvements in clinical outcome in patients with Alzheimer’s disease. Simply put, the removal of amyloidogenic species was insufficient in alleviating the associated neurodegeneration and elicited no improvement in cognitive ability, suggesting that Aβ might not be the responsible pathogen in Alzheimer’s. The successes of antibodies in in vitro and transgenic mice studies suggest the potential of antibodies in the treatment of Alzheimer’s, but the inability of these drugs to produce
marked improvements in clinical trials questions the role of amyloid in the pathophysiology of the disease.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>COPYRIGHT PAGE</td>
<td>ii</td>
</tr>
<tr>
<td>APPROVAL PAGE</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PUBLISHED STUDIES</td>
<td>3</td>
</tr>
<tr>
<td>POTENTIAL OF ANTI-Aβ ANTIBODIES AS ALZHEIMER’S THERAPEUTICS</td>
<td>4</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>22</td>
</tr>
<tr>
<td>LIST OF JOURNAL ABBREVIATIONS</td>
<td>27</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>28</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure 1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Figure 2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Figure 3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Figure 4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Figure 5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>Figure 6</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Figure 7</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Figure 8</td>
<td>19</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

Aβ.. Amyloid β
AD.. Alzheimer’s Disease
APP.. Amyloid Precursor Protein
INTRODUCTION

In 1906, Alois Alzheimer presented his observations of a 51 year-old female patient, Auguste D., who exhibited signs of rapid memory loss and cognitive deterioration consequent to her death four and half years later (Small & Cappai, 2006). Upon post-mortem examination, the brain was shown to have atrophied with unique neurofibrillary tangles and deposits (Small & Cappai, 2006). The extracellular deposits of what we now know to be amyloid beta protein (Aβ) are characteristic of the neurodegenerative disease named for Alzheimer, and are processed via endogenously present proteolytic processing cascades (Shoji et al. 1992). The protein is produced from a precursor known as amyloid precursor protein (APP), which is cleaved proteolytically via endosomal lysosomes to produce C-terminal and N-terminal fragments (Shoji et al. 1992).

Initial cleavage of APP is carried out by either α or β-secretase, and their enzymatic products can undergo secondary cleavage by γ-secretase to produce p3 peptide and Aβ, respectively (Ling et al. 2003). The two major forms of Aβ, Aβ40 and Aβ42, are normal endogenous products of proteolysis via secretases – they can be detected in the cerebrospinal fluid (CSF), along with various C-terminal fragments (CTF), of both individuals with Alzheimer’s and those without (Ling et al. 2003, Selkoe, 1994). In short, the pathophysiology of Alzheimer’s originates from normal proteolytic cleavage to produce potentially pathogenic Aβ species.

Though controversial, the amyloid hypothesis of Alzheimer’s has guided modern research and therapeutic development. Current results suggest that the neurotoxicity and cognitive impairment associated with Alzheimer’s originates from the accumulation of
Aβ into soluble oligomers. In vitro accumulation of Aβ species into oligomeric forms implicates the Aβ42 isoforms as the predominant component of toxic neurodegenerative oligomers (El-Agnaf et al. 2000). The 42 amino acid long Aβ peptide aggregates more rapidly when compared to Aβ40, and its administration to cells in culture exhibits lower cell viability (El-Agnaf et al. 2000). The results of in vitro comparisons of Aβ isoforms point to Aβ42 as the pathogenic species of Alzheimer’s.

Research has pointed to soluble oligomeric intermediates of Aβ as the toxic species responsible for the cognitive symptoms of Alzheimer’s, which can be recognized using monoclonal antibodies designed (Kayed et al. 2003). Antibodies to Aβ are designed by vaccinating rabbits with a molecular mimic of the soluble oligomers (Kayed et al. 2003). The rabbit immune response produces anti-amyloid antibodies, which are then collected and isolated from polyclonal serum (Kayed et al. 2003). Studies with the antibodies in neuroblastoma cell lines demonstrate that the antibodies can mediate the neurotoxicity associated with soluble Aβ oligomers, results that have been corroborated by other research (Kayed et al. 2003). The ability of oligomer-specific antibodies to selectively recognize and neutralize the neurotoxicity of pathological species implicated in Alzheimer’s makes them a promising avenue for new Alzheimer’s therapeutics. This thesis will review the literature available to highlight the current uses of antibodies in research and clinical studies to demonstrate their potential as new treatment options for Alzheimer’s disease.
PUBLISHED STUDIES

Source material was obtained using PubMed and Google Scholar. Articles regarding the currently available treatment options for Alzheimer’s were found using the keywords “treatments” and “Alzheimer’s disease.” Individual therapeutics were then cross referenced with “Alzheimer’s disease” to gather more information on each drug. The research uses of monoclonal antibodies were found using key terms “antibodies”, “amyloid”, “Aβ”, and “Alzheimer’s disease.” Transgenic mice trials were located by adding the keyword “transgenic” to the previously mentioned terms. The key term “immunotherapy” was added to the aforementioned terms along with “clinical” to identify the application of antibodies in clinical trials.
POTENTIAL OF ANTI-Aβ ANTIBODIES AS ALZHEIMER’S THERAPEUTICS

Treatment of Alzheimer’s disease

Current therapeutics to treat Alzheimer’s attempt to delay the associated cognitive degeneration – treatment is directed toward slowing the progression of the disease rather than reversing or curing. The two lines of treatment for remedying memory loss and dementia are acetylcholinesterase inhibitors and memantine.

The cognitive decline associated with Alzheimer’s is a result of the neuronal degeneration. Experimental analysis in mice with the disease demonstrated reduced labeling with tritiated acetylcholine, representing a loss of cholinergic binding sites in the pathological state (Whitehouse et al. 1985). Radioactively labeled nicotine discriminates the preferential loss of nicotinic receptors over muscarinic (Whitehouse et al. 1985). Label studies in transgenic mice also elucidated the region of mass neuronal degeneration as the nucleus basalis; thus as the nucleus degrades in the pathological state, the number of cholinergic binding sites decreases (Whitehouse et al. 1985). Subsequent immunoreactivity analyses of diseased brain tissue from the frontal cortex confirm the loss of nicotinic acetylcholine receptors due to Alzheimer’s (Schroder et al. 1991). Comparison of immunoprecipitate with Nissl stain demonstrates that the pathology causes a decreased expression of nicotinic cholinergic binding sites rather than simply a loss of chemoreactivity (Schroder et al. 1991).

In addition to the loss of nicotinic binding sites, Alzheimer’s reduces neurotransmission by decreasing the activity of choline acetyltransferase. The absence of this enzyme diminishes the synthesis and availability of neurotransmitter acetylcholine
for cognitive activity (Kellar et al. 1985). Post-mortem examinations of individuals suffering from Alzheimer’s and dementia demonstrate a deficiency of choline acetyltransferase, primarily in the temporal lobe (Wilcock et al. 1982). The enzyme deficit is correlated to the increase of neuritic plaques as well as the increase in severity of dementia (Wilcock et al. 1982). As activity of choline acetyltransferase declines, memory and cognition steadily degenerate consequently (Wilcock et al. 1982).

Because of the cholinergic basis of the Alzheimer’s pathology, it follows that treatment of the associated cognitive symptoms would target increasing neurotransmission via acetylcholine. By administering acetylcholinesterase inhibitors in treating Alzheimer’s, the aim is to raise levels of acetylcholine to sustain cognitive ability and alleviate symptoms. However, drugs of this type inhibit peripheral cholinesterase, causing intolerable gastrointestinal and hepatotoxic side effects (Rogers et al. 1998). To improve efficacy along with safety and tolerability, the selectivity of cholinesterase inhibitors must be addressed. Preclinical testing with donepezil demonstrated improved selectively for acetylcholinesterase over butyrylcholinesterase, and in clinical studies, exhibited positive cognition effects and good tolerability when compared with placebo (Rogers et al. 1998). Another acetylcholinesterase inhibitor, rivastigmine, produces synaptic effects by competitively binding with the enzyme directly. Rivastigmine is hydrolyzed similarly to acetylcholine, but its carbamoyl moiety remains bound to enzyme, preventing it from further degradation (Polinsky, 1998). Unlike donepezil, rivastigmine inhibits acetylcholinesterase and butyrylcholinesterase; the latter has been implicated in the severity of dementia (Farlow et al. 2000). Clinical studies demonstrate
rivastigmine’s ability to delay cognitive and mental decline, displaying side effects related to peripheral inhibition, similar to those of other cholinesterase inhibitors (Farlow et al. 2000).

![Graph showing the effects of rivastigmine over time](image)

Figure 1: Compared to placebo, rivastigmine delays cognitive decline and improves mental health over an extended period. Additionally, administration of rivastigmine in the placebo group after 26 weeks produced marked improvements (Farlow et al. 2000).

In addition to the effects on synaptic transmission, acetylcholinesterase inhibitors seem to have neuroprotective effects on the Alzheimer’s brain. Studies with human neuroblastoma cell cultures demonstrate the protective properties of three different inhibitors commercially available for treatment of Alzheimer’s: donepezil, rivastigmine,
and galantamine. Pretreatment of cell lineages with these drugs offers protection against neuronal death induced by okadaic acid (Arias et al. 2005). By mediating Aβ toxicity, the drugs can also confer a degree of anti-apoptotic effects to further mediate the extent of cell death (Arias et al. 2005). The neuroprotective benefits of cholinesterase inhibitors are impeded with the administration of antagonists of nicotinic acetylcholine receptors, suggesting that neuroprotection is imparted by the receptors (Arias et al. 2005).

Blockades of the receptors at high concentrations of drug create U-shaped curves of efficacy, in which maximal levels of protection are achieved at intermediate concentrations (Arias et al. 2005).

Figure 2: Comparison of the optimal concentrations of acetylcholinesterase inhibitors, galantamine, donepezil, and rivastigmine, for neutralizing neurotoxicity induced by okadaic acid administration (Arias et al. 2005).

A downstream effect of Aβ oligomers is the over-excitation of NMDA receptors, which are crucial components for long-term potentiation and long-term memory (De
Felice et al. 2007). This over stimulation effect produces reactive oxidative species that interfere in synaptic transmission, long-term potentiation, and plasticity exhibitory in Alzheimer’s (De Felice et al. 2007). The production of neurodegenerative reactive oxidative species via amyloid derived diffusible ligands (ADDLs) can be blocked by memantine (De Felice et al. 2007). Specifically, memantine blocks Ca\(^{2+}\) influx caused by ADDL binding to the NMDA receptor, and by doing so, memantine inhibits mitochondrial production of superoxides and peroxides (De Felice et al. 2007). Because of its ability to mediate elevated levels of reactive oxidative species, memantine is an effective therapeutic in delaying the onset of cognitive decay.

In phase III clinical trials, subjects on memantine exhibited significant improvements in cognition when compared to placebo controls (Winblad et al. 2007). Safety and tolerability were similar amongst the two groups, with the incidence of minor adverse events marginally higher for the memantine group (Winblad et al. 2007). Patients with moderate to severe progressions of Alzheimer’s were able to recover mechanical capabilities, such as independent bathing and dressing, as well as improve behavioral aspects (Reisberg et al. 2003). Treatment with memantine relieves distress on both patient and caretaker by mediating burdens associated with later stages of Alzheimer’s (Reisberg et al. 2003).

In combination therapy with acetylcholinesterase inhibitors, memantine demonstrates significant improvement in cognitive ability when compared to treatment with cholinesterase inhibitors alone. Administration of memantine to patients with mild to moderate Alzheimer’s who were already on stable treatment with the cholinesterase
inhibitor donepezil elicited observable improvements in behavior and memory without discernible differences in incidence of adverse events (Tariot et al. 2004). Six areas of cognitive abilities as well as functionality in everyday tasks exhibited improvement in the memantine group (Tariot et al. 2004). Individuals in the memantine group remained more steadily above baseline whereas the placebo group observed steady declines in cognition (Tariot et al. 2004). Additionally, the memantine exhibits decreased frequency of mental disturbance and psychiatric symptoms (Tariot et al. 2004).

However, as efficacious as current therapeutics may be, they are directed solely toward delaying the onset of inevitable cognitive degeneration. More research is required in order to discover suitable treatment options to reverse or cure the disease progression.

Monoclonal Antibodies

Monoclonal antibodies provide a hopeful avenue for the future of Alzheimer’s therapeutics. Because of their unique specificity and manipulability, monoclonal antibodies can be used to precisely target pathological species and neutralize their toxicity. They have been used universally in research, and their successes show promise for drug development.
The toxic species associated with Alzheimer’s, Aβ peptide, can be recognized using monoclonal antibodies. By exposing rabbits to synthetic forms of Aβ peptide, antibodies against amyloid can be produced endogenously (Solomon et al. 1996). When anti-amyloid antibody is introduced to fibrillar conformations of Aβ, the aggregated forms of

Figure 3: NAB61 specifically stains oligomeric forms of amyloid as seen in immunohistochemical studies (Lee et al. 2006).
revert back to an amorphous state (Solomon et al. 1996). The ability to prevent the in vitro aggregation of amyloid, implicated in the pathogenesis of Alzheimer’s, present potential for the development of such antibodies as therapeutics (Solomon et al. 1996).

Monoclonal antibody, NAB61, was designed to recognize oligomeric forms of the $\alpha\beta$ peptide (Lee et al. 2006). Immunoreactivity and specificity of the antibody was assessed using ELISA and synthetic $\alpha\beta$ aggregates, revealing its selectivity for amyloid oligomers over non-oligomer forms as well as its recognition of a conformation dependent N-terminus epitope (Lee et al. 2006). Immunohistochemical studies also confirm that NAB61 recognizes amyloid plaques in diseased brain samples (Lee et al. 2006). In studies of different brain regions, NAB61 demonstrates regional selectivity for plaques in the mid-frontal cortex (Lee et al. 2006). The pathology of Alzheimer’s originates in association cortices with increasing densities and aggregations of amyloid as the disease progresses; the localization of NAB61 onto oligomeric forms of $\alpha\beta$ in the

![Image](image.png)

Figure 4: NAB61 displays regional selectivity for amyloid in the mid-frontal cortex (Lee et al. 2006).
mid-frontal cortex suggests that the antibody recognizes mature forms of amyloid peptide (Lee et al. 2006). When administered to transgenic mice, NAB61 elicited improvements in spatial reference memory as tested using underwater mazes – the performance of antibody-treated transgenic mice was comparable to that of non-transgenic mice and significantly better than IgG-treated transgenic control mice (Lee et al. 2006). However, assessment of levels of amyloid plaques and amyloid precursor protein in transgenic mice immunized with NAB61 demonstrated no significant difference in steady state levels between the antibody-treated transgenic mice and control groups (Lee et al. 2006). The ability of NAB61 to improve cognition and memory does not affect amyloid pathogenesis, but relies on neutralizing the toxicity of existing amyloid oligomers (Lee et al. 2006).

The application of antibodies in transgenic mice has elucidated that amyloid can be cleared using monoclonal antibodies in vivo via a Fc-independent mechanism (Bacskai et al. 2002). To determine whether removing Aβ species by administration of antibodies can remediate amyloid associated neuritic dystrophy, transgenic mice where passively immunized with anti-amyloid antibodies (Brendza et al. 2005). Brains were imaged in vivo using yellow fluorescent protein to monitor the number and area of dystrophic neurites over 72 hour and weeklong periods (Brendza et al. 2005). Without treatment, there was no improvement in neuritic dystrophy; however, in the presence of antibody 10D5, recovery of neuritic dystrophy following the clearance of amyloid deposits occurred as rapidly as 3 days (Brendza et al. 2005). Comparison of 18 plaque deposits
from 7 different transgenic mice demonstrates consistent reduction in number and area dystrophic neurites as a result of the 10D5 treatment (Brendza et al. 2005).

Figure 5: Treatment with anti-amyloid 10D5 reduces neuritic dystrophy within 3 days (Brendza et al. 2005).

Soluble forms of amyloid have been implicated as the neurotoxic species responsible for the pathogenesis of Alzheimer’s (Kayed et al. 2003). The effect of anti-Aβ-protofibril antibodies in mediating the toxicity of soluble protofibrils was assessed in transgenic mice (Lord et al. 2009). Transgenic mice were passively immunized with one of two antibodies, mAb1C3 and mAb158, which recognize linear and conformational epitopes of Aβ, respectively (Lord et al. 2009). Because of its conformation dependent nature, mAb158 displays better selectivity to Aβ protofibrils (Lord et al. 2009). However, administration of either antibody elicited a neuro-protective effect, but the conformation dependent antibody, mAb158, does so at a lower concentration as a result of its selective binding to toxic soluble protofibrils (Lord et al. 2009). Additionally, both antibodies prevent fibrillation of amyloid peptide in vitro (Lord et al. 2009). The
antibodies both exhibited preventative properties, diminishing the aggregation of protofibrils and plaque formation in transgenic mice when compared to controls (Lord et al. 2009).

In clinical trials, an increased level of serum anti-Aβ antibodies seems to be causal to decreased disease progression (Geylis et al. 2005). To determine if commercial production of human antibodies would be viable for vaccines, cell lines were established to determine if human anti-Aβ antibodies could be synthesized in vitro (Geylis et al. 2005). The cell lines were produced from lymphocytes obtained from healthy blood samples, which were immortalized with Epstein-Barr virus and fused with mouse plasmacytoma cells to retain antibody specificity (Geylis et al. 2005). Anti-Aβ
antibodies were detected in the supernatant after centrifugation, with specificity to synthetic Aβ as determined by ELISA, specifically an N-terminus epitope of amyloid peptide (Geylis et al. 2005). Immunohistochemical analysis of synthesized antibody determined that the antibody does bind to endogenous amyloid in the Alzheimer’s brain (Geylis et al. 2005). The success of human antibody synthesis via hybridoma manufacture promotes the development of anti-Aβ vaccination without the immunogenicity associated with murine or chimeric antibodies.

Active and passive immunization has proved successful in eliminating toxic amyloid species in transgenic mice as well as in clinical trials; however, it has also elicited adverse events in human trials (Dodel et al. 2004). In order to mediate the cognitive decay of Alzheimer’s while keeping side effects minimal, human immunoglobins containing anti-Aβ antibodies were administered to patients in clinical trial (Dodel et al. 2004). Five individuals suffering from Alzheimer’s disease were recruited for the study, and levels of Aβ cerebrospinal fluid and serum were measured over a 6-month period (Dodel et al. 2004). Additional neuropsychological testing was conducted to track cognitive and behavioral progress (Dodel et al. 2004). Over the test period, mean values of Aβ in CSF decreased 30.1% on average and increased from an average of 240.4 pg/mL to 558.2 pg/mL in serum (Dodel et al. 2004). Slight improvements in mental state were observed, but no cognitive decline was evident (Dodel et al. 2004). There were no adverse effects associated with treatment (Dodel et al. 2004). This early study of immunization with anti-Aβ antibody containing immunoglobins suggests that the treatment is well tolerated and could be promising in the existing line of therapy (Dodel
Bapineuzumab is a humanized monoclonal antibody targeted to the N-terminus of Aβ peptide, specifically species deposited in plaques (Panza et al., 2010). A phase 2 clinical trial of the proposed drug investigated its effect on cortical Aβ load as measured by 11-labeled Pittsburgh compound B (\(^{11}\text{C}-\text{PiB}\)) radiotracer (Rinne et al., 2010). Over 78 weeks, 19 patients with mild to moderate Alzheimer’s were treated with bapineuzumab and compared against 7 patients given placebo (Rinne et al., 2010). Assessments of \(^{11}\text{C}-\text{PiB}\) levels indicated a mean decrease amongst the bapineuzumab group and mean increase within the placebo group, correlating to a reduction in cortical Aβ load due to administration of bapineuzumab (Rinne et al., 2010). Adverse effects were reported to be mild to moderate in severity and short-lived, with the exception of incidence of vasogenic edema in 2 subjects, leading to their subsequent discontinuation (Rinne et al., 2010).
Figure 7: PET imaging of 11C-PiB demonstrates reduced cortical amyloid load following administration of bapineuzumab (A, B) compared to placebo (C, D) (Rinne et al. 2010).

A phase 3 clinical trial of bapineuzumab assessed the ability of the antibody to change the clinical outcome of patients with mild to moderate Alzheimer’s, as well as discriminate between carriers and non-carriers of ApoE ε4 allele in regards to the incidence of vasogenic edema (Salloway et al., 2014). The research team established groups based on presence of the ApoE ε4 allele, drug administered, bapineuzumab or placebo, and dosage (Salloway et al., 2014). Cognitive ability and amyloid load were measured to determine disease progression and outcomes (Salloway et al., 2014). Increased incidences of vasogenic edema at increasing concentrations led to the discontinuation of the group receiving 2.0 mg/mL (Salloway et al., 2014). Regardless of group classification, no significant differences in cognitive change from baseline were
observed (Salloway et al., 2014). The PET assessment of 11C-PiB marker for cortical Aβ peptide determined that amongst carriers, there was a mean increase in standardized uptake value (SUVR) in the placebo group and no significant change over 71 weeks for the bapineuzumab group (Salloway et al., 2014). Similarly, amongst non-carriers, there was no significant change in SUVR in the bapineuzumab, but no significant increase was observed in the placebo group (Salloway et al., 2014). Measurements of phosphorylated tau in cerebrospinal fluid indicated significant reductions in the bapineuzumab group and significant increases in the placebo group for carriers (Salloway et al., 2014). Amongst non-carriers, no group differences were observed in levels of phosphorylated tau (Salloway et al., 2014). The incidence of adverse events were similar between carriers and non-carriers in both drug and placebo groups (Salloway et al., 2014). Effusion or edema was the most prominent adverse event that arose as a result of bapineuzumab administration, consistent with increasing dosage and number of ApoE ε4 alleles (Salloway et al., 2014). Incidence of neoplasm amongst 20 carriers and 23 non-carriers as a result of drug administration led to death (Salloway et al., 2014).
Figure 8: These graphs summarize the results for the phase 3 clinical trial, separating the results of carriers and non-carriers (Salloway et al., 2014).
Clinical trials were conducted to assess the safety and pharmacological properties of anti-Aβ antibody, solanezumab, in patients with mild to moderate Alzheimer’s disease. The phase 2 trial involved 52 subjects taking either drug or placebo over a 12-week period (Farlow et al., 2012). Magnetic resonance imaging (MRI) and samples of CSF were employed to track patient progress (Farlow et al., 2012). Eight patients receiving solanezumab experienced 10 treatment emergent adverse events, two of which, subdural hematoma and lumbar puncture headaches, were attributed to the lumbar puncture required for CSF sampling (Farlow et al., 2012). Imaging via MRI revealed no instances of vasogenic edema (Farlow et al., 2012). Five patients experienced anti-solanezumab immunogenicity (Farlow et al., 2012). Total concentrations of Aβ species increased in plasma for each of the dosing regiments, but increases were largest for the groups given 100 mg weekly, 400 mg weekly, and 400 mg every 4 weeks (Farlow et al., 2012). No significant differences in cognitive ability from baseline were observed between antibody and placebo groups (Farlow et al., 2012). Solanezumab was deemed generally well tolerated with no incidence of adverse events consistent with other antibody trials, T-cell mediated inflammation and vasogenic edema (Farlow et al., 2012). However, pharmacokinetic and pharmacodynamics assessment determined that the antibodies did not seem to neutralize amyloid toxicity, as no cognitive improvement was observed in clinical trial (Farlow et al., 2012).

Further clinical testing was conducted for solanezumab by means of phase 3 trials. Patients over the age of 55 with a diagnosis of mild to moderate Alzheimer’s disease were recruited to participate in the study for 18 months (Doody et al., 2014).
Efficacy was determined using cognitive measurements from baseline levels established prior to drug administration (Doody et al., 2014). Levels of Aβ in plasma and CSF were also monitored alongside MRI and PET imaging to observe amyloidogenic burden (Doody et al., 2014). At 52 and 64 weeks, there were significant improvements in cognition observed for the solanezumab group compared to placebo; however at the endpoint, at 80 weeks, there were no significant group differences (Doody et al., 2014). Total concentrations of Aβ peptide in plasma increased from baseline over the 80 weeks (Doody et al., 2014). No adverse events that affected more than 2% of the solanezumab group were evident, but there appeared to be a greater incidence of cardiac disease amongst the antibody group than placebo (Doody et al., 2014). Imaging studies revealed that only 0.9% of solanezumab and 0.4% of placebo group exhibited amyloid related edema (Doody et al., 2014). Though the incidence of adverse effects and amyloid abnormalities, edema and hemorrhage, were low for solanezumab, the phase 3 clinical trials did not demonstrate significant improvement in clinical outcome for the patients who participated (Doody et al., 2014).
SUMMARY

The experimental applications of monoclonal antibodies as well as their successes in targeting amyloid in vitro point to their potential in treating and possibly curing Alzheimer’s. Results collectively corroborate that monoclonal antibodies to Aβ peptide recognize and clear amyloid species, correlating to a decline in cognitive decay in experiments with transgenic mice.

Experimentation with anti-Aβ antibodies elucidated multiple possible mechanisms for effectively neutralizing the toxicity of amyloid species. Transgenic study by Bacskai et al. determined that administration of antibodies reduced the Aβ load via Fc independent phagocytosis (Bacskai et al. 2002). The inhibition of fibrillation of Aβ peptide was observed by Lord et al., presenting an alternative mechanism for relieving Aβ burden on the brain (Lord et al. 2009). These studies demonstrate the ability of antibodies to reduce, and thereby neutralize, amyloid load and toxicity. This property of antibodies makes them viable options for development into Alzheimer’s therapeutics.

Clinical trials involving the active immunization with aggregated Aβ species to promote endogenous production of anti-Aβ antibodies proved inconclusive, as subjects exhibited adverse effects associated with T-cell activation (Geylis & Steinitz, 2005). In subjects that succeeded in producing anti-Aβ antibodies, there was dramatic improvement in cognition as serum levels of antibody increased; however, not all subjects were able to elicit an antibody response to the vaccination of amyloid (Geylis & Steinitz, 2005). To combat side effects resulting from activation of T-lymphocytes,
passive immunization strategies, involving vaccination with the antibodies themselves, were employed with early success (Geylis & Steinitz, 2005). The various strategies available to administer the efficacious anti-amyloid antibodies highlight their developmental potential as therapeutics.

When compared to current treatment options for Alzheimer’s disease, monoclonal antibodies specifically target the pathological moieties rather than on other neurological aspects that are implicated by the disease’s progression. Cholinesterase inhibitors attempt to raise endogenous levels of acetylcholine to mediate the reduced neurotransmission resultant of Alzheimer’s, and memantine reduces over-activity of NMDA receptors to mitigate the load of reactive oxidative species. Anti-amyloid antibodies, however, neutralize the toxicity of $\alpha\beta$ species, the precursor to the proceeding cognitive decline. In essence, the current treatment options address the symptoms, whereas the goal of antibodies is to target the source of Alzheimer’s.

The results of clinical trials of solanezumab and bapinezumab demonstrate not only progress of antibody therapeutics, but also the obstacles that hinder such treatments from becoming clinically viable. Both are humanized monoclonal antibodies to $\alpha\beta$, developed with the hope to reverse the progression of Alzheimer’s. Bapinezumab demonstrated ability to reduce the amyloid load in the brain, but these decreases in amyloid levels did not exhibit a subsequent improvement cognitive ability (Rinne et al., 2010, Salloway et al., 2014). Additionally, bapinezumab was associated with concerning adverse effects, namely amyloid-related effusion and vasogenic edema specific to carriers of the ApoE allele (Rinne et al., 2010). Solanezumab was also
effective at reducing amyloid load and unlike bapineuzumab, seemingly without amyloid-related adverse events (Farlow et al., 2012). However, clinical trials of solanezumab were unable to produce results that demonstrated improvements in cognition (Doody et al., 2014). The current clinical trials with monoclonal antibodies have been fruitless in demonstrating their clinical efficacy in remedying cognitive symptoms of Alzheimer’s disease. Though the two antibodies, solanezumab and bapineuzumab, have produced promising results in transgenic mice, these results have not been replicated in humans. To develop antibodies into clinically useful therapeutics, it would be necessary to overcome the adverse effects associated with antibody, effusion and vasogenic edema, as well as demonstrate an ability to mediate or reverse cognitive decay.

Monoclonal antibodies demonstrate novel potential as therapeutics for the treatment of Alzheimer’s. However, current strategies and antibodies have not yet demonstrated the same degree of success in humans as they have in transgenic mice. To improve the tolerability and efficacy of monoclonal antibodies, new methods need to be investigated to directly deliver anti-Aβ antibodies to the central nervous system (Vasilevko & Cribbs, 2006). Because the whole antibody molecule is not required for the clearance of amyloid species, smaller fragments of antibody (scFv) can be utilized for easier and more direct delivery (Vasilevko & Cribbs, 2006). Fragments can then be delivered via adenovirus vectors or mesenchymal stem cells to evenly distribute antibody and promote uniform clearance of Aβ to optimistically produce cognitive improvement in Alzheimer’s patients (Vasilevko & Cribbs, 2006). By direct delivery to the CNS, the
hope is that antibodies will promote activation of microglia to clear amyloid species and reduce neuroinflammation and subsequent cognitive loss (Vasilevko & Cribbs, 2006).

Differing results from clinical and transgenic mice studies question the potential of anti-A\(\beta\) antibodies in treating Alzheimer’s disease. Though the successes in recognition and neutralization of toxic oligomeric species in transgenic mice demonstrate promise, the inability to replicate such results in clinical trials questions their usefulness as a therapeutic. Perhaps the issue with current antibody treatments lies with the administration of drug. Research demonstrates that promoting endogenous production of anti-amyloid antibodies to neutralize oligomers elicits positive cognitive improvements. The next goal of developing antibody treatments should aim to complement the human immune system to clear amyloid load.

However, there is a school of thought that the failures of antibodies to elicit positive clinical outcomes in the treatment of Alzheimer’s disease are evidence that the amyloid hypothesis itself may be flawed. Clinical trials demonstrate that antibodies are effective in reducing the amyloid load in patients with no improvement in mental state or cognition, suggesting that amyloid itself might not be the cause of Alzheimer’s-associated neurodegeneration (Galimberti et al. 2013). It is suggested that research focus on understanding the mechanism of Alzheimer’s more thoroughly ahead of developing antibody therapeutics that may be ineffective (Galimberti et al. 2013). There are some that consider the clinical data obtained from anti-A\(\beta\) antibody trials to be sufficient evidence to invalidate the entire amyloid hypothesis, so it may be necessary to ensure the validity of the hypothesis before moving ahead in development of treatments that address
amyloid burden (Mullane & Williams, 2013).

Despite the ability of antibodies to reduce cerebral amyloid load, and even cause improved cognition in transgenic mice, the implications that its inability to produce similar effects in clinical trials prevent antibodies from becoming viable options to develop into Alzheimer’s therapeutics. The clinical outcomes that clinical trials have reported question the validity of the underlying amyloid hypothesis, which needs to be corroborated by more research before antibodies can be pursued further. With transgenic mice, the antibodies show great potential, but they stumbled when moved into the clinical phase of testing. However, further research needs to be conducted to determine if using antibodies to target amyloid load is even relevant to the treatment of the neurodegeneration of Alzheimer’s disease.
<table>
<thead>
<tr>
<th>Journal Abbreviation</th>
<th>Full Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eur Neurol</td>
<td>European Neurology</td>
</tr>
<tr>
<td>J Clin Invest</td>
<td>Journal of Clinical Investigation</td>
</tr>
<tr>
<td>J Neurochem</td>
<td>Journal of Neurochemistry</td>
</tr>
</tbody>
</table>
REFERENCES

CURRICULUM VITAE

SEAN PHAM

1710 S. Baldwin Ave., Arcadia, CA 91007 Phone: (562) 922-1220
Email: seanap@bu.edu Year of Birth: 1994

EDUCATION

Boston University School of Medicine – Boston, MA
Master of Science in Medical Sciences, 2016 (Anticipated)

University of California, Irvine – Irvine, CA
Bachelor of Science in Biological Sciences, June 2014
Campuswide Honors Program

PROFESSIONAL EXPERIENCE

Dofisol Piano Studio
Professional Piano Instructor, May 2012 – August 2014

- Instructed children from ages 5–18 in piano technique, theory and performance.
- Prepared students for the Certificate of Merit Auditions, MTAC National Guild Auditions, and Keynote Independent Theory Service tests.

Little Chopin Piano Studio
Theory Instructor, May 2011 – May 2012

- Instructed children from ages 5–18 in the fundamentals of piano theory

RESEARCH EXPERIENCE

Laboratory of Dr. Charles G. Glabe – Department of Molecular Biology and Biochemistry
Independent Student Researcher, September 2013 – June 2014

- Worked to characterize the unique conformation staining patterns of monoclonal antibodies M22 and M23.
- Assisted in the growing of hybridoma cells and isolation of antibodies.
VOLUNTEER WORK

Arcadia Gardens Retirement Home – Arcadia, CA
Retirement Home Pianist, Recurring

- Provide entertainment for the elderly by performing the piano at occasional concerts.

Phi Delta Epsilon International Pre-Medical Fraternity
Member, March 2012 – June 2014

- Raised money and awareness for the Children’s Miracle Network
- Participated in charity events for various groups, including the Alzheimer’s Association

Hoag Hospital – Irvine and Newport Beach, CA
Intern, January 2012 – February 2014

- Assisted nurse with basic tasks to provide care and comfort to patients

SKILLS

Laboratory: hybridoma cell culture, cell staining and counting, immunohistochemistry, immunofluorescence, light microscopy, confocal microscopy

Computer: Microsoft Office, Adobe Photoshop, ImageJ, Java