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Modal Matching for Correspondence and

Recognition

S. Sclaro� and A. Pentland

Abstract| Modal matching is a new method for establish-
ing correspondences and computing canonical descriptions.
The method is based on the idea of describing objects in
terms of generalized symmetries, as de�ned by each object's
eigenmodes. The resulting modal description is used for ob-
ject recognition and categorization, where shape similarities
are expressed as the amounts of modal deformation energy
needed to align the two objects. In general, modes provide a
global-to-local ordering of shape deformation and thus allow
for selecting which types of deformations are used in object
alignment and comparison. In contrast to previous tech-
niques, which required correspondence to be computed with
an initial or prototype shape, modal matching utilizes a new
type of �nite element formulation that allows for an object's
eigenmodes to be computed directly from available image
information. This improved formulation provides greater
generality and accuracy, and is applicable to data of any di-
mensionality. Correspondence results with 2-D contour and
point feature data are shown, and recognition experiments
with 2-D images of hand tools and airplanes are described.

Keywords| Correspondence, shape description, shape in-
variants, object recognition, deformation, �nite element
methods, modal analysis, vibration modes, eigenmodes.

I. Introduction

A key problem in machine vision is how to describe fea-
tures, contours, surfaces, and volumes so that they can
be recognized and matched from view to view. The pri-
mary di�culties are that object descriptions are sensitive
to noise, that an object can be nonrigid, and that an ob-
ject's appearance deforms as the viewing geometry changes.
These problems have motivated the use of deformable mod-
els [6;7;9;14;17;22;34;36;37], to interpolate, smooth, and
warp raw data.
Deformable models do not by themselves provide a

method of computing canonical descriptions for recogni-
tion, or of establishing correspondence between sets of
data. To address the recognition problem we proposed
a method of representing shapes as canonical deforma-
tions from some prototype object [18;22]. By describ-
ing object shape terms of the eigenvectors of the proto-
type object's sti�ness matrix, it was possible to obtain
a robust, frequency-ordered shape description. Moreover,
these eigenvectors or modes provide an intuitive method
for shape description because they correspond to the ob-
ject's generalized axes of symmetry. By representing ob-
jects in terms of modal deformations we developed robust
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methods for 3-D shape modeling, object recognition, and
3-D tracking utilizing point, contour, 3-D, and optical ow
data [18;20;22].
However this method still did not address the problem of

determining correspondence betweeen sets of data, or be-
tween data and models. This was because every object had
to be described as deformations from a single prototype ob-
ject. This implicitly imposed an a priori parameterization
upon the sensor data, and therefore implicitly determined
the correspondences between data and the prototype.
In this paper we generalize our earlier method by ob-

taining the modal shape invariants directly from the sen-
sor data. This will allow us to compute robust, canonical
descriptions for recognition and to solve correspondence
problems for data of any dimensionality. For the purposes
of illustration, we will give a detailed mathematical formu-
lation for 2D problems, and demonstrate it on gray-scale
image and point feature data. The extension to data of
other dimensionality is described in a technical report [28].
To illustrate the use of this method for object recognition
and category classi�cation, we will present an example of
recognizing and categorizing images of hand tools.

II. The Basic Idea

Imagine that we are given two sets of image feature
points, and that our goal is to determine if they are from
two similar objects. The most common approach to this
problem is to try to �nd distinctive local features that can
be matched reliably; this fails because there is insu�cient
local information, and because viewpoint and deformation
changes can radically alter local feature appearance.
An alternate approach is to �rst determine a body-

centered coordinate frame for each object, and then at-
tempt to match up the feature points. Once we have the
points described in intrinsic or body-centered coordinates
rather than Cartesian coordinates, it is easy to match up
the bottom-right, top-left, etc. points between the two ob-
jects.
Many methods for �nding a body-centered frame have

been suggested, including moment-of-inertia methods,
symmetry �nders, and polar Fourier descriptors (for a re-
view see [1]). These methods generally su�er from three
di�culties: sampling error, parameterization error, and
non-uniqueness. The main contribution of this paper is
a new method for computation of a local coordinate frame
that largely avoids these three di�culties.
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Sampling error is the best understood of the three. Ev-
eryone in vision knows that which features you see and
their location can change drastically from view to view.
The most common solution to this problem is to only use
global statistics such as moments-of-inertia; however, such
methods o�er a weak and partial solution at best.
Parameterization error is more subtle. The problem is

that when (for instance) �tting a deformable sphere to 3-D
measurements one implicitly imposes a radial coordinate
system on the data rather than letting the data determine
the correct coordinate system. Consequently, the result-
ing description is strongly a�ected by, for instance, the
compressive and shearing distortions typical of perspective.
The number of papers on the topic of skew symmetry is in-
dicative of the seriousness of this problem.
Non-uniqueness is an obvious problem for recognition

and matching, but one that is all too often ignored in the
rush to get some sort of stable description. Virtually all
spline, thin-plate, and polynomial methods su�er from this
inability to obtain canonical descriptions; this problem is
due to fact that in general, the parameters for these sur-
faces can be arbitrarily de�ned, and are therefore not in-
variant to changes in viewpoint, occlusion, or nonrigid de-
formations.
Our solution to these problems has three parts:

1. We compute a shape description that is robust with
respect to sampling by using Galerkin interpolation,
which is the mathematical underpinning of the �nite
element method (FEM).

2. We introduce a new type of Galerkin interpolant based
on Gaussians that allows us to e�ciently derive our
shape parameterization directly from the data.

3. We then use the eigenmodes of this shape description
to obtain a canonical, frequency-ordered orthogonal
coordinate system. This coordinate system may be
thought of as the shape's generalized symmetry axes.

By describing feature point locations in this body-centered
coordinate system, it is easy to match corresponding
points, and to measure the similarity of di�erent objects.
This allows us to recognize objects, and to determine if
di�erent objects are related by simple physical transfor-
mations.
A ow-chart of our method is shown in Figure 1. For

each image we start with feature point locations X =
[x1 : : :xm] and use these as nodes in building a �nite el-
ement model of the shape. We can think of this as con-
structing a model of the shape by covering each feature
point with a Gaussian blob of rubbery material; if we have
segmentation information, then we can �ll in interior areas
and trim away material that extends outside of the shape.
We then compute the eigenmodes (eigenvectors) �i of

the �nite element model. The eigenmodes provide an or-
thogonal frequency-ordered description of the shape and
its natural deformations. They are sometimes referred to
as mode shape vectors since they describe how each mode
deforms the shape by displacing the original feature loca-

odes    build physical model    compute eigenmodes
es

Output: strongest
feature correspondences

KU + MU = R

:

 determine FEM mass 
 and stiffness matrices

KU + MU = R

:

 determine FEM mass 
 and stiffness matrices

Kφ  = ω Mφii i
solve generalized

eigenproblem

Kφ  = ω Mφii i
solve generalized

eigenproblem

find correspondence in
generalized feature space

i

match low-order nonrigid 
modes φ  for both shapes

these are FEM nodes  
Input: features

use the matched φ  
 

i
as coordinate system

Fig. 1. System diagram.

(a)

(b)

(c)

(d)

Fig. 2. Similar shapes have similar low order modes. This �gure shows the
�rst �ve low-order eigenmodes for similar tree shapes: (a) prototypical,
(b) stretched, (c) tilted, and (d) two middle branches stretched.

tions, i.e.,

Xdeformed = X+ a�i; (1)

where a is a scalar.
The �rst three eigenmodes are the rigid body modes of

translation and rotation, and the rest are nonrigid modes.
The nonrigid modes are ordered by increasing frequency of
vibration; in general, low-frequency modes describe global
deformations, while higher-frequency modes describe more
localized shape deformations. This global-to-local order-
ing of shape deformation will prove very useful for shape
matching and comparison.
The eigenmodes also form an orthogonal object-centered

coordinate system for describing feature locations. That
is, each feature point location can be uniquely described in
terms of how it moves within each eigenmode. The trans-
form between Cartesian feature locations and modal fea-
ture locations is accomplished by using the FEM eigenvec-
tors as a coordinate basis. In our technique, two groups of
features are compared in this eigenspace. The important
idea here is that the low-order modes computed for two
similar objects will be very similar | even in the presence
of a�ne deformation, nonrigid deformation, local shape
perturbation, or noise.
To demonstrate this, Figure 2 shows a few of the

low-order nonrigid modes computed for four related tree
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(a)

(b)

(c)

Fig. 3. Computing correspondences in modal signature space. Given two
similar shapes, correspondences are found by comparing the direction of
displacement at each node (shown by vectors in �gure). For instance,
the top points on the two trees (a, b) have very similar displacement
signatures, while the bottom point (shown in c) has a very di�erent dis-
placement signature. Using this property, we can reliably compute corre-
spondence a�nities in this modal signature space.

shapes: (a) upright, (b) stretched, (c) tilted, and (d) two
middle branches stretched. Each row in the �gure shows
the original shape in gray, and its low-order mode shapes
are overlaid in black outline. By looking down a column
of this �gure, we can see how a particular low-order eigen-
mode corresponds nicely for the related shapes. This eigen-
mode similarity allows us to match the feature locations on
one object with those of another despite sometimes large
di�erences in shape.
Using this property, feature correspondences are found

via modal matching. The concept of modal matching is
demonstrated on the two similar tree shapes in Figure 3.
Correspondences are found by comparing the direction of
displacement at each node. The direction of displacement
is shown by vectors in �gure. For instance, the top points
on the two trees in Figure 2(a, b) have very similar dis-
placements across a number of low-order modes, while the
bottom point (shown in Figure 2(c)) has a very di�erent
displacement signature. Good matches have similar dis-
placement signatures, and so the system matches the top
points on the two trees.
Point correspondences between two shapes can be re-

liably determined by comparing their trajectories in this
modal space. In the implementation described in this pa-
per, points that have the most similar unambiguous coordi-
nates are matched via modal matching, with the remaining
correspondences determined by using the physical model as
a smoothness constraint. Currently, the algorithm has the
limitation that it cannot reliably match largely occluded
or partial objects.
Finally, given correspondences between many of the fea-

ture points on two objects, we can measure their di�erence
in shape. Because the modal framework decomposes defor-
mations into an orthogonal set, we can selectively measure
rigid-body di�erences, or low-order projective-like defor-
mations, or deformations that are primarily local. Con-

sequently, we can recognize objects in a very exible and
general manner.
Alternatively, given correspondences we can align or

warp one shape into another. Such alignment is useful for
fusing data from di�erent sensors, or for comparing data
acquired at di�erent times or under di�erent conditions.
It is also useful in computer graphics, where the warping
of one shape to another is known as \morphing." In cur-
rent computer graphics applications the correspondences
are typically determined by hand [4;31;44].

III. Background and Notation

A. Eigen-Representations

In the last few years there has been a revival of inter-
est in pattern recognition methods, due to the surpris-
ingly good results that have been obtained by combin-
ing these methods with modern machine vision represen-
tations. Using these approaches researchers have built sys-
tems that perform stable, interactive-time recognition of
faces [39], cars [16], and biological structures [6;19], and al-
lowed interactive-time tracking of complex and deformable
objects [5;8;20;38].
Typically, these methods employ eigen-decompositions

like the modal decomposition or any of a family of meth-
ods descended from the Karhunen-Lo�eve transform. Some
are feature-based eigenshapes [3;8;26;27;30;32], others are
physically-based eigensnakes [5;6;19;22;27], and still others
are based on (preprocessed) image intensity information,
eigenpictures [11;15;16;21;38;39].
In these methods, image or shape information is decom-

posed into an ordered basis of orthogonal principal compo-
nents. As a result, the less critical and often noisy high-
order components can be discarded in order to obtain over-
constrained, canonical descriptions. This allows for the se-
lection of only the most important components to be used
for e�cient data reduction, real-time recognition and nav-
igation, and robust reconstruction. Most importantly, the
orthogonality of eigen-representations ensures that the re-
covered descriptions will be unique, thus making recogni-
tion problems tractable.
Modal matching, the new method described in this pa-

per, utilizes the eigenvectors of a physically-based shape
representation, and is therefore most closely related to
eigenshapes and eigensnakes. At the core of all of these
techniques is a positive de�nite matrix that describes the
connectedness between features. By �nding the eigenvec-
tors of this matrix, we can obtain a new, generalized coor-
dinate system for describing the location of feature points.
One such matrix, the proximity matrix, is closely related

to classic potential theory and describes Gaussian-weighted
distances between point data. Scott and Longuet-Higgins
[30] showed that the eigenvectors of this matrix can be
used to determine correspondences between two sets of
points. This coordinate system is invariant to rotation,
and somewhat robust to small deformations and noise. A
substantially improved version of this approach was devel-
oped by Shapiro and Brady [32;33]. Similar methods have
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been applied to the problem of weighted graph matching by
Umeyama [41], and for Gestalt-like clustering of dot stim-
uli by van Oe�elen and Vos [42]. Unfortunately, proximity
methods are not information preserving, and therefore can-
not be used to interpolate intermediate deformations or to
obtain canonical descriptions for recognition.
In a di�erent approach, Samal and Iyengar [26] enhanced

the generalized Hough transform (GHT) by computing the
Karhunen-Lo�eve transform for a set of binary edge images
for a general population of shapes in the same family. The
family of shapes is then represented by its signi�cant eigen-
shapes, and a reference table is built and used for a Hough-
like shape detection algorithm. This makes it possible for
the GHT to represent a somewhat wider variation (defor-
mation) in shapes, but as with the GHT, their technique
cannot deal very well with rotations, and it has the disad-
vantage that it computes the eigenshapes from binary edge
data.
Cootes, et al. [3;8] introduced a chord-based method

for capturing the invariant properties of a class of shapes,
based on the idea of �nding the principal variations of a
snake. Their point distribution model (PDM) relies on rep-
resenting objects as sets of labeled points, and examines
the statistics of the variation over the training set. A co-
variance matrix is built that describes the displacement of
model points along chords from the prototype's centroid.
The eigenvectors are computed for this covariance matrix,
and then a few of the most signi�cant components are used
as deformation control knobs for the snake. Unfortunately,
this method relies on the consistent sampling and hand-
labeling of point features across the entire training set and
cannot handle large rotations.
Each of these previous approaches is based directly on

the sampled feature points. When di�erent feature points
are present in di�erent views, or if there are di�erent sam-
pling densities in di�erent views, then the shape matrix for
the two views will di�er even if the object's pose and shape
are identical. In addition, these methods cannot incorpo-
rate information about feature connectivity or distinctive-
ness; data are treated as clouds of identical points. Most
importantly, none of these approaches can handle large de-
formations unless feature correspondences are given.
To get around these problems, we propose a formula-

tion that uses the �nite element technique of Galerkin sur-
face approximation to avoid sampling problems and to in-
corporate outside information such as feature connectivity
and distinctiveness. The eigenvectors of the resulting ma-
trices can be used both for describing deformations and
for �nding feature correspondences. The previous work in
physically-based correspondence is described briey in the
next section.

B. Physically-Based Correspondence and Shape

Comparison

Correspondence has previously been formulated as an
equilibrium problem, which has the attractive feature of al-
lowing integration of physical constraints [18;22;20;37;36].
To accomplish this, we �rst imagine that the collection of

feature points in one image is attached by springs to an
elastic body. Under the load exerted by these springs, the
elastic body will deform to match the shape outlined by the
set of feature points. If we repeat this procedure in each
image, we can obtain a feature-to-feature correspondence
by noting which points project to corresponding locations
on the two elastic bodies.
If we formulate this equilibrium problem in terms of

the eigenvectors of the elastic body's sti�ness matrix, then
closed-form solutions are available [18]. In addition, high-
frequency eigenvectors can be discarded to obtain overcon-
strained, canonical descriptions of the equilibrium solution.
These descriptions have proven useful for object recogni-
tion [22] and tracking [20].
The most common numerical approach for solving equi-

librium problems of this sort is the �nite element method.
The major advantage of the �nite element method is that
it uses the Galerkin method of surface interpolation. This
provides an analytic characterization of shape and elas-
tic properties over the whole surface, rather than just at
the nodes [2] (nodes are typically the spring attachment
points). The ability to integrate material properties over
the whole surface alleviates problems caused by irregular
sampling of feature points. It also allows variation of the
elastic body's properties in order to weigh reliable features
more than noisy ones, or to express a priori constraints on
size, orientation, smoothness, etc. The following section
will describe this approach in some detail.

C. Finite Element Method

Using Galerkin's method for �nite element discretiza-
tion, we can set up a system of shape functions that relate
the displacement of a single point to the relative displace-
ments of all the other nodes of an object. This set of shape
functions describes an isoparametric �nite element. By us-
ing these functions, we can calculate the deformations that
spread uniformly over the body as a function of its consti-
tutive parameters.
In general, the polynomial shape function for each ele-

ment is written in vector form as:

u(x) =H(x)U (2)

where H is the interpolation matrix, x is the local coor-
dinate of a point in the element where we want to know
the displacement, and U denotes a vector of displacement
components at each element node.
For most applications it is necessary to calculate the

strain due to deformation. Strain � is de�ned as the ratio
of displacement to the actual length, or simply the ratio of
the change in length. The polynomial shape functions can
be used to calculate the strains (�) over the body provided
the displacements at the node points are known. Using this
fact we can now obtain the corresponding element strains:

�(x) = B(x)U (3)

where B is the strain displacement matrix. The rows of B
are obtained by appropriately di�erentiating and combin-
ing rows of the element interpolation matrix H.
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As mentioned earlier, we need to solve the problem of de-
forming an elastic body to match the set of feature points.
This requires solving the dynamic equilibrium equation:

M �U+D _U+KU = R; (4)

where R is the load vector whose entries are the spring
forces between each feature point and the body surface,
and where M, D, and K are the element mass, damping,
and sti�ness matrices, respectively.
Both the mass and sti�ness matrices are computed di-

rectly:

M =
R
V �HTHdV and K =

R
V B

TCBdV; (5)

where � is the mass density, and C is the material matrix
that expresses the material's particular stress-strain law.
If we assume Rayleigh damping, then the damping ma-

trix is simply a linear combination of the mass and sti�ness
matrices:

D = �M+ �K; (6)

where � and � are constants determined by the desired
critical damping [2].

D. Mode Superposition Analysis

This system of equations can be decoupled by posing
the equations in a basis de�ned by theM-orthonormalized

eigenvectors ofM�1K. These eigenvectors and values are
the solution (�i; !

2
i ) to the following generalized eigenvalue

problem:
K�i = !2iM�i: (7)

The vector �i is called the ith mode shape vector and !i is
the corresponding frequency of vibration.
The mode shapes can be thought of as describing the

object's generalized (nonlinear) axes of symmetry. We can
write Equation 7 as

K� =M�
2 (8)

where

� = [�1 j : : : j �m] and 
2 =

2
4 !21

. . .
!2m

3
5 : (9)

As mentioned earlier, each mode shape vector �i is M-
orthonormal, this means that

�TK� = 
2 and �TM� = I: (10)

This generalized coordinate transform � is then used to
transform between nodal point displacements U and de-
coupled modal displacements ~U:

U = �~U (11)

We can now rewrite Equation 4 in terms of these general-
ized or modal displacements, obtaining a decoupled system
of equations:

�~Ut + ~D
_~U+
2

t
~Ut = �

T
t R; (12)

where ~D is the diagonal modal damping matrix.
By decoupling these equations, we allow for closed-form

solution to the equilibrium problem [22]. Given this equi-
librium solution in the two images, point correspondences
can be obtained directly.
By discarding high frequency eigenmodes the amount

of computation required can be minimized without signif-
icantly altering correspondence accuracy. Moreover, such
a set of modal amplitudes provides a robust, canonical de-
scription of shape in terms of deformations applied to the
original elastic body. This allows them to be used directly
for object recognition [22].

IV. A New Formulation

Perhaps the major limitation of previous methods is that
the procedure of attaching virtual springs between data
points and the surface of the deformable object implic-
itly imposes a standard parameterization on the data. We
would like to avoid this as much as is possible, by letting
the data determine the parameterization in a natural man-
ner.
To accomplish this we will use the data itself to de�ne

the deformable object, by building sti�ness and mass ma-
trices that use the positions of image feature points as the
�nite element nodes. We will �rst develop a �nite element
formulation using Gaussian basis functions as Galerkin in-
terpolants, and then use these interpolants to obtain gen-
eralized mass and sti�ness matrices.
Intuitively, the interpolation functions provide us with a

smoothed version of the feature points, in which areas be-
tween close-by feature points are �lled in with a virtual ma-
terial that has mass and elastic properties. The �lling-in or
smoothing of the cloud of feature points provides resistance
to feature noise and missing features. The interpolation
functions also allow us to place greater importance on dis-
tinctive or important features, and to discount unreliable or
unimportant features. This sort of emphasis/de-emphasis
is accomplished by varying the \material properties" of the
virtual material between feature points.

A. Gaussian Interpolants

Given a collection of m sample points xi from an im-
age, we need to build appropriate sti�ness and mass ma-
trices. The �rst step towards this goal is to choose a set
of interpolation functions from which we can derive H and
B matrices. We require a set of continuous interpolation
functions hi such that:

1. their value is unity at node i and zero at all other
nodes

2.
Pm

i=1 hi = 1:0 at any point on the object

In a typical �nite element solution for engineering, Hermite
or Lagrange polynomial interpolation functions are used
[2]. Sti�ness and mass matrices K and M are precom-
puted for a simple, rectangular isoparametric element, and
then this simple element is repeatedly warped and copied
to tessellate the region of interest. This assemblage tech-
nique has the advantage that simple sti�ness and mass ma-
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trices can be precomputed and easily assembled into large
matrices that model topologically complex shapes.
Our problem is di�erent in that we want to examine the

eigenmodes of a cloud of feature points. It is akin to the
problem found in interpolation networks: we have a �xed
number of scattered measurements and we want to �nd
a set of basis functions that allows for easy insertion and
movement of data points. Moreover, since the position
of nodal points will coincide with feature and/or sample
points from our image, sti�ness and massmatrices will need
to be built on a per-feature-group basis. Gaussian basis
functions are ideal candidates for this type of interpolation
problem [23;24]:

gi(x) = e�kx�xik
2=2�2 (13)

where xi is the function's n-dimensional center, and � its
standard deviation.
We will build our interpolation functions hi as the sum

of m basis functions, one per data point xi:

hi(x) =
mX
k=1

aikgk(x) (14)

where aik are coe�cients that satisfy the requirements out-
lined above. The matrix of interpolation coe�cients can be
solved for by inverting a matrix of the form:

G =

2
4 g1(x1) : : : g1(xm)

...
...

gm(x1) : : : gm(xm)

3
5 : (15)

By using these Gaussian interpolants as our shape func-
tions for Galerkin approximation, we can easily formulate
�nite elements for any dimension. A very useful aspect of
Gaussians is that they are factorizable: multidimensional
interpolants can be assembled out of lower dimensional
Gaussians. This not only reduces computational cost, it
also has useful implications for VLSI hardware and neural-
network implementations [23].
Note that these sum-of-Gaussians interpolants are non-

conforming, i.e., they do not satisfy condition (2) above.
As a consequence the interpolation of stress and strain be-
tween nodes is not energy conserving. Normally this is of
no consequence for a vision application; indeed, most of
the �nite element formulations used in vision research are
similarly nonconforming [37]. If a conforming element is
desired, this can be obtained by including a normalization
term in hi in Equation 14,

hi(x) =

mX
k=1

aikgk(x)

mX
j=1

mX
k=1

ajkgk(x)

: (16)

In this paper we will use the simpler, non-conforming in-
terpolants, primarily because the integrals for mass and
sti�ness can be computed analytically. The di�erences be-
tween conforming and nonconforming interpolants do not
a�ect the results reported in this paper.

B. Formulating a 2-D Mass Matrix

For the sake of illustration we will now give the mathe-
matical details for a two dimensional implementation. We
begin by assembling a 2-D interpolation matrix from the
shape functions developed above:

H(x) =
h
h1 : : : hm 0 : : : 0
0 : : : 0 h1 : : : hm

i
: (17)

Substituting into Equation 5 and multiplyingout we obtain
a mass matrix for the feature data:

M =

Z
A

�HTHdA =
h
Maa 0
0 Mbb

i
; (18)

where the m by m submatrices Maa and Mbb are positive
de�nite symmetric, andMaa =Mbb. The elements ofMaa

have the form:

maaij = �

Z 1

�1

Z 1

�1

X
k;l

aik ajl gk(x) gl(x) dx dy: (19)

We then integrate and regroup terms:

maaij = � � �2
X
k;l

aik ajl
p
gkl (20)

where gkl=gk(xl) is an element of the G matrix in Equa-
tion 15.
This can be rewritten in matrix form:

Maa =Mbb = � � �2ATGA = � � �2G�1GG�1; (21)

where the elements of G are the square roots of the elements
of the G matrix in Equation 15.

C. Formulating a 2-D Sti�ness Matrix

To obtain a 2-D sti�ness matrix K we need to compute
a stress-strain interpolation matrix B and material matrix
C. For our two dimensional problem, B is a (3 � 2m)
matrix:

B(x) =

2
4 @

@xh1 : : : @
@xhm 0 : : : 0

0 : : : 0 @
@yh1 : : : @

@yhm
@
@yh1 : : : @

@yhm
@
@xh1 : : : @

@xhm

3
5 ; (22)

and the general form for the material matrix C for a plane
strain element is:

C = �

"
1 � 0
� 1 0
0 0 �

#
: (23)

This matrix embodies an isotropic material, where the con-
stants �, �, and � are a function of the material's modulus
of elasticity E and Poisson ratio �:

� =
�

1� �
; � =

E(1� �)

(1 + �)(1� 2�)
; and � =

1� 2�

2 (1� �)
:

(24)
Substituting into Equation 5 and multiplying out we ob-

tain a sti�ness matrix for the 2-D feature data:
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K =

Z
A

BTCBdA =
h
Kaa Kab
Kba Kbb

i
(25)

where each m bym submatrix is positive semi-de�nite sym-
metric, and Kab = Kba. The elements of Kaa have the
form:

kaaij = �

Z 1

�1

Z 1

�1

X
k;l

aik ajl

�
@gk

@x

@gl

@x
+ �

@gk

@y

@gl

@y

�
dx dy:

(26)
Integrate and regroup terms:

kaaij = ��
X
k;l

aik ajl

"
1 + �

2
�
�
x̂2kl + �ŷ2kl

�
4�2

#
p
gkl; (27)

where x̂kl = (xk � xl) and ŷkl = (yk � yl). Similarly, the
elements of Kbb have the form:

kbbij = ��
X
k;l

aik ajl

"
1 + �

2
�
�
ŷ2kl + �x̂2kl

�
4�2

#
p
gkl: (28)

Finally, the elements of Kab have the form:

kabij = �

Z 1

�1

Z 1

�1

X
k;l

aik ajl

�
�
@gk

@x

@gl

@y
+ �

@gk

@y

@gl

@x

�
dx dy:

(29)
When integrated this becomes:

kabij = ���(� + �)

4�2

X
k;l

aik ajl x̂kl ŷkl
p
gkl: (30)

V. Determining Correspondences

To determine correspondences, we �rst compute mass
and sti�ness matrices for both feature sets. These matrices
are then decomposed into eigenvectors �i and eigenvalues
�i as described in Section III.D. The resulting eigenvectors
are ordered by increasing eigenvalue, and form the columns
of the modal matrix �:

� = [�1 j : : : j �2m] =

2
66666664

uT1
...
uTm
vT1
...
vTm

3
77777775

(31)

where m is the number of nodes used to build the �nite el-
ement model. The column vector �i is called the ith mode

shape, and describes the modal displacement (u; v) at each
feature point due to the ith mode, while the row vectors
ui and vi are called the ith generalized feature vectors, and
together describe the feature's location in the modal coor-
dinate system.
Modal matrices �1 and �2 are built for both images.

Correspondences can now be computed by comparingmode
shape vectors for the two sets of features; we will character-
ize each nodal point by its relative participation in several
eigenmodes. Before actually describing how this matching
is performed, it is important to consider which and how
many of these eigenmodes should be incorporated into our
feature comparisons.

A. Modal Truncation

For various reasons, we must select a subset of mode
shape vectors (column vectors �i) before computing corre-
spondences. The most obvious reason for this is that the
number of eigenvectors and eigenvalues computed for the
source and target images will probably not be the same.
This is because the number of feature points in each image
will almost always di�er. To make the dimensionalities of
the two generalized feature spaces the same, we will need to
truncate the number of columns at a given dimensionality.
Typically, we retain only the lowest-frequency 25% of the

columns of each mode matrix, in part because the higher-
frequency modes are the ones most sensitive to noise. An-
other reason for discarding higher-frequency modes is to
make our shape comparisons less sensitive to local shape
variations.
We will also want to discard columns associated with the

rigid-body modes. Recall that the columns of the modal
matrix are ordered in terms of increasing eigenvalue. For
a two-dimensional problem, the �rst three eigenmodes will
represent the rigid body modes of two translations and a
rotation. These �rst three columns of each modal matrix
are therefore discarded to make the correspondence compu-
tation invariant to di�erences in rotation and translation.
In summary, this truncation breaks the generalized

eigenspace into three groups of feature vectors:

�1 = [�1;1 j �1;2 j �1;3| {z }
rigid body

j �1;4 j : : : j �1;p| {z }
intermediate

j �1;p+1 j : : : j �1;2m| {z }
high-order

]

�2 = [

modesz }| {
�2;1 j �2;2 j �2;3 j

modesz }| {
�2;4 j : : : j �2;p j

modesz }| {
�2;p+1 j : : : j �2;2n]

(32)
where m and n are the number of features in each image.
We keep only those columns that represent the interme-
diate eigenmodes; thus, the truncated generalized feature
space will be of dimension 2(p� 3) for a 2D problem.
We now have a set of mode-truncated feature vectors:

�� = [�4 j : : : j �p] =

2
66666664

�uT1
...
�uTm
�vT1
...
�vTm

3
77777775
; (33)

where the two row vectors �ui and �vi store the displace-
ment signature for the ith node point, in truncated mode
space. The vector �ui contains the x, and �vi contains the
y, displacements associated with each of the p� 3 modes.
It is sometimes the case that a couple of eigenmodes

have nearly equal eigenvalues. This is especially true for
the low-order eigenmodes of symmetric shapes and shapes
whose aspect ratio is nearly equal to one. In our current
system, such eigenmodes are excluded from the correspon-
dence computation because they would require the match-
ing of eigenmode subspaces.
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B. Computing Correspondence A�nities

Using a modi�ed version of an algorithm described by
Shapiro and Brady [33], we now compute what are referred
to as the a�nities zij between the two sets of generalized
feature vectors. These are stored in an a�nity matrix Z,
where:

zij = k �u1;i � �u2;j k2 + k �v1;i � �v2;j k2: (34)

The a�nity measure for the ith and jth points, zij, will
be zero for a perfect match and will increase as the match
worsens. Using these a�nity measures, we can easily iden-
tify which features correspond to each other in the two
images by looking for the minimum entry in each column
or row of Z. Shapiro and Brady noted that the symmetry
of an eigendecomposition requires an intermediate sign cor-
rection step for the eigenvectors �i. This is due to the fact
that the direction (sign) of eigenvectors can be assigned
arbitrarily. Readers are referred to [32] for more details
about this.
To obtain accurate correspondences the Shapiro and

Brady method requires three simple, but important, mod-
i�cations. First, only the generalized features that match
with the greatest certainty are used to determine the de-
formation; the remainder of the correspondences are deter-
mined by the deformation itself as in our previous method.
By discarding a�nities greater than a certain threshold, we
allow for tokens that have no strong match. Second, as de-
scribed earlier, only the low-order twenty-�ve percent of the
eigenvectors are employed, as the higher-order modes are
known to be noise-sensitive and thus unstable [2]. Lastly,
because of the reduced basis matching, similarity of the
generalized features is required in both directions, instead
of one direction only. In other words, a match between the
ith feature in the �rst image and the jth feature in the sec-
ond image can only be valid if zij is the minimumvalue for
its row, and zji the minimum for its column. Image points
for which there was no correspondence found are agged
accordingly.
In cases with low sampling densities or with large defor-

mations, the mode ordering can vary slightly. Such cases
require an extra step in which neighborhoods of similarly-
valued modes are compared to �nd the best match.

C. Coping with Large Rotations

As described so far, our a�nity matrix computation
method works best when there is little di�erence in the
orientation between images. This is due to the fact that
the modal displacements are described as vectors (u; v) in
image space. When the aligning rotation for two sets of
features is potentially large, the a�nity calculation can be
made rotation invariant by transforming the mode shape
vectors into a polar coordinate system. In two dimensions,
each mode shape vector takes the form

�i = [u1 : : :um; v1 : : : vm]
T (35)

where the modal displacement at the ith node is simply
(ui; vi). To obtain rotation invariance, we must transform

.
c

n
.
u

x
θ

Fig. 4. Transforming a modal displacement vector u = (u; v) into (�; r).
The angle � is computed relative to the vector n from the object's centroid
c to the nodal point x. The radius r is simply the length of u.

each (u; v) component into a coordinate in (r; �) space as
shown in Figure 4. The angle � is computed relative to
the vector from the object's centroid to the nodal point x.
The radius r is simply the magnitude of the displacement
vector u.
Once each mode shape vector has been transformed into

this polar coordinate system, we can compute feature a�ni-
ties as was described in the previous section. In our ex-
periments, however, we have found that it is often more
e�ective to compute a�nities using either just the r com-
ponents or just the � components, i.e.:

zij = k ��1;i � ��2;j k2: (36)

In general, the r components are scaled uniformly based
on the ratio between the object's overall scale versus the
Gaussian basis function radius �. The � components, on
the other hand, are immune to di�erences in scale, and
therefore a distance metric based on � o�ers the advantage
of scale invariance.

D. Multiresolution Models

When there are possibly hundreds of feature points for
each shape, computing the FEM model and eigenmodes
for the full feature set can become non-interactive. For ef-
�ciency, we can select a subset of the feature data to build
a lower-resolution �nite element model and then use the re-
sulting eigenmodes in �nding the higher-resolution feature
correspondences. The procedure for this is as follows.
First, a subset of m feature points is selected to be �-

nite element nodes. This subset can be a set of particu-
larly salient features (i.e., corners, T-junctions, and edge
mid-points) or a randomly selected subset of (roughly)
uniformly-spaced features. As before, a FEM model is
built for each shape, eigenmodes are obtained, and modal
truncation is performed as described in Section V.A. The
resulting eigenmodes are then matched and sign-corrected
using the lower-resolution models' a�nity matrix.
With modes matched for the feature subsets, we now

proceed to �nding the correspondences for the full sets of
features. To do this, we utilize interpolated modal matri-
ces which describe each mode's shape for the full set of
features:

�̂ = Ĥ�: (37)
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(a) (b)

Fig. 5. Two at tree shapes, one upright and one lying at (a), together
with the obtained correspondence (b). The 18 low-order modes were com-
puted for each tree and then correspondences were determined using the
algorithm described in the text.

The interpolation matrix Ĥ relates the displacement at
the nodes (low-resolution features) to displacements at the
higher-resolution feature locations xi:

Ĥ =

2
4 H(x1)

...
H(xn)

3
5 ; (38)

where each submatrixH(xi) is a 2� 2m interpolation ma-
trix as in Eq. 17.
Finally, an a�nity matrix for the full feature set is com-

puted using the interpolated modal matrices, and corre-
spondences are determined as described in the previous
sections.

VI. Correspondence Experiments

In this section we will �rst illustrate the method on a few
classic problems, and then demonstrate its performance
on real imagery. In each example the feature points are
treated independently; no connectivity or distinctiveness
information was employed. Thus the input to the algo-
rithm is a cloud of feature points, not a contour or 2-D
form. The mass and sti�ness matrices were then computed,
and the M-orthonormalized eigenvectors determined. Fi-
nally, correspondences were obtained as described above.
The left-hand side of Figure 5(a) shows two views of

a at, tree-like shape, an example illustrating the idea of
skewed symmetry adapted from [13]. The �rst 18 modes
were computed for both trees, and were compared to obtain
the correspondences shown in Figure 5(b). The fact that
the two �gures have similar low-order symmetries (eigen-
vectors) allows us to recognize that two shapes are closely
related, and to easily establish the point correspondences.
Figure 6 shows another classic example [25]. Here we

have pear shapes with various sorts of bumps and spikes.
Roughly 300 points were sampled regularly along the con-
tour of each pear's silhouette. Correspondences were then
computed using the �rst 32 modes. Because of the large
number of data points, only two percent of the correspon-
dences are shown. As can be seen from the �gure, reason-
able correspondences were found.
Figure 7(a) illustrates a more complex correspondence

example, using real image data. Despite the di�erences
between these two hands, the low-order descriptions are
quite similar and consequently a very good correspondence

Fig. 6. Correspondence obtained for bumpy, warty, and prickly pears.
Roughly 300 silhouette points were matched from each pear. Because of
the large number of data points, only two percent of the correspondences
are shown in this �gure.

(a)

(b)

(c)

(d)

Fig. 7. (a) Two hand images, (b) correspondences between silhouette
points, (c),(d) correspondences after digital surgery. Roughly 400 points
were sampled from each hand silhouette. Correspondences were computed
for all points using the �rst 32 modes. For clarity, only correspondences
for key points are shown in this �gure.
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di�erent views slightly di�erent planes

quite di�erent planes very di�erent planes

Fig. 8. Correspondence obtained for outlines of di�erent types of air-
planes. The �rst example shows the correspondences found for di�er-
ent (rotated in 3D) views of the same �ghter plane. The others show
matches between increasingly di�erent airplanes. In the �nal case, the
wing position of the two planes is quite di�erent. As a consequence, the
best-matching correspondence has the Piper Cub ipped end-to-end, so
that the two planes have more similar before-wing and after-wing fuselage
lengths. Despite this overall symmetry error, the remainder of the cor-
respondence appears quite accurate. Roughly 150 silhouette points were
matched from each plane. Because of the large number of data points,
only critical correspondences are shown in this �gure.

is obtained, as shown in Figure 7(b). Roughly 400 points
were sampled from each hand silhouette. Correspondences
were computed for all points using the �rst 32 modes. As
in the previous example, only two percent of the correspon-
dences are shown.
Figures 7(c) and (d) show the same hand data after dig-

ital surgery. In Figure 7(c), the little �nger was almost
completely removed; despite this, a nearly perfect corre-
spondence was maintained. In Figure 7(d), the second �n-
ger was removed. In this case a good correspondence was
still obtained, but not the most natural given our knowl-
edge of human bone structure.
The next example, Figure 8, uses outlines of three dif-

ferent types of airplanes as seen from a variety of di�erent
viewpoints (adapted from [45]). In the �rst three cases
the descriptions generated are quite similar, and as a con-
sequence a very good correspondence is obtained. Again,
only two percent of the correspondences are shown.
In the last pair, the wing position of the two planes is

quite di�erent. As a result, the best-matching correspon-
dence has the Piper Cub ipped end-to-end, so that the
two planes have more similar before-wing and after-wing
fuselage lengths. Despite this overall symmetry error, the
remainder of the correspondence appears quite accurate.
Our �nal example is adapted from [40] and utilizes multi-

resolution modal matching to e�ciently �nd correspon-
dences for a large number of feature points. Figure 9 shows
the edges extracted from images of two di�erent cars taken
from varying viewpoints. Figure 9(a) depicts a view of a
Volkswagen Beetle (rotated 15o from side view) and Figure
9(b) depicts two di�erent views of a Saab (rotated 15o and
45o). If we take each edge pixel to be a feature, then each
car has well over 1000 feature points.
As described in Section V.D, when there are a large num-

ber of feature points, modal models are �rst built from

(a) (b)

(c)

(d)

(e)

(f)

Fig. 9. Finding correspondence for one view of a Volkswagen (a) and a
two views of a Saab (b) taken from [40]. Each car has well over 1000
edge points. Note that both silhouette and interior points can be used
in building the model. As described in the text, when there are a large
number of feature points, modal models are �rst built from a uniform sub-
sampling of the features as is shown in (c,d). In this example, roughly 35
points were used in building the �nite element models. Given the modes
computed for this lower-resolution model, we can use modal matching to
compute feature matches for the higher-resolution. Correspondences be-
tween similar viewpoints of the VW and Saab are shown in (e), while in (f)
a di�erent viewpoint is matched (the viewpoints di�er by 30o). Because
of the large number of data points, only a few of the correspondences are
shown in this �gure.

a roughly uniform sub-sampling of the features. Figures
9(c) and 9(d) show the subsets of between 30 and 40 fea-
tures that were used in building the �nite element models.
Both silhouette and interior points were used in building
the model.
The modes computed for the lower-resolution models

were then used as input to an interpolated modal match-
ing which paired o� the corresponding higher-resolution
features. Some of the strongest corresponding features for
two similar views of the VW and Saab are shown in 9(e).
The resulting correspondences are reasonable despite mod-
erate di�erences in the overall shape of the cars. Due to the
large number of feature points, only a few of the strongest
correspondences are shown in this �gure.
In Figure 9(f), the viewpoints di�er by 30o. Overall,

the resulting correspondences are still quite reasonable, but
this example begins to push the limits of the matching al-
gorithm. There are one or two spurious matches; e.g., a
headlight is matched to a sidewall. We expect that per-
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formance could be improved if information about intensity,
color, or feature distinctiveness were included in our model.

VII. Object Alignment, Comparison and

Description

An important bene�t of our technique is that the eigen-
modes computed for the correspondence algorithm can also
be used to describe the rigid and non-rigid deformation
needed to align one object with another. Once this modal
description has been computed, we can compare shapes
simply by looking at their mode amplitudes or | since
the underlying model is a physical one | we can compute
and compare the amount of deformation energy needed to
align an object, and use this as a similarity measure. If the
modal displacements or strain energy required to align two
feature sets is relatively small, then the objects are very
similar.
Recall that for a two-dimensional problem, the �rst three

modes are the rigid body modes of translation and rotation,
and the rest are nonrigid modes. The nonrigid modes are
ordered by increasing frequency of vibration; in general,
low-frequency modes describe global deformations, while
higher-frequency modes describe more localized shape de-
formations. Such a global-to-local ordering of shape defor-
mation allows us to select which types of deformations are
to be compared.
For instance, it may be desirable to make object com-

parisons rotation, position, and/or scale independent. To
do this, we ignore displacements in the low-order or rigid
body modes, thereby disregarding di�erences in position,
orientation, and scale. In addition, we can make our com-
parisons robust to noise and local shape variations by dis-
carding higher-order modes. As will be seen later, this
modal selection technique is also useful for its compact-
ness, since we can describe deviation from a prototype in
terms of relatively few modes.
But before we can actually compare two sets of features,

we �rst need to recover the modal deformations ~U that de-
form the matched points on one object to their correspond-
ing positions on a prototype object. A number of di�erent
methods for recovering the modal deformation parameters
are described in the next section.

A. Recovering Deformations

We want to describe the deformation parameters ~U that
take the set of points from the �rst image to the corre-
sponding points in the second. Given that �1 and �2

have been computed, and that correspondences have been
established, then we can solve for the modal displacements
directly. This is done by noting that the nodal displace-
ments U that align corresponding features on both shapes
can be written:

ui = x1;i � x2;i; (39)

where x1;i is the i
th node on the �rst shape and x2;i is its

matching node on the second shape.
Recalling that U = �~U, and using the identity of Equa-

tion 10, we �nd:

~U = ��1U = �TMU: (40)

Normally there is not one-to-one correspondence be-
tween the features. In the more typical case where the re-
covery is underconstrained, we would like unmatched nodes
to move in a manner consistent with the material proper-
ties and the forces at the matched nodes. This type of
solution can be obtained in a number of ways.
In the �rst approach, we are given the nodal displace-

ments ui at the matched nodes, and we set the loads ri at
unmatched nodes to zero. We can then solve the equilib-
rium equation, KU = R, where we have as many knowns
as unknowns. Modal displacements are then obtained via
Eq. 40. This approach yields a closed-form solution, but
we have assumed that forces at the unmatched nodes are
zero.
By adding a strain-energy minimization constraint, we

can avoid this assumption. The strain energy can be mea-
sured directly in terms of modal displacements, and en-
forces a penalty that is proportional to the squared vibra-
tion frequency associated with each mode:

EI =
1

2
~UT
2 ~U: (41)

Since rigid body modes ideally introduce no strain, it is
logical that their !i � 0.
We can now formulate a constrained least squares solu-

tion, where we minimize alignment error that includes this
modal strain energy term:

E =
h
U��~U

iTh
U��~U

i
| {z }
squared �tting error

+ �~UT
2 ~U:| {z }
strain energy

(42)

This strain term directly parallels the smoothness func-
tional employed in regularization [35].
Di�erentiating with respect to the modal parameter vec-

tor yields the strain-minimizing least squares equation:

~U =
�
�T� + �
2

��1
�TU: (43)

Thus we can exploit the underlying physical model to en-
force certain geometric constraints in a least squares solu-
tion. The strain energy measure allows us to incorporate
some prior knowledge about how stretchy the shape is, how
much it resists compression, etc. Using this extra knowl-
edge, we can infer what \reasonable" displacements would
be at unmatched feature points.
Since the modal matching algorithm computes the

strength for each matched feature, we would also like to
utilize these match-strengths directly in alignment. This is
achieved by including a diagonal weighting matrix:

~U =
�
�TW2� + �
2

��1
�TW2U (44)

The diagonal entries of W are inversely proportional to
the a�nity measure for each feature match. The entries
for unmatched features are set to zero.
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B. Dynamic Solution: Morphing

So far, we have described methods for �nding the modal
displacements that directly deform and align two feature
sets. It is also possible to solve the alignment problem by
physical simulation, in which the �nite element equations
are integrated over time until equilibrium is achieved. In
this case, we solve for the deformations at each time step
via the dynamic equation (Eq. 12). In so doing, we com-
pute the intermediate deformations in a manner consistent
with the material properties that were built into the �nite
element model. The intermediate deformations can also be
used for physically-based morphing.
When solving the dynamic equation, we use features of

one image to exert forces that pull on the features of the
other image. The dynamic loads R(t) at the �nite element
nodes are therefore proportional to the distance between
matched features:

ri(t +�t) = ri(t) + k(x1;i + ui(t) � x2;i); (45)

where k is an overall sti�ness constant and ui(t) is the
nodal displacement at the previous time step. These loads
simulate \ratchet springs," which are successively tight-
ened until the surface matches the data [10].
The modal dynamic equilibrium equation can be written

as a system of 2m independent equations of the form:

�~ui(t) + ~di _~ui(t) + !2i ~ui(t) = ~ri(t); (46)

where the ~ri(t) are components of the transformed load
vector ~R(t) = �TR(t). These independent equilibrium
equations can be solved via an iterative numerical integra-
tion procedure (e.g., Newmark method [2]). The system is
integrated forward in time until the change in load energy
goes below a threshold. The loads ri(t) are updated at
each time step by evaluating Equation 45.

C. Coping with Large Rotations

If the rotation needed to align the two sets of points is
potentially large, then it is necessary to perform an ini-
tial alignment step before recovering the modal deforma-
tions. Orientation, position, and (if desired) scale can be
recovered in closed-form via quaternion-based algorithms
described by Horn [12] or by Wang and Jepson [43].1

Using only a few of the strongest feature correspondences
(recall that strong matches have relatively small values in
the a�nity matrix Z) the rigid body modes can be solved
for directly. The resulting additional alignment parameters
are:

p0 position vector
q unit quaternion de�ning orientation
s scale factor

c1 and c2 centroids for the two objects

Since this initial orientation calculation is based on only the
strongest matches, these are usually a very good estimate
of the rigid body parameters.

1While all the examples reported here are two-dimensional, it was de-
cided that for generality, a 3-D orientation recovery method would be
employed. For 2-D orientation recovery problems, simply set z coordi-
nates to zero.

The objects can now be further aligned by recovering
the modal deformations ~U as described previously. As be-
fore, we compute virtual loads that deform the features in
the �rst image towards their corresponding positions in the
second image. Since we have introduced an additional ro-
tation, translation, and scale, Equation 39 will be modi�ed
so as to measure distances between features in the correct
coordinate frame:

ui = (
1

s
RT [x2;i � p0 � c1] + c1 � x1;i); (47)

where R is a rotation matrix computed from the unit
quaternion q.
Through the initial alignment step, we have essentially

reduced virtual forces between corresponding points; the
spring equation accounts for this force reduction by in-
verse transforming the matched points x2;i into the �nite
element's local coordinate frame. The modal amplitudes
~U are then solved for via a matrix multiply (Eq. 40) or by
solving the dynamic system (Eq. 12).

D. Comparing Objects

Once the mode amplitudes have been recovered, we can
compute the strain energy incurred by these deformations
by plugging into Equation 41. This strain energy can then
be used as a similarity metric. As will be seen in the next
section, we may also want to compare the strain in a subset
of modes deemed important in measuring similarity, or the
strain for each mode separately. The strain associated with
the ith mode is simply:

Emodei =
1

2
~u2i!i

2: (48)

Since each mode's strain energy is scaled by its frequency
of vibration, there is an inherent penalty for deformations
that occur in the higher-frequency modes. In our experi-
ments, we have used strain energy for most of our object
comparisons, since it has a convenient physical meaning;
however, we suspect that (in general) it will be necessary
to weigh higher-frequency modes less heavily, since these
modes typically only describe high-frequency shape varia-
tions and are more susceptible to noise.
Instead of looking at the strain energy needed to align

the two shapes, it may be desirable to directly compare
mode amplitudes needed to align a third, prototype object
with each of the two objects. In this case, we �rst compute
two modal descriptions ~U1 and ~U2, and then utilize our
favorite distance metric for measuring the distance between
the two modal descriptions.

VIII. Recognition Experiments

A. Alignment and Description

Figure 10 demonstrates how we can align a prototype
shape with other shapes, and how to use this computed
strain energy as a similarity metric. As input, we are
given the correspondences computed for the various air-
plane silhouettes shown in Figure 8. Our task is to align
and describe the three di�erent target airplanes (shown in
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Fig. 10. Describing planes in terms of a prototype. The graphs show the 36 mode amplitudes used to align the prototype with each target shape. (a)
shows that similar shapes can be aligned with little deformation; (b) shows that viewpoint changes produce mostly low-frequency deformations, and
(c) shows that to align di�erent shapes requires both low and high frequency deformations.

gray) in terms of modal deformations of a prototype air-
plane (shown in black). In each case, there were approxi-
mately 150 contour points used, and correspondences were
computed using the �rst 36 eigenmodes. On the order of
50 strongest corresponding features were used as input to
Equation 43. The modal strain energy was computed using
Equation 41.
The graphs in Figure 10 show the values for the 36 re-

covered modal amplitudes needed to align or warp the pro-
totype airplane with each of the target airplanes. These
mode amplitudes are essentially a recipe for how to build

each of the three target airplanes in terms of deformations
from the prototype.
Figure 10(a) shows an airplane that is similar to the

prototype and is viewed from a viewpoint that results in a
similar image geometry. As a consequence the two planes
can be accurately aligned with little deformation, as indi-
cated by the graph of mode amplitudes required to warp
the prototype to the target shape.
Figure 10(b) depicts an airplane that is from the same

class of airplanes as the prototype, but viewed from a very
di�erent angle. In this case, the graph of mode ampli-
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tudes shows a sizable strain in the �rst few modes. This
makes sense, since generally the �rst six to nine deforma-
tion modes account for a�ne-like deformations that are
similar to the deformations produced by changes in view-
point.
The �nal example, Figure 10(c), is very di�erent from

the prototype airplane, and is viewed from a di�erent view-
point. In this case, the recovered mode deformations are
large in both the low and higher-frequency modes.
This �gure illustrates how the distribution of strain en-

ergy in the various modes can be used judge the similar-
ity of di�erent shapes, and to determine if di�erences are
likely due primarily to changes in viewpoint. Figure 10(a)
shows that similar shapes can be aligned with little defor-
mation; (b) shows that viewpoint changes produce mostly
low-frequency deformations, and (c) shows that to align dif-
ferent shapes generally requires deformations of both low
and high frequency.

B. Determining Relationships Between Objects

By looking more closely at the mode strains, we can
pin-point which modes are predominant in describing an
object. Figure 11 shows what we mean by this. As before,
we can describe one object's silhouette features in terms of
deformations from a prototype. In this case, we want to
compare di�erent hand tools. The prototype is a wrench,
and the two target objects are a bent wrench and hammer.
Silhouettes were extracted from the images, and thinned
down to approximately 80 points per contour. Using the
strongest matched contour points, we then recovered the
�rst 22 modal deformations that warp the prototype onto
the other tools. A rotation, translation, and scale invariant
alignment stage was employed as detailed in Section V.C.
The strain energy attributed to each modal deformation

is shown in the graph at the bottom of the �gure. As can
be seen from the graph, the energy needed to align the pro-
totype with a similar object (the bent wrench) was mostly
isolated in two modes: modes 6 and 8. In contrast, the
strain energy needed to align the wrench with the hammer
is much greater and spread across the graph.
Figure 12 shows the result of aligning the prototype

with the two other tools using only the two most domi-
nant modes. The top row shows alignment with the bent
wrench using just the sixth mode (a shear), and then just
the eighth mode (a simple bend). Taken together, these
two modes do a very good job of describing the deforma-
tion needed to align the two wrenches. In contrast, align-
ing the wrench with the hammer (bottom row of Figure 12)
cannot be described simply in terms of a few deformations
of the wrench.
By observing that there is a simple physical deformation

that aligns the prototype wrench and the bent wrench, we
can conclude that they are probably closely related in cat-
egory and functionality. In contrast, the fact that there is
no simple physical relationship between the hammer and
the wrench indicates that they are likely to be di�erent
types of object, and may have quite di�erent functionality.

prototype wrench

bent wrench hammer
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Fig. 11. Describing a bent wrench and a hammer in terms of modal de-
formations from a prototype wrench. Silhouettes were extracted from the
images, and then the strongest corresponding contour points were found.
Using these matched contour points, the �rst 28 modal deformations that
warp the prototype's contour points onto the other tools were then re-
covered and the resulting strain energy computed. A graph of the modal

strain attributed to each modal deformation is shown at the bottom of
the �gure.

mode 6 mode 8 6 and 8

mode 11 mode 23 11 and 23

Fig. 12. Using the two modes with largest strain energy to deform the
prototype wrench to two other tools. The �gures demonstrates how the
top two highest-strain modal deformations contribute to the alignment of
a prototype wrench to the bent wrench and a hammer of Figure 11.
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prototype 0.8 2.1 3.2

3.9 4.8 5.1 8.2

23.1 24.2 28.1 28.8

Fig. 13. Using modal strain energy to compare a prototype wrench with
di�erent hand tools. As in Figure 11, silhouettes were �rst extracted from
each tool image, and then the strongest corresponding contour points were
found. Mode amplitudes for the �rst 22 modes were recovered and used
to warp the prototype onto the other tools. The modal strain energy
that results from deforming the prototype to each tool is shown below
each image in this �gure. As can be seen, strain energy provides an good
measure for similarity.

C. Recognition of Objects and Categories

In the next example (Figures 13 and 14) we will use
modal strain energy to compare three di�erent prototype
tools: a wrench, hammer, and crescent wrench. As before,
silhouettes were �rst extracted and thinned from each tool
image, and then the strongest corresponding contour points
were found. Mode amplitudes for the �rst 22 modes were
recovered and used to warp each prototype onto the other
tools. The modal strain energy that results from deform-
ing the prototype to each tool is shown below each image.
Total CPU time per trial (match, align, and compare) av-
eraged 11 seconds on an HP 735 workstation.
Figure 13 depicts the use of modal strain energy in com-

paring a prototype wrench with thirteen other hand tools.
As this �gure shows, the shapes most similar to the wrench
prototype are those other two-ended wrenches with approx-
imately straight handles. Next most similar are closed-
ended and bent wrenches, and most dissimilar are ham-
mers and single-ended wrenches. Note that the matching
is orientation and scale invariant (modulo limits imposed
by pixel resolution).
Figure 14 continues this example using as prototypes

the hammer and a single-ended wrench. Again, the modal
strain energy that results from deforming the prototype to
each tool is shown below each image.
When the hammer prototype is used, the most similar

shapes found are three other images of the same hammer,
taken with di�erent viewpoints and illumination. The next
most similar shapes are a variety of other hammers. The
least similar shapes are a set of wrenches.
For the single-ended wrench prototype, the most similar

shapes are a series of single-ended wrenches. The next most
similar is a straight-handled double-ended wrench, and the

prototype 0.58 1.0 1.4

1.6 1.9 2.1 2.4

13.0 15.3 60.8 98.7

prototype 1.3 1.4 1.9

3.5 5.1 5.7 18.2

23.7 25.8 31.0 45.5

Fig. 14. Using modal strain energy to compare a crescent wrench with
di�erent hand tools, and a prototype hammer with di�erent hand tools.
Strain energies were computed as in Figure 13. The modal strain energy
that results from deforming the prototype to each tool is shown below
each image.

least similar are a series of hammers and a bent, double-
ended wrench.
The fact that the similarity measure produced by the

system corresponds to functionally-similar shapes is im-
portant. It allows us to recognize the most similar wrench
or hammer from among a group of tools, even if there is no
tool that is an exact match. Moreover, if for some reason
the most-similar tool can't be used, we can then �nd the
next-most-similar tool, and the next, and so on. We can
�nd (in order of similarity) all the tools that are likely to
be from the same category.

IX. Conclusion

The advantages a�orded by our method stem from the
use of the �nite element technique of Galerkin surface ap-
proximation to avoid sampling problems and to incorporate
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outside information such as feature connectivity and dis-
tinctiveness. This formulation has allowed us to develop
an information-preserving shape matrix that models the
distribution of \virtual mass" within the data. This shape
matrix is closely related to the proximity matrix formula-
tion [30;32;33] and preserves its desirable properties, e.g.,
rotation invariance. In addition, the combination of �nite
element techniques and a mass matrix formulation have al-
lowed us to avoid setting initial parameters, and to handle
much larger deformations.
Moreover, it is important to emphasize that the trans-

formation to modal space not only allows for automati-
cally establishing correspondence between clouds of feature
points; the same modes (and the underlying FEM model)
can then be used to describe the deformations that take
the features from one position to the other. The amount
of deformation required to align the two feature clouds can
be used for shape comparison and description, and to warp
the original images for alignment and sensor fusion. The
power of this method lies primarily in it's ability to unify
the correspondence and comparison tasks within one rep-
resentation.
Finally, we note that the descriptions computed are

canonical, and vary smoothly even for very large defor-
mations. This allows them to be used directly for object
recognition as illustrated by the airplane and hand-tool
examples in the previous section. Because the deforma-
tion comparisons are physically-based, we can determine
whether or not two shapes are related by a simple physical
deformation. This has allowed us to identify shapes that
appear to be members of the same category.
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