
Boston University

OpenBU http://open.bu.edu

Computer Science CAS: Computer Science: Technical Reports

2001

The War Between Mice and Elephants

https://hdl.handle.net/2144/1626

Downloaded from DSpace Repository, DSpace Institution's institutional repository

1

The War Between Mice and Elephants

LIANG GUO IBRAHIM MATTA

Computer Science Department
Boston University
Boston, MA 02215

fguol, mattag@cs.bu.edu

May 2001
Technical Report BU-CS-2001-005

Abstract

Recent measurement based studies reveal that most of the Internet connections are short in terms of the amount of traffic
they carry (mice), while a small fraction of the connections are carrying a large portion of the traffic (elephants). A careful
study of the TCP protocol shows that without help from an Active Queue Management (AQM) policy, short connections
tend to lose to long connections in their competition for bandwidth. This is because short connections do not gain detailed
knowledge of the network state, and therefore they are doomed to be less competitive due to the conservative nature of the
TCP congestion control algorithm.

Inspired by the Differentiated Services (Diffserv) architecture, we propose to give preferential treatment to short con-
nections inside the bottleneck queue, so that short connections experience less packet drop rate than long connections. This
is done by employing the RIO (RED with In and Out) queue management policy which uses different drop functions for
different classes of traffic.

Our simulation results show that: (1) in a highly loaded network, preferential treatment is necessary to provide short
TCP connections with better response time and fairness without hurting the performance of long TCP connections; (2) the
proposed scheme still delivers packets in FIFO manner at each link, thus it maintains statistical multiplexing gain and does
not misorder packets; (3) choosing a smaller default initial timeout value for TCP can help enhance the performance of
short TCP flows, however not as effectively as our scheme and at the risk of congestion collapse; (4) in the worst case, our
proposal works as well as a regular RED scheme, in terms of response time and goodput.

Keywords

Traffic Engineering, Congestion Control, TCP Performance, Fairness.

I. INTRODUCTION

T
HE ubiquitous heavy-tailed distributions in the Internet implies an interesting feature of the Internet traffic:

most (e.g. 80%) of the traffic is actually carried by only a small number of connections (elephants), while

the remaining large amount of connections are very small in size or lifetime (mice). In a fair network environment,

short connections expect relatively fast service than long connections. However, sometimes we can not observe

such nice property in the current Internet. Users may spend a long time downloading a plain text webpage — a

situation for which “World-Wide Wait” was coined [1].

A careful look at the behavior of the major transport layer protocol TCP reveals some of the factors that may

affect the performance of transferring a short file:

� TCP tries to conservatively ramp up its transmission rate to the maximum available bandwidth. Therefore, the

sending window is initiated at the minimum possible value regardless of what is available in the network.

This work was supported in part by NSF grants CAREER ANI-0096045 and MRI EIA-9871022.

2

� As a reliable transport protocol, TCP couples error control with congestion control. Packet loss is detected by

either the expiration of a retransmission timer or the arrival of a sequence of duplicate acknowledgments. Usually

a retransmission after timeout can severely degrade the transmission rate of TCP. For a short connection, since

most of the time the congestion window has a relatively small value, it does not have enough packets to activate

the duplicate ACK mechanism, and thus packet loss always requires a timeout to detect.

� More importantly, TCP relies on its own packet samples to estimate an appropriate retransmission timeout

(RTO) value. For the first control packets (SYN, SYN-ACK), and the first data packet, since no sampling data is

available, TCP has to use a conservatively estimated initial timeout (ITO) value as RTO1. Losing these packets

can have a disastrous effect on short connection performance due to the large timeout period.

� For these reasons, short TCP flows are generally more conservative than long flows and thus tend to get less

than their fair share when they compete for the bottleneck bandwidth.

In this paper, we propose to give preferential treatment to short flows2 with help from an Active Queue Man-

agement (AQM) policy inside the network. We also rely on the proposed Differentiated Services (Diffserv)

architecture [3] to classify flows into short and long at the edge of the network. More specifically, we maintain

the length of each active flow (in packets3) at the edge routers and use it to classify incoming packets. At the

core routers, we employ the RIO queue management policy [4] to isolate packets from short flows and reduce the

losses experienced by these packets.

Through extensive simulations, we confirm that preferential treatment is necessary to guarantee prompt re-

sponse to short TCP flows. Moreover, since our threshold-based classification method treats the initial packets

from a long flow as packets from a short flow, all flows benefit from experiencing less drops of the first few pack-

ets (including control packets), which otherwise would cause unnecessary stall of the session. We also confirm

that our proposed scheme can achieve better fairness and response time for short flows than schemes without

preferential treatment even when the value of the ITO is reduced to match the actual configuration, as suggested

in [2]. Since the RIO policy aims at maximizing statistical multiplexing, our proposed scheme does not hurt the

utilization of the network. On the contrary, it sometimes can achieve better network goodput than traditional

Drop Tail or RED [5] policies since it effectively avoids some unnecessary backoff of the sessions. In addition,

RIO guarantees ordered delivery of packets at each link, and thus eliminates the possibility of packet reordering

which may occur with other isolation-based policies (e.g. CBQ [6]).

Related Work: In a preliminary work [7], we study the interaction between short and long flows through a

control theoretical approach. We then propose to isolate short and long TCP flows to enhance response time

and fairness of short flows. Our results also reveal that class-based flow isolation combined with threshold-based

classification at the edge may cause packet reordering, which may severely degrade TCP performance. Moreover,
1 The recommended ITO value is 3 seconds and is implemented in most modern operating systems [2]. Some old systems use a more

conservative value of 6 seconds.
2 We use flow, connection and session interchangeably in this paper.
3 Without loss of generality we assume fixed-size packets and deal with packets rather than bytes.

3

the bandwidth (load) control in [7] is performed at each core router, while in this paper we push bandwidth control

to the edges of the network. Ng et al. [8] explore the idea of preferential treatment of non-TCP bursty flows over

long CBR flows to guarantee different QoS service profiles. Nandy et al. [9] and Firoiu et al. [10] study

service differentiation between delay-sensitive and throughput-sensitive long-lived flows through active queue

management.

Analytical results of short TCP flow latency under different network conditions are given in [11] and [12].

These results reveal the vulnerability of short TCP flows. Seddigh et al. [2] show the negative impact of the

initial timeout value on the short TCP flow latency and propose to reduce the default recommended value. To

enhance the performance of short TCP flows, proposals like [13], [14], [15], [16] suggest to either use a large

initial window value or share the network measurement information from previous records or communication

with neighbors. Notice that these proposals require modification of the TCP protocol and may lead to congestion

collapse. Our proposed scheme differs from these proposals because our control is placed inside the network,

and thus is more fair to clients who are unaware of such changes.

Crovella et al. [17, 18] explore the heavy-tailedness nature of the job size distribution and comment that size-

aware job scheduling helps enhance the response time of short jobs without hurting the performance of long jobs.

Their work inspires us to perform size-based service differentiation in the Internet for TCP flows.

Many studies have been conducted in the area of active queue management (AQM), most of them are variants

of RED [5] or CBQ [6]. In our proposed scheme, we require the internal bottleneck routers to execute RIO (RED

with In and Out) policy [4], which is a pioneering work by Clark and Feng.

Our Contribution: Our study provides an alternative usage of the Differentiated Services (Diffserv) architecture

in [4, 19]. The goal in [4, 19] is to provide long-lived flows with “expected” bandwidth or fairness guarantees.

Thus, packets are classified at the edge of the network as In or Out for that purpose, which may lead to suboptimal

utilization of network resources [20]. On the other hand, our goal is to provide a new better-than-best-effort TCP

service that attempts to enhance the competence of short TCP flows. This in turn creates a more fair network

environment and better utilizes network resources, especially for Web traffic, the dominant traffic in the current

Internet. We classify packets as In or Out to distinguish the length of the flow as Short or Long in order to

preferentially treat short TCP flows inside the network.

In Section II, we show in detail the necessity and benefit of preferential treatment of short TCP flows. We then

present the network architecture and mechanisms required to implement our proposed scheme in Section III.

Section IV uses simulations to confirm the advantage of our scheme. In Section V, we discuss the issue of

incremental deployment and extensions to the architecture. Section VI concludes this paper with future work.

II. ANALYZING SHORT TCP FLOW PERFORMANCE

In this section, we use a similar approach as in [11] to study the latency of short TCP flows. We then argue that,

to achieve transmission rates comparable to that of long connections, short TCP connections should experience

much less packet drops, which requires preferential treatment at the bottleneck link queues.

4

A. Deriving Short TCP Flow Latency

For ease of analysis, we assume packet loss happens independently from individual flow behavior. This as-

sumption is true when the number of active flows is large. We also assume Reno-family TCP flows, however,

most of the analysis can also apply to other versions of TCP. Due to space limitation, we omit a detailed descrip-

tion of the TCP congestion control algorithm. We refer the reader to [21] for an excellent description. Briefly

speaking, TCP uses a window-based control mechanism. It employs the slow-start algorithm to quickly ramp

up to the desired transmission rate, then migrates to additive increase multiplicative decrease (AIMD) control to

oscillate its window around the desired value. Once severe congestion happens, it temporarily shuts down the

transmission and conservatively (exponentially) estimates the time required to resume transmission. To match the

ns simulation model, we focus our analysis on modeling the actual data packet transmission of a TCP session,

which implies prompt and reliable delivery of all the control packets (SYN, SYN-ACK, etc.). Notice that such

assumption favors schemes that do not give preferential treatment to such packets (see discussion in Section V).

We also assume fixed-size packets and a total file size of d packets.

First Packet: As mentioned earlier, to provide reliable delivery, TCP relies on either the reception of duplicate

acknowledgments (dupacks) or expiration of a retransmission timer to detect packet losses. For the first data

packet, it is not possible to activate a dupack event 4. Thus, loss of the first packet always requires at least one

retransmission timeout to detect.

On the other hand, TCP uses its own packet samples to estimate the appropriate retransmission timer value.

However, for the first data packet, there is no packet sample available for such purpose. Thus TCP uses a

conservatively estimated value5 as the initial timeout (ITO) for retransmission.

Assume packet loss happens uniformly with probability p, and no loss happens on the reverse path (no ACK

drops), then we can compute the expected time for the successful delivery of the first packet (assuming p is small

enough so it takes at most 6 times to backoff the timer):

E[Tf] = RTT � (1� p) + ITO � (1� p)
6X

i=0

pi+12i (1)

where the first term represents time for successful delivery without any packet loss, and the second term represents

expected waiting time when loss happens.

Remaining Packets: Once the first packet is successfully delivered, TCP gains enough knowledge to estimate the

retransmission timeout (RTO). The derivation in [11] can then be directly applied here (omitting setup latency)

to compute the latency of transmitting the remaining data. For simplicity, we assume non-delayed acknowledg-

ments6. The transmission time is given by:

E[Tr] = E[Tss] +E[Tloss] +E[Tca] (2)
4 Unless TCP itself is modified to use a large initial window (larger than 3), however, we only model standard TCP behavior here.
5 3 seconds according to [22], while some old BSD systems use 6 seconds [2].
6 Note that ignoring the effect of delayed ACKs on transmission latency does not qualitatively change our final conclusion.

5

T T T

R

ss loss ca

co
n

g
es

ti
o

n
 w

in
d

o
w

time

Fig. 1. TCP transmission time illustrated

where E[Tss] is the latency of the initial slow-start phase, E[Tloss] deals with the packet loss that terminates

the slow-start phase, and E[Tca] is the transmission time of the packets after TCP enters the congestion avoidance

phase, as illustrated in Figure 1. These latencies are given by7:

E[Tss] = RTT � log2(E[dss] + 1)

E[Tloss] = (1� (1� p)d) � (Q(p;E[Wss]) �E[ZTO] + (1�Q(p;E[Wss])) �RTT)

E[Tca] = (d�E[dss])=R(p;RTT;RTO)

where E[dss] is the expected number of packets transmitted in the initial slow-start phase, E[Wss] is the expected

congestion window size reached after the initial slow-start phase, Q(�) is the probability of retransmission timer

expiration, E[ZTO] is the expected timeout latency, and R(�) is the well-known TCP-friendly transmission rate

derived in [23]. The detailed formula for computing E[dss], E[Wss], Q(�), E[ZTO] and R(�) are omitted here

due to space limitation — please refer to [11, 23].

B. Sensitivity Analysis for Short and Long TCP Flows

In this section, we analyze the transmission time for TCP flows of different sizes. Figure 2(a) gives in a log-log

plot the average total latency computed from Equations (1) and (2) with RTT = 0:1sec, RTO = 4RTT and

ITO = 3sec, for a TCP flow of a fixed size FS for various p values.

We can observe that the average transmission time of short TCP flows are not very sensitive to loss when the

loss rate is relatively small, but it increases drastically as loss rate becomes larger (when persistent congestion

happens). For extremely long flows, the transmission time grows consistently with loss rate. Since it is hard, if

not possible to compute the variance of transmission times, we use ns simulation [24] to study the coefficient

of variation (C.O.V.)8 of transmission times for different flow sizes. In the simulation, a single TCP-Newreno

connection transmits a file of size FS over a lossy link which randomly drops incoming packets with probability

p. Packets never get dropped due to queue overflow. Once the file transfer finishes, a new connection immediately

starts. We thus can measure the statistics of the transmission time. Figure 2(b) plots the C.O.V. against loss

rate. We can observe an interesting trend: for small-size TCP flows, increasing the loss probability can lead to
7 For simplicity, we assume the receiver advertises a very large window value (Wmax >> 1=p).
8 C.O.V. is defined as the ratio between standard deviation and the mean of a random variable, smaller values imply less variability.

6

0.1

1

10

100

1000

10000

0.001 0.01 0.1

T
ra

ns
m

is
si

on
 T

im
e

(s
ec

)

loss rate

FS=4pkts
FS=16pkts

FS=256pkts
FS=1024pkts
FS=4096pkts

(a) Average Transmission Time

0

0.5

1

1.5

2

2.5

3

3.5

0.001 0.01 0.1

C
.O

.V
.(

X
_t

im
e)

loss rate

FS=4pkts
FS=16pkts

FS=256pkts
FS=1024pkts
FS=4096pkts

(b) Coefficient of Variation
Fig. 2. Sensitivity Analysis of Transmission Time

increased variability, while for long TCP flows, large loss rate reduces the variability of transmission times. We

can give a possible explanation to this interesting behavior:

� When loss rate is high, TCP congestion control is more likely to enter the exponential backoff phase, which

can cause significantly high variability [25] in the transmission time of each individual packet of a flow.

� When loss rate is low, depending on when the packet loss happens, TCP can either transmit a significant amount

of packets in slow-start phase or have to transmit them in the less aggressive congestion avoidance phase. This

adds another dimension to variability, which affects the length of each congestion epoch and how many packets

can be transmitted in each epoch (until another loss is detected).

� Since the first source of variability is on individual packets of a flow, the law of large numbers indicates that its

impact is more significant on short flows. On the other hand, the second source of variability is more pronounced

for long flows since most short flows finish their transmission in slow-start phase.

We thus conclude that reducing the loss probability is more critical to help short TCP flows experience less

variations in transmission (response) time. Observe that the C.O.V. of transmission times is closely related to

the fairness of the system—smaller values imply higher fairness. Such interesting behavior motivates us to give

preferential treatment to short TCP flows.

C. Preferential Treatment to Short TCP Flows

In this section we use a simple simulation set up to illustrate that, assuming the arrival of requests does not

depend on the service time, giving preferential treatment to short TCP flows can significantly enhance their

transmission time, without degrading long flow performance.

For this purpose, we use the ns simulator [24] to set up the following scenario: 10 long (10000-packet) TCP-

Newreno flows and 10 short (100-packet) TCP-Newreno flows are competing for bandwidth over a 1.25Mbps

7

link9. Flows start periodically and stay in the network until they finish transmission. We then vary the queue

management policy at the bottleneck link and measure the instantaneous portion of bandwidth taken by each

class of flows10 to show the effect of preferential treatment. We consider traditional Drop Tail queue, RED queue

and our proposed RIO-PS (RIO with Preferential treatment to Short flows) queue (see Section III for details), and

plot the results in Figure 3.

430 432 434 436 438 440 442 444 446 448 450
0

0.2

0.4

0.6

0.8

1

Time (sec)

Li
nk

 U
til

iz
at

io
n

Total

Long

Short

430 432 434 436 438 440 442 444 446 448 450
0

0.2

0.4

0.6

0.8

1

Time (sec)

Li
nk

 U
til

iz
at

io
n

Total

Long

Short

430 432 434 436 438 440 442 444 446 448 450
0

0.2

0.4

0.6

0.8

1

Time (sec)

Li
nk

 U
til

iz
at

io
n

Total

Long

Short

Fig. 3. Impact of Preferential Treatment— Link utilization under Drop Tail (left), RED (middle), and RIO-PS (right)

It is not surprising that a Drop Tail queue fails to give fair treatment to short TCP flows. Since most of the time

short flows have a small congestion window compared to long flows, and also because a Drop Tail queue favors

aggressive flows (with larger windows) [5], short flows can sometimes lose their fair share. A RED queue gives

almost fair treatment to all flows, while our RIO-PS queue gives short flows more than their fair share.

As we can notice from the graphs, although when there are backlogs from both classes of flows, short flows

under our scheme can temporarily grab (“steal”) more bandwidth from long flows, in the long run, their early

completion returns an equal amount of resources (if not more, avoiding packet retransmissions) to long flows.

In other words, since a long-lived TCP flow can adapt well to the network state and so can acquire about the

same amount of resources (bandwidth) to transmit a certain file, giving preferential treatment to short flows does

not sacrifice the long-term goodput11 of long flows. In fact, this preferential treatment might even enhance the

transmission of long flows since they operate in a more stable network environment (less disturbed by short flows)

for longer periods. On the other hand, in a congested network, reducing the packet drops experienced by short

flows can significantly enhance their response time and fairness among them, as implied by the analysis in the

previous section. Table I gives the measured network goodput over the 500 seconds simulation period.

Table I also gives the measured goodput for a less loaded network with bottleneck link bandwidth of 1.5 Mbps.

We observe that when load is low, our RIO-PS scheme (as well as RED) produces a slightly lower goodput (less

than 1.5%) than that of DropTail. However, as load becomes higher, our scheme can even achieve slightly higher

goodput than all other schemes12.
9 Typically a short TCP flow has less than 20 packets to transmit. We only consider in this motivation section larger flow sizes to have

a sharper contrast in our illustrations.
10 This instantaneous fraction of bandwidth is computed by the ratio of packets transmitted over link bandwidth over the last 0.5 second.
11 Goodput is defined as the number of successfully delivered packets over the simulation period.
12Note that under Drop Tail, short flows are not protected well, so long flows achieve higher goodput than in other schemes.

8

We thus propose to differentiate between short and long TCP flows inside the network. To this end, we employ

a Diffserv-like network architecture [26].

Link B/W Flows DropTail RED RIO-PS

All 153479 154269 154486
1.25Mbps Short 40973 49897 49945

Long 112506 104372 104541
All 185650 184315 183154

1.5Mbps Short 43854 49990 49990
Long 141796 134325 133164

TABLE I
NETWORK GOODPUT UNDER DIFFERENT SCHEMES

III. PROPOSED SCHEME:ARCHITECTURE AND MECHANISMS

In this section, we discuss the detailed implementation of our proposed scheme, including the network archi-

tecture we assume and the supporting mechanisms required to differentiate between short and long TCP flows.

A. The Architecture

Fig. 4. Proposed Architecture

We assume a Diffserv-like scalable active domain management architecture where edge routers of an adminis-

trative domain perform all the per-flow information maintenance tasks, and the core routers only need to actively

manage per-class flows. Figure 4 illustrates the operations a packet needs to go through in such architecture. The

edge router tags (marks) individual packets as belonging to the class of short flows or the class of long flows.

Such information is then used by core routers at which any class-based active queue management policy can be

implemented.

B. Edge Router: Packet Classification and State Maintenance

We rely on the edge router to determine whether a packet is coming from a long or short flow. Accurate flow

characterization can be very complicated due to the high variability of the user behavior in the current Internet.

9

Instead, we resort to a simple threshold-based approximation method. For each active flow, we simply maintain

a counter that tracks how many packets have been observed so far. Once the counter exceeds a certain threshold

(Lt), we consider the flow to be long, and classify the following packets as “Long” packets. Notice that under

such classification method, the first Lt packets will be classified as “Short” packets. We discuss the pros and cons

of such method in Section V.

The per-flow state information are softly maintained to detect the termination of a flow. More specifically, the

flow hash table is updated periodically. Every Tu, a flow is considered terminated (and its entry removed) if no

packets from that flow is observed in the last Tu time units.

The value of the threshold Lt can be static or dynamic. However, since the edge router already maintains

enough per-flow state information, in our proposed scheme, we let the edge router adjust the threshold dynam-

ically so as to balance the number of active short and active long flows. For such purpose, the edge router is

configured with one parameter called Short-to-Long-Ratio (SLR) which is the ratio between the number of ac-

tive short flows and that of long flows. The edge router then periodically (every Tc) performs additive increase

additive decrease control over the threshold to achieve the target SLR. The pseudo-code for the control algorithm

is shown in Appendix A. Other control policies are also possible, however, our simulation results show that the

performance is not quite sensitive to SLR. Choosing appropriate values of Tu and Tc is an issue that needs further

research (see Section V). In our simulation, we empirically choose Tu = 1 second and Tc = 10 seconds.

C. Core Router: Preferential Treatment to Short Flows

We require the core routers to give preferential treatment to short flows. There are many candidate queueing

policies for such purpose. We choose the RIO (RED with In and Out) [4] queue since it has many advantages

over other candidates. Figure 5 illustrates the early dropping/marking function of a RIO queue.

P(drop/mark Long)P(drop/mark Short)

min_s max_s min_l max_l

Pmax_s
Pmax_l

totalQshortQ

Fig. 5. RIO queue with Preferential treatment to Short Flows

Briefly speaking, the operation of the queue on In (Short) packets is not affected by the arrival of Out (Long)

packets since the dropping/marking probability for Short packets is computed based on the average backlog of

Short packets (Qshort) only. On the contrary, for the Long packets, the total average queue size (Qtotal) is used to

detect incipient congestion and thus flows that carry Long packets have to give up some resources (backoff) when

there is persistent backlog from both classes of packets. The pseudo-code of the RIO algorithm can be found

in [4], for completeness, we provide it in Appendix A. Note that we use the “gentle ” variant of RED dropping

function as recommended in [27].

Clark and Feng [4] give a very nice discussion on the design features of RIO queue, and we only highlight few

10

of them here:

� Only a single FIFO queue is used for all the packets, thus packet reordering will not happen at a link even when

packets from the same flow are classified differently.

� RIO inherits all the features of RED, which include protection of bursty flows, fairness within each class of

traffic and detection of incipient congestion.

� RIO performs soft prioritization, thus does not lose the benefit of statistical multiplexing.

Henceforth, we will call such queue RIO-PS (RIO with Preferential treatment to Short flows). When persistent

congestion happens, how much bandwidth share short flows can receive depends on the configured parameters

for each class of traffic. In our simulation, we choose the RIO-PS parameters such that short TCP flows are

guaranteed around 75% of the total link bandwidth in times of congestion.

IV. SIMULATION

We use the ns [24] simulator to study the performance of our proposed scheme and compare it to size-oblivious

Drop Tail and RED schemes.

A. Simulation Setup

We assume network traffic is dominated by Web-like transactions. To this end, we adopt the Web traffic model

developed in [28]. In this model, randomly selected clients initiate sessions which involve surfing several web

pages of different sizes from randomly chosen websites. Each page may contain several objects, each of which

requires a TCP connection for delivery (in other words, an HTTP 1.0 model is assumed). To request a page,

the client sends a request packet to the server (simulating the GET message in a typical HTTP session), the

server responds with an acknowledgment and then starts to transmit the web page requested by the client. The

distributions of inter-page time, inter-object time, page and object sizes are given in Table II. The load is carefully

tuned to be close to the bottleneck link capacity13. The topology used in our simulation is shown in Figure 6.

Name inter-page objs per page inter-obj obj size

Exp1 Exponential Uniform Exponential Bounded Pareto
client 1 mean 9.5 min 2 mean 0.05 [4,200000]

max 7 shape 1.2

Exp2 Exponential Uniform Exponential Bounded Pareto
client 1 mean 9.5 min 2 mean 0.05 [4,500]

max 7 shape 1.2
client 2 Exponential Uniform Exponential Bounded Pareto

mean 192 min 1 mean 1.5 [400,200000]
max 3 shape 1.2

TABLE II
WEB TRAFFIC CONFIGURATION

13 As revealed in [29], the advantage of RED is more pronounced in this load regime.

11

1

2

03

15ms
100Mb

15ms
x Mb

20ms
100Mb

Client Pool 1

Client Pool 2

Server Pool

15ms
y Mb

all access links
[0.1 − 1] ms
10 Mbps

Exp 1: x = 8
Exp 2: x = y = 4.5

Fig. 6. RIO queue with Preferential treatment to Short Flows

Node 0 acts as the entry edge router of the bottleneck domain, and nodes 1,2,3 are core routers. Two sets

of clients are connected to the server pool through individual bottleneck links (links 1-3 and 2-3, respectively).

Other links are configured to be lossless. The buffer size of each bottleneck link and the configuration of its queue

management policy are carefully tuned according to [29] so as to maximize power14. For our RIO-PS queue, we

empirically choose its parameters so that short TCP flows experience less packet drops without starving long

flows15. Recall that since the flow states are updated periodically at the edge routers, some terminated short flows

may still be treated as “active”. Considering such measurement error due to lazy state update, we choose SLR

to be 3 so that the actual number of short flows is approximately equal to that of long flows, however, we varied

this ratio between 2 and 6 and didn’t observe significant difference. The detailed (default) configuration is listed

in Table III. We have repeated each simulation with different random seeds and produced similar results 16.

B. Experiment 1: Single Client set

In this experiment, there is only one set of clients involved (client pool 1). Therefore, the traffic seen at the

core router 1 is the same as that at the edge router 0.

B.1 Study of the web traffic

We run the experiment for 4000 seconds simulation time. After some warm-up period (2000 seconds), we

start to record the response time for each successfully downloaded web object. Figure 7(a) plots the averaged

response time for different sized objects.

The results indicate that preferential treatment can cut the average response time for short and medium sized

files significantly (25-30 %). In [2], Seddigh and Devetsikiotis observed that the default ITO value of current
14 Power is defined as the ratio between throughput and latency, so a high power implies low delay and high throughput.
15 In our simulations, we choose the RIO-PS parameters such that short TCP flows are guaranteed around 75% of the total link

bandwidth. Even if short flows are given absolute priority, long flows may still pay very little penalty because of the heavy-tailedness of
the workload, in which most of the bytes are due to the small percentage of long flows [18].
16 Also note that we only present the results of ECN capable routers here since ECN is recommended to be used with RED queues [30].

We also simulated the case when ECN was turned off and observed more pronounced performance gain of our proposed scheme over
traditional RED, since RED with ECN turned on potentially enhances short flow performance [30].

12

Description Value

Packet Size 500 bytes
Maximum Window 128 packets
TCP version Newreno
TCP timeout Granularity 0.1 seconds
Initial Retransmission Timer 3.0 seconds
B/W delay product � 200 pkts (Exp1)
(BDP) � 120 pkts (Exp2)
Bottleneck DropTail: 1:5� BDP
Buffer Size (B) RED/RIO-PS: 2:5�BDP

Q. Parameters (minth;maxth; Pmax; wq)
RED (0.15B, 0.5B, 1/10, 1/512)
RIO-PS short (0.15B, 0.35B, 1/20, 1/512)
RIO-PS long (0.15B, 0.5B, 1/10, 1/512)
RED & RIO-PS ecn on, wait on, gentle on
Edge Router SLR = 3; Tu = 1 sec; Tc = 10 sec

Foreground Traffic

(Src, Dest) (Server Pool, Client Pool)
Long Connection Size 1000 packets
Short Connection Size 10 packets

TABLE III
NETWORK CONFIGURATION

implementations of TCP is too conservative and can thus significantly hurt the performance of short flows. They

then propose to reduce the default ITO value from 3 seconds to 1 second. However, such aggressive value

may lead to congestion collapse in some parts of the Internet where links are slow and have very large round

trip propagation delay. Using aggressive retransmission timers at the ends of such links can cause unnecessary

retransmissions, an undesirable phenomenon that TCP designers always wanted to avoid [31]. Nevertheless, we

also run the simulation after setting the ITO to 1 second and plot the results in Figure 7(b). We observe that

reducing the ITO value significantly reduces the performance gap between RED and our proposed scheme (now

only 10-15%) for short connections (file size less than few dozens of packets). We still observe large performance

improvements with RIO-PS for medium sized connections (15-25%).

Figure 8 plots the instantaneous queue size and average drop rate in the last 20 seconds for the case of 3

seconds ITO. Note to compare with DropTail, which does not support ECN, for RIO-PS and RED, we actually

plot the sum of the forced drop (drop due to buffer overflow) and ECN mark rate. Also for RIO-PS we plot such

measure for each class of flows.

We observe that our RIO-PS scheme reduces the overall mark/drop rate without the risk of congestion collapse

(overloading) at the bottleneck link. A closer examination of the packet record reveals that the reduced drop-

ping/marking rate comes from the fact that short connections rarely experience packet drops, and the number of

ECN notifications sent to these connections are much smaller than their rivals. We argue that short connections

are not responsible for controlling congestion since the timescale at which they are operating is much smaller

than the effective control regime of a TCP congestion control algorithm. Thus, preferential treatment to short

13

0

0.5

1

1.5

2

2.5

1 10 100 1000 10000 100000

T
im

e(
X

)/
T

im
e(

R
E

D
)

File Size (pkts)

DropTail
RED

RIO-PS

(a) Initial Retransmission Timer 3 seconds

0

0.5

1

1.5

2

2.5

1 10 100 1000 10000 100000

T
im

e(
X

)/
T

im
e(

R
E

D
)

File Size (pkts)

DropTail
RED

RIO-PS

(b) Initial Retransmission Timer 1 seconds
Fig. 7. Average response time relative to RED

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000

In
st

an
t.

Q
ue

ue
 S

iz
e

Time (secs)

DropTail
RED

RIO-PS

(a) Instantaneous Queue Size

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 500 1000 1500 2000 2500 3000 3500 4000

D
ro

p+
M

ar
k

R
at

e

Time (secs)

DropTail
RED

RIO-PS
RIO (short)
RIO (long)

(b) Instantaneous Drop/Mark Rate
Fig. 8. Revealing the secret of better performance

connections does not hurt, if not benefits the congestion state of the network.

B.2 Study of foreground traffic

To better illustrate the effect of the queue management policy on fairness of TCP connections, we periodically

injected 10 short (every 25 seconds) and 10 long (every 125 seconds) foreground TCP connections and recorded

the response time Ti for each connection i. The fairness index of response time, computed as FI =
(
PN

i=1
Ti)2

N
PN

i=1
T 2

i

,

is reported in Figure 917. Figure 10 plots the transmission time for each individual connection and their ensemble

average18.
17 Due to space limitation, the results for the case of ITO = 1 second are not presented here. The conclusion doesn’t change, though.
18 For the clarity of the graph, we don’t plot the results of DropTail queues, whose performance (in terms of fairness and average

transmission time) is much worse.

14

0
0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

DropTail
0

0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

DropTail

0
0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

RED
0

0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

RED

0
0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

RIO-PS

(a) Fairness Index of Short Connections

0
0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

RIO-PS

(b) Fairness Index of Long Connections
Fig. 9. Fairness of Transmission Time

0

1

2

3

4

5

6

7

8

2000 2500 3000 3500 4000

X
m

is
si

on
 T

im
e

(s
ec

s)

Time (secs)

RED (avg)
RIO-PS (avg)

RED
RIO-PS

(a) Transmission Time of Short Connections

0

20

40

60

80

100

120

140

2000 2500 3000 3500 4000

X
m

is
si

on
 T

im
e

(s
ec

s)

Time (secs)

RED (avg)
RIO-PS (avg)

RED
RIO-PS

(b) Transmission Time of Long Connections
Fig. 10. Transmission Time of Foreground Traffic

We observe that even with RED queues, many short flows experience at least one timeout, many of them (the

“outliers” in Figure 10(a)) require waiting for a default ITO value (3 seconds) due to loss of the first packet 19.

On the contrary, our proposed preferential treatment scheme provides short TCP flows with much less drops and

thus more fair service without hurting the performance of long connections.
19 Note that although ECN marks, instead of drops, packets in times of congestion, it does not mark the first (SYN) packet since the

negotiation of ECN-capability at both ends has not finished at this moment. Therefore, initiating a TCP session when the network is
congested still faces the risk of a long timeout if the SYN packet is dropped. Although ns does not generate control (SYN, SYN-ACK)
packets, it similarly treats the first data packet, i.e. a RED with ECN scheme does not mark, rather it may drop, the first data packet in
times of congestion.

15

C. Does fairness hurt goodput?

Table IV summarizes the overall goodput (averaged over 5 runs) of the network. As we can see, our proposed

scheme does not hurt, if not (slightly) improves the overall goodput over Drop Tail.

Scheme DropTail RED RIO-PS

Exp1 (ITO=3sec) 4207841 4264890 4255711
Exp1 (ITO=1sec) 4234309 4254291 4244158
Exp2 (ITO=3sec) 4718311 4730029 4723774

TABLE IV
NETWORK GOODPUT OVER THE LAST 2000 SECONDS

D. Experiment 2: Unbalanced Requests

The previous experiment assumes an ideal scenario for our proposed scheme in the sense that the portion of

short connections seen by an edge router is the same as that by a core router. In a real ISP network, in which

more complicated topologies are present, there may be unbalanced requests from different clients. We thus add

another set of clients in our simulation model. We then unbalance the request load by designating client set 1 to

only request relatively smaller objects (less than 500 packets) and client set 2 to request larger objects. Since Web

sessions to different client sets take different routes (cf. Figure 6), the load control at the edge router is now not

as effective as in the previous case. We consider such case as the worst-case scenario for our proposed scheme.

Figure 11 plots performance measures in such scenario for 10-packet foreground TCP connections to client set 1

and 1000-packet foreground TCP connections to client set 2.

When the route is dominated by one class of flows (short or long), preferential treatment in core routers no

longer has significant impact on the flow performance. In other words, in such extreme case, our proposed

scheme reduces to traditional unclassified traffic plus RED queue policy. However, giving preferential treatment

to the initial few packets still helps to reduce the chance of retransmitting the first packet and thus helps most

short connections finish quickly, as shown in Figure 11.

V. DISCUSSION

A. Comments on the Simulation Model

Our simulation is performed using the “Dumbbell and Dancehall” (one-way traffic) model [32], and all TCP

connections have similar end-to-end propagation delays, thus such model may not represent the common topol-

ogy seen by Internet users. However, such assumption is only for the sake of easy comparison of individual

TCP performance. When there is also reverse traffic present, our proposed scheme will even have more superior

performance over other traditional policies. This is because the setup of a web session (and most other TCP

sessions) requires the client side to exchange a short sequence of control packets with the server. Such a short ex-

change will be better protected under our proposed scheme, especially in the presence of heavy traffic in the same

16

0
0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

DropTail
0

0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

DropTail

0
0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

RED
0

0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

RED

0
0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

RIO-PS

(a) Fairness Index of Short Connections

0
0.2
0.4
0.6
0.8

1

2000 2500 3000 3500 4000Fa
ir

ne
ss

 I
nd

ex

Time (secs)

RIO-PS

(b) Fairness Index of Long Connections

0

1

2

3

4

5

6

7

8

2000 2500 3000 3500 4000

X
m

is
si

on
 T

im
e

(s
ec

s)

Time (secs)

RED (avg)
RIO-PS (avg)

RED
RIO-PS

(c) Transmission Time of Short Connections

0

20

40

60

80

100

120

140

2000 2500 3000 3500 4000

X
m

is
si

on
 T

im
e

(s
ec

s)

Time (secs)

RED (avg)
RIO-PS (avg)

RED
RIO-PS

(d) Transmission Time of Long Connections
Fig. 11. Foreground Traffic performance comparison

direction. More complicated topology models may have a negative impact on the performance of our scheme due

to unbalanced requests. However, as we pointed out in Section IV-D, our scheme can still work at least as well

as traditional policies even in extremely unbalanced cases.

B. Deployment Issues

Our proposed scheme requires edge devices be able to perform per-flow state maintenance and per-packet

processing. Fortunately, it has been shown in [33] that providing such functionality does not have a significant

impact on the end-to-end performance. The other issue is on whether such scheme is incrementally deployable.

Notice that our objective is to protect short delay-sensitive flows, and our success relies on how well the classifi-

cation (isolation) is done at the edge (bottleneck) router. The scheme does not require the queue mechanisms be

implemented at each router. For example, the advanced edge device can be placed in front of a busy web server

17

cluster, and RIO-PS only implemented at the busy bottleneck links to achieve the desired performance objective.

C. Flow Classification

We use a threshold-based classification method since the intermediate (edge) node can not predict in advance

whether a flow is long or short. Such method thus mistakenly classifies the first few packets of a long flow as if

they came from a short flow. However, such “mistake” may help to enhance performance. This is because the

first few packets of a long TCP flow is under exactly the same control method as packets from a short flow. Thus,

they are more vulnerable to packet losses and deserve to be treated with high preference. Such “mistake” also

makes the system more fair to all TCP connections.

D. Controller Design

Our proposed scheme involves controller design issues at different places and timescales. The issue of edge

load control is certainly a topic for further research, although our preliminary results indicate that the performance

is not very sensitive to the target load ratio of active short to active long flows (the value of SLR at the edge). The

“actual” SLR depends on the values of Tc and Tu, which determine how often the classification threshold Lt and

active flow table are updated, respectively. Smaller values of Tc and Tu may increase accuracy at the expense of

increased overhead.

AQM policies other than RIO may also be used in our scheme. For example, RED with PI control [34] can

be used for long flows since the controller was designed specially for long-lived connections. We are currently

studying the performance of such controller in the presence of both short and long TCP flows.

VI. CONCLUSIONS AND FUTURE WORK

TCP traffic constitutes the majority of the bytes flowing over the Internet today. In this paper, we present a

Diffserv-like architecture where edge routers implement a new TCP service by classifying TCP flows based on

their size (lifetime). Core routers implement a simple RIO (weighted RED) policy to give preferential treatment

to packets from short TCP flows. This has several advantages over size-oblivious Drop Tail or RED schemes:

(1) the performance of the majority of TCP flows (the short transfers or mice) is significantly improved in terms

of response time and fairness; (2) because short TCP flows can be rapidly served, the performance of the few

TCP long flows (the large transfers or elephants) is also enhanced or at worst minimally affected; (3) the overall

goodput of the system is thus improved or at least stays almost the same (a work-conservation feature); and

(4) the proposed architecture is extremely flexible in that the functionality that defines the new TCP service can

be largely tuned only at the edge routers.

The size-aware management of traffic has shown considerable promise. We have shown how differentiation of

TCP flows based on size can be effectively used to isolate flows that mostly operate in different regimes: short

TCP flows in slow-start and long TCP flows in congestion-avoidance. At the network layer, Shaikh et al: [35]

investigated load-sensitive routing of only long-lived IP flows in order to improve routing stability and reduce

18

overhead. However, they have not considered the effect on congestion-controlled sources (such as TCP and TCP-

friendly applications). We are currently investigating an approach that integrates size-aware traffic management

at both the network and transport layers.

REFERENCES

[1] R. Khare and I. Jacobs, “W3C Recommendations Reduce ’World Wide Wait’,” http://www.w3.org/Protocols/NL-PerfNote.html.
[2] N. Seddigh and M. Devetsikiotis, “Studies of TCP’s Retransmission Timeout Mechanism,” in Proc. ICC 2001, Helsinki, Finland,

June 2001.
[3] Y. Bernet and et al, “A Framework for Differentiated Services,” Internet Draft hdraft-ietf-diffserv-framework-02.txti, Feburary

1999.
[4] D.D. Clark and W. Fang, “Explicit Allocation of Best-Effort Packet Delivery Service,” IEEE/ACM Transactions on Networking,

vol. 6(4), pp. 362–373, August 1998.
[5] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,” IEEE/ACM Transactions on Networking,

vol. 1(4), pp. 397–413, August 1993.
[6] S. Floyd and V. Jacobson, “Link-sharing and Resource Management Models for Packet Networks,” IEEE/ACM Transactions on

Networking, vol. 3, no. 4, pp. 365–386, August 1995.
[7] I. Matta and L. Guo, “Differentiated Predictive Fair Service for TCP Flows,” in Proc. ICNP’2000, Osaka, Japan, November 2000.
[8] T.S.E. Ng, D.C. Stephens, I. Stoica, and H. Zhang, “Supporting Best-Effort Traffic with Fair Service Curve,” in Proc. IEEE

GLOBECOM’99, Rio de Janeiro, Brazil, December 1999.
[9] B. Nandy, N. Seddigh, A. Chapman, and J. Hadi Salim, “A Connectionless Approach to Providing QoS in IP Networks,” in Proc.

IFIP Eighth Conference on High Performance Networking (HPN’98), Vienna, September 1998.
[10] V. Firoiu and X. Zhang, “Best Effort Differentiated Services: Trade-off Service Differentiation for Elastic Applications,” Tech.

Rep., Nortel Networks, September 2000.
[11] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP Latency,” in Proc. IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.
[12] B. Sikdar, S. Kalyanaraman, and K.S. Vastola, “An Integrated Model for the Latency and Steady State Throughput of TCP Connec-

tions,” in Proc. IFIP Symposium on Advanced Performance Modeling, Orlando, FL, Novmember 2000.
[13] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial Window,” Internet RFC 2414, September 1998.
[14] V. Padmanabhan and R. Katz, “TCP Fast Start: a Technique for Speeding Up Web Transfers,” in Proc. IEEE Globecom’98 Internet

Mini-Conference, November 1998.
[15] Y. Zhang, L. Qiu, and S. Keshav, “Speeding Up Short Data Transfers: Theory, Architecture Support, and Simulation Results,” in

Proc. NOSSDAV 2000, Chapel Hill, NC, June 2000.
[16] J. Heidemann, “Performance Interactions Between P-HTTP and TCP Implementations,” ACM Computer Communication Review,

vol. 27(2), pp. 65–73, April 1997.
[17] M. Crovella, M. Harchol-Balter, and C. Murta, “Task Assignment in a Distributed System: Improving Performance by Unbalancing

Load,” in Proc. ACM Sigmetrics’98 Poster Session, Madison, WI., June 1998.
[18] M. Crovella, R. Frangioso, and M. Harchol-Balter, “Connection Scheduling in Web Servers,” in Proc. the 1999 USENIX Symposium

on Internet Technologies and Systems (USITS ’99), Boulder, Colorado, October 1999.
[19] G.L. Monoco, F. Azeem, and S. Kalyanaraman, “TCP-Friendly Marking for Scalable Best-Effort Services on the Internet,” ACM

Computer Communication Review, to appear 2001.
[20] T. Bonald and L. Masoulié, “Impact of Fairness on Internet Performance,” in Proc. ACM SIGMETRICS 2001, Boston, MA, June

2001.
[21] W. Stevens, TCP/IP Illustrated, Vol. 1: The Protocols, Addison-Wesley, 1997.
[22] R. Braden, “Requirements for Internet Hosts – Communication Layers,” Internet RFC 1122, October 1989.
[23] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: A Simple Model and its Empirical Validation,” in

Proc. ACM SIGCOMM’98, Sepetember 1998.
[24] E. Amir et al., “UCB/LBNL/VINT Network Simulator - ns (version 2),” Available at http://http://www.isi.edu/nsnam/ns/.
[25] L. Guo, M. Crovella, and I. Matta, “How does TCP Generate Pseudo-Self-Similarity,” Tech. Rep. 2000-017, Dept. of Computer

Science, Boston University, Boston, MA, July 2000, Submitted for Publication.
[26] S. Black et al., “An Architecture for Differentiated Services,” Internet RFC 2475, December 1998.
[27] S. Floyd, “Recommendation on using the “gentle ” variant of red,” http://www.aciri.org/floyd/red/gentle.html, March 2000.
[28] A. Feldmann, A.C. Gilbert, P. Huang, and W. Willinger, “Dynamics of IP Traffic: A Study of the Role of Variability and the Impact

of Control,” in Proceeding of ACM SIGCOMM’99, Boston, Mass, September 1999.
[29] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, “Tuning RED for Web Traffic,” in Proc. ACM SIGCOMM 2000, Stockholm,

Sweden, Aug.-Sep. 2000.
[30] S. Floyd, “TCP and Explicit Congestion Notification,” ACM Computer Communication Review, vol. 24(5), October 1994.
[31] V. Jacobson, “Congestion Avoidance and Control,” in Proc. ACM SIGCOMM’88, Stanford, CA, August 1988.
[32] K. Nichols, “Dumbbells, Dancehalls, and Beyond: Understanding QoS Prior to Deployment,” in Proceedings of the Internet

Bandwidth Management Summit (iBAND3), San Francisco, CA, October 1999.
[33] R. Guérin, L. Li, S. Nadas, P. Pan, and V. Peris, “The Cost of QoS Support in Edge Devices: An Experimental Study,” in

Proceedings of IEEE INFOCOM’99, New York, NY, March 1999.
[34] C.V. Hollot, V. Misra, D. Towsley, and W. Gong, “On Designing Improved Controllers for AQM Routers Supporting TCP Flows,”

in Proc. IEEE INFOCOM 2001, Anchorage, AL, April 2001.

19

[35] A. Shaikh, J. Rexford, and K.G. Shin, “Load-Sensitive Routing of Long-Lived IP Flows,” in Proceedings of SIGCOMM’99, Boston,
MA, September 1999.

APPENDIX

I. PSEUDO-CODE FOR TCP DIFFERENTIATION MECHANISMS

A. Edge Router load control module

1. Upon update timer expiration (every Tc units):
2. Scan flow table,
3. Count the number of long (short) flows cntl (cnts).
4. If cnts > cntl � SLR
5. Lt Lt � 1
6. Else
7. Lt Lt + 1

B. Core RIO-PS queue dropping function

Denote by qshort and qtotal the instantaneous number of short packets in queue and the total queue size,
respectively.

1. For each arrived packet P
2. If P 2 Short
3. Qshort wshort � qshort + (1� wshort) �Qshort

4. Qtotal wtotal � qtotal + (1� wtotal) �Qtotal

5. If P 2 Short
6. If minshort < Qshort < maxshort
7. ps calculate p(Qshort;minshort;maxshort; Pmaxs)
8. with probability ps drop P .
9. Else If Qshort > maxshort
10. drop P .
11. Else
12. If minlong < Qtotal < maxlong
13. pl calculate p(Qtotal;minlong;maxlong; Pmaxl)
14. with probability pl drop P .
15. Else If Qtotal > maxlong
16. drop P .

