2004-03-01

A randomized solution to BGP divergence

Matta, Ibrahim
Boston University Computer Science Department

http://hdl.handle.net/2144/1538

Boston University
A Randomized Solution to BGP Divergence

SELMA YILMAZ IBRAHIM MATTA

Computer Science Department
Boston University
Boston, MA 02215, U.S.A

{selma, matta}@cs.bu.edu

March 1, 2004
Technical Report BUCS-2004-010

Abstract

The Border Gateway Protocol (BGP) is an interdomain routing protocol that allows each Autonomous System (AS) to define its own routing policies independently and use them to select the best routes. By means of policies, ASes are able to prevent some traffic from accessing their resources, or direct their traffic to a preferred route. However, this flexibility comes at the expense of a possibility of divergence behavior because of mutually conflicting policies. Since BGP is not guaranteed to converge even in the absence of network topology changes, it is not safe. In this paper, we propose a randomized approach to providing safety in BGP. The proposed algorithm dynamically detects policy conflicts, and tries to eliminate the conflict by changing the local preference of the paths involved. Both the detection and elimination of policy conflicts are performed locally, i.e. by using only local information. Randomization is introduced to prevent synchronous updates of the local preferences of the paths involved in the same conflict.

Keywords: Inter-domain Routing; Border Gateway Protocol (BGP); Convergence Analysis.

1. Introduction

The Internet consists of thousands of ASes that operate independently and exchange routing information to coordinate the delivery of IP traffic. On its path from source to destination, an IP packet traverses routers and links that belong to different ASes. The sequence of ASes traversed by an IP packet is determined by routing policies. ASes use policies to prevent some traffic from accessing their resources, or to direct their traffic to a preferred route. The routing policies are realized through the Border Gateway Protocol (BGP) [7]. BGP allows each AS to select the best routes by applying local policies, and to propagate routing information without revealing local policies to the other ASes. However, Varadhan et al. [8] show that a group of ASes may independently define mutually conflicting BGP policies that lead to persistent BGP oscillations. In this state, ASes exchange BGP routing messages indefinitely without ever converging on a set of stable routes. Such divergence behavior may introduce a large amount of instability into the global routing system, which may significantly degrade the performance of the Internet.

The set of routing policies are called safe if they can never lead to BGP divergence. There have been recent studies on guaranteeing safety of BGP [3, 2, 6]. Govindan et al. [3] propose a static solution which involves keeping policies in a repository called Internet Route Registry and verifying that they do not contain policy conflicts that could lead to protocol divergence. However, Griffin and Willfong [5] show that such kind of verification is computationally very expensive. Also, most ASes do not want to reveal their policies, or keep the information in the registry up-to-date.

To avoid the global coordination required in [3], Gao and Rexford [2] propose another static solution which exploits the commercial relationships between ASes, namely peer-peer, and provider-customer. A pair of ASes have a provider-customer relationship if one offers Internet connectivity to the other and have a peer-peer relationship if they are providing connectivity among their customers. To ensure the stability of the BGP system, each AS is supposed to follow policy configuration guidelines which suggest preferring routes heard from customers to the routes heard from providers and peers. While this solution guarantees stability, it may unnecessarily disallow the use of many routes. The solution still requires usage of Route Registry database, only this time to keep hierarchical relationships between ASes, which is more public and deducible compared to the entire set of routing policies. Static periodic checks are necessary to verify validity of a route announcement [1] and to ensure that local-preference values of routes are consistent with the desired relationships.

*This work was supported in part by NSF grants ANI-0095988, EIA-0202067 and ITR ANI-0205294, and by grants from Sprint Labs and Motorola Labs.
Griffin and Willfong [6] suggest a dynamic mechanism to detect and suppress BGP oscillations that arise because of policy conflicts. The idea is to extend BGP to carry additional information called *history of updates* with each update. It allows each router to describe the sequence of events that led to the adoption of this path. Since a history of updates with loops is an indication of protocol divergence, divergence can be detected as it happens, and prevented by discarding such updates. However, with this approach, histories can grow very long, which makes processing and sending updates very expensive. Also, history may reveal private information about preferences of ASes over the routes since this information may be carried implicitly with history.

In this paper, we propose a new dynamic mechanism to detect and suppress BGP oscillations. The motivation behind this work is to eliminate the drawbacks of current approaches mentioned above. This new dynamic algorithm allows us to detect policy conflicts using only local information, and adjust local preference values through a randomized approach. We eliminate the use of potentially expensive and revealing histories, since the algorithm uses only local information to detect cycles. We also eliminate the off-line phase, and hence the use of Internet Route Registry database either for policies, or relationships between ASes. The new algorithm is also more tolerant to the routes involved in a cycle than current approaches: Instead of invalidating such routes, we reduce their preference with some probability, and invalidate a route only if it gets involved in a cycle repeatedly, which provides a more flexible route selection.

The rest of the paper is organized as follows. Section 2 reviews related work and provides the background. Section 3 reviews current approaches against which we compare our randomized approach, which we describe in Section 4. The performance evaluation methodology is presented in Section 5, and results are reported in Section 6. Section 7 concludes the paper.

2. Background

To study safety of BGP, Griffin and Willfong [6] propose a simple model called *Stable Paths Problem* (SPP). It has been suggested that BGP is a distributed algorithm for solving SPP. SPP consists of an undirected graph with a single destination. The nodes in the graph has a set of permitted paths and a ranking function to set an order of preference on the paths. A solution of an SPP is an assignment of permitted paths to the nodes such that the path assigned to a node is the highest ranked path extending any of the paths chosen at its neighbors. The formal definition of SPP can be summarized as follows: A network is represented as a simple, undirected, connected graph \(G = (V, E) \), where \(V = \{0, 1, \ldots, n\} \) is the set of nodes connected by edges from \(E \). For any node \(u \), peers \((u) = \{w|\{u, w\} \in E\} \) represents the set of peers for \(u \). It is assumed that there is a single destination, which is node 0, to which all other nodes are trying to find paths. A path \(\pi \) in \(G \) is a sequence of nodes \((v_k, v_{k-1}, \cdots, v_1, v_0) \), such that \((v_i, v_{i-1}) \in E \), for all \(1 \leq i \leq k \). An empty path, \(\epsilon \), indicates that a router cannot reach the destination. For each \(v \in V \), the set \(P^v \) denotes the permitted paths from \(v \) the destination. Let \(P = \{P^v|v \in V \} \) denotes the set of all permitted paths. For each \(v \in V \), there is a ranking function \(\lambda_v \), defined over \(P^v \), which represents how node \(v \) ranks its permitted paths. If \(P_1, P_2 \in P^v \) and \(\lambda_v(P_1) < \lambda_v(P_2) \), then \(P_2 \) is said to be preferred over \(P_1 \). Let \(\Lambda = \{\lambda^v|v \in V \} \) be the set of all ranking functions. An instance of SPP \(S = (G, \pi, \Lambda) \) is a graph with the permitted paths and ranking function at each node with the following restrictions imposed on \(\Lambda \) and \(\pi \): For each \(v \in V \):

1. Empty path is permitted: \(\epsilon \in P^v \).
2. Empty path is the lowest ranked path: \(\lambda^v(\epsilon) = 0 \).
3. Strictness: If \(\lambda^v(P_1) = \lambda^v(P_2) \), then \(P_1 \) = \(P_2 \) or there is a \(u \) such that \(P_1 = (v u)P_1' \) and \(P_2 = (v u)P_2' \).
4. Simplicity: If path \(P \in P^v \), then \(P \) does not have repeated nodes.

For a given node \(u \), let \(W \) be a subset of the permitted paths \(P^u \) such that each path in \(W \) has a distinct next hop. The maximal path in \(W \), \(\max(u, W) \), is defined to be the highest ranked path in \(W \). \(\pi \) is defined to be a function called path assignment, which maps each node \(u \in V \) to a path assignment \(\pi(u) \in P^u \). choices \((u, \pi) \) is a set of paths, defined to be all \(P \in P^u \) such that either \(P = (u 0) \) and \(\{u, 0\} \in E \) or \(P = (u v)\pi(v) \) for some \(\{u, v\} \in E \). The path assignment \(\pi \) is called stable at node \(u \) if \(\pi(u) = \max(u, \text{choices}(u)) \). The path assignment \(\pi \) is called stable if it is stable at every node \(v \in V \).

An SPP instance \(S = (G, \pi, \Lambda) \) is solvable if there exists a stable path assignment \(\pi \) for \(S \). Every such assignment is called a solution for \(S \) and written as \((P_1, P_2, \cdots, P_n) \), where \(\pi(u) = P_u \). An instance of SPP may have no solution, or one or more solutions. Examples are GOOD GADGET with a single solution, which is \(((1 3 0), (2 0), (3 0), (4 3 0)) \), and BAD GADGET with no solution as shown in Figure 1. Possible paths for each node are shown next to each one of them in a way that the highest ranked path is placed at the top.

Griffin and Willfong [6] define Simple Path Vector Protocol (SPVP) as a distributed algorithm for solving SPP. SPVP is an abstraction of BGP. With this abstraction, messages are simply paths and \(\text{rib}(u) \) denotes the current path that node \(u \) is using to reach the destination and \(\text{rib}_\text{in}(u \leftarrow w) \) denotes the table where the most recent path received from each peer \(w \in \text{peers}(u) \) are kept. Then the set of paths available at node \(u \) is \(\text{choices}(u) = \{(u w)|P \in P^u|P = \text{rib}_\text{in}(u \leftarrow w)\} \) and the best path at \(u \) is \(\text{best}(u) = \max(u, \text{choices}(u)) \). The best path is the highest ranked path for node \(u \) among the paths received from its peers. The network state of the system is the collection of \(\text{rib}(u) \),
rib-$in(u \leftarrow w)$ and the state of all communication links. A network state is stable if all communication links are empty. If SPVP converges, the resulting state is the solution of SPP. If the stable paths problem has no solution, then SPVP diverges.

Griffin et al. [4] introduce the notion of a dispute digraph, while developing sufficient conditions that will guarantee safety of an SPVP specification. If a dispute graph does not have any cycle, which is called dispute cycle, then the corresponding SPVP specification is safe. If the stable paths problem has no solution, then SPVP diverges. For any instance of SPP, there is a dispute digraph of BAD GADGET has a cycle. Since GOOD GADGET is safe, the corresponding dispute digraph is acyclic, whereas the dispute digraph of BAD GADGET has a cycle.

![Figure 1](image1.png)
Figure 1. Examples of Stable Paths Problems and the corresponding dispute digraphs.

![Figure 2](image2.png)
Figure 2. Conditions for dispute arc $Q \succ (u, v)P$

3. Review of the Current Algorithms

3.1 Safe Path Vector Protocol

Griffin and Willfong [6] introduce an algorithm for dynamically detecting and eliminating cycles that arise because of policy conflicts. The idea is adding a new attribute called path history to the messages. Path histories are dynamically computed sequences of path change events. A path change event is a pair $e = (s, P)$, where $s \in \{+, −\}$ is the sign of the event and P is the path. Assuming P_{old} and P_{new} are permitted paths at node u and there has been a transition from $rib(u) = P_{old}$ to $rib(u) = P_{new}$. If we assume that u ranks P_{old} lower than P_{new}, then the corresponding path change event will be $(+, P_{new})$, which means u went up to path P_{new}. If we assume that u ranks P_{new} lower than P_{old}, the corresponding path change event will be $(-, P_{old})$, which means u went down from path P_{old}. Path history is either an empty history or a sequence $e_k e_{k−1} e_k \cdots e_1$, where each e_i is a path change event and e_k is the most recent event. A history may have a cycle if there exists i, j, with $1 \leq i < j \leq k$, such that $e_i = (s_1, P)$ and $e_j = (s_2, P)$, where s_1 and s_2 are opposite signs. Figure 3 shows the distributed algorithm which is computing histories dynamically. The algorithm uses a function called $hist(u)$ to calculate a new path history for P_{new} whenever the best path at node u changes from P_{old} to P_{new}. The exact procedure is shown in Figure 3. A message m in the algorithm is a pair (P, h) where P is a path and h is a history. For any message $m = (P, h)$, $path(m) = P$ and $history(m) = h$. Each node also uses an additional data structure to keep bad paths, $B(u)$. Bad paths are the paths that have been invalidated because their adoption led to a cycle in the history. Definition of $best(u)$ and $choices(u)$ are updated to exclude the paths in the set $B(u)$ as follows:

\[
choices_B(u) = \{(u, w)P \in P^u - B(u)\} | P \in rib-in(u \leftarrow w) \}
\]

(1)

and

\[
best_B(u) = max(u, choices_B(u)).
\]

(2)

3.2 Stable Internet Routing without Global Coordination (Gao&Rexford Algorithm)

Gao and Rexford [2] propose a set of guidelines guaranteeing safety of BGP when they are followed. The approach exploits commercial relationships between autonomous systems in the Internet: The neighboring ASes have either a customer-provider or peer-peer relationship. Considering a node u, the set $neighbors(u)$ is partitioned into the following sets: $customers(u)$, $peers(u)$, and $providers(u)$. Paths are classified depending on the relationship between the first two nodes of the path. A path $(u, v)P$ is a customer path if $v \in customers(u)$, a peer path if $v \in peers(u)$, or a provider path if $v \in providers(u)$. Gao et al. [1] propose that a stable paths...
problem with the following properties is safe: (1) Acyclic provider-customer digraph: The directed graph induced by the customer-provider relationship is acyclic; (2) No valley: A path between two nodes should not traverse an intermediary node that is lower in the hierarchy; (3) No steps: A peer-peer edge \(\{u, v\} \) is a step in path \(P_j \) if either the last edge of \(P_j \) is a peer-peer or provider-customer edge, or the first edge in \(P_j \) is a customer-provider edge; (4) Customer paths are preferable to peer and provider paths. The idea of this algorithm is to use a database called route registry to store the relationships between each AS pair for each destination, and then to check if the aforementioned properties are satisfied. The route registry can identify the sequence of ASes invalidating these properties and force them to use a restrictive policy.

4 Randomized Algorithm

With SPVP, detecting a cycle is possible as soon as a node updates the history in response to the change of its best path. In other words, there is no embedded cycles: If a cycle (repetition) is formed in the history, it will be detected by the node and the history will be reset before the corresponding update is advertised. Although history allows us to tell the exact sequence of events that led to the current event at a particular node, and theoretically it translates a trail in dispute digraph, the process of loop detection itself does not make use of the events that happened at the other nodes. To detect a loop, a node searches history only for the repetition of the current path change event. This observation led us to study an alternative way of dynamic loop detection where only local histories are used. In other words, we are assuming that if there is a policy conflict, each node involved in this conflict will observe a route flap, and therefore will be able to locally detect which one of its path involved in a cycle. To be able to break a cycle, it maybe sufficient to invalidate only one of the paths involved or drop the local preference of only one of such paths. However, since the proposed algorithm is distributed and based only on local information, there maybe synchronous invalidation or reduction of the preferences of the paths involved in the conflict. To prevent unnecessary path invalidation, or drop of local preference, we suggest a randomized approach: Upon detection of an involvement in a cycle, the local preference of the path \(P_i \) is reduced with a probability inversely proportional with its preference rank, i.e. the probability decreases as \(2^{-\text{rank}(P_i)} \).

For our randomized algorithm, messages exchanged between peers are simply paths. Local history is a data structure for tracking those paths adopted by a particular node. With our randomized approach, because of the probabilistic drop of the local preferences, a cycle may not be eliminated even though it is observed several times. This happens, for example, if the local preference of none of the paths involved in a cycle has been lowered. Another possibility is that each one of the paths in the cycle is the least preferred path in the corresponding node. That is why lowering local preference of these paths won’t change the relative rank of paths, hence the cycle will remain. To be able to deal with such persistent cycles and/or paths that get involved in many different conflicts, our algorithm also makes use of counters to keep track of the number of times each path gets involved in a cycle. When a path is adopted and later abandoned as many times as some predetermined value, max_threshold, it is invalidated and put in the set of bad paths, \(B \). The paths in \(B \) are excluded from further consideration for best path selection process. min_threshold value on the other hand specifies how many route flaps later a node decides that there is a policy conflict. If a counter of a path exceeds this value, then a probabilistic dropping of its rank is started. Figure 4 shows the exact algorithm. Some notations used in our algorithm needs explanation: rank(Path) is the index of Path at node \(u \) in the order of decreasing local preference value. times(Path, \(u \)) is the value of the counter showing how many times Path has been adopted by node \(u \). localhist(\(u \)) keeps the local history at node \(u \), and it is updated by inserting the newly adopted path at the beginning of the path list as localhist(\(u \)) = \(P_{\text{new}} \), localhist(\(u \)).

5 Evaluation Method

For a given SPP \(S = (G, \mathcal{P}, \Lambda) \), we would like to see how efficient the algorithms are at removing all possible policy conflicts. To be able to do this, we run the algorithms repeatedly until all possible conflicts are resolved and the system is safe. Safety is tested by comparing the dispute digraph of \(S \) with the current set of permissible paths, \(\mathcal{P} \), and checking it for cycles. At each run, to eliminate a dispute cycle, conflicting paths are either invalidated or their ranks are updated depending on the algorithm. The pseudocode of the evaluator is shown in Figure 5. For the evaluator,
input is just a graph, G, instead of an SPP specification. We construct SPP by finding the set of possible paths at each node of G, and assigning local preference values as shown. Therefore, at step 10, we have an SPP specification, with graph G, set of all permitted paths equal to the set of all possible paths and the ranking function as shown in lines 3-9. After step 10, since each algorithm handles conflicts in a different way, the exact details of the evaluator is different for each algorithm as discussed below.

Gao & Rexford Algorithm has no run-time component. Therefore, the pseudocode is only used to construct the SPP. Since following these guidelines guarantees safety, the resulting SPP with updated set of permissible paths is safe.

For SPVP, each independent conflict that is observed for any probabilities. For the worst case, we have a set of results for both of these cases. For the best case, we arbitrarily choose a path in the cycle, and reduced its local preference, without using any probabilities. For the worst case, we haven’t lowered the local preferences at all for any path involved in the cycle. Therefore, after $max_threshold$ times seeing the same cycle, all the paths involved in the cycle is added to set of bad paths. We also wanted see the expected performance of the algorithm in practice. Therefore, we have another set of results obtained by applying probabilistic reduction to the local preference of each path involved in the cycle. The set of results showing best and worst case of our randomized algorithm are shown in Figure 6 and the set of results showing the expected behavior are shown in Figures 7, 8, and 9.

6 Performance Metrics and Results

We used dispute wheels for evaluation. A dispute wheel of size n is a graph with n nodes, and one destination, node 0. Each node has 2 paths that are either the direct path or the path through the clockwise neighbor, where the latter is more preferred. A more formal definition of dispute wheels can be found in [4]. Griffin et al. [4] show that for every dispute wheel, there is a cycle in the corresponding
dispute digraph, which in turn suggests policy conflicts that cannot be satisfied simultaneously. That is why when we use a graph that contains a dispute wheel, we can be sure that there is a policy conflict. The results in Figure 6 are obtained using a dispute wheel of size 250. To be able to deal with the huge number of possible paths, at the beginning of the evaluation, the possible paths for each node are restricted to the direct path and the path through the clockwise neighbor. For Figures 7, 8, and 9, we have used smaller graphs of size 5, 10, 15, 20, and 25. Although with these smaller graphs, we were able to include extra paths in addition to the direct path or the path through the clockwise neighbor in the set of possible paths, we still needed to exclude some paths (customer-provider paths in our case) at the beginning of the evaluation just to keep the set more manageable. For our randomized algorithm, \(\text{max}_\text{threshold} \) and \(\text{min}_\text{threshold} \) are set to 6 and 2, respectively.

Number of tries is a measure of how many times the evaluator goes through the while loop on line 10 in Figure 5. The metric is used to measure how quickly the system reaches safety. Figures 6 and 7 show the results. This metric is not meaningful for Gao&Rexford algorithm, since it does not have a run-time component. As expected the randomized algorithm takes more tries to break cycles than SPVP, since SPVP eliminates conflicts by immediately excluding one of the paths involved. This is a sure way of eliminating both the current conflict and the future ones that might involve this path. The randomized approach tries to eliminate conflicts by reducing the local preferences probabilistically. However, sometimes lowering the preference of a path may not be enough to break a cycle: The preference might need to be further reduced. It is also possible that after breaking a particular conflict, the same path may get involved in another conflict because of its updated preference rank. Another possibility is that the lowering of the preference of a path may take a few tries just because of the probabilistic approach of the algorithm. Therefore, it is obvious that resolving conflicts with the randomized algorithm may take longer than SPVP. The worst-case value of the randomized approach in Figure 6 is 6 because we set \(\text{max}_\text{threshold} \) to 6. The worst-case behavior can be improved for this metric by choosing a smaller value for \(\text{max}_\text{threshold} \). However, this may lead to more path elimination and hence badly affect routing reachability, which is the basic trade-off in this context.

As size of the network grows, the number of tries of our randomized algorithm approaches that of SPVP.

The percentage of the paths that are excluded from the set of possible paths is used to see if an algorithm unnecessarily eliminates too many paths and hence puts strain on routing reachability. Both Figures 6 and 8 show that Gao&Rexford algorithm has the worst performance and may give up 96% of the possible paths. Figure 6 shows that although the worst case performance of the randomized algorithm is as bad as Gao&Rexford, the best case performance is as good as SPVP. Figure 8 shows that even though the expected performance of the randomized approach is worse than SPVP, it is still much better than Gao&Rexford algorithm and excludes approximately 60% less paths. With SPVP, the number of paths that are eliminated equals to the number of cycles observed, since SPVP breaks each cycle by putting exactly one path away. The number of cycles increases with increasing size of the graph, but at a slower rate. This is the main reason why in Figure 8 the metric value for SPVP decreases as the number of nodes increases. For the randomized approach, the number of cycles observed and dealt with in a single iteration is much higher than SPVP. Since the randomized approach does not put away paths as soon as a cycle is observed, the cycle may not be broken or the paths whose local preference value is updated may get involved in a different cycle in the next iteration. Another observation is that when the paths in a cycle are all the least preferred paths, then the randomized approach will not make much contribution: Lowering local preference of the least preferred paths will not change their rank and the cycle will remain for up to \(\text{max}_\text{threshold} \) iterations. At this point, all of the paths involved in the cycle will be eliminated and put in \(B \). As a result, we observe that the randomized algorithm has a higher volume of path exclusions than SPVP.

Rearranging the ranks of the permitted paths is the basic mechanism for the randomized approach to resolve a conflict. To look deeper into the behavior of the randomized approach we try to answer the question whether the algorithm causes too many nodes to rearrange the ranks of their paths and results in giving up their preferences. For this purpose, we have used the metric called **percentage of loss of preferences**, which is defined as \(\frac{\text{total}_1}{\text{total}_1 - \text{total}_2 + \text{total}_3} \), where \(\text{total}_1 = \sum_{p \in P_1} \text{local preference}(p) \), \(\text{total}_2 = \sum_{p \in P_2} \text{local preference}(p) \), and \(\text{total}_3 = \sum_{p \in B} \text{original local preference}(p) \) denote the total value of local preferences for the sets \(P_1 \), \(P_2 \), and \(B \), respectively. \(P_1 \) is the set of permitted paths for the SPP.
to begin with, and P_2 is the set of permitted paths for the resulting final SPP. B is the set of all paths eliminated by the algorithm. For the paths that are in B, the whole value of original local preference is counted as loss. The results are shown in Figures 6 and 9. Since we have already seen that Gao&Rexford algorithm eliminates most of the paths, it is not surprising to see that it has the worst performance for this metric too. The same is true for the randomized algorithm at its worst case behavior. Figure 9 shows that the expected performance of randomized approach is not always as good as SPVP, but still about 35% better than Gao&Rexford algorithm.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Gao&Rexford</th>
<th>SPVP best case</th>
<th>Randomized best case</th>
<th>Randomized worst case</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Excluded Paths</td>
<td>50</td>
<td>0.2 ± 1.2E-07</td>
<td>0.2 ± 1.2E-11</td>
<td>50</td>
</tr>
<tr>
<td>% of Loss of Preference Value</td>
<td>55.55</td>
<td>0.22 ± 3.7E-17</td>
<td>0.44 ± 2.0E-5</td>
<td>55.55</td>
</tr>
</tbody>
</table>

Figure 6. Results for 250-node input graph with 90% confidence interval.

Figure 7. Number of Tries.

Figure 8. Percentage of the paths that are invalidated (excluded) to break all possible cycles.

7. Conclusion and Future Directions

Our proposed randomized algorithm is designed to realize safety of BGP, while eliminating the drawbacks of current approaches. It is a dynamic algorithm which eliminates any kind of static checking, or route registry database as in Gao&Rexford algorithm. It does also eliminate the need to carry potentially long and revealing histories as in SPVP. Instead, the cycles are detected locally, i.e. by using only local information. Our randomized algorithm attempts to resolve policy conflicts by adjusting the ranks of a few paths. Thus ASes wouldn’t need to lose their paths, and possibly end up not being able to reach the destination. The performance of our randomized algorithm is expected to be close to the performance of SPVP in practice, while its worst case performance is no worse than Gao&Rexford algorithm.

For future work, we are planning to evaluate the algorithms using detailed packet-level simulations using the SFF simulator, www.ssfnet.org, and further analyze our randomized algorithm.

References

