
Boston University

OpenBU http://open.bu.edu

Computer Science CAS: Computer Science: Technical Reports

2003-12-02

Providing Soft Bandwidth

Guarantees Using Elastic

TCP-based Tunnels

Guirguis, Mina

Boston University Computer Science Department

https://hdl.handle.net/2144/1524

Boston University



Providing Soft Bandwidth Guarantees Using Elastic TCP-based Tunnels ∗

MINA GUIRGUIS AZER BESTAVROS IBRAHIM MATTA
msg@cs.bu.edu best@cs.bu.edu matta@cs.bu.edu

NIKY RIGA GALI DIAMANT YUTING ZHANG
inki@cs.bu.edu gali@cs.bu.edu danazh@cs.bu.edu

Computer Science Department
Boston University

Boston, MA 02215, USA

BUCS-TR-2003-028

Abstract

The best-effort nature of the Internet poses a significant ob-
stacle to the deployment of many applications that require
guaranteed bandwidth. In this paper, we present a novel
approach that enables two edge/border routers—which we
call Internet Traffic Managers (ITM)—to use an adaptive
number of TCP connections to set up a tunnel of desirable
bandwidth between them. The number of TCP connections
that comprise this tunnel is elastic in the sense that it in-
creases/decreases in tandem with competing cross traffic to
maintain a target bandwidth. An origin ITM would then
schedule incoming packets from an application requiring
guaranteed bandwidth over that elastic tunnel. Unlike many
proposed solutions that aim to deliver soft QoS guarantees,
our elastic-tunnel approach does not require any support
from core routers (as with IntServ and DiffServ); it is scal-
able in the sense that core routers do not have to maintain
per-flow state (as with IntServ); and it is readily deployable
within a single ISP or across multiple ISPs. To evaluate our
approach, we develop a flow-level control-theoretic model
to study the transient behavior of established elastic TCP-
based tunnels. The model captures the effect of cross-traffic
connections on our bandwidth allocation policies. Through
extensive simulations, we confirm the effectiveness of our
approach in providing soft bandwidth guarantees. We also
outline our kernel-level ITM prototype implementation.

Keywords: TCP, Congestion Control, Control Theory,
Transient Performance, Simulation.

1. Introduction

The scalability of the Internet hinges on our ability to tame
the unpredictability associated with its open architecture.

∗This work was supported in part by NSF grants ANI-0095988, ANI-
9986397, EIA-0202067 and ITR ANI-0205294, and by grants from Sprint
Labs and Motorola Labs.

Significant and unpredictable changes in network dynam-
ics (and hence performance) make it harder on applications
to adequately perform and even adapt if they are designed
to do so. To that end, significant efforts have been expended
in order to extend the basic best-effort Internet Protocol
(IP) architecture so it provides hard or soft performance
guarantees (on bandwidth, delay, loss, etc.) Such perfor-
mance guarantees are needed by applications sensitive to
Quality-of-Service (QoS), e.g. real-time, video streaming
and games.

The IntServ architecture [2] extends IP to provide hard per-
formance guarantees to data flows by requiring the par-
ticipation of every router in a per-flow resource allocation
protocol. The need to keep per-flow state at every router
presents significant scalability problems, which makes it
quite expensive to implement. To that end, the DiffServ
architecture [15] provides a solution that lies between the
simple but QoS-oblivious IP, and the QoS-aware but ex-
pensive IntServ solution. DiffServ encompasses the scal-
able philosophy of IP [14] in pushing more functionality to-
ward the edges leaving the core of the network as simple as
possible. Nevertheless, DiffServ has not yet been success-
ful in being widely deployed by Internet Service Providers
(ISPs). One reason is that DiffServ solutions still require
some support from core routers (albeit much less than that
of IntServ solutions). For example, the DiffServ solution
proposed in [7] requires the use and administration of a dual
(weighted) Random Early Drop (RED) queue management
in core routers.

In addition to the need of IntServ-based and DiffServ-based
solutions for network/router support, such solutions typi-
cally assume that all flows going through the network are
managed.1 For example, with both IntServ and DiffServ,

1For instance, typical DiffServ solutions assume that all edge routers
perform necessary admission control and packet classification.

1



there are no provisions for ensuring fairness amongst un-
managed best-effort flows to effectively use excess band-
width in the network. We believe this to be a main draw-
back of these approaches as they do not lend themselves to
incremental deployment on a wide-scale.

Guaranteed Throughput over Best-Effort Networks: In
this paper, we investigate a solution that enables the de-
livery of soft bandwidth guarantees through the use of a
best-effort, QoS-oblivious networking infrastructure. Un-
like both IntServ and DiffServ, our approach does not re-
quire any modifications to core routers and is designed in
such a way so as it may co-exist with best-effort traffic.

Our approach to delivering soft bandwidth guarantees be-
tween two points is to adaptively adjust the demand from
the underlying best-effort network so as to match the re-
quested QoS. We do so in a way that is consistent with
the proper use of the network—namely, through the use of
the Transmission Control Protocol (TCP) [3] for bandwidth
allocation. Specifically, to maintain guaranteed bandwidth
between any two points in the network, our approach calls
for the establishment of an elastic tunnel between these
points.2 An elastic tunnel is simply a set of TCP connec-
tions between two points whose cardinality is dynamically
adjusted in real-time so as to maintain a desirable target
bandwidth. Typically, the end-points of this elastic tunnel
would be edge routers within a single ISP, or in different
ISPs; we call these edge routers Internet Traffic Managers
(ITM). We refer to the set of TCP connections making up
an ITM-to-ITM elastic tunnel as the ITM-TCP connections
to distinguish them from user TCP connections originating
and terminating at end-hosts. Figure 1 depicts the general
model we consider throughout this paper.

Example Deployments: As we hinted above, elastic TCP-
based tunnels could be established between ITMs within the
same ISP, or between ITMs in different ISPs. Intra-ISP tun-
nels could be used as a mechanism to satisfy a certain Ser-
vice Level Agreement (SLA) for a given customer on an
existing best-effort (i.e. QoS-oblivious) network infrastruc-
ture. For example, an ISP with a standard best-effort IP in-
frastructure could offer its customers a service that guaran-
tees a minimum bandwidth between specific locations (e.g.,
the endpoints of a Virtual Private Network (VPN) of an or-
ganization). Inter-ISP tunnels could be used as a mech-
anism to satisfy a desirable QoS (namely bandwidth) be-
tween two points without requiring infrastructural support
from the ISPs through which such tunnels will go through
(beyond simple accounting of the aggregate volume of traf-
fic traversing the network).

Notice that for both intra-ISP and inter-ISP deployments,
and since the underlying network infrastructure is assumed

2Note that other performance metrics such as delay and loss can be
controlled through these elastic soft-bandwidth-guaranteed tunnels.

ITM

S1

S2

Sn

R1

R2

Rn

ITM

Bottleneck CCross
Traffic x

Elastic Tunnel of m Flows

Figure 1: Elastic TCP-based Tunnel between ITMs

to be a common IP infrastructure, it is mandatory that the
envisioned “elasticity” be implemented in a manner that
will not trigger network mechanisms that protect against
unresponsive flows (e.g., TCP unfriendly flows). In other
words, to a core router, the constituent flows of an elastic
tunnel must be indistinguishable from other TCP flows.

Without loss of generality, and for ease of presentation, in
this paper we will focus on intra-ISP tunnels, with the un-
derstanding that all our results and observations are appli-
cable to inter-ISP settings.

Overview of Model and Approach: Going back to our
model in Figure 1, ITMs classify and manage traffic pass-
ing through them in a manner that is completely transparent
from the original sending and receiving end-hosts. Con-
sider n regular user connections between sending and re-
ceiving end-hosts, all passing through two ITMs. Again,
one can think of these two ITMs as the gateways in a VPN,
for example. Our main goal is to provide a soft-bandwidth-
guaranteed tunnel for these user flows over an Internet path
of bottleneck capacity C, which is also shared by another
set of x flows, representing cross traffic. In this paper, we
only consider user and cross-traffic connections to be TCP
connections since TCP traffic is measured as constituting
the majority of the bytes flowing over the Internet today
[1]. These x cross-traffic connections present a challenge:
as x keeps changing, the bandwidth allocation for the n
user-TCP flows keeps changing in tandem. So an important
question is whether it is possible to “counter” the change in
x so as to ensure that the n user flows are able to maintain a
desirable bandwidth.

Clearly without the intervention of ITMs, the answer to the
above question is no. When different flows share a link,
the effect of each individual flow (or an aggregate of flows)
affects the rest since all are competing for a fixed amount
of resources. However, if the ITMs dynamically maintain
a number m of open TCP connections between them, they
can provide a positive pressure that would equalize the pres-
sure caused by the cross-traffic connections, if the latter oc-
curs. Since m will be changing over time, we describe the
ITM-to-ITM tunnel as elastic. Note that the source ITM can
decide to reduce m (i.e. relieve pressure) if x goes down—
the reason is that as long as the tunnel is achieving its tar-
get bandwidth, releasing extra bandwidth should improve

2



the performance of cross-traffic connections, which is in the
spirit of best-effort networking.

To illustrate our notion of elastic tunnels and the issues in-
volved, consider an ITM-to-ITM tunnel going through a
single bottleneck link. Under normal load, the behavior of
the bottleneck can be approximated by Generalized Proces-
sor Sharing (GPS) [11], i.e. each TCP connection receives
the same fair share of resources. Thus, each TCP connec-
tion ends up with C

m+x bandwidth. This, in turn, gives the m
ITM-TCP flows, or collectively the elastic ITM-to-ITM tun-
nel, a bandwidth of Cm

m+x . As the source ITM increases m
by opening more TCP connections to the destination ITM,
the tunnel can grab more bandwidth. If x increases, and the
ITMs measure a tunnel’s bandwidth below a target value
(say B∗), then m is increased to push back cross-traffic con-
nections. If x decreases, and the ITMs measure a tunnel’s
bandwidth above B∗, then m is decreased for the good of
cross-traffic connections. It is important to note that the
source ITM should refrain from unnecessarily increasing
m, thus achieving a tunnel’s bandwidth above B∗, since an
unnecessary increase in the total number of competing TCP
flows reduces the share of each connection and may cause
TCP flows to timeout leading to inefficiency and unfairness
[10]. The source ITM also has the responsibility of schedul-
ing user packets coming on the n user connections over the
tunnel, i.e. the ITM-TCP connections.

Paper Overview and Outline: In this paper, we develop a
control-theoretic model to capture the flow-level dynamics
of our model in Figure 1. We study the effect of different
types on controllers as to optimize the transient behavior of
established soft-bandwidth-guaranteed TCP-based tunnels.
We confirm the premise of our approach by extensive ns-2
[5] simulations. We also outline our kernel-level ITM pro-
totype implementation.

The rest of the paper is organized as follows. In Section 2,
we present our design goals, and a detailed view of our pro-
posed architecture and its basic components. In Section 3,
we present a flow-level control-theoretic model focusing
on the transient behavior of our elastic TCP-based tunnels.
Section 4 defines our performance measures, describes our
simulations through ns-2 [5], as well as discusses imple-
mentation issues. We revisit related work in Section 5. Sec-
tion 6 concludes with a summary and future work.

2. Architecture for Elastic TCP-based
Tunnels

In this section, we describe the main design goals and com-
ponents of our architecture for soft-bandwidth-guaranteed
tunnels.

2.1 Design Goals

The main goals of our architecture, in addition to providing
soft bandwidth guarantees, are: (1) it should react to con-
gestion signals from the network; (2) it should be friendly
to other (cross-traffic) flows sharing network resources; (3)
in case of severe congestion, it shouldn’t over-react causing
more congestion; and (4) it should minimize the creation
and termination of the ITM-TCP connections that consti-
tute the elastic tunnel.

Such goals are crucial for a healthy operation of the Inter-
net. Often times, such goals would be conflicting. For ex-
ample, due to the nature of cross-traffic flows, a degradation
of the currently measured tunnel’s bandwidth could occur.
This requires an increase in the number of ITM-TCP con-
nections, however, this reaction to such degradation should
be smooth so as to balance the conflicting goals of main-
taining the target bandwidth and being mindful of current
congestion conditions.

Since our approach uses regular TCP flows between the
ITMs, these flows react to congestion signals in the same
way as regular TCP connections, thus serving our first two
goals. Severe congestion situations could be detected, for
example, by the tendency of TCP flows to timeout or to
adapt to a small transmission window size. Obviously we
would like to avoid such severe congestion conditions early
before they happen. Thus, our third goal is achieved through
preventing any creation of new ITM-TCP connection if ex-
isting ones are observed to have their congestion windows
dropping below a certain threshold wmin. This in turn
will prevent timeouts from occurring to the ITM-TCP flows
that constitute the elastic tunnel, as well as avoid causing
more congestion in the network. Finally, our fourth goal
is achieved through careful adjustment of the transient be-
havior of our elastic tunnels. We discuss in more detail
this transient performance when discussing the design of
the controller component of our architecture.

2.2 Soft-Bandwidth-Guaranteed Tunnels

For the purpose of providing soft-bandwidth-guaranteed
tunnels, the following components should be implemented
at the origin ITM:

Monitor: The monitor component tracks the bandwidth
grabbed by the elastic TCP-based tunnel established be-
tween the origin ITM and the destination ITM. This is cal-
culated through measuring the rate of received bytes for all
m ITM-TCP connections. The monitor measures the band-
width over a measurement period (MP). Since MP should be
large enough to capture the average behavior of the aggre-
gate throughput, it should be in the order of few congestion

3



epochs.3

Controller: Based on the error signal between the current
bandwidth allocation grabbed by the m ITM-TCP flows and
the desired bandwidth target B∗, the origin ITM invokes a
controller which adjusts the number of open connections,
by closing existing ITM-TCP connections or opening new
connections or keeping them unchanged. Every time the
controller is invoked, the monitor is queried for the mea-
sured tunnel’s bandwidth. The controller is invoked every
control period (CP), which we take to be equal to MP. We
discuss the performance of different types of controller in
Section 3.

Scheduler: The scheduler component is responsible for al-
locating the bandwidth acquired by the elastic TCP-based
tunnel among the n user-TCP flows. Many scheduling poli-
cies can be used, e.g. WFQ [11]. Through the use of a WFQ
scheduling algorithm, we can provide a weighted fair al-
location of the achieved tunnel’s bandwidth among differ-
ent hosts and their applications, thus meeting their QoS re-
quirements. This weighted allocation of tunnel’s bandwidth
and its implication of application performance is outside the
scope of this paper. Our main focus here is how to achieve
a desired tunnel’s bandwidth, rather than how to re-allocate
it among individual user flows. The scheduler is called on
every user packet arrival.

Overall Architecture: Figure 2 shows the basic compo-
nents for each entity in our architecture—the TCP/IP stack
is shown for the sending and receiving end-hosts, and the
origin and destination ITMs.

When a user’s packet crosses the origin ITM, it first passes
through the IP layer. If the packet belongs to a customer of
the established elastic tunnel, the origin ITM removes the IP
packet from the TCP/IP stack and places it in the scheduler
buffer waiting to be scheduled over the m ITM-TCP flows.4

The origin ITM elastic-tunnel application, on a non-empty
scheduler buffer, would take the packet and send it out over
one of the m ITM-TCP connections. To do so, the IP packet
is encapsulated inside a TCP packet, which in turn gets en-
capsulated inside a new IP packet where the source IP ad-
dress is that of the origin ITM and the destination IP address
is that of the destination ITM.

Upon the receipt of an IP packet destined to the destina-
tion ITM, the packet passes normally through the TCP/IP
stack, removing the IP header and then removing the TCP
header. Thus, the user’s original IP packet is delivered

3A congestion epoch is defined to be the time it takes for the trans-
mission window of a TCP connection to linearly increase until a packet
loss due to congestion occurs [8]. A multiple of congestion epochs should
then reflect an average long-term behavior rather than capturing short-term
fluctuations in sending rate.

4If the packet does not belong to a customer of an established elastic
tunnel, the packet would be normally routed to its next IP hop based on its
destination IP.

to the elastic-tunnel application running on the destination
ITM. The elastic-tunnel application then passes the packet
directly to the IP layer to be sent out. The exact Application
Layer Interface (API) is described in Section 4.

It is worth noting that different techniques (e.g. zero copy
[4]) exist to overcome inefficiencies of crossing stack
boundaries. We report on the performance of ITM kernel-
level implementations in another paper. In this paper, we
focus on the evaluation of different controllers for the elas-
ticity of the ITM-to-ITM tunnel and its effectiveness in pro-
viding a soft bandwidth guarantee.

3. Control-theoretic Analysis

In this section, we develop a control-theoretic model of dif-
ferent controllers employed at an origin ITM. Such con-
troller determines the degree of elasticity of ITM-to-ITM
TCP-based tunnels, thus it determines the transient and
steady-state behavior of our soft-bandwidth-guaranteed ser-
vice.

Naive Control: This naive controller measures the band-
width b′ grabbed by the current m′ ITM-TCP connections.
Then, it directly computes the quiescent number m̂ of ITM-
TCP connections that should be open as:

m̂ =
B∗

b′
m′ (1)

Clearly, this controller naively relies on the previously mea-
sured bandwidth b′ and adapts without regard to delays in
measurements and possible changes in network conditions,
e.g. changes in the amount of cross traffic. We thus in-
vestigate general well-known controllers which judiciously
zoom-in toward the target bandwidth value. To that end, we
develop a flow-level model of the system dynamics. The
change in the bandwidth grabbed b(t) by the m(t) ITM-
TCP flows (constituting the elastic ITM-to-ITM tunnel) can
be described as:

ḃ(t) = α[(C − B∗)m(t) − B∗x(t)] (2)

Thus, b(t) increases with m(t) and decreases as the number
of cross-connections x(t) increases. α is a constant that
represents the degree of multiplexing of flows and we chose
it to be the steady-state connection’s fair share ratio of the
bottleneck capacity. At steady-state, ḃ(t) equals zero, which
yields:

B∗ =
Cm̂

(x̂ + m̂)
(3)

where m̂ and x̂ represent the steady-state values for the
number of ITM-TCP and cross-traffic flows, respectively.

4



Sender’s ITM Application

TCP

IP

Sender’s ITM TCP/IP stack

Application

TCP

IP

Data

IP

Data TCP

Data TCP

Sender’s TCP/IP stack

Application

TCP

IP

Data

IP

Data TCP

Data TCP

Receiver’s TCP/IP stack

IPData TCP

Scheduler Buffer

Scheduler

IPData TCPIPData TCP TCP IP

Receiver’s ITM Application

TCP

IP

Receiver’s ITM TCP/IP stack

Forwarding
agent

Figure 2: Overall Architecture for Elastic TCP-based Tunnels

Based of the current bandwidth allocation b(t) and the tar-
get bandwidth B∗, an error signal e(t) can be obtained as:

e(t) = B∗ − b(t) (4)

P and PI Control: A controller would adjust m(t) based
on the value of e(t). For a simple Proportional controller
(P-type), such adjustment can be described by:

m(t) = Kpe(t) (5)

P-type controllers are known to result in a non-zero steady-
state error. To exactly achieve the target B∗ (i.e. with zero
steady-state error), a Proportional-Integral (PI-type) con-
troller can be used:

m(t) = Kpe(t) + Ki

∫
e(t) (6)

Figure 3 shows the block diagram of our elastic-tunnel
model. In the Laplace domain, denoting the controller
transfer function by C(s), the output b(s) is given by:

b(s) =
C(s)G1(s)

1 + C(s)G1(s)
B∗(s) +

G2(s)

1 + C(s)G1(s)
x(s) (7)

where G1(s) is given by:

G1(s) =
β

s
(8)

where β = α(C − B∗). G2(s) is given by:

G2(s) =
−αB∗

s
(9)

where γ = −αB∗. For the P-controller, from Equation (5),
C(s) is simply Kp. For the PI-controller, from Equation (6),

C(s) equals Kp + Ki

s . Thus, the transfer function b(s)
B∗ in

the presence of a P-controller is given by:

b(s)
B∗ =

Kpβ

s + Kpβ
(10)

The system with P-controller is always stable since the root
of the characteristic equation (i.e. the denominator of the
transfer function) is negative, given by −Kpβ. In the pres-

ence of a PI-controller, the transfer function b(s)
B∗ is given

by:

b(s)
B∗ =

Kpβs + Kiβ

s2 + Kpβs + Kiβ
(11)

One can choose the PI-controller parameters Kp and Ki to
achieve a certain convergence behavior to the target band-
width B∗. We next define transient performance measures
to assess such convergence behavior.

5



- C(s) G1(s) +

G2(s)

B*(s) e(s) m(s)

x(s)

b(s)

Controller

Figure 3: Block Diagram of Our Elastic-Tunnel Model

3.1. Transient Performance Metrics

Transient behavior represents the system’s response which
decays with time. In the design of reliable systems, it is of
extreme importance that transient response meets certain re-
quirements such as reasonable settling time and overshoot.
Often times, the transient response is obtained by subjecting
the system to an impulse or a step input and observing the
output(s). One has to guarantee that the response of the sys-
tem to specific inputs does not render the system unstable
or pushes it away from its intended target. For our specific
elastic TCP-based tunneling system, we define our perfor-
mance metrics as follows:

• Settling Time: The time taken for our system to re-
spond to a step input in the cross traffic or target band-
width until it stabilizes once again.

The system is assumed to have stabilized (in steady
state) if the error (the difference between target and
measured bandwidth) is bounded for at least 2 seconds.
Specifically, if e(t) is the error at time t then the system
is considered in steady state if

∀t ∈ [t0, tk] where tk−t0 ≥ 2secs, b̄−δ ≤ e(t) ≤ b̄+δ,

where b̄ is the average bandwidth measured during this
period and δ is a constant. We chose δ = B∗

20 .

• Maximum Overshoot: The largest overshoot value
experienced by the controller in terms of extra ITM-
TCP connections opened or extra bandwidth allocated.

• Stability in Number of ITM-TCP Flows: The vari-
ability in number of ITM-TCP flows reflects the over-
head of setting up and tearing down ITM-TCP connec-
tions within the elastic tunnel.

3.2. Transient Performance Results

Figure 4 shows the step response of the transfer function
given in Equation (7). The left column shows the response
to a step change in the target bandwidth, while the right

- C(s) G1(s) +

G2(s)

H(s)

B*(s) e(s) m(s)

x(s)

b(s)

Controller

Feedback Delay

Figure 5: Elastic-Tunnel Model (with Feedback Delay)

column shows the response to a step change in the cross-
traffic. Figure 4(a), for the P-controller, shows that while
the response could be acceptable due to a step change in the
reference bandwidth, it fails to remove the steady-state error
(non-zero amplitude) obtained from the step change in the
cross-traffic. Figures 4(a) and (b) show the response due to
the PI-controller. One can see that through a careful choice
of Kp and Ki, the transient response can be adjusted. No-
tice that with a PI-controller, our elastic-tunneling system
can reach the target bandwidth with zero steady-state error
in response to a step change in cross-traffic.

3.3. Feedback Delay

So far in our analysis, we have ignored the feedback delay
which is inherent in the design of any control system that
tries to adjust its signal through a delayed feedback loop.

Figure 5 augments the block diagram of Figure 3 with feed-
back delay denoted by H(s). This feedback delay arises
either due to delayed mesurements of bandwidth and/or de-
layed response of the system as a result of applying new
control. For example, when a new ITM-TCP connection
is opened, it doesn’t get its steady-state throughput instan-
taneously, rather after some delay (say τ ). Thus, H(s) is
given by:

H(s) = e−τs (12)

where τ represents the feedback time delay. For small τ ,
the above equation can be approximated by:

H(s) = 1 − τs (13)

If we are using a PI-controller, the characteristic equation in
the presence of feedback delay becomes:

s2(1 − βτKp) + s(Kpβ − βτKi) + βKi (14)

Figure 6 shows the response of the PI-controller to a step
change in the target bandwidth. As the feedback delay τ
increases, the system may not converge to the target band-
width.

6



Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Bandwidth Step Response

Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5
−2.5

−2

−1.5

−1

−0.5

0

Cross-traffic Step Response
(a) Proportional controller with Kp = 0.1

Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Target Bandwidth Step Response

Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5

−0.6

−0.4

−0.2

0

0.2

Cross-traffic Step Response
(b) Proportional Integral controller with Kp = 0.2 and Ki = 1

Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

Target Bandwidth Step Response

Step Response

Time (sec)

A
m

pl
itu

de

0 2 4 6 8 10 12

−0.2

−0.1

0

Cross-traffic Step Response
(c) Proportional Integral controller with Kp = 1 and Ki = 0.5

Figure 4: Transient Analysis of our Elastic-Tunnel Model

7



Step Response

Time (sec)

A
m

pl
itu

de

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Target Bandwidth Step Response

Step Response

Time (sec)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

Response with Feedback Delay
(d) Proportional Integral controller with Kp = 0.01 and Ki = 0.02

Figure 6: Transient Analysis in the presence of Feedback Delay

4. Simulation Results

In this section, we present results from extensive ns-2 [5]
simulation experiments. These results confirm our analysis
and demonstrate the effectiveness of our proposed architec-
ture in establishing elastic soft-bandwidth-guaranteed tun-
nels. We then expand Section 2 by outlining more details
on our kernel-level ITM prototype implementation.

4.1. Simulation Experiments

Topology Setup: Figure 1 depicts the topology under con-
sideration. The bottleneck link has 16Mb/s (2000 pkts

sec ) ca-
pacity and a 2-ms one-way propagation delay. We vary the
propagation delay on the access links so different flows have
different round-trip times. The bottleneck link is shared be-
tween ITM-TCP connections and cross-traffic connections
and employs RED queue management [6].5 All connec-
tions are considered to have unlimited data to send and they
all use TCP Reno. The buffer size is chosen to be 250 pack-
ets. All packets are 1000 bytes in size. RED’s minimum
and maximum buffer thresholds are set to 50 and 120 pack-
ets, respectively. The RED’s weight parameter was set to
0.0001 and Pmax was set to 0.1. We focus on the transient
behavior of different controllers. We ignore the first 20 sec-
onds of the simulation time as a warm-up period. The Mea-
surement Period (MP) as well as the Control Period (CP)
are chosen to be 2 seconds.

Experiment 1: Our first experiment illustrates the chal-
lenges we are faced with when we don’t exercise any con-
trol over the number of ITM-TCP connections between the

5We note that our elastic-tunnel service does not require any spe-
cific queue management policy. Specifically, core routers may use sim-
ple FCFS (First-Come-First-Serve) queues. In practice, randomization
comes from unsynchronized arrivals/departures of flows/packets and FCFS
queues would serve TCP flows in a processor-sharing fashion, giving each
flow its fair share of the resources.

ITMs. This scenario resembles the case when the ITMs are
not present and the user TCP connections are left to com-
pete for themselves against cross-traffic. We start our ex-
periment with 10 ITM-TCP connections sharing the bot-
tleneck along with 10 cross-traffic TCP connections. At
time 50, we introduce a step increase of 20 in the number
cross-traffic connections—that is an increase from 10 con-
nections to 30 connections. Figure 7(a) shows the aggregate
bandwidth acquired by the ITM-TCP connections. We plot
both, the bandwidth allocated for a single simulation run as
well as the average bandwidth allocated averaged over 5 in-
dependent runs. One can see that such a step increase in
the number of cross-traffic connections degrades the total
bandwidth allocated to the ITM-TCP connections. This is
exactly the response of an open-loop system where the num-
ber of ITM-TCP connections is not adapted in response to
changes in the amount of cross-traffic.

Experiment 2: In this experiment, we investigate the use
of the Proportional Controller. With the same setup as ex-
periment 1, the soft bandwidth target is set to 900 pkts

sec and
Kp is chosen to be 0.01. Figure 7(b) shows the aggregate
bandwidth acquired by the ITM-TCP connections. One can
see that the P-controller fails to adjust the bandwidth of the
elastic tunnel to the target value. Moreover, it never elim-
inates the steady-state error, either before or after applying
the step increase in the number of cross-traffic connections.
This confirms our analysis shown in Figure 4(a).

Experiment 3: We repeat the same above experiment ex-
cept that we use the naive controller to adapt the num-
ber of ITM-TCP connections. Figure 8(a) shows the ag-
gregate bandwidth acquired by the ITM-TCP connections
when subjected to an increase in the (desired) target band-
width from 900 pkts

sec to 1200 pkts
sec at time 50. Figure 8(b)

shows the case of a step increase in the number of cross-
traffic connections from 10 to 30 at time 50. Since the naive
controller tries to adjust the number of ITM-TCP connec-

8



20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW

(a) Cross-traffic Step Response

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(b) Cross-traffic Step Response

Figure 7: (a) No Control is applied; (b) Proportional Controller is used.

tions in a single step of control, its behavior is rather instan-
taneous. One can see how it can adapt quickly to the change
in the target bandwidth and/or the number of cross-traffic
connections. While such behavior may seem appropriate
for general use of the naive controller, this controller has
its own drawbacks. In particular, it is problematic in cases
where there is a significant and continuous change in net-
work conditions. This is the subject of our next experiment.

Experiment 4: The purpose of this experiment is to demon-
strate the drawbacks of the naive controller through a more
dynamic behavior of cross-traffic connections. Specifically,
cross-traffic connections start and stop sending data every
10 seconds starting at time 50. This has the effect of a
square signal in the data sent by the cross-traffic. Fig-
ure 9(a) shows the behavior of the elastic tunnel under these
square signals in the cross-traffic. Figure 9(b) shows the
number of open ITM-TCP connections at any instant of
time. As illustrated, the naive controller doesn’t try to sta-
bilize the number of open ITM-TCP connections which is
one of our main design goals. Rather the naive controller
tends to open and close a large number ITM-TCP connec-
tions at every control period. Figures 9(c) and (d) show the
behavior of the PI-controller. One can see that it opens less
ITM-TCP flows than the naive controller. The maximum
number of open ITM-TCP connections at any time was 20
as opposed to 40 connections for the naive controller. Also,
the bandwidth acquired by the elastic ITM-to-ITM tunnel
tends to oscillate less than in the naive controller case.

Experiment 5: As our previous control-theoretic analysis
(cf. Section 3) has indicated, through adjusting the values of
Kp and Ki, the overall behavior of the PI-controller can be
changed. In this experiment, we point out the two cases of
underdamped and overdamped responses shown by analysis
in Figures 4(b) and (c), respectively. As in previous exper-
iments, we subject the elastic ITM-to-ITM tunnel (i.e. the

constituent ITM-TCP connections) to a step increase in the
target bandwidth from 900 pkts

sec to 1200 pkts
sec , and a step in-

crease in the number of cross-traffic TCP connections from
10 to 30, both applied at time 50. Figure 10 (top row) de-
picts the overdamped case (Ki was chosen to be 0.01) while
Figure 10 (bottom row) depicts the underdamped case (Ki

was chosen to be 0.08). Figure 10(c) and (f) zoom-in at the
interval of time between 50 and 70. We observe the exact
same trends as shown by analysis in Figures 4(c) and (b),
respectively (overdamped case and underdamped case). For
the underdamped case (bottom row), having a larger value
of Ki when multiplied by the error signal tends to make
the PI-controller more aggressive in terms of the number of
ITM-TCP connections to open or close. That is why it tends
to be in an unstable (limit-cycle) regime before time 50. In-
terestingly enough, this trend matches the analysis we pro-
vided in Figure 6 in the presence of feedback delay. When
the system is underdamped, it tends to overshoot, however
if feedback delay is present, it tends to drive the system into
a limit cycle regime. After time 50, the oscillations are re-
duced significantly. This is due to the decrease of the gain
of the whole system since now each connection fair share
is less due to the increase in the number of competing TCP
connections. This experiment shows that an overdamped
system (first row) is a good choice to be used in practice—
it behaves gracefully and doesn’t tend to overshoot.

Another Setup: For the following two experiments we
change the bottleneck link capacity to 50 Mb/s (6250pkts

sec ).
The round-trip propagation delay was chosen to be 100
msec. The Measurement Period (MP) as well as the Control
Period (CP) are chosen to be 1 second. The results show
that the effectiveness of our elastic-tunnel approach is in-
sensitive to different bandwidth/delay values.

Experiment 6: In this experiment, we start with a target
bandwidth of 1875 pkts

sec . At time 30, the target bandwidth

9



20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(a) Target Bandwidth Step Response

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(b) Cross-traffic Step Response

Figure 8: Naive Controller

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(a) Cross-traffic Square Response

20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Time (sec)

N
um

be
r 

of
 fl

ow
s

(b) Cross-traffic Square Response

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(c) Cross-traffic Square Response

20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Time (sec)

N
um

be
r 

of
 fl

ow
s

(d) Cross-traffic Square Response

Figure 9: (Top row) Effect of dynamic cross-traffic on the Naive Controller; (Bottom row) Effect of dynamic cross-traffic on
the PI Controller

10



20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(a) Target Bandwidth Step Response

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(b) Cross-traffic Step Response

50 55 60 65 70
300

400

500

600

700

800

900

1000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(c) Cross-traffic Step Response

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(d)Target Bandwidth Step Response

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(e) Cross-traffic Step Response

50 55 60 65 70
300

400

500

600

700

800

900

1000

1100

1200

Time (sec)

B
an

dw
id

th
 (

pk
ts

/s
ec

)

Average BW
Individual BW
Target BW

(f) Cross-traffic Step Response

Figure 10: Proportional Controller (first row) Ki is set to 0.01 and (second row) Ki is set to 0.08

0 20 40 60 80 100
0

500

1000

1500

2000

2500

time(sec)

ba
nd

w
id

th
(p

kt
s/

se
c)

KI=0.0048 − KP=0.0012

(a) Dynamic Target Bandwidth Response

0 20 40 60 80 100
0

500

1000

1500

2000

2500

time(sec)

ba
nd

w
id

th
(p

kt
s/

se
c)

KI=0.004 − KP=0.0014

(b) Dynamic Cross-traffic Response

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

time(sec)

#f
lo

w
s

Naive
PI
No Control
Cross−traffic

(c) Number of open ITM-TCP flows

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

time(sec)

ba
nd

w
id

th
(p

kt
s/

se
c)

Naive
PI
No Control

(d) Aggregate acquired Bandwidth

Figure 11: Results for different controllers in a more dynamic environment

11



decreases to 1250 pks
sec . At time 60, it is further decreased

to 625 pks
sec . The cross-traffic is static. Figure 11(a) shows

the bandwidth acquired by our elastic tunnel with a PI-
controller, which is seen to adapt very well.

We repeat the experiment, this time changing over time
the number of cross-traffic flows. In particular, we start with
10 cross-traffic flows; at time 30, the number of cross-traffic
flows is increased to 30; and finally at time 60, it is increased
to 50. The target bandwidth is static. Figure 11(b) shows
how the PI-controller stabilizes the system as expected from
the analysis of Section 3.

Experiment 7: Here, we move to a more dynamic environ-
ment. In this experiment, we compare the naive controller,
the PI and the case where no control is applied. In this sce-
nario we change the cross-traffic over time as shown in Fig-
ure 11(c). When no control is applied, as one would expect,
the aggregate bandwidth obtained by user-TCP flows is very
sensitive to changes in the cross-traffic (Figure 11(d)). The
naive controller, despite the high overshoots, finally stabi-
lizes the system. Figure 11(c) shows the oscillating be-
havior of the naive controller. It is undesirable to errati-
cally open and close ITM-TCP connections and therefore
this controller is not an optimal choice for highly dynamic
environments. On the contrary, the PI-controller stabilizes
the achieved bandwidth around the desired target in a less
aggressive (smooth) manner.

4.2. Kernel Level Implementation

We implemented an event-driven API to our ITM architec-
ture. Applications (both kernel and user level) wishing to
use the ITM need to register with a core kernel module, pro-
viding pointers to five functions: (1) a classification func-
tion that specifies how to identify a class of packets or flows;
(2) a logging function that specifies how to log data and
update class structures; (3) a processing function that de-
termines the action associated with each event; (4) a class-
update function which defines how a class should be up-
dated based on the logged data; and (5) a controller-update
function which allows for updating the controller parame-
ters based on system state. These functions are all called in
this order, when the event an application registered for oc-
curs. Events can either be synchronous (e.g. packet arrival
at a specific layer) or asynchronous (e.g. periodic). In the
case of our elastic-tunnel application studied in this paper,
for example, asynchronous events occur due to periodic up-
dates of the acquired tunnel’s bandwidth measured by the
monitor component and periodic updates of the number of
tunnel’s constituent ITM-TCP connections as determined
by the controller component.

The base of the system is an ITM kernel module, which
communicates with the TCP/IP stack to retrieve packets.

The module keeps a list registered applications, and would
forward packets to them according to their specifications.
A control utility enables adding kernel modules and user-
level components, each can be turned on or off according to
need. This design results in a system that is extensible and
easy to deploy. Preliminary results from our Linux-based
prototype confirm the basic premise of our elastic-tunnel
application. Figure 12 shows how the allocated bandwidth
drops at time 20 with increasing cross traffic. This drop
triggers the (naive) controller to create new ITM-TCP man-
agement connections to reach the desired target bandwidth.
We report on the full performance of our elastic-tunnel ap-
plication within this generalized ITM-API in a future paper.

Figure 12: Controller adapts to Target Bandwidth on Linux
Prototype

5. Related Work

QoS Frameworks: Providing Quality-of-Service (QoS) to
data flows has been one of the important and challeng-
ing problems of interest to the Internet research commu-
nity. Proposed QoS frameworks can be taxonomized along
a number of dimensions based on (1) the type of guaran-
tees they extend, e.g., hard versus soft, (2) the scalabil-
ity of the solution, (3) the infrastructural network support
needed, e.g., core router functionalities, and (4) the com-
patibility with best-effort services. IntServ [2] frameworks
are capable of providing hard guarantees to data flows. This
comes at the cost of maintaining per-flow state at every
router along the path. The complexity of such architectures
raises scalability concerns and some see such complexity
contradicting the intended open architecture of the Internet.
With the correct admission control and policing, IntServ
frameworks could co-exist with other solutions as well as
other best-effort services. On the other hand, DiffServ [15]
frameworks are capable of providing soft guarantees. They
still require some support from the network and they tend
to provide a more scalable design that is more consistent

12



with the scalable design philosophy of IP, pushing function-
ality toward the end-hosts. However it is unclear how well
such frameworks would interact with other solutions as well
as other best-effort services. Like DiffServ, our framework
achieves soft guarantees. Contrary to DiffServ, our frame-
work doesn’t require any network support. Moreover, our
proposed framework can co-exist with other solutions, since
it is based on a TCP friendly application. It is completely
transparent to end-systems.

End-to-End Adaptation: Other works have focused on
developing end-system protocols that try to adapt the re-
sources provided by the network to the needs of the ap-
plication. For example, some studies (e.g., [8]) proposed
different control rules for TCP behavior. By applying the
right control rule, other properties can be achieved such as
smoothness, aggressiveness and convergence, while main-
taining friendliness to co-existing TCP traffic. This is par-
ticularly useful for streaming, real-time and gaming appli-
cations. Other studies (e.g., [9, 13, 12]) proposed that modi-
fication in transmission control rules be done on aggregates
rather than individual flows, with the notion of flows shar-
ing congestion information. For example, in [9], congestion
information from a separate management connection (or us-
ing an architecture such as the Congestion Manager [13])
is used to regulate the aggregate traffic. Other techniques,
such as Aggregate TCP (ATCP) [12] provides a congestion
window lookup for an appropriate window size for new con-
nections to start with. However, none of these techniques
considered providing flows with a guaranteed service, but
rather making flows adapt to available resources more ade-
quately.

6. Summary

We presented a framework for providing soft bandwidth-
guarantees over a best-effort network. Such a guarantee
is provided through the use of an elastic TCP-based tun-
nel running between ITMs. The target bandwidth could be
dynamically adjusted to meet the needs of applications. The
elasticity of the established tunnel is achieved by adjusting
the number of open TCP connections between ITMs to a
quiescent number, large enough to push back against cross-
traffic. This is performed in a completely transparent way
from the sending and receiving end-hosts. Moreover, our
framework allows for the QoS support of individual appli-
cations by preferentially allocating the bandwidth provided
by the established elastic tunnel.

We presented simulation results showing the effective-
ness of our approach in allocating the target bandwidth.
Moreover, our approach remains responsive to congestion
and degrades gracefully in severe congestion cases. Im-
plementation details are also discussed and preliminary re-

sults on our Linux prototype are consistent with our control-
theoretic analysis and simulations.

Acknowledgment: We would like to thank Sean Chen and
Leonid Veytser for their contributions to the kernel-level im-
plementation, and Rich West for his feedback.

References

[1] Measurement studies of end-to-end congestion control in the
internet. http://www.icir.org/floyd/ccmeasure.html.

[2] R. Braden, D. Clark, and S. Shenker. Integrated services in
the Internet architecture: an overview. RFC 1633, June 1994.

[3] V. Cerf and L. Kahn. A Protocol for packet Network Inter-
connections. IEEE Transactions on Communications, (5),
1974.

[4] J. Chu. Zero-copy TCP in solaris. In USENIX Annual Tech-
nical Conference, pages 253–264, 1996.

[5] E. Amir et al. UCB/LBNL/VINT Network Simulator - ns
(version 2). Available at http://www.isi.edu/nsnam/ns/.

[6] S. Floyd and V. Jacobson. Random Early Detection Gate-
ways for Congestion Avoidance. IEEE/ACM Transactions
on Networking, 1(4):397–413, August 1993.

[7] L. Guo and I. Matta. The War between Mice and Elephants.
In Proceedings of ICNP’2001: The 9th IEEE International
Conference on Network Protocols, Riverside, CA, November
2001.

[8] S. Jin, L. Guo, I. Matta, and A. Bestavros. A spectrum of
TCP-friendly window-based congestion control algorithms.
IEEE/ACM Transactions on Networking (TON), 11(3), June
2003.

[9] H. Kung and S. Wang. TCP trunking: Design, implemen-
tation, and performance. In Proceedings of IEEE ICNP,
November 1999.

[10] R. Morris. TCP behavior with many flows. In Proceedings
of IEEE ICNP, Atlanta, GA, October 1997.

[11] A. Parekh and R. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: the
single-node case. IEEE/ACM Transactions on Networking
(TON), 1(3), June 1993.

[12] P. Pradhan, T. Chiueh, and A. Neogi. Aggregate TCP conges-
tion control using multiple network probing. In Proceeding
of the 20th International Conference on Distributed Comput-
ing System, April 2000.

[13] H. Balakrishnan H. S. Rahul and S. Seshan. An integrated
congestion management architecture for internet hosts. In
Proceedings of ACM SIGCOMM, September 1999.

[14] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments
in system design. ACM Transactions on Computer Systems,
2(4):277–288, November 1984.

[15] S. Blake D. Black M. Carlson E. Davies Z.Wang and
W. Weiss. An architecture for differentiated services. IETF
RFC 2475, December 1998.

13


