
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2015

Modeling economies and ecosystems in

general equilibrium

https://hdl.handle.net/2144/16349

Downloaded from DSpace Repository, DSpace Institution's institutional repository



BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS & SCIENCES

Dissertation

MODELING ECONOMIES AND ECOSYSTEMS IN

GENERAL EQUILIBRIUM

by

JARED WOOLLACOTT

B.S., Bentley University, 2004
M.P.P., Duke University, 2011
M.E.M., Duke University, 2011

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2015



c© Copyright by

Jared Woollacott

2015



Approved by

First Reader

Ian J. Sue Wing, PhD
Associate Professor of Earth & Environment

Second Reader

Dana M. Bauer, PhD
Assistant Professor of Earth & Environment

Third Reader

Mark A. Kon, PhD
Professor of Mathematics & Statistics



Acknowledgments

I thank Professor Ian Sue Wing for his patient and dedicated guidance and his

willingness to advise an unconventional dissertation. Working with him has perma-

nently changed the way I think about problems for the better. I entered my program

with vague but inspiring ideas about how biological and technological systems behave

and no clear angle on how to pursue them. I am leaving with a set of well-honed tools

and a clear path forward to pursuing the research I find most compelling. Thank you

Professor Sue Wing.

I also thank my committee members. Professor Dana Bauer generously offered

many hours of friendly and helpful guidance, particularly on how best to work across

disciplines. Professor Mark Kon offered great teaching and encouragement on the

more challenging mathematical topics I faced. Professor Les Kaufman offered invalu-

able perspective on the biology literature and community.

I thank my partner, Jamie Crockett, for her extraordinary support. Our doctoral

programs kept us living apart for four semesters. Difficult as it was, we are stronger

for having faced the challenge and I am ever more confident that spending our lives

together is the best idea we have ever had. Jamie has continually helped me identify

the intellectual and emotional challenges needed for further growth, offering an abun-

dance of love, support, and inspiration to see those challenges through. I am, across

all aspects of my life, uniformly better off for our relationship. Thank you Jamie.

I thank my parents, Al and Jill. Their love, care, and emphasis on a strong

and independent work ethic provided the necessary conditions for my reaching this

milestone. I am uniquely grateful for their roles in my life. It is a good and essential

norm that children’s debts to their parents are forgiven - I am quite certain mine

could never be repaid. Thank you Mom and Dad.

iv



MODELING ECONOMIES AND ECOSYSTEMS IN

GENERAL EQUILIBRIUM

(Order No. )

JARED WOOLLACOTT

Boston University, Graduate School of Arts & Sciences, 2015

Major Professor: Ian J. Sue Wing, PhD,
Department of Earth & Environment

ABSTRACT

This work exploits the general equilibrium modeling framework to simulate com-

plex systems, an economy and an ecosystem. In an economic application, this work

leverages a novel data revision scheme to integrate technological detail on electric-

ity generation and pollution abatement into national accounts data in a traditional

economic computed general equilibrium (CGE) model. This integration provides a

rich characterization of generation and abatement for multiple fuel sources and pol-

lutants across 72 different generation-abatement technology configurations. Results

reveal that the benefits of reductions in oxides of nitrogen and sulfur from a carbon

policy in the US electric sector are on the order of $10bn., which rival the policy’s

welfare costs and make 12− 13% carbon abatement economically justifiable without

considering any climate benefits.

For ecosystem applications, this work demonstrates how the structure of economic

CGE modeling can be adapted to construct a Biological General Equilibrium (BGE)

model grounded in the theoretical biology literature. The BGE model contributes

a novel synthesis of micro-behavioral, bioenergetic features with macroscopic ecosys-
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tem outcomes and empirical food web data. Species respond to prevailing ecosystem

scarcity conditions that impinge on their energy budgets driving population outcomes

within and across model periods. This adaptive capacity is a critical advance over

the commonly-taken phenomenological or first-order parametric approaches. The dis-

tinctive design of the BGE model enables numerical examination of how changes in

scarcity drives biomass production and consumption in a complex food web. More-

over, the BGE model design can exploit empirical datasets used by extant ecosystem

models to offer this level of insight for a wide cast of ecosystems.

Monte carlo simulations demonstrate that the BGE framework can produce sta-

ble results for the ecosystem robust to a variety of shocks and parameterizations.

The BGE model’s validity is supported in tests against real-world phenomena within

the Aleutian ecosystem - both an invasive species and a harvesting-induced trophic

cascade - by mimicking key features of these phenomena. The BGE model’s micro-

founded dynamics, the stability and robustness of its results, and its validity against

real-world phenomena offer a unique and valuable contribution to ecosystem modeling

and a way forward for the integrated assessment of human-ecosystem interactions.
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1

Chapter 1: Introduction

1.1 Complex Adaptive Systems

Complex adaptive systems have multiple interacting parts. In these systems, the

macroscopic outcomes need not be an immediate consequence of any individual part

or sum of individual actions. Macroscopic outcomes instead emerge from the complex

interactions of the system’s many parts. The inter-connectedness of the different

parts of the system means that activity in one part of the system can be transmitted

in complex patterns throughout the system. For some activity and systems, these

interconnections can lead to chaotic outcomes. If the constituent parts of the system

are adaptive - their behavior changes in response to prevailing conditions in the

system - the transmission of activity throughout the network may be damped. That

is, as initial activity ripples out from one part of the system, adaptive behavior can

dissipate its effects, attenuating the tendency toward chaos.

Ecosystems and economies are complex adaptive systems. Aggregate outcomes

like population levels or GDP are the result of the complex interaction of many

individuals and are not predictable by the simple sum of individual actions. Changes

in the amount of primary resources or capital for example may have far-reaching

effects for the various species in an ecosystem or industries in an economy. The

ability of individual species members in an ecosystem or households and firms in an

economy to change their behavior in response to changes in their system can help to

mitigate negative and take advantage of positive changes.

From an economic perspective, decisions are driven by individuals’ assessments of

the costs and benefits of different actions. If the value gained from taking an action

is greater than the value sacrificed, it is worth taking. This kernel of economic logic

has been widely employed in economics and in ecology under the heading optimal
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foraging. Critically, these “decisions” may be entirely passive requiring no cognitive

effort. For example, if in searching for certain prey a species encounters fewer of them,

that species is likely to consume less of that prey. In this case, the scarcity of the prey

has increased the effort required to secure the prey. If the first bite of prey is more

“valuable” than say the tenth, higher search costs will tend to reduce consumption

of it. The principle works the same in economics, where scarce resources carry higher

prices inducing firms and individuals to use less than they might otherwise.

Whether species are producing biomass or a firm is producing goods or services,

a set of inputs must be combined to generate the desired output. The combination

of inputs may vary - a large fish may eat mostly small fish this week and mostly

invertebrates the next - and different inputs will produce more or less output per unit.

It is the benefits produced and costs imposed by securing the different inputs that

drives decisions about their use. By identifying different types of biomass or economic

goods we can characterize different production “technologies” for combining inputs

into a given output. This ensemble of model technologies constitute the different

types of activities that will interact in each system by using each other’s outputs as

inputs, making substitutions as certain outputs become more or less scarce.

1.2 Motivation for modeling complex systems

The complexity of ecosystems and economies means that the consequences of changes

within the system cannot be directly traced from their source to a nearby outcome.

Outcomes in complex systems can be difficult to trace and often counter intuition.

Constructing a theoretically and mathematically consistent framework for simulating

the system’s complexity is necessary to assess the consequences of different actions or

events. Modeling the system from the perspective of its decision-making participants

provides a conceptually clear way to relate the key dynamics at play in the model to
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their real-world counterparts.

Economists have for several decades drawn on economy-wide modeling for policy

analysis. This method of analysis helps elucidate important interactions and assess

the aggregate impacts of different interventions. In the same way, ecosystem modeling

is an important tool for understanding our influence on species that we may value

economically or otherwise. Fisheries policy is a prime example of the need for powerful

ecosystem simulations. Fishery policies require understanding sustainable harvesting

practices both to ensure the persistent supply of economically valuable fish and to

safeguard the ecosystem services or existence value provided by impacted species.

1.3 General equilibrium modeling

This work exploits the abstract features common to ecosystems and economies to

simulate their behavior within a single framework known as general equilibrium mod-

eling. The foundation of a general equilibrium model is an initial observation of the

input-output relationships in the system. In an ecosystem, who is eating whom and

in what quantity. In an economy, which industries and households require what goods

and in what quantity. A balance of inputs and outputs is a key feature of this struc-

ture. Arranging all of the system’s inputs and outputs in a common set of accounting

matrices ensures that no biological or economic value is spontaneously created or de-

stroyed within the model. All changes in value are the result of the modeled behavior

of the system’s participants: the ambient environment, species, households, firms,

governments, or otherwise.

Drawing on the observed flow of inputs and outputs, each model participant can be

characterized by a certain technology to describe how it combines inputs to generate

its output. In the model, this technology is a mathematical function that can be

analyzed to dictate how inputs should be combined to generate its output given
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the prevailing scarcities in the system. The model structure is a highly-developed

expression of constrained optimization from mathematics. The model’s task is to

identify an optimum for the system. This method imposes a certain determinism

on the system, but in so doing it also guarantees an internal consistency to the

results and a means to perform controlled simulation experiments. There are ways to

relax the determinism, but more importantly, the optimum identifies the state toward

which the system participants are competing. There are infinitely many sub-optimal

outcomes the model could identify, but only a small number of optima, from which

modelers are free to parameterize exactly how the system may deviate.
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Chapter 2: Greenhouse Gas Policy in the Electric Sector { Measur-

ing the Costs and Ancillary Benefits

2.1 Introduction

The policy imperative for well-specified estimates of pollution abatement costs has

driven economic modelers to incorporate increasing degrees of technical realism into

their work. A top-down – bottom-up distinction is often offered at first approxima-

tion, though this distinction has become less stark with increasing emphasis on various

hybrid approaches. Top-down, general-equilibrium models offer a richer measure of

economy-wide costs but lack the engineering detail of bottom-up models. Methodolog-

ical differences between the approaches and the dimensionality of bottom-up models

can preclude full integration of the two, resulting in hybrid models that constrain one

model type with the output of the other, sometimes in an iterative fashion (Böhringer

& Rutherford, 2008, 2009).1

This work implements a novel scheme for integrating bottom-up technological

detail in the benchmark specification of a static national CGE model. Leveraging a

specially-constructed dataset on the US electric sector, I capture much of the technical

detail commonly omitted from CGE models without imposing external constraints

from an independent bottom-up model. I take clean-air policy in the United States

electricity sector as the object of analysis with a focus on carbon dioxide, though

the construction is sufficiently general that it could be expanded to other sectors,

pollution media, and regional aggregations provided adequate bottom-up cost and

environmental data are available. The current iteration of the model includes CO2

(N2O and CH4 can also be modeled), three criteria pollutants (NOx, SO2, and PM),

1Examples include: the ADAGE model (Ross, 2008), a top-down approach constrained by
bottom-up energy data; EPA’s IPM (ICF Resources, LLC, 2010), a bottom-up model constrained by
macro forecasts; the NewERA model (The NewERA Model , 2013), a top-down model that iterates
with a bottom-up electric sector model.
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and one hazardous pollutant (Hg).

The primary challenge in building a model of this type lies in disaggregating

input-output data summarized in macroeconomic accounts to a level of technical,

sub-sectoral detail sufficient to reliably represent existing generation and abatement

activity. Prior work (cf. Dellink, Hofkes, van Ierland, and Verbruggen (2004); Gerlagh,

Dellink, Hofkes, and Verbruggen (2002); Kiuila and Rutherford (2013); Nestor and

Pasurka (1995)) has abstracted a generic abatement sector with an independently

estimated marginal abatement cost (supply) curve. Yet not all technologies can avail

themselves of the same supply of abatement alternatives and, no matter how well

articulated the abatement supply costs, this approach will likely impose a profile of

abatement alternatives that is less sensitive to the general equilibrium effects of the

model.

The solution proposed here is to identify and specify extant abatement technolo-

gies such that their cost profiles and output levels move with alternative equilibria.

This requires “bottom-up” data for unit costs of generation and abatement and a

means for reconciling these data with costs given by national accounts. Bottom-up

data are available from the Energy Information Administration (EIA; Forms EIA-860

(Form EIA-860 , 2010) and EIA-923 (Form EIA-923 , 2010)), which form a partial

basis for the Environmental Protection Agency’s (EPA) Integrated Planning Model

(IPM), and from EPA (IPM cost assumptions (ICF Resources, LLC, 2010)). EPA

also provide fuel and technology specific emissions factors for the included pollutants

(the AP-42 compilation (AP 42, Fifth Edition, Compilation of Air Pollutant Emis-

sion Factors, Vol. 1 , 1995)). I use a cross-entropy approach (cf. Robinson, Cattaneo,

and El-said (2001)) to reconcile these bottom-up data with national macroeconomic

accounts data from BLS and BEA.2

2This process could just as well be done with state-level data (e.g. IMPLAN State-Level U.S. Data
for 2010 (2012)) as the bottom-up data can be fully disaggregated to the level of the generating
unit.
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Once having disaggregated data into a social accounting matrix (SAM) split to

the appropriate resolution of production-abatement technologies, I construct a static

CGE model that imposes constraints on the ability to substitute across electric tech-

nologies (i.e. to capture grid-level generation load “preferences”). Finally, I leverage

the CGE model to examine the cost associated with implementing a carbon dioxide

policy akin to that recently outlined by EPA (EPA, 2014). Total welfare costs are

considered alongside the benefits of ancillary abatement of two of the three modeled

criteria pollutants (NOx and SO2). This model is ideal for assessing the near-term

cost of imposing new clean air policies on the existing electric grid based on a rich

characterization of the current menu of electric generation and abatement technolo-

gies.

Section two provides a brief overview of the relevant literature on this topic.

Section three describes the data construction and reconciliation process. Section

four outlines the model structure and specification of abatement trade-offs. Section

five examines the welfare impacts of policy experiments, including an application to

EPA’s Clean Power Plan, and section six concludes.

2.2 Literature

The two primary contributions of this work are the modeling approach and the as-

sessment of ancillary benefits of greenhouse gas policy. On the former, prior work

by Böhringer and Rutherford (Böhringer & Rutherford, 2008, 2009) gives a robust

specification of how to link CGE models with models of the electricity sector. Us-

ing a top-down CGE model of the economy and a quadratic program to solve the

bottom-up energy supply portion of the economy, Böhringer and Rutherford demon-

strate how macro and sector-specific models can be iterated on prices and quantities

toward a common solution. Doing so obviates the need for fully integrating the energy
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sectors’ complementarity relations for prices and quantities, which can frustrate so-

lution algorithms, particularly to the extent exogenous bounds are imposed on these

variables.

Böhringer and Rutherford offer a typology of linkages as either “soft linked,”

where the “consistency and convergence of iterative solution algorithms” may be

problematic, “reduced form,” where a highly simplified version of one of the models

is employed, or a direct linkage, where the models are combined explicitly through

complementarity relations on solution variables. The model developed in this work

is closest to the third category, though the electric sector is modeled as an integrated

part of the CGE model. Toward that end, Sue Wing (Sue Wing, 2008) outlines a

method for integrating bottom-up technology data into an existing, top-down so-

cial accounting matrix to provide a direct complementarity representation of energy

sectors. The work here uses a more general technique to render high technology

resolution in the data.

On ancillary benefits of greenhouse gas policy, Burtraw and co-authors (Burtraw

et al., 2003) take a detailed look at power generators’ pollution control options using

the Resources for the Future (RFF) Haiku Electricity Market Model (Paul & Burtraw,

2002). They find ancillary benefits of $10/ton of CO2 abated under a $33 carbon tax,

which does not affect SO2 abatement levels. The authors also argue that ancillary

benefits may arise from avoided future investments in abatement equipment, which

increases ancillary benefits to $16 − 18 per ton of CO2 abated as compared with an

estimated $16 efficiency cost per ton of the tax.3 This is in line with the value of

ancillary NOx abatement estimated here of $16− 18/ton for 0− 5% CO2 abatement,

declining thereafter by assumption. Ancillary benefits do not rise at higher carbon

tax and abatement levels in their model. Similar to this study, the authors focus

3Dollar figures have been converted from Burtraw et al.’s $1997 to $2010 using a GDP implicit
price deflator of 1.3 (Gross domestic product: Implicit price deflator (GDPDEF), 2015).
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on avoided health costs associated with NOx as a precursor to particulate matter

only. They give nuanced treatment to the spatial heterogeneity of pollutants using

an atmospheric transport model.

Nam and co-authors (Nam, Waugh, Paltsev, Reilly, & Karplus, 2014) examine

the extent of ancillary abatement in both the United States and China, estimating

“cross-elasticities of control.” They rely on the MIT Emissions Prediction and Policy

Analysis (EPPA5) model (Paltsev et al., 2005), a global recursive-dynamic CGE

model, to assess co-benefits. In their analysis, Nam et al. consider both the impact

of CO2 reduction on NOx and SO2 and vice versa, whereas this study assesses only

the former. They find that ancillary abatement of CO2 is comparable for targeted

reductions in SO2 and NOx (slightly higher for NOx), with a higher median and a

much wider range in China than the US. In the reverse direction, they find significant

ancillary abatement of NOx and SO2 that is stronger in the US and stronger than the

reverse relationships (i.e. carbon abatement under a NOx and/or SO2 policy). The

average ancillary NOx and SO2 abatement is higher than for the reverse relationship

with tighter ranges in both countries. Here China’s range of ancillary abatement is

tighter than the US range.

In support of ancillary abatement as a real phenomenon, rather than just a mod-

eled one, Holland finds empirical evidence that ancillary abatement does arise from

reductions in output, though not from changes in actual emissions rates (Holland,

2010). That is, he finds evidence for output effects but not substitution effects. This

could be an artifact of the empirical methods employed. Holland uses NOx attainment

status to proxy for NOx prices. If a generator is fluctuating in and out of attainment,

it may be more likely to make marginal adjustments to meet its attainment target

(e.g. reducing output) as opposed to a generator that is persistently out of attain-

ment, who may be more likely to make capital investments to substantially alter their
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emissions rate. If these ‘marginal attainment’ generating units are frequently switch-

ing attainment status and manage their attainment through output, this could bias

the attainment coefficient toward identifying output but not substitution effects in a

way that might not generalize to carbon policy scenarios. Moreover, given that the

period of study is well beyond the policy implementation, it is likely that the deci-

sion window for generators to make the capital investments to change their emissions

rate had passed; i.e., it is only the generators who decided it best to manage their

attainment through output that remain to drive the variation in attainment. Holland

highlights important change-in-process considerations that the model developed here

does not address. He gives the example of a higher burn temperature for natural gas

fired plants as a way to reduce CO2 emissions at the expense of higher NOx emissions.

Nemet et al. (Nemet, Holloway, & Meier, 2010) summarize 48 estimates of co-

benefits from a meta-analysis of 37 studies finding a median of $31 of co-benefit per

ton of CO2 abatement in higher-income countries with higher estimates for lower-

income countries (median of $43/ton). The studies surveyed employ a variety of

methods, which is reflected in the wide range of estimates produced ($2− 196/ton).

The authors find that consideration of ancillary benefits is not common among the

major integrated assessment models.

As Nemet et al.’s work highlights, there is considerable interest in ancillary benefits

from carbon policy. They also emphasize that ancillary abatement value is under-

represented in integrated assessments of carbon policies. This is despite early efforts

to establish best research practices and broad-based policy support to “integrate the

quantification and consideration of ancillary effects of climate policies more clearly

into the national and international policy process” (OECD, 2000, p. 7).
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2.3 Data Construction and Reconciliation

2.3.1 Bottom-up Technology Data

Data in national accounts present an aggregated electric generation, transmission and

distribution sector. Capturing the heterogeneity of production and abatement alter-

natives requires a finer-grain representation, disaggregated along several dimensions

to the level of production-abatement technology types. To achieve this, I integrate

Forms EIA-923 and EIA-860 data (Form EIA-860 , 2010; Form EIA-923 , 2010), IPM

generation and abatement cost estimates, and EPA emission factors to provide a

comprehensive dataset covering 96% of electric generation, pollution, and abatement

activity on the US grid: the Pollution, Abatement, and Generation of Electricity

(PAGE) dataset (detailed in Appendix 7.1). All data are for the year 2010 where

applicable.

Abatement technologies are for four pollutants: oxides of nitrogen and sulfur,

particulate matter, and mercury. Emissions rates depend on the generation tech-

nology, fuel type, and installed abatement equipment. Mercury emissions depend

on installed mercury technologies as well as nitrogen, sulfur, and PM abatement

technologies, which provide mercury reduction co-benefits. Both end-of-pipe and

change-in-process technologies are included. Table 2.1 summarizes the abatement

technologies represented in the model. As no independently viable installations yet

exist, no CO2 abatement technologies are specified. The model could incorporate

“backstop” specification of these technologies if desired, but the current iteration re-

quires carbon abatement to come from adjustments to the level and mix of extant

technologies.

Generation-abatement technology aggregates are further identified by prime mover

and fuel type. For each aggregate, the PAGE data provide annualized cost estimates

for the use of capital, labor, fuel, and electricity for the distinct generation and
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Bottom-up Abatement Activity

Model technology

Fraction of Net 

Generation Model technology

Fraction of Net 

Generation

NOx Controls Particulate Controls

Low NOx burner 20.44% Cold side 30.15%

Catalytic reduction 19.68% Fabric filter 7.19%

Overfire air 4.57% Hot side 4.41%

Noncatalytic reduction 2.75% Other methods 1.51%

Other change in process 1.73% Total 43.26%

Fuel reburning 0.00%

Total 49.18%

SOx Controls Mercury Controls

Wet scrubber 65.47% Activated carbon injection 5.40%

Dry scrubber 3.64%

Total 69.11%

Sources: PAGE dataset: Forms EIA-860 and EIA-923.

 

Notes: Model technologies aggregate EIA technologies.

A significant amount of mercury abatement occurs as a co-benefit of abating other pollutants.

Table 2.1: Pollution abatement technologies by pollutant

abatement equipment comprising the technology aggregate. Abatement equipment

electric and fuel requirement costs are based on nameplate and heat rate penalties,

respectively. Quantity data are provided for electric output, abatement and emissions

for the four abated pollutants and three greenhouse gases (CO2, CH4, and N2O). Table

2.2 summarizes relevant costs and quantities at the level of fuel type and reports an

aggregate greenhouse-gas equivalent (GHGe) measure of the three greenhouse gases

based on global warming potential. Table 2.3 summarizes four technologies at the

technology resolution used in the model.

In all, generation-abatement technologies are specified on five characteristics: fuel

type and controls for particulate matter, sulfur, nitrogen, and mercury. The PAGE

data are generated at the plant-technology level allowing for geographic identification
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Bottom-up Electric Sector Data

 Generation PM GHGe   

No. Q (GWh) K L E Q (MMT) K L Q (MMT)

Coal 58 1,739,600 $  21,720 $  8,026 $  35,160 0.022 $  11,602 $  1,553 2,427

Bituminous 23 890,000 $  6,420 $  3,600 $  22,100 0.007 $  6,520 $  861 1,140

Sub-bitum. 29 769,000 14,800 4,100 11,700 0.014 4,510 629 1,130

Lignite 6 80,600 500 326 1,360 0.001 572 63 157

Gas 6 973,000 $  9,790 $  2,800 $  35,400 0.007 $  133 $  5 476

Nuclear 1 807,000 $  18,800 $  1,320 $  2,080 0.000 $  0 $  0 0

Oil 2 17,600 $  2,460 $  113 $  2,210 0.015 $  476 $  1 353

Renewables 1 413,000 $  12,200 $  1,160 $  1,350 0.000 $  0 $  0 0

Total Grid 68 3,950,200 $  64,970 $  13,419 $  76,200 0.045 $  12,211 $  1,559 3,256

SOx NOx 
No. Q (MMT) K L E Q (MMT) K L E

Coal 58 3.0 $  290 $  18,839 $  16,877 3.3 $  2,632 $  881 $  2,481

Bituminous 23 1.6 163 10,200 9,360 1.6 1,750 621 1,936

Sub-bitum. 29 1.2 115 7,760 6,740 1.6 818 228 516

Lignite 6 0.3 12 879 777 0.2 64 32 29

Gas 6 0.0 $  546 $  27,000 $  12,500 0.3 $  1,350 $  150 $  425

Nuclear 1 0.0 $  0 $  0 $  0 0.0 $  0 $  0 $  0

Oil 2 0.6 $  85 $  3,670 $  537 0.0 $  83 $  1 $  1

Renewables 1 0.0 $  0 $  0 $  0 0.0 $  0 $  0 $  0

Total Grid 68 3.6 $  921 $  49,509 $  29,914 3.6 $  4,065 $  1,033 $  2,907

Sources:  PAGE dataset: Forms EIA-860 and EIA-923, Annual Energy Outlook (generation costs); EPA IPM V.4.10 

(abatement costs); EPA AP-42 emissions factors.

Table 2.2: Electric generation technologies costs & quantities (2010)

for different regional aggregations. For the purposes of the national model presented

here, the data are aggregated to the level of generation-abatement technology. A full

summary of the data construction process is provided in Appendix 7.1.

2.3.2 Bottom-up – Top-down Reconciliation

Macroeconomic input-output data come from national accounts compiled by the Bu-

reau of Labor Statistics (BLS) and Bureau of Economic Analysis (BEA) (Bureau

of Economic Analysis, 2012; Bureau of Labor Statistics, 2012). Benchmark data are
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Bottom-up -- Top-down Reconciled Model Technologies
Fuel: Sub-Bituminous Coal Fuel: Lignite Coal
PM: Fabric filter NOx: Low-NOx boiler
SOx: Dry scrubbed PM: Cold-side ESP
Hg: None SOx: Wet scrubbed

 NOx: Non-Cat Catalytic Hg: None Carbon Inject.

Quantities

Net Generation (GWh) 3,956 7,411 27,600 12,600

Emissions (KTons)
SOx 30.7 12.5 91.4 45.2
NOx 12.0 14.3 58.5 26.2
GHGe 9,050 10,800 53,800 24,100

Costs ($2010 MM) $  133.1 $  438.0 $  1568.4 $  771.2

Generation $  52.4 $  253.9 $  767.0 $  378.0

Capital $  3.8 $  117.0 $  180.0 $  83.4
Labor (O&M) 20.9 39.1 111.0 50.6
Fuel (HR Pen.) 27.7 97.8 476.0 244.0

SOx Controls $  62.7 $  120.4 $  542.7 $  264.2

Capital $  0.5 $  0.9 $  3.7 $  1.5
Labor (O&M) 37.1 69.1 274.0 126.0
Fuel (HR Pen.) 3.8 14.4 86.0 49.3
Electricity (Cap. Pen.) 21.3 36.0 179.0 87.4

NOx  Controls $  10.5 $  49.7 $  19.7 $  8.7

Capital $  1.7 $  19.9 $  17.3 $  7.6
Labor (O&M) 7.7 7.0 2.4 1.1
Fuel (HR Pen.) 0.2 6.5 0.0 0.0
Electricity (Cap. Pen.) 0.9 16.3 0.0 0.0

Sources:  PAGE dataset: Forms EIA-860 and EIA-923, Annual Energy Outlook 
(generation costs); EPA IPM V.4.10 (abatement costs); EPA AP-42 emissions factors.  
BLS 2010 input-output data and BEA value-add data.

Table 2.3: Summary of costs & quantities for four model technologies
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taken for the year 2010 in the form of “make” and “use” tables with a 195-industry res-

olution and transformed into a social accounting matrix (SAM) at a lower resolution.

Even at the higher resolution, only a single “electric power generation, transmission,

and distribution” aggregate (NAICS 2211) is presented. These data form the ba-

sis of the CGE model and must be reconciled with the bottom-up engineering data

discussed in the previous section.

The technologies from the bottom-up data are assumed to employ a portion of

the capital, labor, and electricity, all of the fuel, and none of the materials from

the generation-transmission-distribution (GTD) aggregate of the national accounts.

All of the materials and the remainder of the capital, labor, and electricity are then

employed by a transmission and distribution sub-sector. Bottom-up cost estimates

are incommensurate with values provided in the macro data and must be reconciled.

This is particularly problematic for the technologies’ fuel uses, where bottom-up data

yield totals for the various fuel types that differ markedly in absolute and relative

magnitude from the top-down national accounts data.4

Drawing on the bottom-up data, I produce a technology-by-input unit-cost matrix

of grid generation and minimally revise the matrix entries such that they reconcile

with the relative fuel-use values given by macro accounts. I then scale the unit matrix

by the fuel use totals from the macro data and remainder a minimum quantity of

labor and capital (along with all materials) to the transmission and distribution sub-

sector. An example unit cost matrix with technologies defined only on fuel type is

presented in Table 2.4. The actual unit cost matrix used for the model represents

approximately 70 technologies (defined on fuel type and abatement technologies). All

model technologies are listed in Appendix 7.3.

The unit cost matrix sums to one by construction and all values are positive,

4This is partly a result of differences in data survey methods across the agencies, but a full
account of the discrepancies is unknown. Correspondence with the agencies did not yield any new
information.
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Total Value: $ 173.9 Bn

Bottom-up, Macro-inconsistent

Fuel Type

Cost BIT SUB LIG GAS NUC OIL RNW

KGEN 0.027 0.062 0.002 0.041 0.079 0.010 0.051

KPM 0.027 0.019 0.002 0.001 0.000 0.002 0.000

KSOX 0.001 0.000 0.000 0.002 0.000 0.000 0.000

KNOX 0.007 0.003 0.000 0.006 0.000 0.000 0.000

LGEN 0.015 0.017 0.001 0.012 0.006 0.000 0.005

LPM 0.004 0.003 0.000 0.000 0.000 0.000 0.000

LSOX 0.043 0.033 0.004 0.114 0.000 0.015 0.000

LNOX 0.003 0.001 0.000 0.001 0.000 0.000 0.000

EGEN 0.093 0.049 0.006 0.149 0.009 0.009 0.006

ESOX 0.016 0.009 0.001 0.027 0.000 0.002 0.000

ENOX 0.003 0.001 0.000 0.000 0.000 0.000 0.000

Total 0.239 0.197 0.017 0.351 0.093 0.040 0.062

Sources:  PAGE dataset: Forms EIA-860 and EIA-923, Annual Energy Outlook 

(generation costs); EPA IPM V.4.10 (abatement costs).

Table 2.4: Example technology-by-input unit-cost matrix

hence it is a discrete probability distribution. To measure the extent to which I revise

the bottom-up unit cost matrix, I use the Kullback-Leibler divergence, a standard

information-theoretic pseudo-metric. I then minimize the divergence between the

original and revised unit cost matrices subject to reconciling with the macro data.

This is known as a cross-entropy method (cf. Robinson et al. (2001)). Both matrices

must sum to one to ensure that the divergence measure is well-behaved and that the

zero-profit condition on the Social Accounting Matrix (SAM) is met. All output of the

generation-abatement technologies is purchased by the transmission and distribution

(TD) sub-sector at a price equaling the value of inputs to ensure market clearance for

the technologies and zero profit for the TD sub-sector. I first constrain the revised



17

matrix to sum to one unit of output, ensuring no economic profits are reaped. The

supporting data preparation for this revision is analogous to that outlined by Sue

Wing (Sue Wing, 2008).

I impose two additional constraints on the revised matrix. The first ensures that

the total values of coal, gas, and oil implied by the revised unit-cost matrix match the

values given by the macro data. The second ensures that the values of capital and

labor implied by the revised matrix do not exceed what is available to the aggregate

electric sector in the macro data, less a minimum amount of labor and capital for the

transmission and distribution sub-sector. I base this minimum on ratios of capital

and labor to materials inputs for a sample of RTOs and ISOs.5

The fuel value constraints are derived from the following identities.

∑
fc

σ̃cf = Fc/ωG (2.1a)

∑
fo

σ̃of = Fo/ωG (2.1b)

∑
fg

σ̃gf = Fg/ωG (2.1c)

where σ̃ is the revised unit cost matrix (σ the original, analogous to the values pre-

sented in Table 2.4), ωG represents the total dollar value of generation output (e.g.

$174Bn in Table 2.4) on which the unit cost measures are based, the c, o, and g sub-

scripts denote the subset of technologies (t) relying on coal, oil, and gas, respectively,

and the f subscript represents the fuel-use input rows of the revised sigma matrix.

Taking ratios of the equalities in eqn. (2.1) will constrain the shares by ratios of the

5Electric transmission and distribution entities that manage the electric grid: Regional Trans-
mission Organizations and Independent System Operators.
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known fuel values in the macro data (Fc, Fo, Fg). Specifically, I require that:

∑
fc

σ̃cf/
∑
fo

σ̃of = Fc/Fo (2.2a)

∑
fc

σ̃cf/
∑
fg

σ̃gf = Fc/Fg. (2.2b)

Both the benchmark and revised shares are defined positive. I then constrain the ratio

of coal to the desired levels of total capital and labor for all technologies. For example,

given a desired minimum value of capital in the transmission and distribution sub-

sector, KTD, and known value of coal, Fc, I require that:

∑
fc

σ̃cf/
∑
kt

σ̃tk ≥ Fc

KETD−KTD
(2.3a)

∑
fc

σ̃cf/
∑
lt

σ̃tl ≥ Fc

LETD−LTD
(2.3b)

where l (e.g. LGEN – LNOX in Table 2.4) and k (e.g. KGEN – KNOX in Table 2.4)

are subsets of labor and capital inputs and LETD and KETD are the total amount

of electricity-sector labor and capital given by the macro data. Finally, I require

zero-profit in generation: ∑
ti

σ̃ti = 1 (2.4)

In sum, to derive the revised unit-cost matrix I minimize the Kullback-Leibler

divergence of the original and revised unit-cost matrices (distributions):

DKL(σ||σ̃) =
∑
ti

σtiln(σti/σ̃ti) (2.5)

subject to constraints 2.2, 2.3, and 2.4. All constraints bind. The algorithm is not

permitted to revise original zero values at all and is infinitely penalized for revising

original non-zero values to zero. The complete mathematical program is given as:
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Given: Fc, Fo, Fg, KETD, KTD, LETD, LTD ∈ R

Find: σ̃ti to minimize DKL(σ||σ̃) =
∑

ti σtiln(σti/σ̃ti)

Subject to: Coal/Oil: Fc/Fo =
∑

fc σ̃cf/
∑

fo σ̃of

Coal/Gas: Fc/Fg =
∑

fc σ̃cf/
∑

fg σ̃gf

K-limit:
∑

fc σ̃cf/
∑

kt σ̃tk ≥ Fc/(KETD −KTD)

L-limit:
∑

fc σ̃cf/
∑

lt σ̃tl ≥ Fc/(LETD − LTD)

Zero profit
∑

ti σ̃ti = 1

With the revised share matrix, σ̃, I can disaggregate the SAM’s electric-sector

aggregate. Drawing on the fuel-value identities (2.1), the original fuel input values

divided by the sum of corresponding fuel input shares in the revised matrix gives the

total value of generation, which can be used to scale the share matrix to a matrix of

input dollar values consistent with macro data. A sample of four of the sixty-eight

technologies produced by this method are summarized in Table 2.3.

2.4 Model Structure

2.4.1 General Structure

I construct a static model with one government and one household agent, a detailed

electric sector, and fourteen other sectors, which are summarized in Table 2.5. A

common production structure is shared by the non-resource sectors differing only in

the degree of input substitution. Pollution is modeled only within the electric sector.

Producers demand intermediate goods from other sectors and fixed factors from

households (i.e. labor and capital) and allocate an equal value (by zero profit) of out-

put to other sectors and final demands (i.e. the household, government, and foreign

markets) and investment. Outside the resource-intensive electric, fuel, and agriculture

sectors, production technologies aggregate labor and capital, which is traded-off with

an energy aggregate of electricity and fuel inputs. The energy-value-add aggregate

then enters Leontief with materials (i.e. all other sectoral goods). Figure 2·1a di-
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Sector Inputs ($2010 Bn)
Value-add Intermediate

Sectors Capital Labor Taxes Energy Materials Total

Energy
Natural gas distribution        87.5 11.0 1.9 294.2 32.3 427.0
Electric T&D (aggregate) 88.3 43.7 37.5 37.3 56.4 263.3
Petroleum and coal prod manuf.  87.4 25.2 23.6 21.8 52.1 210.1
Oil and gas extraction          22.8 11.3 9.7 57.8 17.8 119.4
Coal mining                     6.2 3.9 1.0 2.2 7.2 20.5

Total $  292 $  95 $  74 $  413 $  166 $  1,040

Energy Intensive
Manufacturing 536.9 846.2 68.9 141.3 2,364.7 3,958.0
Municipal and Infrastructure 151.0 326.4 13.6 48.8 416.1 955.9
Transportation                  104.4 197.7 19.6 76.9 263.2 661.7
Mining (non-fuel)               25.5 29.8 3.4 6.7 51.0 116.4

Total $  818 $  1,400 $  106 $  274 $  3,095 $  5,692

Other
Services                        2,594.4 3,515.1 348.9 142.6 3,946.5 10,547.5
Trade 400.0 831.3 323.1 27.2 620.2 2,201.7
Special Industries              622.9 0.0 137.8 6.0 358.9 1,125.6
Agriculture                     79.6 35.0 -0.8 21.1 165.5 300.4

Total $  3,697 $  4,381 $  809 $  197 $  5,091 $  14,175

Government
Public Government 235.9 1,293.7 0.0 37.7 567.9 2,135.3
Government Enterprises 10.5 81.6 -6.0 7.2 35.2 128.4

Total $  246 $  1,375 -$  6 $  45 $  603 $  2,264

Grand Total $  5,053 $  7,252 $  982 $  929 $  8,955 $  23,171

Sources:  BLS 2010 input-output data and BEA value-add data.
Notes:  The electric transmission & distribution sector is as presented in national accounts.

Table 2.5: Summary of SAM sectors

agrams the production structure for non-primary-resource sectors (primary-resource

sectors are described further below). Imports and domestic production are combined

as imperfect substitutes for the goods market via Armington aggregation “produc-

tion” (Armington, 1969). Elasticity parameters are based on those in the MIT EPPA

model (Paltsev et al., 2005) and are summarized in Appendix 7.2.
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A representative household constructs welfare from consumption alone, which is

funded by the value of endowments of labor, capital, and transfer payments. The

entire labor endowment is marketed each period – no leisure value is specified. Bench-

mark fiscal and balance of payments deficits are endowed to the government agent

who makes a lump-sum transfer to the household to cover private debts.

Tax payments accrue to the government agent to offset government expenditure

on public goods. The representative household owns the pollution permits and uses

their proceeds to offset consumption purchases. Permits have no value in the bench-

mark. A government public good is produced in a Leontief block and government

enterprises carry a production structure similar to non-resource private sectors but

with attenuated substitution elasticities.

2.4.2 Consumption

All welfare impacts are borne by the household. Real government purchases are

held constant and the consequent deficits of policy-induced changes in government

revenue and expenditure are funded by the household. All endowments are owned by

the household (i.e. labor and all types of capital). Real investment and net exports are

held constant. The household trades off transportation and all other consumption,

which aggregates energy and non-energy goods. Energy goods aggregate fuels and

electricity and other consumption aggregates materials and services separately. Figure

2·1b diagrams the “production” structure for the household consumption good.

2.4.3 Resource-Intensive Sectors

Electric Generation, Abatement, Transmission & Distribution

The electric sector is built from the bottom up. Its key feature is the micro-specified

generation-abatement technologies. Each technology requires a particular mix of cap-

ital, labor, fuel, and electricity to operate its generation and abatement equipment (if
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Figure 2·1: Production Structures

it runs any). Each technology produces outputs of electricity and unabated pollution.

Pollution permits are required for the quantities of pollution that each technology’s

installed abatement equipment cannot abate. Pollution quantities are determined by

the specific generation-abatement technology pair and are emitted in fixed relation

to the technology’s total electric output. This implies that the abatement technol-

ogy is also run in fixed relation to total electric output. The upper-most nest of

the CES production function for a given technology is then a Leontief aggregation of

electric generation output, abatement services, and pollution permits (see below the

first hashed line in Figure 2·2).

Given the fixed pollution-generation relationships of the individual technologies,

the model’s abatement-pollution substitution must occur across technologies, not

within. As an example, consider mercury abatement in the context of the second

two technologies summarized in Table 2.3. Here it is evident how the model’s elec-

tric clearing house can choose between generation from a lignite-coal-fired generator

with a low-NOx boiler, a cold-side electrostatic particulate precipitator, wet-scrubbed

desulfurization, and no mercury technology and the same technology with an active-

carbon injection mercury control device. The reality such model behavior represents
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Figure 2·2: Generation, transmission, & distribution production
structure

might be a retrofit or new construction, but this distinction is abstracted in the model

– a mark of its top-down approach.

The model’s electric clearing house then aggregates the output of the discrete

generation-abatement technologies into a single electricity good for consumption by

other sectors and agents. Substitution across technologies is limited by the load they

serve and motivated by changes in relative prices of the labor, capital, environment,

and energy inputs required to operate the technologies. The strength of this approach

is that it requires full specification of the technology for each productive generation

and abatement option, avoiding further abstraction to a generalized abatement ser-
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vice sector. That is, if more abatement is to be done without simply reducing grid

output, this approach forces the modeler to articulate specifically by what available

technologies it might be achieved. Specifying discrete technologies in this way at-

tenuates the oft-critiqued excessive “smoothness” of the top-down approach without

compromising the overall method.

The electric clearing house aggregates these technologies first into base, mid, and

peak load “nests.” This structure helps preserve the extant technological hetero-

geneity on the grid and limits the extent to which low-cost, base-load technologies

can compete with peak-load technologies whose higher cost is justified by other ser-

vices they provide to the grid (e.g. fast ramp times). Labor and capital for the TD

sub-sector are aggregated with substitution and enter Leontief with materials and

the electricity aggregate to produce final electricity output. Figure 2·2 diagrams the

production structure. Hashed horizontal lines indicate that the structure below is

repeated for all elements immediately above.

Individual technologies purchase permits from the household. (Permits enter

Leontief with abatement in Figure 2·2, but are just as well considered Leontief to

the technology’s electric output given the structure.) In this way, the relative costs

on which the clearing house chooses its technology portfolio are driven by the tech-

nologies’ permit requirements, resulting in a higher marginal cost of electricity output.

This generates both the substitution and total output effects necessary to reduce CO2

emissions.

Primary-Resource Sectors

In models with constant returns to scale in production, rate limiting of economic

growth is imposed primarily by the availability and productivity of fixed factors, the

most basic of which are labor and capital. Fuel production is further limited by

fixed quantities of raw fuel stocks and limited extraction capacities. Regardless of the
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Figure 2·3: Primary-resource sectors production structures

output price, only a certain quantity of fuel can be produced in a given period. In a

similar way, agricultural production is limited by a fixed quantity of arable land.

To implement this dynamic in the model, fuel producers must draw on a set

endowment of technologically feasible fuel inputs and agricultural producers on a set

endowment of land capital. The value of these sector-specific factors is deducted from

the capital given in the macro data. A similar procedure is completed for renewable

and nuclear generation technologies, whose fuel inputs are assumed to be paid in part

to capital premia. This offers a mechanism for restricting certain technologies from

expanding to levels that are known to be unrealistic in terms of physical or policy

constraints not otherwise represented in the model. Figure 2·3 diagrams the fuel and

agriculture sectors’ production structures.

2.4.4 Policy Design

Pollution permits are the model mechanism for implementing clean-air policies in the

modeled electric sector. Permits are only demanded, in a Leontief structure, by the

generation technologies. Permits are endowed to the representative household in an
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amount equal to that required to run the grid in the benchmark. Policies are imple-

mented by reducing the quantity of endowed permits for the pollutant targeted by

the policy. Benchmark permit prices are set to a de minimus value so that generation

technologies’ costs are not disturbed.

The pollution permits are primarily a modeling tool. In the abstract, they al-

low the modeler to identify the least expensive means for reaching a target level of

emissions given extant technologies. This is an ideal formulation for criteria pol-

lutants and greenhouse gases, for which standards are or would most likely be set

according to ambient levels. By contrast, hazardous air pollutant (HAP) policies are

typically implemented via a maximum achievable control technologies (MACT). So

evaluating a HAP policy (e.g. a mercury rule) would warrant different treatment than

criteria pollutants and could be easily accommodated within the model by modifying

the various technologies cost structures and emissions factors with reliable cost and

performance estimates for the MACT.

Real government expenditures are held fixed without substitution and resulting

deficits are borne by the households. Deficits are generated by the interaction of

changes in prices and tax revenues. Equivalent variation is then measured by the

dollar-quantity change in the household consumption (cf. Pizer and Kopp (2003)).

2.5 Policy Experiments Results

2.5.1 Baseline Results

Abatement activity of any given pollutant may come with a suite of co-benefits from

ancillary abatement of other pollutants. Abatement is achieved both by changing

the composition of operating generation and abatement technologies and by reducing

the total level of electric output. In both cases, levels of pollutants not targeted

by the policy intervention are also subject to change. This ancillary abatement has
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Figure 2·4: Percent reduction in emissions for CO2 & other pollutants

value and, even absent reliable estimates on the value of abatement benefits for the

targeted pollutant, is an important consideration in the cost-benefit assessment of

clean-air policies. (The horizontal axis of all graphs in this section is percent CO2

reduction unless otherwise noted.)

As an example of co-abatement under a greenhouse gas policy, consider the first

two model technologies presented in Table 2.3. If greenhouse gas permits are expen-

sive enough, the second technology will be favored to the first for its lower GHGe

emissions factor (1, 457 vs. 2, 287 tons/GWh). The second technology also has a

lower NOx emissions factor (1.93 vs. 3.03 tons/GWh). So the greenhouse gas pol-

icy has also induced NOx abatement and, in this case, actually led to an equivalent

percent decline in NOx and greenhouse gases (36.3%), ceteris paribus.

This simplified example has abstracted away from the explicit cost considerations
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made by the electric clearing house in choosing technologies, but demonstrates how

ancillary abatement is likely to come about. Figure 2·4 demonstrates how this dy-

namic unfolds in the model by plotting percent reductions in three pollutants (NOx,

SO2, and PM) for a range of percent-reduction policies on greenhouse gases.6 Most

notable here is that all non-targeted pollutants experience larger abatement percent-

ages than the targeted CO2.

Carbon dioxide has no available control technologies in this model so abatement

must be achieved through a combination of technology substitution and reduced elec-

tric output. Figure 2·5 presents the changes in output for four technology categories

(based on fuel type) and total electric output. Electric output begins its decline im-

mediately with the implementation of any CO2 policy driven by sharp declines in coal

and oil and offset by larger nuclear, renewable, and gas technologies’ output.

The final task is to consider what value some of the policies ancillary benefits

might carry. Here I rely on benefit estimates by Fann, Fulcher, and Hubbell (Fann,

Fulcher, & Hubbell, 2009) for NOx and SO2 as PM precursors. Fann et al. provide

dollar estimates of the benefits associated with abating NOx and SO2 strictly as

a function of their being precursors to particulate matter formation. These benefits

arise primarily from reduced mortality and morbidity from a variety of types of illness

(e.g. respiratory, cardiac). Fann et al. estimate national benefits for abatement from

electric generating unit sources of $15,000 per ton for NOx and $82,000 per ton for

SO2. Marginal benefits are assumed to be declining in the amount of abatement

achieved with a demand elasticity of 5. That is, after 20% ancillary abatement of

NOx or SO2, additional abatement is assumed to have no further economic benefit.

Valuing this particular subset of benefits alongside the welfare costs provides a more

comprehensive estimate of the net cost of the policy. Figure 2·6 presents the total

6The 22.7 and 27.2% reduction marks on the horizontal axis correspond to 25 and 30% below
2005 levels, the reference point for the Clean Power Plan.
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Figure 2·5: Total & fuel-specific electric output under CO2 policy

and net-of-benefits welfare cost of a greenhouse gas policy.

Considering only the health benefits of NOx and SO2 as PM precursors, the net

policy cost is negative through all 30% of CO2 reductions, suggesting a possible “no

regrets” policy window for CO2 abatement in the electric sector. In order to assess

the optimal “no regrets” policy we consider marginal costs and ancillary benefits of a

carbon policy. The marginal ancillary benefit of abatement is $14− 18 for NOx and

$110− 155 for SO2 for CO2 abatement less than 5%. By assumption, these marginal

benefits are declining, to approximately $9 and $58 by ten percent CO2 abatement,

respectively, and zero by 20% CO2 abatement. Figure 2·7 presents the no-regrets

optimum at the intersection of the marginal ancillary benefit and welfare cost curves.

The no-regrets optimum for the policy is 13.3% CO2 reduction at $26/ton. Of course,

this is a lower bound on the actual optimum given that carbon abatement also carries
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Figure 2·6: Gross & net welfare cost of CO2 policy ($2010 bn.)

marginal benefits.

Next I consider alternate modeling scenarios designed to represent plausible con-

straints on electric-sector compliance that might drive gross policy costs higher.

Alternate estimates

In the above estimates, electric generation technologies’ capital is free to be real-

located to other purposes. In reality, reallocations are likely to leave some capital

“stranded” in existing relatively “dirty” generating units. To model this behavior,

I immobilize a certain fraction of generation and abatement capital by generating

separate markets for them. Creating these markets has two primary effects, both of

which will drive gross welfare costs higher. First, generation and abatement capital

allocated to the new technology-specific markets is no longer free to be reallocated

to other purposes. This restricts the supply of capital available to new installations
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thereby increasing the cost of expanding cleaner generation. Second, as demand for

“dirty” capital installations drops, with no alternate uses, the value of this capital

falls and households incur losses.

Separate capital markets are created for fossil-fuel generation technologies and

pollutant-specific abatement technologies (five new markets). All but a nominal

amount ($1, 000) of capital used by the technologies is designated to its corresponding

market. A capital production block aggregates the former amount with the nominal

residual drawn from the general capital pool to produce the total quantity of capital

used by the technologies. In this way, the initial quantity of capital used by the gen-

eration and abatement technologies (less a nominal amount) is left “stranded” within

the technologies, though new capital can still be added. The capital production block

aggregates technology-specific and general “jelly” capital with an elasticity of 5.
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Figure 2·8 compares gross and net welfare costs associated with greenhouse gas

abatement policies with the capital constraint. As expected, welfare costs are higher –

33% higher than without stranded capital at maximum. Welfare costs net of benefits

still remain negative until 29.5% CO2 abatement. In both scenarios, the NOx and

SO2 ancillary benefits provide a substantial reduction of gross costs and are 10−20%

higher with the capital constraint but converging for higher abatement levels. The

marginal ancillary benefit of abatement is lower with fixed capital, $12.5 − 14.5 for

NOx and $98−158 for SO2 for CO2 abatement less than 5% declining, by assumption,

to approximately $10 and $40 by ten percent CO2 abatement, respectively, and zero

by 20% CO2 abatement. The no-regrets optimal abatement is also lower at 11.7%

and $33/ton. Figure 2·9 presents the no-regrets optimum at the intersection of the

marginal welfare cost and marginal ancillary benefit curves. If the marginal bene-

fits are given an elasticity of 1 (i.e. marginal benefits decline to zero only at 100%

abatement instead of at 20%), the no-regrets optimum more than doubles to 29.2%

abatement.

Figure 2·10 shows changes in total and fuel-specific electric output. The capital-

constrained scenario has gas generation playing a larger role in absorbing reallocation

and greater total generation than the unconstrained scenario. Gas generation with

the capital constraint will be relatively cheaper in that fossil-fuel-generation capital

is freed from the relatively dirty coal and oil generation with only gas generation to

absorb the newly available supply. This dynamic is particularly evident at reductions

beyond 15%. Future work would give more scrutiny to capital markets and the extent

to which different capital stocks can be repurposed.

Figure 2·11 presents a scatter plot of the unit cost (dollars per kilowatt-hour) for

all model technologies. The solid markers present the baseline data and the hollow

markers present the post-policy outcomes for a 30% reduction in greenhouse gases
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Figure 2·8: Gross & net welfare costs, “stranded” capital ($2010 bn.)

with fixed capital and flexible substitution across technologies. A large price gap is

evident for coal technologies whereas gas technologies move relatively more in the

quantity dimension.

Last, CO2 permit prices are higher in the capital-constrained scenario as expected.

Prices reach a high of $50−60 per ton and are comparable with and without stranded

capital. Figure 2·12 shows permit prices for the range of CO2 abatement levels.

As Morris, Paltsev, and Reilly demonstrate, these marginal abatement cost (MAC)

estimates “are, in general, not closely related to MWCs,” which were presented above

to estimate the no-regrets abatement optimum (Morris, Paltsev, & Reilly, 2012, p.

325).
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2.6 Conclusion

This work leveraged a uniquely detailed CGE model of the electric sector in the

United States to estimate the costs and ancillary benefits of abating CO2 pollution. In

particular, I find that, given existing electric generation and abatement technologies,

the welfare costs associated with CO2 abatement are largely offset by the ancillary

benefit of NOx and SO2 abatement. That is, without considering the direct benefits of

CO2 abatement, whose valuation can be challenging, net policy costs do not appear to

pose an appreciable hurdle for these benefits to clear for modest levels of abatement.

However, the no-regrets optimum is well shy of the percent reductions targeted by

EPA’s clean power plan (approximately 25%). To justify that level of reduction, we

would need marginal benefits of CO2 abatement to roughly equal or exceed those of
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NOx and SO2 as PM precursors. Whatever the benefits of CO2 abatement, this study

suggests that the cost hurdle they must clear to meet the broad goals of the Clean

Power Plan is roughly halved by the ancillary benefits that arise from CO2 policy in

the electric sector.

These results give a preliminary indication that multi-pollutant linkages could

play a significant role in mitigating, or potentially driving, environmental policy

costs. This analysis has not considered what ancillary costs might obtain with a

CO2 policy. For example, natural gas generation grew in both scenarios considered.

Recent opposition to the expansion of natural gas extraction has focused on potential

environmental costs that could add to welfare losses from CO2 policy. Moreover, I

have not considered how the general equilibrium outcomes may influence pollution

in other sectors. Again, losses in the natural gas extraction and distribution system
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are a notable source of greenhouse gases, which could offset some gains achieved by

a CO2 policy.

Future work could improve the estimates here by adopting a regional or even state-

level aggregation scheme, possibly with state-level policy implementation. A more

nuanced approach to capital markets and the role of capital vintages in the model

might also produce more accurate estimates. While these modifications will likely

change the level estimates of policy costs and ancillary benefits, they are not likely

to change the central message that multi-pollutant linkages through the technology

structure of the electric sector, or other emitting sectors for that matter, are a critical

consideration in cost-benefit analysis of clean-air policy.
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Chapter 3: Modeling Ecological Dynamics { A General Equilibrium

Approach

3.1 Introduction

This work constructs a general equilibrium model of multiple adaptive species in a

generic ecosystem. The model is constructed from a “micro-founded” bioenergetic

optimization perspective. The bioenergetic optimization of the species in the model

motivates ecosystem dynamics. While a number of ecosystem models have incorpo-

rated adaptive responses, the responses to prey-densities tend to be uniform across

prey (if multiple prey are modeled) and not clearly tied to the underlying bioen-

ergetic trade-offs. Bioenergetically-optimal functional response generalizes species

optimal (or adaptive) foraging behavior in a way that can be made sensitive to other

environmental conditions not related to prey densities (e.g. temperature, ambient

toxicity). This approach represents a novel synthesis of three veins of theoretical bi-

ology literature: optimal foraging, bioenergetic optimization, and food web dynamics.

The coherence of this synthesis within a single model is supported by the theory of

economic general equilibrium, which provides a method and framework for identify-

ing feasible equilibria in conservative systems (i.e. systems that conserve an aggregate

quantity such as energy or economic value). This approach makes a hard link between

the micro bioenergetics and macro population-dynamics of ecosystems that remains

underdeveloped in the literature.

The underlying bioenergetic optimization takes a measure of energetic surplus

as the object of maximization (maximand), as is common in the theoretical biology

literature. There is also clear intuitive support for a measure of this sort in as much as

it proxies for robustness against evolutionary selection pressures.1 That is, the more

1There also exists tentative theoretical support for such a measure from a thermodynamic per-
spective (cf. Dewar (2010); Kleidon and Lorenz (2005); Lorenz (2002); Wissner-Gross and Freer

38
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energetic surplus embodied within the species, the greater the selection pressure would

be required to threaten its survival.

The optimization works on the premise that species produce available energy

(exergy) from consumption of prey and allocate it to support their activities and

propagate their genes. After sacrifices to predators and metabolic “debts” from rest

processes and activity are accounted, any remaining energy surplus is allocated to

ending biomass. Ending biomass might take the form of structural biomass, storage

biomass (Giacomini & Shuter, 2013), or offspring, with selection pressure forcing

species toward an optimal allocation among these to maximize genetic propagation.

Selection pressure forces an optimum on varying timescales. Optimization occurs

at the genetic level, not the individual (Dawkins, 1989), so that phenotypic and

behavioral adaptations are made to maximize the energetic surplus of the genetic

kin as a whole. The bioenergetic optimization can generate a functional response for

species to a wide cast of environmental factors influencing the energetic costs and

benefits to the species. (The term species will be used loosely here to connote a

collection of individuals that are functionally equivalent with respect to the modeled

ecosystem.)

The strength and novelty of the model lies in its capacity for endogenously mod-

eling species adaptation to changing ecosystem dynamics and external forcings. The

model is designed to be fit to simulated or empirical input–output data.2 Bioener-

getic functions can be tuned to generate, as an outcome of the optimization, common

Holling response types (Holling, 1959) that drive the trophic links in the model. Fea-

sible equilibria are those population (scarcity) vectors that can simultaneously satisfy

(2013)).
2Food web data are simulated in a variety of forms (e.g. random May (1972), cascade Cohen

and Newman (1985), niche R. J. Williams and Martinez (2000)). An example of empirical data is
that collected by the Northeast Fisheries Science Center’s (NEFSC) Food Web Dynamics Program
(FWDP), a part of the National Oceanic and Atmospheric Administration (NOAA). The program
collects data on stomach contents and population estimates.
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bioenergetic input (consumption) and output (production) as an optimum while also

conserving system aggregates.

In sum, this model adapts extant optimization-based, input-output modeling tech-

niques common to economics to a biophysical setting where bioenergetic optimization

drives individual species’ behavior from whose interactions emerge macroscopic equi-

librium outcomes in the ecosystem.

3.2 Literature review

Broadly speaking, this is a work of theoretical biology. Within theoretical biology

there exist three main veins of research most relevant to constructing a “Biological

General Equilibrium” (BGE) model:3 optimal foraging, bioenergetic optimization,

and food web (or ecosystem) dynamics. A synthesis of these three veins will present

a unique contribution to ecosystem modeling, one that may answer a direct call from

Beckerman, Petchey, and Morin in a recent introduction to a special feature in the

journal Functional Ecology : “after 40 years of [optimal foraging theory’s] develop-

ment, there are precious few advances towards truly synthesizing the connections

between individuals, populations and large interconnected food webs” (A. Becker-

man, Petchey, & Morin, 2010, p. 1).

The coherent synthesis of these three veins will be enabled by the framework and

(numerical) methods of the economic computed general equilibrium (CGE). Despite

drawing on CGE theory to structure the model, the supporting literature is not re-

viewed as this work is not intended to make a novel contribution to CGE theory;

however, a general overview of general equilibrium theory is given. Of course, certain

aspects of the economic theory are not transferable to an ecosystem setting. Some of

the simplifying assumptions used to ease algebra, and for lack of strong alternative

3This work is most similar to the “General Equilibrium Ecosystem Model” (GEEM) concept
coined by Tschirhart in his 2000 Journal of Theoretical Biology paper (J. T. Tschirhart, 2000).
Tschirhart’s model is covered in detail below.
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convictions, in CGE theory are inappropriate in a biophysical setting. What’s more,

biophysical properties such as allometry can offer helpful guidance not available to

economic models for specifying bioenergetic dynamics. To best accommodate a bio-

logical setting and avail the well-understood biological dynamics, I look to abstract

just the essential structure of CGE theory.

The basic structure of general equilibrium modeling is built on an input-output

accounting framework owing to early work by Leontief and the (much) earlier “tableau

economique” proposed by Quesnay. The input-output structure is helpful in that

it lends itself nicely to conservation conditions requiring that the aggregate input

quantities (e.g. of energy) equal their output counterparts. Imposing these conditions

precludes “leaks” in the system’s accounting so that all value flows within and across

the boundaries of the system are properly accounted. To assemble the requisite

biological theory to support this structure, the literature review proceeds in parallel to

the three veins of biology literature synthesized in the model. I look to the literature to

inform first, how species choose their inputs, second, how they allocate their outputs,

and third, how these choices drive ecosystem outcomes.

3.2.1 Optimal bioenergetic input

Functional response and switching

Optimal foraging theory, now nearly fifty years old (Emlen, 1966; Macarthur & Pi-

anka, 1966), holds that competitive interactions within and among species forces

survivors toward optimal behavior. In the framing of Stephens and Krebs (Stephens

& Krebs, 1986), this is a process by which species face decisions to be made sub-

ject to certain constraints, the outcomes of which can be evaluated, through natural

selection, by a currency. Constrained optimization, a mathematical method central

to CGE models used to analyze measured objectives beset with constraints, is then

well-suited to evaluating the evolution of biological systems as framed by Stephens
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Figure 3·1: Holling functional response types

and Krebs. As they emphasize, “adaptation . . . is an integral part of evolutionary

biology, and . . . optimality models . . . are part of a separate and necessary enterprise”

(Stephens & Krebs, 1986, p. X).

Early work on foraging posited that predators might exhibit a density-dependence

in their selection of prey (inputs) known as apostatic selection (Murdoch, 1969; Mur-

doch & Oaten, 1975). This arose from a three-part typology of functional responses

offered early by Holling (Holling, 1959) based on the shape of consumption as a

function of prey density: type I (linear), type II (asymptotic), and type III (logistic).

This typology has survived well and is still used to characterize the behavior of species

within contemporary models. Type II and Type III responses are most common. The

next logical step, to relate relative densities and consumption of multiple prey, was

given by Murdoch (Murdoch, 1969) and later generalized by Elton and Greenwood

(Elton & Greenwood, 1970). The definition of switching in biology bears a direct

relation to the definition of substitution in economics.

Figure 3·1 provides a stylized representation of the three response types. Note

how both type II and III responses have an upper bound on the amount the predator

consumes. As defined by Murdoch, functional response characterizes “[t]he way the
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number of prey eaten per predator changes as a function of prey density” (Murdoch,

1969, p. 335). This is distinct from the numerical response, which Murdoch defines as

“the way the number of predators changes” with respect to changes in prey densities

(Murdoch, 1969, p. 336). Murdoch gave an early and impactful empirical investiga-

tion of functional responses by examining the lab-controlled feeding behavior of sea

snails. Both when there was only a single prey species and when there were multiple

prey species where the predator held a strong preference, Murdoch found evidence

for Holling type II response (i.e. diminishing response to increases in density), likely

reflective of predator satiation; however, Holling type II response fit the data for

predators with weak preferences poorly in the presence of multiple prey and Murdoch

found some evidence for Holling type III responses among switching predators.

Murdoch (Murdoch, 1969) also expanded upon the functional response model

by considering it in a relative sense. In particular, he investigated the presence of

“switching” behavior, a particular form of relative functional response. Murdoch

defined switching as occurring when “the relative amount which . . . [a prey] species

forms . . . [in a] predator’s diet increases disproportionately in comparison with the

expected amount” given an increase in prey abundance (Murdoch, 1969, p. 337).

Interest in switching stemmed from its potential to offer a mechanism for popu-

lation stability in addition to self-regulatory processes. That is, are observed stable

population levels of various species the result of the species exhausting its prey, a self-

limiting growth dynamic, or the adaptive response of its predators? Put in economic

terms, are input costs rising with increased production, does production technology

exhibit diminishing returns, or does increased production go disproportionately to

intermediate uses? Focusing on the relative abundance of prey, Murdoch tested the

null hypothesis of no switching defined by the relationship

p1/p2 = cN1/N2 (3.1)
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for two prey species (1 and 2) where p is the amount consumed, N the abundance,

and c the relative preference. Elton and Greenwood (Elton & Greenwood, 1970) later

generalized Murdoch’s expression for switching to include a parameter for the ‘degree

of switching’ between species instead of a fixed value of 1.

Cij = C0,ij

(
Ni

Nj

)b−1

. (3.2)

Here, Cij is the consumption ratio of prey species i and j, C0 the ratio at equal-

density, N the population density of each prey species, and b the degree of switching

parameter. I return to these expressions below in examining their relation to economic

substitution.

Prey switching empirics & theory

While empirical field estimates of the degree of switching are available (e.g. Rindorf,

Gislason, and Lewy (2006)), estimation strategies are complicated by the endogeneity

of consumption and population levels. Elliott notes that prey switching “is difficult

to demonstrate unambiguously in the field” (Elliott, 2004, p. 710). This difficulty

may contribute to differences in field and laboratory estimates. Van Leeuwen, Jansen,

and Bright (Van Leeuwen, Jansen, & Bright, 2007) summarize that field estimates

are more likely to indicate Holling type II responses whereas laboratory estimates

(e.g. Elliott (2004, 2006); Weale, Whitwell, Raison, Raymond, and Allen (2000)) are

more likely to generate Holling type III responses. Last, Weale et al. (Weale et al.,

2000) find that density-dependence is higher at lower overall densities, indicating that

absolute abundance may also matter.

Certain factors are likely to limit the extent to which predators can respond to

changes in prey densities. Predators may harbor strong preferences based on, for

example, limits in their ability to assimilate a mixed diet, to perceive and identify
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alternate prey, or to learn how to capture and handle them. Some of these limits may

be genetic in origin. Predator phenotypes will influence how they are able to identify,

attack, handle, and digest prey. For example, Agrawal (Agrawal, 2001) emphasizes

the influence of phenotypic plasticity on species adaptation and evolution, particularly

with respect to ecosystem patterns. Cognitive capacity may also limit the extent to

which species can recognize beneficial tradeoffs (Bond, 2007; Dukas, 2002; Dukas &

Kamil, 2001; Reader & Laland, 2003; Sol, Duncan, Blackburn, Cassey, & Lefebvre,

2005).

These factors will influence the relative consumption of species and the extent

to which predators are able to make substitution in their prey consumption (input)

choices. Limited capacity for substitution could lead predators to expend ever–higher

energetic resources on securing an adequate amount of preferred prey whose increased

scarcity drives search costs higher. This rigidity in preferences could lead to “counter-

switching” behavior if securing a fixed amount of essential prey at higher cost crowds

out the capacity to secure alternate prey. That is, counter-switching occurs when,

in the presence of increased scarcity, a given prey comprises a larger share of the

predator’s diet. For example, Kean-Howie et al. (Kean-Howie, Pearre, & Dickie, 1988)

explain observed counter–switching among sticklebacks as a preference for preserving

their alternative prey, zooplankton, which provide habitat for their larvae.

Relating economic concepts

Functional responses bear a direct relationship to economic demand curves. If I

interpret prey-species’ abundance as the inverse of the species scarcity, or an economic

“price,” I find a common demand curve shape as shown in Figure 3·2. That is,

as scarcity rises consumption declines (nonlinearly) giving a common interpretation

for both biological (Holling) functional response and economic demand. Note that,

because of the abundance-scarcity inversion, this is both a rotation and a re-scaling
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of the functional response graphs. Qualitatively, this gives type II and III functional

responses that appear to exhibit the convexity properties one would require of a

demand curve. The analytical reality here will depend on how one specifies the

functional response.

Switching behavior also has a direct relation to an essential economic concept,

substitution. To see this, I return to the null hypothesis of no switching tested by

Murdoch, given by equation (3.1). If I again take inverse abundance as the “price,”

Px1 = N−1
1 , of the prey species, I can rewrite Murdoch’s equation (3.1) as

p1
p2

= cN1

N2
→ p1

p2
= c

Px2

Px1
(3.3a)

c =
Px1

Px2
/p2
p1
, (3.3b)

recalling that p1 and p2 are Murdoch’s diet shares. Economic substitution is mea-

sured by elasticities, which, in a relative consumption context, give the percentage

change in relative consumption for a percentage change in relative prices. Calculat-

ing this derivative for Murdoch’s specification illustrates how his null hypothesis was
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equivalent to a test of a unitary elasticity of substitution among prey.

Px1/Px2

p2/p1

∂(p2/p1)
∂(Px1/Px2 )

= c1
c

= 1 . (3.4)

Elton and Greenwood’s generalization from equation (3.2) makes explicit the elasticity

parameter. In particular, taking the appropriate derivative reveals that the implied

elasticity of their switching specification is b − 1. Given that b is the degree of

switching, the direct relationship between switching and substitution is clear and I

can exploit this link to parameterize the Biological General Equilibrium (BGE) model

developed here. The parameterization can then rely on empirically-estimated degrees-

of-switching (e.g. Elliott (2004); Van Leeuwen et al. (2007); Weale et al. (2000)).

Positive and negative switching discussed in the biology literature is akin to eco-

nomic discussions of compensated elasticity of substitutions greater than and less

than one, respectively. Murdoch’s elasticities are compensated because the snail

species were observed in environments beyond their “saturation densities.” That is,

for the switching experiments, Murdoch’s species were intentionally subjected to en-

vironments in which total abundance did not affect their overall consumption levels,

meaning “income” effects were absent and Murdoch was measuring pure substitution.

On a more technical note, this fixed (compensated) “income” is somewhat dif-

ferent than that in the economic, Hicksian-demand sense of a compensated elasticity

common to the dual-posing of CGE models. Rather than being an analytical abstrac-

tion as in economics, the fixed biological income here arises from the snails’ satiation.

We might argue in this case that the satiation indicates that the marginal energetic

benefit of consumption has fallen below the marginal cost of securing and digesting

the prey.
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3.2.2 Optimal bioenergetic output

Optimal foraging covers one half of the optimization scheme affected by competitive

selection pressures. Once having optimally aggregated its prey into available resources

for its disposal, an individual must optimally allocate those resources toward various

ends that ensure the propagation of its genetic material. After satisfying activity and

maintenance costs accrued within the period, individuals must allocate the surplus

to one of three broad categories of stocks: structural biomass, reserve biomass, or

offspring. In contrast with the foraging decisions and their attendant activity costs,

biomass allocations bear on the future costs and benefits the individual will face.

These differences make it helpful to further distinguish input and output dynamics

by intra- and inter-temporal tradeoffs.

The primary unit of analysis for much of the literature on this topic is individual

“energy budgets.” A vast literature has been populated under the heading “Dy-

namic Energy Budget Theory” (DEB), propagated by Kooijman and colleagues (cf.

Kooijman (2000); Sousa, Domingos, Poggiale, and Kooijman (2010)). Others (e.g.

Giacomini, Shuter, and Lester (2013); Quince, Abrams, Shuter, and Lester (2008))

have taken a similar tack, though not under the DEB heading. The DEB literature

is broad and includes many aspects of foraging and much greater detail for individual

energy budgeting than is considered in this work; however, its unit of analysis and

essential method are consistent with the approach to inter–temporal allocation that

a BGE model would take.

A common focal point for research on inter-temporal tradeoffs is the examination

of why individuals’ growth might exhibit a maximum. The most common model to

describe this behavior is given by a logistic expression credited to von Bertalanffy:

lt = l∞(1 − e−k(t−t0)), where l is a size parameter, l∞ maximum size, t the time

period, and k the growth rate. As Koz lowski and Teriokhin summarize (Koz lowski &
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Teriokhin, 1999, p.424), Roff (Roff, 1983) suggested early that growth may be limited

by reproductive demands later in life and, by introducing a seasonal environment

(Koz lowski & Uchmański, 1987), finds that indeterminate growth is actually optimal,

though outcomes still resemble the von Bertalanffy logistic model. These authors

(Koz lowski & Teriokhin, 1999) propose a model in which species attempt to maximize

their reproductive success.

R =

T∫
0

u(t)f(w(t))L(t) dt (3.5a)

wt = [1− u(t)]f(w(t)), (3.5b)

where T is the maximal lifespan, u(t) the optimal share of energy devoted to repro-

duction, f(w(t)) the energy produced from biomass w(t), and L(t) gives survivorship.

The solution is given by the reproductive allocation, u(t), that maximizes R, found

by the Pontryagin Maximum Principle. Optimal switching between growth and re-

production in a seasonal environment exhibits a ‘saw-tooth’ pattern. This gives a

more dynamic picture of the growth-reproduction tradeoff than was found earlier in

aseasonal environments by Zió lko and Koz lowski (Zió lko & Koz lowski, 1983) and by

Perrin, Sibly, and Nichols (Perrin, Sibly, & Nichols, 1993).

Expanding on earlier work, particularly Abrams and Ludwig (Abrams & Ludwig,

1995; Kirkwood, 1981), Teriokhin (Teriokhin, 1998) took a broader approach to this

problem by allowing individuals to moderate their current and future mortality by

the amount of energy they invest in survival and repair, respectively. In maximizing

the reproductive rate, allocations are prioritized by reproduction, current survival,

and then future survival.

Similar dynamic programming models have been used to interact reproductive

strategies with prey size and size-number tradeoffs among offspring (Thygesen, Farnsworth,
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Andersen, & Beyer, 2005). Semelparity and iteroparity have also been derived as op-

timal strategies in the presence of stochastic mortality (risk) following alternate opti-

mization methods (Katsukawa, Katsukawa, & Matsuda, 2002). As part of a broader

model seeking to explain foraging behavior, Giacomini, Shuter, and Lester (Giacomini

et al., 2013) build from density- and size-dependent predation with activity costs to

predict the optimal age at which a fish ceases growth. This latter decision determines

the size spectrum and is determined in part by growth-reproduction tradeoffs.

Recent work by Ejsmond et al. (Ejsmond, Czarno leski, Kapustka, & Koz lowski,

2010) expanded on the dynamic programming method interacting seasonal variability

with offspring life-prospects to show wider variation in optimal breeding strategies.

Here the authors discuss, but do not analyze, the role of “capital breeding” strategies

(as opposed to “income breeding”), where individuals accumulate an energetic reserve

(storage) before breeding. This introduces the second allocation problem: once having

allocated energetic surplus across own–biomass and offspring, an individual must

allocate within own–biomass to structure and storage.4

Giacomini and Shuter (Giacomini & Shuter, 2013) provide a nice synthesis of

theory and empirics on the structure-storage tradeoff. Considering a seasonal bioen-

ergetic model, they focus on the timing of structure and storage allocations finding

that a dichotomous, “structure-first” allocation strategy is optimal in a wide cast of

environments. Critically, the authors note that, of the previous life-history optimiza-

tion models they reviewed, none has “explicitly included a detailed representation of

the annual pattern of energy surplus and deficit that defines the seasonal growth pat-

tern, and the constraints it imposes on growth and life history” (Giacomini & Shuter,

4In the biology literature reserves are the capital in capital breeding; however, both structure and
reserve constitute capital in an economic sense. Much has been made of a similar distinction in the
economics literature, particularly following the energy crises of the 1970s. In that case, reserve capital
is called “putty capital” in that it is still malleable (or allocable), structural or installed capital is
called “clay capital” reflecting the more fixed nature of its future costs and benefits (Phelps, 1963).



51

2013, p. 2). Giacomini and Shuter therefore make a novel and valuable contribution

to structure–storage optimization and its implications for growth–reproduction trade-

offs. Their work is also valuable in that it models an explicit temperature–dependence

of the bioenergetic dynamics, an essential component for BGE applications involving

climate forcing such as climate change or El Niño events.

3.2.3 Ecosystem dynamics

Though input and output dynamics are commonly considered in isolation by ecosys-

tem models, the obvious next step of integrating their components into a coherent

model of a system of species has been largely neglected or underdeveloped. Many

ecosystem models take phenomenological approaches that do not explicitly consider

the micro-dynamics of the ecosystem participants (e.g. (Stouffer, Camacho, Guimera,

Ng, & Amaral, 2005)). Stouffer provides a helpful comparative assessment of phe-

nomenological and population-level models (Stouffer, 2010). Here I consider two

distinct types of approaches, each with an example. First, I examine the properties

of the Ecosim fisheries population model. Of models taking approaches common to

the biology literature, Ecosim is perhaps the most similar to the current work. Still,

this model has critical limitations in its ability to represent the general outcomes

of multi-species adaptation and interaction. As an example of modeling approaches

common to the biology literature, it highlights how these approaches tend to be more

static and low-order parametric than is desired here.

The second subsection details the closest example overall to the Biological Gen-

eral Equilibrium (BGE) approach developed here, the General Equilibrium Ecosys-

tem Model (GEEM) of Tschirhart and collaborators (Finnoff & Tschirhart, 2003;

J. T. Tschirhart, 2000, 2004). This model takes a micro-founded bioenergetic ap-

proach to drive system dynamics. Species abundances depend on their ability to

secure energy over and above their metabolic requirements and demands by their
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predators. GEEM’s strengths and weaknesses are covered within the second subsec-

tion.

Biology approaches & the Ecosim model

Multi-species ecosystem models attempt to capture the interaction of the populations

of various species in a given ecosystem. These models tend to be highly parametric,

most often relying on exogenous behavioral rules for functional responses (e.g. (Berry-

man, Michalski, Gutierrez, & Arditi, 1995; Drossel, 2001; Křivan & Diehl, 2005)). For

example, a common approach to modeling predator–prey interactions is the general-

ized logistic response given by Berryman et al. (Berryman et al., 1995), who give the

growth rate from the model for an arbitrary species i as

Ri = ai − biXi − Xi∑
j cjiXjF

r(i)
j

−
∑

k dikXkF
c(i)
k

Xi
, (3.6)

where F
r(i)
j denotes the fraction of population j used as a resource by i, F

r(i)
k is the

fraction of population k that consumes i, X’s are populations, bi a coefficient of intra-

specific competition, cji the impact of a lower-trophic species j on the growth rate of

species i, and dik the impact of species i on the growth rate of species k (in a lower

trophic level). In this example, species are required to maintain a diet “menu” in

fixed proportions, which eliminates the possibility for adaptive substitutions by the

model species. Markov chains of consumption probabilities are also a common, less

parametric alternative (cf. Bélisle and Cresswell (1997); van Leeuwen, Brännström,

Jansen, Dieckmann, and Rossberg (2013)), though they are an atheoretical approach.

The “Ecosim” model is a prominent example of a comprehensive input-output-

style ecosystem model. As such, this model is worth exploring in detail as a point

of contrast with the BGE model constructed here. Ecosim is an empirically-based

model used for fisheries designed to accommodate field survey data that are mass-
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balanced by the companion “Ecopath” utility. As Walters et al. summarize, “Ecopath

provides a way to organize baseline . . . observations on abundances and trophic flows

(feeding rates, diet compositions, and growth efficiencies) into an initial, static picture

of ecosystem state” (Walters, Pauly, Christensen, & Kitchell, 2000, p. 71). This is

an analogous task to the construction of a “social accounting matrix” in economic

general equilibrium models.

The Ecopath mass-balancing routine is run on empirical data prior to calibrating

the Ecosim model. Input data are minimally-revised by the Ecopath routine to sat-

isfy the system of mass-balance equations (Christensen & Walters, 2004; Kavanagh,

Newlands, Christensen, & Pauly, 2004)

Pi = Yi + Ei +BAi +M0i ×Bi +M2i ×Bi, (3.7)

where Yi gives harvesting, Ei net migration, BAi biomass accumulation rate, Bi

the biomass, M0i the catch-all ‘other mortality’ rate, and M2i the instantaneous

predation rate. Empirical data can be balanced manually or through the automated

Ecopath routine (outlined by Kavanagh et al. (Kavanagh et al., 2004)).

Fixing diet shares affords Ecosim the beneficial trade-off of not having to assume

a steady-state observed within the data. Since, heuristically, a behaviorally dynamic

model admits a degree of freedom in diet selection, one must then impose the identi-

fying assumption that the behavior observed within the data is an optimum, implying

the system has reached a steady-state, in order to complete the calibration. (Section

3.4 will make explicit how the BGE model is calibrated to empirical data.)

In general, input-output system modeling proceeds from a balanced snapshot of

the system to a dynamic picture of system behavior by asserting certain behavioral

rules or forms for the ecosystem’s participants. The behavior posed must be consistent

with the observed snapshot and should be able to “carry” the system forward to
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future states. Ecosim describes species’ consumption behavior by a Lotka-Volterra

framework modified for spatial heterogeneity

Cij = aijBiBj (L-V), (3.8a)

Cij = aijBiBj
vij

vij+v′ij+aijBj
(Ecosim). (3.8b)

Equation (3.8a) gives the traditional Lotka-Volterra model specified in an effective

search parameter of predator j for prey i, aij, and Bi and Bj give biomasses. The

Ecosim version (3.8b) modifies the Lotka-Volterra model with parameters giving the

rate at which prey i is making itself vulnerable to predator j, vij, and the rate at

which it is making itself invulnerable, v′ij. These rates are equal by default and the

entire fraction used to modify the Lotka-Volterra expression effectively reduces the

prey population, Bi, in proportion to prey invulnerability. Maximum consumption

rates, Cmax
ij are hypothesized by the Ecosim user to estimate the vij parameter.

Ecosim then poses biomass dynamics with a time derivative of species biomass

that parallels the mass-balance equation (3.7) (Kavanagh et al., 2004, eqn. 2)

∂Bi

∂t
= gi

∑
j

Cji −
∑
j

Cij + Ii − (Mi + Fi + ei)Bi, (3.9)

where gi gives species i’s net growth efficiency, Ii − ei gives net migration, Mi gives

other mortality, and Fi harvesting. Ecosim then posits a delay difference model for

each species to describe the relation between juveniles and adults. The model is

specified in predation risk, biomass, population, body weight, and juvenile-specific

growth rates. The specification is based on the Ford-Brody growth model and the

“Deriso-Schnute equations for biomass and numbers dynamics” (Kavanagh et al.,

2004, p. 73).

The most prominent frailty in this structure is that the specified rates are not

the result of (meta-) individual decisions. The model is driven by fixed rules that
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parameterize both zeroth and first order behavior. This phenomenological approach

does not allow adaptive substitution and generally obscures relevant micro-dynamics,

thereby missing how they drive macro-level outcomes. The bioeconomic approach

taken by Tschirhart and co-authors, summarized in the next section, helps address

these shortcomings.

Bioeconomic approaches – GEEM

Tschirhart has built and employed a “General Equilibrium Ecosystem Model” (GEEM)

whose departure from traditional ecosystem models and similarity with the BGE

model constructed here warrants detailed treatment. Noting the consistency of this

approach with economic general equilibrium models (or applied general equilibrium

(AGE) models), Tschirhart argues:

[w]hat is needed is to link AGE models of economies with general equi-

librium models of ecosystems so that the critical interactions of the two

systems are accounted for when developing policies. The first step in such

a linkage is to develop a general equilibrium ecosystem model that is both

biologically sound and flexible enough to be combined with its economic

counterpart. (J. T. Tschirhart, 2000, p. 15)

Toward that end, Tschirhart proposed an energy-budget approach to modeling species

interactions, casting the model in a market framing where each species is a net energy

surplus maximizer.

In Tschirhart’s 2000 GEEM (J. T. Tschirhart, 2000), species are rank-ordered by

trophic hierarchy and not allowed to forage “up” the food chain. Each species is

specified with a net energy function in mass quantities (except in the case of solar

gain) and corresponding net energy gains (i.e. energy density of prey less cost to

secure prey) for each consumed prey, net energy losses when other species prey on it,
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and energy losses from activity and rest. Specifically,

Ri = [e0 − ei0]xi0 +
i−1∑
j=1

[ej − eij]xij −
m∑

k=i+1

eiyik − f i
(

i−1∑
j=0

xij

)
− βi. (3.10)

Biomass supply and demand functions are derived through energy profit maximiza-

tion. Populations are then updated such that energy profits are driven to zero

via a modified Verhulst-Pearl model. Energy is implied conserved in equilibrium.

Tschirhart then applies the model to modified data from an Aleutian ecosystem with

four trophic levels and six stylized species yielding numerical results that exhibit

stable oscillatory behavior.

Tschirhart later (2004) expanded this model (J. T. Tschirhart, 2004), including

additional background on economic general equilibrium theory, and additional text

dedicated to examining many of the common outcomes analyzed in the biology litera-

ture (e.g. functional and numerical responses, switching). With respect to the model,

Tschirhart reduces it to fewer species and changes the treatment of population up-

dates from an explicitly modified Verhulst-Pearl to a similar form based on energy

profits and fixed natality and mortality rates. In particular, GEEM’s latter popula-

tion update equation modifies the steady-state population growth rate, equal to the

death rate (inverse of lifespan), by the amount of actual energetic surplus relative to

that required for steady-state. When actual surpluses fall short of (exceed) steady-

state levels, the population declines (grows). GEEM’s population update equation

then takes the form (cf. (Finnoff & Tschirhart, 2005, eqn. 9))

N t+1
i −N t

i = N t
i

1
si

[
R̂i+ri
rssi
− 1
]
, (3.11)

where the Ni’s represent the population levels of species i at times t and t + 1, si is

the lifespan, R̂i is the current-period bioenergetic profit, and ri and rssi are the actual

and steady-state variable respiration costs, respectively. When bioenergetic profits,
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R̂i, equal zero ri and rssi are equal, implying no population change.

Last, novel to the 2004 GEEM simulation (J. T. Tschirhart, 2004), Tschirhart

applies shocks to a model of the Berring Sea ecosystem, showing that 20% shocks to

predator and prey species (in opposite directions) takes approximately twenty years

to equilibrate with the majority of convergence happening within the first ten years.

Tschirhart suggests that future research take on abiotic resources, age structure, and

spatial heterogeneity.

Strengths of GEEM

Tschirhart (and colleagues (Eichner & Pethig, 2006; Finnoff & Tschirhart, 2003;

J. T. Tschirhart & Pethig, 2001)) excepted, a wide gulf in the biological literature re-

mains between the bioenergetic optimization employed in solving individual problems

and the more phenomenological and behaviorally static approaches taken by many

ecosystem models. Tschirhart’s work is pioneering in this way and it is evident from

reading the ecosystem modeling literature that such an approach is desired (if not

readily recognized). For example,

[T]here are precious few advances towards truly synthesizing the connec-

tions between individuals, populations and large interconnected food webs

(A. Beckerman et al., 2010, p. 1).

[T]here is still no comprehensive theory . . . showing that activity [costs]

could be a limiting factor for predator populations (Giacomini et al., 2013,

p. 250).

GEEM exploits the rich bioenergetic optimization principles underpinning optimal

foraging (cf. Stephens and Krebs (1986)) and dynamic energy budget (cf. Kooijman

(2000)) theories to drive macro-outcomes. Beckerman et al. recently emphasized the

importance of this linkage noting that, as “the central theory linking resource and
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consumer traits to patterns of resource selection,” optimal foraging “form[s] the inter-

face between selection pressures and population dynamics,” thereby holding a critical

position in advancing “food web biology . . . as a new focal point for understanding the

interplay between adaptive behaviour [sic], population dynamics and the complexity

and structure of ecosystems” (A. Beckerman et al., 2010, p. 1). This is precisely the

campaign of the GEEM and BGE approaches.

GEEM then offers a critical departure from traditional ecosystem models in trac-

ing individual behavior to general system outcomes. Grounding a model like GEEM’s

dynamics in physically-constrained individual behavior enables a deeper articulation

of its theoretical basis. For example, at the individual level one can posit (and verify

experimentally) the extent to which species members alter their inputs in the face of

changing environments, or the metabolic relationships among inputs and outputs. In

contrast, many contemporary ecosystem models miss this opportunity by specifying

overly static diet or inter-specific competition rules, or even largely abandoning a

theoretical approach in Markov chain diet selection models (Murdoch & Oaten, 1975;

van Leeuwen et al., 2013).

Species adaptation is an essential component of ecosystem dynamics. Too often

ecosystem modeling has been unable to capture adaptation in a rich and useful way,

whether as a result of the phenomenological approach taken or coarse behavioral rules

employed. Recognizing the combination of the inherent energy budget constraint and

selection pressures exerted on species naturally leads one, as in optimal foraging,

to identify the optimum toward which species are being competed. The method of

GEEM is to identify, given a set of marginal energy costs that obtain in an envi-

ronment, toward what optimal allocation of resources selection pressures will drive

the ecosystem. Common properties of interest such as population levels then emerge

from the optimization framework instead of being a near consequence of the model
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parameterization (e.g. in carrying capacities).

Though GEEM is posed with a rather limited number of species, it is done such

that additional species richness can be incorporated. The power of GEEM, and the

ideal power of any ecosystem model, is that it be sufficiently general that it can be

adapted to a wide cast of settings. Basing the model structure on physical principles

of energy and mass conservation furthers this generalizability. GEEM is also general

in the sense of the equilibrium solutions it identifies. They are quite simply all optimal

outcomes that obey basic conservation principles given the prevailing conditions in

the ecosystem. One challenge to such a parsimonious definition is that it can admit

multiple equilibria. Yet, amongst a variety of limitations, the generality of equilibria

is the most potent advantage of general equilibrium models in that it allows for rich,

and often counterintuitive, interactions. As quoted by Tschirhart (J. T. Tschirhart,

2000, p. 17), Ken Arrow provided a rather pithy explanation of this potency.

Whatever the source of the (economic equilibrium) concept, the notion

that through the workings of an entire system effects may be very differ-

ent from, and even opposed to, intentions is surely the most important

intellectual contribution that economic thought has made to the general

understanding of social process (Arrow, 1968, p. 376)

Indeed, in GEEM, and in the BGE model constructed here, the campaign for a general

equilibrium representation is premised on the notion that there is nothing uniquely

“social” about the law of unintended consequences.

Critiques of GEEM

Tschirhart’s optimization is done for a linear profit function in fixed marginal benefits

and varied marginal costs (the equilibrium price). This means that substitution is

unconstrained for predators (Beckerman et al.’s diet breadth model is similarly limited
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(A. P. Beckerman, Petchey, & Warren, 2006)), which has not likely posed problems

for Tschirhart’s empirical investigation due to the extremely narrow diet breadths

and small systems evaluated. Moreover, the range of prey is artificially constrained

by food chain order where it could be determined empirically from input-output

data. Though foraging “up” the food chain was not likely prevalent in the Aleutian

ecosystem examined, it often occurs where lower-trophic adults feed on higher-trophic

juveniles. This may require distinguishing adults and juveniles and possibly specifying

a sub-model of stock recruitment (similar to Ecosim).

Tshcirhart notes that “[i]n an economy, consumers or firms typically pay the

same price to other firms for the latter’s goods, but in an ecosystem organisms from

different predator species pay different energy prices to capture biomass from a prey

species” (J. T. Tschirhart, 2000, p. 16). This apparent foil led Tschirhart to pose his

equilibrium in a multiplicity of prices, which were not constrained by the fact that

they were driven in part by common scarcity costs for prey. This under-determined

price structure also obscures how prices, through GEEM’s profit function, likely imply

the functional responses observed numerically in later work (J. T. Tschirhart, 2004).

Second, the economic ‘law of one price’ for “consumers or firms” ought not be taken

strictly. While there is often, though certainly not always, a common core explicit cost

to market transactions, market participants also incur a variety of heterogeneous non-

market costs. For example, economic search costs can vary by consumers’ location

or familiarity with the market and product. Economic models typically either aver-

age away or incorporate this heterogeneity into preferences by altering the marginal

benefit of the good. Differences in expenditure can be accounted by introducing fixed

predator-specific “taxes” or modifying marginal benefits in calibrating a bioenergetic

production function. This enables one to maintain a common, systemic (or market),

scarcity-based cost to foraging while still incorporating heterogeneous responses to
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that scarcity.

In some instances GEEM poses lower-order parameterization where other tech-

niques are available. For example, marginal energy benefits to consumption are fixed.

One of the major strengths of general equilibrium methods is that their parameter-

ization is generally restricted to second-order behavior; i.e., substitution elasticities.

First-order behavior is implied by the optimization and calibrated from empirical

observation (assuming one observes a steady-state). Zeroth-order behavior, or level

outcomes, are emergent but generally constrained by the zeroth-order initial condi-

tions; i.e., the fixed quantities of initial resources (also empirical).5 One of the great

shortcomings of many biological models is their zeroth-order parameterization; e.g.

through carrying capacities. In a move toward general equilibrium then, Tschirhart’s

first-order parameterization does not capture the full benefit of a general equilibrium

structure.

Though numerical simulations based on empirical ecosystem data are given for

GEEM, the model could better capitalize on the information within the ecosystem

empirics. Specifically, general equilibrium models exploit the assumption of an ob-

served steady state in the input-output data to calibrate the model. Particularly

for fisheries, both stomach content (input) and population level (output) data are

available, in some cases with time-series. For example, a variety of data used for

empirically-based fisheries modeling conducted with the Ecopath with Ecosim soft-

ware are maintained on the Ecopath website.6 Mass-balanced data such as these are

the target to which the Biological General Equilibrium (BGE) model developed here

tunes its specification. This approach is also available with the data on the Aleutian

5In an economic setting these quantities classically include labor and capital stocks. In an ecosys-
tem, these correspond to biomasses, light, and nutrient quantities available to the system at the start
of the period. In the abstract, these are simply the system’s initial conditions that will be updated
to next period’s stocks by the specified first-order differential equations.

6See www.ecopath.org.
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ecosystem Tschirhart compiled for GEEM (Finnoff & Tschirhart, 2003) as will be

shown in the calibration and application of the BGE model.

Tschirhart finds a conflicting analogue in the patterns of value flows within economies

and ecosystem. In particular, he contrasts that “in a marketplace trade, material and

money flow in opposite directions, but in an ecosystem trade, biomass and energy flow

in the same direction” (J. T. Tschirhart, 2000, p. 16). It is crucial that, in adapting

the tools of one discipline to the context of another, these conceptual differences are

highlighted and examined.

First, biomass and energy are metrics for evaluating both the benefits and the

costs of consuming prey. Species face costs of expended energy and ultimately mass

(wastes) to secure the benefits of mass and energy their prey offer. So, while mass and

energy benefits flow from predator to prey, mass and energy exertion costs also flow

from predator to the environment. A key difference here, and perhaps the true crux

of the issue Tschirhart raises, is that the expenditures accrue to the environment

instead of the prey who supply them (as in an economic setting). This does raise

certain challenges, but careful accounting can resolve this issue.

Second, a bidirectional flow of value is a prevalent feature of the marginal cost-

benefit tradeoffs that drive economic reasoning, but it is not the only type of flow.

Depreciation and technological inefficiencies are both examples of unidirectional flows

in economics. Just as with an ecosystem’s prey, these kinds of unidirectional costs

mean that system participants must give up some of their product without receiving

anything in return. There may not exist any “free lunches,” but ‘free costs’ abound.

In sum, the essential concern here is not the direction of the flows, but the com-

pleteness of the accounting system. Provided all flows, whether neatly bi-directional

among two parties, multi-directional among several, or truly unidirectional (costs),

are accounted, the zeroth-order requirements of the input-output modeling structure
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will function as intended. Also, provided mass or energetic benefits come at some

cost to system participants, the first-order conditions of the input-output modeling

structure will also function as intended.

To ensure the latter, marginal costs must eventually match or outstrip marginal

benefits. This can happen by diminishing benefits, rising costs, or some combination

of the two. It does not matter to whom the costs are paid, only that there are no

“free lunches” and all flows are accounted. The aforementioned differences between

economies and ecosystems do not preclude a model with economic reasoning, but they

do require modified structure and interpretations.

Other bioeconomic approaches

Hannon offered an early adaptation of input-output accounting and modeling tech-

niques to an ecosystem application (Hannon, 1985, 1986). Input-output modeling is

a predecessor to general equilibrium modeling in economics. While both share a com-

mon accounting structure, general equilibrium modeling goes further to specify the

adaptive optimizing behavior of the system participants with the critical addition of

endogenous “prices” driven by competition and resource scarcity. The lack of adap-

tive behavior and endogenously-imposed resource constraints is a critical limitation of

input-output approaches. Indeed, the inherently static behavior of the input-output

approach requires that Hannon make “a myriad of assumptions to successfully con-

strain the results to the reasonable and stable equilibria” (Hannon, 1985, p. 99), which

he develops further in later work (Hannon, 1986).

The adaptive behavior of the general equilibrium approach dampens the propa-

gation of shocks, reducing the tendency toward instability and chaos, and offers a

parsimonious set of parameters by which one can fine-tune the system’s dynamical

behavior to biologically “reasonable” outcomes. Although Hannon discusses certain

resource scarcity considerations, the input-output approach cannot endogenously al-
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locate system resources in response to the adaptive, competitive behavior of system

participants. Last, Hannon’s work offers much text relating economic analogies to

ecosystem dynamics. While Hannon is one of the few to have extended these analo-

gies to the development of analytical tools, there is no shortage of literature offering

qualitative explorations of ecologic-economic analogies (cf. Ruth (1993)) that I do not

cover.

Mullon, Shin, and Curry (Mullon, Shin, & Cury, 2009) outline a Network Eco-

nomics Approach to Trophic Systems (NEATS) that operates on a marginal cost-

benefit assessment for trophic exchanges. Their model expresses linear predation

costs complementary to trophic exchange quantities. The overall system is a linear

program that solves for a feasible equilibrium given first-order parameters such as

fixed assimilation efficiency (γi), other losses (µi), predation costs (κi), and inter-

specific competition costs (λi). The linear program solves for steady-state population

levels; i.e., it does not allow for steady-state growth as an equilibrium outcome.

The NEATS model draws in part on Network Economics work by Nagurney

(Nagurney, 1998) who has also recently applied Network Economics to modeling

ecosystem dynamics (Nagurney & Nagurney, 2011) as a “spatial price equilibrium.”

This work provides a formalization to the basic approach taken by Mullon et al. (Mul-

lon et al., 2009); i.e., it develops a linear program with first-order parameterization

of efficiencies and marginal costs.

Summary

Beckerman and Petchey recently lamented that “there are precious few advances to-

wards truly synthesizing the connections between individuals, populations and large

interconnected food webs” (A. Beckerman et al., 2010, p. 1). Much attention has been

paid to the role of adaptive behavior in driving food web complexity, stability, and

topology (Abrams, 2010; Křivan & Schmitz, 2003; Kondoh, 2003; Plitzko, Drossel, &
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Guill, 2012; Van Leeuwen et al., 2007; van Baalen, Křivan, van Rijn, & Sabelis, 2001),

and some have offered valuable first steps toward integrating micro-founded bioener-

getic dynamics in population dynamic models (Brose, 2010; Diekmann & Metz, 2010;

Eichner & Pethig, 2006; Garcia-Domingo & Saldaña, 2007; J. T. Tschirhart, 2000),

but a general, bioenergetic approach to the role of adaptive behavior in population

dynamics does not appear to have been established.

The bioenergetic, “bottom-up” approach to macro dynamics seems to enjoy nearly

exclusive attention from economists (e.g. Tschirhart (J. Tschirhart, 2009; J. T. Tschirhart,

2004), Pethig (Eichner & Pethig, 2006; J. T. Tschirhart & Pethig, 2001), Finnoff

(Finnoff & Tschirhart, 2003, 2008), Nagurney (Nagurney & Nagurney, 2011)). Micro-

macro integration is, after all, an eminent and long-studied issue in economics. Yet

these approaches still take a linear, low-order parametric approach that begs extension

given the general equilibrium tools available from economics. The research attention

in economics to general equilibrium modeling has yielded a robust tool set for mod-

eling macro-outcomes from micro-founded behavioral forms in economics. It offers

an obvious template for constructing such a model in a biological setting. Doing so

will require abstracting just the basic structure of the economic general equilibrium

framework so as to accommodate the biological dynamics I want to represent.

3.3 Biological General Equilibrium Model

3.3.1 Overview

A micro-founded approach to ecosystem modeling posits behavioral forms to generate

activity within the system. For example, for each type of predator in the system, a

micro-founded model will provide a behavioral function that identifies how much of

each prey it will consume if competed to an optimum. In the BGE model, and in

optimal foraging, these decisions are determined by an adaptive trade-off of costs and
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benefits associated with various prey. Behavioral functions alone do not constitute a

model. First, behavior describes activity within the period relative to the state of the

system at the beginning of the period. For this reason, the system must be initialized

with certain data such as population levels. That is, the model requires initial condi-

tions. The behavioral forms update the initial conditions to new system conditions,

but modifications that produce physically impossible states must be excluded. In

particular, the behavior of the system participants will modify the initial conditions

in a manner consistent with mass and energy conservation. Imposing these system

conditions requires that I enforce a complete accounting of the mass and energy flows

within and across the boundaries of the system. In addition to the behavioral forms,

which describe the flows within the system and within the period, I must also specify

functional forms to describe mass and energy flows across the system boundaries,

spatial and temporal, to give boundary conditions.

To summarize, a micro-founded model posits individual behavioral functions for

species behavior that carry the ecosystem forward from particular initial conditions

to new states where, given certain boundary conditions describing flows in and out

of the system, energy and mass are conserved to satisfy system conditions. Optimal

behavior consistent with all three conditions constitutes a steady-state equilibrium

of the system. The modeling section will describe each of these model components

in detail. An input-output data structure will aid the accounting and intuition with

respect to conserving mass and energy. First, I offer additional qualitative description

of each component, relating it to the existing modeling literature.

Behavioral Function

The behavioral forms of the model are perhaps the most complex because they must

be derived from an optimization process. The most basic aspect of behavior I would

like to represent is how species select their prey. To do so, I describe what benefit con-
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suming these prey inputs generates. In the BGE model, the assimilation of consumed

prey generates a certain quantity of available energy for the predator. The benefit of

this available energy is that the predator can use it to support the propagation of its

genetic material. I first specify a function that will map prey inputs to bioenergetic

output for a given predator.

Benefits

To represent consumption benefits I pose a constant elasticity of substitution (CES)

bioenergetic “production function” calibrated on empirical observation and parame-

terized by empirical estimates of substitution possibilities (percent-for-percent changes

in inputs yielding equivalent output). This function, common in economics, is a gen-

eralization of the log-linear, “power-law switching” functions common to the biology

literature. A “nesting” feature of this function permits differentiating substitution

across multiple prey, something absent from the power-law switching literature in

theoretical biology.7 The functional response and switching literatures have made

substantive progress in understanding species adaptive capacities and limitations in

prey selection. This work can inform the CES function’s specification in the BGE

model applications. An essential feature of the CES function is its many-to-one map-

ping of bundles of prey inputs to bioenergetic output. The ability of the predator

to generate the same level of bioenergetic benefit from a variety of combinations of

inputs is what affords it the luxury of substitution. This substitution is motivated by

the relative costs and benefits of the prey inputs.

7Van Leeuwen et al. note recently that power-law models introduce “an inconsistency” with
multiple species in that, “if one chooses three prey species A, B and C such that the exponents
for switching between A/B and between B/C are identical, then it follows that the predator will
always switch between A/C with exactly the same exponent” (van Leeuwen et al., 2013, p. 90).
This has a straightforward remedy in a CES function, which was originally posed by Arrow et al.
(Arrow, Chenery, Minhas, & Solow, 1961). In particular, given the later generalization by Sato
(Sato, 1967) of the initial CES function to a “nested form,” one simply nests A and C together to
admit differential switching behavior. This will be covered in detail further below.
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Costs

The search, handling, and digestive costs associated with a given prey will depend

on predator traits and behavior. So while all predators search costs are driven by

the same observed scarcity for a given prey within the system, the effective cost of

acquiring that prey will differ by predator. These differences can be modeled in two

ways: either in the (CES) benefit or (linear) cost function. Marginal benefits of

prey differ across predators depending on the specification of the benefit function.

One can also assign predator-specific “taxes” that modify predators’ perceived prey

abundance. Foraging costs then play a clear and prominent role in driving predator-

prey dynamics in an energy budget framing. Remarkably, Giacomini et al. note in

recent work that “there is still no comprehensive theory . . . showing that activity

[costs] could be a limiting factor for predator populations” (Giacomini et al., 2013, p.

250). In the BGE model, competitive selection pressures drive predators to maximize

the energetic benefits gained, modeled by the CES function, for a given level of prey

acquisition costs.8 Solving this optimization gives the functional forms needed to

generate species behavior as a function of model variables, in particular, marginal

costs and output levels.

Specification

A nested CES function gives both analytical tractability and mutual consistency

of multi-prey functional responses, properties highlighted recently by van Leeuwen

et al. (van Leeuwen et al., 2013). Where prices are taken as scaling with inverse

population densities, the switching parameter of the foraging literature is simply the

economist’s elasticity of substitution, which parameterizes the CES function. Further,

8By the duality of the optimization problem, one can equivalently minimize the acquisition costs
for a given level of bioenergetic benefit. In fact, this is the preferred approach in CGE modeling.
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van Leeuwen et al. (van Leeuwen et al., 2013) summarize surveys of such estimates

(Elliott, 2004, 2006; Greenwood & Elton, 1979) citing values in the range 0.4 − 2.0,

which are well within the norm of economic elasticity values and in accord with an

upper bound of 2 derived from van Leeuwen et al.’s model (van Leeuwen et al., 2013,

p. 97).

For the BGE model, I will argue that marginal handling and digestive costs for

a given prey can be taken as fixed and predator-specific, but search costs will vary

depending on prey scarcity and not depend on the predator. (Marginal benefits

will be declining in total consumption, which could be interpreted as rising digestive

costs.) Total foraging costs are then a function of fixed, predator-specific attributes

and variable, system-wide scarcities.

Initial Conditions

The ecosystem starts each period with species population and resource quantities on

which the intra-period activity depends. While the intra-period activity can generate

a variety of production and consumption outcomes, nothing can be done within the

period to change the value of these initial quantities. The initial conditions are the

result of past “decisions” and processes exogenous to the ecosystem. Modeled species

must compete for resources such as light and basic nutrients as they do for other

prey. Again, the distinction here is that no intra-period dynamics will change the

supply of these resources to the species. This does not mean that the quantity of

initial resources actually consumed must be fixed. For example, in the case of light

and nutrients, primary producers will not utilize the entire quantity available to them

(in fact the vast majority will go unassimilated), rather they will use quantities up to

the point where the marginal benefit falls to meet the marginal cost of securing the

benefits.

By contrast, modeled species may be more or less abundant depending on the
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system’s prevailing scarcities and level of competition within the period. Species’

starting biomasses are assumed, as an analytical abstraction, to be entirely assim-

ilated via their species’ bioenergetic production function. As a result, there is no

competition for a species’ own starting biomass, though maintenance costs do obtain

and its scarcity does imply an opportunity cost. Including starting biomasses in the

bioenergetic production function limits the amount of growth the species can undergo

within the period. Since the starting biomass is fixed, marginal additions of other

inputs represent substitution away from the standard consumption-to-biomass ratio.

Additions beyond common ratios will face diminishing returns, which must exceed

the marginal costs of securing the additional inputs (prey).

Boundary Conditions

There are two types of boundary conditions, spatial and temporal. Spatial boundary

conditions describe the quantities of mass and/or energy leaving the system within

the period. These include wastes, migration, and energy expenditures not mass-

embodied (e.g. costs associated with thermal regulation or exertion). Temporal

boundary conditions describe mass and energy quantities being carried forward to the

next period within the system, or leaving this period’s system for next period’s. A full

expression of the inter-temporal dynamics would allocate total ending biomasses to

structure and storage as well as progeny. These quantities comprise the sum of genetic

material the species will propagate to the future to further its survival objective.

System Conditions

Finally, I must require that the outcomes generated by the behavior are physically

realistic. The model is constructed with an input-output structure, which enables

the natural requirement that mass and energy inputs equal outputs. I then require

a complete accounting system that will identify all mass and energy inputs and how
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their transformed outputs are allocated within and across the boundaries of the sys-

tem. Behavioral functions track flows within the system, the initial conditions track

flows across the temporal boundary (past-to-present), and boundary conditions track

flows across the spatial and temporal (present-to-future) boundaries.

Next, I explore how these components come together to form a biological general

equilibrium model. Prior to giving the general mathematical expression of the model,

the following section outlines a stylized BGE model to demonstrate how these pieces

are assembled into an internally consistent model and to motivate the accounting

with additional examples.

3.3.2 Stylized Model Example

Figure 3·3 gives a sample set of accounting matrices for a stylized marine ecosystem.

Six species are modeled in this system: primary producers (PP), zooplankton (ZP),

benthic organisms (BO), small fish (SF), big fish (BF), and marine mammals (MM).

Primary resources of light (L) and nutrients (N) are given as part of the initial con-

ditions for the system along with starting biomasses (SB). Boundary conditions are

summarized by respiration (R), metabolism (M), harvesting (H), and ending biomass

(EB).

 PP ZP BO SF BF MM R M H EB

PP  x x x   x x  x

ZP  x x x   x x  x

BO   x x x x x x x x

SF    x x x x x x x

BF     x x x x x x

MM      x x x  x

L x      

N x      

SB x x x x x x

Figure 3·3: Stylized input-output ecosystem accounting matrices
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Notice the symmetry of the upper left matrix. This matrix accounts for mass flows

from one species (the row) to another (the column). These interspecies exchanges

occur during the period and values for these cells (non-zero where x’s are present) are

generated by the behavioral functions described in the previous section.

The array of columns and rows across the matrices is structured consistently with

species inputs and outputs, respectively. For example, primary producers (PP) take

only own-biomass (SB), light (L), and nutrients (N) as inputs. These inputs are

converted into available energy according to the bioenergetic production function

described in section 3.3.1. It is the primary producer’s objective to allocate as much

of the available energy produced from its inputs to ending biomass (EB) as possible

to propagate its genetic material. It must also satisfy the other non-zero demands

for its available energy across its row. In this example, that includes demands by

zooplankton (ZP), benthic organisms (BO), and small fish (SF) as well as its own

respiratory (R) and metabolic (M) demands. Predation and metabolic costs are

exogenous to the species while the respiratory costs depend on activity. For the

primary producer, whose “foraging” is passive, activity-driven costs will be negligible,

while the activity-driven costs incurred by marine mammals, for example, to secure a

diet of prey comprised of benthic organisms through other marine mammals will be

significant.

The conservation conditions require that the energetic and mass values of inputs

must equal the outputs. Taking zooplankton as an example this time gives

SBZP + ZPZP + PPZP︸ ︷︷ ︸
input

= ZPZP +BOZP + SFZP +RZP +MZP + EBZP︸ ︷︷ ︸
output

(3.12)

where all quantities are given in mass, this gives the mass conservation condition for

zooplankton. If I knew the energy density of each of these masses, I could multi-

ply these by their corresponding masses and generate an energy balance condition
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provided I also had expressions for massless energy losses.

Since the species objective is to maximize ending biomass (EBZP ), the conserva-

tion condition suggests that its energy expression, as opposed to the mass expression

above, will be given as the difference between the energetic benefits of the zooplank-

ton’s inputs and the energetic costs (fixed and variable) it must pay as part of its

output. For the benefits, I know that a specific amount of available energy will be pro-

duced from the two chosen and one exogenous input of the zooplankton as determined

by the bioenergetic production function. This production function, which I denote by

F (PPZP , ZPZP , SBZP ), takes a constant elasticity of substitution (CES) form (given

explicitly in section 3.4). I also posit a linear cost function, Ξ(PPZP , ZPZP , SBZP ).

Variable costs depend on prey and starting-biomass inputs, which are accounted in

output under respiration (R) and metabolism (M), respectively. Losses to harvesting

(H) are given exogenously.

I now have a means for expressing the zooplankton’s objective as maximizing the

difference between bioenergetic benefits and costs

Π = F (PPZP , ZPZP , SBZP )− Ξ(PPZP , ZPZP , SBZP ). (3.13)

The zooplankton, and all other modeled species, is assumed to be competed toward

the optimal selection of inputs given an output level (Y ) and the marginal costs of

inputs, both of which are model variables. The modeled species then choose within

the period only what to consume based on the costs of predating and the benefits of

assimilating the various prey. Less-abundant prey are more costly to forage – they

are ‘harder to find.’ Prey abundances are calculated net of all predation. In this way,

competition among predators for a given prey species are reflected in higher foraging

costs for both.

For each species, there is an optimal selection of prey for any set (or vector) of
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population scarcities. The optimal behavior implied by a given vector of population

scarcities, which incorporates the initial and boundary conditions, may not satisfy

the conservation conditions. The task of the modeling exercise is to find a set of

scarcities and output quantities for which the implied optimal behavior for all species

satisfies the system conditions. That is, the biomasses produced and consumed by

all the modeled species, which are optimally selected based on the species’ relative

scarcities, must be physically realistic – they must conserve mass and energy.

3.4 Model Structure – Intra-Temporal Dynamics

3.4.1 General Structure

I represent the ecosystem in an input-output framework with five matrices (M, R, X,

D, and E). Matrix entries in matrices M, R, X, and D represent mass quantities that

flow among the I species in the ecosystem and the surrounding environment. Matrix

entries in matrix E give energy quantities that flow from the ecosystem species to the

surrounding environment.

↑
Input
↓

← Output →︷ ︸︸ ︷


x11 · · · x1I
...

. . .
...

...
. . .

...
xI1 · · · xII



d11 · · · d1L
...

...
...

...
dI1 · · · dIL



e11 · · · e1N
...

...
...

...
eI1 · · · eIN


[ r11 · · · r1I

...
...

rK1 · · · rKI

]
[
m11 · · · m1I
m21 · · · m2I

]
M: prior-period Masses
R: exogenous-produced Resources
X: inter-species eXchange
D: final Disposition
E: massless Energy flows

Figure 3·4: Biological Accounting Matrix of input-output data

A column spanning the X, R, and M matrices represents inputs to the jth species

corresponding to that column. A row spanning the X, D, and E matrices represents

allocations of mass (X and D) and energy (E) by the ith species (corresponding to
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the row) to its predators (X), final uses such as ending biomass and wastes (D), and

massless energy losses to the environment (E). For each species and resource there

is a corresponding fixed energy density ρi, ρf . These densities are used for energy

accounting below.

Matrix M contains each species structural (m = 1) and storage (m = 2) biomasses,

which are determined in the prior period. These include, for example, skeleton and

muscle (structure) and fat (energy storage). In the initial applications of the BGE,

I will take the simplifying assumption of only one aggregate starting biomass, but

it is reasonable to posit that optimal consumption behavior would differ relative to

different levels of structure and storage.

Matrix R contains K exogenously-produced ecosystem resources. For example,

these might include light, nutrients, or even primary producers. The M and R matrices

are similar in that they both represent exogenously-produced (or supplied) resources

for the ecosystem. In the case of matrix M, the exogeneity comes from the fact that

starting biomasses were determined by past periods’ activity. In the case of matrix R,

the exogeneity represents the assumption that the total availability of resources for

the period cannot be changed within the period. For example, no realistic action by

the species will change the amount of available sunlight to the ecosystem – the supply

of sunlight is effectively fixed with respect to ecosystem dynamics. Individuals will

compete for access to the fixed supply of these resources driving the exertion costs

required for a species to consume the resource.

So the defining assumption for an input to be included in matrix R (as opposed to

matrix X) is that the quantity supplied (or produced) within the period is unaltered

by the intra-period activity of the ecosystem species. If the total supply of a resource

(energy, nutrient, or species) is thought to depend on species’ behavior, its production

should be modeled and included in matrix X.
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Matrix X elements, xji, represents the flow of mass from species j to species i

so that a column of X is species i’s input vector in other species’ masses. Likewise,

a row of X is species i’s output vector of masses to its predators. Diagonal entries

would represent cannibalism. The defining feature of matrix X is that both the input

and output quantities for the species defining its columns and rows are endogenously

determined within the period. For example, say in a marine setting I wish to model

Atlantic cod. Both the input and output (column and row) of the cod depends on

the behavior and abundance of its prey and predators, as will be explained further in

the behavior section below.

Matrix D summarizes each species’ final disposition of accumulated mass to differ-

ent mass categories. There are L = 5 final disposition categories for each species. The

sum of d1−d3 represents the the amount of energy a species can carry forward to the

next period embodied in its own biomass – its behavioral maximand. The allocation

among d1 − d3 is determined by inter-temporal dynamic optimization (discussed in

section 3.2.2). For simplicity, this allocation can be done in fixed shares or collapsed

into an ending biomass aggregate. Wastes (d4) are jointly determined by prior-period

structural mass and current period activity levels. Net migration and natural deaths

(d5) could be exogenously specified or be modeled in some way.

d1: structural biomass d2: storage biomass d3: progeny
d4: wastes d5: net migration & natural deaths

Matrix E gives energy losses not embodied within system mass flows. There

are N = 3 massless energy loss categories for each species. Ambient losses (e1)

are determined by the difference between ambient and (optimal) body temperatures.

Metabolic transformation losses (e2) are driven by the inefficiency of the bioenergetic

production function in converting energy embodied within prey to energy available
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for its own uses (further explanation below). Activity losses (e3) are driven by the

scarcity of the species’ prey and the mass quantities consumed. This is the energy

expended to locate and compete for prey.

e1: metabolic transformation losses e2: ambient losses
e3: activity losses

All matrix quantities are constrained positive except net migration (d5). Quantities

are described in greater detail below.

The defining feature of the D and F matrices is that they are contingent on the

activity within the period, but cannot be directly “chosen” by the species in the way

the values of the X matrix can. This exogeneity is similar to how M and E matrices

represent quantities whose total values are determined at the start of the period;

i.e., the initial conditions. The D and F matrices represent quantities leaving the

system; i.e., the boundary conditions. This can happen spatially, via mass or energy

leaving the species and accumulating outside the modeled ecosystem (i.e. wastes d4,

migration d5, and energy losses e1− e3), or temporally, via biomasses that carry mass

and energy over from the current period to the next (i.e. d1 − d3).

Given these initial and boundary conditions, I also impose conservation identities

on the system’s mass and energy quantities so that the modeled outcomes are phys-

ically realistic. With these three sets of conditions in place, I can then propagate

the system dynamics with species behavior, which I will derive through optimization.

Specifically, I assume that the species are competed toward optimal foraging strate-

gies, which are defined by the maximization of the amount of mass and energy carried

forward within its genetic material to the next period (i.e. ρi[di1 + di2 + di3]).
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3.4.2 Behavior

Costs

Each species’ input value for the X, R, and M matrices is derived from behavioral

assumptions. Behavior in the model is propagated by the bioenergetic function Fi

(introduced above) and restored to an interior value by the attendant maintenance

and activity costs. These costs are paid to the environment in the form of dissipative

losses and mass wastes. Assuming only a single starting biomass, mi, and marginal

(energy per unit mass) scarcity costs of inputs, φ, I can express these costs as a

function

Ξ(φ,m, r, x) = φmimi +
∑
k

φkirki +
∑
j

φjixji. (3.14)

That is, species i pays to the environment costs linear in its inputs of own-biomass

(mi), resources (rki), and prey (xji). Part of the energetic value of these costs will

account for the mass wastes captured by the environment from species i.

Stock recruitment is a critical driver of these costs that is abstracted away in this

presentation. As presented, species end the period with a certain generic quantity of

biomass. In reality, the total quantity of ending species biomass is allocated across

progeny and different types of own biomass (structure and storage). The juvenile

population could be modeled as a distinct “pseudo-species,” with its own intra and

inter-temporal dynamics, but this approach is left to future work.

Setting aside the structure and storage categories, there is an implicit stock recruit-

ment relationship embedded in the current abstraction. Specifically, biomass devoted

to reproduction that does not lead to a surviving juvenile population is assumed to

be part of the waste category (in addition to excreta and natural death). Given a

total quantity of a species’ energetic input, losses to predators, and net migration,

a baseline growth rate calibrates the allocation of remaining energy between ending
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biomass and wastes. (Chapter 5 deals explicitly with calibration to species-specific

growth rates.) To increase (decrease) recruitment rates, we can decrease (increase) the

relative amount of waste produced by modifying the calibrated relationship between

total biomass and waste production.

Scarcity costs

The φ−i’s give energetic scarcity costs per unit mass as a function of system scarcity

(inverse prey abundance) and predator-specific costs (ϕji). Species abundances (or

densities) are given by ni = Ni/A, where A is the relevant area (or volume depending

upon the application) of the ecosystem and Ni is the raw number of individuals of the

species. For simplicity, I will ignore the allocation of ending biomass to structure (d1),

storage (d2), and progeny (d3). Using ending biomass to calculate scarcity implies

that it is determined at the margin of the last-predated mass of the species. (A similar

calculation is used for resources.)

Given species and resource abundances, scarcity costs are given by the product of

their scarcity and species-specific energy costs, ϕ,

φji(nj;ϕji) =
ϕji

nj
, (3.15)

and similarly for resources. The ϕ terms give energy expenditure per scarce-unit

of prey. That is, ϕji times prey scarcity (1/nj) times units of prey consumed (xji)

gives total energy expended by species i to consume prey j. This characterization

of scarcity is based on optimal foraging theory. In the model, species scarcities are

endogenous variables. For consistency between the ecological scarcity measure and

the model variable actually employed the two should be linearly related. I confirm

this behavior for each species in model testing.
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Objective

Having specified the costs for the model species, I am ready to express the propagating

benefits driving species consumption. To do so, I maximize the net energetic “profit”

of the species (eqn. 3.17). First I must specify F , which I do in constant elasticity of

substitution (CES) form common to economics (cf. Arrow et al. (1961); Sato (1967)).

F (Xi, Ri,mi) =

τi

(
αX

(∑
j αjix

%Xi
ji

)%0i/%Xi

+ αR (
∑

k αkir
%Ri

ki )%0i/%Ri + αMm
%0i
i

)ηg/%0i
.

(3.16)

The arguments Xi and Ri give species i’s vector of prey and resource inputs, respec-

tively. This form will imply that species i will make aggregate substitutions across

its prey, resources, and own-biomass inputs in a parametrically distinct manner from

substitutions among prey or resources (i.e. %0i versus %Xi or %Ri, respectively). In

a biological setting, the %’s parameterize the “degree of switching” among prey or,

more generally, inputs. Given the bioenergetic production and cost functions, the

corresponding profit function is given by

Π(F,Ξ) = F (Xi, Ri,mi)− Ξ(Xi, Ri,mi) (3.17)

The intra-temporal objective is then to maximize this bioenergetic profit – the amount

of energy carried forward within the species to the next period – by choosing Xi, Ri,

and mi given metabolic costs of own-biomass, φmi, and scarcity costs of resources

and prey, φki and φji. Note however that own-biomass inputs will be fixed to starting

biomass (i.e. mi = M0i).

Maximizing the species energetic profit generates optimal input quantities for Xi,

Ri, and mi. Given these optimal quantities and exogenously specified values for the

elasticity parameters (%), the remaining parameters (τ and the α’s) can be tuned

to match observed steady-state values within empirical or simulated input-output
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matrices. The next subsection details how to derive the optimal quantities and how

this derivation implies critical “dual” relationships between model variables. The

model solution algorithm will exploit this duality relationship to identify solutions.

Finally, the bioenergetic production function produces energy for both waste and

new biomass. The allocation among the two is determined by a functional form

similar to that used for inputs,

(αWw
%Oi
i + αBb

%Oi
i )1/%Oi = F (Xi, Ri,mi). (3.18)

For the baseline specification of the BGE model, I will require that waste and biomass

be produced in fixed proportion, implying a fixed bioenergetic efficiency for each

species. Parametrically, this behavior holds for %Oi = 0, a counterintuitive result

that works out in the limit of %Oi → 0. The remaining parameters can be calibrated

to observed data based on the relative values of waste and new biomass produced

(determined by the ecotrophic efficiency in Ecosim data).

3.4.3 Optimization & Duality

This subsection shows the derivation of optimal bioenergetic profit through the pri-

mal and dual presentations of the optimization problem. The values of a Biological

Accounting Matrix (BAM) from ecosystem input-output data can then be used to

calibrate these demands assuming that they represent a steady-state outcome for the

ecosystem; i.e., that the intra-period behavior represented in the BAM is optimal

given the conditions faced by the species.9 One could identify ways to parameterize

an ecosystem that is not in steady-state if this assumption is untenable. For exam-

ple, species choices could be randomly shocked to sub-optimal levels by transferring

energetic profit from species to the environment or other species.

9The benchmark BAM need not be a single-year snapshot. One could, for example, take a
multi-year average or more sophisticated approximation to an equilibrium for the ecosystem.
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Objective

To avoid unnecessary complexity in these examples I will assume that species have

two or three inputs, own-biomass plus one or two prey. For a species with one prey,

the bioenergetic production function takes the form

F (xji,mi) = τi
(
αi0x

%i0
ji + αi1m

%i0
i

)1/%i0 , (3.19)

where xji gives species i’s singular prey input, j denoting the prey species, and mi

species i’s starting biomass. The associated costs that depend on inputs are given as

Ξ(xi,mi) =
∑
j

φjixji + φmimi. (3.20)

For species with multiple prey, an aggregate of both prey will take the place of

xji in equation (3.19),

X =

(∑
j

αjix
%xi
ji

)1/%xi

. (3.21)

The construction of the bioenergetic production function allows it to be sequentially

optimized when there is a multi-prey aggregate as in (3.21). That is, to derive optimal

levels of inputs Xi, I can find optimal levels of the j inputs xji given a level of the

aggregate X while holding the other input, mi, fixed; i.e., as if X were an independent

CES function. This aggregate is also called a “nest” of the CES function. The

ability to sequentially optimize is due to the weak separability of the CES function,

particularly that

∂
∂rji

∂xji
∂xj′i

= 0. (3.22)

That is, the optimal demands for inputs xji, which are determined by their rela-

tive marginal bioenergetic products, ∂F/∂xji, are independent of the level of inputs

outside the X nest.
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Duality

There are two equivalent formulations of the species optimization problem, primal

and dual. In the primal formulation, bioenergetic costs are minimized through the

choice of input quantities subject to the production of a unit of output. In the dual

formulation, bioenergetic costs are minimized for a given level of output over the

choice of marginal products. In economics, duality is often treated through the use of

certain lemmas particular to the discipline (e.g. Shephard’s lemma). Mathematically,

the primal and dual problems are related through the Euler-Legendre transform,

which is also used in physics to relate Lagrangian and Hamiltonian mechanics.

The primal formulation solves in terms of extensive variables (i.e. 0th-order quan-

tities), while the dual posing solves in terms of intensive variables (i.e. 1st-order

marginals or unit costs). Letting Zi give a stacked vector of prey inputs (xji) and

own biomass (m̄i), I can specify the primal and dual posings of the bioenergetic

optimization problem as

Primal: L (Zi, λ
F ) = Ξ(Zi)− λF (F (Zi)− 1) (3.23a)

Dual: L ∗(Z∗i , λ
F ) = inf

Zi∈RI
+

{L (Zi)− Z∗i · Zi} . (3.23b)

Using this definition for the Euler-Legendre transform, the primal and dual posings

are both minimization problems.10 Solving for the infimum in Zi of the dual expression

via the first-order conditions gives

Z∗i = ∇L (Zi). (3.24)

Inserting the value for the convex conjugate or dual variable Z∗i into the expression of

the dual problem demonstrates that it is equivalent to minimizing the marginal cost

10It is common in other applications to flip the sign within the infimum of the transform, making
it a supremum and the dual posing a maximization problem (opposite the primal).
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of a unit of production, λF .

L ∗(Z∗i , λ
F ) = Ξ(Zi)− λF (∇F (Zi)− 1)− [∇Ξ(Zi)− λF∇F (Zi)] · Zi

= Ξ(Zi)− λF∇F (Zi) + λF − Ξ(Zi) + λFF (Zi)

= λF , (3.25)

where the second line exploits Euler’s homogeneous function theorem; i.e., kF (Z) =

∇F (Z)·Z, where k gives the degree of homogeneity and F (Z) and Ξ(Z) homogeneous

of degree 1. The Lagrange multiplier represents the marginal value to the objective

for an additional unit of constraint. Here, this means the marginal cost (objective)

of an additional unit of bioenergetic production (constraint), which the species seek

to minimize.

While the objective of the primal posing is to minimize cost through choice of

inputs Zi, the dual posing minimizes cost through choice of Z∗i . Zi must be restricted

to Zi ≥ 0 for physical relevance (i.e. they are quantities of mass inputs). The domain

restriction on the conjugate Z∗ is that it ensure a finite solution to the infimum of

the dual problem. Since Zi is unbounded above and I seek an infimum, I require that

the dual is increasing in Zi. That is,

∇Zi
[L (Zi)− Z∗i · Zi] ≥ 0

∇L (Zi) ≥ Z∗i . (3.26)

From the solution to the infimum problem (3.24) I know that this weak inequality

will hold with equality provided the Lagrangean obeys certain convexity properties.

From the solution to the primal problem I know that ∇L (Zi) = 0 at an optimum in

Zi.

Last, and somewhat loosely, the convexity properties of L (Zi) ensure it has a

turning point in the domain RI . If I am unable to find the turning point it must be
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due to the restriction that Zi ∈ RI
+. In this case I will find a minimum of L (Zi)

at Zi = 0 with ∇L (Zi) > 0. This has important implications for the relationship

between the conjugate choice variables Zi and Z∗i . The above argument gives that if

∇L (Zi) = Z∗i > 0, I must have the optimal Zi = 0. Conversely, if the optimal Zi is

positive, I must have that ∇L (Zi) = Z∗i = 0. From this I have

Z∗i = ∇Zi
L (Zi) AND Zi = ∇Z∗i

L ∗(Z∗i )

Z∗i · Zi = ∇Zi
L (Zi)·∇Z∗i

L (Z∗i ) = 0. (3.27)

This relationship, where at least one of the complementary or conjugate variables

must be zero, is known as complementary slackness. The intuition of this result is

more clear when the duality is considered with respect to the Lagrange multiplier of

a constraint. In this scenario, either the Lagrange multiplier is zero, the constraint

(derivative of the Lagrangian w.r.t. its multiplier) equals zero, or, more trivially,

both. That is, excluding the trivial case, when the constraint binds (i.e. equals

zero), its Lagrange multiplier is positive, else the constraint is left slack (non-zero)

and the multiplier equals zero – a familiar result in constrained optimization. This is

a helpful property for the success of the numerical solution algorithms employed to

identify model solutions.

I can now solve the primal problem given above by taking first order conditions,

giving

w.r.t. Zi: ∇Zi
Ξ(Zi)− λF∇Zi

F (zi) = ~0

∂Ξ(Zi)
∂xji

= φji = λF ∂F (Zi)
∂xji

∀j
∂Ξ(Zi)
∂mi

= φ̂mi = λF ∂F (Zi)
∂mi

(3.28a)

w.r.t. λF : F (Zi) = 1. (3.28b)
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Taking first derivatives of the production function F (Zi) (3.19), gives the first-order

conditions above as

φji = λF
[

1
%i0

(
τ %i0i Y 1−%i0

i

) (
%i0αi0x

%i0−1
ji

)]
(3.29a)

φ̂mi = λF
[

1
%i0

(
τ %i0i Y 1−%i0

i

) (
%i0αi1m

%i0−1
i

)]
(3.29b)

Note that the Lagrange multiplier, λF , is the marginal cost of a unit output, a model

variable, which I denote φ̂i. The mass output, Ŷi, of the species bioenergetic produc-

tion function, F , is also a model variable. This enables us to solve for the optimal

input level as a function of model variables and parameters only.

x∗ji =
(
αi0

φ̂iτ
%i0
i

φji

) 1
1−%i0 Ŷi (3.30a)

m∗i =
(
αi1

φ̂iτ
%i0
i

φ̂mi

) 1
1−%i0 Ŷi (3.30b)

Benchmark levels of the x, m, and Y terms are observed in the data, allowing the

calibration of the remaining parameters assuming a steady-state is observed. The α

terms from the first-order conditions can be expressed as

αi0τ
%i0
i = φ%i0ji

(
φjixji

φ̂iŶicd

)1−%i0
, (3.31a)

αi1τ
%i0
i = φ̂%i0mi

(
φ̂mimi

φ̂iŶi

)1−%i0
. (3.31b)

The common τi term gives a degree of freedom to normalize the α’s such that αi0 +

αi1 = 1. Imposing this constraint and taking either of the expressions immediately

above over their sum gives

αi0 = αi0

αi0+αi1
=

αi0τ
%i0
i

αi0τ
%i0
i +αi1τ

%i0
i

, (3.32)

and analogously for αi1 = (1−αi0). Expressed in this way, the α terms represent the
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relative productivities of the inputs in generating bioenergetic output. The ϕ terms,

component to the φ̂’s, can be calibrated based on ecosystem data. This will specify

the entire CES function with the exception of τi, which I can identify algebraically

using the definition of the CES.

Summary

I can express the optimal demand for all inputs as a function of the substitution

parameters (%), the coefficients (α and τi), along with marginal costs (φ̂) and the

level of output Ŷi yielded by the CES bioenergetic production function F . That is, as

functions of parameters and model variables only. The calibration of these demands

to empirical data will be conducted in the next chapter. First, I outline how the

system conditions can be used to identify physically relevant quantities for the model

variables, completing the model.

3.4.4 System Conditions & Equilibria

Conservation identities

System conditions require that inputs equal outputs for conserved quantities, ensuring

that there is no unaccounted introduction (loss) of mass or energy to (from) the

system. The conditions also provide a means to solve for the model variables. I

first express the conservation conditions then show how these conditions are used to

identify equilibria.

In an economic model, economic value is the only conserved quantity, but a bio-

logical system will conserve both mass and energy. The conservation requirement is

set by equating inputs and outputs for the conserved quantity. With respect to the

system accounting matrices, this gives that the column sum equals the row sum for

each species.

The left-hand side of each line in Table 3.1 gives the output quantity in conserved
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Conserved qty. Conservation identity
Economy
Economic value: ρ̂iŶi =

∑
j ρ̂jx

∗
ji +

∑
f ρ̂fr

∗
fi

=
∑

j ρ̂ix
∗
ij +

∑
l ρ̂id

∗
i

Ecosystem
Mass: Ŷi =

∑
j x
∗
ji +

∑
f r
∗
fi +mi

=
∑

j x
∗
ij +M∗

1i + d∗i

Energy: φ̂iρiŶi =
∑

j φ̂jρjx
∗
ji +

∑
f φ̂fρfr

∗
fi + φ̂mi ρim

∗
i

=
∑

j φ̂iρix
∗
ij + φ̂iρiM

∗
1i + φ̂iρiωid

∗
i

Table 3.1: Conservation conditions for an economy and an ecosystem

units. The Yi variable is the mass equivalent of the bioenergetic output produced by

Fi. The ρ terms give either marginal economic value (price) or marginal energetic

value (i.e. energy density). Here, di represents wastes taken up by the environment

and M∗
1 is ending biomass (final consumption demands and investment in an economic

setting). The ωi scalar gives the waste energy density per unit biomass energy density.

In the ecosystem, the r terms represent resources whose supply is exogenous to the

system (e.g. light, nutrients). (These are fixed factors of production such as labor

and capital in an economic setting.)

“Hatted” characters are model variables. Notice that, while the ρ terms are model

variables in the economic setting, they are not model variables in the biological setting.

Instead, I let the ρ terms set the fixed energy densities of the species. The φ̂ terms,

variables in the BGE model, are set to one in baseline and measure the relative

scarcity of the species (φ̂i), resources (φ̂f ), and starting biomass (φ̂mi ). Note that, for

parsimony, the φ terms were subsumed by the ρ terms in the previous section.

In the ecosystem, the relative scarcity variables do the work of economic prices by

scaling the energy required to secure various prey and resources in relation to their

scarcity. The initial conditions are the ultimate source of scarcity in the ecosystem –

they are the only supplies that cannot be influenced by the intra-temporal dynamics
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of the system. The φ̂ terms then signal the extent to which the species draws on the

variety of scarce resources it takes as its inputs. The more scarce the sources of a

species’ inputs, the more scarce it will be in turn. The following section will make

clear how these scarcity terms “ration” uses of scarce resources to identify physically

relevant states for the system.

At an optimum, the scarcity terms will match the marginal product of the bioener-

getic production function; i.e., marginal cost will equal marginal benefit. If marginal

benefits exceed marginal costs, competitive pressures will ultimately reward those

who avail themselves of these net benefits. This framing aids the interpretation of

the own-biomass scarcity, φ̂mi . The scarcity of own-biomass will rise to the point

where the optimal input level equals the fixed quantity of starting biomass available

to the species (given that it is the outlet for the biomass). Yet the cost paid by the

species to the environment for carrying its starting biomass is only its fixed resting

metabolic rate. The difference between the marginal scarcity value and the metabolic

rate represents energetic “profit” to the species, or the net marginal benefit to an

additional unit of biomass. So while the marginal predation costs accrue wholly to

the environment, the species captures some of the “cost” paid for own-biomass. The

next section will demonstrate how matching marginals in this way is a necessary

implication of our conservation conditions.

Posing the equilibrium problem

The final step in specifying the equilibrium problem is to use the input-output con-

servation identities to isolate the model variables, particularly Ŷ and φ̂, to solve for

them. The essential method here is to take derivatives of the input and output equa-

tions with respect to the model variables that are common terms. This will generate

conjugate relationships between the resulting equations and the variable on which

the derivative was taken. These conjugate relationships, as described in section 3.4.3,
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can be exploited by numerical algorithms to help solve the BGE model.

In the case of input, the common term is the level of output Ŷi. Recall that

optimal input demands are expressed as a fraction of output, where that fraction is

determined by parameters and the model scarcity variables φ̂. In the case of output,

the derivative is taken with respect to the species’ scarcity variable, φ̂. By summing

the conservation identities over species, we can equate the total starting mass and

energy of biomass and resource inputs with those of the ending biomass and waste

quantities. The species will carry the energy captured in ending biomasses forward

to start the next period, while the wastes will be ‘absorbed’ by the environment

(dynamic waste cycles could be modeled if desired). Table 3.2a demonstrates how

the conservation identities are transformed to specify the equilibrium problem for an

ecosystem.

The scarcity values equal one in the baseline specification, but as system conditions

change, these values will shift to capture changes in the relative scarcity of the vari-

ous species and their resources. Additional prey scarcity implies greater expenditure

and thereby additional waste products by the species. Since the bioenergetic inputs

taken up by each predator are transformed into both waste and biomass, production

should be toward wastes as prey scarcities rise; i.e., as additional energy expenditure

generates greater waste. This raises the interpretation of the expenditure to starting

biomass. The optimization process will match marginal costs of inputs to the asso-

ciated marginal benefits of output. To ensure the starting biomass from the initial

conditions is the same quantity “foraged” by the species, the scarcity cost of starting

biomass will rise to the meet marginal benefit, but in a sense the species captures

the benefit of its own scarcity or “pays itself.” Explicitly, the scarcity value of own

biomass (costs) represents forgone bioenergetic profit (benefit) for the species.

Finally, to ensure energy conservation, I can confirm that energy expenditure on
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Ecosystem Equilibrium Problem

Conserved quantities
Mass Energy

Conservation identities

Ŷi =
∑

j xji +
∑

f rfi +mi φ̂iρiŶi =
∑

j φ̂jρjxji +
∑

f φ̂fρfrfi + φ̂mi ρimi

=
∑

j xij +M1i + di =
∑

j φ̂iρixij + φ̂iρiM1i + φ̂iωiρidi∑
i(mi +

∑
f rfi)

∑
i φ̂

m
i ρimi +

∑
fi φ̂fρfrfi

=
∑

i(M1i + di) = φ̂iρi
∑

i(M1i + ωidi)

Intensive conditions

Marginal mass product ⊥ Ŷi Marginal energetic product ⊥ Ŷi

0 ≥ 1−∑j x̃ji −
∑

f r̃fi − m̃i 0 ≥ φ̂iρi −
∑

j φ̂jρjx̃ji
−∑f φ̂fρf r̃fi − φ̂mi ρim̃i

Extensive conditions
Mass allocations Energy allocations

0 ≥ Ŷi −
∑

j xij −M1i − di 0 ≤ ρi(Ŷi −
∑

j xij −M1i − ωidi) ⊥ φ̂i
0 ≤M0i −mi 0 ≤ ρi(M0i −mi) ⊥ φ̂mi
0 ≥ R0f −

∑
i rfi 0 ≥ ρf (Rf −

∑
i rfi) ⊥ φ̂f

Table 3.2a: BGE Model Equations

Model variables

Ŷi : mass of bioenergetic output φ̂i : relative scarcity
Functions of variables

xji = x̃jiŶi, input of species j rfi = r̃fiŶi, input of resource f
M1i : ending biomass di : mass waste quantity
mi = m̃iŶi, own-biomass input

Empirically calibrated parameters

M0i : starting biomass supply ρ : species or resource energy density
R0f : starting resource supply ωi : share of energy losses in mass

Table 3.2b: BGE Model Equations – Definitions
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initial resources not exceed the energetic value of those resources. This condition is

satisfied when the weighted average scarcity of initial resources does not exceed one.

Mass conservation can be verified ex post, with differences in starting and ending

mass quantities attributable to wastes. The convexity of the bioenergetic production

functions will no doubt generate differences here.

3.4.5 Model closure

Consumption of prey and the production of waste and biomass cover only a portion

of the modeled behavior in the ecosystem. The model requires several more features

to be properly closed. There are two sides to each activity in the general equilibrium

structure, meaning it remains to specify how the total energy given in the initial

conditions is allocated across the different waste and biomass products after predators

have taken their share of the latter. For both total waste and ending biomass, ending

quantities move percent-for-percent counter to the system scarcity. This behavior can

be modeled using a CES function with an elasticity of one. For example, if increased

abundance of a species’ predators induced a 10% rise in its scarcity, ending biomass

for the species would decline by 10%. It can also be shown that this maximizes the

entropy of changes to the distribution of ending quantities – implying an agnosticism

or least-biased allocation affected by the ecosystem.

As mentioned above, increased expenditures on prey will generate proportionately

more wastes relative to biomass. To generate this behavior in the model, the waste

aggregation is dynamically calibrated so that more waste is required of species with

high predation costs. As wastes requirements rise, the implied scarcity of the species

waste will rise, inducing the bioenergetic production function to allocate more output

to waste mass over biomass. In the next chapter, I diagram the production structure

and model closure in detail prior to testing the model.
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3.5 Conclusion

It is evident from the theoretical biology literature, particularly within optimal for-

aging and bioenergetic allocation, that an economic approach to adaptive species

behavior is well-supported. Yet “precious few” examples, if any, exist of macro–scale

models constructed from micro–consistent behavior. Economic general equilibrium

theory offers an obvious and proven template from which such a model can be adapted.

In taking up this task, this work contributes a flexible and robust tool for assessing

the impacts of environmental change, anthropogenic or otherwise, on ecosystems.

This work also provides a coherent lens through which the incompletely-connected

fields of optimal foraging, bioenergetic optimization, and ecosystem modeling can be

viewed. The optimal foraging literature has made a strong case that species exhibit

switching or substitution behavior – whether through passive means (e.g. encounter

rates) or an active cognitive selection process. It is clear from the literature on

switching that parametric switching behavior is needed to capture heterogeneity. This

work has shown how this can be implemented through an energetic optimization

scheme that admits differential switching behavior across multiple prey in a manner

consistent with optimal foraging theory.

The energetic presentation creates a direct link with literature on bioenergetic op-

timization and its implications on evolutionary dynamics. Future work on the BGE

model will incorporate inter-temporal trade-offs along the lines of, e.g., (Giacomini et

al., 2013). This posing enables incorporating hypothetical or empirical observed be-

havior at an individual level into a dynamic ecosystem. This “micro-macro” linkage is

a key contribution of the BGE model. Much of the ecosystem modeling literature has

had to rely on phenomenological or atheoretic characterizations of complex ecosys-

tems. Modeling system dynamics as the emergent consequence of adaptive individual

behavior establishes an important linkage with the actual “agents” of the ecosystem
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dynamics and offers the ability to analyze the impacts a wide cast of shocks to the

system species in a physically relevant way.



Chapter 4: Testing the Biological General Equilibrium Model

4.1 Introduction

This chapter calibrates the Biological General Equilibrium (BGE) model specified in

Chapter 3 to two empirical data sets of the marine ecosystem surrounding the Aleutian

Islands. The two datasets are from the GEEM model (Finnoff & Tschirhart, 2003)

and an Ecosim dataset with much higher species resolution (Guénette & Christensen,

2005). In each case, the data must be pre-processed in different ways to satisfy the

Biological Accounting Matrix (BAM) input-output balance requirements. Differences

in the type and completeness of data provided warrant different treatment of each

dataset. Given the large number of the Ecosim datasets, a generalizable approach is

presented for preparing those data.

With a balanced BAM, I calibrate the biological general equilibrium (BGE) model

and simulate stylized “shocks” to the system comparing the results across the two

datasets and a variety of parameterizations. This confirms the stability and plausi-

bility of the model behavior and sheds some light on how differences in underlying

data may drive model results.

4.2 Calibration – GEEM

I first calibrate the data employed in the GEEM model presented by Finnoff and

Tschirhart (Finnoff & Tschirhart, 2003, Table 1), which I transform into mass and

energy Biological Accounting Matrices (BAMs) compatible with the BGE model. The

next section details the calibration of Ecosim data for the same ecosystem. These

data have a much more detailed representation of the ecosystem with more than 30

species.

Table 4.1 presents GEEM mass data in a BAM. The key feature of the accounting

95



96

matrix, to satisfy the system conditions, is that the row and column sums are equal;

i.e., input equals output. For example, the sum of phytoplankton mass inputs of

own biomass (0.993 MMT) and nutrients (10.5 MMT) equals the sum of allocations

to ingestion losses (0.114 MMT, column [B]), predators (7.52 MMT, column [C]),

mass wastes (2.9, column [D]), and ending biomass (0.993, column [E]). Similarly for

the energy BAM given in Table 4.2, the sum of energy from sunlight, nutrients, and

starting biomass equals the sum of columns [B]-[F].

4.2.1 Costs

For the initial calibration, ecosystem populations are assumed to be in a no-growth

state so that ending biomass equals starting biomass. The model can also be cal-

ibrated to observed or specified growth rates, but these rates are not given in the

GEEM data.1 I can deduce mass wastes [D] as total mass input [A] less ingestion

losses [B], predator losses [C], and ending biomass [E]. In order to do so, I must

calibrate ingestion losses.

In the energy presentation (Table 4.2), I use estimated energy densities from

GEEM (ρi) to calculate total energy input [A] as mass inputs times their correspond-

ing densities. Ending energy [F] and predator losses [C] are transformed from their

corresponding masses in Table 4.1 at the species energy density. Mass wastes [D] are

transformed at a separate waste energy density estimated as half the density of the

species’ prey. Transformation losses [B] are estimated by parameterizing an initial

value for γ (equal to 0.05 here). Transformation losses here equal total energy in-

put times γ/(1 + γ). Last, massless (or radiative) energy losses [E] are taken as the

remainder of total energy input less [B], [C], [D], and [F].

For the cost function Ξ I isolate the energetic value of rest metabolism and activity.

1As a sensitivity, I have calibrated the model to a variety of baseline growth rates. In each case,
populations converged to a steady-state level within several years.
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This value is equal to total energy input [A] less transformation losses [B], predator

losses [C], and ending biomass [F] – or mass wastes [D] plus massless wastes [E]. From

the energy BAM in Table 4.2,

[D] + [E] = χi =
∑
j

φjixji + βmi. (4.1)

That is, activity costs for species i, χi, are driven by the prey it forages xji and the

mass it carries mi. The mass quantities, xji and mi, are observed in the data and the

resting metabolic rate, βi, is given parametrically or from empirical estimates. All

are given in the GEEM data. I estimate the marginal cost of a unit of prey in the

GEEM data as

φji(Nj) = ϕiN
−1
j . (4.2)
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Inter-Species Mass Exchange (MMT)
1

Mass Allocations

Mass 

Input

Ingestion

Losses

Predator

Losses

Mass 

Wastes*

Ending 

Biomass*

 PP ZP PO SL OW SO UR KE [A] [B] [C] [D] [E]

Phytoplankton PP          -       7.52         -           -           -           -           -              -   11.5 0.549 7.52 2.46 0.993

Zooplankton ZP          -           -       1.19         -           -           -           -              -   7.54 2.40 1.19 3.93 0.016

Pollock PO          -           -           -    0.333         -           -           -              -   1.35 0.637 0.333 0.222 0.160

Steller sea lion SL          -           -           -           -    0.005         -           -              -   0.364 0.156 0.005 0.172 0.031

Orca whale OW          -           -           -           -           -           -           -              -   0.009 0.001                  - 0.004 0.004

Sea otter SO          -           -           -           -    0.000         -           -              -   0.340 0.210 0.000 0.126 0.004

Urchin UR          -           -           -           -           -    0.336         -              -   117 5.57 0.336 86.5 24.5

Kelp KE          -           -           -           -           -           -    92.40            -   718 34.2 92.4 2.77 589       

Starting Biomass 0.993 0.016 0.160 0.031 0.004 0.004 24.5 589

Nutrients*2 10.5           -           -           -           -           -           - 129    

Pop. (units / km2) 87.7 162 6.16 0.096 0.008 0.051 10.8 1,077 

Notes:

*    Asterisked items are derived from GEEM data, all others come directly from GEEM data (Finnoff & Tschirhart, 2003, Table 1).

[A]:  Sum of all mass inputs.

[B]:  Mass inputs times mu divided by one plus mu to correct for mass losses during ingestion process.

[C]:  Row sum of inter-species exchange matrix.

[D]:  Total mass input less predator losses and ending biomass.

[E]:  Set assuming no growth for initial calibration.  

1.  Biomasses given in million metric tonnes.  Biomasses are calculated from GEEM data as predator population (N / Km2) times biomass flow (Kg / 

N) corresponding area (Km2).

2.  Nutrients inputs are assumed to be 40% greater than predator losses.

Table 4.1: Balanced mass Biological Accounting Matrix (BAM) based on GEEM mass data (Finnoff &
Tschirhart, 2003)
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Inter-Species Energy Exchange (Bn. Kcal)
1

Energy Allocations*

Energy 

Input

Trans. 

Losses

Predator 

Losses

Mass 

Wastes

Massless 

Losses

Ending 

Energy

 PP ZP PO SL OW SO UR KE [A] [B] [C] [D] [E] [F]

Phytoplankton PP            -   3,009        -          -          -          -          -             -   15,454 11,063 3,009 73.8 910 397

Zooplankton ZP            -          -   666        -          -          -          -             -   3,018 144 666 15.7 2,183 8.86

Pollock PO            -          -          -   375        -          -          -             -   847 40.3 375 62.1 188 181

Steller sea lion SL            -          -          -          -   9.97        -          -             -   438 20.9 9.97 97.2 247 62.5

Orca whale OW            -          -          -          -          -          -          -             -   20.7 0.987               - 3.78 5.72 10.2

Sea otter SO            -          -          -          -   0.525        -          -             -   248 11.8 0.525 45.3 184 6.67

Urchin UR            -          -          -          -          -   241        -             -   93,447 13,602 241 35,506 26,511 17,587

Kelp KE            -          -          -          -          -          -   75,860           -   866,084 304,653 75,860 170 2,102 483,298       

Starting Biomass 397 8.86 181 62.5 10.2 6.67 17,587 483,298

Nutrients* 10.0          -          -          -          -          -          - 150

Sunlight 15,046          -          -          -          -          -          - 382,636 

Energy Densities2 (Kcal / Kg)

Own-Biomass3 400 559 1,128 2,000 2,500 1,810 717 821

Prey4 300 400 559 1,128 1,990 717 821 616

Waste5 30.0 4.00 280 564 995 359 411 61.6 

Notes:

*    Asterisked items are derived from GEEM data, all others come directly from GEEM data (Finnoff & Tschirhart, 2003, Table 1).

3.  Energy density for Orca whales a rounded estimate based on Williams et al. (2004, Table 1).

5.  Equal to one half of prey density.

[A]:  Sum of all mass inputs times their corresponding energy densities plus energy from sunlight.

[B]:  Transformation losses determined by gamma parameter.

[C]:  Row sum of inter-species energy exchange matrix.

[D]:  Mass wastes times corresponding waste density.

[E]:  = [A] - ([B] + [C] + [D] + [F])

[F]:  Ending biomass times own energy density.  

1.  Energy quantities given in billion kilocalories and are given by the corresponding mass quantities times the relevant density with the exception of 

sunlight, transformation losses [B], and massless losses [E].

2.  Own-biomass energy densities are given by GEEM.

4.  Nutrient energy densities are taken as 75% of plant density.  Orca whale prey density is an input-mass weighted average of prey densities.

Table 4.2: Balanced energy Biological Accounting Matrix (BAM) based on GEEM energy data (Finnoff
& Tschirhart, 2003)
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The number of kilo-calories expended by species i per scarce-tonne of prey foraged

is given by ϕi. The inverse of species j’s population density, N−1
j , gives a measure of

its scarcity. This gives the marginal cost, φji, of predating species j to species i in

Kcal per tonne. Population densities are also observed (in the GEEM data) leaving

only ϕi for calibration based on equation (4.1) as

ϕi = χ−βmi∑
j N
−1
j xji

, (4.3)

so that ϕi is calibrated uniformly for all prey. One could differentiate if relative efforts

for different prey were known or hypothesized. The calibration differs slightly for

autotrophs who predate scarce-calories of sunlight. For autotrophs ϕi represents Kcal

expenditure per unit Kcal gained from its “prey.” I implicitly assume a scarcity of 1

for both sunlight and nutrients, though model species could be required to compete

for these resources, which could increase foraging costs through higher scarcity of

sunlit surface area or nutrient quantities. Table 4.3 shows the ϕi calibration for each

species.

The final task in calibrating species’ costs is to determine what fraction of the

environment’s energy “budget” is borne by massive and massless losses. This fraction,

ωi, completes the specification of the environment’s boundary condition. Here I make

use of a certain fiction in the model and value mass losses at the full energy density of

the species. In the energy BAM, I introduced a waste energy density. By using the full

energy density I am effectively shifting energy from the environment’s massless losses

category [E] to its massive wastes category [D]. This enables consistent accounting

of all masses on a given species row – a helpful feature for the equilibrium problem.

If the actual energy flows of mass wastes are of biological interest, one can always

perform a simple conversion.2

2Note that this method may generate negative implied massless losses, but the accounting can
always be trued to the actual energy values.
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Activity Costs (Bn Kcal) Marginal Cost Calibration

Mass 

Wastes

Massless 

Losses

Metabolic 

Costs

Activity 

Losses

Scarce-

Tonnes

Kcal per 

Scarce-Kg

Kcal per 

Kg

 [A] [B] [C] [A + B - C] [D] [A + B - C] / [D] [E]

Heterotrophs

Zooplankton ZP 15.7 2,327 752 1,591 0.086 18,541 211

Pollock PO 62.1 229 200 90.9 0.007 12,384 76.3

Steller sea lion SL 97.2 268 91.4 274 0.054 5,074 823

Orca whale OW 3.78 6.71 1.33 9.16 0.058 159 1,736

Sea otter SO 45.3 195 42.4 198 0.031 6,348 589

Urchin UR 35,506 40,113 18,965 56,654 0.086 660,303 613    

Autotrophs

Phytoplankton PP 73.8 11,973 903 11,145 11.5 967 967

Kelp KE 170 306,755 22,958 283,967 718 395 395     

Notes:

[A]:  Energy value of mass wastes from energy-denominated BAM.

[B]:  Energy value of massless losses from energy-denominated BAM.

[E]:  Kcal per scarce tonne times scarcity = Kcal expenditure per tonne of consumed prey. 

[D]:  Prey mass consumed times scarcity of prey, summed over both prey for Orca whales.  For autotrophs, total sunlight 

consumption.

𝑁𝑗
−1𝑥𝑗𝑖 𝜑𝑗𝑖  𝜙𝑗𝑖 = 𝜑𝑗𝑖𝑁𝑗

−1 Σ𝑗𝜙𝑗𝑖𝑥𝑗𝑖 𝛽𝑖𝑚𝑖  

Table 4.3: Calibration of marginal cost of foraging prey

4.2.2 Benefits

With costs calibrated I can focus on the bioenergetic production function, F . The

mass and energy BAMs above provide the necessary data to complete the calibration.

In total, I know the function will yield the calibrated mass quantity Yi, the sum of

existing and new biomass and waste masses, with energy ρiYi. Recalling the deriva-

tions in section 3.4.3, I can set the observed input quantities equal to their expressions

from equation 3.30

x∗ji =
(
αi0

φ̂iτ
%i0
i

φji

) 1
1−%i0 Ŷi (3.30a)

m∗i =
(
αi1

φ̂iτ
%i0
i

φ̂mi

) 1
1−%i0 Ŷi. (3.30b)

All values in these expressions are either parameterized (ϕi0) or calibrated from ob-

served data (x∗ji,m
∗
i , Ŷi, φ̂i, φji) with the exception of the αi’s and τi, which I calibrate
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Energy Allocations (Bn Kcal)

Total Species Environment

Energy 

Input

Ending

Energy

Energy

Budget

Massive

Wastes1

Mass

Share

 [A] [B] [A] - [B] [C] [C] / ([A] - [B])                

Heterotrophs

Zooplankton ZP 3,018 8.86 3,009 666 0.221

Pollock PO 847 181 666 375 0.564

Steller sea lion SL 438 62.5 375 9.97 0.027

Orca whale OW 20.7 10.2 10.5                             -                             - 

Sea otter SO 248 6.67 241 0.525 0.002

Urchin UR 93,447 17,587 75,860 241 0.003

Autotrophs

Phytoplankton PP 15,454 397 15,056 3,009 0.200

Kelp KE 866,084 483,298 382,786 75,860 0.198

Notes:

1.  Massive wastes are valued at the species energy density, not their actual waste density. 

1 + 𝛾 𝜌𝑖𝑌 𝑖 𝜙 𝑖𝑑 𝑖  𝜙 𝑖𝑀 1𝑖 𝜔𝑖 

Table 4.4: Environment energy budget allocation

following equations (3.31), (3.32), and the definition of Fi for τi. A similar calibration

is performed for sharing total output, Yi, to new biomass and mass wastes.

I have now fully articulated the bioenergetic production function with calibration

help from the observed ecosystem data. To perform the same process for the multi-

prey sub-problem for Orca whales and autotrophs, I simply take the xji term in the

production above as yet another production function of the same form, this time

aggregating the two prey instead of prey and own biomass. The resulting production

function is given as

F (x1i, x2i,mi) = τi
(
αi0(θi1x

%i1
1i + θi2x

%i1
2i )%i0/%i1 + αi1m

%i0
i

)1/%i0
. (4.5)

I have thereby set the initial and boundary conditions and calibrated the intra-

period dynamics. The final task is to impose the system conditions and confirm that

the model solves, reproducing the BAM data as an equilibrium.
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4.3 Calibration - Ecosim

The Ecosim data used for this calibration are also for the marine ecosystem sur-

rounding the Aleutian Islands. Data for a variety of ecosystems are provided on the

Ecopath with Ecosim website.3 The dataset assembled by (Guénette & Christensen,

2005) provide the basis for the calibration here. The data provide information on the

diet shares of 37 species and data on masses for two primary producers and a detritus

category. Some of the 37 are actually sub-species types, e.g. stellar sea lion pups and

adults. For simplicity within the BGE model, sub-species types are collapsed into

a single species representative. Table 4.5 gives the mapping from the set of species

as-provided to that used in the model.

To collapse the diet share data to the new species scheme I sum the diet shares

and re-normalize.4 The diet share matrix for the Ecosim data is 81.2% sparse relative

to the 90.1%-sparse GEEM data.5 For each predator, the matrix gives the fraction

of total consumption supported by each of its prey. By definition, with predators

arrayed along the columns, each column must sum to one down the rows. The “group

by group” data given in the Ecosim model (Guénette & Christensen, 2005) preserve

this relation up to a de minimus error. Additional “group information” given within

the database provides estimates of biomasses, ratios of production and consumption

to biomass and of production to consumption, net “exports” out of the system, and

ecotrophic efficiency.6

3See “Ecopath Models” www.ecopath.org/models
4This would ideally be a biomass-weighted average of the diet shares, but biomasses are incom-

plete.
5Sparseness is measured as the fraction of the diet share matrix, excluding primary producers

and detritus, that equal zero. By way of comparison, a sample “intermediate demand” matrix for
a highly disaggregated representation of the US economy (360 sectors) is 38.8% sparse. There may
be some endogeneity with how economic sectors are defined that could down-bias this sparseness
measure.

6The exports reported in the Ecosim data are identical to the species catch, implying that mi-
gration was likely not considered. Ideally, migration would be part of the net export rate.
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BGE Model Species with Count of Represented Ecosim Species

No. Code Description Ct. No. Code Description Ct. No. Code Description Ct. No. Code Description Ct.

Higher-trophic species Mid-trophic species Lower-trophic species Primary producers & Det.

1. ORC Transient orca 1 11. PEL Lg. pelagics 2 22. FFS Flatfish 1 32. PHY Phytoplankton 1

2. TWL Toothed whales 1 12. MCK Atka mackerel 1 23. DSM Sm. demersals 1 33. MPH Macrophytes 1

3. HWL Baleen whales 1 13. SDL Sandlance 1 24. LPD Lg. demersals 1 34. DET Detritus 1

4. SSL Stellar sea lion 4 14. HER Herring 1 25. DEL Lg. deep water 1

5. SMM Sm. mammals 1 15. PLK Adult pollock 2 26. MYC Myctophids 1

6. SOT Sea otters 1 16. POP Pacific perch 1 27. SHR Shrimps 1

7. BRD Birds 1 17. RKF Rockfish 1 28. BEI Benthic inverts 1

8. SME Shark mml. pred. 1 18. SBF Sablefish 1 29. EPC Epiben pred. 1

9. SKT Shark & skates 1 19. COD Pacific cod 1 30. CPH Cephalopods 1

10. SAL Salmon 1 20. HLB Halibut 1 31. ZPK Lg. zooplankton 2

21. RWT Arrowtooth 1
 

Table 4.5: BGE model species with Ecosim species count

As outlined in the previous chapter, column-row or input-output balance is an

essential property of the accounting tableau for the BGE model. Where the diet

matrix represents the intra-period or intermediate exchange of biomass and energy,

I must also account the initial conditions of the system for the exogenously modeled

supplies of inputs from primary production, detritus, and starting biomass. Last, I

must specify the boundary conditions of the system including ending biomass, wastes,

and net exports. Consumption of primary producers is included within the diet shares

matrix and estimates of starting biomasses are provided for approximately half of the

species. Although consumption-to-biomass ratios are also sparse, I can combine the

production-to-biomass and production-to-consumption ratios to generate a complete

set of consumption-to-biomass ratios. Growth rates and net exports are given for all

species, and ecotrophic efficiencies are given for approximately half of the species.7

In sum, given the information provided by the Ecosim dataset (Guénette & Chris-

tensen, 2005), I can populate all predator-prey interactions via the diet matrix, all

boundary conditions except waste quantities for those species with missing ecotrophic

efficiencies, and the initial conditions for consumption of exogenously supplied re-

7Zero values for growth rates and exports may be missing data.
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sources but not for starting biomass. The main caveat is that the quantities of

resources, all quantities in the diet share matrix, and the growth and waste quanti-

ties depend on starting biomasses, which are incomplete. To complete the biomass

accounting matrices, I must first determine whether there exists a vector of biomasses

that can satisfy the matrix structure I have assembled from the Ecosim data.

4.3.1 Accounting identities

To demonstrate the generality of the method, and given the large number of species,

I present the data procedures abstractly. Figure 4·1 defines the set of matrices that

can be partially or wholly populated using the Ecosim data. All matrix elements are

expressed as fractions of the corresponding species’ starting biomass. For example,

the elements in the inter-species exchange matrix, X, are diet shares times the cor-

responding consumption-to-biomass ratio so that multiplying by biomass gives the

total mass consumed of the row prey by the column predator.[ x11 · · · x1S
...

. . .
...

xP1 · · · xPS

]  f11 · · · f13
...

. . .
...

fP1 · · · fP3


 r11 · · · r1S

... · · · ...
rE1 · · · rES
1 · · · 1

 xps = dpscs
res = descs
fp1 = (1 + gs)
fp2 = cs(1− ηs)
fp3 = ms/bs

dps : Prey p share of predator s’s total consumption
cs : Predator s consumption-to-biomass ratio
gs : Growth rate of species s
ηs : Ecotrophic efficiency of species s
ms : Net exports of species s
bs : (Starting) biomass of species s

P = S : Number of modeled species (= 31)
E : Number of exogenously supplied species +1 for detritus (= 3)

Figure 4·1: Biomass accounting matrices for Ecosim data

The question remains whether, using the column-row identity, a set of feasible
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biomasses can satisfy the accounting matrices as populated from the Ecosim data.8

Imposing the column-row identity gives the relation

B̂
s×s
·
[(

~1
1×s
· X
s×s

+ ~1
1×4
· R

4×s

)T]
︸ ︷︷ ︸

column = input

= X
s×s
· B
s×1

+ B̂
s×s
· F
s×3
· ~1

3×1︸ ︷︷ ︸
row = output

, (4.6a)

B̂
s×s
·
[(
~1 · X +~1 · R

)T
− F ·~1

]
︸ ︷︷ ︸

N
s×1

− X
s×s
· B
s×1

= 0, (4.6b)

where the “hat” operator ·̂ sets the vector elements along the diagonal of a symmetric

matrix with zero off-diagonal elements and the ~1 are summing vectors. The bracketed

term on the left-hand side of equation 4.6b gives the net output available for inter-

species exchange. That is, total input, equal to total output, less final uses (F)

gives total mass available for use by predators. This is an s × 1 vector I denote as

N . Equivalently, the second term gives the explicit row-sum of predators’ uses of

each species. If I diagonalize the net inter-species exchange output vector N I can

re-arrange the equation to isolate the biomass vector B as

(
N̂ − X

)
·B = 0, (4.7)

where I have used the relation B̂ · N = N̂ · B. Excluding the degenerate solution

B = 0, equation 4.7 requires that

Det
(
N̂ − X

)
= 0. (4.8)

I can interpret this statement as a requirement that there be no spontaneous produc-

tion or loss of mass from inter-species exchange. Since not all ecotrophic efficiencies

and starting biomasses (needed for the net export rate, ms) are given, these matrices

8Note that I have assumed net exports as a fraction of species biomass.
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cannot be fully populated from the Ecosim data; however, I can examine the size

of the determinant using average values for those species with missing data. Table

4.6 presents the known biomasses and growth rates along with the known and es-

timated values for consumption-to-biomass ratio, ecotrophic efficiency, export rate,

and energy densities.

Energy densities are not provided in the Ecosim data but are essential for the

energy presentation of the BGE model’s accounting matrices. A limited set of en-

ergy densities are available from Tschirhart’s General Equilibrium Ecosystem Model

(GEEM) as given in (Finnoff & Tschirhart, 2003). The GEEM data contain eight

species leaving twenty-five species energy densities to be estimated. I exploit the

inverse relationship between trophic sequence and energy density and estimate a 2nd-

order polynomial as

ρ̃ = 2, 571.8− 99.26τ + 1.25τ 2, (4.9)

where ρ is the energy density and τ ∈ [1, 40] the trophic sequence, taken as the

average trophic sequence in cases where multiple Ecosim species are contained within

a BGE species definition.

Using the values presented in Table 4.6, the determinant from equation 4.8 does

not evaluate to zero. The determinant is several orders of magnitude large, suggesting

that minor ad hoc revisions will likely be insufficient. To proceed I will resort to nu-

merical methods to identify a minimally-revised set of accounting matrices satisfying

column-row balance for a given vector of biomasses.

4.3.2 Data revision

The numerical program will accept the complete diet share matrix, consumption-to-

biomass ratios, and growth rates as correct and revise only the incomplete data; i.e.,

energy densities (ρ), starting biomasses (B), ecotrophic efficiencies (η), and export
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Ecosim data for BGE model initial and boundary conditions Formatting

Trophic

Seq.

BGE

Code

Biomass

(t km
-2

)

Cons. / 

Biomass

Eco-trophic

Efficiency

Growth

Rate

Export

Rate

Energy

Density

Higher-trophic species CB' EE' G' EX/SB EDB_e

1. ORC 0.001 10.830 0.860 0.000 0.000 2,473.8

2. TWL 0.013 11.073 0.860 -0.025 0.042 2,378.3

3. HWL 0.145 6.990 0.860 -0.020 0.046 2,285.3

4. SSL 0.045 92.328 0.860 0.000 0.006 2,063.8

5. SMM 0.022 22.741 0.860 -0.010 0.017 1,858.0

6. SOT 0.004 86.400 0.860 0.000 0.002 1,780.1

7. BRD  65.350 0.950 0.000 0.000 1,704.6

8. SME 0.050 0.625 0.860 0.000 0.006 1,631.7

9. SKT 2.600 0.795 0.860 0.000 0.006 1,561.3

10. SAL  4.330 0.500 0.000 0.014 1,493.4

Mid-trophic species

11. PEL  2.560 0.950 0.000 0.000 1,396.3

12. MCK 13.500 1.700 0.860 0.000 0.000 1,304.8

13. SDL  3.650 0.950 0.000 0.000 1,246.9

14. HER  0.970 0.950 0.000 0.000 1,191.6

15. PLK 3.376 3.340 0.860 0.000 0.004 1,113.3

16. POP 1.109 0.680 0.860 0.000 0.028 1,040.6

17. RKF  1.000 0.950 0.000 0.014 995.3

18. SBF 1.799 1.030 0.860 -0.020 0.006 952.5

19. COD 2.400 2.280 0.860 0.030 0.004 912.2

20. HLB  1.267 0.900 0.030 0.014 874.5

21. RWT 0.500 2.000 0.860 0.000 0.004 839.2

Lower-trophic species

22. FFS  1.720 0.500 0.000 0.014 806.4

23. DSM  3.000 0.950 0.000 0.000 776.2

24. LPD  2.000 0.950 0.000 0.014 748.4

25. DEL  2.000 0.950 0.000 0.000 723.2

26. MYC  3.650 0.950 0.000 0.000 700.5

27. SHR  10.200 0.950 0.000 0.000 680.3

28. BEI  8.430 0.950 0.000 0.000 662.6

29. EPC  5.000 0.950 0.000 0.014 647.4

30. CPH  7.160 0.950 0.000 0.000 634.7

31. ZPK  64.210 0.950 0.000 0.000 620.4

Pct. estimated: 22.6% 45.2% 0.0% 19.4% 80.6%

Notes:

1. Growth rates are from the Ecosim bio-accumulation variable.

2. Export rate equals net exports over biomass.

3. Italicized figures are estimated.

 

4. Energy densities are estimated using GEEM data by a 2nd-order polynomial in the 

average trophic sequence of the Ecosim species represented by the BGE species.

Table 4.6: Ecosim original & est. values for BGE calibration
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rates (χs = ms/bs). I will introduce one additional variable, a massless energy losses

multiplier (µ), to facilitate the energy balance. A sum-of-squares objective func-

tion will penalize deviations from the known values of the revised parameters. The

mathematical program is stated as

Given: X∈ RS×S, R∈ RE×S, G ∈ RS

B, η, χ ∈ RS, ρ ∈ RI=S+E

Find: B′, η′, χ′, µ ∈ RS, ρ′ ∈ RI to minimize

Sum of squared deviations

f(ρ′, B′, η′, µ) =
∑

s [(100[(1− ηs)− µi(1− η′s)])2+

(bs − b′s)2] +
∑

i(0.01(ρi − ρ′i))2

Subject to: Mass balance η′s(b
′
s(1 +

∑
e res +

∑
p xps)

=
∑

p xspb
′
p + b′s((1 + gs) + χ′s) ∀s

Energy balance b′s(ρ
′
s +
∑

e ρ
′
eres +

∑
p ρ
′
pxps)

= ρ′s

(∑
p xspb

′
p + b′s((1 + gs) + χ′s)

)
+µs(1− η′s)Ein ∀s

Realistic bounds e−5 ≤ B′ ≤ e4,

0.05 ≤ η′ ≤ 0.95,

−0.05 ≤ χ′ ≤ 0.05,

0.10 ≤ µ ≤ 10,

0.75ρ ≤ ρ′ ≤ 1.25ρ,

where Ein equals the left-hand side of the energy balance equation or total energy

input and I have scaled the variables’ squared errors to comparable orders of magni-

tude.9 The massless losses multiplier adjusts for the fact that I incorrectly value mass

wastes at the higher biomass energy density (ρ′s) and for the fact that certain energetic

losses are not mass embodied. While growth rates are held fixed at the given values,

the program can solve for alternative growth rates, including a no-growth steady state

or population declines.

9Note that this is somewhat analogous to the economic matrix balancing conducted in Chapter
2. There I relied on an entropy metric instead of the simpler least-squares metric used here.



110

ORC TWL HWL SSL SMM SOT BRD SME SKT SAL PEL MCK SDL HER PLK POP RKF SBF COD HLB RWT FFS DSM LPD DEL MYC SHR BEI EPC CPH ZPK EX EB EW

ORC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.98 39.6 349

TWL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.519 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.017 30.1 129

HWL 3.96 0.000 0.000 0.000 0.000 0.000 0.000 1.57 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.4 325 893

SSL 286 0.000 0.000 0.000 0.000 0.000 0.000 2.38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.99 79.8 3,564

SMM 48.3 0.000 0.000 0.000 0.000 0.000 0.000 0.232 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.04 40.5 426

SOT 9.26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.139 2.79 89.7

BRD 2.96 0.000 0.000 0.000 0.000 0.000 0.000 0.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.004 0.087 0.171

SME 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.08 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.55 81.7 28.0

SKT 0.000 0.225 0.000 39.0 0.000 0.000 0.000 7.54 9.68 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 203 4,059 1,433

SAL 0.000 34.2 2.88 600 14.9 0.000 0.155 1.02 136 0.000 25.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -92.0 1,839 2,562

PEL 0.000 10.0 202 0.000 59.0 0.000 1.00 1.43 25.8 0.000 111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 112 0.094 52.4 0.000 52.2 0.000 0.000 0.000 0.000 0.000 0.000 716 0.000 -54.7 1,094 125

MCK 0.000 2.82 177 1,757 65.9 7.07 0.096 0.000 111 0.000 0.000 0.000 0.000 0.000 259 0.000 0.000 0.000 1,077 14.1 255 15.1 0.000 83.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 410 17,615 10,715

SDL 0.000 0.000 46.6 11.1 21.8 6.74 0.522 0.000 23.2 0.000 56.5 0.000 0.000 0.000 0.000 0.000 1.15 0.000 40.3 1.93 0.000 26.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 161 0.000 -11.8 235 32.6

HER 0.000 1.37 2.17 0.000 25.0 0.000 0.132 0.260 49.3 0.000 112 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.31 0.000 73.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -28.4 569 42.4

PLK 0.000 1.76 101 93.5 62.9 0.000 0.142 0.868 152 0.000 22.4 1,559 0.000 0.000 31.6 0.000 1.03 0.000 252 7.07 122 7.74 15.0 7.59 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -188 3,758 4,999

POP 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.2 0.000 0.000 14.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -57.7 1,154 491

RKF 0.000 0.143 1.31 58.7 6.96 0.000 0.003 0.559 14.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -6.58 132 10.9

SBF 0.000 0.137 0.000 0.000 2.86 0.000 0.000 0.208 80.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.3 1.09 10.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 85.7 1,679 985

COD 0.000 0.394 2.03 241 18.7 0.000 0.107 0.228 20.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.85 0.431 1.77 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 109 2,255 4,007

HLB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.409 43.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.38 48.9 10.6

RWT 0.000 0.000 0.000 36.0 0.000 0.000 0.000 4.13 24.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 21.0 420 801

FFS 0.000 0.000 0.000 95.1 10.5 0.000 0.000 0.277 65.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.1 0.218 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 54.3 1,085 1,324

DSM 0.000 3.36 29.0 566 47.3 31.5 0.000 1.19 41.7 0.000 0.000 35.3 0.000 0.000 153 0.000 0.616 0.000 687 2.57 30.8 16.2 75.1 0.882 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -34.8 697 125

LPD 0.000 0.000 0.000 148 0.000 0.000 0.000 0.560 52.6 0.000 6.04 0.000 0.000 0.000 0.000 0.000 0.000 0.000 60.6 0.961 23.9 0.000 46.3 23.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.6 213 30.8

DEL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.586 10.5 0.000 0.000 0.000 0.000 0.000 0.000 1.64 0.000 0.000 66.3 0.928 23.1 11.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.121 65.6 9.50

MYC 0.000 2.01 0.000 32.3 10.4 0.000 0.191 0.326 33.1 0.000 13.3 142 0.000 0.000 988 13.1 0.092 0.000 150 1.27 179 339 3.74 0.395 0.759 5.08 0.000 0.000 0.000 180 0.000 -34.7 695 145

SHR 0.000 0.000 0.000 0.000 3.39 0.000 0.000 0.042 247 0.000 21.2 77.0 0.000 0.000 536 0.512 33.6 0.000 1,036 0.870 122 206 104 12.7 80.6 0.000 0.000 0.000 2.01 87.4 0.000 -14.5 290 150

BEI 0.000 1.85 0.000 0.000 3.20 52.1 0.024 0.120 183 0.000 86.6 786 0.000 0.000 692 11.6 20.0 23.8 270 0.780 23.6 611 1,057 32.0 9.67 65.4 1,119 64.8 1,294 827 0.000 13.6 961 432

EPC 0.000 0.000 0.000 0.000 3.15 1.71 0.000 0.079 53.5 0.000 0.000 330 0.000 0.000 21.4 0.000 4.75 0.000 215 7.67 0.000 58.5 217 89.6 0.000 0.000 0.000 0.000 84.0 651 0.000 18.7 373 112

CPH 0.000 68.4 8.60 179 120 0.000 0.875 4.95 208 383 71.8 1,715 0.000 0.000 110 2.71 1.14 129 279 16.0 3.48 137 25.1 2.45 33.4 0.000 0.000 0.000 0.000 0.000 0.000 -2.26 518 215

ZPK 0.000 1.74 331 0.000 0.302 0.000 0.085 0.000 80.0 1,773 827 10,293 375 280 4,426 429 23.8 989 16.3 0.000 32.2 120 143 143 0.000 2,024 527 0.000 256 935 8,733 6.80 538 1,756

PHY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 21,453

MPH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1,129 61.0 0.000 41.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 110 0.000 145 51.9 156 0.000

DET 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.776 28.9 0.000 0.000 13.8 0.000 0.000 31.0 0.000 0.161 0.000 170 2.13 3.53 0.000 0.000 8.28 0.000 0.000 1,060 7,469 180 0.000 4,336

SB 39.6 30.9 331 79.8 40.9 2.79 0.087 81.7 4,059 1,839 1,094 17,615 235 569 3,758 1,154 132 1,714 2,189 47.5 420 1,085 697 213 65.6 695 290 961 373 518 538

Table 4.7: Energy Biological Accounting Matrix (eBAM) for Ecosim data
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The final results of the revision process are summarized in the form of an energetic

BAM in figure 4.7. The revised initial and boundary conditions for the BGE model

stay close to the given values with the exception of export rates, whose deviations

are not penalized but whose levels are tightly bound in the interval ±5%. Table 4.8

presents the given and revised values for the BGE model for comparison.

The final outcome of the revision process is a balanced set of mass and energy

accounting matrices for the 31 modeled species, two exogenous primary producers,

and one detritus stock. Given balanced accounting matrices, the next section will

specify the structure for the BGE model.

4.4 Model structure

The model is programmed and solved numerically using the Mathematical Program-

ming System for General Equilibrium analysis (MPSGE) within the General Alge-

braic Modeling System (GAMS) software.10 The constant elasticity of substitution

(CES) function is a key feature of this modeling system, enabling a simplified and

thereby less error-prone specification of the model equations. This software handles

the calibration tasks described in Chapter 3.

A structure of linkages among the system species and environment underlies the

data calibration procedures from the previous sections. This structure is commonly

depicted in a stylized ‘stick figure’ diagram that details both input and output linkages

along with substitution parameters. For example, in addition to depicting the linkage

between Orca whales and their prey, the diagram will provide the degree of switching

(or elasticity of substitution) between these prey. Figure 4·2 diagrams the structure of

Orca whale biomass and waste production for the model as calibrated to the GEEM

data, with only two prey, and to the Ecosim data, with five prey. The structure is

generalized for the Ecosim data to demonstrate how the same general bioenergetic

10See www.mpsge.org/mainpage/mpsge.htm and www.gams.com.
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Ecosim data as given and as revised for BGE model Formatting

Biomass (t km
-2

) Eco-trophic Efficiency Export Rate Energy Density

Given Revised Given Revised Energy Given Revised Given Revised

Higher-trophic species SB EE' Eev EE EX/SB XB EDB_e ED

1. ORC 0.001 0.016 0.860 0.089 0.107 0.000 0.050 2,474 2,474

2. TWL 0.013 0.013 0.860 0.082 0.192 0.042 -0.001 2,378 2,378

3. HWL 0.145 0.145 0.860 0.129 0.277 0.046 0.034 2,285 2,285

4. SSL 0.045 0.039 0.860 0.050 0.095 0.006 0.050 2,064 2,064

5. SMM 0.022 0.022 0.860 0.094 0.176 0.017 0.050 1,858 1,858

6. SOT 0.004 0.002 0.860 0.050 0.120 0.002 0.050 1,780 1,780

7. BRD 0.000 0.000 0.950 0.561 0.950 0.000 -0.050 1,705 1,705

8. SME 0.050 0.050 0.860 0.665 0.759 0.006 0.031 1,632 1,632

9. SKT 2.600 2.600 0.860 0.593 0.751 0.006 0.050 1,561 1,561

10. SAL 0.000 1.231 0.500 0.261 0.500 0.014 -0.050 1,493 1,493

Mid-trophic species

11. PEL 0.000 0.788 0.950 0.612 0.950 0.000 -0.050 1,396 1,388

12. MCK 13.500 13.500 0.860 0.459 0.671 0.000 0.023 1,305 1,305

13. SDL 0.000 0.189 0.950 0.566 0.950 0.000 -0.050 1,247 1,245

14. HER 0.000 0.477 0.950 0.719 0.950 0.000 -0.050 1,192 1,192

15. PLK 3.376 3.376 0.860 0.368 0.546 0.004 -0.050 1,113 1,113

16. POP 1.109 1.109 0.860 0.579 0.696 0.028 -0.050 1,041 1,041

17. RKF 0.000 0.132 0.950 0.787 0.950 0.014 -0.050 995 995

18. SBF 1.799 1.799 0.860 0.538 0.655 0.006 0.050 953 953

19. COD 2.400 2.400 0.860 0.370 0.399 0.004 0.050 912 912

20. HLB 0.000 0.054 0.900 0.883 0.900 0.014 0.050 874 874

21. RWT 0.500 0.500 0.860 0.401 0.387 0.004 0.050 839 839

Lower-trophic species

22. FFS 0.000 1.346 0.500 0.448 0.500 0.014 0.050 806 806

23. DSM 0.000 0.898 0.950 0.855 0.950 0.000 -0.050 776 776

24. LPD 0.000 0.284 0.950 0.918 0.950 0.014 0.050 748 748

25. DEL 0.000 0.091 0.950 0.917 0.950 0.000 0.002 723 723

26. MYC 0.000 0.998 0.950 0.853 0.950 0.000 -0.050 700 696

27. SHR 0.000 0.428 0.950 0.876 0.950 0.000 -0.050 680 678

28. BEI 0.000 1.499 0.950 0.905 0.950 0.000 0.014 663 641

29. EPC 0.000 0.592 0.950 0.950 0.950 0.014 0.050 647 631

30. CPH 0.000 0.720 0.950 0.950 0.949 0.000 -0.004 635 719

31. ZPK 0.000 0.889 0.950 0.950 0.950 0.000 0.013 620 604     

Min: 0.001 0.000 0.500 0.050 0.095 0.000 -0.050 620 604

Mean: 1.826 1.167 0.894 0.564 0.678 0.014 0.005 1,229 1,229

Max: 13.500 13.500 0.950 0.950 0.950 0.046 0.050 2,474 2,474  

Notes:

1. Italicized figures are estimated.

3. Energy eco-trophic efficiency includes the effect of the massless losses multiplier.  

2. Energy densities are estimated using GEEM data by a 2nd-order polynomial in the average trophic 

sequence of the Ecosim species represented by the BGE species.

Trophic

Seq.

BGE

Code

Table 4.8: Given & revised values for initial & boundary conditions
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Figure 4·2: Production structures for Orca whales

production structure applies to all species.

In the baseline specification, all species have the same elasticities of substitution

among prey, across prey and existing biomass, and between waste and new biomass.

Only primary producers and Orca whales have multiple prey (sunlight and nutrients

for primary producers) in the GEEM data, which simplifies the structure for all other

species. Species’ ability to substitute between prey and starting biomass is limited

relative to their ability to substitute among prey. This feature of the production

structure imposes diminishing returns to consuming additional prey, thereby limiting

the extent to which species grow each period. Last, substitution among waste and

new biomass is permitted to allow for proportionally more waste to be produced when
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a species prey are more scarce; i.e., they are expending more energy, and thereby

generating more waste, per unit of prey.

The supply of exogenous resources is also elastic. These are nutrients and sunlight

in the GEEM data or primary producers and detritus in the Ecosim data. Species

preying on exogenous resources can draw more into the system but only with in-

creasing effort. The energy expended to draw in additional resources is assumed to

rise 1.11% for each additional 1% in resource quantities taken in by primary produc-

ers (i.e. an elasticity of 0.9). Species are assumed to compete for the same pool of

exogenous resources, which drives the energetic expenditure required to secure them.

To close the model, I require that the quantity of system energy embodied in

wastes and ending biomasses at the end of the period equal the starting quantity

from biomass plus additional energy from exogenous resources. The model equations

require the conservation of expended energy, or starting energy times its scarcity value

as determined in the model. The discrepancy between this measure and the quantity

of supplied energy has proven slight in model runs and in practice the difference

in starting and ending energies can be apportioned to additional wastes. For the

purposes of model specification, wastes and biomasses are aggregated into a final

quantity whose energetic value must equal the starting value of energy supplied to

the model. Section 3.4.5 provides an alternate description of the closure assumptions.

Figure 4·3 diagrams the overall model structure illustrating how exogenous resources

and starting biomasses are converted to wastes and biomass, which are aggregated to

total ending energy.



115

ேைߪ ൌ 0.25

ௐேߪ ൌ 1.0

ଵݕ݁ݎܲ ݃݊݅ݐݎܽݐܵ
ଵݏݏܾܽ݉݅

ଵݏ݁݅ܿ݁ܵ

ଵݏݏܽ݉݅ܤ									ଵݏ݁ݐݏܹܽ

ேைߪ ൌ 0.25

ௐேߪ ൌ 1.0

ேݕ݁ݎܲ ݃݊݅ݐݎܽݐܵ
ேݏݏܾܽ݉݅

ேݏ݁݅ܿ݁ܵ

ேݏݏܽ݉݅ܤ									ேݏ݁ݐݏܹܽ

ݏ݁ݐݏܽݓ	݉݁ݐݏݕܵ ݏ݁ݏݏܾܽ݉݅	݃݊݅݀݊ܧ

ݏ݁݅ܿ݁ܵ

ܹ											ܤ

݃݊݅݀݊ܧ ݕ݃ݎ݁݊݁

ௐߪ ൌ 1.0 ߪ ൌ 1.0

ாߪ ൌ 1.0

ݏ݁ܿݎݑݏܴ݁	ݏݑ݊݁݃ݔܧ

ܲ											ܵܤ

ோߪ)
 ൌ 0.75ሻ ܤܵ ୀଵ

ே
ݏ݁ݏݏܽ݉݅ܤ	݃݊݅ݐݎܽݐܵ

Figure 4·3: Ensemble of modeled ecosystem’s production structures

4.5 Results

4.5.1 Overview

I evaluate one baseline and four counter-factual scenarios to demonstrate the BGE

model’s behavior. The model is solved for twenty-five consecutive periods (each a

representative year) for each scenario run. After the model solves for ending biomass

levels in each period, those biomasses are used to set the following period’s starting

biomasses. In all model runs with the benchmark parameterization, the twenty-

five year period proved sufficient for perturbed populations to reach a new steady-
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state equilibrium. For each scenario, I compare results from the GEEM and Ecosim

datasets along with an aggregated version of the Ecosim data intended to mimic the

species resolution of the GEEM data. All results are presented relative to the un-

perturbed baseline scenario outcomes of the model. This is important for the Ecosim

dataset where baseline growth rates are non-zero.

I conduct monte carlo analyses to examine the sensitivity of the model outcomes

to changes in the benchmark parameterization. I report the distribution about the

benchmark biomass outcomes generated from 250 draws from a distribution of pa-

rameter values. The monte carlo analyses first vary five parameter values one at a

time for 25 iterations each. Results from these iterations indicate the relative sensi-

tivity of model outcomes to each of the key model parameters. I use a mean squared

error metric to assess the amount of variation induced by each parameter’s variation.

Next, I take a “buckshot” approach to model sensitivity by taking random draws for

all parameters over 125 monte carlo iterations. Table 4.13 reports the benchmark

values and range of the parameters varied in the monte carlo analysis.

4.5.2 Baseline diagnostics

To provide an initial assessment of the ecosystems represented in the model runs,

Table 4.9 provides summary metrics for all three datasets. The most marked difference

is in the aggregates between the GEEM and Ecosim data. Total energy and mass

measures are significantly larger in the GEEM data. Aggregate measures will not

challenge comparison, which is done in relative terms, but could mute shock responses

to species that are represented as “larger” in the GEEM data. The weighted average

energy density also appears lower in the Ecosim data. Ascendancy declines for the

Ecosim data on aggregating, to an even smaller measure than the GEEM data the

aggregation is intended to mimic. In general, intra-period flows and system exports

are closer together across datasets than the aggregates.
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System metrics by model

 Baseline

Metric Units GEEM EwE EwE-Sm

Aggregate System Metrics

Total system throughput (energy) Bn. Kcal 875,847 135,267 135,138

Total system throughput MMT 971 252 253

Total biomass 614 36 36

Primary production 730 60 60

Ascendancy None 0.63 1.28 0.45

Intra-Period Flows

Respiratory flows Bn. Kcal 20,678 22,196

Consumption MMT 101.8 91.0 87

Detrital flows 139.9 43.5 45

System Exports

Net exports MMT 0.4 -0.8

Total catch (N/A) 0.8 0.2

Mean trophic sequency of catch None 14.1 7.5 

Table 4.9: Ecosystem metrics for model datasets

The first benchmark model scenario generates a set of population levels over the

25-year period to demonstrate the stability of baseline model behavior. Baseline

growth rates are all zero for the GEEM data so these results are not presented.

Absent external estimates, zero-growth was assumed in order to calibrate the GEEM

data, but growth rates from the Ecosim data for GEEM species were also zero (or

perhaps missing). (Population levels for baseline solves with zero growth do not

change over the model period.) Three different stylized growth scenarios (given in

Tables 4.10 and 4.11) are run to examine the behavior of the model on GEEM data

with growth and the Ecosim data under alternate growth assumptions.11

11Given the volume and dimensionality of figures produced, some figures are rather small; however,
all are vectorized and will zoom to a readable size.



118

 

Growth Scenario PP ZP PO SL OW SO UR KE

1. Uniform 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

2. Discrete 0.020 -0.020 0.000 -0.020 0.000 0.020 0.020 -0.020

3. Random 0.029 0.009 0.048 -0.037 0.008 0.027 -0.023 -0.023
 

Table 4.10: GEEM species growth rates for growth scenarios

 

BGE Model Species with Growth Rates by Scenario

Species Growth  Species Growth

No. Code Description Base Disc. Rand. No. Code Description Base Disc. Rand.

Higher-trophic species Mid-trophic species (cont.)

1. ORC Transient orca 0.00% 0.00% -3.70% 17. RKF Rockfish 0.00% -1.00% 0.31%

2. TWL Toothed whales -2.50% -1.00% 0.91% 18. SBF Sablefish -2.00% 0.00% -2.75%

3. HWL Baleen whale -2.00% 1.00% 1.12% 19. COD Pacific cod 3.00% 0.00% 4.95%

4. SSL Stellar sea lion 0.00% -2.00% -1.56% 20. HLB Halibut 3.00% -2.00% -2.80%

5. SMM Sm. mammals -1.00% 2.00% 1.27% 21. RWT Arrowtooth 0.00% 2.00% -3.88%

6. SOT Sea otter 0.00% -1.00% -2.59%

7. BRD Birds 0.00% -1.00% 1.45% Lower-trophic species

8. SME Shark mml. pred. 0.00% 1.00% 0.33% 22. FFS Flatfish 0.00% -1.00% -3.45%

9. SKT Shark & skates 0.00% 2.00% -1.81% 23. DSM Sm. demersals 0.00% -1.00% -2.99%

10. SAL Salmon 0.00% 1.00% 4.96% 24. LPD Lg. demersals 0.00% -1.00% 0.11%

25. DEL Lg. deep water 0.00% 0.00% -3.81%

Mid-trophic species 26. MYC Myctophids 0.00% 2.00% -2.12%

11. PEL Lg. pelagics 0.00% 2.00% -3.61% 27. SHR Shrimps 0.00% 2.00% -0.34%

12. MCK Atka mackerel 0.00% -2.00% 3.98% 28. BEI Benthic inverts 0.00% 0.00% 1.21%

13. SDL Sandlance 0.00% -1.00% 1.17% 29. EPC Epiben pred. 0.00% -2.00% 1.69%

14. HER Herring 0.00% -2.00% -2.80% 30. CPH Cephalopods 0.00% 1.00% -0.41%

15. PLK Adult pollock 0.00% 1.00% 3.57% 31. ZPK Lg. zooplankton 0.00% 2.00% 0.99%

16. POP Pacific perch 0.00% 0.00% -1.78%
 

Table 4.11: Ecosim species growth rates for growth scenarios

Three BGE models are run on the two datasets. The first model is calibrated

to GEEM data, the second and third are calibrated to Ecosim data, but the third

model aggregates to nine species to mimic the resolution of the GEEM data. Figure

4.12 shows how the Ecosim species are mapped to the smaller species set for Model

3 (Ecopath with Ecosim Small - EwE-Sm).

The base growth scenario for the Ecosim species are as given in the Ecosim data

(zero for many). The uniform scenario simply grows all species at 2% (not presented in
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Ecosim Species Mapping

No. Code Description No. Code Description No. Code Description

Whales (WHL) Large fish (LGF) Small fish (SMF)

1. ORC Transient orca 11. PEL Lg. pelagics 23. DSM Sm. demersals

2. TWL Toothed whales 12. MCK Atka mackerel 24. LPD Lg. demersals

3. HWL Baleen whales 13. SDL Sandlance 25. DEL Lg. deep water

26. MYC Myctophids

Other mammals (MML) Harvested fish (HVF)

4. SSL Stellar sea lion 10. SAL Salmon Bottom feeders (BTM)

5. SMM Sm. mammals 14. HER Herring 27. SHR Shrimps

6. SOT Sea otters 15. PLK Adult pollock 28. BEI Benthic inverts

16. POP Pacific perch 29. EPC Epiben pred.

Birds (BRD) 19. COD Pacific cod 30. CPH Cephalopods

7. BRD Birds 20. HLB Halibut 31. ZPK Lg. zooplankton

Big fish (BGF) Medium fish (MDF)

8. SME Shark mml. pred. 17. RKF Rockfish

9. SKT Shark & skates 18. SBF Sablefish

21. RWT Arrowtooth

22. FFS Flatfish
 

Table 4.12: Mapping of Ecosim species to small species set

Table 4.11). The discrete random scenario grows species at a rate randomly selected

from the set {−2%,−1%, 0%, 1%, 2%}. Last, the random growth scenario selects

rates from the interval [−5%, 5%]. Tables 4.10 and 4.11 report the selected growth

rates.

The baseline model runs (with or without growth) ultimately reach steady-state

population levels in nearly all cases. The flatness of the steady-state outcomes are

largely a result of the baseline model runs’ unrealistic assumption of no variability

in resource availability. I add these features in the counter-factual scenarios, but

the steadiness of the baseline solves gives confidence that the baseline activity is not

unduly influencing the counter-factual outcomes.

Figure 4·4 shows stable population levels for all species in all growth scenarios on

the GEEM data after 5 − 10 years of the simulation (see e.g. Table 4.1 for a list of
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Figure 4·4: Model 1 (GEEM) growth scenarios’ population outcomes

species codes). The calibrated zero-growth scenario is not presented – it simply pro-

duces straight lines. Results are qualitatively similar for Model 3 (EwE-Sm) although

the trajectories are somewhat more smooth. This likely owes to the greater richness

in the species diets. Figure 4·5 presents these results including the baseline-growth

scenario (G0) based on the growth rates given in the Ecosim data.

The population trajectories are more varied for the full set of Ecosim species in

Model 2 (EwE) presented in Figure 4·6.12 This is particularly evident for certain

mid-trophic species in the discrete (G2) and random (G3) growth scenarios. Hal-

ibut (HLB) and herring (HER) populations show marked and persistent declines in

the discrete scenario, where each species had the lowest possible growth rate (−2%).

Three other species (stellar sea lions, SSL; mackerel, MCK; epibenthic predators,

EPC) were assigned this growth rate but achieved stable population levels early in

the simulation. In the random growth scenario pelagics (PEL) are assigned a −3.61%

12To balance the figure, arrowtooth flounder (RWT) are not presented. They were chosen for
omission since they have relatively few predators that depend heavily on them and they have little
to no commercial value.
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Figure 4·5: Model 3 (EwE-Sm) growth scenarios’ population out-
comes

growth rate and are not able to recover, exhibiting a persistent decline throughout

the period. This is the fourth most negative growth rate assigned. The Orca popula-

tion is robust to the assigned −3.70% decline with a roughly commensurate decline

in population levels whereas large deep-water fish (DEL, −3.81%) and arrowtooth

flounder (RWT, −3.88%, not presented) populations declined by approximately 20%

before stabilizing.

The results for all three baseline growth scenarios are encouraging. In each case

the assumed or observed growth rates generate stable population levels from which I

can measure the divergence induced by the stylized shocks imposed on the model. The

observed population outcomes are emergent from the dynamics of the specified micro-
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Figure 4·6: Population outcomes for Model 2 (EwE) growth scenarios
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level bioenergetics. Emergent outcomes in complex systems are not always intuitive

and sometimes intractable. For key outcomes of the counter-factual scenarios, I will

offer additional “forensics” on the causal mechanisms at play.

4.5.3 Benchmark counter-factual scenarios

Four stylized scenarios are presented below to examine the BGE model’s behavior.

Each scenario targets different aspects of the ecosystem structure with the intent of

inducing certain population outcomes. Population levels for all model species across

the three models are presented relative to their baseline outcomes. This preserves

the baseline growth dynamics of the species (null in Model 1) within the model while

depicting only the impact of the shocks imposed by the scenario. That is, as presented,

the population levels would be constant at 1 absent any shocks.

Scenario 1: Starve The System (STS)

The first scenario shocks the system’s primary producers and resources. In the GEEM

data, the relevant primary producers are phytoplankton and kelp and in the Ecosim

data they are phytoplankton and macrophytes, or just primary producers for the small

set in Model 3. Detrital resources are also shocked for the Ecosim-based models (2 &

3). Shocks are implemented by reducing their productivity by 10% for Model 1, where

primary production is endogenously modeled. The starting quantity of resources is

reduced by 10% for Models 2 & 3, where primary production is exogenous.

The population effects are pronounced but generally not very large in magnitude.

In both Ecosim models all populations experience a subtle decline with a smooth

transition (Figures 4·7 & 4·8b). The population effects are larger and more varied

for Model 1 (GEEM, Figure 4·8a). The kelp population is more sensitive to the

10% productivity shock than the zooplankton population. Kelp prey, urchins, and

in turn urchin prey, sea otters, experience marked declines of approximately 40%.
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Figure 4·7: Population outcomes for STS scenario - Model 2 (EwE)

The remaining species experience initial shocks of approximately 20% but recover to

between 0 and 10% below baseline levels. Sea lion populations suffer in part from

Orca whale switching in the face of increased sea-otter scarcity.

Scenario 2: Stochastic Species Harvest (SSH)

The stochastic species harvest (SSH) scenario is intended to model a stylized rep-

resentation of random fluctuations in harvesting activity. For the GEEM data and

Model 1, harvesting shocks are only imposed on the pollock population. No baseline

harvesting is specified for the GEEM data, so random harvests are implemented as

fractions of baseline starting biomass. Harvests vary between 15 and 35% of the initial

period’s starting biomass. Shocks vary by year within the 25-year period. For Models

2 and 3 shocks are imposed as a multiple of baseline harvesting so that harvesting

varies between one half and three times the baseline levels as a fraction of initial-

period biomass. There are 19 species with non-zero harvesting rates ranging from

fractions of a percent (of starting biomass) to 14.6%. According to the Ecosim data,

the majority of harvest rates are on the order of 1% of starting biomass. In Model 3

the harvest rates are the weighted average of the sub-species of the functional group.
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Figure 4·8: Population outcomes for STS scenario
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Figure 4·9: Population outcomes for SSH scenario - Model 2 (EwE)
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Figure 4·10: Population outcomes for SSH scenario

As revealed by Model 2 in Figure 4·9, the SSH scenario has the most dramatic

impact on mid-trophic species where the majority of extant harvesting occurs. These

shocks have a larger cascade up the food chain than down. The impacts on low-trophic

species are positive as expected from the harvesting of their predators and largely

negative for their higher-trophic predators. Pacific ocean perch are substantially

impacted by the imposed shocks dropping to approximately 50% of pre-shock levels.

This species has the highest baseline export rate of mid-trophic species. Model 1

results, presented in Figure 4·10a show comparable dynamics, where the harvested

species, pollock, exhibit population declines along with their predators, sea lions, and

their predators, Orca whales. Dynamics are similar although muted in Model 3 as

presented in Figure 4·10b.

Scenario 3: Stochastically Perturbed System (SPS)

The stochastically perturbed system (SPS) is intended to induce fluctuations in

species populations qualitatively similar to those that might be observed empirically.
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Figure 4·11: Population outcomes for SPS scenario - Model 2 (EwE)

Operating strictly through the boundary conditions of the system, the SPS scenario

randomly shocks primary production and harvesting. In Model 1 primary produc-

ers’ (phytoplankton and kelp) starting biomasses are shocked between −10 and 10%.

Similar to the SSH scenario, pollock harvesting is varied between 15 and 35%. In

Models 2 and 3 primary producers’ starting biomasses are shocked between −40 and

5% and harvests vary between one half and three times baseline levels. Shocks vary

across primary producers (for Models 2 and 3) and across years within the 25-year

period.

The outcomes from the SPS scenario show the greatest variation in population

levels of all scenarios. Here the ecosystem is shocked both at its primary produc-

tion and mid-trophic production. In a sense, the SPS scenario combines the shocks

imposed in the STS and SSH scenarios. Combining the shock sources in this way

generates shocks throughout the ecosystem as evident in Figures 4·11, 4·12a, and

4·12b. Here low and high trophic species’ populations trend closer together than

mid-trophic species. Here again pacific ocean perch are heavily decimated by the

shocks. The highest-trophic species, whales and sharks (HWL and SME), experience

the smoothest transition to the new system dynamics.
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Figure 4·12: Population outcomes for SPS scenario

Figure 4·12a shows similar variability in population outcomes for Model 1. Higher-

trophic species such as the Orca whale and sea lions show smoother transitions than

mid-trophic species, whose populations are more variable but less impacted on net.

Last, Figure 4·12b presents more muted population responses among Model 3 species.

Variation is evident and the net effect on populations is negative, but all populations

move more tightly together than in either Model 1 or 2.

Scenario 4: Extinction event (EXT)

The extinction scenario (EXT) examines how the loss of the ecosystem’s apex preda-

tor, the Orca whale, influences other species in the system. In Models 1 and 2 this

shock is implemented by simply removing the Orca whale’s production function from

the BGE model. Additional steps must be taken in Model 3 not to perturb the

efficiencies of other species that eat whale species. While the Orca whale has no

predators by account of the Ecosim data, other whale species with which it is aggre-

gated for Model 3 do have predators. These predators’ biomass production functions
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Figure 4·13: Population outcomes for EXT scenario - Model 2 (EwE)

are recalibrated to exclude whales as part of their diet. Better empirical data might

inform how these predators’ diet shares could change disproportionately in the event

of a whale extinction. I expect the scenario will produce large rises in Orca prey (i.e.

primarily marine mammals). Less clear is how a rise in these populations will in turn

influence their prey and to what extent limited productivity of marine mammals’ prey

may limit their ability to grow under reduced predation pressure.

Results from the extinction scenario are comparable across Models 2 and 3 in

direction and degree. Only the former similarity holds for Model 1 in Figure 4·14a.

Figures 4·13 and 4·14b show dramatic effects on the marine mammal prey of the

Orca whale species. Sea otter and lion populations more than double in Model 2 and

the same holds for marine mammals in Model 3. Sea otter and lion populations also

benefit in Model 1 but much less dramatically - only by 5− 10%.

4.5.4 Monte carlo counter-factual scenarios

This section examines the sensitivity of the model outcomes for each scenario to vari-

ations in the benchmark specification of the elasticity parameters. These parameters

determine the degree to which different inputs can be substituted to yield the same
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Figure 4·14: Population outcomes for EXT scenario

output. The smaller the elasticity, the more difficult it is to make substitutions. An

elasticity of zero means that no substitution is possible - the inputs must be used

in fixed proportion. An elasticity of one means that substitution can occur on a

percent-for-percent basis relative to the benchmark calibration.

Table 4.13 outlines the five elasticity parameters that are varied for the monte

carlo simulations. The parameters are first varied individually with 25 random draws

each. The five parameters are then drawn all at once over 125 draws. The results

will reveal to which parameters model outcomes are most sensitive and demonstrate

the overall sensitivity of the model to its chosen parameters. Aside from the chosen

Symbol Description Benchmark Monte Carlo
Distribution

1. σpR Resource supply 0.75 0.5− 2.0
2. σP New prey 0.75 0.5− 2.0
3. σNO New-old biomass 0.25 0.0− 0.5
4. σEB Ending biomass 1.00 0.0− 1.0
5. σEE Ending energies 1.00 0.0− 1.0

Table 4.13: Distribution of elasticities for Monte Carlo simulations



131

functional forms, essentially all other features of the model are empirically observed.

To assess the relative sensitivity of the model to the different parameters, I present

the distribution of population outcomes over all species and all iterations of the given

parameter. These outcomes are relative to the baseline growth scenario so that all

variation is that induced by the scenario shock. The median is presented within

the 20 − 80th percentile range of population outcomes. The wider the inter-quintile

range, the greater the dispersion induced by the variations in the given parameter.

I also present the mean square error of the monte carlo outcomes to the benchmark

specification. That is, for a given scenario I take the average squared error between the

monte carlo and benchmark results over all populations, time periods, and iterations

for the scenario.

For some parameterizations, the test scenarios may produce local extinction events

for certain species. In instances where extinctions occur, the model simulation is

stopped at the given time period and the next iteration is started. For programming

reasons, a non-zero biomass threshold is set to identify extinction events. I report the

number of extinction events and the iterations in which they occur for each model in

each of the scenarios summarized below.

Scenario 1: Starve The System (STS)

The variation in population outcomes induced by the monte carlo simulations was

largest for the all-elasticities iterations for Model 1 and for the new-old biomass

elasticity for Models 2 and 3. Table 4.14 shows the mean squared error for each

model and each scenario. Model 2 had the highest sensitivity overall at 0.138 or 37.1

percentage points. The new biomass and ending energies elasticities had the least

impact on outcomes across models. This is likely a result of the broad and even

nature of the shock, which gave an unbiased effect on populations and induced little

switching behavior. Conversely, the resource supply and old-new biomass elasticities,
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Mean squared errors: Orca whale extinction (EXT)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.000 0.000 0.013 0.001 0.000 0.003
Model 2: Ecosim 0.019 0.006 0.153 0.033 0.000 0.042
Model 3: Small-species Ecosim 0.001 0.001 0.157 0.062 0.000 0.041 

 
Mean squared errors: Stochastic species harvest (SSH)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.000 0.000 0.542 0.007 0.000 0.019
Model 2: Full Ecosim 0.002 0.004 0.130 0.016 0.000 0.023
Model 3: Small-species Ecosim 0.008 0.000 0.032 0.005 0.000 0.006 

 
Mean squared errors: Stochastically perturbed system (SPS)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.001 0.000 0.056 0.005 0.000 0.019
Model 2: Full Ecosim 0.000 0.003 0.115 0.009 0.000 0.013
Model 3: Small-species Ecosim 0.000 0.000 0.079 0.005 0.000 0.004 

 
Mean squared errors: Starve the system (STS)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.023 0.000 0.026 0.013 0.000 0.050
Model 2: Full Ecosim 0.004 0.004 0.138 0.010 0.000 0.014
Model 3: Small-species Ecosim 0.008 0.000 0.054 0.004 0.000 0.004 

Table 4.14: Monte carlo mean squared errors for STS scenario

which moderate the level of output relative to starting biomass, are more influential

for model outcomes in the STS scenario.

Species extinctions occurred in 10 of the monte carlo iterations of the STS scenario

in Model 1. Of the 10 extinction events, 6 occurred in iterations where all elasticities

were varied. The remaining occurred in the iterations where the new-old biomass

elasticity was varied. There were 23 extinctions in the iterations for Model 2 with

22 occurring during the new-old biomass elasticity iterations and the remainder in

the all-elasticities iterations. There were 3 extinctions all in the new-old biomass

iterations for Model 3.

Figure 4·15 presents the median and inter-quintile range of population outcomes

in the STS scenario over all monte carlo iterations for each model. The populations in

Model 1 exhibit a narrow range of responses to the reduction in primary production

with the widest ranges coming from the resource supply and biomass elasticities.

Results are widest for variations in the new-old biomass elasticity in Model 2. Here

nearly all (23 of 25) iterations resulted in an extinction event as is evident in the

downward crash of the new-old biomass pane of the Model 2 panel. The species

that most often face extinction in these iterations are large deep water fish (Guénette

& Christensen, 2005, p. 54, DEL) and small demersals (Guénette & Christensen,

2005, p. 51, DSM). Results are less dramatic for Model 3, where the dispersion in
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population outcomes is narrowest for all. The species in Model 3 are much more

robust against extinctions as suggested by the narrow population distribution.

Scenario 2: Stochastic Species Harvest (SSH)

The variation of population outcomes in the monte carlo runs of the Stochastic Species

Harvest scenario is almost exclusively induced by variations in the new-old biomass

elasticity. Table 4.15 shows that, across all models, this parameter generates the

highest mean squared errors. Also, the mean squared error (MSE) in Model 1 is

the highest MSE across all models and scenarios, 0.54 or 73.5 percentage points.

Moreover, mean squared errors for other parameters are relatively small. In this

harvesting scenario, the ability of harvested species to add additional biomass is a

critical factor in the extent to which they recover from the shock. That the new

biomass elasticity does not generate much variation in outcomes suggests that the

breadth of the harvesting shocks is not inducing strong prey substitution among

higher-trophic species.

 
Mean squared errors: Orca whale extinction (EXT)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.000 0.000 0.013 0.001 0.000 0.003
Model 2: Ecosim 0.019 0.006 0.153 0.033 0.000 0.042
Model 3: Small-species Ecosim 0.001 0.001 0.157 0.062 0.000 0.041 

 
Mean squared errors: Stochastic species harvest (SSH)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.000 0.000 0.542 0.007 0.000 0.019
Model 2: Full Ecosim 0.002 0.004 0.130 0.016 0.000 0.023
Model 3: Small-species Ecosim 0.008 0.000 0.032 0.005 0.000 0.006 

 
Mean squared errors: Stochastically perturbed system (SPS)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.001 0.000 0.056 0.005 0.000 0.019
Model 2: Full Ecosim 0.000 0.003 0.115 0.009 0.000 0.013
Model 3: Small-species Ecosim 0.000 0.000 0.079 0.005 0.000 0.004 

 
Mean squared errors: Starve the system (STS)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.023 0.000 0.026 0.013 0.000 0.050
Model 2: Full Ecosim 0.004 0.004 0.138 0.010 0.000 0.014
Model 3: Small-species Ecosim 0.008 0.000 0.054 0.004 0.000 0.004 

Table 4.15: Monte carlo mean squared errors for SSH scenario

Twenty-nine of the Model 1 monte carlo iterations generated species extinctions in

the SSH scenario. Twenty-two of the extinctions occurred in the iterations where all

elasticities were varied and the remainder in the iterations where the new-old biomass

elasticity was varied. There were 22 extinctions in the iterations for Model 2 with

17 occurring during the new-old biomass elasticity iterations and the remainder in
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Figure 4·15: Population distributions for STS scenario
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the all-elasticities iterations. There was 1 extinction in the new-old biomass elasticity

iterations in Model 3.

The variation in population outcomes is more narrow for the SSH scenario and

again widest for the new-old biomass elasticity, most dramatically for Model 2. Large

deepwater fish (DEL), similar to the STS scenario, experience the largest number of

extinctions. Part of the up-tick present in the new-old biomass pane of the Model 2

panel in Figures 4·15 and 4·16 may be the result of survivorship bias. When species go

extinct in an iteration the recursive solving is stopped in that time period. If species

extinctions tend to happen near year 20 then the median for later years will only

include the populations in iterations where extinctions did not occur. The tracking

of the median and 80th percentiles in many of the panes suggests that there may be

a large gap between those clearly negatively affected by the shocks and other species

that are largely unimpacted by the shock. This was evident in some of the benchmark

plots where all species were presented (e.g. Figure 4·10a).

Scenario 3: Stochastically Perturbed System (SPS)

The new-old biomass parameter and the all-parameters buckshot iterations generate

the largest mean squared errors, as shown in Table 4.16. Largest overall is the MSE

for new-old biomass in Model 2 at 0.12 or 33.9 percentage points. The low MSE’s

generated in the resource supply and new-biomass iterations suggest that the shocks

are not driving substitution by predators and that the reductions in mid-trophic

species may be accommodating the negative shocks to primary production. Given

the stochasticity, the lack of influence of the new biomass parameter is somewhat sur-

prising. I would have also anticipated that variations in the resource supply elasticity

would have driven variation in lower-trophic species’ population outcomes. It may be

the case that the shocks themselves have already driven the population outcomes so

strongly that they are not sensitive to the marginal changes in these parameters.
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Figure 4·16: Population distributions for SSH scenario
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Mean squared errors: Orca whale extinction (EXT)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.000 0.000 0.013 0.001 0.000 0.003
Model 2: Ecosim 0.019 0.006 0.153 0.033 0.000 0.042
Model 3: Small-species Ecosim 0.001 0.001 0.157 0.062 0.000 0.041 

 
Mean squared errors: Stochastic species harvest (SSH)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.000 0.000 0.542 0.007 0.000 0.019
Model 2: Full Ecosim 0.002 0.004 0.130 0.016 0.000 0.023
Model 3: Small-species Ecosim 0.008 0.000 0.032 0.005 0.000 0.006 

 
Mean squared errors: Stochastically perturbed system (SPS)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.001 0.000 0.056 0.005 0.000 0.019
Model 2: Full Ecosim 0.000 0.003 0.115 0.009 0.000 0.013
Model 3: Small-species Ecosim 0.000 0.000 0.079 0.005 0.000 0.004 

 
Mean squared errors: Starve the system (STS)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.023 0.000 0.026 0.013 0.000 0.050
Model 2: Full Ecosim 0.004 0.004 0.138 0.010 0.000 0.014
Model 3: Small-species Ecosim 0.008 0.000 0.054 0.004 0.000 0.004 

Table 4.16: Monte carlo mean squared errors for SPS scenario

Thirty of the Model 1 monte carlo iterations generated species extinctions in

the SPS scenario. Twenty-two of the extinctions occurred in the iterations where all

elasticities were varied and the remainder in the iterations where the new-old biomass

elasticity was varied. There were 22 extinctions in the iterations for Model 2 with 18

occurring during the new-old biomass elasticity iterations and the remainder in the

all-elasticities iterations. There were 7 extinction events all in the new-old elasticity

iterations for Model 3.

Figure 4·17 shows that, again, the extent of the extinction events is most evident in

the new-old biomass elasticity iterations of Model 2. Here the rebound of populations

is not present in the out years as it was in the SSH scenario and STS to a lesser extent.

Despite the stochastic variability evident in the median lines, the distribution of the

population outcomes is still relatively narrow.

Scenario 4: Extinction event (EXT)

Significant mean squared errors are present most broadly across parameter iterations

for the extinction scenario (Table 4.17). Errors for Models 2 and 3 are comparable,

particularly for new-old biomass and all-elasticity iterations. The ending-biomass

parameter generates a higher MSE in the extinction scenario than in any other. This

is likely owing to the strong growth of marine mammals following the whale extinction.

Populations in Model 1 appear least sensitive to iterations in the parameters.
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Figure 4·17: Population distributions for SPS scenario
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Mean squared errors: Orca whale extinction (EXT)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.000 0.000 0.013 0.001 0.000 0.003
Model 2: Ecosim 0.019 0.006 0.153 0.033 0.000 0.042
Model 3: Small-species Ecosim 0.001 0.001 0.157 0.062 0.000 0.041 

 
Mean squared errors: Stochastic species harvest (SSH)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.000 0.000 0.542 0.007 0.000 0.019
Model 2: Full Ecosim 0.002 0.004 0.130 0.016 0.000 0.023
Model 3: Small-species Ecosim 0.008 0.000 0.032 0.005 0.000 0.006 

 
Mean squared errors: Stochastically perturbed system (SPS)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.001 0.000 0.056 0.005 0.000 0.019
Model 2: Full Ecosim 0.000 0.003 0.115 0.009 0.000 0.013
Model 3: Small-species Ecosim 0.000 0.000 0.079 0.005 0.000 0.004 

 
Mean squared errors: Starve the system (STS)

Scenario
Resource 

Supply
New 

biomass
New-old 
biomass

Ending 
biomass

Ending 
energies

All 
elasts.

Model 1: GEEM 0.023 0.000 0.026 0.013 0.000 0.050
Model 2: Full Ecosim 0.004 0.004 0.138 0.010 0.000 0.014
Model 3: Small-species Ecosim 0.008 0.000 0.054 0.004 0.000 0.004 

Table 4.17: Monte carlo mean squared errors for EXT scenario

Aside from the modeled extinction, one of the Model 1 monte carlo iterations

generated a species extinction in the EXT scenario. The extinction occurred in an

iteration where the new-old biomass elasticity was varied. There were 19 extinctions

in Model 2 with 17 occurring in the new-old biomass elasticity iterations and the

remaining 2 in the all-elasticities iterations. In Model 3 there were 2 extinction events

that both occurred in the new-old biomass elasticity iterations. The distribution of

population outcomes is remarkably narrow for Model 1 and wider for Models 2 and

3.

4.5.5 Summary

The benchmark growth scenarios demonstrated that the data procedures set up in

sections 4.3 and 4.2 allow the BGE model to be calibrated to a variety of growth rates.

As evident in Figure 4·6, certain mid-trophic species are more sensitive to negative

growth rates than others. Producing a baseline outcome with stable populations is

a positive result for the BGE model. This enables clear assessments of the results of

counter-factual analyses.

The starve the system (STS) scenario demonstrated how reductions in primary

productivity imposes losses on the entire system. This is an essential result given

the trophic structure of the ecosystem. The stochastic species harvest (SSH) demon-

strated how mid-trophic shocks can ripple up the trophic chain to influence high-



140

0.0

0.5

1.0

1.5

5 10 15 20 25

Resource supply

0.0

0.5

1.0

1.5

5 10 15 20 25

New biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

New−old biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

Ending biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

Ending energies

0.0

0.5

1.0

1.5

5 10 15 20 25

All elasticities

M
od

el
 1

 (
G

E
E

M
)

0.0

0.5

1.0

1.5

5 10 15 20 25

Resource supply

0.0

0.5

1.0

1.5

5 10 15 20 25

New biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

New−old biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

Ending biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

Ending energies

0.0

0.5

1.0

1.5

5 10 15 20 25

All elasticities

M
od

el
 2

 (
E

w
E

)

0.0

0.5

1.0

1.5

5 10 15 20 25

Resource supply

0.0

0.5

1.0

1.5

5 10 15 20 25

New biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

New−old biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

Ending biomass

0.0

0.5

1.0

1.5

5 10 15 20 25

Ending energies

0.0

0.5

1.0

1.5

5 10 15 20 25

All elasticities

M
od

el
 3

 (
E

w
E

−
S

m
)

20−80th Pctls. Median

Figure 4·18: Population distributions for EXT scenario
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trophic population levels but have limited impact on low-trophic species. The stochas-

tically perturbed system (SPS) combined the STS and SSH scenarios to show how

stochastic shocks to the base and middle of the ecosystem can generate ripple effects

throughout the system. This variation may more closely resemble empirical observa-

tion of population variability. Finally, the extinction scenario demonstrated how the

removal of a top predator can have dramatic impacts on the populations of its prey,

doubling the sea otter and lion populations in the Ecosim models.

The sensitivity analyses offered a consistent story across scenarios. The new-old

biomass parameter was by far the most influential. Moreover, ending biomass and

energy parameters had relatively little impact on outcomes. This is a positive result.

We learned that the BGE model is sensitive to a physically relevant parameter. We

can empirically examine the extent to which additional consumption of prey produces

new biomass for various species. For example, lower-trophic species may be able to

add much more new biomass relative to their starting biomass than higher-trophic

species. Last, the ending biomass and energy aggregations are abstractions imposed

by the modeling framework. They are needed to close the model and its mathematical

structure. It is encouraging that these parameters, that lack a direct analogue in the

physical world, are not driving model outcomes.

4.6 Conclusion

This chapter has demonstrated the power of the Biological General Equilibrium

(BGE) model constructed in Chapter 3 to admit multiple data sources and produce

robust, biologically relevant results. In particular, section 4.3 demonstrated a general

method for organizing Ecosim data, a widely-used standard in ecosystem modeling,

into a set of accounting matrices compatible with the BGE framework. This opens a

wealth of opportunity for analysis of additional ecosystems and cross-model compar-
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ison.

Section 4.4 outlined how the micro-dynamics of species bioenergetic trade-offs

“roll up” to macro-ecologic outcomes. Specifying the model in this way permits a

unique level of specificity for imposing bioenergetic shocks on model species. These

emergent population dynamics proved biologically plausible and largely robust to

alternate specifications with the exception of the physically relevant new-old biomass

substitution parameter. Incorporating a more nuanced understanding of the extent to

which species intra-period growth rates can vary will improve model performance and

shed additional light on species’ population dynamics. Ultimately, the BGE model

will benefit from specific consideration of inter-temporal trade-offs such as biomass

allocation and spatial features such as “patchy” environments.

The BGE model provides a successful integration of optimal foraging, bioenergetic

optimization, and ecosystem modeling into a well-founded mathematical structure for

representing the complex interactions of species in an ecosystem. Chapter 5 will test

the BGE model further by modeling observed phenomena in the Aleutian ecosys-

tem. Verifying the outcomes here against the historical record will support the BGE

model’s capacity for generating biologically relevant results.



Chapter 5: Applying the Bioenergetic General Equilibrium Model

5.1 Introduction

This chapter applies the Biological General Equilibrium (BGE) model to the Aleutian

marine ecosystem to examine the model’s ability to represent empirically observed

phenomena. The BGE model’s external validity will be supported to the extent it

is able to mimic key features of these phenomena. I consider two cases of interest

for this ecosystem: invasive species and a harvesting-induced trophic cascade. The

BGE model is run using only the full Ecosim data set (Guénette & Christensen,

2005) (Model 2 in Chapter 4). The invasive species scenario incorporates external

estimates of bird biomass into the underlying data and shocks the bird population to

mimic empirical findings. The trophic cascade scenario highlights how, through prey

substitution, exogenous shocks can be transmitted to a seemingly remote part of the

ecosystem, though not as strongly as hypothesized.

5.2 Invasive species

The first scenario considers the introduction of an invasive species, the Norway rat,

to the Aleutian marine ecosystem. As documented by Kurle and co-authors (Kurle,

Croll, & Tershy, 2008), Norway rats impact Aleutian ecosystems by preying on the

eggs of Glaucous-winged gulls and Black Oystercatchers. Where rats have been intro-

duced, endemic bird species’ populations are significantly lower and the prey species

of birds are more abundant. There is one representative bird species encompassing

20 biological bird species in the Ecosim data (Guénette & Christensen, 2005, p. 28).

This means that the model representation is further abstracted from the phenomena

observed by Kurle and co-authors, but producing qualitatively similar model dynam-

ics to those observed should still be possible.

143
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Biomass data are missing for the bird species in the Ecosim data. The benchmark

data revision procedure (Section 4.3.2) finds minimal biomass values for the bird

species, which limits its potential impact on the ecosystem. Data provided by Kurle

et al. (Kurle et al., 2008, Fig. 2) suggest bird biomass densities of approximately 15

tonnes per square kilometer.1 Adjusting for the relative area between the nearshore

and the greater marine environment as in (J. Tschirhart, 2003, Table 1, fn. a) gives

a bird biomass density of 0.04 tonnes per square kilometer. I use this “back of the

envelope” estimate to set bird biomass levels in the data revision procedure that are

likely more realistic and consequential for the ecosystem.

The newly-revised data have different baseline population behavior than in previ-

ous iterations of the model. Figure 5·1b presents the baseline outcomes of the model

with the increased bird biomass and, for comparison, Figure 5·1a presents the same

outcomes without revising the bird biomass levels to those comparable to Kurle et

al.’s findings (same as the top panel of Figure 4·6). Results are similar, halibut (HLB)

and sablefish (SBF) show the largest population changes, but the revised data show

less dispersion in population outcomes among lower-trophic species. Higher-trophic

species are effectively unchanged with whales exhibiting slight declines for both data

sets. In all, revising the bird biomass levels upward does not have a marked impact

on the ecosystem as a whole.

The Norway rat preys on bird species by eating their eggs. To introduce this

shock in the model I remove 50% of the birds’ starting biomass each period. This

results in an approximate 40% decline in the bird population, which is in the middle

of the 19− 47% range of declines referenced by (Kurle et al., 2008) (citing (Jones et

al., 2008)). Figure 5·2 presents the population outcomes relative their baseline levels

for all model species (except the Norway rat).

As expected, the bird population is negatively impacted, by about 40% in this

1Assuming each individual is approximately 1kg on average.
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Figure 5·1: Baseline growth population outcomes

case. Birds’ major prey are cephalopods (CPH, 36.3%), pelagics (PEL, 21.5%), and

sandlance (SDL, 12.5%). Together these species comprise 70% of the birds’ diets. The

impact on these populations is uniformly positive, with cephalopods experiencing the

smallest increase. Although cephalopods are a significant part of the bird diet, birds

are responsible for a small fraction of cephalopod predation (4.9%) in the Ecosim

data (as revised for the model). Birds account for larger fractions of pelagic (13.4%)

and sandlance (18.3%) predation.
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Figure 5·2: Population levels following invasive Norway rat

Halibut (HLB) and sablefish (SBF) show large initial shocks but trend back to

baseline levels throughout the period. Figure 5·1b shows how these populations

showed the largest population changes in baseline - positive for halibut and nega-

tive for sablefish. The relative shocks induced by the bird harvesting appear to have

moved these populations to their long-run levels more rapidly than in the baseline.

These species are linked - halibut prey on sablefish, but not in significant amounts.

Cephalopods comprise the largest share of the halibut diet at approximately a third.

The more-rapid population increase experienced by the halibut is attributable to re-

duced competition with birds for these prey, whose scarcity decreases by 2.5% when

the effects of the Norway rat are modeled. Sablefish feed heavily (approximately 90%)

on zooplankton (ZPK), who face increased scarcity from the rise in the population

levels of two of their primary predators, also birds’ primary prey, cephalopods and

pelagics. Given the high dependence of sablefish on zooplankton, even slight increases

in the latter’s scarcity generate noticeable changes in sablefish population outcomes.
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5.3 Trophic cascade

The second case considers the impact on higher-trophic species of increased harvesting

of mid-trophic species. Estes and co-authors document declines in sea otter popu-

lations in the early 1990s following peak abundance in the late 1970s. The authors

ultimately propose a trophic cascade among the ecosystem species, one that is ripe

for investigation by the BGE model.

. . . sea otter population declines and the consequent collapse of kelp forest

ecosystems almost certainly have been driven by . . . a chain of ecologi-

cal interactions, beginning with reduced or altered forage fish stocks in

the oceanic environment, which in turn sent pinniped populations into

decline . . . killer whales who once fed on [pinnipeds] expanded their diet

to include sea otters . . . [creating] a linkage between oceanic and coastal

ecosystems and in so doing transformed coastal kelp forests from three- to

four-trophic-level systems, thereby releasing sea urchins from the limiting

influence of sea otter predation. Unregulated urchin populations increased

rapidly and overgrazed the kelp forests. . . (Estes, Tinker, Williams, &

Doak, 1998, p. 475)

To summarize, reduced fish stocks from harvesting led to sea lion declines, which

induced prey switching by Orca’s toward sea otters, whose reduced numbers led to

increases in their prey, sea urchins, and in turn decreases in urchin’s primary food

source, kelp. To characterize the harvesting shocks I use commercial landings data

from the National Oceanic and Atmospheric Administration’s (NOAA) National Ma-

rine Fisheries Service (NMFS)(NOAA, 2015). Figure 5.1 summarizes the primary

prey for Orca whales, sea lions, and sea otters.

To identify these prey in the fisheries data, I match the detailed descriptions of the

the constituent prey of the Ecosim functional group given in (Guénette & Christensen,
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Affected species and prey diet shares
Orca Whales Sea Lions Sea Otters

Prey name Code

Diet
share Prey name Code

Diet
share Prey name Code

Diet
share

Stellar sea lion SSL 80.0% Atka mackerel MCK 37.7% Benthic inverts BEI 60.0%
Sm. mammals SMM 15.0% Salmon SAL 11.3% Sm. demersals DSM 30.0%
Sea otters SOT 3.0% Pacific cod COD 7.4% Sandlance SDL 4.0%

Table 5.1: Species of interest and their harvested prey

2005) to search results in the landings data. Stellar sea lion prey also included small

demersals (DSM) as 20.4% of their diet and cephalopods (CPH) as 6.9% of their diet;

however, the landings data showed small and often zero landings for these species.

None of the species comprising the remaining 16.3% of the sea lion diet comprised

more than 5.6% on its own. As a result of the limited landings for cephalopods and

small demersals, I’ve modeled shocks to salmon (SAL), cod, and mackerel (MCK)

only, which comprise 56.3% of the sea lion diet.

Table 5.2 summarizes the harvest quantities in tonnes and relative to prior-period

landings.2 As a point of comparison, I’ve included the relevant Ecosim data. Recall

that harvest rates from the Ecosim data have been revised according to the data

procedure for Model 2 outlined in Section 4.3.2. The revision procedure assigned all

three shocked species corner solutions (i.e. harvest rates were bounded above at 5%),

but these rates could be fixed at different levels in the data revision procedure given

better external estimates (e.g. using the landings data if they were plausible).

The quantity of tonnes fished from the landings data for mackerel (MCK) are

plausible on their face, but salmon (SAL) and cod landings are clearly incommen-

surate with the Ecosim data. Inaccuracy here can be tolerated since the model will

incorporate relative landings data only. That is, the relative movement in harvesting

2Biomass densities given in the Ecosim data are converted to total tonnage using the 56,936 km2

study area identified by (Guénette & Christensen, 2005, p. 8).
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Biomass and Landings

MCK SAL COD

Year Tonnes Relative Tonnes Relative Tonnes Relative

Ecosim

Biomass 768,636 105,724 136,646

Exports 38,432 5.0% 5,286 5.0% 6,832 5.0%

NOAA‐NMFS

1990 22,263 1.000 298,123 1.000 238,332 1.000

1991 25,668 1.153 314,741 1.056 231,460 0.971

1992 59,714 2.682 298,624 1.002 251,665 1.056

1993 51,314 2.305 373,848 1.254 193,983 0.814

1994 62,547 2.809 362,036 1.214 209,158 0.878

1995 67,497 3.032 428,500 1.437 272,160 1.142

1996 87,871 3.947 355,131 1.191 278,616 1.169

1997 59,165 2.658 240,534 0.807 316,574 1.328

1998 51,198 2.300 283,996 0.953 267,431 1.122

1999 51,436 2.310 363,650 1.220 237,616 0.997

2000 44,592 2.003 275,212 0.923 240,276 1.008

2001 57,096 2.565 311,351 1.044 213,565 0.896

2002 37,759 1.696 237,257 0.796 231,721 0.972

2003 45,152 2.028 286,006 0.959 256,099 1.075

2004 49,180 2.209 316,564 1.062 266,414 1.118

2005 58,733 2.638 395,681 1.327 248,003 1.041

2006 59,337 2.665 287,683 0.965 234,872 0.985

2007 57,589 2.587 390,662 1.310 221,059 0.928

2008 57,620 2.588 290,334 0.974 223,992 0.940

2009 71,164 3.196 304,446 1.021 222,508 0.934

2010 65,865 2.958 343,294 1.152 244,619 1.026

2011 51,073 2.294 334,810 1.123 300,978 1.263

2012 47,168 2.119 277,222 0.930 325,372 1.365

2013 23,326 1.048 459,318 1.541 309,267 1.298

2014* 51,719 2.323 343,818 1.153 280,549 1.177

2015* 47,830 2.148 351,692 1.180 292,157 1.226

Notes: Asterisked rows are moving averages of prior five years.

Table 5.2: Harvesting quantities and rates

is used as a multiplier on Ecosim harvesting rates as produced by the data revision

procedure. For the purposes of this scenario, I artificially assume that the Ecosim

data depict a snapshot of the ecosystem as of 1990, with the 25-year model horizon

carrying the ecosystem to present day. I extend the available landings data using a

moving average to cover the final two years of the period.
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Figure 5·3: Relative population levels for perturbed species

Figure 5·3 plots modeled population outcomes for the harvested species and those

linked to the harvested species via the trophic chain described by Estes et al. (Estes et

al., 1998). Of the harvested species, mackerel (MCK) are hit hardest by the harvesting

shocks generated from the NMFS landings data. Harvesting rates for mackerel more

than doubled during the period covered by the landings data. Salmon (SAL) and cod

experienced smaller declines consistent with the harvesting shocks imposed.

The trophic cascade outlined by Estes et al. (Estes et al., 1998) is evident in

the relative movements of the species, though much more slight than the observed

phenomena. Sea lions suffer from the increased harvesting of their prey and Orca

whale populations also decline. Sea otters face declines throughout the period but

are nearly recovered by the end. The degree of prey switching by Orcas is the limiting

parameter on the cascade dynamics. To witness impact of this parameter, I set it to

4 instead of 1. That is, for a 1% rise in the relative scarcity of a particular prey, the

Orca will now consume 4% more of the relatively abundant prey (otters in this case).

Figure 5·4 plots the population levels for the top three Orca prey, sea lions (SSL),

shark mammal eaters (SMM), and sea otters (SOT), which comprise 98% of the Orca

diet. The figure presents outcomes for the benchmark specification (unitary degree
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Figure 5·4: Relative population levels for perturbed species

of switching) and the increased switching alternate specification (degree of switching

of 4). The otter (SOT) and mammal-eating shark (SMM) populations suffer greater

losses while sea lions (SSL) gain some relief from the increased switching. That is,

the Orca is able to reduce its expenditures dedicated to securing the now-scarce sea

lion by switching to a greater extent to consuming the relatively abundant shark and

otter populations. The Orca population (not presented) is slightly better off for this

increased adaptability. As hypothesized, otters are worse-off throughout the period

for the Orca’s increased switching ability.

The small share of the Orca diet taken up by sea otters (3%) is another miti-

gating factor here. The alternate switching scenario presented above demonstrated

how, even with a relatively high degree of switching, the Orca population’s relative

“distaste” for otters prevents them from dramatically increasing predation pressure

on this population. This exercise demonstrates one way in which the BGE model

can help characterize the impact of switching behavior on trophic interactions in the

context of other shocks.
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Benthic invertebrates (BEI) comprise the majority of the sea otter diet at approx-

imately 60%; however, sea otters account for less than one percent of benthic inverte-

brates’ predation. While there is a slight increase in benthic invertebrate abundance

in the model, the otter population’s influence on benthic invertebrates is generally

too small to generate the kinds of impacts hypothesized by Estes et al. (Estes et

al., 1998). This is likely an artifact of the species aggregation in the Ecosim data

(Guénette & Christensen, 2005), which group sea urchins within a broad aggregate

of all benthic invertebrates. If the data identified urchins we may find that otters are

responsible for a significant share of their predation, in which case we would expect

the BGE model to yield significant impacts on the urchin species.

There are a two critical caveats to note here. First, the Ecosim data are incomplete

and likely do not depict the true state of the ecosystem at the desired period. Second,

the harvesting shocks are taken in isolation and there were no doubt myriad other

exogenous shocks to the system that could have undermined sea otter populations

either directly or through another trophic cascade.

5.4 Conclusion

The invasive species scenario demonstrated the BGE model’s ability to simulate bird

species declines from a novel, invasive predator in a parametric fashion. With addi-

tional information on the Norway rat, we could include a full characterization of its

bioenergetics in the model to examine its impact on the ecosystem. The introduction

of its predation as a shock generated a trophic cascade of its own as outlined by

Kurle and co-authors (Kurle et al., 2008). Bird populations declined substantially,

their prey increased significantly, and other proximal “ripple effects” of the cascade

were identified. The trophic cascade scenario examined a more extended network of

effects driven by harvesting activity. The model was able to mimic much of the hy-



153

pothesized and observed behavior in a relative sense, though magnitudes were more

muted. This helped to demonstrate how different parameterizations of the model

can produce predictable differences in population outcomes consistent with foraging

theory on switching behavior. Last, the trophic cascade scenario echoed the mantra

that a ‘model is only as good as its data.’ The species resolution was too low to

test hypotheses on lower-trophic responses to otter population dynamics and data

aggregation may have contributed to the more muted responses observed earlier in

the cascade.

Overall the BGE model has performed well in mimicking observed phenomena in

direction if not entirely in level. This limited but successful test of model validity

lends support to further investigations with the BGE model, perhaps including more

highly-resolved data or more detailed characterizations of observed phenomena. The

value of the model hinges critically on its ability to generate outcomes consistent with

observed ecosystem realities. Having cleared this admittedly low but critical bar, it

is worth the additional effort to identify the next-highest bar of validity and test the

BGE model’s capacity for clearing it.
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Chapter 6: Conclusion

6.1 Summary

This work has demonstrated how the input-output foundation and analytical struc-

ture of general equilibrium modeling is well-suited to analyzing both ecosystems and

economies. Modeling these systems requires careful accounting and analysis of partic-

ipants’ behavior. Chapter 2 showed how exploiting accounting identities can enable

integrating highly-detailed representations of energy and abatement technology into

the CGE framework to represent both engineering and economic activity.

Chapter 3 provided a careful review of the biology literature needed to construct

the theoretical basis for a general equilibrium model of an ecosystem. Resource

scarcity, fundamental to economics, was shown to be a key driving factor in optimal

foraging. The micro-behavioral features of optimal foraging were given an explicit

metric of energy expenditure and benefit, forging a linkage with bioenergetic opti-

mization. Functional representations of this measured, micro-behavioral activity was

then assembled into a coherent model of aggregate ecosystem behavior.

Chapters 4 and 5 drew on empirical data to demonstrate the stability and the

internal and external validity of the BGE model. Model responses to the various

shocks imposed by the test scenarios in Chapter 4 made evident the damped nature

of the ecosystem as represented in the BGE model. Results in Chapter 5 showed

the BGE model’s ability to mimic observed “real-world” phenomena as highlighted

in the ecology literature. This critical test of the BGE model offered a modicum of

external validity to encourage further investment in developing and testing the model

for other applications.

Ecosystems and economies bear many similarities. These biological and techno-

logical systems carry a set of adaptive and interacting biologies or technologies that
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combine inputs to produce distinct outputs. Beyond physical conservation of mass

and energy, the participants in each system are constrained in their ability to make

substitutions by the biology or technology available to them. Changes in these biolo-

gies and technologies over time are possible and indeed integral to the evolution of

the system as a whole. In an abstract, and perhaps real, sense, technological systems

represent an evolved part of biological systems. The capacity for one species to ma-

nipulate tools and rapidly generate new technologies spawned an entire technological

system in itself - a clear punctuation in a continuum of biological and technological

processes.

6.2 Future work

Ecosystems and economies are both complex adaptive systems that require sophis-

ticated methods to represent their behavior. These systems interact in critical ways

that influence the outcomes prevailing in each. Climate change has generated consid-

erable interest in the economics community in the “integrated assessment” of climate

and economics. That is, research to model the interactions between physical and

technological systems has been underway for over two decades, but less work has

been completed on the integrated assessment of biological and technological systems

as complex adaptive systems.

This work is well-positioned to help complete the triangle of linkages among com-

plex physical, biological, and technological systems. The BGE model can simulate the

effects of shocks from both the climate and the economy. For example, the bioener-

getic costs of increased temperature and ocean acidification could be imposed on the

model and the population outcomes used to shock harvesting effort and yield in an

economic model. Moreover, employing a common general equilibrium framework for

both the ecosystem and economy models may enable deeper integration of the models
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than is currently available to climate and economy models, opening opportunities for

modeling resource management more dynamically.

In all this has been an interdisciplinary work. Using a common framework, I’ve

demonstrated how much of the logic employed in ecology carries helpful analogues in

economics. Given these analogues and the well-developed tool of economic general

equilibrium, adapting that tool for biological applications is a natural extension. See-

ing these systems through a common frame holds promise for casting new light on

the structure and dynamics of each.
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Chapter 7: Appendices

7.1 Data Construction

7.1.1 The PAGE Dataset

The Pollution, Abatement, and Generation of Electricity (PAGE) dataset is built

on Energy Information Administration (EIA) and Environmental Protection Agency

(EPA) data sources. All sources are for 2010 where applicable. Forms EIA-860 and

EIA-923 provide a boiler- and abatement-equipment- level summary of 96% of electric

generation on the US grid.

Operating Costs

Form EIA-923 data provide generation output and fuel use quantities for each tech-

nology installation in the data. Fuel use and electric output quantities are first

summarized at the plant-fuel-generator level (approx. 9,300 obs.). Installations of

abatement equipment are summarized at the installation-boiler level. The mapping

is many-to-many. Some boilers have multiple abatement equipment installations and

some installations service multiple boilers.

Cost estimates are capacity-specific. Generating units are categorized on name-

plate (NP) capacity as small (NP < 300 MW), medium (300 ≤ NP < 700 MW), and

large (NP ≥ 700 MW). Nameplate data are incomplete. Missing observations are

estimated based on prime mover and net generation.

Abatement equipment operating costs are sourced from EPA’s IPM (ICF Re-

sources, LLC, 2010, Ch. 5). Fixed capital and O&M costs are specific to the name-

plate capacity that the installation services. Variable O&M costs are independent of

nameplate. O&M costs are allocated entirely to labor, though likely comprise some

materials. Heat-rate penalties are valued at a wholesale fuel price and allocated to
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fuel inputs. Capacity penalties are valued at a wholesale electric price and allocated

to electric inputs.

Generation equipment operating costs are sourced from EIA’s Annual Energy

Outlook (Energy Information Administration, 2010, Table 8.2). O&M costs are allo-

cated to labor. AEO technologies are matched to extant grid technologies to assign

cost estimates. Cost estimates are adjusted for the “extraordinary rate” of increase

in construction costs during the aughts (Kaplan, 2008, p. 18). All capital values are

amortized at 6.15% over a 20-year life as in IPM (ICF Resources, LLC, 2010, Ch. 8).

Fuel price-per-BTU data are provided for fuel purchases made by a subset of

installations. Fuel-region quantity-weighted averages are used to estimate the value

of the heat-rate penalties of abatement equipment. National averages are used where

fuel-region averages are unavailable.

Electricity wholesale prices are provided by trading hub by EIA (Electricity,

Wholesale Market Data, 2013). Trading hubs are mapped to North American Electric

Reliability Corporation (NERC) regions and region-specific volume-weighted average

wholesale electricity prices are used to value the capacity penalties imposed by abate-

ment equipment. Missing data for certain regions are approximated from neighboring

regions.

All values are adjusted to 2010 dollars using the Bureau of Economic Analysis

“GDPDEF” series (Gross domestic product: Implicit price deflator (GDPDEF), 2015)

for the final PAGE dataset. For the purposes of the model, only relative values enter

the bottom-up – top-down reconciliation process.

Emissions

Emissions for oxides of nitrogen and sulfur, particulate matter, mercury, carbon diox-

ide, nitrous oxide, and methane are estimated. A variety of additional pollutants can

be included based on data given in the AP-42 compilation (AP 42, Fifth Edition,
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Compilation of Air Pollutant Emission Factors, Vol. 1 , 1995). Carbon dioxide,

nitrous oxide, and methane are combined into a single greenhouse-gas equivalent

(GHGe) measure based on common global warming potential multipliers. Emissions

are driven by a combination of fuel-specific, uncontrolled emissions factors (AP 42,

Fifth Edition, Compilation of Air Pollutant Emission Factors, Vol. 1 , 1995) and

abatement equipment removal efficiencies (Form EIA-860).

Emissions factors rely on fuel sulfur and ash contents, whose empirical averages

are taken from Form EIA-923 fuel-use data. These data are given at the boiler level

but do not cover all installations. Fuel-specific sulfur content estimates given by Form

EIA-923 documentation are modified by the empirical averages in the Form EIA-923

fuel-use data to generate fuel-region-specific averages (using census regions).

Mercury emissions are particularly sensitive to installations of non-mercury abate-

ment equipment. Mercury emissions are estimated as the product of uncontrolled

emissions rates from the EPA AP-42 compilation (AP 42, Fifth Edition, Compilation

of Air Pollutant Emission Factors, Vol. 1 , 1995) and emissions modification fac-

tors from EPA’s Integrated Planning Model (ICF Resources, LLC, 2010, Table 5-13).

The modification factors are a function of burner and fuel types plus NOx, SOx, and

particulate controls. All other uncontrolled emissions rates are taken directly from

the EPA AP-42 compilation (AP 42, Fifth Edition, Compilation of Air Pollutant

Emission Factors, Vol. 1 , 1995, Ch. 1) based on fuel type.

Emissions removal efficiencies of the installed equipment are given in the Form

EIA-860 data. Where data are missing, abatement-technology averages are applied.

These removal efficiencies are used to estimate total abatement and emissions for each

installation.
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Summary & aggregation

The final dataset then contains capital, labor, fuel, and electricity costs along with

electricity and pollution output quantities for each generation and abatement equip-

ment installation on the US grid that is represented in Forms EIA-860 and EIA-923

data – approximately 9,700 installations. The final step in preparing the data for

the model is to summarize these values and quantities at a technological resolution

sufficiently low for model feasibility.

Collapsing the installations on all technological attributes contained in the dataset

produces 173 distinct technologies. To further collapse the data for feasibility, tech-

nologies accounting for less than one tenth of one percent of net generation on the

grid are collapsed on fuel type, reducing the number of technologies to the final 72

incorporated in the model.

Emissions estimates are accurate to the order of magnitude of independent esti-

mates, though are not exact. For applications where an exact matching is necessary, a

balancing procedure that minimally revises the emissions factors ex-post of the value-

share revision could be performed in a straightforward way. All model technologies

are summarized in Appendix 7.3.

7.1.2 Social Accounting Matrix

Social Accounting Matrix (SAM) data are from the Bureau of Labor Statistics (BLS)

Input-Output data (Bureau of Labor Statistics, 2012). Standard matrix manipu-

lations are used to generate a SAM from the nominal 2010 I-O accounts. SAM

column-row residuals, which are on the order of $100, 000, are distributed away by

a least-squares minimization. Value-add components are allocated based on Bureau

of Economic Analysis (BEA) GDP-by-industry data (Bureau of Economic Analysis,

2012).
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7.2 Model Elasticities

Elasticities used in the model are adapted from the MIT EPPA (Paltsev et al., 2005)

model and are summarized in Figure 7·1.

Model Elasticities

Production, Consumption, Trade Energy

Elasticities Value Elasticities Value

Energy -- value-add Fixed-factor -- energy-materials

Generation technologies 0.1  Agriculture 0.6

Nuclear & renewable technologies 0.2

Energy-intensive sectors 0.3 Energy -- Materials

All other 0.5 Agriculture 0.3

Capital -- labor Electricity -- fuel

All other 1.0 All except generation tech. 0.5

Consumption elasticities Fixed Factors

Transportation -- other cons. 1.0 Fixed-factor -- all-other (fuels) 0.6

Energy -- materials-services 0.7 Fixed-factor -- energy-matls (agr.) 0.7

Materials -- services 0.3

Electricity -- fuels 0.3 Fuels

Fuels 0.4 All prod. except generation 1.0

Trade elasticities Electric-specific elasticities

Imports -- domestic prod. 3.0 Electric loads 0.3

Local -- exports (output) 2.0 Baseload technologies 1.2

Mid-load technologies 1.0

Peak-load technologies 0.8

Notes:  Indented descriptions indicate the elasticity for a subset of sectors.

Sources:  MIT EPPA model (Paltsev et al., 2005).

Figure 7·1: Elasticities used in CGE model
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Technology code legend

Model technology Code Model technology Code

Fuels Fuels (cont.)

Bituminous coal BIT Oil OIL

Sub-bituminous coal SUB Nuclear NUC

Lignite coal LIG Renewables RNW

Gas GAS Hydro WAT

NOx Controls Particulate Controls

Low NOx burner LN Cold side CS

Catalytic reduction SR Fabric filter FF

Overfire air OFA Hot side HS

Noncatalytic reduction SN Other methods OT

Other change in process OM

Fuel reburning FU

SOx Controls Mercury Controls

Wet scrubber WET Activated carbon injection ACJ

Dry scrubber DRY

Sources: PAGE dataset.  

Figure 7·2: Legend of fuel & technology codes

7.3 Model Technologies

This appendix provides a full list of the 72 technologies that operate within the model.

Figure 7·3 lists each technology with a description of the attributes that define it and

a summary of its net generation and GHGe emissions.
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Model Technologies

No.

Fuel 

Type PM SOx NOx Hg

Small 

Net 

Gen.

Net 

Generation 

(GWh)

Total Cost 

($2010 MM)

GHGe 

Emissions 

(MMT)

1. BIT CS WET SR 374,000 $  26,748 463

2. SUB CS WET LN 227,000 15,728 328

3. BIT CS WET LN 190,000 13,968 247

4. SUB CS WET OFA 79,100 5,526 116

5. SUB CS WET SR 68,600 5,439 93

6. BIT CS WET SN 43,300 3,529 57

7. BIT HS WET SR 42,900 2,620 56

8. BIT FF WET LN 40,000 2,349 55

9. SUB CS WET LN ACJ 37,600 2,626 53

10. SUB • 36,100 2,568 57

11. SUB HS WET LN 35,800 2,271 53

12. BIT HS WET LN 35,600 2,257 48

13. SUB FF WET LN 35,400 2,052 50

14. BIT • 35,400 2,895 44

15. SUB FF DRY SR ACJ 31,800 2,085 45

16. LIG CS WET LN 27,600 1,568 54

17. SUB FF WET SR 21,500 1,328 33

18. LIG • 19,600 1,122 40

19. SUB FF DRY LN 18,900 1,073 26

20. SUB CS WET SR ACJ 16,900 1,276 24

21. SUB FF WET OFA 15,400 865 22

22. SUB CS WET OM 14,000 1,082 21

23. BIT FF DRY LN 13,800 804 18

24. BIT OT WET SR 13,600 817 16

25. SUB CS DRY LN 13,600 870 22

26. SUB OT WET LN 13,200 795 20

27. BIT FF WET SN 12,700 802 17

28. LIG CS WET LN ACJ 12,600 794 24

29. SUB CS WET OFA ACJ 11,500 813 17

30. SUB HS WET OFA ACJ 11,500 754 17

31. BIT HS WET OFA 11,100 520 15

32. SUB OT WET LN ACJ 10,700 580 16

33. BIT CS WET SR ACJ 10,100 813 12

34. SUB CS WET 10,100 911 16

35. BIT FF WET SR 9,639 729 12

36. BIT CS WET OFA 9,304 842 12

37. BIT HS DRY SR 7,748 473 10

38. SUB FF DRY SR 7,411 438 11

39. SUB HS WET OFA 7,247 453 10

40. SUB FF DRY LN ACJ 7,183 425 10

41. LIG FF DRY LN 6,360 244 12

42. LIG CSFF WET SN ACJ 6,087 553 11
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Model Technologies

No.

Fuel 

Type PM SOx NOx Hg

Small 

Net 

Gen.

Net 

Generation 

(GWh)

Total Cost 

($2010 MM)

GHGe 

Emissions 

(MMT)

43. SUB CS WET SN 6,039 505 9

44. BIT HS WET SR ACJ 6,036 482 8

45. BIT WET LN 5,855 335 7

46. BIT FF DRY SN 5,729 380 7

47. SUB OT WET OFA ACJ 5,548 300 8

48. BIT CS WET OM 5,340 602 8

49. SUB FF WET OM 5,319 355 13

50. BIT HS WET SN 4,954 377 6

51. SUB OT WET OFA 4,852 294 7

52. BIT FF WET OM 4,643 303 7

53. BIT CS WET 4,639 594 7

54. BIT CS WET SN ACJ 4,531 454 6

55. LIG CS WET OFA 4,518 207 9

56. SUB HS DRY LN 4,287 237 6

57. SUB CS DRY LN ACJ 4,254 282 6

58. SUB FF DRY SN 3,956 133 9

59. SUB FF WET SN 3,913 265 7

60. LIG FF WET SR ACJ 3,907 220 7

61. GAS WET 749,000 71,892 422

62. GAS WET SR 147,000 9,175 17

63. GAS WET LN 40,700 3,909 14

64. GAS WET OM 22,200 3,105 14

65. GAS WET OFA 8,829 1,159 6

66. GAS CS WET OFA 3,894 536 3

67. GAS • 1,339 261 1

68. NUC 807,000 22,200 0

69. OIL WET 10,800 5,439 213

70. OIL • 6,625 3,761 136

71. RNW 174,000 3,057 0

72. WAT 255,000 12,239 0

Count: 57 64 60 15

Total: 3,966,687 $  257,461 3,247

Notes: Small net generation technologies is a sum of all technologies producing less than a 

tenth of one percent of net generation.  These technology aggregates operate a variety of 

abatement equipment.

Source: PAGE dataset.

Figure 7·3: Full list of model technologies
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