Real-Time Databases: Issues and Applications (RTDB'96 Workshop Report)

Bestavros, Azer

Boston University Computer Science Department


http://hdl.handle.net/2144/1589

Boston University
RTDB’96
First International Workshop on Real-Time Database Systems
Workshop Report
Azer Bestavros
(best@bu.edu)
Kwei-Jay Lin
(klin@uci.edu)
Sang Son
(son@cs.virginia.edu)

1 Introduction
On March 7 and 8, 1996, the First International Workshop on Real-Time Databases (RTDB’96) was held in Newport Beach, California. There were about 50 workshop participants from many countries, including Germany, Netherland, Norway, Sweden, Finland, Korea, Japan, Hong Kong, Taiwan, and USA. Twenty two papers were presented and actively discussed in the 2-day 6-session technical program. There were also two panel sessions to review and to suggest the technology needed for real-time database applications.

One of the goals of RTDB’96 was to create a forum for recent advances in real-time databases—an area that is becoming more important as real-time computing is needed in our systems and environment. We hoped to, and indeed we did, bring together researchers and engineers from academia and industry to explore the best ideas in real-time database systems research, and to evaluate the maturity and directions of real-time database systems technology. The interaction among all participants in the workshop (such as discussing the advanced functionalities and timely management of data, arguing about the real-time requirements in practical systems, suggesting new issues to be investigated in future projects, etc.) provided a very precious and fruitful experience for everyone.

In RTDB’96, single track sessions were scheduled to give all participants the opportunity to have full interactions with all speakers and panelists, and to exchange opinions with other participants. The technical program covered a range of issues, such as temporal consistency, scheduling, models and benchmarks, concurrency control, and applications. In this report, we provide highlights of the workshop.1

2 Temporal Constraints and Issues
The first session, chaired by Kwei-Jay Lin of the University of California at Irvine, aimed at solidifying the notions of temporal constraints so that workshop participants may achieve a common understanding/agreement on the temporal constraint aspects of RTDB. Three papers were presented by research groups at the University of Massachusetts at Amherst, the University of Arizona, and the University of Michigan at Ann Arbor. Each one of these papers considered the origins and implications of temporal constraints in a specific environment or for a specific platform, including feedback control process control systems, Active Rapidly Changing data Systems (ARCS), and real-time databases in which transaction deadlines are implied from temporal constraints on data.

Several approaches to maintain data temporal consistency were mentioned during the presentations and during the discussions that ensued, including determining the periods for sensor transactions, data version selection, forcing user transactions to delay for a more up-to-date version, etc. One of the messages that came out of this session is that using traditional concurrency control techniques may not be appropriate for active RTDB because the effect of transaction "chaining" is not adequately addressed. Another open problem is the issue of how updates from the environment (through sensors) should be scheduled against user transactions and other updates. Finally, the merits of relating transaction scheduling decisions to transaction completion probabilities were discussed.

3 Real-Time Database Applications
The second session of the workshop was chaired by John Stankovic of the University of Massachusetts at Amherst, who opened the session with a "challenge" to the RTDB community—to make the case for RTDB technology by showing the "value-added" it brings to as many applications as possible. In a later panel, he presented a list of application domains that came up during the various sessions and added his belief that there are many more.

Four papers were presented in this session by research groups from Telenor R&D and SINTEF Telecommunication Informatics in Norway, from VTT Information Technology in Finland, from Linkoping University in Sweden, and from Technische Hochschule Darmstadt in Germany. Each one of these presentations overviewed the constraints imposed by a particular application domain and how these constraints were accommodated in a RTDB design targeted at that domain. The RTDB applications considered represented telecommunication systems, process-control systems, real-time simulation systems, and Web-based systems.

One of the points made during the presentations was that as any engineering practice, RTDB systems must provide the "best compromises" as opposed to the "most elegant solutions". One of the messages that came out of the
discussion that followed was that sometimes deadlines are set based on what the system can do (in other words, if the system is built to be twice as fast, then laxities will be halved). Another point made during the presentations was that researchers must look at the notion of cost in a more pragmatic way (e.g., the learning curve of new techniques and the man/machine interaction issues are important for systems that involve a “person in the loop”).

4 Scheduling Techniques for RTDB

This session of the workshop was chaired by Al Mok of the University of Texas at Austin. Four papers were presented in this session by research groups from Linkoping University in Sweden, Boston University, Eindhoven University in the Netherlands, and the University of Michigan at Ann Arbor.

One of the promising research techniques discussed in the first paper of the session is performance polymorphism for RTDB systems, whereby ideas from imprecise computation research (e.g., FLEX language) are applied to declarative query languages and to query optimization techniques.

Another interesting dimension of scheduling for RTDB systems is that of overload management. The second paper of the session showed evidence that admission control is much more important than other RTDB resource management techniques (e.g., concurrency control and scheduling). In particular, admission control makes simple concurrency control protocols (e.g., 2PL-HP protocols) perform as well as sophisticated ones (e.g., Wait-50 of SCC protocols). During the discussion that followed these presentations, there were questions about the “cost” of elaborate RTDB protocols versus the cost of admission control. The motivation of the question was that RTDB must be light weight and that unless solutions we provide are easily portable, they will never be implemented in real-systems. Krithi Ramamritham from the University of Massachusetts at Amherst intervened to give evidence of this from concurrency control research, where hundreds of algorithms are proposed, but only few (mainly 2PL) are implemented in real systems. In reference to admission control and overload management techniques in general, Azer Bestavros from Boston University suggested that these techniques in effect reduce the overall overhead, because they make the use of other complicated real-time protocols unnecessary! Another point brought up was that the techniques must be possible to add as a layer on top of existing off-the-shelf DB systems. Admission control and overload management is a good candidate layer.

To conclude, Al Mok challenged the participants to identify a set of properties that are worth proposing as standards for RTDB (akin to the ACID properties of traditional DBMS). The discussion that ensued questioned whether a single model will ever be possible, given the richness of RTDB systems—a richness that comes from the disparity of application requirements as pointed out by John Stankovic. Another thread in this discussion had to do with the quantification of unpredictability and perhaps the use of a probabilistic model (akin to the ideas from the third paper of the session) or the use of values and various QOS guarantees (akin to the ideas from the second paper of the session).

5 RTDB Models and Benchmarks

This session was chaired by J.Y. Chung of IBM and consisted of three paper presentations by research groups from HP Labs in Palo Alto, the University Skovde in Sweden, and Hughes Aircraft Corporation.

The first paper in this session addressed an important (and often neglected) aspect of RTDB systems—that of query optimization. It proposed an elegant paradigm for cost modeling based on the relative “cost” of various operations—a modeling that abstracts away many of the details of the underlying machinery and algorithms. The discussions that ensued focused on two possible extensions to the cost modeling approach to better support RTDB systems, namely adding absolute timing analysis, and allow for load parametrization (i.e., to allow the estimation of cost to be parametrized based on the system load).

The third paper in this session offered a number of benchmarks that could be used to define the structure of an avionics database and test the various aspects of RTDB systems performance. The benchmarks were abstracted out from actual avionic systems. Seven test scenarios were defined ranging from periodic-readers-only to periodic-readers plus sporadic-readers plus periodic-updates. The paper fills in a void that was identified throughout the workshop—that of quantifying RTDB properties. The discussion that ensued reaffirmed the need for similar benchmarks for other applications.

6 RTDB Design Issues

The last two sessions of the workshop were chaired by Kane Kim of the University of California at Irvine and by Kang Shin of the University of Michigan at Ann Arbor. These two sessions were dedicated to the presentation of a potpourri of new design and implementation techniques for RTDB and consisted of six paper presentations by research groups from the City University of Hong Kong, the University of North Carolina, Case Western Reserve University, MITRE Corporation, the University of Oklahoma, and the University of Florida.

Among the issues that were highlighted as worthy of further investigation was the problem of priority assignment for sub-transactions in distributed real-time databases. The presentation of K.Y. Lam of the City University of Hong Kong suggested two such approaches: one is based on the real-time constraint of the base transaction, and the other based on the data contention with other transactions. Another implementation optimization that stirred quite a bit of discussions was the use of lock-free objects to synchronize transactions in main-memory RTDB systems. This technique was suggested by James Anderson of the University of North Carolina as an implementation technique that gets rid of priority inversion by substituting blocking with efficient busy-waiting. The hidden overhead cost and reduced predictability were some of the concerns voiced regarding this technique.

Two new concurrency control protocols were also presented as candidates for improving the timeliness of transaction execution in RTDB systems. The first concurrency control protocol extends the read/write priority ceiling protocol by defining a compatibility table for all the methods defined for an object in an OOT RTDB system, and then using this table to come up with an affected set priority ceilings (ASPC) that could be used to regulate the access to the object to ensure consistency. During the discussion, there were questions about the scalability and practicality of such an approach (and similar semantic-based techniques),
because they depend on the ability of designers to identify the conflict modes. The second protocol attempts to reduce the hazards of blocking-based algorithms and restart-based algorithms by suggesting an algorithm that combines them (using alternative shadows). The work is similar to the Speculative Concurrency Control (SCC) work by Bastingos and Braoudakis in RTSS’94 and VLDB’95.

Another issue that was identified by workshop participants as worthy of further investigation is the issue of recovery for RTDB systems. In a real-time system, the recovery of a database may be subject to timing constraints, which imply that during normal operation, activities such as logging and checkpointing must be performed in a fashion that would guarantee that in the event of a failure, the database will be able to recover in a timely manner. The paper by Le Grunewald of the University of Oklahoma presented a first step in studying this issue for main-memory RTDB. The main argument in the paper is to have the rate of data checkpointing related to the time-constraints associated with the data.

7 Panel: “Are we looking at the right problems?”

The first panel of the workshop was entitled “Are we looking at the right issues of RTDB?” The panel was moderated by Kwei-Jay Lin. The panelists were Doug Locke of Loral Federal Systems, Lui Sha of SEI/CMU, Brad Adelberg of Stanford University, and Krithi Ramamritham.

Doug Locke first spoke of the application requirements for Aerospace RTDB systems. He emphasized that transactions that miss their deadlines must finish and argued for value-cognizant RTDB systems as opposed to the hard/firm deadline paradigm. Several workload requirements in the Air Traffic Control, Spacecraft Control, Training Simulation, etc., were presented and discussed.

Lui Sha then talked about the need for an equivalent to the ACID properties for RTDB systems. He suggested that the notion of stream data is fundamental for RTDB. In other words, one may think of stream-data RTDB as different enough from traditional RTDB that deal with closed systems where changes to data are only carried by transactions from within the system.

Brad Adelberg described the STRIP project at Stanford, which is aimed at financial applications (e.g., financial market monitoring). Much emphasis has been placed on the data update streams received by the database and how they can be effectively handled to provide a real-time view in the database.

Krithi Ramamritham finally discussed the impact of RTDB technology in commercial products. He pointed out that while temporal and active database ideas have found their way into commercial products as well as into SQL real-time database ideas have not. One plausible reason is that developing time-cognizant extensions to database protocols requires a fairly substantial overhaul. The second reason is that a large proportion of the techniques developed thus far apply only to soft real-time constraints with the percentage of missed deadlines being the metric. This implies that the use of the protocols is intended more to improve performance and not for increasing functionality, unlike in temporal and active databases. He emphasized that RTDB researchers must aim at achieving greater predictability in real-time databases so that we get improved performance as well as predictability that is quantifiable, the latter is a property that is not achievable simply by “faster hardware”.

8 Panel: “Lessons learned and places to go”

The second panel of the workshop was entitled “What have we learned and where to go from here?” The panel was intended as a concluding session for the workshop. It was moderated by Program Co-Chair Sang Son from the University of Virginia. The panelists were Jane Liu from the University of Illinois at Urbana Champaign, Al Mok from the University of Texas at Austin, Kang Shin, and John Stankovic. Janet Prichard of Eastern Carolina University was also invited to give a review of the current real-time SQL effort.3

Sang Son pointed out that the RTDB’96 workshop was timely; since demand for advanced functionalities and timely management of data in new applications require practical solutions. He then asked each panelist whether the current research is on the right track and what are the remaining critical issues to be addressed.

John Stankovic first identified the key issues for RTDB systems, including predictability, fault-tolerance, and QOS for multimedia management. He argued that the technologies developed by the RTDB research community should show that RTDB systems can do significantly better than traditional approaches vis-a-vis properties such as cost, performance, functionality, and availability. It was generally agreed that we should focus on a few driving applications in which traditional DBMS cannot serve or are very inefficient to serve. He also pointed out that integrated solutions for distributed RTDB systems architecture are needed.

Jane Liu talked about the lessons we learned: how to schedule transactions using the timing constraints and how to maintain temporal consistency of data. She emphasized that we need to utilize semantic information and different query processing methods for QOS management. She also felt that deciding on a small set of effective concurrency control algorithms is important. Before this can be accomplished, however, some benchmarks for RTDB systems must be developed.

Kang Shin argued that we need to develop real systems, demonstrating usefulness using benchmarks and real applications. The first step is to form a consensus on terminology and concepts being used within the RTDB research community. He also discussed some technical issues that are yet to be addressed, including OS interface, ACID-equivalent properties for RT transactions, and fault-tolerance issues.

Finally, Al Mok pointed out that there are strong motivations behind the ACID properties: granularity, consistency, non-interference, and failure semantics. He argued that we need to consider what should be the right characterization of the requirements for real-time transactions.

9 Conclusion

At the conclusion of the workshop, most participants showed strong support to have the workshop continued in the future. Plans for a second workshop to be held in the fall of 1997 are underway. For more details, please check RTDB’97 Home Page on the WWW at http://cs-www.bu.edu/pub/rtdb97/.

3Since then a WWW Real-time SQL Home Page has been created and is accessible from http://www.math.ecu.edu/rtsql.