
Boston University

OpenBU http://open.bu.edu

Computer Science CAS: Computer Science: Technical Reports

1995-07-18

Characteristics of WWW Client-based Traces

Cunha, Carlos; Bestavros, Azer; Crovella, Mark. "Characteristics of WWW Client-based

Traces“, Technical Report BUCS-1995-010, Computer Science Department, Boston University,

April 1, 1995. [Available from: http://hdl.handle.net/2144/1571]

https://hdl.handle.net/2144/1571

Downloaded from DSpace Repository, DSpace Institution's institutional repository

Characteristics of WWW Client-based Traces

Carlos R. Cunha Azer Bestavros Mark E. Crovella

Computer Science Department

Boston University

111 Cummington St, Boston, MA 02215

fcarro,best,crovellag@cs.bu.edu

BU-CS-95-010

July 18, 1995

Abstract

The explosion of WWW tra�c necessitates an accurate picture of WWW use, and in par-
ticular requires a good understanding of client requests for WWW documents. To address this
need, we have collected traces of actual executions of NCSA Mosaic, re
ecting over half a million
user requests for WWW documents. In this paper we describe the methods we used to collect
our traces, and the formats of the collected data. Next, we present a descriptive statistical sum-
mary of the traces we collected, which identi�es a number of trends and reference patterns in
WWW use. In particular, we show that many characteristics of WWW use can be modelled
using power-law distributions, including the distribution of document sizes, the popularity of
documents as a function of size, the distribution of user requests for documents, and the number
of references to documents as a function of their overall rank in popularity (Zipf's law). Finally,
we show how the power-law distributions derived from our traces can be used to guide system
designers interested in caching WWW documents.

1 Introduction

The recent proliferation of new information services on the Internet along with the enormous
potential for commercial use of the Internet has increased the need for e�cient protocols to
reduce Internet tra�c. The introduction of the World Wide Web (WWW) and the explosion in
network tra�c attributed to it [9] means that an accurate picture of WWW tra�c is extremely
important for evaluating various bandwidth-reduction techniques | such as information caching,
dissemination, and discovery protocols. Records of tra�c to any particular server are readily
available, as each server typically logs the requests it serves. However, server logs do not re
ect
the access patterns of individual users. Thus, they have been used to evaluate system-level
performance metrics such as network bandwidth demand and server load, but they cannot be
easily used to study user-level performance metrics such as service time. Client-based traces, in
contrast, have limited value in the evaluation of system-level performance metrics or the study
of global properties, but are central in evaluating user-level performance metrics and access
patterns.

Unfortunately, client-based traces of WWW tra�c are not widely available. To address this
need, and to support our own research into client-level techniques for WWW tra�c reduction,

1

we captured a large number of client traces, recording the document reference patterns and
times resulting from real users accessing the WWW.

In this paper we describe our method of trace collection, which is based on instrumenting the
WWW browser NCSA Mosaic. In addition, we present a descriptive statistical summary of the
traces we collected, which identi�es a number of trends and reference patterns in WWW use. In
particular, we show that many characteristics of WWW use can be modelled using power-law
distributions, including the distribution of document sizes, the popularity of documents as a
function of size, the distribution of user requests for documents, and the number of references
to documents as a function of their overall rank in popularity (Zipf's law). In addition, we show
how summary statistics derived from our traces can be used to guide system designers interested
in caching WWW documents.

To our knowledge, these are the �rst such traces generally available to the research commu-
nity. The traces are available to the public via anonymous FTP.1

2 Data Collection

The �rst step in understanding patterns of WWW use is the collection of trace data. Previous
�le-oriented studies have focused on reference patterns established based on logs of proxies [8, 14],
or servers [13]. The authors in [3] captured client traces, but they concentrated on events at
the user interface level in order to study browser and page design. In contrast, our goal in
data collection was to acquire a complete picture of the reference behavior and timing of user
accesses to the WWW. To do this, we modi�ed a WWW browser so as to log all user accesses.
The browser we used was Mosaic, since its source was publicly available and permission has
been granted for using and modifying the code for research purposes. A complete description
of our data collection methods and the format of the log�les is given in [6]; here we only give a
high-level summary.

We modi�ed Mosaic to record the Uniform Resource Locator (URL) [1] of each �le accessed
by the Mosaic user, as well as the time the �le was accessed and the time required to transfer
the �le from its server (if necessary).2 For completeness, we record all URLs accessed whether
they were served from Mosaic's cache or via a �le transfer; however the distinction is preserved
in the collected data.

At the time of our study (November 1994 through February 1995) Mosaic was the WWW
browser preferred by nearly all users at our site. Hence our results re
ect the behavior of nearly
all the WWW users at our site. Since the time of our study, the preferred browser has become
Netscape [5], which is not available in source form. As a result, capturing an equivalent set of
WWW user traces at the current time would be signi�cantly more di�cult.

In this paper we will refer to a single execution of Mosaic as a session. We will refer to the
record of all URLs accessed in a session as a trace. Each trace is stored in a separate �le called
a log. Any �le pointed to by a URL we call an object; we refer to a collection of objects that are
displayed together in a page of the browser as a document.

2.1 Trace Strategy

To avoid extensive internal modi�cations to Mosaic, we kept no extra information in Mosaic
internal data structures. As trace information was produced, it was written to log �les on a
local disk. At the end of a session the log was transferred to a central machine where it was
stored and later processed to generate the statistics.

To instrument Mosaic we identi�ed the routines that are invoked during requests for an
object. This required source changes to the �les main.c, img.c, mo-www.c, history.c,

gui-documents.c, HTAccess.c, HTFTP.c, HTFormat.c, HTGopher.c, HTNews.c, HTTP.c, and

1From ftp://cs-ftp.bu.edu/techreports/95-010-web-client-traces.tar.gz.
2We recognized, as discussed in [4], that, technically, a URL does not uniquely identify a document under the

HTTP protocol; but like those authors we adopt this simplifying convention.

2

HTML.c. A large number of �les was modi�ed because each module responsible for one of the
possible transfer protocols (FTP, HTTP, etc.) had to be modi�ed to write to disk the URL, the
size in bytes of the object, the time the request was issued, and how long it took to retrieve the
object. In addition we had to include 2 extra routines: one to verify if logs were requested; and
a second to transmit the logs to the central machine.

We now realize that the decision not to maintain information inside Mosaic was not the best
one, since the version of Mosaic we used has the following behavior when loading a document:
after loading a document, Mosaic recalculates the display space required. If the whole document
�ts in the display area, Mosaic reloads the document again after modifying the display not to
show the sliding rule. This reload causes an extra call to the routines that display texts and
in-line images. As a result we need to carefully distinguish between the original display of an
object and its redisplay if the sliding rule is eliminated. To address this, an additional tool was
developed for log post processing. All of the published logs have been processed in this manner
to remove artifacts of Mosaic's document re-display.

2.2 Types of Traces

We generated log�les in three formats, which we called: condensed, window and structure. We
designed the log �les for ease of post-processing, so some information is contained in more than
one log format. The condensed logs contain the sequence of object requests (again, whether the
object was served from the local cache or from the network). The window logs summarize the
sequence of documents viewed in each window of the browser (since the browser can present
multiple windows). Finally, the structure logs contain the internal structure of each document
requested (consisting of the URLs for the textual part, any inlined images, and the embedded
links).

The log �les are named according to their contents. Each name consists of 3 segments
separated by dots. The �rst segment describes the type of trace it contains: con, win and mos,
for condensed, window and Mosaic document structure, respectively; this concatenated with a
user id number. User ID numbers are converted from Unix UIDs via a one-way function that
allows user IDs to be compared for equality but not to be easily traced back to particular users.
The next segment consists of the the machine on which the session took place. The last segment
consists of the time (in seconds since 1/1/70) when the session started.

For example, a �le named con1.cs20.785526125 is a condensed log, and is a log of a session
from user 1, on machine cs20, starting at time 785526125. Corresponding to this �le there
would also exist a window and a structure log; their names would di�er only their �rst thee
characters.

2.2.1 Format of the Condensed Log

Each line of a condensed log corresponds to a single URL requested by the user; it contains the
machine name, the time stamp when the request was made (seconds and microseconds since
January 1, 1970), the URL, the size of the document (including the overhead of the protocol)
and the object retrieval time in seconds (re
ecting only actual communication time, and not
including the intermediate processing performed by Mosaic in a multi-connection transfer). An
example of a line from a condensed log is:

cs20 785526142 920156 "http://cs-www.bu.edu/lib/pics/bu-logo.gif" 1804 0.484092

In the condensed logs, lines with the number of bytes equal to 0 and retrieval delay equal to
0.0 mean that the request was satis�ed by Mosaic's internal cache. By logging internal cache
accesses, one can understand the behavior of Mosaic, in order to mimic its actions or to compare
them to those of a di�erent caching strategy. Such an approach was taken in [2].

3

2.2.2 Format of the Window History Log

The second log �le reports the window context of the user when using the browser, i.e., the
sequence of documents visited and the windows in which those documents are visited. This
tracks behavior such as going \forward" or \backwards" within a window, or \jumps" between
windows. This data is useful for behavioral studies, and could be useful in determining an
empirical model of user behavior for generating synthetic loads in simulators.

Each line in this �le contains: a two digit number separated by a dot, re
ecting the window
and the document number inside that window; the URL; and the date/time when it was accessed.
Here is an example of four lines from a window history log:

1.1 "http://cs-www.bu.edu:80/" "Tue Nov 22 12:42:24 1994"

1.2 "http://www.zyxel.com/" "Tue Nov 22 12:46:42 1994"

1.3 "http://www.zyxel.com/2864.html" "Tue Nov 22 12:48:21 1994"

1.2 "http://www.zyxel.com/" "Tue Nov 22 12:53:33 1994"

2.2.3 Format of the Document Structure Log

The third log �le contains a structural summary of each of the documents viewed by the user. For
each document visited, the log contains a summary of the embedded images ()
and the embedded references ().

The type of a line in the document structure log is identi�ed by a number in the �rst
position on the line. The number 1 signi�es that the line is a URL directly requested by the
user. Subsequent lines specify items contained in that URL, continuing until another line type
1 is encountered. The number 2 signi�es that the line represents a contained URL, normally an
in-line image. The number 3 means that the line represents a reference (anchor). The number
4 is used to indicate that the line represents a redirection; what follows is the redirected URL.

Lines in the document structure log consist of two formats. For type 1 and 2 lines, the format
is: the line type; the machine name; the URL; seconds and microseconds since 1/1/70 when
the request was made; the round trip retrieval time; and the item's size (including the protocol
overhead). If the object's size and time are zeroes, no transfer took place, possibly because
the objest was shared by other documents. For type 3 lines, the format is: the line type; the
sequence number of the reference within the document (numbered sequentially starting from 0
for each document); and the reference itself. A typical segment of a document structure log is
shown in Figure 1.

Sometimes Mosaic is not able to fetch parts of the whole document; for example, some in-line
images. This is indicated in the document structure log by the absence of the time and size
information (not shown in Figure 1). This was not considered to be a serious problem, since
the main objective of this log is to discover document structure.

A possible use of the document structure log is to partially reconstruct the Web graph. With
such a graph it could be possible to model access patterns for individual users with the goal of
developing an intelligent agent that could help in document prefetching.

2.3 Data Collection Environment

To collect our data we installed our instrumented version of Mosaic in the general computing
environment at Boston University's Computer Science Department. This environment consists
principally of 37 SparcStation 2 workstations connected in a local network, which is divided
in 2 subnets. Each workstation has its own local disk; logs were written to the local disk and
subsequently transferred to a central repository.

32 workstations were primarily used by undergraduates in the Computer Science program.
We refer to these as the Room B19 workstations (and traces and users) from the name of the
room they are in. 5 workstations were primarily used by graduate students. These are the Room
272 workstations (and users and traces).

4

1 cs20 "http://cs-www.bu.edu/" 785526141 715240 0.715116 1935

2 cs20 "http://cs-www.bu.edu/lib/pics/bu-logo.gif" 785526142 920156 0.484092 1804

2 cs20 "http://cs-www.bu.edu/lib/pics/bu-label.gif" 785526143 788613 0.470034 716

3 0 "gopher://software.bu.edu/11/Resources%20At%20Your%20Fingertips/

3 1 "http://web.bu.edu/pagetwo.html"

3 2 "http://cs-www.bu.edu/faculty/bulletin/Home.html"

3 3 "http://cs-www.bu.edu/courses/Home.html"

3 4 "http://cs-www.bu.edu/labs/Home.html"

3 5 "http://cs-www.bu.edu/techreports/Home.html"

3 6 "http://cs-www.bu.edu/colloquium/Home.html"

3 7 "http://cs-www.bu.edu/faculty/Home.html"

3 8 "http://cs-www.bu.edu/staff/Home.html"

3 9 "http://cs-www.bu.edu/students/grads/Home.html"

3 10 "http://cs-www.bu.edu/students/acm/Home.html"

3 11 "http://cs-www.bu.edu/help/Home.html"

3 12 "http://cs-www.bu.edu/cgi-bin/finger"

3 13 "http://cs-www.bu.edu/misc/wusage/usage/index.html"

3 14 "http://cs-www.bu.edu/pointers/Home.html"

3 15 "http://cs-www.bu.edu/faculty/best/Home.html"

1 cs20 "http://www.zyxel.com/" 785526307 307174 13.194868 1664

2 cs20 "http://www.zyxel.com/zyxellogo.gif" 785526320 644309 4.094732 1512

2 cs20 "http://www.zyxel.com/line-green-blue-grad.gif" 785526325 224441 4.119299 2547

2 cs20 "http://www.zyxel.com/group.gif" 785526329 874274 69.037422 32994

2 cs20 "http://www.zyxel.com/line-green-blue-grad.gif" 0 0 0.0 0

3 0 "http://www.zyxel.com/b.html"

3 1 "http://www.zyxel.com/bp.html"

3 2 "http://www.zyxel.com/e.html"

3 3 "http://www.zyxel.com/ep.html"

3 4 "http://www.zyxel.com/sp.html"

3 5 "http://www.zyxel.com/p.html"

3 6 "http://www.zyxel.com/r.html"

3 7 "http://www.zyxel.com/re.html"

3 8 "http://www.zyxel.com/cell.html"

3 9 "http://www.zyxel.com/2864.html"

1 cs20 "http://www.zyxel.com/2864.html" 785526419 767702 14.792571 8191

2 cs20 "http://www.zyxel.com/zyxellogo.gif" 0 0 0.0 0

2 cs20 "http://www.zyxel.com/line-green-blue-grad.gif" 0 0 0.0 0

2 cs20 "http://www.zyxel.com/um288ec.gif" 785526434 936426 63.574387 44393

2 cs20 "http://www.zyxel.com/line-green-blue-grad.gif" 0 0 0.0 0

3 0 "http://www.zyxel.com/index.html#1"

Figure 1: Typical entries in a document structure log �le.

5

Observation Period

N
um

be
r

of
 S

es
si

on
s

1994
Nov

1994
Nov

1994
Nov

1994
Dec

1994
Dec

1994
Dec

1994
Dec

1995
Jan

1995
Jan

1995
Jan

1995
Jan

1995
Jan

1995
Feb

1995
Feb

1995
Feb

1995
Feb

1995
Mar

0
20

0
40

0
60

0

Figure 2: Histogram of the number of sessions per day.

We began by collecting data on the Room 272 workstations only, while testing our data
collection process. This period lasted from 21 November 1994 until 17 January 1995. When
we were statis�ed that data collection was occurring correctly, we extended the data collection
process to include the 32 undergraduate workstations; data collection then took place until 8
May 1995. Since Mosaic ceased to be the dominant browser in use by early March 1995, all of
the statistics presented in subsequent sections of this report are based only on data from the
period 21 November 1995 through 28 February 1995. When our statistics could be a�ected by
the di�erence in collection strategies during this timeframe, we consider the 272 and B19 data
separately.

3 Statistical Summary of the Traces

During the data collection period a total of 4,700 sessions were traced, representing a population
of 591 di�erent users. A histogram of the number of sessions per day is shown in Figure 2. The
Figure shows considerable variation over time. The enabling of tracing in B19 is clearly visible
in the middle of the plot. However, even within each data collection regime (before or after
B19 was enabled) there is considerable day-to-day variation in the WWW demand at our site
as measured by user sessions.

3.1 Population Observed

The users of the graduate terminal room, Room 272, consisted mainly of graduate students.
There were a total of 42 users, and 527 sessions in the Room 272 data. Room 272 was open 24
hours per day.

The population using Room B19 encompasses a broader spectrum of users, including both
students doing homework and less-focused users. There were 558 di�erent Room B19 users,

6

Sessions 272 B19

Minimum 1 9
Maximum 18 658
Mean 5.27 97.05
St.Dev. 4.16 118.17

Table 1: Number of sessions in 272 and B19 daily.

Users Total 272 B19

Minimum 1 1 1
Maximum 71 71 38
Mean 7.95 12.55 7.48
St.Dev. 8.17 18.58 6.58

Table 2: Number of sessions per user in 272 and B19.

responsible for 4173 sessions. Room B19 was open from 9 am to 10 pm from Monday to Friday,
and 12 pm to 6 pm on weekends.

Table 1 shows summary statistics on the number of sessions in each room on a daily basis.
The table re
ects the fact that the larger number of workstations in B19 led to a much larger
number of sessions per day in that room.

Table 2 shows summary statistics on the number of sessions per user in each room. The table
shows that members of the more general population in B19 used the Web fewer times overall,
while the primarily graduate student population in 272 used the Web much more often.

Finally, Table 3 shows the distribution of requests among the di�erent access protocols. The
row Queries refers to requests containing cgi-bin in the URL. The �rst three columns include
all the references, whether they were served by a WWW server or from Mosaic's internal cache.
The second three columns consider only the requests that were statis�ed by a WWW server.

3.2 Remote vs. Local Data Volume

An important distinction is between those requests that went to servers outside the Boston
University campus (Remote) and those requests that went to BU servers (Local). Table 4
summarizes requests based on that distinction.

The table additionally distinguishes between single references, which each occur only once
in our traces, and repeated references, which occur at least twice in our traces. A reference is
considered repeated if it occurs twice or more regardless of user or session boundaries. In the
Table, the Unique URLs row corresponds to the number of distinct URLs while the All URLs
row corresponds to all references in our dataset. Finally, the Unique Bytes row corresponds to
bytes pointed to by Unique URLs while the All Bytes row corresponds to all bytes transferred
in our dataset.

The distinction between Local and Remote documents can be useful, for example, in caching

All Cache Misses
Total 272 B19 Total 272 B19

http 568181 65764 502417 125550 15580 109970
gopher 5236 727 4509 3077 383 2694

ftp 2358 514 1844 1513 332 1181
Queries 7509 1129 6380 5099 699 4400
Other 7888 110 7778 119 20 99

Table 3: Distribution by Protocol.

7

All Remote Local
Total Single Repeated Total Single Repeated Total Single Repeated

Unique URLs 46,830 19,454 27,376 44,251 18,658 25,593 2,579 796 1,783
All URLs 575,775 19,454 556,321 452,864 18,658 434,206 122,911 796 122,115

Unique Bytes (MB) 1,088 794 294 1,037 776 261 51 18 33
All Bytes (MB) 2,714 794 1,920 2,163 776 1,387 551 18 533

Sites 3026 2987 39
Domains 86

Table 4: Comparison of Remote vs. Local Requests.

Freq Site

Local 97477 cs-www.bu.edu
9283 www.bu.edu
4566 web.bu.edu
3385 lobster.bu.edu
2184 spiderman.bu.edu
1513 gopher.bu.edu
862 conx.bu.edu
593 acs2.bu.edu
333 eng.bu.edu
330 miranda.bu.edu

Remote 129649 akebono.stanford.edu
23315 american.recordings.com
14621 csugrad.cs.vt.edu
9675 www.galcit.caltech.edu
9177 sunsite.unc.edu
7149 gnn.com
5036 www.ncsa.uiuc.edu
4746 www.timeinc.com
4531 www.tcp.com
4202 www.mit.edu

Table 5: Most Popular Sites, Local and Remote.

policies, since with the advent of fast LANs the cost associated with information retrieval inside
the same institutional domain may become cheaper compared with retrievals that traverse the
wide are network. An example exploration of such a distinction is discussed in [2].

The Table shows that from a total of 575,775 requests, 452,862 were for servers outside of
the BU domain. This corresponds to 78.6% of all requests. The requests include references to
3026 di�erent sites, of which 2987 were remote and 39 were local. Table 5 summarizes the 10
top most popular sites, local and remote. In addition, Table 6 lists the most popular top-level
domains.

3.3 User Pro�le and Speed of New Site Discovery

Since we are interested in using user pro�les and user past history in directing prefetching
schemes, we studied the rate of user access to new objects in the Web. To do so, we plotted
diagrams showing the patterns of individual users access to new and previously seen URLs.
Two such diagrams are shown in Figure 3. In these �gures, the horizontal (x) axis represents
successive WWW requests by a single users. Each time the user requests a previously unseen
URL, that URL is assigned a new ID, which is shown on the vertical (y) axis. If the user were

8

Freq Domain

376306 edu
120784 com
17863 net
9361 org
8190 uk
6267 gov
4547 ch
3914 mil
3725 nl
3547 se

Table 6: Most Popular Top-Level Domains.

•••••••••••••••••••••••••••••••••••
•••••••••
••••
••••
•••••••••
•••••
•••
••••••••••••••••••••••••••

•••••••••

•

••••••••••
•

••••

•••

••••

•••••••••••••••••••••

••••
••••
••••

••••••••••

•

••••••••••••••••••••••••••••••••
••••

•

•••••••••••••••••

•••

•••

•
••••••••••

••••••
•••
•••••••••
•••••••••••
•••••••••••••
•••••••••••••••••••••••••

••••••••••••••••
••••••••••
•••••••••••••••
•••••••••
•••••••••

••••••••

•••••••••••••••••••••••••••••

••••••••••••••••

••••
•••••
•••••••

••••

•

••

••••
•

••••

••••••••••••

•••
••••

•

•••••
•••••
••

•

•

••

•••••••••••••
•••

•••

•

•••

•

••

•

••••••••••••••
•••

••••••••••••••••••••••••••

••••••

•••••••••

•••••••••••••••••••••••
••••••••
••••

•••••••••••••••
••••

•••••••••••••••••••••

•

•••••••••••••••

•••••••

•••••••••••••••••••••••

•••

•••••
•

•••••

•

•

••••••

•

•••
•

•

••••

••

•

Reference

U
R

L
Id

0 200 400 600 800 1000

0
20

40
60

80
10

0

•••
••••••••
••

•••••••••••••
••••••••
•••••••••••

••••••••••••••••••••••••••••••

•••••••••••••••••••••••

••

•••••

•••

••••••••••••••••••

••••••••••

•••

••

•••

••

••••••••

•••••••••••

•

•••••••••••••••••••

••••••••••••••••

•••

•••••••••••

•

••

•••••••••

•••••••••

•••
••••••••••••

•••••••••••••••••••••••••••••
•••••••••
•••••••••

••••••••

Reference

U
R

L
Id

0 200 400 600 800 1000

0
20

40
60

80
10

0

Figure 3: User Pro�les. The user on the left navigates through the Web much faster than the user

on the right.

continually accessing new URLs (pure \sur�ng") the diagramwould have a slope of 1. If the user
were continually accessing the same URL, the diagram's slope would be 0. These �gures show
that di�erent users exhibit di�erent degrees of temporal locality and make di�erent demands
for new URLs, which a�ects the performance of document caching.

The di�erences between these diagrams suggest that the slope of each user's URL discovery
curve could be used to parameterize a document prefetching scheme.

4 Distributional Characterization of the WWW

A primary goal of our study was to obtain a clear picture of the size distribution of the documents
available on the web, of the requests made by users, and of the relationship between document
size and popularity.

Previous studies of �le sizes in general purpose Unix systems has shown that small sizes
are much more common than large sizes [7, 12]. However, in view of the potential use of the
Web to publish multimedia objects, documents on the Web could have a signi�cantly di�erent
distribution from those in general purpose �le systems.

Overall, the most striking aspect of our studies of the WWW is the dominance of the power

9

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50

N
um

be
r

of
 D

oc
um

en
ts

Document Size (in 128 byte bins)

10

100

1000

10 100

N
um

be
r

of
 D

oc
um

en
ts

Document Size (in 128 byte bins)

Figure 4: Document size distribution; Left: Linear scale of sizes up to 6400 Bytes; Right: Log-Log

scale of sizes 1280 bytes or more.

law (or Pareto) distribution. The shape of the power-law distribution is a hyperbola; with
parameter � its probability mass function is

p(x) = �k�x���1

and its cumulative distribution function is given by

P [X � x] = 1� (k=x)�; �; k � 0; x � k:

Power-law distributions have a number of properties that are qualitatively di�erent from
distributions more commonly encountered such as the exponential, normal, or Poisson distri-
butions. If � � 2, then the distribution has in�nite variance; if � � 1 then the distribution
has in�nite mean. So depending on �, an arbitrarily large portion of the probability mass may
be present in the tail of the distribution | hence the name heavy-tailed. In practical terms a
random variable that follows a heavy-tailed distribution can give rise to extremely large values
with non-negligible probability.

Figure 4 shows the size distribution of objects referred to at least once in our log�les. Al-
though this is not a random sample of documents available on the Web, it provides a reasonable
estimate of the actual size distribution of Web documents. On the left of the Figure is a his-
togram of �le sizes up to 6400 bytes; on the right is a histogram on a log-log scale of �le sizes
of 1280 bytes or more.

Figure 4 shows the pronounced hyperbolic distribution of �le sizes. The linear �t to the
log-transformed data (y � x�1:35) is very strong, with an R2 value of 0.96.

A comparison of WWW document sizes with the �le size distribution that might be found
in a typical Unix �le system is instructive. While there is no truly \typical" Unix �le system,
an aggregate picture of �le sizes on over 1000 di�erent Unix �le systems is reported in [10]. In
Figure 5 we compare the distribution of document sizes we found in the Web with that data.
The Figure plots the percentage of all �les in exponentially increasing bins, on a log-log scale.

Surprisingly, Figure 5 shows that in the Web, there is a stronger preference for small �les
than in Unix �le systems.3 The Web strongly favors documents in the 256 to 512 byte range,
while Unix �les are more commonly in the 1KB to 4KB range. More importantly, the tail of
the distribution of WWW �les is not nearly as heavy as the tail of the distribution of Unix �les.
Thus, despite the inclusion of multimedia in the Web, we conclude that Web documents are
currently more biased toward small �les than are typical Unix �le systems.

Related to the question of document size distribution are questions involving user preferences:
the relationship between size and popularity, and the popularity of individual documents.

3However, not shown in the �gure is the fact that while there are virtually no Web �les smaller than 100 bytes,
there are a signi�cant number of Unix �les smaller than 100 bytes, including many zero- and one-byte �les.

10

0.01

0.1

1

10

100

100 1000 10000 100000 1e+06

P
er

ce
nt

 o
f A

ll
F

ile
s

Size in Bytes

WWW Document Sizes
Unix File Sizes

Figure 5: Comparison of Unix File Sizes with WWW File Sizes

•
•

•
•

•

•

•

•
••

•

•

•

••
•
•••
•

•

•

•
•

•

•
•

•

•
•

•

•

•

•
•

•

•

••

•
•
••
•

•

•

•

•

•

•

•••

•

•
•
•

•
•
•
•
•
•
•
•

•

•
•

•

•
•
••

•

•

•

•

•

••
••

•

•

•

•
•
•

•

•

•

•••

•

•

•••

•
•

•
••
••••
•

•

••
•

•

•

••
•

•

•

•

•

•

•
•
•

•••
•
•

•

•

•

•

•
•

•

••
•

•
•
•
••
•

•

•

•
••••

•

••
••

•
•

•••
•
•

•

••

•

••
••

•

•

•

•

•••

•

•
•
••
•
•
•

•

•

•

•

•

•

•

•

•
•
•
•

•

•

•
•

••
•

•

•

•••
•

•

••

•

•

•

•
•
•
•
•
•
••

•

•••

•

••
••
•
•
•

••

•

•

••
•
••

•

••

•

•

•••

•

••

•
•

••

•

•

•

••

•

•
•
••
•
••
•

•
•

•

•
•

••••••••
••
••••••

••

•

••

•

••••••

•

•
••••••••

•

•••••

•

•

•
••
•••••

•

•••••

•

••

•

•••••

•

•••

•

•

•

•

•

•

•

•

•

•

••••

•

•

••••

•

•••

•

•

••

•

••••••

•

•

•

••••••
•
•

•

•

•••••••

•

•• ••••••••••

•

•

•

•••••••• ••••••••••••

•

• ••••

•

••

•

•••

•

•••••••

•

••• •

•

• ••••••••••

•

• ••

•

•

• •

•

•

Document Size (slots of 1 kbytes)

A
ve

ra
ge

 N
um

be
r

of
 A

cc
es

se
s

0 200 400 600 800 1000

0
2

4
6

8
10

Figure 6: Distribution of Average Number of Requests by File Size.

To explore the in
uence of user choice on the distribution of documents actually transferred
through the Internet, we measured the relationship between the number of times a document
is accessed and the size of the document. Figure 6 shows a plot of the average number of times
documents of a given size (in 1K bins) were referenced. The data shows that there is an inverse
correlation between �le size and �le popularity. The line shown is a least squares �t to a log-log
transform of the data (y � x�0:33). This �t is statistically signi�cant at a 99.9% level, but only
explains a small part of the total variation (R2 = 0:32).

Thus, in addition to the tendency for WWW documents as created to be small, users addi-
tionally prefer small documents. The combined e�ect of these two trends is shown in Figure 7.
This �gure shows the distribution of document requests made by users, by request size. This
�gure shows that actual document tra�c generated by user requests also follows a hyperbolic
distribution. The least squares �t line (R2 = 0:89) is y � x�1:66. Note that the exponent in the
distribution of request sizes, -1.66 (indicating a strong preference for transferring small �les) is
very nearly the sum of the exponent describing user preference, -0.33 (a mild user preference
for small �les) and the exponent in the document size distribution, -1.35 (a moderate producer

11

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50

N
um

be
r

of
 R

eq
ue

st
s

Document Size (in 128 byte bins)

10

100

1000

10000

100000

10 100

N
um

be
r

of
 R

eq
ue

st
s

Document Size (in 128 byte bins)

Figure 7: Distribution of Requests for Documents by Size; Left: Linear scale of sizes up to 6400

Bytes; Right: Log-Log scale of sizes 1280 bytes or more.

preference for small �les). Thus at the present time, the distribution of transfer sizes is more
strongly determined by document sizes than by user preferences, although both contribute.

The �nal instance of hyperbolic distributions in our data occurs as an instance of Zipf's law
[15, discussed in [11]]. Zipf's law was originally applied to the relationship between a word's
popularity in terms of rank and its frequency of use. It states that if one ranks the popularity
of words used in a given text (denoted by �) by their frequency of use (denoted by P) then

P � 1=�:

Note that this distribution is parameterless, i.e., � is raised to exactly -1, so that the nth most
popular document is exactly twice as popular as the 2nth most popular document. Zipf's law
has subsequently been applied to other examples of popularity in the social sciences.

Our data shows that Zipf's law applies quite strongly to documents on the WWW. This
is demonstrated in Figure 8 for all 46,830 documents referenced in our logs. The �gure shows
a log-log plot of references to each document as a function of the document's rank in overall
popularity. The tightness of the �t to a straight line is remarkable (R2 = 1:00), as is the slope
of the line: -0.986. Thus the exponent relating popularity to rank for WWW documents is very
nearly -1, as predicted by Zipf's law.

One interpretation for our �le size distribution data is based on �le type. It may be that
(smaller) HTML �les are preferred by users over (larger) images, leading to user preference for
small �les. To investigate this, we classi�ed WWW objects into 9 categories, based mainly
on �le extension, as described in Table 7. The distribution of document requests by type is
shown in Table 8. This table shows that user preference for small documents is not due to a
preference for HTML �les over images; in fact, the reverse is true | image �les are by far the
most commonly requested object, and they tend to be signi�cantly larger than HTML �les.

5 Application To Caching Strategies

This section shows how our data can be used in WWW caching strategies. In previous work,
we used the raw data from our traces to drive extensive event-driven simulations of client-based
caching protocols [2]. However, it is also possible to use the distributional results discussed in
the last section to gain considerable insight in designing caching strategies. In this section we
show a case study of how our high-level distributions can be used to guide caching policies for
WWW documents.

Traditional studies of caching policies such as page replacement policies or cache-line replace-
ment policies have been concerned with �xed-size transfer units. In contrast, caching WWW
documents involves variable-sized units; as a result it is interesting to investigate what leverage

12

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

A
cc

es
se

s
to

 D
oc

um
en

t

Document Rank

Figure 8: Zipf's Law Applied To WWW Documents

Category File Extensions

HTML html, HTML, htm, HTM, shtml, cs
Image gif, xbm, GIF, jpg, jpeg, gif89, tif, ti�
Sound au, wav, snd, lha, MOV
Video mpg, mp2
Text text, TXT, README, toc, p, ocr, abstract,

bitmap
Formatted Document ps, dvi, ps.gz, ps.Z

Dynamic pl, cgi, count, also objects containing \?" or \cgi-
bin" as part of the path

Archive hqx, zip, gz
Other anything that does not match the above listed

objects

Table 7: Object Categories.

HTML Image Sound Video Text Formatted Dynamic4 Archive Other
Document

Remote
Number of Refs. 55351 394666 320 153 438 141 90 85 1657
Pct. of Refs. 9.61 68.55 0.06 0.03 0.08 0.02 0.02 0.01 0.29
Avg. Size (kB) 6.4 13.9 551 792 32.3 358 3.48 4404 191

Local
No. of Refs. 37053 83340 21 23 271 1929 11 2 221
Pct. of Refs. 6.44 14.47 0.00 0.00 0.05 0.34 0.00 0.00 0.04
Avg. Size (kB) 2.89 8.39 2778 381 1.79 50.6 4.80 907 67.6

Table 8: Document Type Distribution.

13

can be gained through the use of document size information in caching policies. The distribu-
tional data presented in the previous section is well suited to helping answer this question.

Our goal in developing new caching strategies is to reduce the latency of WWW document
accesses; thus we need an understanding of the relationship between document size and transfer
cost. A complete study of the transfer time as a function of document size is beyond our scope,
but we can develop a rough model for the relationship using our trace data. We will assume
that document transfer time is the sum of a �xed overhead plus a per-byte cost:

T (s) = O +Bs:

where s is the size of a document in bytes. For both O and B we will assume the average value
that these terms take in our data.5 These parameters can be inferred from Figure 9, which
shows the average transfer time of documents in our traces as a function of their size. Note that
as s grows the in
uence of O is reduced and T=s approaches the constant B.

2

5

10

20

50

100

200

500

1000

1e+00 1e+01 1e+02 1e+03 1e+04

File Size
(Kbytes)

Latency
 (sec)

Figure 9: Transfer Time of Documents as a Function of Size

To include size information in a caching strategy, we would like to know the expected total
improvement in latency for each byte that is cached, as a function of �le size. Using that
information we can decide whether to cache a �le based on its size, and we can determine how
much improvement in total latency can be gained from a size-based caching policy.

The data presented in the previous section provides the tools to answer this question. We
consider a proxy-type cache, in which all requests in our traces are forwarded through a local
server. Thus we treat all our traces in the aggregate as a single reference stream. Then we can
calculate the total improvement in latency for each byte that is cached, L, as:

L(s) =
(N (s) � 1)T (s)

s

where N(s) is the expected number of references to a document of size s, as shown in Figure 6.
This equation yields the total document transfer latency that will be avoided by caching a
document of size s, per byte of cache space used.

Note that we have assumed that a document, once cached, has zero retrieval cost in the
future. Since we can also derive O and B estimates for local documents, we could include the
cost of local transfers for future accesses to the cached documents. However, doing so does not
signi�cantly change the results that we present.

5A rough estimate, but su�cient for our purposes; to improve the accuracy of this approximation we consider
only remote documents in this section.

14

A plot of L as a function of s is shown in Figure 10. The �gure is plotted on log-log axes,
and for �le sizes greater than 1K bytes, is roughly linear. Thus we see that latency savings
per byte is asymptotically hyperbolic, as we would expect from the equation for L, since T=s is
asymptotically linear, and N is hyperbolic (as discussed in the previous section).

0.01

0.03

0.10

0.30

1.00

3.00

10.00

30.00

1e+03 1e+04 1e+05 1e+06

Latency Savings
 (msec per byte)

File Size
 (bytes)

Figure 10: Latency Savings per Byte as a Function of Document Size

The most important aspect of Figure 10 is that it is monotonically decreasing, which means
that WWW cache space should be preferentially allocated to smaller �les over larger �les. The
reasons why cache space should be allocated to small �les preferentially derive directly from
the user preferences shown in Figure 6 and from the relatively large latency savings gained by
avoiding the �xed cost overhead O in transferring small �les.

However, these curves do not re
ect the cost of allocating resources for �le caching. In
particular, we would like to know how much space will be required, and what the expected
bene�t will be, if we adopt a policy of caching all �les less than a certain size.

To answer this question, we must �rst �nd the amount of cache space required to cache all
�les less than a certain size. This can be done by simply performing a running sum over the
distribution shown in Figure 4, times its x axis. The result is shown in Figure 11; in the �gure,
the x axis is logarithmic while the y axis is linear. The �gure shows that (for �le sizes greater
than 10K) the amount of cache space required increases logarithmically as a function of the
largest �le size cached. This is reasonable, since if the distribution of remote �les is hyperbolic
with exponent close to �2, then multiplying by x adds 1 to the exponent and integrating yields
the log function. Although we found the distribution of all �les to be approximately y � x�1:35,
the e�ect of selecting only remote �les is to decrease the likelihood of large �les, thus moving
the exponent in the underlying distribution closer to �2.

Using the resulting distribution of cache sizes as a function of �le sizes cached, we can predict
the e�ect of caching using various cache sizes. We replot the data in Figure 10 as follows. Instead
of plotting the latency savings per �le size, we plot the latency savings against the cache size
corresponding to the proper �le size. The result is shown in Figure 12. On the left is the function
on linear axes; on the right it is plotted on log-log axes.

Finally, we can determine the percent of total possible savings that are gained by caching
as a function of cache size allocated. This is simply the running summation of the distribution
shown in Figure 12. The resulting summation is shown in Figure 13.

15

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1000

1100

 0.1 1.0 10.0 100.0 1000.0 10000.0

Cache Size
 (Mbytes)

File Size
(Kbytes)

Figure 11: Cache Space Required as a Function of File Sizes Cached

0 200 400 600 800 1,000

Latency Savings
 (msec per byte)

Cache Size
 (Mbytes)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0

50.0

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

Latency Savings
 (msec per byte)

Cache Size
 (bytes)

Figure 12: Latency Savings as a Function of Cache Size

16

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 200 400 600 800 1000 Cache Size

 Ratio of Potential
Latency Reduction

0.00 0.03 0.11 0.36 1.73 5.05 File Size

Mbytes

Figure 13: Fraction of Total Latency Savings as a Function of Cache Size

This �gure shows the fraction of total latency in our traces that can be saved using a caching
policy that caches all documents less than a certain size. The amount of cache space needed is
shown on the x axis, and below that, the cuto� size of the documents to be cached for that size
cache. The �gure shows that with only 400MB of cache space, approximately 95% of maximum
possible performance gains can be achieved. At this level, the cuto� size for documents would
be approximately 110KB.

More importantly, the �gure shows how sharp the improvement is in performance as cache
size is increased from 0 to 100MB. In this region the improvement is approximately linear, which
means that cache space can be distributed among the various �le sizes without great changes
in performance. This
exibility means that strategies that choose to cache a few large �les (to
improve worst-case latency) or many small �les (to improve the most common case) are equally
attractive.

6 Conclusion

It is clear that the WorldWideWeb is presenting a challenge to network managers and, moreover,
to computer scientists. The growth pattern of the WWW suggests that careful use of the
network, CPU, and disk resources that support the Web will become increasingly important
over time.

To support our future research on WWW resource management, we have collected and
described a large amount of data re
ecting actual user accesses to the Web. Our data is unique
as it has been collected by instrumenting clients rather than servers, and because it provides
insight into demands that Web users make on disk and CPU as well as network resources.

In summarizing our data, we have identi�ed a number of trends and reference patterns
in WWW use. In particular, we have shown that many characteristics of WWW use can
be modeling using power-law distributions, including the distribution of document sizes, the
popularity of documents as a function of size, the distribution of user requests for documents,
and the number of references to documents as a function of their overall rank in popularity. In
addition, we have shown that even high-level, distributional information about WWW use can
be helpful in designing caching strategies for WWW documents.

17

References

[1] T. Berners-Lee, L. Masinter, and M.McCahill. Uniform resource locators. RFC 1738,
http://www.ics.uci.edu/pub/ietf/uri/rfc1738.txt, December 1994.

[2] Azer Bestavros, Robert L. Carter, Mark E. Crovella, Carlos R. Cunha, Abdelsalam Hed-
daya, and Sulaiman A. Mirdad. Application-level document caching in the Internet. In
Proceedings of the Second International Workshop on Services in Distributed and Networked
Environments (SDNE'95), June 1995.

[3] Lara D. Catledge and James E. Pitkow. Characterizing browsing strategies in the world-
wide web. In Proceedings of the Third WWW Conference, 1994.

[4] Anawat Chankhunthod, Michael F. Schwartz, Peter B. Danzig, Kurt J. Worrell, and Chuck
Neerdaels. A hierarchical internet object cache. Technical Report CU-CS-766-95, Depart-
ment of Computer Science, University of Colorado - Boulder, March 1995.

[5] Netscape Communications Corp. Netscape navigator software. Available from
http://www.netscape.com.

[6] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella. Characteristics of www client-
based traces. Technical Report BU-CS-95-010, Boston University Computer Science De-
partment, 1995.

[7] Richard A. Floyd. Short-term �le reference patterns in a unix environment. Technical
Report 177, Computer Science Dept., U. Rochester, 1986.

[8] Steven Glassman. A Caching Relay for the World Wide Web. In First International
Conference on the World-Wide Web, CERN, Geneva (Switzerland), May 1994. Elsevier
Science.

[9] Merit Network Inc. Nsf
network statistics. Available at ftp://nis.nsf.net/statistics/nsfnet/, Decemeber
1994.

[10] Gordon Irlam. Unix �le size survey | 1993. Available at
http://www.base.com/gordoni/ufs93.html, September 1994.

[11] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freedman and Co., New
York, 1983.

[12] John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Michael Kupfer, and
James G. Thompson. A trace-driven analysis of the UNIX 4.2BSD �le system. Technical
Report CSD-85-230, Dept. of Computer Science, University of California at Berkeley, 1985.

[13] James E. Pitkow and Margaret M. Recker. A Simple Yet Robust Caching Algorithm Based
on Dynamic Access Patterns. In Electronic Proc. of the 2nd WWW Conference, 1994.

[14] Je� Sedayao. \Mosaic Will Kill My Network!" { Studying Network Tra�c Patterns of
Mosaic Use. In Electronic Proceedings of the Second World Wide Web Conference '94:
Mosaic and the Web, Chicago, Illinois, October 1994.

[15] G. K. Zipf. Human Behavior and the Principle of Least-E�ort. Addison-Wesley, Cambridge,
MA, 1949.

18

