Robust Identification of Shared Losses Using End-to-End Unicast Probes

Harfoush, Khaled
Boston University Computer Science Department

http://hdl.handle.net/2144/1622
Boston University
Robust Identification of Shared Losses Using End-to-End Unicast Probes*

Khaled Harfoush Azer Bestavros John Byers
harfoush@cs.bu.edu best@cs.bu.edu byers@cs.bu.edu

Computer Science Department
Boston University
Boston, MA 02215

January 8, 2000

Errata

We present corrections to Fact 3 and (as a consequence) to Lemma 1 of BUCS Technical Report BUCS-TR-2000-013 (also published in IEEE ICNP’2000) [1]. These corrections result in slight changes to the formulae used for the identifications of shared losses, which we quantify.

Correction to Fact 3

Let n_A denote the fraction of the 2-packet probes in which the first packet sent in the pair is destined to client A and let n_B denote the fraction of the 2-packet probes in which the first packet sent in the pair is destined to client B ($n_A + n_B = 1$). The corrected statement of Fact 3 in [1] is the following:

Fact 3 The quantity $b_{A,B}$ is an unbiased estimator for

$$
(1 - \prod_{i \in L} p_i^{1+}) + \left(\prod_{i \in L} p_i^{1+} - \prod_{i \in L} p_i^{2+} \right) (n_A q_A + n_B q_B) + \prod_{i \in L} p_i^{2+} q_A q_B.
$$

Correction to Lemma 1

The above correction of Fact 3 implies that the quantity $g_A + g_B + b_{A,B} - g_{A,B} - 1$ is no longer an unbiased estimate of X as stated in Lemma 1 of [1]. Let X^* be that quantity:

$$
X^* = g_A + g_B + b_{A,B} - g_{A,B} - 1
$$

The corrected unbiased estimate for X is given in the corrected Lemma 1 (below) in terms of the quantity X^*.

Lemma 1 For $n_A = n_B = \frac{1}{2}$ the quantity $\frac{2X^* g_A g_B (g_A + g_B - X^*)}{(g_A + g_B)^2 g_{A,B}}$ is an unbiased estimator of X.

Proof: Let $q_S = (1 - \prod_{i \in L} p_i^{1+})$. Also, note that $g_A, g_B, b_{A,B}$ and $g_{A,B}$ can all be written in terms of q_A, q_B, q_S and X as follows:

$$
g_A = (1 - q_S)(1 - q_A)
$$

$$
g_B = (1 - q_S)(1 - q_B)
$$

$$
g_{A,B} = (1 - q_S - X)(1 - q_A)(1 - q_B)
$$

$$
b_{A,B} = q_S + (1 - q_S - X)q_A q_B + X (n_A q_A + n_B q_B)
$$

*This work was partially supported by NSF research grants CCR-9706685 and ANI-9986397.
Substituting $g_A, g_B, g_{A,B}$ and $b_{A,B}$ in equation 1 we get

$$X^* = X \left(n_B (1 - q_A) + n_A (1 - q_B) \right)$$

(2)

Substituting $n_A = n_B = \frac{1}{2}$ in equation 2, we get

$$X^* = \frac{1}{2} X \left((1 - q_A) + (1 - q_B) \right)$$

Substituting $(1 - q_A)$ with $\frac{g_A}{(1 - q_S)}$ and $(1 - q_B)$ with $\frac{g_B}{(1 - q_S)}$ from the g_A and g_B equations we get the following:

$$X^* = \frac{1}{2} X \left(\frac{g_A + g_B}{1 - q_S} \right)$$

$$X = \left(\frac{2X^*}{g_A + g_B} \right) (1 - q_S)$$

(3)

This equation is in terms of X and q_S. We can also get another equation in terms of X and q_S by substituting $(1 - q_A)$ with $\frac{g_A}{(1 - q_S)}$ and $(1 - q_B)$ with $\frac{g_B}{(1 - q_S)}$ in the $g_{A,B}$ equation.

$$g_{A,B} = (1 - q_S - X) \frac{ga \cdot gb}{(1 - q_S)^2}$$

(4)

Solving equations 3 and 4 we can get X. By substituting X from 3 in 4 we get

$$g_{A,B} = \left(1 - q_S - \left(\frac{2X^*}{g_A + g_B} \right) (1 - q_S) \right) \frac{ga \cdot gb}{(1 - q_S)^2}$$

$$1 - q_S = \frac{g_A g_B (g_A + g_B - 2X^*)}{(g_A + g_B) g_{A,B}}$$

Finally, substituting $1 - q_S$ in equation 3, we get what we wanted to prove:

$$X = \frac{2X^* g_A g_B (g_A + g_B - 2X^*)}{(g_A + g_B)^2 g_{A,B}}$$

Impact on Results

In the above derivation, equation 2 relates the quantities X and X^*. Recall that X^* is precisely the (erroneous) quantity used in [1] as an unbiased estimator for X. Thus, equation 2 allows us to quantify the “error” introduced through the use of X^* rather than X. Let $E = (X^* - X)/X$ denote this error (relative to X).

$$E = 1 - \left(n_B (1 - q_A) + n_A (1 - q_B) \right)$$

Since $(n_B (1 - q_A) + n_A (1 - q_B))$ is at most 1 (= 1 in case $q_A = 1$ and $q_B = 1$), then we are underestimating the value of X and the error increases with increasing values of q_A and q_B. We are currently evaluating the effect of this error on our simulation results. Initial evidence suggests that the corrected results (shown in Figures 4 through 8) of [1] are almost identical to (visually indistinguishable from) those reported in [1].

Acknowledgment: We are very grateful to Don Towsley for discovering the incorrect statement of Fact 3 in [1] and for alerting us to the consequence of this error.

References