
Bradley, Adam D.
Boston University Computer Science Department

http://hdl.handle.net/2144/1508

Boston University
Systematic Verification of Safety Properties of Arbitrary Network Protocol Compositions Using CHAIN *

Adam D. Bradley, Azer Bestavros, and Assaf J. Kfoury
artdodge,best,kfoury@cs.bu.edu
BUCS-TR-2003-012

Abstract

Formal correctness of complex multi-party network protocols can be difficult to verify. While models of specific fixed compositions of agents can be checked against design constraints, protocols which lend themselves to arbitrarily many compositions of agents—such as the chaining of proxies or the peering of routers—are more difficult to verify because they represent potentially infinite state spaces and may exhibit emergent behaviors which may not materialize under particular fixed compositions. We address this challenge by developing an algebraic approach that enables us to reduce arbitrary compositions of network agents into a behaviorally-equivalent (with respect to some correctness property) compact, canonical representation, which is amenable to mechanical verification. Our approach consists of an algebra and a set of property-preserving rewrite rules for the Canonical Homomorphic Abstraction of Infinite Network protocol compositions (CHAIN). Using CHAIN, an expression over our algebra (i.e., a set of configurations of network protocol agents) can be reduced to another behaviorally-equivalent expression (i.e., a smaller set of configurations). Repeated applications of such rewrite rules produces a canonical expression which can be checked mechanically. We demonstrate our approach by characterizing deadlock-prone configurations of HTTP agents, as well as establishing useful properties of an overlay protocol for scheduling MPEG frames, and of a protocol for Web intra-cache consistency.

1 Introduction

Increasingly, the Internet is being used as a ubiquitous infrastructure supporting a multitude of distributed applications and services. Unfortunately, the introduction (deployment and versioning) of Internet services is laden with uncertainties that arise from our inability to formally establish the safety of such services—namely, that such services will not interfere with existing services, or even with older versions of the same service. In light of the critical role that Internet services play in today’s economy and society, it is incumbent on the networking community to develop sound formalisms for (and promote the use of such formalisms in) supporting/enforcing software engineering practices for distributed applications deployed over the Internet. Indeed, in a recent NSF PI meeting of over 250 network researchers, improving the trustworthiness of Internet applications [27] and the development of formalisms to scale our understanding of networked systems [26] were deemed to be (two of) the most pressing challenges facing the networking community for the next few years.

Current efforts to formally establish (or assess) the “trustworthiness” of the Internet have focused on proving desirable properties of an individual protocol or service agent [10], with very few efforts focusing on properties that emerge from the composition of such protocols and services (see [14] for one recent example). Properties that emerge from the composition of network protocols are much harder to reason about—not to mention check mechanically—due to the arbitrary nature of such compositions, which is made even more challenging when we consider issues of scalability and variant protocol implementations. We motivate this with a concrete example drawn from the networking community’s experience with the HTTP protocol.

HTTP Protocol Compositions: Stateful multi-party protocols can be notoriously difficult to get right, and their design and implementation is a process demanding careful thought. The evolution of the HTTP protocol is a case in point. While the original formulations of the HTTP protocol were truly stateless and thus relatively easy to implement, the addition of the multi-stage 100 Continue mechanism to HTTP/1.1 [19] implicitly introduced several “states” to the behavior of clients, servers, and intermediaries. Not surprisingly, an ambiguity was discovered in the handling of these states with respect to intermediaries which could, under some “correct” interpretations, lead to a deadlock state among conforming implementations of HTTP/1.1 (RFC2068) and HTTP/1.0 (RFC1945) [24].

For years, analogous problems have been commonplace in the design of lower-level distributed protocols; mastering all the nuances of handshaking, rendezvous, mutual exclusion, leader election, and flow control in such a way as to guarantee correct, deadlock-free, work-accomplishing behavior requires very careful thought, and hardening the specifications and implementations of these protocols to deal with misbehaving or potentially hostile peers remains

*This research was supported in part by NSF (awards ANI-9986397, ANI-0095988, CCR-9986529, ITR-0113193, and ANI-0202052) and U.S. Department of Education (GAANN Fellowship)

†The Web community’s experiences in relationship to the evolution of HTTP—as well as other findings we present in this paper—underscore this state of affairs.

*These range from safety properties (e.g., absence of deadlocks, buffer overruns) to security properties (e.g., authentication, privacy) to compliance properties (e.g., TCP friendliness).
a difficult problem for engineers at all layers of the stack. These problems arise in such settings even without the complexities of multi-version interoperability placed upon HTTP/1.1 and its revisions.

In this paper we show how to use an algebraic approach coupled with a model-checking engine to systematically\(^3\) discover unsafe behaviors of arbitrary compositions of HTTP agents, including fully characterizing deadlock conditions we previously uncovered [5]. We also show how this same approach generalizes to the verification of other network protocols, including an overlay network protocol for scheduling of MPEG frames and a Web intra-cache consistency protocol.

Paper Contributions and Overview: This paper proposes a systematic approach to the verification of safety properties in arbitrary compositions of network protocols using CHAIN—an algebra and associated rewrite rules for the Canonical Homomorphic Abstraction of Infinite Network protocol compositions. We instantiate our approach for a number of network protocols—showing how it enables us to identify safety violations of *arbitrarily large compositions* of these protocols mechanically, using readily-available model checking technologies.

Using CHAIN, the composition (i.e., chaining) of network protocol agents is represented symbolically using strings (or chains), whereby each chain represents a possible “path” through (or arrangement of) the subset of agents that comprise the composition. Arbitrary compositions of a set of network protocols\(^4\) are likely to result in a large (possibly infinite) number of such paths. Thus, such arbitrary compositions can be algebraically represented using a possibly infinite set of chains (each for a given path through the set of agents). To prove that a particular property holds for such arbitrary compositions requires us to verify that it holds for *every* chain in that set. To make this process practical, we develop a set of *rewriting rules* over the CHAIN algebra. These rewriting rules preserve the property under consideration. By repeatedly applying these rewriting rules, we effectively reduce the set of chains representing arbitrary compositions to a canonical (minimal, much smaller) set of chains—an abstraction of the original set. This abstraction is a homomorphic image of the original set in the sense that if a property holds for the abstraction, then it provably holds for *any* of the possibly infinite compositions (or arrangements) of the network protocols. Where the homomorphic image is of finite size, the complete abstraction can then be verified mechanically using off-the-shelf model checking tools.

The remainder of this paper is organized as follows. As a motivation for (and a case study for the application of) our methodology, we begin in Section 2 by presenting the HTTP request continuation mechanism, a feature of the HTTP/1.1 protocol. We follow that in Section 3 with a presentation of the underpinnings of our CHAIN algebra and reductions. In Section 4 we bring the formalisms in CHAIN to bear on three examples of protocol compositions. First, we use it to characterize possible safety violations (deadlock scenarios) of HTTP/1.1 protocol compositions. We do so by translating previously established “equivalence” relationships into algebraic rewrite rules, thus creating a finite homomorphic image of the infinite set of HTTP compositions, allowing us to exhaustively identify the infinite sets of deadlock-prone and deadlock-safe compositions. Next, we illustrate the application of CHAIN to two additional network protocol composition problems: an MPEG packet routing protocol for overlay networks, and a protocol for ensuring web intra-cache consistency. We conclude the paper in Section 6 with a summary and a brief discussion of future directions of this work.

2 HTTP Request Continuation

In HTTP/1.0, all transactions had a very simple and stateless communication model: (1) A client would send a whole request, *i.e.*, a request line, a set of headers, and an optional request entity; (2) The server, after receiving the whole request, would respond with a complete request, *i.e.*, a status line, a set of headers, and an optional response entity.

One of the desired features for HTTP/1.1 was the ability for clients to avoid transmitting very large entities with their requests when the transaction will fail independent of the content of the document (e.g., an authentication failure or a temporary server condition) [19]. Conceptually, this mirrors conditional operations (such as the If-Modified-Since header) which allow a response entity to be suppressed if its transmission is unnecessary. The original HTTP/1.1 specification, RFC2068, supports this capability by allowing clients to pause before sending request entities; the server may send an error code immediately, informing the client that the request has already failed and the request entity should not be sent, or may send a 100 Continue response, which tells the client to send the request entity (although it does not guarantee that the final response will not still be an error condition).

While the original specification of this mechanism (the 100 Continue response header [12, §8.2 and §10.1.1]) was clearly sound with respect to simple client-server cases, it was ambiguous as to the correct behavior of proxies; compelling arguments were made that the RFC’s language suggested both hop-by-hop and end-to-end interpretations of the feature. It was realized that, under at least one of these interpretations, certain combinations of correctly implemented components in the client-proxy-server chain were prone to deadlock [24]; an attempt at addressing this problem was made in the next public revision (RFC2616) with the introduction of the Expect mechanism [13, §8.2.3] and the clarification of the semantics of 100 Continue [13, §10.1.1] with respect to prox-
ies. Given that many existing implementations conformed to the various interpretations of RFC2068, it was decided that RFC2616 should also include a number of heuristics to facilitate graceful interoperability with those implementations. The resulting quagmire of special-case interoperability rules and the set of possible combinations of revisions in the various roles makes it difficult to say anything with certainty about the correctness and full interoperability of the specification; while it seemed reasonably (and even empirically) to be correct, it was not provably so.

2.1 Model Checking of HTTP Agents

In previous work [5], we presented a set of such models for HTTP clients, proxies, and servers, and discussed experiments with particular configurations. Any single combination of a client, some proxies, and a server (hereafter an arrangement) can be examined using a finite-state modeling tool like SPIN [16] which instantiates and joins the models with message channels and determines whether any possible execution of that arrangement can lead to an undesirable state (e.g., deadlock, livelock, assertion violation).

To prove the correctness of HTTP/1.1 (RFC2616), we need for all client-server and client-proxies-server arrangements of RFC2616 agents to be verified mechanically. The client-server case is straightforward because it consists of a single arrangement. However, in order to say something concrete regarding situations in which there may be arbitrarily many proxies between the client and the server, such an approach is clearly inappropriate, as it would demand verification of an infinite number of arrangements using the model checker (one for each possible length of the proxy chain). Convincing ourselves of the interoperability property is a similar process; for a client-proxy-server architecture like HTTP, a brute-force approach requires us to verify as many as

\[|C| \times |S| \times \left(\sum_{i=0}^{\infty} |P|^i \right) \]

arrangements, where \(C \) is the set of client models, \(P \) is the set of proxy models, and \(S \) is the set of server models. Using this brute-force approach, not only would a “complete” proof require verifying an infinite number of arrangements, but even a “partial” proof (all cases up to \(N \) proxies) requires verifying a number of arrangements exponential in \(N \).

We have previously established that particular arrangements are provably equivalent (in terms of their cause-effect behaviors) to other arrangements [5]. With a sufficient set of such “behavioral equivalence” relationships, one could potentially reduce an arbitrarily large set of arrangements to a much smaller (preferably finite) set of behaviorally representative arrangements, which could then each be verified. To be useful, the discovery and application of such reductions must follow a systematic approach. Much work has already been done in several communities on discovery of such relationships (e.g., [7, 2, 22]); in the remainder of this paper, we presume such results and develop a reduction strategy based upon an algebraic term rewriting technique that is immediately applicable to a wide range of network application structures. 5

It is important to note that a number of techniques have been developed in the literature for checking models with infinite state spaces (e.g., [17, 9, 21, 8, 20]). These techniques tend (in their current state) to be fairly opaque in the sense that they often cannot connect their abstraction of the infinite state space with intuitively useful declarations about the behavior of particular protocol agents. 6 For designing and testing distributed protocols, we believe that the ability to do so is crucially important not only for purposes of comprehension (i.e., how to “visualize” the infinite state space spanned by an arbitrary arrangement), but also for purposes of tracing back causes of unsafe emergent behaviors to specific culprits (e.g., for debugging purposes). 7

3 The CHAIN Approach

In this section we present the details of our algebraic approach, CHAIN (a system for the Canonical Homomorphic Abstraction of Infinite Network protocol compositions). Intuitively, CHAIN represents protocol compositions using strings; the infinite set of such strings is reduced to a characteristic finite set via reduction relations (rewrite rules) which preserve a correctness property. This section discusses the formal structure and properties of these components which give rise to the desirable properties of a CHAIN system (correct abstraction, sufficient expressive power, homomorphism, termination, canonicity of result).

3.1 Arrangements in CHAIN

Let \(G = (\mathcal{N}, \mathcal{E}) \) be a graph where the members of \(\mathcal{N} \) denote agents which will make up our models and \(\mathcal{E} \) are directed edges which indicate valid sequences of those agents (that is, if there is an edge from node \(n_1 \) to \(n_2 \), then \(n_2 \) may immediately follow \(n_1 \) in a composition). The set of chains in \(G \) is then simply the set of finite paths in \(G \), which we denote \(\text{paths}(G) \).

For the HTTP protocol, \(G \) will look like Figure 1. Notice that our definition of chains includes sequences which will make up “partial” network setups, e.g., client connected with a series of proxies (but no server) or even an empty array.

\[\text{While this paper will focus upon linear compositions of agents, CHAIN also generalizes to more interesting structures such as trees and digraphs.} \]

\[\text{Many techniques employ a notion of “equivalence classes” [17, 20], these are generally classes within an abstract internal state representation which do not necessarily translate to intuitively useful insights about the structure of the application or system itself.} \]

\[\text{The above statement should not be taken to imply that model checking is not a useful verification tool. On the contrary, we actually use model checking to verify the canonical representations we derive through our algebraic approach. Rather, our position is that the state space explosion that model checkers must subdue should not be compounded by the explosion resulting from the representation of arbitrary compositions in the state space.} \]
sequence. For this reason, we also define the set of arrangements as $A \subseteq \text{paths}(G)$ such that A are the maximal-length members of $\text{paths}(G)$; for example, all members of A for the HTTP application are sequences beginning with a single client followed by a sequence of zero or more proxies and terminating with a single server.

One can also imagine more involved systems, such as those in which the composition structure more resembles a tree or a digraph than the sequences represented by $\text{paths}(G)$. CHAIN actually deals principally in rewriting sets of strings; since such sets can easily be used to encode multi-path structures, CHAIN can also be used to effectively “rewrite” such graphs by rewriting their constituent paths.

3.2 Arrangement Properties

We are interested in identifying the members of A which satisfy (or fail to satisfy) desirable properties, e.g., those that are deadlock-free. Let π denote such a property, which can be viewed as a boolean-valued function $\pi : A \rightarrow \{\text{true}, \text{false}\}$. Our primary methodological goal is to obtain a “friendly” specification of the two sets:

$$A_{\text{true}} = \{ a \in A \mid \pi(a) = \text{true} \}$$

and

$$A_{\text{false}} = \{ a \in A \mid \pi(a) = \text{false} \}.$$

By “friendly” we mean, at a minimum, there is a feasible computation to determine whether $a \in A_{\text{true}}$ or $a \in A_{\text{false}}$ for any member of A; ideally, we would also like to devise an easy-to-understand formalism to describe A_{true} and A_{false}, which can be used to quickly (in polynomial time or better) test whether $a \in A_{\text{true}}$ or $a \in A_{\text{false}}$. We will devise such tests below in Sections 4.1.2 and 4.3.

3.3 CHAIN Reductions

Consider a graph G as described above and a property π on the set A of arrangements in G. We denote the powerset of a set S by 2^S. We extend $\pi : A \rightarrow \{\text{true}, \text{false}\}$ to a function $\pi : 2^A \rightarrow \{\text{true}, \text{false}\}$ by defining8 for every $A \subseteq 2^A$:

$$\pi(A) = \begin{cases} \text{true} & \text{if } \pi(a) = \text{true} \text{ for every } a \in A, \\ \text{false} & \text{if } \pi(a) = \text{false} \text{ for some } a \in A. \end{cases}$$

Let A' be some subset, not necessarily proper, of the set A of arrangements in G. Because A is a subset of $\text{paths}(G)$, so is A' a subset of $\text{paths}(G)$. A reduction function on A' is a function $f : \text{paths}(G) \rightarrow 2^{\text{paths}(G)}$ satisfying two conditions:

Invariance on A': For every $a \in A'$, it is the case that $\pi(f(a))$ is defined and $\pi(f(a)) = \pi(a)$.

Progress on A': $\left(\bigcup_{a \in A'} f(a) \right) \subseteq A'$.

We can extend $f : \text{paths}(G) \rightarrow 2^{\text{paths}(G)}$ to a function $f : 2^{\text{paths}(G)} \rightarrow 2^{\text{paths}(G)}$ by setting $f(A) = \bigcup_{a \in A} f(a)$ for every $A \in 2^{\text{paths}(G)}$. Thus, the progress condition above can be expressed more succinctly as $f(A') \subseteq A'$.

Informally, the invariance condition says that π is an invariant of the transformation from $a \in A'$ to $f(a) \in A'$. In practice, this means that, in order to test whether $a \in A'$ satisfies property π, it suffices to test whether every $b \in f(a)$ satisfies π; as a rule, a desirable reduction is one in which the aggregate of the latter tests is “easier” computationally than the former test.

The progress condition is assurance that we gain something by carrying out the transformation from $a \in A'$ to $f(a) \in A'$, i.e., the set $f(A')$ is a non-empty proper subset of A'. In practice, should A' be an infinite set we will also want $A' \setminus f(A')$ to be an infinite set, i.e., infinitely many arrangements are excluded from the search space A'.

The key insight behind a reduction is that it establishes behavioral equivalence with respect to π within some set of chains; a reduction is a statement that “the behaviors of members of set A' are fully represented by the behaviors of members of its subset $f(A')$”. The means by which this behavioral equivalence is established may be any mechanism appropriate to the given application and π (e.g., logical proofs, type systems [7], process algebra [2], theory of I/O automata [22], I/O equivalence, etc.).

3.4 Reduction Strategy

Intuitively, our strategy is to identify a set of reductions (i.e., congruence relations over A which preserve behavioral equivalence) by which we can establish a finite-sized homomorphic image of A (that is, a finite-sized $A_n \subseteq A$ such that every member of A is behaviorally equivalent with members of A_n).

Starting from $A_0 = A$, our proposed strategy is to define a nested sequence of strictly decreasing subspaces:

$$A_0 \supset A_1 \supset \cdots \supset A_n$$

or undefined result.

8Note that other formulations of $\pi(A)$ can be used to best reflect the semantics of π; e.g., $\pi(A)$ could be the logical OR rather than the logical AND of all $\pi(a)$ if that better captures the meaning of π. A partial function could also be used, in which \bot is a result value designating an uncertain
induced by a sequence of appropriately defined functions g_1, g_2, \ldots, g_n where $g_i : \text{paths}(G) \rightarrow 2^\text{paths}(G)$ is derived from a reduction function on A_{i-1} (or the corresponding set-reduction function) and $A_i = g_i(A_{i-1})$ for every $1 \leq i \leq n$. If successful, this strategy produces a finite search space A_n such that

\[A_n = g_n(g_2(g_1(A))) \]

which implies that for every $a \in A$

\[A_n \supseteq g_n(g_2(g_1(a))) \]

and

\[\pi(a) = \pi(g_n(g_2(g_1(a)))) \].

3.5 Practical Specification of Reductions

A second methodological goal of our study is a formulation of reduction functions which are both easy to understand and easy to apply in practice. We propose a single framework to simultaneously achieve these two goals—this one and the one mentioned in Section 3.2—by borrowing ideas from algebraic notions of term-rewriting and by using standard techniques for manipulating sets and regular expressions.

Consider some $G = (\mathcal{N}, \mathcal{E})$ as defined above. Let Var be a countable infinite set of formal variables; we use the letters x, y and z (possibly decorated) to denote members of Var. Let $\Sigma = \mathcal{N} \cup \text{Var}$. We use the letters X, Y and Z (possibly decorated) as metavariables ranging over the set Σ^*. If $X \in \Sigma^*$, the set of formal variables occurring in X is denoted $\text{Var}(X)$.

We introduce a particular notion of rewrite rules. Each rewrite rule R will be specified by an expression of the form

\[R : X \supset \{Y_1, \ldots, Y_n\} \]

satisfying the following conditions:

- $n \geq 1$, i.e., the right-hand side is a non-empty finite set,
- $X, Y_1, \ldots, Y_n \in \Sigma^*$, and
- $\text{Var}(Y_1) \cup \cdots \cup \text{Var}(Y_n) \subseteq \text{Var}(X)$.

An interpretation of Var (for the given G) is simply a function $\rho : \text{Var} \rightarrow \text{paths}(G)$, which is lifted to a function $\bar{\rho} : \Sigma^* \rightarrow \text{paths}(G)$ by induction in the obvious way:

1. $\bar{\rho}(\varepsilon) = \varepsilon$,
2. $\bar{\rho}(X N) = \bar{\rho}(X) N$,
3. $\bar{\rho}(X x) = \bar{\rho}(X) \rho(x)$,

where $X \in \Sigma^*$, $N \in \mathcal{N}$, and $x \in \text{Var}$. We use ε to denote the empty string.

Let $a, b_1, \ldots, b_n \in \text{paths}(G)$. We say a rewrites to the set $\{b_1, \ldots, b_n\}$ using rule R in one step, which we express as:

\[a \supset_R \{b_1, \ldots, b_n\} \]

just in case there is an interpretation $\rho : \text{Var} \rightarrow \text{paths}(G)$ such that $\bar{\rho}(X) = a$ and $\bar{\rho}(Y_i) = b_i$ for every $1 \leq i \leq n$.

A rewrite rule R as described above induces a function $f_R : \text{paths}(G) \rightarrow 2^\text{paths}(G)$ as follows. For every $a \in \text{paths}(G)$, we define:

\[f_R(a) = \begin{cases} \{a\} & \text{if } a \not\supset_R B \text{ for all finite } B \subset \text{paths}(G), \\ \bigcup \{B \subset \text{paths}(G) \mid a \supset_R B\} & \text{otherwise}. \end{cases} \]

Following standard notation, we write $f_R^{(0)}(a) = \{a\}$ and $f_R^{(k+1)}(a) = f_R(f_R^{(k)}(a))$ for all $k \geq 0$. We also define the function $f_R^*: \text{paths}(G) \rightarrow 2^\text{paths}(G)$ as follows. For every $a \in \text{paths}(G)$:

\[f_R^*(a) = \begin{cases} f_R^{(k)}(a) & \text{if there exists } k \geq 0 \text{ such that } f_R^{(k+1)}(a) = f_R^{(k)}(a), \\ \text{undefined} & \text{if no such } k \geq 0 \text{ exists}. \end{cases} \]

Informally, $f_R^*(a)$ returns a fix-point of f_R obtained by repeated application of f_R to a, if it exists.

Now, consider the set A of arrangements in G, a property π on A, and some subset $A' \subseteq A$. We say that the rewrite rule R is a reduction on A' provided that the function $f_R^* : \text{paths}(G) \rightarrow 2^\text{paths}(G)$ induced by R is a reduction on A' satisfying the two conditions defined in Section 3.3: invariance on A' and progress on A'.

Our rewrite rules will satisfy a pleasant condition guaranteeing that $f_R^*(a)$ is always defined. Let us say that the rule R is bounded-monotonic in M iff for some metric M with a minimum value and for all $a, b_1, \ldots, b_n \in \text{paths}(G)$ such that $a \supset_R \{b_1, \ldots, b_n\}$,

\[M(a) > M(b_1), \ldots, M(a) > M(b_n). \]

Lemma 3.1. If the rewrite rule R is bounded-monotonic then, for every $a \in \text{paths}(G)$, it holds that $f_R^*(a)$ is defined, and is a non-empty finite subset of $\text{paths}(G)$.

The simplest choice for such a metric is string length (which has a minimum value of zero); where a rule is not length-decreasing, it must be shown to be bounded-monotonic in some other metric.

3.6 Confluence of Chain Reductions

As with any term re-writing system, at least two properties are important to establish: termination (i.e., every arrangement can be rewritten only finitely many times) and confluence (i.e., if a can be rewritten to b_1 and b_2, then further rewriting of both of those can produce a single string c). Termination ensures that the system draws some conclusion, while confluence demonstrates the system’s internal consistency; the combination of these two properties implies that the final result of the rewriting process is canonical, and that the rewriting process encodes an equivalence
class for each possible result. Establishing confluence also helps to minimize the size of the result set.

A set of rewrite rules terminate if the effects of all rules are bounded-monotonic with respect to a single metric; for example, if all rules are length-decreasing the a system of such rules must terminate. By Newman’s Lemma [1], we know that a rewrite system which terminates is confluent iff it is locally confluent (i.e., given arrangement \(a \) which can be rewritten in one step to \(B_1 \) or to \(B_2 \), both \(B_1 \) and \(B_2 \) can be rewritten in zero or more steps to \(B_3 \)). We therefore need only determine local confluence between pairs of rewrite rules in order to establish confluence and (thereby) the canonicity of the terminal result of rewriting any arrangement.

In the simplest cases, a pair of rewrite rules \(R_i \) and \(R_j \) are locally confluent if there exist compositions (call them \(f_1 \) and \(f_2 \)) of \(f \)'s drawn from the full set of valid rewrite rules \(\mathcal{R} \) such that \(f_1(f_i^{(*)}(a)) \equiv f_2(f_j^{(*)}(a)) \) for all \(a \in A \). As much as possible, we rely upon this property in our local confluence proofs.

It should be noted that a non-confluent set of rewrite rules is not a failure of our methodology. In those systems where rewrite rules represent behavioral equivalence, rewrites embody a transitive property; it follows that any such divergence identifies additional equivalence relationships which can give rise to valid rewrite rules.

As such, any arrangement \(a \in A \) for which two rewrite rules \(R_i \) and \(R_j \) provide diverging evaluation paths actually becomes an instance of a proper behavioral equivalence relation; \(f_i(a) \) and \(f_j(a) \) are behaviorally equivalent sets (because of the Invariance property), and as such if either set has only one member, the pair can be directly transformed into a previously unknown reduction. Such additional relations resolve the failures of local confluence, but must then be tested for interference with each other and the original rule set; this can be performed mechanically using the Knuth-Bendix procedure [18].

3.7 Sufficient Subspaces

If \(f_R^{(*)} \) is always defined, then the application of \(f_R^{(*)} \) to all members of a language \(A \) will yield some subset of \(A \) such that, for every \(a \in A \), the value of \(\pi(a) \) can be easily determined from \(\pi(f_R^{(*)}(a)) \). For this reason, we refer to the output \(f_R^{(*)}(A) \) as a sufficient subspace.

In the rest of the paper, when there is no ambiguity, notions that have been defined for a rewrite rule \(R \) are extended to the function \(f_R^{(*)} \) in the obvious way; for example, we say “\(f_R^{(*)} \) is length-decreasing” if \(R \) is length-decreasing.

It is also convenient to introduce the notion of the support of the function \(f_R^{(*)} \), or of its associated rewrite rule \(R \):

\[
\text{support}(f_R^{(*)}) = \text{support}(R) = \{a \in A \mid f_R^{(*)}(a) \neq \{a\}\},
\]

i.e., support \(f_R^{(*)} \) is the portion of \(A \) on which \(f_R^{(*)} \) acts non-trivially; so,

\[
f_R^{(*)}(A) = (A - \text{support}(f_R^{(*)})) \cup f_R^{(*)}(\text{support}(f_R^{(*)}))
\]

Recall our stated strategy from Section 3.4: to define a nested sequence of strictly decreasing subspaces \(A = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_n \) induced by a sequence of reduction functions \(f_1, \ldots, f_n \). In what follows, for every \(1 \leq i \leq n \), we use \(f_i \) to denote the \(f_R^{(*)} \) induced by the bounded-monotonic rewrite rule \(R_i \).

A trivial approach to this goal is to find \(f_n(\cdots(f_2(f_1(A))) \cdots) \). However, such a formulation fails to properly account for convolutions of rewrite rules. For example, consider a system in which \(R_1 \) reduces all sequences of “\(a \)”s to a single “\(a \)” and \(R_2 \) removes any “\(b \)” appearing immediately between two “\(a \)”s; for the string \(\text{aba} \), clearly \(f_1^{(*)}(f_1^{(*)}(\text{aba})) \neq f_2^{(*)}(f_2^{(*)}(f_1^{(*)}(\text{aba}))) \); the convolution of \(f_1 \) and \(f_2 \) has a greater effect than their sequential application.

Rather than composing the functions as such, we individually consider the effect of each rule upon \(A \), and then take the intersection of the resulting sufficient subsets. The intersection operator allows our examination of each \(f_i \) to wholly exclude from future consideration all arrangements reduced away by \(f_i \).

Lemma 3.2. Consider a set of reductions \(\mathcal{R} = \{R_1, \ldots, R_n\} \) inducing functions \(\mathcal{F} = \{f_R^{(*)}, \ldots, f_R^{(*)}\} \) which are all monotonic with respect to some metric. A sufficient subspace \(A_n \) can be defined inductively where \(0 < n \) and \(A_0 = A \) as:

\[
A_n = A_{n-1} \bigcap f_R^{(*)}(A)
\]

or directly as:

\[
A_n = \bigcap_{i=1}^{n} \left(A - \text{support}(f_R^{(*)}) \right) \cup f_R^{(*)}(\text{support}(f_R^{(*)}))
\]

which can be equivalently stated as:

\[
A_n = \bigcap_{i=1}^{n} \left(A - \text{support}(f_R^{(*)}) \right) \cup f_R^{(*)}(\text{support}(f_R^{(*)}))
\]

Where the set of reductions is clear from context and where \(A_n \) (the sufficient subspace which is most reduced with respect to the given reductions) is of finite ordinality, we refer to it as \(A_T \).

Corollary 3.2.1. \(\pi(A) = \pi(A_T) \).

Intuitively, this corollary tells us that if we can prove some property (e.g., freedom from deadlocks) for all members
The derivation of these and other rules is discussed in one will also be deadlock-prone; likewise, any arrangement which can be rewritten to that order to clearly illustrate the workings of CHAIN. We then proceed to a more abbreviated discussion of its application to the analysis of an applet for selective dropping of MPEG frames in an overlay network. Finally, we sketch its application to a web intra-cache consistency algorithm.

4 Example Applications of CHAIN

In this section, we exemplify the application of the CHAIN approach to a series of interesting network protocol correctness problems. We begin with a detailed completion of our example of HTTP request continuation deadlock-safety in order to clearly illustrate the workings of CHAIN. We then proceed to a more abbreviated discussion of its application to the analysis of an applet for selective dropping of MPEG frames in an overlay network. Finally, we sketch its application to a web intra-cache consistency algorithm.

4.1 HTTP Deadlock-Safety

Through careful study of our models of HTTP protocol agents, we have derived and proven a set of rewrite rules which preserve the behavior of chains with respect to HTTP request continuation. If an arrangement is deadlock-prone, then any arrangement which can be rewritten to that one will also be deadlock-prone; likewise, any arrangement to which it can be rewritten will also be deadlock-prone. The same holds for arrangements which are deadlock-free. The derivation of these and other rules is discussed in greater depth in [6]. Eight of the rules derived there pertaining to our current goal are presented in Table 2, along with two more rules (R9 and R10), the derivation of which will be discussed below.

In this paper, we refer to particular models using the letter-number pairs presented in Table 1; these represent the favored models for each revision/role.

All of the listed rules are proper rewrite rules as defined in Section 3.5, satisfying the three necessary conditions: (1) each has a non-empty right-hand side; (2) all strings are members of \(\Sigma^+ \); and (3) all \(\text{Var}(Y_i) \subseteq \text{Var}(X) \). Notice that these rules are also all length-decreasing, which implies (by Lemma 3.1) that \(f_R^{(a)} \) is always defined for all of them. Therefore, each of the preceding rewrite rules \(R_i \) gives rise to a function \(f_R^{(a)} \), henceforth denoted by \(f_i \).

The support of \(f_i \), and the set to which \(f_i \) maps its support, are presented in Table 2 using regular expressions. For brevity, \(C = (C_0 \mid C_1 \mid C_2), P = (P_0 \mid P_1 \mid P_2) \), and \(S = (S_0 \mid S_1 \mid S_2) \).

Notice also that each \(f_i \) (i.e., each \(f_R^{(a)} \)) is a valid reduction function, in that it satisfies the invariance and the progress properties. Invariance was previously established; progress holds because for every \(f_i \) it is true that \(f_i(A) \subseteq A \).

4.1.1 Confluence

We next ask whether this set of reductions is confluent, i.e., whether every arrangement \(a \in A \) will be terminally rewritten to a single result set independent of the reduction strategy. Because our set of rewrite rules will terminate (because they are all length-decreasing), this is equivalent to asking if the set of reductions is locally confluent.

The local confluence of most pairs of reductions is straightforward to see, because the rules are independent. Clearly \(R_1 \) and \(R_2 \) operate upon chains which no other reductions operate upon; the cluster of \(R_3, R_4, \) and \(R_5 \) likewise are clearly independent in their effects of the predicate chains of \(R_1, R_2, R_6, R_7, \) and \(R_8 \), and similarly the cluster of \(R_6, R_7, \) and \(R_8 \) are independent of the first five rules. So our only concern is local confluence within these three clusters.

\(R_1 \) and \(R_2 \): Since \(R_2 \) is an instantiation of \(R_1 \), these two clearly do not lead to contradictory rewrite strategies.

\(R_3, R_4 \) and \(R_5 \): All three of these rules remove \(P_2 \) from chains. Consider the one case where both \(R_3 \) and \(R_4 \) apply to the same \(P_2 \), namely, \(a = C_2 P_2 S_2 \). \(f_3 \) and \(f_4 \) remain commutative, because \(f_R^{(a)}(f_R^{(a)}(a)) = f_R^{(a)}(f_R^{(a)}(a)) \). Similarly, consider the set of chains over which \(R_3 \) and \(R_5 \) conflict, namely, \(a = C_2 P_2 P_2 x \) for any \(x \); \(f_3 \) and \(f_5 \) are clearly commutative because \(f_R^{(a)}(f_R^{(a)}(a)) = f_R^{(a)}(f_R^{(a)}(a)) \) when \(f_5 \) affects the specified subchain of \(a \). The same proof holds for the pairing of \(R_4 \) and \(R_5 \). Since all three pairings of these three rewrite commute, the set is locally confluent.

\(R_6, R_7 \) and \(R_8 \): While rules \(R_6 \) and \(R_8 \) are clearly independent in their effects, the other two pairs within this cluster are not commutative.

- \(R_6 \) and \(R_7 \): These rewrite rules diverge on chains of the form \(C_0 P_1 P_1 x \). \(R_7 \) rewrites this expression to \(C_1 P_1 P_1 x \), and \(R_6 \) rewrites it to \(C_0 P_1 P_1 x \); while the latter can then be rewritten using \(R_7 \) to \(C_1 P_1 x \), they still identify different sets, and there exists no

<table>
<thead>
<tr>
<th>Standard</th>
<th>Client</th>
<th>Proxy</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC1945 (HTTP/1.0)</td>
<td>C0</td>
<td>P0</td>
<td>S0</td>
</tr>
<tr>
<td>RFC2068 (obsolete HTTP/1.1)</td>
<td>C1</td>
<td>P1</td>
<td>S1</td>
</tr>
<tr>
<td>RFC2616 (HTTP/1.1)</td>
<td>C2</td>
<td>P2</td>
<td>S2</td>
</tr>
</tbody>
</table>

Table 1: HTTP Agent Models

<table>
<thead>
<tr>
<th>Rewrite Rule</th>
<th>(A_i, i.e., f_i(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xP_0 P_0 y \triangleright R_1) (x S0, C0 y)</td>
<td>(A \triangleright C^P_0 P_0 P^S_0)</td>
</tr>
<tr>
<td>(xP_0 P_0 y \triangleright R_2) (x P0 y, C0 S0)</td>
<td>(A \triangleright C^P_0 P_0 P^S_0)</td>
</tr>
<tr>
<td>(C_2 P_2 x \triangleright R_4) (C2 x)</td>
<td>(A \triangleright C_2 P_2 P^S_2)</td>
</tr>
<tr>
<td>(xP_2 P_2 \triangleright R_4) (x S2)</td>
<td>(A \triangleright C^P_2 P_2 S_2)</td>
</tr>
<tr>
<td>(xP_2 P_2 y \triangleright R_5) (x P2 y)</td>
<td>(A \triangleright C^P_2 P_2 P^S_2)</td>
</tr>
<tr>
<td>(xP_1 P_1 y \triangleright R_6) (x P1 P1 y)</td>
<td>(A \triangleright C^P_1 P_1 P^S_1)</td>
</tr>
<tr>
<td>(C_0 P_1 x \triangleright R_6) (C1 x)</td>
<td>(A \triangleright C_0 P_1 P^S_0)</td>
</tr>
<tr>
<td>(xP_1 P_1 y \triangleright R_7) (x P1 P1 y)</td>
<td>(A \triangleright C^P_1 P_1 P^S_1)</td>
</tr>
<tr>
<td>(C_1 P_1 x \triangleright R_8) (C1 P1 x)</td>
<td>(A \triangleright C_1 P_1 P^S_1)</td>
</tr>
<tr>
<td>(C_1 P_1 P_1 x \triangleright R_9) (C1 P1 x)</td>
<td>(A \triangleright C_1 P_1 P^S_1)</td>
</tr>
<tr>
<td>(C_1 P_2 P_1 x \triangleright R_{10}) (C1 P1 x)</td>
<td>(A \triangleright C_1 P_2 P^S_1)</td>
</tr>
</tbody>
</table>

Table 2: Rewrite rules \((R_1, \ldots, R_{10}) \) and their resulting sufficient subspaces \((f_1(A), \ldots, f_{10}(A)) \)
A rewrite strategy which will (for all values of x) rewrite both of these to a common expression.

- R_7 and R_8: These rewrite rules diverge on chains of the form $C_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_1 \rightarrow x$. R_7 rewrites this expression to $C_1 \rightarrow P_2 \rightarrow P_1 \rightarrow x$, while R_8 rewrites it to $C_0 \rightarrow P_1 \rightarrow x$. Much as above, the second expression can again be rewritten to $C_1 \rightarrow P_1 \rightarrow x$, but from there no rewrite strategy exists to rewrite these to a common expression.

Applying the procedure discussed in Section 3.6, each of these conflicts is transformed into a new valid rewrite rule in a straightforward way so as to preserve the length-decreasing property; the results are rules R_9 and R_{10}, which succeed in rendering the system confluent, so further iteration of the procedure is not necessary.

Theorem 4.1. The set of rewrite rules $\mathcal{R} = \{R_1, \ldots, R_{10}\}$ is confluent.

Proof. The local confluence of most rule pairs is already discussed above. The two new rewrite rules are independent of each other and independent of the original eight rules, with the exception that R_9 and R_8 have identical effect upon expressions $C_1 \rightarrow P_1 \rightarrow P_1 \rightarrow x$ and are thus commutative, and that R_{10} and R_8 have identical effect upon expressions $C_1 \rightarrow P_2 \rightarrow P_1 \rightarrow P_1 \rightarrow x$ and are thus commutative. Both of the failures of local confluence among $\{R_1, \ldots, R_8\}$ are addressed by application of the two new rules. Therefore, \mathcal{R} is locally confluent.

Because the rules are all length-decreasing (and therefore bounded-monotonic), the system terminates; by Newman’s Lemma, it is therefore confluent. \qed

Corollary 4.1.1. The set of rewrite rules $\mathcal{R} = \{R_1, \ldots, R_{10}\}$ defines a canonical subset of A^n for every $a \in A$, i.e., every $a \in A$ is a member of an equivalence class defined by a subset of A^n.

4.1.2 Reducing the Model Space

Recall Equations 1 and 2, which are the “glue” of our strategy. For each f_i, we find $f_i(A)$, i.e.:

$$(A - \text{support}(f_i)) \cup f_i(\text{support}(f_i))$$

We denote such a set induced by any f_i as A_i. Using the above-described supports and the sets they are mapped to, Table 2 presents these in simplified regular expression form for each of f_1 through f_{10}.

Taking the intersection of these sufficient subspaces gives us the finite minimal sufficient subspace supported by the given reduction functions. We will use both regular expressions and finite state automata (in the style of the graph G described earlier) to describe such subspaces (sets of strings) for the remainder of this paper as appropriate.

The automaton for A is a simple nine-state machine with three start states each with no inbound edges (C0, C1, and C2), three end states with no outbound edges (S0, S1, and S2), and three intermediary states (P0, P1, and P2) which are fully connected with one another, each connected to by each start state, and each connecting to every end state. Each start state also connects directly to every end state. This was already illustrated in Figure 1.

The intersection of the ten sets $A_1 \ldots A_{10}$ is presented in Figure 2 as an automaton. (For visual clarity, the CS edges have been omitted; each client also has an edge to each server.) This represents the minimal sufficient subset of A under the ten reductions $R_1 \ldots R_{10}$. Of particular significance is that this set is finite (equivalently, the automaton is acyclic, or the regular expression has no unbounded repetitions). As such, we have satisfied the goal of our strategy by identifying a finite $A_{29} = A_1 \cap \cdots \cap A_{10}$ which is a sufficient subset of A. This set A_{10} has 29 member strings; thus, it is sufficient to compute $\pi(a)$ for only these 29 members of A in order to acquire a trivial procedure for the determination of $\pi(a)$ for any $a \in A$. We have thus proven the following theorem:

Theorem 4.2. Let A be the infinite space of all arrangements of HTTP agents as defined in Section 3.1, and let \mathcal{R} be the set of rewrite rules discussed above which preserve behavioral equivalence. We can construct a finite subset A^n of A, consisting of 29 member arrangements, which satisfies the following condition: By the application of \mathcal{R}, every $a \in A$ can be rewritten to a subset B of A^n such that π satisfies π if and only if every $b \in B$ satisfies π.

Proof. Follows directly from Lemma 3.2 and the above analysis. \qed

A π Decision Rule Using Failure Patterns: As alluded to above, we would ultimately like to express a decision rule in a compact and computationally efficient form which will allow us to decide $\{\pi(a) \mid a \in A\}$. In [5], we happened upon a pair of “failure patterns” which accounted
for all failure cases explored in that paper. Here we argue for the correctness of a pair of failure patterns derived from \(A_T \) and the above reductions—a process that methodically discovers all deadlock cases for all arrangements in \(A \).

Theorem 4.3. All \(a \in A \) such that \(\pi(a) = \text{false} \) will match a regular expression stated in Figure 3.

Proof. Among \(a \in A_{10} \), all \(a \) such that \(\pi(a) = \text{false} \) (that is, all \(a \in A_{\text{false}} \)) match at least one of the stated patterns, and no \(a \) such that \(\pi(a) = \text{true} \) (i.e., no \(a \in A_{\text{true}} \)) matches either.

As we have shown, all members of \(A \) which are deadlock-prone are reducible to members of \(A_{10} \), which are deadlock-prone, and similarly, all members of \(A \) which are deadlock-safe are reducible to members of \(A_{10} \), which are deadlock-safe.

As such, the correctness of this theorem rests upon three properties: (1) for any member \(a \in A_{10} \), \(\pi(a) = \text{false} \) iff \(a \) is in the union of these patterns (that is, the patterns correctly identify \(A_{\text{false}} \cap A_{10} \)); (2) any member of the union of these two patterns is reducible to a member of \(A_{\text{false}} \cap A_{10} \); (3) no arrangement \(a \in A \) which does not match either of these patterns can be reduced to one which does. 10 Item-by-item proofs of these properties are included in Appendix A.

4.2 An MPEG Overlay Routing Protocol

While model checking is often applied in post mortem fashion to assess bugs and problems in existing protocols and software, this need not be the case. This section presents an application of \(\text{CHAIN} \) approaching the problem from a design perspective rather than a retroactive analysis perspective.

Many algorithms proposed for overlay networks are, by their nature, designed to be deployed into a network in which they will interact with other applications, as well as conventional routers and hosts (i.e., we expect that they will be composed with other processes, perhaps both controlled and emergent). Thus it seems reasonable to believe that such applications are good candidates for analysis using \(\text{CHAIN} \).

Consider the method for handling MPEG flows proposed in [15], which drops MPEG frames based upon its own drop history and the dependency and priority relationships between the three classes of MPEG frames (I, P, and B frames). 11 These relationships suggest simple packet-dropping rules: (1) If at all possible, dropping I frames should be avoided; (2) once a B frame has been dropped, all successor B frames until the next P frame are useless and should be dropped; and similarly (3) once a P frame has been dropped, all successor packets can be safely dropped until the next I frame. The applet presented in [15] implements a simple version of this algorithm requiring constant time and storage.

Unfortunately, the router 12 so described must itself receive all of the packets constituting an MPEG stream in order to behave correctly. These are unreasonably optimistic assumptions [25]; indeed, it is not hard to devise pathological reorderings among pairs of sequentially adjacent packets which can cause the applet to wrongly treat large numbers of frames as “worthless” (and therefore discardable), and if certain packets are dropped before reaching such a router, it can erroneously forward large numbers of worthless packets.

We can easily cast either or both of these concerns (packet ordering and drop-tolerance) in \(\text{CHAIN} \). There is nothing intrinsic to a network which drops or reorders packets that prevents it from being represented as an agent in the same sense in which the MPEG router is an agent. Therefore, it makes sense for us to ask within our framework whether the composition of a packet-reordering network with such a router would cause it to behave erroneously (that is, to drop packets which could still be valuable to an end-host)? Does the direct composition of two such routers induce packet drops that a single such router would not? What about composing two such routers using a packet-reordering network, or composing two network-router pairs? What about compositions with other kinds of routers which perform random drops, or which may do retransmissions on their own (e.g., a wireless base station)?

All of these questions can be framed in terms of a binary correctness property \(\pi \) which determines whether packets could be erroneously dropped by any particular composition of those components. 13

4.2.1 Representing and Reducing the Network

Some reductions naturally arise as properties of the basic existing network infrastructure; For example:

\[
R_1 : x \text{ reord reord } y \triangleright \{ x \text{ reord } y \}
\]

\[
R_2 : x \text{ drop drop } y \triangleright \{ x \text{ drop } y \}
\]

\[
R_3 : x \text{ reord drop } y \triangleright \{ x \text{ reord drop } y \}
\]

10 The second and third properties taken together represent the closure of the set described by these expressions under all reductions in \(R \).

11 MPEG streams are structured as follows: each I frame signifies the beginning of a new group of pictures (GOP). Within a GOP each P frame can only be decoded if the initial I frame and all previous P frames have been received. Similarly, a B frame can only be decoded if the previous P frame could be decoded and if all B frames between that P frame and itself have been received.

12 We henceforth use “router” to mean a node in an (overlay) network that handles the forwarding of the packet to one (or more) other nodes in the network.

13 The MPEG router is itself allowed to drop packets when its downstream link load is too high. This means that, for the purposes of \(\pi \), whenever the router wants to forward a packet there are three possible outcomes: An overload drop, a correct forwarding, and a “legal” drop. It is not appropriate for this question to consider a notion of “how many” drops are acceptable - a drop is either inevitable because of link overload (which may arise at arbitrary times), correct (because previous drops render the packet worthless), or illegal (the packet was still valuable and the link was not overloaded). A different \(\pi \) property could be defined and examined to include a notion of drop rate, or bounded delay and jitter, or anything else of interest.
Notice that the third rule forces a particular ordering upon adjoining reord and drop nodes; in so doing, these three rules together form a compound rule which says that any chain consisting only of both drop and record can be represented with a single canonical chain, “drop reord”.\footnote{This is where exclusion of reductions becomes useful; while the inverse of R_3 is also a true proposition, its co-introduction into a system along with R_3 would introduce a rewrite cycle between itself and R_0, which allows the existence of a non-terminating rewrite strategy and definitionally precludes the existence of a “canonical” reduction for each arrangement.}

We also note that the mrouter node will always be permitted to drop packets because of internal congestion; thus, another rule will always be applicable\footnote{Notice that a similar rule which removes drop from before mrouter in a chain would also be valid; however, we do not introduce this rule, as it would interfere structurally with other rules, requiring a much more involved set of rules to keep the system confluent.}.

$$R_4 : x \text{ mrouter drop y } \not\rhd \{ x \text{ mrouter y} \}$$

Ultimately, we would like to be able to say something about the mrouter in any network arrangement. Assuming that all the relevant characteristics of intervening networks can be represented using models of record and drop, we can then define A as $\text{SP}^* \text{ mrouter } C$, where

- $S = \text{server}$
- $P = \text{mrouter, reord, drop}$
- $C = \text{client}$

This definition handles two simplifications of the problem space for us up front: it excludes all arrangements which do not include at least one mrouter (i.e., all arrangements in which we are not interested) and it removes all reord or drop which do not precede an mrouter (because they have no bearing upon the correctness of an mrouter). Given the already-stated four reductions, we can derive A_4 (picted in Figure 4) using the corresponding f_1, \ldots, f_4. A_4 clearly still represents an infinite set of arrangements (or language), so our methodology will require additional reductions in order to produce useful results.

Reducibility as Specification: Rather than thinking in terms of the reductions which a particular fully-specified application induces, one may prefer to state a design goal for an application in terms of a set of reductions which that application must satisfy. For example, we could state as a

$$R_5 : x \text{ mrouter mrouter y } \not\rhd \{ x \text{ mrouter y} \}$$

$$R_6 : x \text{ reord mrouter reord mrouter y } \not\rhd \{ x \text{ reord reord mrouter y} \}$$

If all six reductions are valid, then A_6 has six members; thus, by testing only those six, we establish the behavior of mrouter in all possible network configurations. A_6 is expressed by the automaton in Figure 5.

Confluence: Proof that this system of rewrite rules is confluent (and therefore gives rise to a canonical form) is straightforward.

Theorem 4.4. The set of rewrite rules $\mathcal{R} = \{ R_1, \ldots, R_6 \}$ is confluent.

Proof. We begin by proving termination. All rules but R_3 are length-decreasing (and therefore monotonic, so their corresponding $f(\ast)$’s are defined); R_3 does not increase length and is clearly itself monotonic because it always moves drop nodes to the left and reord nodes to the right; the rules are clearly monotonic with respect to a composition of these two metrics (length as the major and drop/reord ordering as the minor component), thus \mathcal{R} terminates. We can therefore establish its confluence using Newman’s Lemma by demonstrating local confluence.

All pairings among R_1, R_2, R_3, R_5, and R_6 are clearly commutative over any chains in which their effects overlap. R_3 is similarly commutative with R_4, R_5, and R_6. This leaves only the pairings of R_3 with R_1 and R_2.

Consider the chain reord reord drop. By R_1 it is rewritten to reord drop; by R_3 it is rewritten to reord drop reord.

Figure 4: A_4 for basic MPEG-routing network

Figure 5: Acyclic automaton of A_6 for an ideal MPEG router
Notice that these are indeed confluent: the former can then be rewritten by \(\mathcal{R}_3 \) to drop record and the later can be rewritten by \(\mathcal{R}_3 \) (again) to drop record record, which can be rewritten by \(\mathcal{R}_1 \) to drop record. A similar case arises when \(\mathcal{R}_3 \) is paired with \(\mathcal{R}_2 \). Therefore, the lack of commutativity within these pairs is resolved by the existence of a succeeding rewrite strategy which brings their results into agreement.

Since \(\mathcal{R} \) is both locally confluent and terminating, it is therefore confluent.

It is easy to devise variations upon this \(\mathcal{R} \) which express the same properties of the problem space but are difficult to make confluent\(^\text{16}\); e.g., an additional rule (based upon the rationale of \(\mathcal{R}_4 \)) which removes a drop preceding an mrouter is non-commutative with \(\mathcal{R}_3 \), and converting this conflict into an additional rewrite rule does not result in confluence; many iterations of the Knuth-Bendix procedure are required to resolve this divergence. As another example, if \(\mathcal{R}_3 \) is replaced with its inverse, a similar conflict arises between it and \(\mathcal{R}_3 \), and the simplest apparent solution (resolved by including both \(\mathcal{R}_3 \) and its inverse) does not work because the pair support allow a non-terminating rewrite strategy.

4.2.2 Algorithms Resilient to Network Anomalies

We now discuss modified versions of the algorithm from [15] which are more resilient to common network anomalies. We use a modification of their proposed packet header which adds an integer field, \(\text{dep.frame.no} \). In an I-frame, this field has the same value as \(\text{frame.no} \). In a P-frame, \(\text{dep.frame.no} \) is the \(\text{frame.no} \) of the previous P-frame within the GOP, or the \(\text{frame.no} \) of the previous I-frame if this is the first P-frame in the GOP. For a B-frame, \(\text{dep.frame.no} \) is the \(\text{frame.no} \) of the previous P-frame. This field acts to make explicit and unambiguous the dependency relationships among packets.

For the purposes of this section, we will use the words “frame” (in the MPEG sense) and “packet” (in the IP routing sense) interchangeably.

Missing Packets:

If the packet stream remains in order but may lose packets before reaching the mrouter, then we can easily implement an aggressive drop algorithm. In addition to the new header field, we require that each “movie” record include the \(\text{frame.no} \) of the last frame forwarded as part of that movie. The arrival of a packet whose \(\text{frame.no} \) is greater than the previous \(\text{frame.no} \) plus one indicates packet loss; the response depends upon the type of the arriving packet and the (inferred) types of (some) dropped packets. Pseudocode for an algorithm is given in Figure 6.

Essentially, we have used the \(\text{dep.frame.no} \) field, taken together with the frame type, to deduce the type of the missing packet (or that of the most important packet within a gap) and to choose a drop strategy accordingly.

This algorithm would precede all local policy decisions, including congestion-driven drops; acting as such, it prevents “worthless” packets from reaching the overlay routing logic.

Using this implementation of the mrouter, we can easily prove target reduction \(\mathcal{R}_8 \), as the second mrouter will in all cases pass through packets forwarded by the first. Proving \(\mathcal{R}_8 \) is more involved: we omit it for want of space \(^\text{17}\). Since all rewrite rules in \(\mathcal{R} \) apply for this algorithm, \(\text{CHAIN} \) allows us to explore its correctness under all possible networks using only the six arrangements in \(\mathcal{A}^+ \) (the homomorphic image of all arrangements).

Reordered Packets:

For each movie, we add three ring buffers acting as “policy drop logs”: one for I-frames, one for P-frames, and one for B-frames (\(\text{drop.P.log} \), \(\text{drop.P.log} \), and \(\text{drop.B.log} \), respectively). Each

\(^\text{16}\) Note that this does not contradict Knuth-Bendix or our claims in Section 3.6; this is a statement about the simplicity and compactness of the set of rewrite rules, not about the ability of the system to be made confluent.

\(^\text{17}\) A rough sketch of the proof is as follows: because the algorithm is run before congestion can induce drops within the mrouter, it is unaware of such drops, so any subset of a packet sequence can be dropped by a \(\text{reord mrouter} \) chain; therefore, that chain can be represented to its peers as \(\text{reord drop} \). If we use this to rewrite the first such subchain in the predicate, we get \(\text{drop reord reord mrouter} \) which (by \(\mathcal{R}_1 \)) is equivalent to \(\text{drop mrouter} \). We must also capture the behaviors of the initial \(\text{reord mrouter} \) in case they would induce an illegal drop; since one of the behaviors of \(\text{drop reord mrouter} \) captures exactly that, all behaviors of the predicate are captured by the consequent, \(\text{ergo} \) they are behaviorally equivalent.
Resilience to Both Reordered And Missing Packets:

There is a fundamental difficulty in trying to handle both of the above network anomalies aggressively in a single, fixed-state algorithm: a delayed packet is indistinguishable from a dropped packet until it arrives. It is therefore impossible to differentiate the cause of a sequence gap unless we queue packets and “release” them when the necessary dependence packets arrive (or drop them when some threshold number of packets have passed without the dependency’s arrival). Essentially, by the time we could infer with high confidence that a packet has been dropped, too many other packets will have already arrived, the storage of which is too costly for a reasonable minimal-state algorithm (particularly considering that the stored packets may turn out to be worthless). We therefore offer no such applet for analysis here.

4.3 Web Intra-Cache Consistency

There is nothing in the CHAIN methodology which is intrinsically linked with finite-state model checking; any methodology which can give rise to proofs and which allows for the discovery of reduction/equivalence relations among sets of configurations can just as well act as the basis for defining our property of interest \(\pi \) and the set of reduction rules \(\mathcal{R} \). As an example, in this section we show the application of this methodology to the characterization of a web cache system which employs the Basis Token Consistency protocol [4], a protocol whose correctness follows directly from the definition of vector clocks [11, 23] (its underlying conceptual mechanism).

For BTC, the interesting \(\pi \) is whether the client at the end of some arrangement \(a \in \mathcal{A} = SP^+C \) will be guaranteed to see an (internally) consistent sequence of responses, \(i.e., \) one which is temporally non-decreasing.\(^{20}\) If \(\pi(a) = \text{true} \), then arrangement \(a \) will always cause the client’s view of the server to be consistent (temporally non-decreasing); \(\pi(a) = \text{false} \) indicates that arrangement \(a \) can provide a client with an inconsistent response. Basis Token Consistency (BTC) guarantees such consistency for any supporting cache downstream of a supporting server, regardless of the presence of intermediary inconsistent caches.

\(^{18}\)Perhaps such drops will be controlled by the filling of a send buffer, the closing of a peer’s advertised window, or by some congestion-control policy of the overlay algorithm itself.

\(^{19}\)Another perspective on this is that all of the behavioral modalities of a pair of \(\text{mrouter} \)s will be possible/stitically exhibited by a single \(\text{mrouter} \), although particular instances of correct-drop behavior by a pair will not be exhibited by a single.

\(^{20}\)Note that recency is not relevant in this definition. For other cache management algorithms, interesting properties to consider could be lower bounds on recency or upon hit rates under certain classes of request regimes.
The definition and the correctness of BTC itself gives rise to some members of A. These twenty rules are not confluent because the two arrangements without a cache, a client with either a standard or a BTC cache, or a server implementing BTC push) can be modeled as particular sequences of these basic elements.

A simplified model of the web for BTC’s purposes uses the following agents:

\[S = \{\text{server-btc}, \text{server-plain}\}, \]
\[P = \{\text{proxy-scrubber}, \text{proxy-plain}, \text{cache-plain}, \text{cache-btc}, \text{cache-btcpush}\}, \]
\[C = \{\text{client}\}. \]

where cache-btcpush uses the end-to-end strong consistency extension [3]. The inclusion of C is pure sugar; the interesting property as far as π is concerned is the state of the furthest downstream cache, i.e., the caching agent appearing closest to the end of the arrangement. Other types of agents besides the ones described (e.g., a scrubbing proxy-cache, a client with either a standard or a BTC cache, or a server implementing BTC push) can be modeled as particular sequences of these basic elements.

The definitions of standard proxying and proxy-caching in light of BTC’s notion of consistency give rise to some basic reductions, such as the insertion of proxy-plain (cacheless proxy) agents having no effect, or indifference to the ordering of proxy-scrubber and cache-plain agents. These are reflected as reductions \(R_1 \) through \(R_6 \) in Appendix B.1. The definition and the correctness of BTC itself gives rise directly to 14 additional reductions, \(R_7 \) through \(R_{20} \) also in Appendix B.1.

These twenty rules, through the application of the CHAIN methodology, identify a sufficient subset \(\mathcal{A}_{20} \) containing four member arrangements, described by the expression:

\[\mathcal{A}_\pi = \{\text{server-plain}|\text{server-btc}\} \text{ cache-plain} \leq 1 \text{ client} \]

where the two arrangements without a cache-plain are consistency-safe and the two containing a cache-plain are consistency-unsafe.

Confluence: These twenty rules are not confluent because some members of \(\mathcal{A}_{\text{false}} \) can be rewritten to both of the false members of \(\mathcal{A}_{20} \). \(\mathcal{A}_{\text{true}} \) has a similar problem. The system can easily be made confluent, however, by adding a set of finalizing rewrites which collapse the two “true” members of \(\mathcal{A}_{20} \) into one (server-btc client \(\triangleright \) server-plain client) and likewise for the two “false” members (server-btc cache-plain client \(\triangleright \) server-plain cache-plain client). The new system of twenty-two rewrite rules is confluent and produces an \(\mathcal{A}_\pi \) with only two member arrangements; since π is a binary property, this implies that result of the rewriting process itself maps trivially to the value of \(\pi(a) \) for any \(a \in \mathcal{A} \).

A π Decision Rule Using Correctness Patterns: As in Theorem 4.3, we wish to use our results to provide a computationally inexpensive rule which can decide \(\pi(a) \) for any \(a \in \mathcal{A} \).

Intuitively, we know that a caching system will provide the client with a consistent view under any of three circumstances: (1) there are no caches between the server (whether plain or BTC) and the client; (2) the server supports BTC, the last cache before the client is reached is a BTC cache, and there are no scrubbers between the BTC server and that final cache; (3) the server supports BTC, the system includes a btcpush cache, and there are no scrubbers between the server and a btcpush cache.

Theorem 4.5. All caching arrangements which provide a client with a consistent view of server state (that is, all members of \(\mathcal{A}_{\text{true}} \)) will match the pattern stated in Figure 8.

Proof. Similar to Theorem 4.3. A “safety pattern” is simply the compliment of a “failure pattern”, so its validity is established by the same properties: first, whether it correctly partitions \(\mathcal{A}_\pi \); second, whether it defines a set which is closed under all reductions (that is, reductions preserve both membership and non-membership).

These properties are proven in Appendix B.2. \(\square \)

5 Conclusion

In this paper we have presented CHAIN, an algebraic approach that enables the reduction of arbitrary arrangements of network protocol agents to a canonical, behaviorally-equivalent (with respect to some correctness property) representation, which is amenable to mechanical verification. Our methodology relies upon the discovery of a sufficient set of reduction/rewrite relationships, which establish homomorphism between particular arrangement patterns. We have applied our approach to the verification of safety properties of three examples: The HTTP request continuation protocol, an MPEG packet forwarding protocol for overlay networks, and a Web intra-cache consistency protocol.

On-going Work: In this paper, we have focused upon applying CHAIN to linear compositions of agents. For some
applications, this is sufficient (e.g., to model the simple case of a linear arrangement of proxies); however, such a methodology is also useful for other graph structures. For example, a particular cache may have several upstream caches available to it, any of which can be used to reach an origin server; the result is a divergent delivery network, in which there exists more than one path from the origin server to a cache (generally, a DAG).

CHAIN is not limited to linear composition of agents but can be applied to more compositionally rich systems, e.g., trees and directed graphs. This can be accomplished by encoding sets of paths in those graphs as sets of strings and formulating the rewrite rules so as to effectively rewrite the graph by rewriting its constituent paths. We are currently developing applications of CHAIN to several graph-structured correctness problems.

Broader Vision and Research Agenda: Today, and to a large extent, “programming” distributed applications over the Internet suffers from the same lack of organizing principles as did programming of stand-alone computers some thirty years ago. Primeval programming languages were expressive but unwieldy; software engineering technology improved not only through better understanding of useful abstractions, but also by automating the process of verification of safety properties both at compile time (e.g., type checking) and run times (e.g., memory bound checks). We believe that the same kinds of improvements could find their way into the programming of distributed Internet services. The work we present in this paper is an instance of our broader goal of applying more rigorous disciplines to the specification and creation of networked protocols, programs, and services. The development of CHAIN is an important milestone in our on-going efforts to provide a sound framework for integrating a wide range of proof and verification strategies with the principles of design, development, compilation and execution of disciplined and safe programmable systems.

References

A HTTP Deadlock-Safety

For these lemmas, we refer to the union of the subsets of \(A \) defined by each of the two patterns (i.e., the subset of \(A \) which match either or both expressions in Figure 3) as the "pattern space".

Lemma A.1. For all \(a \in A_\perp \), \(\pi(a) = \text{false} \) iff \(a \) is in the pattern space.

Proof. We prove this result by brute force. The members of \(A_\perp \) are defined by Figure 3:

\[
(C0 \mid P2 \mid C1 \mid P2 \mid C2 \mid P1 \mid S2 \mid P2 \mid S0 \mid S1) \mid CS
\]

For each member of this set, we determine whether it matched either of the patterns; eight (8) match only the first pattern, two (2) match only the second pattern, and five (5) match both, meaning the pattern suggests that only these 15 of the 49 members of \(A_\perp \) are deadlock-prone.

We then compute \(\pi(a) \) for all \(a \in A_\perp \) arrangements, and found 15 arrangements to be deadlock-prone. These fifteen are the same arrangements which were identified by the patterns above. Therefore, the intersection of the pattern space with \(A_\perp \) is precisely the set explicitly found to be \(A_\perp \cap \mathcal{A}_{\text{false}} \). □

Lemma A.2. All arrangements in the pattern space can be reduced to members of \(\mathcal{A}_{\text{false}} \cap A_\perp \).

Proof. We already have shown that all members of \(A \) can be reduced to members of \(A_\perp \). As such, if all reductions preserve membership in \(\mathcal{A}_{\text{false}} \) (that is, if \((\pi(a) = \text{false}) \rightarrow (\pi(f_j(a)) = \text{false}) \) for all reduction functions \(f_j \)), then all members of \(\mathcal{A}_{\text{false}} \cap A_\perp \) can clearly be reduced to members of \(\mathcal{A}_{\text{false}} \cap A_\perp \).

We have factored the pattern space into a set of seven regular expression which will be easier to reason about.

1. \(C \, \mathcal{P}^* \mid P1 \mid P1 \mid S0 \mid P0 \mid \mathcal{P}^* \mid S \)
2. \(C \, \mathcal{P}^* \mid P1 \mid P2^* \mid S0 \mid P0 \mid \mathcal{P}^* \mid S \)
3. \(C1 \mid P1 \mid S0 \mid P0 \mid \mathcal{P}^* \mid S \)
4. \(C1 \mid P2^* \mid S0 \mid P0 \mid \mathcal{P}^* \mid S \)
5. \(C \, \mathcal{P}^* \mid P1 \mid P2^* \mid P1 \mid (S0 \mid P0 \mid \mathcal{P}^* \mid S) \)
6. \(C1 \mid P1 \mid P2^* \mid P1 \mid S0 \mid P0 \mid \mathcal{P}^* \mid S \)
7. \(C2 \mid P1 \mid P2^* \mid P1 \mid S0 \mid P0 \mid \mathcal{P}^* \mid S \)

We now examine each of the 10 reduction rules and show that \((\pi(a) = \text{false}) \rightarrow (\pi(f_j(a)) = \text{false}) \) for any arrangements which are members of the sets described by the above seven patterns.

R1: \(x \mid P0 \mid y = x \mid S0 \mid C0 \mid y \)

Consider an arrangement matching any of the seven patterns which contains a P0. If that P0 happens to correspond with the head of the \((S0 \mid P0 \mid \mathcal{P}^* \mid S) \) sub-pattern (common to all patterns), then clearly the removal of some \(x \) \(S0 \) produced arrangement will match the same original pattern. Thus, \(R_1 \) preserves membership in the pattern space.

R2: \(x \mid P0^+ \mid y = x \mid P0 \mid y \)

Consider an arrangement matching any of the seven patterns which contains one or more sequence of P0s. Those P0s are in one of two locations: either the leading \(C \, \mathcal{P}^* \) sub-pattern or the trailing \((S0 \mid P0 \mid \mathcal{P}^* \mid S) \) sub-pattern. In both cases, clearly the removal of some P0s will not affect the match, since all P0s beyond the first one (and in the former case, even the first one) are matched by a \(\mathcal{P}^* \). Thus, \(R_2 \) preserves membership in the pattern space.

R3: \(C2 \mid P2^* \mid x = C2 \mid x \)

Consider each of the seven patterns:

1,2,5 The removed P2s are matched by the \(\mathcal{P}^* \) term, so clearly their removal will not effect the match.

3,4,6 Does not apply.

7 The P2s are matched by the \((P1 \mid P2)^* \) sub-pattern, so clearly their removal will not effect the match.
Thus, \(R_3 \) preserves membership in the pattern space.

\[R_4 : x P_2^+ S_2 = x S_2 \]

Consider an arrangement matching any of the seven patterns which contains the subsequence \(P_2^+ S_2 \). Clearly, this subsequence can only match the (common) \(P^* S \) sub-pattern, and thus the removal of the \(P_2s \) will not effect the match. Thus, \(R_4 \) preserves membership in the pattern space.

\[R_5 : x P_2^+ y = x P_2 \ y \]

Consider each of the seven patterns:

1, 3 P2s can only appear in the \(P^* \) terms, so their removal will not effect the match.

2, 4 P2s appear in the \(P^* \) and \(P_2^+ \) terms, so the removal of those beyond the first will not effect the match.

5, 6, 7 P2s appear in the \(P^* \) and \((P_1 | P_2)^* \) sub-patterns, so their removal will not effect the match.

Thus, \(R_5 \) preserves membership in the pattern space.

\[R_6 : x P_1^+ \ y = x P_1 \ y \]

Consider the seven patterns:

1, 2 All \(P_1s \) beyond the second in a sequence must match within either the \(C \ P^* \) sub-pattern or the \(P^* S \) sub-pattern, so their removal does not effect the match.

3, 4 All \(P_1 \) sequences of length greater than one must match within the \(P^* S \) sub-pattern, so their removal does not effect the match.

5 All \(P_1 \) sequences of length greater than one must match within either the \(P^* P_1 (P_1 \mid P_2)^* \) \(P_1 \) sub-pattern or the \(P^* S \) sub-pattern; in the former case, removing all beyond the second \(P_1 \) will not effect the match (the sub-pattern demands at most the outer two \(P_1s \)), and in the latter case, removal of \(P_1s \) will not effect the match.

6, 7 All \(P_1 \) sequences must match either the \((P_1 | P_2)^* \) \(P_1 \) sub-pattern or the \(P^* \) term; in each case, the removal of \(P_1s \) beyond the second will not effect the match.

Thus, \(R_6 \) preserves membership in the pattern space.

\[R_7 : C_0 \ P_1 \ x = C_1 \ x \]

Consider the seven patterns:

1 If the leading \(C_0 \ P_1 \) matches the \(C \ P^* \) sub-pattern, then the reduction has no effect. If the leading \(C_0 \ P_1 \) matches the \(C \ P^* P_1 \) sub-pattern, then the whole arrangement is rewritten to one of the form \(C_1 \ P_1 (S_0 | P_0 \ P^* S) \), which is precisely the set recognized by pattern 3.

2 Similar to 1 above; in the latter case, the whole arrangement is rewritten to one of the form

\[C_1 P_2^+ (S_0 \mid P_0 \ P^* S) \]

which is precisely the set recognized by pattern 4.

3, 4, 6, 7 Reduction does not apply

5 Similar to 1 above; in the latter case, the whole arrangement is rewritten to have the form

\[C_1 (P_1 | P_2)^* P_1 (S_0 \mid P_0 \ P^* S) \]

which is precisely the set recognized by pattern 6.

Thus, \(R_7 \) preserves membership in the pattern space.

\[R_8 : x P_1 P_2 P_1 \ y = x P_1 \ P_1 \ y \]

Consider the seven patterns:

1, 2 The subsequence \(P_1 P_2 P_1 \) can only match either the \(P^* P_1 \) sub-pattern or the \(P^* \) term; in either case, removing the \(P_2 \) will not effect the match.

3, 4 The subsequence \(P_1 P_2 P_1 \) can only match the \(P^* \) term, so removing the \(P_2 \) will not effect the match.

5 The subsequence \(P_1 P_2 P_1 \) can match either the \(P^* P_1, P_1 (P_1 \mid P_2)^* \), or \(P_1 (P_1 \mid P_2)^* P_1 \) sub-patterns, or one of the \(P^* \) terms, so in all cases the removal of the \(P_2 \) will not effect the match.

6, 7 The subsequence \(P_1 P_2 P_1 \) can match the \((P_1 \mid P_2)^* \) or \((P_1 \mid P_2)^* P_1 \) sub-patterns, or the \(P^* \) term, so in all cases the removal of the \(P_2 \) will not effect the match.

Thus, \(R_8 \) preserves membership in the pattern space.

\[R_9 : C_1 P_1 P_1 \ x = C_1 P_1 \ x \]

1 If \(C \ P^* = C_1 \), then the rewrite will match with pattern 3; otherwise, will not effect the match.

2 If \(C \ P^* = C_1 P_1 \), then the rewrite will match with pattern 4; otherwise, will not effect the match.

3 If it matches, the second \(P_1 \) matches within \(P^* \), so removal will not effect the match.

4, 7 Does not apply.

5 Removed \(P_1 \) will either be within \(P^* \) or the first symbol in \((P_1 \mid P_2) P_1 \), so removal will not effect the match.

6 If \(P_1 P_1 \) matches entirely within \((P_1 \mid P_2)^* \), removing one \(P_1 \) has no effect upon matching; otherwise, matches with 3.

Thus, \(R_9 \) preserves membership in the pattern space.

\[R_{10} : C_1 P_2 P_1 \ x = C_1 P_1 \ x \]
1,2,5 Removed P2 will match within \(\mathcal{P}^* \), so removal does not effect the match.
\(C \mathcal{P}^* P1 \ P1 \ (S0 \ | \ P0 \ \mathcal{P}^* \ S) \)
3,4,7 Does not apply.
6 Removed P2 will match within \((P1 \ | \ P2)^*\), so removal does not effect the match.
\(C1 \ (P1 \ | \ P2)^* P1 \ (S0 \ | \ P0 \ \mathcal{P}^* \ S) \)

Thus, \(R_{10} \) preserves membership in the pattern space.

All reductions \((R_1 \ldots R_{10})\) preserve membership in the pattern space.

Lemma A.3. No arrangements outside the pattern space can be reduced to members of the pattern space.

Proof. This proof is the compliment to that of Lemma A.2; rather than proving that reductions preserve membership, we prove that reductions also preserve non-membership.

To do this, it suffices to show that the inversions of the rewrite functions derived from our reductions can not be used to produce an arrangement which is not a member of the pattern space from one which is. From this it follows inductively that no non-member arrangement can be reduced to a member arrangement.

The inverted rewrite rules (we will call them “productions”) are easily derived for the equivalences behind \(R_2 \) through \(R_{10} \). Equivalence \(R_1 \) tells us that we can treat the two sub-terms \((S0 \ P0 \ \mathcal{P}^* \ S)\) of the common closing sub-pattern \((S0 \ | \ P0 \ \mathcal{P}^* \ S)\) as being equivalent for the purposes of matching; thus, we do not treat the \(P0 \ \mathcal{P}^* \ S \) sub-pattern further in this proof, since any deadlock-inducing subsequences which that sub-pattern would match will be matched by the more “substantial” parts of the patterns (the sub-pattern preceding \(S0 \)).

We now examine the inversions of \(f_2 \) through \(f_{10} \) (corresponding with \(R_2 \) through \(R_{10} \), respectively) and show that \((\pi(a) = \text{false}) \rightarrow ((\pi(b) = \text{false}) \ \forall b \in f_{i}^{-1}(a)) \).

For each, we refer to the same seven-way factoring of the pattern space used to prove Lemma A.2.

\[
f_2^{-1} : x \ P0 \ y = x \ P0^+ \ y
\]
In all cases, additional \(P0 \) are captured in a \(\mathcal{P}^* \). Thus, \(f_2^{-1} \) preserves membership in the pattern space.

\[
f_3^{-1} : C2 \ x = C2 \ P2^* \ x
\]
1,2,5 Additional P2 captured by \(\mathcal{C} \ \mathcal{P}^* \).
3,4,6 Does not apply.
7 Additional P2 captured by \((P1 \ | \ P2)^*\).

Thus, \(f_3^{-1} \) preserves membership in the pattern space.

\[
f_4^{-1} : x \ S2 = x \ P2^* \ S2
\]
Additional P2 captured by \(\mathcal{P}^* \ S \). Thus, \(f_4^{-1} \) preserves membership in the pattern space.

\[
f_5^{-1} : x \ P2 \ y = x \ P2^+ \ y
\]
1,3 Additional P2 captured by \(\mathcal{P}^* \).
2,4 Additional P2 captured by \(\mathcal{P}^* \) and \(P2^+ \).
5,6,7 Additional P2 captured by \(\mathcal{P}^* \) and \((P1 \ | \ P2)^*\).

Thus, \(f_5^{-1} \) preserves membership in the pattern space.

\[
f_6^{-1} : x \ P1^2 \ y = x \ P1^2 \ y
\]
1,2 Additional P1 captured by \(\mathcal{P}^* \).
3,4 Does not apply.
5 Additional P1 captured by combination of \(\mathcal{P}^* \) and \((P1 \ | \ P2)^*\).
6,7 Additional P1 captured by \((P1 \ | \ P2)^* \) or \(\mathcal{P}^* \).

Thus, \(f_6^{-1} \) preserves membership in the pattern space.

\[
f_7^{-1} : C1 \ x = C0 \ P1 \ x
\]
1,2,5 Effect captured by \(\mathcal{C} \ \mathcal{P}^* \).
3 Produces arrangement which matches pattern 1.
4 Produces arrangement which matches pattern 2.
6,7 Produces arrangements which match either pattern 1 or pattern 2.

Thus, \(f_7^{-1} \) preserves membership in the pattern space.

\[
f_8^{-1} : x \ P1^2 \ y = x \ P1 \ P2 \ P1 \ y
\]
1 Produces arrangement which matches pattern 5.
2 Additional P2 captured by \(\mathcal{P}^* \).
3,4 Does not apply.
5 Additional P2 captured by either \(\mathcal{P}^* \) or \((P1 \ | \ P2)^*\).
6,7 Additional P2 captured by \((P1 \ | \ P2)^* \) or \(\mathcal{P}^* \).

Thus, \(f_8^{-1} \) preserves membership in the pattern space.

\[
f_9^{-1} : C1 \ P1 \ x = C1 \ P1^+ \ x
\]
1,2,5 Additional P1 captured by \(\mathcal{P}^* \).
3 Produces arrangement which matches pattern 5.
4,7 Does not apply.
6 Additional P1 captured by \((P1 \ | \ P1)^*\).

Thus, \(f_9^{-1} \) preserves membership in the pattern space.

\[
f_{10}^{-1} : C1 \ P1 \ x = C1 \ P2 \ P1 \ x
\]
1,2,5 Additional P2 captured by \(\mathcal{P}^* \).
3 Produces arrangement which matches pattern 6.
4,7 Does not apply.
6 Additional P2 captured by \((P1 \ | \ P2)^* \).

Thus, \(f_{10}^{-1} \) preserves membership in the pattern space.

Thus, no arrangement which can be reduced to one within the pattern space is itself outside of the pattern space; therefore, no non-member can be reduced to a member, so non-membership is preserved by the ten reductions.
B Web Intra-Cache Consistency

B.1 Reduction Rules

\[R_1 : x \text{ proxy-plain} \ y \triangleright x \ y \]
(plain proxying has no effect upon caching)

\[R_2 : x \text{ cache-plain} \ y \triangleright x \ y \]
(plain proxying has no incremental/marginal effect)

\[R_3 : x \text{ proxy-scrubber} \ y \triangleright x \ y \]
(adjacent scrubbers have no incremental/marginal effect)

\[R_4 : x \text{ cache-plain} \ y \triangleright x \ y \]
(because cache-plain ignored BTC headers, the order of this pair doesn’t matter, so we normalize it)

\[R_5 : x \text{ server-plain} \ y \triangleright x \ y \]
(a scrubbing proxy has no effect upon a plain server, as there is nothing to scrub)

\[R_6 : x \text{ proxy-scrubber} \ y \triangleright x \ y \]
(a scrubbing proxy has no effect upon a cacheless server)

\[R_7 : x \text{ cache-btc} \ y \triangleright x \ y \]
(successive BTC caches add no incremental value)

\[R_8 : x \text{ cache-btcpush} \ y \triangleright x \ y \]
(as \(R_7 \))

\[R_9 : x \text{ cache-btcpush} \ y \triangleright x \ y \]
(as \(R_7 \), and “push” effect passes through the cache-btc)

\[R_{10} : x \text{ cache-btcpush} \ y \triangleright x \ y \]
(as \(R_7 \), and “push” effects are only downstream)

\[R_{11} : x \text{ cache-btcpush} \ y \triangleright x \ y \]
(“push” protocol disables downstream non-BTC caches)

\[R_{12} : x \text{ proxy-scrubber} \ y \triangleright x \ y \]
(no tokens reach the cache-btc, therefore it defaults to acting like a regular cache)

\[R_{13} : x \text{ proxy-scrubber} \ y \triangleright x \ y \]
(as \(R_{12} \))

\[R_{14} : x \text{ cache-plain} \ y \triangleright x \ y \]
(a BTC cache is unaffected by inconsistency introduced by the upstream cache-plain; if it receives tokens, it acts like a correct BTC cache, otherwise it behaves like a cache-plain.)

\[R_{15} : x \text{ cache-btcpush} \ y \triangleright x \ y \]
(as \(R_{14} \))

\[R_{16} : x \text{ server-plain} \ y \triangleright x \ y \]
(a plain server provides no BTC annotations, so cache-btc reverts to cache-plain behavior)

\[R_{17} : x \text{ server-plain} \ y \triangleright x \ y \]
(an immediately-scrubbed BTC server is indistinguishable from a plain server)

B.2 Proof of Closure under Reductions

Lemma B.1. The union of the patterns given in Theorem 4.5 correctly identify all members of \(A_\perp \cap A_\true \).

Proof. The “brute-force” proof of this lemma is trivial, as \(A_{22} \) has two members: server-plain client and server-plain cache-plain client. Among these, server-plain client matches the first pattern which should place it within \(A_\true \); this agrees with a trivial analysis (there are no caches to introduce inconsistencies in either). Similarly, server-plain cache-plain client does not match any patterns, identifying it as a member of \(A_\false \); this agrees with a trivial analysis (there is nothing to prevent the cache-plain agent from introducing inconsistencies, as “plain” caches are able to do by their nature). So the pattern has correctly partitioned \(A_\perp \).

Lemma B.2. The set defined by the union of the three patterns given in Theorem 4.5 is closed under all equivalence rules; i.e., for all \(f_i \) and \(f_i^{-1} \) corresponding with valid \(R_i \), it is true for all \(a \in A \) that \(\pi(a) = \pi(f_i(a)) \) and that \(\pi(a) = \pi(f_i^{-1}(a)) \).

Table 3: BTC \(\pi \) decision rule patterns
Proof: For each of the 22 reductions \(R_1 \) through \(R_{22} \), we examine its meaning with respect to members of each of the three success patterns stated in Theorem 4.5 (re-stated in Table 3).

The 22 reductions are stated below as equivalences, with discussions of their effects (both as reductions and as productions) upon each of the three success patterns. “Does not apply” indicates that neither side of the equivalence corresponds with members of the pattern, which implies that the equivalence preserves non-membership.

\[
R_1 : x \text{ proxy-plain } y = x \ y
\]

1. Effected \text{ proxy-plain } would appear in/be removed from \((\text{proxy-scrubber } | \text{ proxy-plain})^*\) sub-pattern; no effect upon match.

2. Effected \text{ proxy-plain } would appear in/be removed from \(P^*_\text{clean}\) term and \((\text{proxy-plain } | \text{ proxy-scrubber})^*\) sub-pattern; no effect upon match.

3. Effected \text{ proxy-plain } would appear in/be removed from \(P^*_\text{clean}\) and \(P^*\) terms; no effect upon match.

Thus, \(R_1 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_2 : x \text{ cache-plain } cache-plain \ y = x \ cache-plain \ y
\]

1. Does not apply.

2. Effected \text{ cache-plain } would appear in/be removed from \(P^*_\text{clean}\) term; no effect upon match.

3. As under \(R_1 \).

Thus, \(R_2 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_3 : x \text{ proxy-scrubber } proxy-scrubber \ y = x \ proxy-scrubber \ y
\]

1. As under \(R_1 \).

2. Effected \text{ proxy-scrubber } would appear in/be removed from \((\text{proxy-plain } | \text{ proxy-scrubber})^*\) sub-pattern; no effect upon match.

3. Effected \text{ proxy-scrubber } would appear in/be removed from \(P^*\) term; no effect upon match.

Thus, \(R_3 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_4 : x \text{ proxy-scrubber } cache-plain \ y = x \ cache-plain \ proxy-scrubber \ y
\]

1.2 Does not apply.

3. As under \(R_3 \).

Thus, \(R_4 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_5 : server-plain \ proxy-scrubber \ x = server-plain \ x
\]

1. Effected \text{ proxy-scrubber } would appear in/be removed from \((\text{proxy-scrubber } | \text{ proxy-plain})^*\) sub-pattern; no effect upon match.

2.3 Does not apply.

Thus, \(R_5 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_6 : x \ proxy-scrubber \ client = x \ client
\]

1.2 As under \(R_5 \).

3. Effected \text{ proxy-scrubber } would appear in/be removed from \(P^*_\text{clean}\) term; no effect upon match.

Thus, \(R_6 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_7 : x \ cache-btc \ cache-btc \ y = x \ cache-btc \ y
\]

1. Does not apply.

2. Effected \text{ cache-btc } would appear in/be removed from \(P^*_\text{clean}\) term; no effect upon match.

3. Effected \text{ cache-btc } would appear in/be removed from \(P^*_\text{clean}\) and \(P^*\) terms; no effect upon match.

Thus, \(R_7 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_8 : x \ cache-btcpush \ cache-btcpush \ y = x \ cache-btcpush \ y
\]

1. Does not apply.

2.3 As under \(R_7 \), but for \text{ cache-btcpush }.

Thus, \(R_8 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_9 : x \ cache-btcpush \ cache-btc \ y = x \ cache-btcpush \ y
\]

1. Does not apply.

2.3 As under \(R_7 \).

Thus, \(R_9 \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_{10} : x \ cache-btc \ cache-btcpush \ y = x \ cache-btcpush \ y
\]

1. Does not apply.

2.3 As under \(R_8 \).

Thus, \(R_{10} \) and its inverse both preserve membership in \(\mathcal{A}_\text{true} \).

\[
R_{11} : x \ cache-btcpush \ cache-plain \ y = x \ cache-btcpush \ proxy-plain \ y
\]

1. Does not apply.

2. Effected \text{ cache-plain } or \text{ proxy-plain } would be substituted within \(P^*_\text{clean}\) term; no effect upon match.
Thus, R_{12} and its inverse both preserve membership in A_{true}.

$$R_{12} : \ x \ proxy-scubber \ cache-btc \ y = x \ proxy-scubber \ cache-plain \ y$$

1,2 Does not apply.

3 Effected cache-btc or cache-plain would be substituted within P^* term; no effect upon match.

Thus, R_{12} and its inverse both preserve membership in A_{true}.

$$R_{13} : \ x \ proxy-scubber \ cache-btcpush \ y = x \ proxy-scubber \ cache-plain \ y$$

1,2 Does not apply.

3 As under R_{12}, but for cache-btcpush or cache-plain.

Thus, R_{13} and its inverse both preserve membership in A_{true}.

$$R_{14} : \ x \ cache-plain \ cache-btc \ y = x \ cache-btc \ y$$

1 Does not apply.

2 Effected cache-plain would appear in/be removed from P^*_clean term; no effect upon match.

3 Effected cache-plain would appear in/be removed from P^*_clean or P^* terms; no effect upon match.

Thus, R_{14} and its inverse both preserve membership in A_{true}.

$$R_{15} : \ x \ cache-plain \ cache-btcpush \ y = x \ cache-btcpush \ y$$

1 Does not apply.

2,3 As under R_{14}, but for cache-btcpush.

Thus, R_{15} and its inverse both preserve membership in A_{true}.

$$R_{16} : \ server-plain \ cache-btc \ x = server-plain \ cache-plain \ x$$

1,2,3 Does not apply.

Thus, R_{16} and its inverse both preserve membership in A_{true}.

$$R_{17} : \ server-plain \ cache-btcpush \ x = server-plain \ cache-plain \ x$$

1,2,3 Does not apply.

Thus, R_{17} and its inverse both preserve membership in A_{true}.

$R_{18} : server-btc \ cache-btc \ x = server-btc \ x$

1 Reduction does not apply; production results in an arrangement matching pattern 2.

2 For reduction, effected cache-btc may be removed from P^*_clean (no effect upon match), or could be the explicit cache-btc in which case the result is an arrangement matching pattern 1. For production, the effected cache-btc would appear in P^*_clean (no effect upon match).

3 Effected cache-btc would appear in/be removed from P^*_clean term; no effect upon match.

Thus, R_{18} and its inverse both preserve membership in A_{true}.

$$R_{19} : x \ cache-btcpush \ client = x \ cache-btc \ client$$

1 Does not apply

2 Left-to-right production does not apply; right-to-left production results in an arrangement matching pattern 3

3 Left-to-right production results in an arrangement matching pattern 2; for right-to-left production, effected cache-btc and cache-btcpush would be substituted within P^* term (no effect upon match).

Thus, R_{19} and its inverse both preserve membership in A_{true}.

$$R_{20} : server-btc \ proxy-scubber \ x = server-plain \ x$$

1 Effected proxy-scubber would appear in/be removed from (proxy-scubber | proxy-plain)* sub-pattern; no effect upon match.

2,3 Does not apply.

Thus, R_{20} and its inverse both preserve membership in A_{true}.

$$R_{21} : server-btc \ client = server-plain \ client$$

1 Both sides of this rewrite match this pattern.

2,3 Does not apply.

Thus, R_{21} and its inverse both preserve membership in A_{true}.

$$R_{22} : server-btc \ cache-plain \ client = server-plain \ cache-plain \ client$$

1,2,3 Does not apply.

Thus, R_{22} and its inverse both preserve membership in A_{true}.

Thus, the sets A_{false} and A_{true} are each closed under the reductions R_1 through R_{22}. \[\square\]