A Linearization of the Lambda-Calculus and Consequences

https://hdl.handle.net/2144/1597

Boston University
A LINEARIZATION OF THE LAMBDA-CALCULUS
AND CONSEQUENCES

A.J. Kfoury*
Department of Computer Science
Boston University
Boston, MA 02215, U.S.A.

August 19, 1996

Contents

1 Introduction 2
2 An Expanded λ-Calculus 4
3 A Useful Generalization of Beta-Reduction 13
4 Type Inference Systems 20
5 Appendix: Remaining Proofs 26

*Partly supported by NSF grant CCR-9417382.
1 Introduction

A λ-term M is linear if every λ-abstraction in M binds at most one variable occurrence. The evaluation of linear λ-terms satisfies a particular case of what we here call the linearity condition: If the formal parameter x of a function definition $(\lambda x.N)$ is not dummy, then the free occurrences of x in the body N of the function definition are in a one-one correspondence with the arguments to which the function is applied. Many questions about the behavior of linear λ-terms are relatively simple to answer. For example, every linear λ-term is β-strongly normalizing and every closed linear λ-term is simply-typable. Things become more interesting and complicated from the moment we consider λ-abstractions that bind two or more variable occurrences.

Is there a way of simulating the standard λ-calculus by a non-standard λ-calculus where we enforce the linearity condition on function evaluation? What can we gain from this transfer to a non-standard λ-calculus obeying the linearity condition, if at all possible?

Our first goal in Section 2 is therefore to embed the standard λ-calculus Λ in a bigger calculus, denoted Λ^\wedge, satisfying the linearity condition. Specifically, the way we achieve this is by allowing a subterm P of a λ-term M to be applied to several subterms Q_1,\ldots,Q_n in parallel, which we write as $(P, Q_1 \wedge \cdots \wedge Q_n)$. The corresponding notion of β-reduction, denoted β^\wedge, requires that if P is the λ-abstraction $(\lambda x.N)$ with $m \geq 0$ free occurrences of x in N, the reduction cannot be carried out unless $n = \max(m,1)$. As a consequence, every M in Λ^\wedge is β^\wedge-strongly normalizing. We establish several relationships between β-reduction in Λ and β^\wedge-reduction in Λ^\wedge, to determine conditions under which the first can be translated into the second (not always possible) and the second into the first (always possible). An end result is a characterization of β-weak normalization (β-WN) and β-strong normalization (β-SN) for standard λ-terms (Corollary 2.20).

For a finer analysis of the difference between β-WN and β-SN in Section 3, we further embed Λ^\wedge in a bigger calculus, denoted $\&\Lambda^\wedge$. In $\&\Lambda^\wedge$ we deal with expressions of the form $\&M_1 \cdots M_n$ where each of the components M_1,\ldots,M_n is in Λ^\wedge. The appropriate notion of reduction $\&\beta^\wedge$ is restricted to the leftmost β^\wedge-redex in $\&M_1 \cdots M_n$, which is moreover adjusted in such a way that arguments of K-redexes are not discarded (Definitions 3.5 and 3.7). Some of the ideas here are suggested by earlier work by several authors, showing how to reduce β-SN to β-WN, but we now adapt them to our special needs. We examine various relationships between β-reduction, β^\wedge-reduction, and $\&\beta^\wedge$-reduction. A by-product are several results connecting the 3 notions of reductions (in particular Theorems 3.6 and 3.15).

Much of the behavior of β^\wedge-reduction and $\&\beta^\wedge$-reduction is captured by appropriately defined

1 Easy 3-line proof omitted.
2 A little less straightforward proof, but still easy, also left to the reader.
type-inference systems. This is done in Section 4 where we give, among other results, another proof for the well-known equivalence between \(\beta\)-SN of standard \(\lambda\)-terms and typability in a system of “intersection types” (Corollary 4.6).

The contribution of this report is more significant for the methodology it develops than for the specific technical results it establishes. What we set up is a new, enlarged framework for the study of \(\beta\)-reduction. There is unavoidably a profusion of new definitions, but once these are understood, the technical results are not surprising and “work as they should”.

Finally, we point out that the present report is unfinished in many ways. Expediency is only partly the reason, as it seems more important in a first report to sketch the broad lines of a new methodology than to examine the implications in detail. We leave some questions unanswered (e.g., Conjecture 2.21), and some results proved only in outline (e.g., Lemma 4.4) or partially proved by methods not promoted in this report (e.g., Corollary 4.6). More important, we do not fully characterize typability in the type-inference systems defined in Section 4 (they do not assign types to all terms) and we leave wide open possible applications of our methodology to other questions (e.g., alternative proofs for the \(\beta\)-SN property of typed \(\lambda\)-calculi).

Acknowledgements

Joe Wells played a crucial role in the early stages of the research, by proofreading numerous handwritten drafts and correcting many (sometimes serious) mistakes in them. Although other members of the Church Project will not always recognize the source of the inspiration, many of the ideas in this report are suggested by research they have conducted in recent months and presented in the weekly seminars.\(^3\)

Some Notational Conventions

- Function \(\ll\) strips all labels from \(\lambda\)-terms (Definition 5.2).
- Function \(\lll\) contracts expanded \(\lambda\)-terms (Definition 2.3).
- \(M \equiv N\) means “\(M\) and \(N\) are syntactically identical” (up to \(\alpha\)-conversion).
- A set of subterm occurrences in \(M\) is not a multiset, but a set in the usual sense because different occurrences of the same subterm are distinctly identified. One easy way to think about subterm occurrences is to take \(M\) represented by its parse tree (root at the top), with each subterm occurrence in \(M\) uniquely identified by its address (a “path”) in the parse tree.

\(^3\)More on the Church Project at URL — http://www.cs.bu.edu/groups/church/
• If P and Q are subterm occurrences in M, we write $P \subseteq_M Q$ to mean “P is a proper subterm occurrence of Q in M”, i.e. the address of Q in the parse tree of M is a proper prefix of the address of P. We write $P \subseteq_M Q$ for “$P \subset_M Q$ or P is the same occurrence as Q”. If M is made clear by the context, or if $M \equiv Q$, we may write $P \subset Q$ and $P \subseteq Q$ instead of $P \subseteq_M Q$ and $P \subseteq_M Q$, respectively.

2 An Expanded λ-Calculus

The set of λ-variables is λ-Var.

Definition 2.1 (Standard λ-terms) A standard λ-term M is either a λ-variable x or an abstraction $(\lambda x.N)$ or an application (NP), where $x \in \lambda$-Var and N and P are previously defined standard λ-terms. The set of standard λ-terms is Λ.

Definition 2.2 (Expanded λ-terms) An expanded λ-term M is either a λ-variable x or an abstraction $(\lambda x.N)$ or an expanded application $(NP_1 \wedge \cdots \wedge P_n)$, where $x \in \lambda$-Var and N and P_1, \ldots, P_n are previously defined expanded λ-terms, where $n \geq 1$. The set of expanded λ-terms is Λ^\wedge.

We call the subexpression $P_1 \wedge \cdots \wedge P_n$, which is the argument of an expanded application, a \wedge-list and P_1, \ldots, P_n its *components*. The preceding inductive definition does not include \wedge-lists as a 4-th case of expanded λ-terms, but it is easily adjusted so that it does, at the price of making it a bit more complicated. If a \wedge-list has only one component, we may write (NP_1) instead of (NP_1).

Definition 2.3 (Contracting expanded λ-terms) The contraction of an expanded λ-term M is a standard λ-term $|M|$, which is defined provided for every subterm of the form $(NP_1 \wedge \cdots \wedge P_n) \subseteq M$, each of P_1, \ldots, P_n contracts to the same standard term $|P_1| \equiv \cdots \equiv |P_n|$. More precisely, by induction on Λ^\wedge:

1. If $x \in \lambda$-Var, then $|x| = x$.

2. If $x \in \lambda$-Var and $N \in \Lambda^\wedge$, then $|(\lambda x.N)| = (\lambda x.|N|)$ provided $|N|$ is defined, otherwise $|(\lambda x.N)|$ is undefined.

3. If $N, P_1, \ldots, P_n \in \Lambda^\wedge$ and $n \geq 1$ then $|(NP_1 \wedge \cdots \wedge P_n)| = (|N| |P_1|)$ provided $|P_1|, \ldots, |P_n|$ are all defined and $|P_1| \equiv \cdots \equiv |P_n|$, otherwise $|(NP_1 \wedge \cdots \wedge P_n)|$ is undefined.

An expanded λ-term M is *well-formed* if its contraction $|M|$ is defined. Unless otherwise stated, all expanded λ-terms will be well-formed.
Example 2.4 Let $3 \equiv (\lambda y. f (y))$ and $2 \equiv (\lambda x. g (x))$, both of which are standard terms. The following expressions are all in the expanded calculus Λ^\wedge:

- $M_0 \equiv 3 \cdot 2$
- $M_1 \equiv 3 \cdot 2 \wedge 2$
- $M_2 \equiv (\lambda x.f (f (x) \wedge (x)) \wedge (f (x) \wedge (x))) \cdot 2 \wedge 2 \wedge 2$
- $M_3 \equiv (\lambda x.f (f (x) \wedge (x)) \wedge (f (x) \wedge (x))) \cdot 2 \wedge 2 \wedge 2 \wedge 2 \wedge 2 \wedge 2$
- $M_4 \equiv (\lambda x.f (f (x) \wedge (x)) \wedge (f (x) \wedge (x))) \cdot 2 \wedge 2$

All of the preceding expanded λ-terms contract to the standard $M \equiv 3 \cdot 2$.

Definition 2.5 (Parallel sets) Let $M \in \Lambda^\wedge$. The binary relation \sim_M is the least equivalence on subterm occurrences in M such that:

1. $P_1 \wedge \cdots \wedge P_n \sim_M P_i$ for every $i \in \{1, \ldots, n\}$.
2. If $(\lambda x. N) \sim_M (\lambda x'. N')$ then $N \sim_M N'$.
3. If $(N, P_1 \wedge \cdots \wedge P_n) \sim_M (N', P'_1 \wedge \cdots \wedge P'_n)$ then $N \sim_M N'$ and $P_1 \wedge \cdots \wedge P_n \sim_M P'_1 \wedge \cdots \wedge P'_n$.

For subterm occurrences N and N' in M, we say N and N' are parallel occurrences iff $N \sim_M N'$. A parallel set of subterm occurrences in M consists of all the members of a \sim_M-equivalence class that are not \wedge-lists with 2 or more components.

Lemma 2.6 Let $M \in \Lambda^\wedge$ be well-formed.

1. There is a one-one correspondence between parallel sets (of subterm occurrences) in M and subterm occurrences in $\vert M \vert$.
2. If $P = \{P_1, \ldots, P_n\}$ is a parallel set in M, then $\vert P_1 \vert \equiv \cdots \equiv \vert P_n \vert$. It is therefore meaningful to write $\vert P \vert$ for the standard λ-term $\vert P_1 \vert \equiv \cdots \equiv \vert P_n \vert$.
3. M is standard iff every parallel set in M is a singleton set iff every \wedge-list in M has exactly one component.

Proof: Part 1 is by induction on M. For part 2, prove that if $P \sim_M P'$ then $\vert P \vert \equiv \vert P' \vert$, by induction on the definition of \sim_M. Part 3 is immediate from the definitions. ■
Definition 2.7 (Parallel sets, revisited) It is sometimes easier to use a “bottom-up” inductive definition of parallel sets. We first define a function \(\varphi \) by induction on well-formed \(M \in \Lambda^\land \) such that \(\varphi(M, Q) \) is a set of subterm occurrences in \(M \) for every \(Q \subseteq |M| \):

1. For every \(x \in \lambda\text{-Var}, \varphi(x, x) = \{x\} \).

2. For every \(x \in \lambda\text{-Var}, \) well-formed \(N \in \Lambda^\land \), and \(Q \subseteq |(\lambda x.N)| \):
 \[
 \varphi((\lambda x.N), Q) = \begin{cases}
 \varphi(N, Q), & \text{if } Q \subseteq |N|, \\
 \{(\lambda x.N)\}, & \text{if } Q \equiv |(\lambda x.N)|.
 \end{cases}
 \]

3. For all well-formed \(N, P_1, \ldots, P_n \in \Lambda^\land \) and \(Q \subseteq |(N.\!P_1 \land \cdots \land P_n)| \):
 \[
 \varphi((N.\!P_1 \land \cdots \land P_n), Q) = \begin{cases}
 \varphi(N, Q), & \text{if } Q \subseteq |N|, \\
 \varphi(P_1, Q) \cup \cdots \cup \varphi(P_n, Q), & \text{if } Q \subseteq |P_1| \equiv \cdots \equiv |P_n|, \\
 \{(N.\!P_1 \land \cdots \land P_n)\}, & \text{if } Q \equiv |(N.\!P_1 \land \cdots \land P_n)|.
 \end{cases}
 \]

A parallel set of subterm occurrences in \(M \) is \(\varphi(M, Q) \) for some \(Q \subseteq |M| \). The members of the same parallel set are called parallel occurrences. We omit the proof that the bottom-up definition here is equivalent to the top-down given in 2.5 when restricted to well-formed expanded \(\lambda \)-terms.

(For suggestions on how to formally prove the equivalence of the two definitions, see the section on “Induction and Recursion” in [3] pp. 22-30.)

Definition 2.8 (Nesting of parallel sets) Let \(M \in \Lambda^\land \) be well-formed, and \(\mathcal{P} = \{P_1, \ldots, P_m\} \) and \(\mathcal{R} = \{R_1, \ldots, R_n\} \) parallel sets in \(M \). We write \(\mathcal{P} \prec_M \mathcal{R} \) provided two conditions hold:

1. For every \(P \in \mathcal{P} \) there is exactly one \(R \in \mathcal{R} \) such that \(P \subseteq_M R \).

2. For every \(R \in \mathcal{R} \) there is one or more \(P \in \mathcal{P} \) such that \(P \subseteq_M R \).

The two conditions imply there is an onto map from \(\mathcal{P} \) to \(\mathcal{R} \), so that also \(m \geq n \). We write \(\mathcal{P} \prec \mathcal{R} \) instead of \(\mathcal{P} \prec_M \mathcal{R} \) if the context makes clear \(\mathcal{P} \) and \(\mathcal{R} \) are parallel sets in \(M \). \(\mathcal{P} \prec \mathcal{R} \) means “\(\mathcal{P} \prec \mathcal{R} \) or \(\mathcal{P} = \mathcal{R} \).”

Lemma 2.9 Let \(M \in \Lambda^\land \) be well-formed and \(N \equiv |M| \).

1. Let \(P \) and \(R \) be subterm occurrences in \(M \). If \(P \subseteq_M R \) then \(|P| \subseteq_N |R| \).

2. Let \(\mathcal{P} \) and \(\mathcal{R} \) be parallel sets in \(M \). Then \(\mathcal{P} \prec_M \mathcal{R} \) iff \(|\mathcal{P}| \subseteq_N |\mathcal{R}| \).
Proof: Part 1 is intuitively clear; a formal proof starts with an inductive definition of \(\subseteq_M \), and then proceeds by induction on this definition. For part 2, let \(P = \{ P_1, \ldots, P_m \} \) and \(R = \{ R_1, \ldots, R_n \} \). If \(P \not\subseteq_M R \) then \(|P_1| \equiv \cdots \equiv |P_m| \subseteq_N |R_1| \equiv \cdots \equiv |R_n| \) by part 1 and the definition of \(\not\subseteq_M \). For the converse, we prove by induction on well-formed \(M \in \Lambda^\wedge \) that for arbitrary subterm occurrences \(P \) and \(R \) in \(N \equiv |M| \), if \(P \subset_N R \) then \(P \not\subseteq_M R \) where \(P \) and \(R \) are the parallel sets in \(M \) corresponding to \(P \) and \(R \). We use induction on \(M \in \Lambda^\wedge \) to produce \(P = \varphi(M, P) \) and \(R = \varphi(M, R) \).

We identify distinct occurrences of the same variable \(x \) in a term \(M \) by “occurrence numbers”, which are parenthesized positive integers in superscript position, as in

\[
M \equiv x^{(1)} \ldots x^{(2)} \ldots \ldots x^{(n)} \ldots
\]

Occurrence numbers start with 1, and incremented by 1 as \(M \) is scanned from left to right. We \(\alpha \)-convert whenever necessary to avoid name ambiguities, which can be achieved by two conditions: (1) every variable name has at most one \(\lambda \)-binding in \(M \), and (2) free variable names are disjoint from bound variable names in \(M \).

Definition 2.10 (Parallel contexts) A context \(C \) in the expanded calculus is defined as in the standard calculus: \(C \) is a term containing some holes. A hole is denoted \(\Box \). If the context \(C \) has \(n \geq 1 \) holes, we may refer to these holes by \(\Box^{(1)}, \ldots, \Box^{(n)} \), numbered in their occurrence order in \(C \) from left to right.

Contraction of contexts is defined inductively, as in Definition 2.3, by adding \(|\Box| = \Box \) to the base case. A context \(C \) is well-formed if its contraction \(|C| \) is defined.

A context \(C \) with \(n \geq 1 \) holes is a parallel context if \(C \) is well-formed and \(\{\Box^{(1)}, \ldots, \Box^{(n)}\} \) is a parallel set (of subterm occurrences in \(C \)).\(^4\)

If \(C \) is a context with \(n \geq 1 \) holes and \(P_1, \ldots, P_n \in \Lambda^\wedge \) then \(C[P_1, \ldots, P_n] \) denotes the result of placing \(P_1, P_2, \ldots, \) in \(\Box^{(1)}, \Box^{(2)}, \ldots \), respectively. If the context \(C \) is a parallel context and \(|P_1| \equiv \cdots \equiv |P_n| \) then \(C[P_1, \ldots, P_n] \) is well-formed. The converse is not true: \(C[P_1, \ldots, P_n] \) may be well-formed even though \(C \) is not a well-formed context, let alone a parallel context.

Definition 2.11 (\(\beta^\wedge \)-reduction) We first define a binary relation \(\beta' \) (not yet the desired notion of reduction) on \(\Lambda^\wedge \). For arbitrary \(N, P_1, \ldots, P_n \in \Lambda^\wedge \), where \(N \) mentions \(m \geq 0 \) distinct free occurrences of \(x \), we write:

\[
((\lambda x. N), P_1 \wedge \cdots \wedge P_n) \xrightarrow{\beta'} N[x^{(1)} := P_1, \ldots, x^{(m)} := P_m]
\]

\(^4\)An equivalent definition is to say that \(C \) is a parallel context if \(C \) is well-formed and \(|C| \) is a standard context with exactly one hole.
provided \(n = \max(1, m) \). The notation \(N[x^{(1)}] := P_1, \ldots, x^{(m)} := P_m \) refers to the result of substituting \(P_1 \) for \(x^{(1)} \), \(P_2 \) for \(x^{(2)} \), etc. We call an expression of the form \(((\lambda x. N). P_1 \land \cdots \land P_n)\) a \(\beta^\lor\)-redex.\(^5\)

Let \(M \equiv C[R_1, \ldots, R_n] \) be a well-formed expanded \(\lambda \)-term, where \(C \) is a parallel context with \(n \geq 1 \) holes and \(\mathcal{R} = \{R_1, \ldots, R_n\} \) is a parallel set of \(\beta^\lor\)-redex occurrences in \(M \). We write \(M \xrightarrow{\mathcal{R}} N \) provided:

\[
N \equiv C[S_1, \ldots, S_n] \quad \text{and} \quad R_i \xrightarrow{\beta} S_i \quad \text{for every} \quad i \in \{1, \ldots, n\}
\]

We call the parallel set \(\mathcal{R} \) of \(\beta^\lor\)-redex occurrences a \(\beta^\lor\)-redex occurrence. If the omission of \(\mathcal{R} \) causes no ambiguity, we also write \(M \xrightarrow{\beta^\lor} N \). The consistency of this definition is based on Lemma 2.6, according to which \(|R_1| \equiv \cdots \equiv |R_n| \), which implies \(|S_1| \equiv \cdots \equiv |S_n| \) and, in turn, that \(N \equiv C[S_1, \ldots, S_n] \) is well-formed. The transitive reflexive closure of \(\xrightarrow{\beta} \) is \(\xrightarrow{\beta^\lor} \).

The difference between \(\beta^\lor \) and \(\beta \) is that \(\beta^\lor \) requires all \(\beta^\lor \)-redexes in a parallel set to be reduced simultaneously, thus preserving the well-formedness of expanded terms, while \(\beta^\lor \) does not.

Example 2.12 Consider the expanded \(\lambda \)-terms in Example 2.4. \(M_0 \) is already in \(\beta^\lor\)-nf. \(M_1 \) can be \(\beta^\lor\)-reduced to \(M_1' \):

\[
M_1 \xrightarrow{\beta^\lor} M_1' \equiv \lambda x. \, 2(2(2 \, x))
\]

where \(M_1' \) is in \(\beta^\lor\)-nf. \(M_2 \) is already in \(\beta^\lor\)-nf. \(M_3 \) can be \(\beta^\lor\)-reduced to \(M_3' \):

\[
M_3 \xrightarrow{\beta^\lor} \lambda x. (2 \, (2 \, (2 \, x) \land (2 \, x)) \land (2 \, (2 \, x) \land (2 \, x)))
\]

\[
\xrightarrow{\beta^\lor} \lambda x. (2 \, R \land R)
\]

\[
\xrightarrow{\beta^\lor} \lambda x. \lambda y. R(R \, y)
\]

\[
\xrightarrow{\beta^\lor} \lambda x. \lambda y. \, 2 \, x \, (2 \, x \, (R \, y))
\]

\[
\xrightarrow{\beta^\lor} M_3' \equiv \lambda x. \lambda y. \, 2 \, x \, (2 \, x \, (2 \, x \, (2 \, x \, y)))
\]

where \(R \equiv \lambda y. \, 2 \, x \, (2 \, x \, y) \) and \(M_3' \) is in \(\beta^\lor\)-nf. \(M_4 \) can be \(\beta^\lor\)-reduced to \(M_4' \) in 8 steps:

\[
M_4 \xrightarrow{\beta^\lor} \lambda x. (2 \, (2 \, (2 \, x \, x) \land (2 \, x \, x)) \land (2 \, (2 \, x \, x) \land (2 \, x \, x)))
\]

\[
\xrightarrow{\beta^\lor} \lambda x. (2 \, (2 \, (N \land N) \land (2 \, N \land N)))
\]

\[
\xrightarrow{\beta^\lor} \lambda x. (2 \, (P \land P))
\]

\[
\xrightarrow{\beta^\lor} M_4' \equiv \lambda x. \lambda y. \, P(P \, y)
\]

\(^5\)Probably it shouldn’t be called a “redex”, as \(\beta \) is not a notion of reduction on well-formed expanded \(\lambda \)-terms.
where \(N \equiv \lambda y.x(x y) \) and \(P \equiv \lambda y.N(N y) \), and \(M'_1 \) can be further \(\beta^\land \)-reduced (or also \(\beta \)-reduced) to \(M''_1 \) in 6 steps:

\[
M'_1 \xrightarrow{\beta^\land} M''_1 \equiv \lambda x.\lambda y. x(x(x(x(x y))))
\]

Proposition 2.13 Let \(M \) be an arbitrary expanded \(\lambda \)-term.

1. \(M \) is \(\beta^\land \)-strongly normalizing ("\(\beta^\land \) is SN").

2. For all \(M_1 \) and \(M_2 \) such that \(M \xrightarrow{\beta^\land} M_1 \) and \(M \xrightarrow{\beta^\land} M_2 \),

there is \(M_3 \) such that \(M_1 \xrightarrow{\beta^\land} M_3 \) and \(M_2 \xrightarrow{\beta^\land} M_3 \) ("\(\beta^\land \) is CR").

3. \(M \) has exactly one \(\beta^\land \)-nf.

Proof: Part 1 follows from the fact that every \(\beta^\land \)-reduction step is strictly size-decreasing. Part 2 implies that \(M \) has at most one \(\beta^\land \)-nf and, together with part 1, that \(M \) has exactly one \(\beta^\land \)-nf, thus proving part 3. It remains to prove part 2. In fact, by Proposition 3.1.25 in [1], it suffices to show that \(\beta^\land \) is WCR (weak Church-Rosser), i.e.

\[
\begin{array}{c}
\xymatrix{ M & \xrightarrow{R_1} M_1 \quad \xrightarrow{\beta^\land} \quad M_2 \\
\quad \quad \quad M_3 \\
\end{array}
\]

where \(R_1 \) and \(R_2 \) are \(\beta^\land \)-redex occurrences in \(M \):

\[
\begin{align*}
R_1 &= \{(\lambda x.P_1).Q_{1,1} \land \cdots \land Q_{1,m_1}), \ldots, (\lambda x.P_n).Q_{n,1} \land \cdots \land Q_{n,m_n}\} \\
R_2 &= \{(\lambda x.S_1).T_{1,1} \land \cdots \land T_{1,p_1}), \ldots, (\lambda x.S_q).T_{q,1} \land \cdots \land T_{q,p_q}\}
\end{align*}
\]

where \(n, m_1, \ldots, m_n, q, p_1, \ldots, p_q \geq 1 \). This is an exhaustive case analysis, generalizing the proof that standard \(\beta \) is WCR, given in Lemma 11.1.1 in [1]. Our proof in fact repeats the proof of Lemma 11.1.1, after the following changes:

- Replace \(\Delta_1 \equiv ((\lambda x.P_1).Q_1) \) and \(\Delta_2 \equiv ((\lambda x.P_2).Q_2) \) by \(R_1 \) and \(R_2 \), respectively.
- Replace \(P_1 \) and \(P_2 \) by \(P = \{P_1, \ldots, P_n\} \) and \(S = \{S_1, \ldots, S_q\} \), respectively.
- Replace \(Q_1 \) and \(Q_2 \) by \(Q = \{Q_{1,1}, \ldots, Q_{n,m_n}\} \) and \(T = \{T_{1,1}, \ldots, T_{q,p_q}\} \), respectively.

In the various cases and subcases considered in Lemma 11.1.1, replace "C" by "S". We omit the straightforward details.
Definition 2.14 (Projecting and lifting) Let t be a β^Λ-reduction starting from $M_0 \in \Lambda^\Lambda$:

$$t : M_0 \frac{R_1}{\beta^\Lambda} M_1 \frac{R_2}{\beta^\Lambda} M_2 \frac{R_3}{\beta^\Lambda} \cdots$$

and u a β-reduction starting from $N_0 \in \Lambda$:

$$u : N_0 \frac{S_1}{\beta} N_1 \frac{S_2}{\beta} N_2 \frac{S_3}{\beta} \cdots$$

We say that u is a projection of t, and t a lifting of u, if two conditions hold:

1. t and u are sequences with an equal number $k \geq 0$ of reduction steps.
2. $|M_i| \equiv N_i$ for every $i = 0, 1, \ldots, k$ and $|R_i| \equiv S_i$ for every $i = 1, \ldots, k$.

We say t can be projected if there is a projection of t, and u can be lifted if there is a lifting of u.

The next proposition makes explicit the simple fact that every β^Λ-reduction can be projected. By contrast, as every β^Λ-reduction sequence is finite (Proposition 2.13), not every β-reduction can be lifted.

Proposition 2.15 Every β^Λ-reduction can be uniquely projected.

Proof: Given the β^Λ-reduction t as in Definition 2.14, define the sequence $|t|$ by:

$$|t| : |M_0| \frac{|R_1|}{\beta} |M_1| \frac{|R_2|}{\beta} |M_2| \frac{|R_3|}{\beta} \cdots$$

Then $|t|$ is well-defined as a β-reduction, i.e., $|R_i|$ is a β-redex occurrence in $|M_{i-1}|$ and β-reducing it produces $|M_i|$ for every $i = 1, 2, \ldots$. Moreover, every projection of t is obtained from $|t|$ by α-renaming. ■

Definition 2.16 (Expanding λ-terms) Given a \land-list $P_1 \land \cdots \land P_n$, with $n \geq 1$, we introduce the shorthand notation $\langle P_1 \land \cdots \land P_n \rangle_{i,j}$ where $i, j \in \{1, \ldots, n\}$ as an abbreviation for the \land-list

$$P_1 \land \cdots \land P_j \land P_i \land P_{j+1} \land \cdots \land P_n$$

In words, a new copy of the i-th component is inserted right after the j-th component, thus displacing each of the components P_{j+1}, \ldots, P_n one position to the right.

Let M and M' be expanded λ-terms. We write $M \rightarrow M'$ just in case there is a context C with a single hole and expanded λ-terms S, T_1, \ldots, T_n, with $n \geq 1$, such that

$$M \equiv C[(S, T_1 \land \cdots \land T_n)] \quad \text{and} \quad M' \equiv C[(S, \langle T_1 \land \cdots \land T_n \rangle_{i,j})]$$
for some $i, j \in \{1, \ldots, n\}$. The context C is not well-formed in general. If we want to name explicitly the application that is expanded, in this case $N \equiv (S, T_1 \land \cdots \land T_n)$, we write $M \xrightarrow{\land}^N M'$. We use \rightarrow^\land as a notion of “reduction” in the sense of [1] (although it is really an “expansion”) and denote its transitive reflexive closure by \rightarrow^\land^\land.

Lemma 2.17 For every expanded λ-term M_0:

\[M_0 \rightarrow^\land \cdots \rightarrow^\land \beta \rightarrow^\land \cdots \rightarrow^\land \rightarrow^\land M_3 \]

In words, we can always displace all expansion steps ahead of β^\land-reduction steps.

Proof: It suffices to prove the following simpler commutative diagram:

\[M_0 \rightarrow^\land \cdots \rightarrow^\land \beta \rightarrow^\land \cdots \rightarrow^\land \rightarrow^\land M_3 \]

This is a tedious case analysis. Details are in the Appendix. ■

In contrast to Lemma 2.17, it is not the case that we can always displace β^\land-reduction steps ahead of expansion steps. Consider for example the sequence:

\[((\lambda x.xxx)I \land I) \rightarrow^\land ((\lambda x.xxx)I \land I \land I) \rightarrow^\beta^\land III \]

It is not possible to move the β^\land step ahead of the expansion step.

Lemma 2.18 For every standard λ-term M_0:

\[M_0 \rightarrow^\beta \cdots \rightarrow^\beta \lambda \rightarrow^\beta \cdots \rightarrow^\beta \rightarrow^\beta M_3 \]

Proof: Let $R \equiv ((\lambda x.P)Q)$ be the standard β-redex occurrence in M_0 such that $M_0 \xrightarrow{\beta} R M_1$. If R is a K-redex or a I-redex with exactly one free occurrence of x in P, then $R = \{R\}$ is a β^\land-redex
and we just take $M_2 \equiv M_0$. If R is a λ-redex, with $n \geq 2$ occurrences of the free variable x in P, we expand Q n times to obtain the β^\wedge-redex

$$R = \{((\lambda x.P). \underbrace{Q \wedge \cdots \wedge Q}_n)\}$$

In all three cases, R consists of just one β'-redex. We then carry out the reduction $M_2 \xrightarrow{R} M_1$. ■

Proposition 2.19 Every finite β-reduction can be lifted to a β^\wedge-reduction (not necessarily unique — see Remark 3.13).

Proof: This is a straightforward diagram chase, suggested by the following figure:

![Diagram](image)

The diagram commutes because of Lemma 2.17 (for the parallelograms) and Lemma 2.18 (for the triangles). Each downward arrow is a single β^\wedge-reduction step, and each two-headed upward arrow is a multiple expansion step. The lower side and the right side of the big triangle are, respectively, the given finite β-reduction and the constructed β^\wedge-reduction. ■

A β-reduction u is *maximal* if either u is infinite or u is finite and its last λ-term is in β-nf.

Corollary 2.20 Let M be a standard λ-term.

1. M is β-normalizing iff the maximal leftmost β-reduction starting from M can be lifted.

2. M is β-SN iff every β-reduction starting from M can be lifted.

Proof: M is β-normalizing (resp. β-SN) iff the maximal leftmost (resp. every) β-reduction starting from M is finite. ■

We conjecture a stronger result than part 2 of the preceding corollary.
Conjecture 2.21 Let M be a standard λ-term. M is β-SN iff there is an expanded λ-term N such that $M \equiv |N|$ and every β-reduction from M can be lifted to a $\beta\Lambda$-reduction from N.

The right-to-left implication in 2.21 follows from part 2 of 2.20. The left-to-right implication in 2.21 requires an analysis of the interaction between $\beta\Lambda$-reduction and Λ-expansion. We conjecture that the expanded λ-term N constructed in the proof of Theorem 3.15 is a witness for the left-to-right implication in 2.21.

3 A Useful Generalization of Beta-Reduction

K-redexes are the source of many interesting complications in the λ-calculus. The particular complication concerning us here is the difference they introduce between β-weak-normalization (β-WN) and β-strong-normalization (β-SN). In the absence of K-redexes the two notions coincide. There is a long trail of results on how to reduce β-SN to β-WN without excluding K-redexes since the late 1960’s, by Nederpelt, by Klop, and by many others in the 1980’s and 1990’s (see the references in [6] and [11] for example). We tackle this question once more, not to prove a result (Theorem 3.6) which is likely to be a minor variation of an earlier one in the extensive literature, but to adapt it to our later needs (Theorem 3.15).

Every standard λ-term M which is not in β-nf contains a leftmost β-redex occurrence $R \equiv ((\lambda x.P)Q)$. R is uniquely identified by its λ-binding “λx” which occurs to the left of the λ-binding of every other, if any, β-redex occurrence in M.

Lemma 3.1 Let M and N be standard λ-terms, let $R \equiv ((\lambda x.P)Q)$ be a leftmost β-redex occurrence in M, and let $M \xrightarrow{R} \beta N$.

1. If R is a η-redex and N is β-SN, then M is β-SN.

2. If R is a K-redex and both N and Q are β-SN, then M is β-SN.

Proof: Delayed to the Appendix.

Example 3.2 Part 2 of the preceding lemma is not true without the restriction “leftmost”. Consider the term

$$M \equiv (\lambda x. (\lambda v. \lambda w. vw)) \ I \ (\lambda y. (\lambda x. I)(y \omega)) \ (\lambda v. \lambda w. vw)$$

where $I \equiv (\lambda z.z)$ and $\omega \equiv (\lambda z. z z)$. M contains two β-redex occurrences: R_1 and R_2. R_1 is leftmost-outermost, R_2 is only outermost, and both are K-redexes. (A β-redex occurrence R in M
is *outermost* if \(R \) does not occur as a proper subterm in another \(\beta \)-redex occurrence in \(M \). Leftmost is a special case of outermost.) \(\beta \)-reducing \(R_2 \), we get

\[
N \equiv (\lambda x. (\lambda w. x w)) (\lambda y. I) (\lambda w. y w)
\]

It is not the case that \(M \) is \(\beta \)-SN (it is not) if \(N \) and \((y w w) \) are \(\beta \)-SN (they both are). This example also shows that relaxing the “leftmost” restriction to “outermost” is not strong enough to get part 2 of Lemma 3.1.

\(G_\beta(M) \) is the \(\beta \)-reduction graph of standard \(\lambda \)-term \(M \) (Section 3.1 in [1]). The set of vertices in \(G_\beta(M) \) is \(\{ N \mid M \to^\beta N \} \) modulo \(\alpha \)-equivalence. There is an edge from vertex \(N_1 \) to vertex \(N_2 \) in \(G_\beta(M) \) iff \(N_1 \to^\beta N_2 \). \(G_\beta(M) \) is a connected graph, because every vertex \(N \) is accessible from vertex \(M \). Define

\[
\text{degree}(M) = \text{“number of edges in } G_\beta(M)\text{”}
\]

The relevant fact for us is: \(M \) is \(\beta \)-SN iff \(G_\beta(M) \) is a finite dag (directed acyclic graph). In particular, if \(M \) is \(\beta \)-SN then \(\text{degree}(M) \) is finite (the converse is not true).

Lemma 3.3 Let \(M \) and \(N \) be standard \(\lambda \)-terms, let \(R \equiv ((\lambda x. P)Q) \) be a leftmost \(\beta \)-redex occurrence in \(M \), and let \(M \xrightarrow{R} \beta N \).

1. If \(R \) is a \(I \)-redex and \(M \) is \(\beta \)-SN, then \(\text{degree}(M) > \text{degree}(N) \).

2. If \(R \) is a \(K \)-redex and \(M \) is \(\beta \)-SN, then \(\text{degree}(M) > \text{degree}(N) + \text{degree}(Q) \).\(^6\)

Proof: Delayed to the Appendix. \(\blacksquare \)

Definition 3.4 \((\&\text{-lists})\) We introduce another term constructor \& which, by contrast to \(\land \), can appear only once and in leftmost position in a term. The set of *standard \&-lists* is:

\[
\&\Lambda = \{ \&M_1 \cdots M_n \mid M_1, \ldots, M_n \in \Lambda, \ n \geq 1 \}
\]

The set of *expanded \&-lists* is:

\[
\&\Lambda^\wedge = \{ \&M_1 \cdots M_n \mid M_1, \ldots, M_n \in \Lambda^\wedge, \ n \geq 1 \}
\]

As \(\Lambda \subset \Lambda^\wedge \), we also have \(\&\Lambda \subset \&\Lambda^\wedge \). If \(M \equiv \&M_1 \cdots M_l \), we call the terms \(M_1, \ldots, M_l \) the *components* of \(M \). A special case is when \(M \) has only one component \(M_1 \), in which case we may write \(M \equiv M_1 \) instead of \(M \equiv \&M_1 \), allowing us to write the following inclusions:

\[
\Lambda \subset \&\Lambda \subset \&\Lambda^\wedge \quad \text{and} \quad \Lambda \subset \Lambda^\wedge \subset \&\Lambda^\wedge
\]

\(^6\)Lemma 3.3 is probably true without the restriction “leftmost” on \(R \), but we do not need such a result.
The \textit{contraction} of $M \equiv \&M_1 \cdots M_\ell$ is simply

$$|M| \equiv \& |M_1| \cdots |M_\ell|$$

The definitions of \textit{parallel sets} (Def. 2.5 and Def. 2.7), \textit{parallel contexts} (Def. 2.10), \textit{projecting} and \textit{lifting} (Def. 2.14), and \textit{expanding} (Def. 2.16), are extended to \&-lists in the obvious way. Observe that all the members of a parallel set in \&-list M are subterm occurrences in the same component of M.

\textbf{Definition 3.5 (\&\beta-reduction)} Let $M \equiv \&M_1 \cdots M_\ell$ be a standard \&-list, and $R \equiv ((\lambda x.P)Q)$ a standard \beta-redex. We write $M \xrightarrow{R} \& M'$ to mean two conditions are satisfied:

1. R is a leftmost \beta-redex occurrence in M, i.e. there is $k \in \{1, \ldots, \ell\}$ such that R is leftmost in M_k and M_1, \ldots, M_{k-1} are all in \beta-nf.

2. If $M_k \xrightarrow{R} N$, then

\[
M' \equiv \begin{cases}
\& M_1 \cdots M_{k-2} N M_{k+1} \cdots M_\ell, & \text{if } R \text{ is a } I\text{-redex}, \\
\& M_1 \cdots M_{k-2} Q M_{k+1} \cdots M_\ell, & \text{if } R \text{ is a } K\text{-redex}.
\end{cases}
\]

We write $M \xrightarrow{R} \& M'$ if there is a leftmost \beta-redex occurrence R in M such that $M \xrightarrow{R} \& M'$.

\&\beta-reduction generalizes \beta-reduction not only in the sense that (1) it relates two \&-lists rather than two λ-terms, but also in the sense that (2) it does not discard arguments of K-redexes after their reduction. On the other hand, only leftmost \beta-redexes can be \&\beta-reduced, which implies there is a unique \&\beta-reduction starting from a given $M \in \&\Lambda$; in this sense, \&\beta-reduction is more restrictive than \beta-reduction.

\textbf{Theorem 3.6} Let M be a standard λ-term. M is β-SN iff M is $\&\beta$-normalizing.

\textbf{Proof:} There are two inductions in this proof, and to push them through, prove a more general result, namely, for every standard \&-list $M \equiv \&M_1 \cdots M_\ell$, the following are equivalent:

(a) Each of the $\ell \geq 1$ components M_1, \ldots, M_ℓ is \beta-SN.

(b) M is \&\beta-SN.

(c) M is \&\beta-normalizing.
First prove (a) implies (b). Generalize the notion of β-reduction graph to every standard $\&$-list $M \equiv & M_1 \cdots M_\ell$ by defining

$$G_\beta(M) = \{ G_\beta(M_1), \ldots, G_\beta(M_\ell) \}$$

Unless M has only one component, $G_\beta(M)$ is a disconnected graph. Define

$$\text{degree}(M) = \text{degree}(M_1) + \cdots + \text{degree}(M_\ell)$$

It is clear that every component of M is β-SN if $G_\beta(M)$ is a finite dag. The proof that (a) implies (b) is by induction on $\text{degree}(M) \geq 0$. If $\text{degree}(M) = 0$ then every component of M is in β-nf, so that M is also $\&;\beta$-SN. Assume the result true for every standard $\&$-list M where every component is β-SN and $\text{degree}(M) \leq n$. Consider a fixed, but otherwise arbitrary M where every component is β-SN and $\text{degree}(M) = n + 1$. We want to show that every $\&;\beta$-reduction σ starting from M terminates. Consider the first step of such a reduction σ, say $M \xrightarrow{\&;\beta} M'$. Reviewing Definition 3.5, it is easy to see that if every component of M is β-SN then so is every component of M' and, by Lemma 3.3, that $\text{degree}(M') \leq n$. Hence, by the induction hypothesis, M' is $\&;\beta$-SN, which in turn implies the reduction σ terminates.

The proof that (b) implies (c) is immediate.

The proof that (c) implies (a) is by induction on the length of $\&;\beta$-normalizing sequences. Consider a $\&;\beta$-normalizing sequence from a standard $\&$-list M:

$$M \equiv P_0 \xrightarrow{\&;\beta} P_1 \xrightarrow{\&;\beta} P_2 \xrightarrow{\&;\beta} \cdots \xrightarrow{\&;\beta} P_n$$

where P_n is in $\&;\beta$-nf, so that every component of P_n is in β-nf. If $n = 0$, then $P_0 \equiv P_n$ and the desired conclusion is immediate. Assume the result true for every $\&;\beta$-normalizing sequence of length $n \geq 0$, and prove it for an an arbitrary $\&;\beta$-normalizing sequence of length $n + 1$, using Lemma 3.1.

Let M be an expanded λ-term and $\{R_1, \ldots, R_n\}$ the set of all β^\wedge-redex occurrences in M. We say that $R \in \{R_1, \ldots, R_n\}$ is a leftmost β^\wedge-redex occurrence in M if $|R|$ is the leftmost among $\{|R_1|, \ldots, |R_n|\}$ in $|M|$. Note that $|M|$ may contain other β-redex occurrences to the left of $|R|$ which are not the contractions of β^\wedge-redex occurrences.

Definition 3.7 ($\&;\beta^\wedge$-reduction) Let $M = \& M_1 \cdots M_\ell$ be an expanded $\&$-list, and R a β^\wedge-redex occurrence in M. We write $M \xrightarrow{R} \& M'$ to mean two conditions are satisfied:

1. R is a leftmost β^\wedge-redex occurrence in M, i.e. there is $k \in \{1, \ldots, \ell\}$ such that R is leftmost in M_k and M_1, \ldots, M_{k-1} are all in β^\wedge-nf.
2. If $M_k \xrightarrow{\beta^\wedge} N$, then

$$M' \equiv \begin{cases} & \& M_1 \cdots M_{k-1} N M_{k+1} \cdots M_t, \quad \text{if } |\mathcal{R}| \text{ is a } I\text{-redex}, \\
& \& M_1 \cdots M_{k-1} N Q M_{k+1} \cdots M_t, \quad \text{if } |\mathcal{R}| \text{ is a } K\text{-redex and } \mathcal{R} = \{((\lambda x.P)Q)\}. \end{cases}$$

Note, in the case when $|\mathcal{R}|$ is a K-redex, we restrict \mathcal{R} to be a singleton set, i.e., a parallel set consisting of a single β'-redex $((\lambda x.P)Q)$. It is possible to lift this restriction and define instead:

$$M' = \& M_1 \cdots M_{k-1} N Q_1 \cdots Q_n M_{k+1} \cdots M_t$$

when $|\mathcal{R}|$ is a K-redex and $\mathcal{R} = \{((\lambda x.P_1)Q_1), \ldots, ((\lambda x.P_n)Q_n)\}$, for arbitrary $n \geq 1$, but we do not need this generalization.

We write $M \xrightarrow{\&\beta^\wedge} M'$ if there is a leftmost β^\wedge-redex occurrence \mathcal{R} in M such that $M \xrightarrow{\mathcal{R}} M'$.

The material to follow, until Theorem 3.15, generalizes material in Section 2. Specifically, Propositions 3.8, 3.10 and 3.14, are generalizations of Propositions 2.13, 2.15 and 2.19. The proofs are very similar, save for a few minor adjustments. Observe that the whole analysis in this section is triggered by the presence of K-redexes: In their absence, 3.8, 3.10 and 3.14 do not say something substantially different from 2.13, 2.15 and 2.19.

Proposition 3.8 Let M be an arbitrary expanded $\&$-list.

1. M is $\&\beta^\wedge$-strongly normalizing ("$\&\beta^\wedge$ is SN").

2. M has exactly one $\&\beta^\wedge$-nf.

Proof: Part 1 is a consequence of the fact that $\&\beta^\wedge$-reduction is strictly size-decreasing. Part 2 follows from the fact that there is exactly one $\&\beta^\wedge$-reduction starting from M. ■

A $\&\beta^\wedge$-reduction is **lean** if its last $\&$-list is a standard rather than an expanded $\&$-list.

Lemma 3.9 Consider an arbitrary $\&\beta^\wedge$-reduction t of length $k \geq 1$:

$$t : M_0 \xrightarrow{\&\beta^\wedge} M_1 \xrightarrow{\&\beta^\wedge} M_2 \rightarrow \cdots \xrightarrow{\&\beta^\wedge} M_k$$

If t is lean then, for every $i \in \{1, \ldots, k\}$, \mathcal{R}_i is a parallel set consisting of exactly one β'-redex.

Proof: Consider the first β^\wedge-redex in this reduction, say \mathcal{R}_1 with no loss of generality, which is not a singleton. Let \mathcal{R}_1 be the following parallel set of β'-redex occurrences

$$\mathcal{R}_1 = \{((\lambda x.P_1).Q_{1,1} \land \cdots \land Q_{1,m_1}), \ldots, ((\lambda x.P_n).Q_{n,1} \land \cdots \land Q_{n,m_n})\}$$
where \(n \geq 2 \) and \(m_1, \ldots, m_n \geq 1 \). We want to prove that the last \&-list \(M_k \) in \(t \) is not standard, which is equivalent to proving there is a non-singleton parallel set in \(M_k \), because by Lemma 2.6 part 3, an expanded \&-list \(M \) is standard iff every parallel set in \(M \) is a singleton.

We prove therefore there is a parallel set \(S_1 \) in \(M_1 \), with \(n \) members, such that if \(\beta^\wedge\)-redex \(R_2 \) is a singleton then \(S_1 \) survives to the end of the reduction \(t \), in particular in \(M_k \). If \(\beta^\wedge\)-redex \(R_2 \) is not a singleton, we repeat the argument starting from \(R_2 \). Consider the set \(S_0 \) of subterm occurrences in \(M_0 \) defined by:

\[
S_0 = \{ P_1, \ldots, P_n \} = \{ P_i \mid ((\lambda x.P_i).Q_i,1 \land \cdots \land Q_i,m_i) \in R_1 \}
\]

By Definitions 2.5 and 2.7, it is easy to check that \(S_0 \) is a parallel set in \(M_0 \). The “residual” of \(S_0 \) relative to \(M_0 \) by \(\beta^\wedge \) is a parallel set \(S_1 \) in \(M_1 \), given by

\[
S_1 = \{ P_1[x^{(1)}] := Q_{1,1}, \ldots, x^{(m_1)} := Q_{1,m_1}, \ldots, P_n[x^{(1)}] := Q_{n,1}, \ldots, x^{(m_n)} := Q_{n,m_n} \}
\]

There are 3 possible cases: (1) \(S_1 \prec R_2 \), (2) \(R_2 \prec S_1 \), (3) neither \(S_1 \prec R_2 \) nor \(R_2 \prec S_1 \). In case (3), because \(|R_1| \) is to the left of \(|R_2| \) and \(|R_2| \) is leftmost among \(\beta^\wedge \)-redex occurrences in \(M_1 \), \(S_1 \) is “untouched” throughout the rest of the reduction \(t \) and remains a parallel set in each of \(M_2, \ldots, M_k \) — which is the desired conclusion. (A formalization of this argument is in terms of “residuals”, as in Definition 5.2, at the cost of making it less transparent.) Case (3) is the only case in which \(R_2 \) can be a singleton. In case (2), \(R_2 \) has at least \(n \geq 2 \) members (see Definition 2.8), and we repeat the argument starting from \(R_2 \). Case (1) cannot happen, because if it did, there would be a \(\beta^\wedge \)-redex \(R \) in \(M_0 \) whose “residual” in \(M_1 \) is \(R_2 \) and such that \(|R| \) is to the left of \(|R_1| \) in \(|M_0| \). ■

Proposition 3.10 Every lean \&-\(\beta^\wedge \)-reduction can be uniquely projected.

Proof: Similar to the proof of Proposition 2.15, using also Lemma 3.9 in order to guarantee that the number of components in each standard \&-list (resulting from \(\beta \)-reducing a K-redex) in the projected \&-\(\beta \)-reduction has the same number of components as the corresponding expanded \&-list in the given lean \&-\(\beta^\wedge \)-reduction. ■

Lemma 3.11 For every expanded \&-list \(M_0 \):

[Diagram]

where \(M_3 \) is uniquely determined.
Proof: The proof of Lemma 2.17 can be used here with no change other than replacing "β" by "&β" and "β^n" by "&β^n". M_3 is uniquely determined because arguments of K-redexes are not discarded by &β^n-reduction. □

Lemma 3.12 For every standard &-list M_0:

\[
\begin{array}{c}
M_0 \\
\rightarrow_{&\beta} \\
\rightarrow_{&\beta^n} \\
\rightarrow_{&\beta^n} \\
M_1 \\
\end{array}
\]

where M_2 is uniquely determined.

Proof: See the proof of Lemma 2.18. The uniqueness of M_2 follows from the fact that arguments of K-redexes are not discarded by &β-reduction. □

Remark 3.13 In Lemma 2.17 the expanded λ-term M_3 is not uniquely determined, if \(R = \{ \cdots , ((\lambda x.P). Q_1 \land \cdots \land Q_n), \cdots \} \) is such that \(|R| \equiv ((\lambda x.P')(Q') \) is a K-redex, in which case also n = 1. See the proof of Lemma 2.17 for the notation here. The reason is that there is no record in M_2 of what expansion is carried out in the argument Q_1 before it disappears. Likewise, in Lemma 2.18, the expanded λ-term M_2 is not uniquely determined. By contrast, the expanded &-lists M_3 in Lemma 3.11 and M_2 in Lemma 3.12 are uniquely determined, because arguments of K-redexes are not lost in &β and &β^n reductions.

Proposition 3.14 Every finite &β-reduction can be uniquely lifted to a lean &β^n-reduction.

Proof: This is a straightforward consequence of Lemmas 3.11 and 3.12. See the proof of Proposition 2.19. □

A &β-reduction is maximal if either it is infinite or it is finite and its last &-list is in &β-nf.

Theorem 3.15 Let M be a standard λ-term. M is β-SN iff there is an expanded λ-term N such that |N| \(\equiv M \) and the maximal &β-reduction starting from M can be uniquely lifted to a lean &β^n-reduction starting from N.

Proof: If M is β-SN then M is &β-normalizing, by Theorem 3.6. Hence, by Proposition 3.14, there is a unique N \(\in &\Lambda^n \) such that M \(\equiv |N| \) and the &β-normalizing reduction from M can be
uniquely lifted to a lean $\&\beta^\wedge$-reduction from N. Because $M \in \Lambda$ rather than $M \in \&\Lambda$, it must also be that $N \in \Lambda^\wedge$ rather than $N \in \&\Lambda^\wedge$.

Conversely, suppose there is an expanded λ-term N such that $|N| \equiv M$ and the maximal $\&\beta$-reduction u from M can be lifted to a $\&\beta^\wedge$-reduction t from N. By Proposition 3.8, t is finite, which implies u is finite. Hence, by Theorem 3.6, M is β-SN. \hfill \blackslug

4 Type Inference Systems

We consider 4 different type inference systems, one for each of the λ-calculi defined in Sections 2 and 3: λ, λ^\wedge, $\&\lambda$, and $\&\lambda^\wedge$ for Λ, Λ^\wedge, $\&\Lambda$, and $\&\Lambda^\wedge$, respectively.

Definition 4.1 (Types) We use one type constant, denoted ω. We define by simultaneous induction two sets of type expressions, T^\rightarrow and T^\wedge:

1. $\omega \in T^\rightarrow$.

2. If $\sigma \in T^\rightarrow \cup T^\wedge$ and $\tau \in T^\rightarrow$ then $(\sigma \to \tau) \in T^\rightarrow$.

3. If $\sigma_1, \ldots, \sigma_n \in T^\rightarrow$ and $n \geq 2$ then $(\sigma_1 \land \cdots \land \sigma_n) \in T^\wedge$.

One more set of type expressions is $\&T$:

$$\&T = \{ \&\sigma_1 \cdots \sigma_n \mid \sigma_1, \ldots, \sigma_n \in T^\rightarrow \cup T^\wedge, \ n \geq 2 \}$$

Let $T = T^\rightarrow \cup T^\wedge \cup \&T$. Note that $T^\rightarrow \cup T^\wedge$ is a proper subset of the usual intersection types.

In the various type systems below, A and B denote type assignments, i.e., partial functions from λ-Var to T with finite domain of definition, written as finite lists of pairs. If A and B are type assignments, then $A \land B$ is a new type assignment given by:

$$(A \land B)(x) = \begin{cases} \text{undefined,} & \text{if both } A(x) \text{ and } B(x) \text{ are undefined,} \\ A(x), & \text{if } A(x) \text{ is defined and } B(x) \text{ is undefined,} \\ B(x), & \text{if } A(x) \text{ is undefined and } B(x) \text{ is defined,} \\ A(x) \land B(x), & \text{if both } A(x) \text{ and } B(x) \text{ are defined.} \end{cases}$$

We take \land associative, but neither commutative nor idempotent. Hence,

$$(A_1 \land A_2) \land A_3 = A_1 \land (A_2 \land A_3)$$
and we can altogether omit the parentheses. Similarly, if A and B are type assignments, then $\& AB$ is a new type assignment given by:

$$(\& AB)(x) = \begin{cases}
\text{undefined,} & \text{if both } A(x) \text{ and } B(x) \text{ are undefined,} \\
A(x), & \text{if } A(x) \text{ is defined and } B(x) \text{ is undefined,} \\
B(x), & \text{if } A(x) \text{ is undefined and } B(x) \text{ is defined,} \\
\&A(x)B(x), & \text{if both } A(x) \text{ and } B(x) \text{ are defined.}
\end{cases}$$

Our two first systems are λ and λ^\wedge. The difference between the two is in the rule APP: In system λ a standard application (MN) is assigned a type, in λ^\wedge an expanded application $(M, N_1 \wedge \cdots \wedge N_n)$ is assigned a type. If λ^\wedge is used to derive types for well-formed expanded λ-terms, it is assumed that $|N_1| \equiv \cdots \equiv |N_n|$.

System λ

<table>
<thead>
<tr>
<th>Rule</th>
<th>Precondition</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR</td>
<td>$x : \tau \vdash x : \tau$</td>
<td>$\tau \in T^\rightarrow$</td>
</tr>
<tr>
<td>ABS-I</td>
<td>$A, x : \sigma_1 \wedge \cdots \wedge \sigma_n \vdash M : \tau \quad n \geq 1$</td>
<td>$A \vdash (\lambda x.M) : (\sigma_1 \wedge \cdots \wedge \sigma_n \rightarrow \tau)$</td>
</tr>
<tr>
<td>ABS-K</td>
<td>$A \vdash M : \tau$</td>
<td>$\sigma \in T^\rightarrow$</td>
</tr>
<tr>
<td>APP</td>
<td>$A \vdash M : (\sigma_1 \wedge \cdots \wedge \sigma_n \rightarrow \tau) \quad B_1 \vdash N : \sigma_1 \quad \cdots \quad B_n \vdash N : \sigma_n \quad n \geq 1$</td>
<td>$A \wedge B_1 \wedge \cdots \wedge B_n \vdash (MN) : \tau$</td>
</tr>
</tbody>
</table>

System λ^\wedge

<table>
<thead>
<tr>
<th>Rule</th>
<th>Precondition</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR</td>
<td>$x : \tau \vdash x : \tau$</td>
<td>$\tau \in T^\rightarrow$</td>
</tr>
<tr>
<td>ABS-I</td>
<td>$A, x : \sigma_1 \wedge \cdots \wedge \sigma_n \vdash M : \tau \quad n \geq 1$</td>
<td>$A \vdash (\lambda x.M) : (\sigma_1 \wedge \cdots \wedge \sigma_n \rightarrow \tau)$</td>
</tr>
<tr>
<td>ABS-K</td>
<td>$A \vdash M : \tau$</td>
<td>$\sigma \in T^\rightarrow$</td>
</tr>
<tr>
<td>APP</td>
<td>$A \vdash M : (\sigma_1 \wedge \cdots \wedge \sigma_n \rightarrow \tau) \quad B_1 \vdash N_1 : \sigma_1 \quad \cdots \quad B_n \vdash N_n : \sigma_n \quad n \geq 1$</td>
<td>$A \wedge B_1 \wedge \cdots \wedge B_n \vdash (M, N_1 \wedge \cdots \wedge N_n) : \tau$</td>
</tr>
</tbody>
</table>
Systems $\&\lambda$ and $\&\lambda^\wedge$ are obtained from λ and λ^\wedge, respectively, by adding an additional rule to derive types for $\&$-lists. Rule $\&$ is shown in the display below.

$$\begin{array}{c}
\& \quad \frac{A_1 \vdash M_1 : \sigma_1 \quad \cdots \quad A_n \vdash M_n : \sigma_n \quad n \geq 2}{\& A_1 \cdots A_n \vdash \& M_1 \cdots M_n : \& \sigma_1 \cdots \sigma_n}
\end{array}$$

A distinctive feature of the preceding systems (λ, λ^\wedge, $\&\lambda$ and $\&\lambda^\wedge$) is the following. Suppose there is a derivation D in any of these 4 systems for the sequent $A \vdash M : \tau$, where x is a λ-variable occurring free in M. (Recall our standing assumption: Free and bound variables are disjoint sets, no variable has more than one λ-binding.) If there are $n \geq 1$ invocations of rule VAR in D to derive n types for x, then $A(x)$ is a type with exactly n “alternatives”. For example, if D is a derivation in λ or λ^\wedge, then $A(x)$ is of the form:

$$A(x) = \sigma_1 \land \sigma_2 \land \cdots \land \sigma_n$$

where $\sigma_i \in \mathbb{T}^\rightarrow$ for $i = 1, \ldots, n$. Moreover, in the case of λ^\wedge and $\&\lambda^\wedge$, the number of occurrences of x in M is also exactly n. In the case of λ and $\&\lambda$, we can only say that $n \geq$ the number of occurrences of x in M.

Lemma 4.2

1. Every standard λ-term in β-nf is typable in λ.

2. Every standard λ-term in β-nf is typable in λ^\wedge.

3. Every standard $\&$-list in $\&\beta$-nf is typable in $\&\lambda$.

4. Every standard $\&$-list in $\&\beta$-nf is typable in $\&\lambda^\wedge$.

Proof: We define two special subsets of \mathbb{T}, \mathbb{R} and \mathbb{S}, which are the least such that:

$$\begin{align*}
\mathbb{R} &\supseteq \{o\} \cup \{(\sigma_1 \land \cdots \land \sigma_n \rightarrow \tau) \mid \sigma_1, \ldots, \sigma_n \in \mathbb{S}, \tau \in \mathbb{R}, n \geq 1\} \\
\mathbb{S} &\supseteq \{o\} \cup \{(\sigma \rightarrow \tau) \mid \sigma \in \mathbb{R}, \tau \in \mathbb{S}\}
\end{align*}$$

It is also convenient to work with the following definition of standard λ-terms in β-nf (see Lemma 8.3.18 in [1]).

1. **Passive variable:** If $x \in \lambda$-Var then x is in β-nf.

22
2. **Abstraction**: If \(x \in \lambda \text{-Var} \) and \(N \) is in \(\beta \)-nf then \((\lambda x.N) \) is in \(\beta \)-nf.

3. **Active variable and maximal application**: If \(x \in \lambda \text{-Var} \) and \(P_1, \ldots, P_n \) are in \(\beta \)-nf, with \(n \geq 1 \), then \((xP_1\cdots P_n) \) is in \(\beta \)-nf.

According to clause 3, the first term in a “maximal application” is a variable, which we call “active”. The proof of part 1 is by induction on standard \(\lambda \)-terms in \(\beta \)-nf. To push the induction through, we strengthen the induction hypothesis (IH) as follows:

1. The derived type of every:
 (a) passive variable occurrence is \(\sigma \),
 (b) active variable occurrence is in \(S \),
 (c) \(\lambda \)-abstraction is in \(R \),
 (d) maximal application is \(\sigma \).

2. If \(A \vdash M : \tau \) is the last sequent in a derivation in \(\lambda \), where \(M \) is a standard \(\lambda \)-term in \(\beta \)-nf, and there are \(n \geq 1 \) free occurrences of variable \(x \) in \(M \), then \(A(x) = \sigma_1 \land \cdots \land \sigma_n \) for some \(\sigma_1, \ldots, \sigma_n \in S \).

We prove for every standard \(\lambda \)-term \(M \) in \(\beta \)-nf, there is a derivation in \(\lambda \) satisfying IH whose last sequent is \(A \vdash M : \tau \), for some \(A \) and \(\tau \). For the basis of the induction, \(M \equiv x \) is a passive variable. In this case, the derivation consisting of the single sequent \(: \sigma \vdash x : \sigma \) satisfies IH.

Proceeding inductively, let \(M \equiv (\lambda x.N) \). Let \(D \) be a derivation in \(\lambda \) satisfying IH whose last sequent is \(A \vdash N : \tau \). Hence, in particular, \(\tau \) is in \(R \). If \(x \) does not occur in \(N \), we add the sequent \(A \vdash (\lambda x.N) : \sigma \rightarrow \tau \) at the end of \(D \) to obtain a new derivation \(D' \). If \(x \) occurs in \(N \), then \(A = A_0, x : \sigma_1 \land \cdots \land \sigma_n \) according to IH, where \(\sigma_1, \ldots, \sigma_n \in S \), and we add the sequent

\[
A_0 \vdash (\lambda x.N) : \sigma_1 \land \cdots \land \sigma_n \rightarrow \tau
\]

at the end of \(D \) to obtain \(D' \). In either case, \((\sigma \rightarrow \tau) \) or \((\sigma_1 \land \cdots \land \sigma_n \rightarrow \tau) \), the resulting type is in \(R \) and \(D' \) satisfies IH.

Consider next the case when \(M \equiv (xP_1 \cdots P_n) \), a maximal application. For \(i = 1, \ldots, n \), let \(D_i \) be a derivation in \(\lambda \) satisfying IH whose last sequent is \(A_i \vdash P_i : \tau_i \). Hence, in particular, \(\tau_i \) is in \(R \). We construct a derivation \(D \) in \(\lambda \) for \((xP_1 \cdots P_n) \) as follows:
\[
\begin{array}{c}
\{x : \sigma_0\} \vdash x : \sigma_0 \\
\{x : \sigma_0\} \wedge A_1 \vdash P_1 : \tau_1 \\
\vdots \\
\{x : \sigma_0\} \wedge A_1 \wedge A_2 \vdash xP_1P_2 : \sigma_2 \\
\vdots \\
\{x : \sigma_0\} \wedge A_1 \wedge \cdots \wedge A_{n-1} \vdash xP_1 \cdots P_{n-1} : \sigma_{n-1} \\
A_n \vdash P_n : \tau_n
\end{array}
\]

where \(\sigma_i \equiv \tau_{i+1} \rightarrow \cdots \rightarrow \tau_n \rightarrow \sigma\) for \(i = 0, 1, \ldots, n\). It is easy to check that the new derivation \(\mathcal{D}\) satisfies IH: \(\sigma_0\) is a type in \(\mathcal{S}\) because each of \(\tau_1, \ldots, \tau_n\) is in \(\mathcal{R}\), so that the overall type of \(x\) on the left-hand side of \(\vdash\) in the last sequent of \(\mathcal{D}\) is a \(\wedge\)-list of types in \(\mathcal{S}\). Moreover, the type of the maximal application \((xP_1 \cdots P_n)\) is \(\sigma_n \equiv \sigma\). This concludes the induction and the proof of part 1 of the lemma.

For part 2, first observe that the derivation \(\mathcal{D}\) in \(\lambda\) which we constructed for an arbitrary standard \(\lambda\)-term \(M\) in \(\beta\text{-nf}\) has the following property: Every use of the APP rule in \(\mathcal{D}\) has exactly 2 premises. (In general, APP allows 2 or more premises.) Hence, \(\mathcal{D}\) is also a valid derivation in \(\lambda^\land\).

Part 3 follows immediately from part 1, and part 4 from part 2.

Lemma 4.3 Let \(M\) be an expanded \&-list, typable in \&\(\lambda^\land\). If \(M\) is in \&\(\beta^\land\text{-nf}\) then \(|M|\) is in \&\(\beta\text{-nf}\).

Proof: Suppose \(N \equiv |M|\) is not in \&\(\beta\text{-nf}\), i.e. there is a standard \(\beta\)-redex occurrence \(R \equiv ((\lambda x.P)Q)\) in \(N\). Let \(\mathcal{R}\) be the parallel set in \(M\) corresponding to \(R\), \(\mathcal{R} = \varphi(M, R)\). If \(M\) is typable in \&\(\lambda^\land\), then every
\[
((\lambda x.P'), Q_1' \land \cdots \land Q_n') \in \mathcal{R}
\]
is also typable in \&\(\lambda^\land\). But then the \(\land\)-list \(Q_1' \land \cdots \land Q_n'\) must have as many components as there are occurrences of \(x\) in \(P'\), which in turn implies that \(\mathcal{R}\) is a \(\beta^\land\)-redex occurrence in \(M\) and \(M\) is not in \&\(\beta^\land\text{-nf}\).

Lemma 4.4 Let \(M\) and \(N\) be expanded \&-lists such that \(M \rightarrow_{\&\beta^\land} N\). \(M\) is typable in \&\(\lambda^\land\) iff \(N\) is typable in \&\(\lambda^\land\).

Proof: The left-to-right implication ("subject-reduction") is easy to check and therefore omitted. For the inverse implication, suppose \(N\) is typable in \&\(\lambda^\land\) and \(M \rightarrow_{\&\beta^\land} N\) for some \(\beta^\land\)-redex.
That
\(M \) is typable is a straightforward consequence of the linearity condition, described in Section 1, which is satisfied by &\(\beta^\land \)-reduction. (The argument here is identical to the argument showing that for standard \(\lambda \)-terms \(M \) and \(N \) such that \(M \xrightarrow{R, \beta} N \), where \(R \equiv ((\lambda x.P)Q) \) and \(P \) mentions exactly one free occurrence of \(x \), \(M \) is simply-typable iff \(N \) is simply-typable.) A formal proof is by induction on \(M \), which we omit.

An expanded \(\lambda \)-term \(N \) is lean if the unique &\(\beta^\land \)-reduction from \(N \) is lean (see Lemma 3.9 and the definition preceding it).

Theorem 4.5 Let \(M \) be a standard \(\lambda \)-term. \(M \) is \(\beta \)-SN iff there is a lean expanded \(\lambda \)-term \(N \) such that \([N] \equiv M \) and \(N \) is typable in \(\lambda^\land \).

Proof: Suppose \(M \) is \(\beta \)-SN. By Theorem 3.15, there is a lean expanded \(\lambda \)-term \(N \) such that \([N] \equiv M \) and the maximal &\(\beta \)-reduction \(u \) from \(M \) can be uniquely lifted to a &\(\beta^\land \)-reduction \(t \) from \(N \). The last &-lists in \(t \) and \(u \) are the same, say \(N' \), which is therefore a standard &-list in &\(\beta \)-nf. Hence, \(N' \) is typable in &\(\lambda^\land \), by part 4 in Lemma 4.2. Hence, \(N \) is typable in &\(\lambda^\land \), by Lemma 4.4 (right-to-left), and because \(N \) is not a &-list it is in fact typable in \(\lambda^\land \).

Conversely, suppose there is a lean expanded \(\lambda \)-term \(N \) such that \([N] \equiv M \) and \(N \) is typable in \(\lambda^\land \) — and therefore in &\(\lambda^\land \) also. Hence, if \(N' \) is the &\(\beta^\land \)-nf of \(N \), then \(N' \) is typable in &\(\lambda^\land \), by Lemma 4.4 (left-to-right). Hence, \([N'] \equiv N' \) is also in &\(\beta \)-nf, by Lemma 4.3. The maximal &\(\beta^\land \)-reduction \(t \) from \(N \) can be uniquely projected to a &\(\beta \)-reduction \(u \) from \(M \), by Proposition 3.10. \(N' \) is the last &-list in both \(t \) and \(u \). Hence, as \(M \) is &\(\beta \)-reduced to the &\(\beta \)-nf \(N' \), \(M \) is &\(\beta \)-normalizing and, by Theorem 3.6, \(M \) is &\(\beta \)-SN.

A well-known result in the literature (e.g. see [4],[5], [7], [8], [9], [12], [13], and the references cited therein), with several different proofs, is that a standard \(\lambda \)-term \(M \) is &\(\beta \)-SN iff \(M \) is typable in the system of intersection types (without “top”). Corollary 4.6 is one more different proof for this result; actually, it is a variation of this result, as our \(\lambda \) is a lean version of the usual system of intersection types.

Corollary 4.6 Let \(M \) be a standard \(\lambda \)-term. \(M \) is &\(\beta \)-SN iff \(M \) is typable in \(\lambda \).

Proof: We first prove, by induction on \(N \in \Lambda^\land \), that if \(N \) is typable in \(\lambda^\land \) then \(M \equiv [N] \) is typable in \(\lambda \). We omit this straightforward induction. Observe that \(N \) is any well-formed expanded \(\lambda \)-term, not restricted to be lean. Hence, by Theorem 4.5, if \(M \) is &\(\beta \)-SN then \(M \) is typable in \(\lambda \). The converse can be proved in various ways. One way is to first prove, by induction, that if \(M \) is typable in \(\lambda \) then there is a lean expanded \(\lambda \)-term \(N \) such that \([N] \equiv M \) and \(N \) is typable in \(\lambda^\land \),
and then to invoke Theorem 4.5 once more (right-to-left). The more expedient way, however, is to use the method of [5] to show that any standard \(M \) typable in \(\lambda \) is \(\beta\text{-SN} \).\(^7\) Details omitted.

The following corollary is slightly stronger than Theorem 4.5 in that it does not require \(N \) to be “lean”.

Corollary 4.7 Let \(M \) be a standard \(\lambda \)-term. \(M \) is \(\beta\text{-SN} \) iff there is an expanded \(\lambda \)-term \(N \) such that \(|N| \equiv M \) and \(N \) is typable in \(\lambda^\wedge \).

Proof: The left-to-right implication is immediate from Theorem 4.5. For the converse, first use the fact that if there is an expanded \(\lambda \)-term \(N \) such that \(|N| \equiv M \) and \(N \) is typable in \(\lambda^\wedge \), then \(M \) is typable in \(\lambda \) (see the proof of the preceding corollary). There is no need here to restrict \(N \) to be lean. Finally, by Corollary 4.6 (right-to-left), \(M \) is \(\beta\text{-SN} \). \(\blacksquare \)

5 Appendix: Remaining Proofs

For several of the proofs below we need to define appropriate bookkeeping devices: “nesting-depth” and “residuals”.

Definition 5.1 (Nesting-depth) Let \(P \) be a subterm occurrence in standard \(\lambda \)-term \(M \). The nesting-depth of \(P \) in \(M \), denoted \(\text{nesting}(P, M) \) is the number of parenthesis-pairs in \(M \) enclosing \(P \), when \(M \) is fully parenthesized. A formal definition is by induction on \(\Lambda \):

1. \(\text{nesting}(P, x) = \begin{cases}
0, & \text{if } P \equiv x, \\
\text{undefined}, & \text{otherwise}.
\end{cases} \)

2. \(\text{nesting}(P, (MN)) = \begin{cases}
0, & \text{if } P \equiv (MN), \\
1 + \text{nesting}(P, M), & \text{if } P \subset M, \\
1 + \text{nesting}(P, N), & \text{if } P \subset N, \\
\text{undefined}, & \text{otherwise}.
\end{cases} \)

3. \(\text{nesting}(P, (\lambda x. M)) = \begin{cases}
0, & \text{if } P \equiv (\lambda x. M), \\
1 + \text{nesting}(P, M), & \text{if } P \subset M, \\
\text{undefined}, & \text{otherwise}.
\end{cases} \)

Definition 5.2 (Residuals) The approach in Chapter 11 of [1] for keeping track of a \(\beta \)-redex occurrence, as the term of which it is a subterm is repeatedly \(\beta \)-reduced, is to label its leading “\(\lambda \)”.

\(^7\)It is not sufficient to invoke the usual result that “if \(M \) is typable in the system of intersection types (without “top”) then \(M \) is \(\beta\text{-SN} \), because our \(\lambda \) is not quite the same as the usual system of intersection types.
For our purposes, we need to keep track of other subterm occurrences, not only β-redex occurrences, in λ-terms that are β-reduced (or β'-reduced) as well as expanded. For a uniform labelling scheme here, we choose to keep track of a subterm by placing a label under it (if it is a variable) or under its enclosing parentheses (if it is not a variable), as in

$$
\begin{array}{ll}
x_i & (\lambda x. N)_i \\
(\lambda x. N)_i & (N, P_1 \land \cdots \land P_n)_i
\end{array}
$$

where $i \in \mathbb{N}$, the set of natural numbers. Formally, by induction on $&\Lambda^\wedge$:

1. If $x \in \lambda\text{-Var}$ then $x \in \overline{\Lambda^\wedge}$.

2. If $x \in \lambda\text{-Var}$, $N \in \overline{\Lambda^\wedge}$ and $i \in \mathbb{N}$ then $(\lambda x. N)_i \in \overline{\Lambda^\wedge}$.

3. If $N, P_1, \ldots, P_n \in \overline{\Lambda^\wedge}$ and $i \in \mathbb{N}$ then $(N, P_1 \land \cdots \land P_n)_i \in \overline{\Lambda^\wedge}$.

4. If $M_1, \ldots, M_\ell \in \overline{\Lambda^\wedge}$ then $&M_1 \cdots M_\ell \in \overline{\Lambda^\wedge}$.

The notation $[i]$ means the label i may or may not be present, but if it is present in one occurrence of $[i]$ it is present in the other. $\overline{\Lambda^\wedge}$ is $&\Lambda^\wedge$ after labels are introduced.

A λ-term can be both a β-redex (or β'-redex) and an application. We choose to identify it as a β-redex by the label on the parentheses enclosing its abstraction, and as an application by the label on its outermost enclosing parentheses. For example, the β-redex $((\lambda x. N)P)$ can be given two label-pairs, as in

$$
\begin{array}{cc}
((\lambda x. N) P)_1^2 \\
((\lambda x. N) P)_1^2 & \rightarrow^\beta N[x := P]
\end{array}
$$

"1" identifies $((\lambda x. N)P)$ as a β-redex, "2" identifies it as an application. If it is β-reduced, both label-pairs are lost:

$$
\begin{array}{cc}
((\lambda x. N) P)_1^2 \\
((\lambda x. N) P)_1^2 & \rightarrow^\beta N[x := P]
\end{array}
$$

If it is expanded, both label-pairs are preserved:

$$
\begin{array}{cc}
((\lambda x. N) P)_1^2 \\
((\lambda x. N) P)_1^2 & \rightarrow^\land ((\lambda x. N) \land P)_1^2
\end{array}
$$

As in [1], if $M \in \overline{\kappa &\Lambda^\wedge}$ we denote $|M|$ the expression obtained by erasing all labels in M.

Consider a mixed sequence t of β^\wedge-reduction (or $&\beta^\wedge$-reduction) steps and expansion steps from $M \in &\Lambda^\wedge$ to $N \in &\Lambda^\wedge$ (or from $M \in \overline{\kappa &\Lambda^\wedge}$ to $N \in \overline{\kappa &\Lambda^\wedge}$). Let R and S be subterm occurrences in M.
and N, respectively. We say that S is a *residual of R relative to t* if there is a mixed sequence t' from $M' \in \overline{\Lambda^n}$ to $N' \in \overline{\Lambda^n}$ (or from $M' \in \overline{\&\Lambda^n}$ to $N' \in \overline{\&\Lambda^n}$) such that

$$
\begin{align*}
\frac{t'}{M'} \quad & \quad \frac{11}{11} \quad \frac{N'}{N} \\
\frac{t}{M} \quad & \quad \frac{11}{11} \quad \frac{N}{N}
\end{align*}
$$

where R is the only labelled subterm occurrence in M', with some $i \in \mathbb{N}$, and S is one of the labelled subterm occurrences in N', with the same i.

If \mathcal{R} and S are parallel sets of subterm occurrences in M and N, respectively, we say that S is a *residual of \mathcal{R} relative to t* if for every $S \in \mathcal{S}$ there is $R \in \mathcal{R}$ such that S is a residual of R relative to t.

Proof of Lemma 2.17: Let \mathcal{R} be the β^\wedge-redex occurrence in M_0 such that $M_0 \xrightarrow{\mathcal{R}} M_1$. Recall that \mathcal{R} is a parallel set of β^\wedge-redex occurrences in M_0, and therefore if $R \in \mathcal{R}$ then R is of the form $((\lambda x.P). Q_1 \land \cdots \land Q_n)$ such that $|R| \equiv |\mathcal{R}| \equiv ((\lambda x.P')Q')$ for some standard $P' \equiv |P|$ and $Q' \equiv |Q_1| \equiv \cdots \equiv |Q_n|$.

Let N_1 be the (expanded) application in M_1 such that $M_1 \xrightarrow{N_1} M_2$. It is easy to see there is a uniquely defined application $N_0 \subset M_0$ such that N_1 is the residual of N_0 relative to the reduction $M_0 \xrightarrow{\mathcal{R}} M_1$ and, moreover, N_1 is the only residual of N_0 relative to this reduction. Let $N_0 \equiv (S, T_1 \land \cdots \land T_k)$.

A β^\wedge-redex occurrence $R \in \mathcal{R}$ is also an application occurrence in M_0, but because it is reduced, R has no residual in M_1. Hence, $N_0 \notin \mathcal{R}$ and the only possible cases to consider are:

1. $N_0 \subset R$ for some $R \in \mathcal{R}$.
2. $R \subset N_0$ for some $R \in \mathcal{R}$.
3. Neither $N_0 \subset R$ nor $R \subset N_0$ for every $R \in \mathcal{R}$.

Consider the first case when $N_0 \subset R \equiv ((\lambda x.P). Q_1 \land \cdots \land Q_n)$ for some $R \in \mathcal{R}$. There are two subcases here: $N_0 \subset P$ or $N_0 \subset Q$ for some $Q \in \{Q_1, \ldots, Q_n\}$. If $N_0 \subset P$ and one of T_1, \ldots, T_k (and therefore all of them) contains free occurrences of x, then
where R' is the residual of R relative to $M_0 \xrightarrow{N_0} L$, and \mathcal{R}' is the residual of \mathcal{R} relative to $M_0 \xrightarrow{N_0} L \xrightarrow{R'} M_3$. Because $N_0 \subseteq P$, the expansion $M_0 \xrightarrow{N_0} L$ will increase the number of free occurrences of x in P, which in turn requires that the number of components in the \land-list $Q_1 \land \cdots \land Q_n$ be increased accordingly — this explains why the expansion $L \xrightarrow{R'} M_3$ is necessary before we can carry out the reduction $M_3 \xrightarrow{\mathcal{R}'} \beta^\land M_2$. We omit the details as to which components in $Q_1 \land \cdots \land Q_n$ have to be duplicated.

For all remaining subcases and cases:

(a) $N_0 \subseteq P$ and none of T_1, \ldots, T_k contains a free occurrence of x,

(b) $N_0 \subseteq Q$ for some $Q \in \{Q_1, \ldots, Q_n\}$,

(c) $R \subseteq N_0$ for some $R \in \mathcal{R}$ (case 2 above),

(d) Neither $N_0 \subseteq R$ nor $R \subseteq N_0$ for every $R \in \mathcal{R}$ (case 3 above),

it is easy to check that the following commutative diagram obtains

\[
\begin{array}{ccc}
M_0 & \xrightarrow{N_0} & M_3 \\
\beta^\land \mathcal{R} & \downarrow & \downarrow \\
M_1 & \xrightarrow{\land} & M_2
\end{array}
\]

where \mathcal{R}' is the residual of \mathcal{R} relative to $M_0 \xrightarrow{N_0} M_3$. Each of (a), (b), (c), and (d), has to be checked separately. We omit the straightforward details. Note that in case (c) (case 2), there may be more than one $R \in \mathcal{R}$ which is a subterm occurrence in N_0.

Proof of Lemma 3.1: Part 1 of this lemma is immediate from the Conservation Theorem (Theorem 13.4.12 in [1]). The restriction “leftmost” is not necessary for part 1.

Prove part 2 by induction on $\text{nesting}(R, M) \geq 0$. The base case is $\text{nesting}(R, M) = 0$, which means $R \equiv M$, for which the result is easy to check.
Suppose part 2 of the lemma is true for every $M \in \Lambda$ such that $nesting(R,M) \leq k$, for some $k \geq 0$ — this is the induction hypothesis (IH). Consider next a fixed, but otherwise arbitrary, $M \in \Lambda$ such that $nesting(R,M) = k + 1$. If $M \equiv (\lambda y. M_0)$, then $nesting(R,M_0) = k$, and the desired result follows from the IH.

Consider the case when $M \equiv (M_0 M_1)$. Either $nesting(R,M_0) = k$ or $nesting(R,M_1) = k$. Because R is the leftmost β-redex occurrence in M and $nesting(R,M) \neq 0$, it follows that $M \neq R$ and M_0 is not a λ-abstraction. M is therefore of the form (parentheses omitted for clarity):

$$M \equiv L_0 L_1 \cdots L_\ell L_{\ell+1}$$

where L_0 is either a variable or a β-redex, $M_0 \equiv (\cdots (L_0 L_1) \cdots L_\ell)$ and $M_1 \equiv L_{\ell+1}$, where $\ell \geq 0$.

If L_0 is a variable and $nesting(R,M_0) = k$ or $nesting(R,M_1) = k$, then in fact $nesting(R,L_i) \leq k$ for some $i \in \{1, \ldots, \ell + 1\}$ and the desired conclusion follows from the IH.

The remaining case is when L_0 is a β-redex. Because R is leftmost, in fact $L_0 \equiv R$. It is now easy to see that if both $N \equiv PL_1 \cdots L_\ell M_1$ and Q are β-SN then so is M. ■

Proof of Lemma 3.3: We refer to a graph G by writing $G = (V,E)$, where V and E are respectively its set of vertices and its set of edges. $G' = (V',E')$ is a *subgraph* of $G = (V,E)$ if $V' \subseteq V$ and $E' \subseteq E$. Given a set $V' \subseteq V$, the subgraph of G *induced* by V' is the graph $G' = (V',E')$ where $E' = E \cap (V \times V')$.

Part 1 of this lemma is immediate from the fact that $G_\beta(M)$ is a finite dag. The rest of this proof concerns part 2 only. We prove a stronger result: If $G_\beta(M) = (V_M,E_M)$, $G_\beta(N) = (V_N,E_N)$ and $G_\beta(Q) = (V_Q,E_Q)$, then there are proper subsets $V_a, V_b \subseteq V_M$ such that

(a) $G_\beta(N)$ is isomorphic to the subgraph of $G_\beta(M)$ induced by V_a,

(b) $G_\beta(Q)$ is isomorphic to the subgraph of $G_\beta(M)$ induced by V_b, and

(c) $V_a \cap V_b = \emptyset$.

The condition in (c) guarantees that the two subgraphs in (a) and (b) do not have edges in common. This, together with the fact that $G_\beta(M)$ is a connected graph, implies that $\operatorname{degree}(M) > \operatorname{degree}(N) + \operatorname{degree}(Q)$.

I tried to include most of the important details in this proof. As it is right now, it is quite long, in any case longer than what I wished. It would be nice to have a shorter proof, especially that the main idea is quite simple.
The proof of (a), (b) and (c), is by induction on $nesting(R, M) \geq 0$. The base case is $nesting(R, M) = 0$, for which $M \equiv R \equiv ((\lambda x.P)Q)$ and $N \equiv P$. In this case

$$V_M = V_P \cup \{ ((\lambda x.P')Q') \mid P' \in V_P, Q' \in V_Q \}$$
$$E_M = E_P \cup$$
$$\{ ((\lambda x.P')Q') \rightarrow ((\lambda x.P'')Q') \mid P' \rightarrow P'' \in E_P \} \cup$$
$$\{ ((\lambda x.P')Q') \rightarrow ((\lambda x.P')Q'') \mid Q' \rightarrow Q'' \in E_Q \} \cup$$
$$\{ ((\lambda x.P')Q') \rightarrow P' \mid P' \in V_P, Q' \in V_Q \}$$

It is clear that $G_\beta(N) = G_\beta(P) = (V_P, E_P)$ is a proper subgraph of $G_\beta(M)$, and that $G_\beta(Q)$ is isomorphic to the subgraph of $G_\beta(M)$ (it is not the only one) induced by the set of vertices $\{(\lambda x.P')Q' \mid Q' \in V_Q \} \subseteq V_M$. It remains to show that $V_P \cap \{(\lambda x.P')Q' \mid Q' \in V_Q \} = \emptyset$.

If M is β-SN there cannot be $P' \in V_P$ and $Q' \in V_Q$ such that $P' \equiv ((\lambda x.P)Q')$, otherwise we would have the following infinite β-reduction from M:

$$M \equiv (\lambda x.P)Q \xrightarrow{\beta} (\lambda x.P)Q'$$
$$\xrightarrow{\beta} (\lambda x.P')Q' \equiv (\lambda x.(\lambda x.P)Q')Q'$$
$$\xrightarrow{\beta} (\lambda x.(\lambda x.P')Q')Q' \equiv (\lambda x.(\lambda x.(\lambda x.P)Q')Q')Q'$$
$$\vdots$$
$$\xrightarrow{\beta} \underbrace{\lambda x.(\lambda x.\cdots (\lambda x.(\lambda x.P)Q') \cdots Q')}_{n \geq 1} \underbrace{Q'}_{n \geq 1}$$
$$\vdots$$

Hence, $V_P \cap \{(\lambda x.P')Q' \mid Q' \in V_Q \} = \emptyset$, as desired. This concludes the proof of the base case.

Suppose the result true for every $M \in \Lambda$ such that $nesting(R, M) \leq k$, for some $k \geq 0$ — this is the induction hypothesis (IH). Consider next a fixed, but otherwise arbitrary, $M \in \Lambda$ such that $nesting(R, M) = k + 1$. If $M \equiv (\lambda y.M_0)$, then $nesting(R, M_0) = k$, and it is easy to check that the desired result follows from the IH. (No need to fill in the details here, as the more complicated cases below make it clear how to do it.)

If $M \equiv (M_0,M_1)$ then either $nesting(R, M_0) = k$ or $nesting(R, M_1) = k$. Because R is leftmost in M and $nesting(R, M) \neq 0$, we have that $M \not\equiv R$ and M_0 is not a λ-abstraction. M is therefore of the form:

$$M \equiv L_0L_1 \cdots L_tL_{t+1}$$

31
where L_0 is either a variable or a β-redex, $M_0 \equiv (\cdots (L_0 L_1) \cdots L_\ell)$ and $M_1 \equiv L_{\ell+1}$, where $\ell \geq 0$.

If L_0 is a variable y and $\text{nesting}(R, M_0) = k$ or $\text{nesting}(R, M_1) = k$, then $\text{nesting}(R, L_i) \leq k$ for some $i \in \{1, \ldots, \ell + 1\}$. With no loss of generality, let R be a β-redex occurrence in L_1 and $L_1 \xrightarrow{R} \widetilde{L}_1$, so that

$$M \equiv yL_1L_2 \cdots L_{\ell+1} \xrightarrow{R} N \equiv \widetilde{yL_1L_2} \cdots L_{\ell+1}$$

The vertex set and edge set of $G_{\beta}(M)$ are:

$$V_M = \{ yL_1' \cdots L_{\ell+1}' \mid L_1' \in V_{L_1}, \ i = 1, 2, \ldots, \ell + 1 \} \cup V_N$$

$$E_M = \{ (yL_1' \cdots L_{\ell+1}') \rightarrow (yL''_1 \cdots L''_{\ell+1}) \mid (\exists i)[L_i' \rightarrow L''_i \in E_{L_i} \land (\forall j \neq i)[L_j' = L''_j]] \} \cup E_N$$

It is immediate that $G_{\beta}(N)$ is a proper subgraph of $G_{\beta}(M)$. By the IH, $G_{\beta}(\widetilde{L}_1)$ and $G_{\beta}(Q)$ are isomorphic to proper subgraphs of $G_{\beta}(L_1)$ induced by disjoint sets of vertices, say $V_a, V_b \subset V_{L_1}$. Hence $G_{\beta}(N) = G_{\beta}(yL_1L_2 \cdots L_{\ell+1})$ and $G_{\beta}(Q)$ are isomorphic to proper subgraphs of $G_{\beta}(M) = G_{\beta}(yL_1L_2 \cdots L_{\ell+1})$ induced by the following sets of vertices:

$$\widetilde{V}_a = \{ yL_1' \cdots L_{\ell+1}' \mid L_1' \in V_a \} \quad \text{and} \quad \widetilde{V}_b = \{ yL_1' \cdots L_{\ell+1}' \mid L_1' \in V_b \}$$

Because $V_a \cap V_b = \emptyset$, we also have $\widetilde{V}_a \cap \widetilde{V}_b = \emptyset$.

The remaining case is when L_0 is a β-redex. Because R is leftmost, $L_0 \equiv R$ and therefore $M \equiv ((\lambda x.P)Q)L_1 \cdots L_{\ell+1}$ and $N \equiv PL_1 \cdots L_{\ell+1}$. For notational convenience, let $L_{-2} \equiv P$ and $L_{-1} \equiv Q$. The vertex and edge sets of $G_{\beta}(M)$ are:

$$V_M = \{ L_{-2}'L_1' \cdots L_{\ell+1}' \mid L_1' \in V_{L_1}, \ i = -2, 1, 2, \ldots, \ell + 1 \} \cup \{ (\lambda x.L_{-2}')L_{-1}'L_1' \cdots L_{\ell+1}' \mid L_1' \in V_{L_1}, \ i = -2, -1, 1, 2, \ldots, \ell + 1 \}$$

$$E_M = \{ L_{-2}'L_1' \cdots L_{\ell+1}' \rightarrow L_{-2}''L_1'' \cdots L_{\ell+1}'' \mid (\exists i)[L_i' \rightarrow L''_i \in E_{L_i} \land (\forall j \neq i)[L_j' = L''_j]] \} \cup \{ (\lambda x.L_{-2}')L_{-1}'L_1' \cdots L_{\ell+1}' \rightarrow (\lambda x.L_{-2}')L_{-1}''L_1'' \cdots L_{\ell+1}'' \mid (\exists i)[L_i' \rightarrow L''_i \in E_{L_i} \land (\forall j \neq i)[L_j' = L''_j]] \} \cup \{ (\lambda x.L_{-2}')L_{-1}'L_1' \cdots L_{\ell+1}' \rightarrow (L_{-2}''L_1'' \cdots L''_{\ell+1}) \mid L_i' \in V_{L_i}, \ i = -2, -1, 1, 2, \ldots, \ell + 1 \}$$

The first set on the righthand side of the first equation is precisely V_N, and the first set on the righthand side of the second equation is precisely E_N. Hence, $G_{\beta}(N)$ is a subgraph of $G_{\beta}(M)$. The IH, together with the fact that $M_0 \xrightarrow{R} \widetilde{L}_2L_1 \cdots L_{\ell}$, imply that $G_{\beta}(L_2L_1 \cdots L_{\ell})$ and $G_{\beta}(Q)$ are isomorphic to proper subgraphs of

$$G_{\beta}(M_0) = G_{\beta}((\lambda x.L_{-2})L_{-1}L_1 \cdots L_{\ell})$$
induced by disjoint subsets of vertices, say $V_a, V_b \subset V_{M_0}$. Hence, $G_\beta(N) = G_\beta(L_{-2}L_1 \cdots L_{t}L_{t+1})$
and $G_\beta(Q)$ are isomorphic to proper subgraphs of $G_\beta(M)$ induced by the sets of vertices:

$$\hat{V}_a = V_a \cdot \{L_{t+1}\} \quad \text{and} \quad \hat{V}_b = V_b \cdot \{L_{t+1}\}$$

Because $V_a \cap V_b = \emptyset$, it follows that $\hat{V}_a \cap \hat{V}_b = \emptyset$. □
References

