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Abstract

A method for reconstruction of 3D rational B-spline
surfaces from multiple views is proposed. Given corre-
sponding features in multiple views, though not neces-
sarily visible in all views, the surface is reconstructed.
First 2D B-spline patches are fitted to each view. The
3D B-splines and projection matricies can then be
extracted from the 2D B-splines using factorization
methods. The surface fit is then further refined via
an iterative procedure. Finally, a hierarchal fitting
scheme is proposed to allow modeling of complex sur-
faces by means of knot insertion. Experiments with
real imagery demonstrate the efficacy of the approach.

1 Introduction and Related Work

Recovering models from multiple views is an area
of great interest. The results of algorithms for recover-
ing 3D structure and camera motion have many prac-
tical applications, such as computer aided design, vir-
tual reality, movie special effects, video coding, etc.
Models provide a concise representation for a large
class of objects, and can reduce the dimensionality of
a reconstruction problem to a few highly meaningful
parameters. It thus is reasonable to incorporate model
priors directly into reconstruction methods and expect
better performance and richer representations.

Structure from motion algorithms make various use
of prior information. In the weakest case they assume
no priors and are limited to recovering point locations.
While useful and robust in many cases, in practice,

scenes typically contain structures with strong geomet-
ric regularities that can be used to constrain the esti-
mation problem. For example indoor and man made
scenes typically contain many planar structures and
lines. As a consequence, many works have provided
a thorough treatment of these kinds of objects. In par-
ticular [16, 19] have found closed form solutions using
planar priors.

More general representations have been considered
in a bottom-up framework, where many small planar
regions are fitted to an object. In particular, planar
meshes were explored by [6]. Surfaces have also been
modeled as oriented particles or tiny planes with asso-
ciated texture in [5, 8, 15]. While general, in practice
many facets are needed for these methods to success-
fully approximate a surface.

In many cases objects intrinsically do not have such
high complexity and more appropriate classes of mod-
els are sought. In [3] and [10], methods have been
proposed that can be used when objects are well-
approximated by quadric surfaces. In [3], the quadric
surface is estimated by relating its silhouette to the pro-
jected image. In a different approach, [10] examines
the induced flow field of quadric objects.

In this work we further develop the treatment of
model and surfaces priors in structure from motion.
This general idea has been considered in [20], where
bundle adjustment was augmented with a parameter-
ized model. In our work we consider models that are
specified as weighted averages of basis points, as in the
case of splines. This class of surfaces is ideal for SFM



as they are similar to regular scene points, which are
weighted combinations of basis points [7]. The differ-
ence is that the blending functions for scene points are
linear, while the blending functions for the surfaces we
consider are non-linear.

While the principles developed in this work apply
for any surface that can be represented as a weighted
combination of basis points, such as splines and ra-
dial basis surfaces, we make explicit use of rational
B-splines to represent 3D surfaces and their projec-
tions. Spline curve representations have been used
extensively in computer vision in the context of con-
tour tracking and contour pose recovery (e.g., [2, 1]).
Splines have also been used in motion estimation [14]
and image registration [13].

By directly modeling surfaces in the scene as
splines, this work has the advantage over other meth-
ods in that points need not be visible in all views. More
specifically, given features points in correspondence,
but not necessarily visible in all views, we determine
the 3D spline control points and camera matrices that
explain the observed features. We also make use of the
knot vectors that define the blending functions of the
spline, to allow hierarchal fitting of surfaces.

The overall fitting procedure is shown in Figure 1.
The approach we taken here is to first recover 2D rep-
resentations of the spline surface as detailed in Sec-
tion 2.1. From this a 3D surface and camera matricies
are extracted and refined as described in Section 2.2
and 2.3, respectively. Additional degrees of freedom
are then incorporated into the surface in a hierarchal
way using as described in Section 3. The approach
is demonstrated in a formulation for recovering a bi-
quadratic rational B-spline surfaces from point corre-
spondences given in multiple views. Experiments with
real imagery demonstrate the efficacy of the approach.

2 Formulation

In this section we formulate the model reconstruc-
tion problem from multiple views. First consider gen-
eral surfaces which take on the form:

P(s) = S(s;C) (1)

Here S represents a particular surface model, while
P(s) denotes a 3D point on that model. Additionally,
C specifies global shape parameters of the model, and
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Figure 1. Flow chart of surface reconstruction algo-
rithm

the parameter vector s specifies the location of a point
on the model. The details of the underlying structure
of S depends entirely on the particular model of inter-
est. This representation is quite general and if a strong
model is available can be quite useful in reconstruc-
tion. In [20], for example, such a model was designed
for faces by an artist and was fit to observed image
points along with other scene points through a bundle
adjustment like optimization.

If such strong priors are not available, however, we
need to consider representations that make more gen-
eral assumptions on the form of the model. We accom-
plish this by considering models of the form:�

P(s)
1

�
�

NcX
k=1

�k(s)~Pk (2)

where,

~Pk =

2
664

~xk
~yk
~zk
~wk

3
775 = ~wk

�
Pk

1

�
(3)

Where � is defined to mean equality up to scale. Here
points on the model are determined up to scale as a
weighted combination of Nc points, ~Pk and the blend-
ing terms are determined by the point parameter s and
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�k(). In addition the basis point ~Pk can be decom-
posed into a 3D point Pk and a weight ~wk as shown.
This form is important in the context of structure from
motion as general scene points in a projective scene are
expressed in a similar way. Additionally it is important
in the context of surfaces, since rational B-splines are
represented this way as well.

This becomes apparent if we remove the scale am-
biguity of Equation (2) by dividing out the forth com-
ponent, which yields:

P(s) =

PNc

k=1 �k(s) ~wkPkPNc

k=1 �k(s) ~wk

(4)

This is the form of rational splines, if the blending
functions, �k(), are selected appropriately.

Heretofore we have considered Equation (2) in the
most general sense, but now we will limit the discus-
sion to spline surfaces. In particular we will assume
the blending functions are formed by the Cox de-Boor
functions which are specified by an order and a knot
vector in each parameter direction [4]. Since we are
dealing with surfaces, the point parameter, s will be
specified as a 2D coordinate (s; t) and the blending
functions �k(s) will be written as Bk(s; t). It is im-
portant to note that the following discussion is general
in the sense that it can be applied to other types of
blending function.
2.1 Reconstructing 2D Splines

In the reconstruction problem we consider feature
points to be imaged samples of this spline model. Thus
to recover the model we need to find the 3D control
points, and (si; ti)8i 2 [1; N ], as well as the camera
matrices, P(j), responsible for the formation of the im-
ages. This can be posed as an optimization problem
in which we minimize the difference between the ob-
served locations of the features and the locations pre-
dicted by the model. To solve this optimization prob-
lem an initial estimate is needed. This can be found by
first reconstructing the projections of the spline surface
in each view.

Consider the image of a spline by the jth camera.
This is denoted by:2

64 u
(j)
i

v
(j)
i

1

3
75 � P(j)

NcX
k=1

Bk(si; ti)~Pk (5)

Bringing the projection matrix into the summation:2
64 u

(j)
i

v
(j)
i

1

3
75 �

NcX
k=1

Bk(si; ti)P
(j)~Pk (6)

�

NcX
k=1

Bk(si; ti)

2
64 ~u

(j)
k

~v
(j)
k

~w
(j)
k

3
75 (7)

From this we see that the image of a 3D rational
B-spline surface is itself a rational B-spline surface,
which we refer to as a 2D rational B-spline surface.
Note that corresponding points viewed across images
have the same (s; t) values. Also note that in the case
of orthographic cameras, the 3rd row of each camera
matrix P (j) is [0; 0; 0; 1] and the weights wk are the
same for all images as well as for the 3D surface.

Given N features in M views, we try to recover
these 2D rational splines in each view. To do so, we
minimize the fitting error between the observations
and the model given by:

NX
i=1

MX
j=1

m
(j)
i k

"
u
(j)
i

v
(j)
i

#
�

PNc

k=1Bk(si; ti)

"
~u
(j)
k

~v
(j)
k

#
PNc

k=1Bk(si; ti) ~w
(j)
k

k2

(8)
where m(j)

i takes values 1 if the ith point is visible in
the jth image, and 0 otherwise. This can be minimized
with respect to (si; ti), the weights, and control points
by using standard non-linear minimization procedures.
Instead of considering all the parameters at once, how-
ever, we first minimizing Equation (8) with respect to
(si; ti) for each point independently. Then Equation

(8) is minimized with respect to ~u
(j)
k 8k, and ~v

(j)
k 8k in

each view, and finally with respect to w
(j)
k 8k in each

view. This process is then iterated until convergence.
Furthermore, due to the m

(j)
i term, it is not required

that each point be visible in all views.
To start this procedure initial values are needed.

While the weights can start at w(j)
k = 1 8k8j, an ini-

tial value of (si; ti) must be found heuristically. In

our implementation feature locations, (u(j)i ; v
(j)
i ) in an

approximately frontal view of the object are affinely
warped to (û

(j)
i ; v̂

(j)
i ) such that , û(j)i 2 [smin; smax]

and v̂
(j)
i 2 [tmin; tmax]. These warped locations can
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be used as initial (si; ti) values as they reflect the rel-
ative location of the features in parameter space, and
will be refined later. Given values for (si; ti), and w(j)

k ,

the other parameters, u(j)k and v(j)k , can be updated via
linear least squares. Following this, the iterative mini-
mization procedure can proceed.

2.2 3D Projective Reconstruction of Surface

After the fitting procedure above converges, the 2D
reconstruction can be upgraded to 3D. This is possible
as the 2D control points are imaged in the same way
as other points, and thus standard reconstruction meth-
ods can be used to recover both the 3D control points,
~P and camera matrices, P(j). In the perspective case
points are related to their projections via:2

64 u
j
i

v
(j)
i

1

3
75 � P(j) ~Xi (9)

Here the the relation is defined only up to scale; how-
ever if we knew these scale factors, or projective
depths, we could write:

�
(j)
i

2
64 u

j
i

v
(j)
i

1

3
75 = P(j) ~Xi (10)

Given the projective depths for each feature point,
camera matricies and structure are related to a mea-
surement matrix [12]:

~Y =

2
64

�
(1)
1 ~u

(1)
1 : : : �

(1)
N ~u

(1)
N

...
. . .

...

�
(M)
1 ~u

(M)
1 : : : �

(M)
N ~u

(M)
N

3
75 (11)

=

2
64

P(1)

...
P(M)

3
75h ~X1 : : : ~XN

i
= PX (12)

where ~u(j)i =
h
u
(j)
i ; v

(j)
i ; 1

iT
. This decomposition is

not unique as one could post-multiply the camera ma-
tricies by a full rank matrix, H and pre-multiply the
point matrix by H(�1) without changing the measure-
ment matrix.

Typically in perspective reconstructions of this form
the homogeneous component of each point is not

known and must also be recovered. In our case, we
have recovered 2D rational splines for each view. Thus
we effectively have recovered the projective depths. If
we sample the 2D rational B-spline without dividing
through by the homogeneous coordinate, we can write:

�
(j)
i

2
64 u

(j)
i

v
(j)
i

1

3
75 =

NcX
k=1

Bk(si; ti)~P
(j)
k (13)

Thus we can generate the measurement matrix by sam-
pling the 2D rational splines as in Equation (13). Tra-
ditional factorization [12] requires all features to be
visible in all views. By sampling the 2D rational
splines, we can cope with missing features as full mea-
surement matrices are generated. This also allows us
to predict the location of partially visible features in all
views.

Given the scaled measurement matrix, the camera
matrices and 3D control points are then recovered as
described in [12]. To do this, the SVD of the measure-
ment matrix ~Y is found:

~Y = U�VT (14)

where, U and V are orthogonal matrices and � is di-
agonal. In Equation (12),M is a product of a 3M � 4
matrix (the camera matrix) and a 4 � N matrix (the
point matrix). Thus ideally ~Y should be rank four,
but due to measurement and estimation errors this may
not be the case. Thus to extract the camera matrices
and point locations from ~Y , the matrix closest to ~Y
is found. This is computed by truncating � to �4�4
such that �4�4 is a diagonal matrix that comprises the
upper left 4 � 4 block of �. The camera and point
matrices can then be defined to be:

P = Û�
1=2
4�4 (15)

X = V̂�
1=2
4�4 (16)

where, Û consist of the first four columns of U and
V̂ is the first four columns of V. This will give an
estimate of the camera matrices, and the individual 3D
points on the spline.

From these estimates, we can recover the control
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points, Pk8k, by minimizing:

NX
i=1

MX
j=1

m
(j)
i k�

(j)
i

2
64 u

(j)
i

v
(j)
i

1

3
75�P(j)

NcX
k=1

Bk(si; ti)~Pkk
2

(17)
which is the algebraic residual error between the spline
and feature points scaled by their projective depths.
This can be solved for in closed from using linear least
squares; however the solution will not minimize the
residual fitting error and its thus necessary to refine
the solution using non-linear methods.
2.3 Refining Projective Reconstruction

While the method in Section 2.2 will produce a 3D
projective or affine reconstruction, it in general will
not optimally fit the data. It is therefore necessary to
refine the estimate by minimizing the residual fitting
error with respect to the parameters of the surface.
Again, the fit is based on the sum of squared differ-
ences and takes on the form:

NX
i=1

MX
j=1

m
(j)
i k

"
u
(j)
i

v
(j)
i

#
�

PNc

k=1 P
(j)
1;2
~PkBk(si; ti)PNc

k0=1 P
(j)
3
~PkBk0(si; ti)

k2

(18)
where P(j)

1;2 is the first two rows of the jth camera ma-

trix and P(j)
3 is the third row of the jth camera matrix.

As before we do not consider all the parameters
at once, rather (18) is minimized by iteratively solv-
ing for P(j)8j, then (si; ti)8i, and finally ~Pk8k, un-
til a local minium is achieved. In this case, the cost
function is non-linearly dependent on (si; ti) and the
control points. Levenberg-Marquardt is therefor em-
ployed in minimizing with respect to these parame-
ters [9]. When minimizing with respect to the cam-
era matrices however, the first two rows can be solved
for linearly given the third row. Thus when updat-
ing the camera matrices we alternate between updat-
ing the first two rows using linear least squares, and
the the third using Levenberg-Marquardt. In the case
of orthographic cameras the complexity of this prob-
lem is further reduced since w(j)

k are the same 8j and
P3 = [0; 0; 0; 1].

3 Adaptive Subdivision

The method described in Section 2 can be used on
spline surfaces with an arbitrary number of control

points. To model complex surfaces, splines with more
control are points needed. However as the number of
control points increases, the size of the fitting problem
also increases. Fitting complex spline surfaces with
many control points can then become computationally
demanding and increasingly ill-posed.

To overcome the difficulties of fitting complex sur-
faces, we make use of a hierarchal fitting scheme and
the local control property of splines. This is accom-
plished by making explicit use of knot vectors. In pre-
senting this method we first develop an intuitive un-
derstanding of the knot vectors and refer readers to [4]
for a deeper review.

A knot vector is an array of numbers arranged in
increasing order. The elements of this vector are called
knots. The knot vector together with the spline order,
specify completely the blending functions, Bk(s; t) of
the spline in Equation (7). One knot vector, �s,and
order, ks, is specified for the s direction, and another
knot vector, �t, and order, kt, for the t direction.

Intuitively, these knot vectors partition parameter
space into regions. The surface is defined over the
middle block of these regions. Each valid region corre-
sponds to part of the spline surface. Each control point
is associated with a block of these regions and only in-
fluences the part of the surface corresponding to these
regions. In addition, the number of regions each con-
trol point influences is determined by the spline order.

Parts of parameter space that have more regions (or
knots) correspond to parts of the surface with more as-
sociated control points and thus more flexibility. Since
each control point only affects a small block of re-
gions, this flexibility is local to that part of the surface.
Thus one can alter these control points to change the
spline’s local shape without affecting its global shape
(i.e, splines exhibit local control).

In addition, we can insert new knots into an existing
surface without changing the surface. To do this, addi-
tional control points must be computed. This process
is known as knot insertion [4].

3.1 Adaptive Fitting with Knots

In designing a hierarchal surface fitting procedure,
we explicitly use knots and knot insertion methods.
First a spline with a small number of control points
is fitted to the observed features using the method of
Section 2. Following this knots are inserted to bisect
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the region that has the largest associated fitting error.
In particular, we assign each region a score equal to

the sum of the distances between the model predicted
and observed feature location of the features whose
(s; t) are within it. A knot is then inserted into �s
and �t so that the region with the largest score is split.
This process is illustrated in Figure 2, where region
R, is split into R1, R2, R3, and R4. This will cre-
ate additional control points, while leaving the shape
of surface unaltered. The surface is then further re-
fined using the techniques of Section 2.3, but here we
only update the control points that affect the newly
created regions (R1, R2, R3,and R4). These control
points will change the shape of surface corresponding
to the new regions as well as some neighboring re-
gions. Thus in minimizing the residual fitting error all
features associated with parts of the surface that will
be modified are considered. This process can then be
repeated and additional regions can be split until a de-
sired fit is reached. By splitting regions in this way
we adaptively add more control points to parts of the
spline surface that do not register well with the data.
It is important to note that while the resulting surface
may have many control points at each step we are only
updating a small subset of them, thus allowing us to fit
complex surfaces efficiently.

4 Rectification

The above method succeeds in recovering a projec-
tive representation of the surface. In many applications
such as feature tracking, augmented reality, and image
based rendering this projective reconstruction is suffi-
cient. To get a meaningful 3D reconstruction however,
we must rectify the projective reconstruction. In par-
ticular we need to find an estimate of the rectifying
homography, H, that transforms reconstruction as:

P(j)H ! P(j)
e � A[R(j)jT(j)] (19)

H�1Xi ! Xe;i (20)

where A is an upper triangular matrix of the internal
parameters, R(j) is a rotation matrix, and T is a trans-
lation vector. The rectifying homography can be found
if the ground truth for a sufficient number of scene
points is known as the homography H can be com-
puted directly. If this is not the case, the method of the
absolute quadric can be employed [17] .
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Figure 2. In (a) the region with the largest fitting
error R is identified. In (b) knots are added to the
knot vectors to split R into R1, R2, R3, and R4. In
doing so new control points are generated.

Rectification will yield a set of camera matrices,
P
(j)
e , and structure,Xe consistent with a Euclidean re-

construction. Following this, the Euclidean matrices,
P
(j)
e , can be decomposed into R(j) , T(j), and A. If

we denote P(j)
e = [P

(j)
e jp

(j)
e ], this is accomplished by

applying QR factorization on P(j)�1
e to yield:

P(j)�1
e = R̂Â (21)

where R̂ and Â are the results of a QR decomposition.
Estimates for the rotation matrix and internal parame-
ters are found by:

P(j)
e � (R̂Â)�1 � Â�1R̂�1 � AR(j) (22)

From this and p(j)e , T(j) can be extracted. These es-
timates, however will often not optimally fit the data.
It is thus useful to further minimize the residual error
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of the fit using bundle adjustment [18]. In the case
of rectifying surfaces it is sufficient to minimize the
residual fitting error with respect to the camera param-
eters, A;R(j);T(j)8j, and the control points, without
altering the surface parameters (si; ti)8i.

5 Experiments

In this section we demonstrate our approach by per-
forming reconstructions on both real and artificial data
sets. In our synthetic experiments, the 3D configura-
tion shown in Figure 3(a) was considered. The struc-
ture in this setup consists of a 10 � 10 grid of points
uniformally sampled on a saddle surface. The cam-
eras are then placed around the object as shown. Re-
constructions were computed using the method of Sec-
tion 2 with bi-quadratic (i.e. ks = kt = 3) B-splines
with six knots for the knot vectors associated with each
parametric direction (�s and �t) . These reconstruc-
tions were performed with feature locations perturbed
by additive white Gaussian noise with various stan-
dard deviations (�N ) and were compared to the ground
truth. This is illustrated in Figure 4. Here the average
distance between the true saddle and spline surface is
shown for a horizontal and vertical slice of the object
as shown. In computing these plots the projectively
reconstructed spline surface was first aligned with the
ground truth surface using a homography that maps
the recovered 3D feature points to their ground truth
locations. Distances where then computed by finding
the distance from the true saddle object to the closest
point on the spline surface. The closest point was de-
termined from dense samples of the spline surface.

In Figure 5 an example reconstruction is shown.
Also shown is the distance between the ground truth
saddle and the spline estimate. This plot is gener-
ated by finding the distance between the saddle and
the closest point on the spline at various points on the
saddle. From this plot we see the spline approximates
the saddle well near the center.

Our reconstruction framework has also been evalu-
ated using video sequences captured with a USB cam-
era at 640 � 480 pixel resolution as shown in Figures
6, 7, and 8. The sequences depict a number of smooth
textured objects whose shape can be modeled via sim-
ple rational B-spline patches.

Corresponding features were extracted by selecting
points in one frame and tracking them with an iterative

pyramidal Lucas-Kanade tracker that is available in
OpenCV1. Following this, a few frames with disparate
views were selected for use in reconstruction. Features
in each selected input frame are shown in Figs. 6(a,b),
7(a,b), and 8(a,b) as (o)’s.

In the first example, Figure 6, six views with 67
features were taken. The spline was recovered using
the method of Section 2 and rectified using the method
of Section 4. The spline model used for this surface
consisted of a bi-quadratic spline with six uniformly
spaced knots in each parametric direction. Samples of
the observed feature points along with the feature loca-
tions predicted by the recovered 2D splines are shown
in Figures 6(a,b) as (o)’s and (+)’s respectively. Note
that the cylindrical cross-section of the bottle is actu-
ally a rounded triangular shape. The subsequent 3D
surface reconstruction for this patch of the object is
shown in 6(c,d). From these plots we see the recon-
structed surface appears similar to the true object.

In Figure 7, a cup was reconstructed from six views
and 98 features. The spline recovered consists of a
bi-quadratic spline with six uniformly spaced knots in
each parametric direction. The spline was fit using
the method of Section 2, but was rectified using or-
thographic factorization described in [11]. The recon-
struction is shown in Figure 7(c,d). Finally, the recon-
struction of a mushroom cap is shown in Figure 8. Five
views and 89 features were used in this reconstruction.
The recovered spline is a bi-quadratic spline with five
uniformly spaced knots in each parametric direction.
The spline was fit using the method of Section 2, and
rectified using orthographic factorization.

Finally, the hierarchal fitting scheme was evaluated
on synthetic object shown in Figure 9(a) and (b). In
particular, note the complexity of this object. It con-
sists of many bumps, as well as some discontinuous
changes in curvature. Four views were generated and
Gaussian noise was added to the generated feature lo-
cations with standard deviation of :1. An initial low or-
der bi-quadratic spline with 7 uniformly spaced knots
in each of the parametric directions was then recon-
structed. This spline was aligned with the ground truth
and shown in Figure 9(c). Following this the hierar-
chal fitting scheme of Section 3 was applied 10 times
yielding the result in Figure 9(d). The final reconstruc-

1http://www.intel.com/research/mrl/research/opencv/
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tion had 17 knots in each parametric direction. From
this we can see that the initial reconstruction, which
smoothed out many of the details of the surface, can
be extended to exhibit some of the details of the true
surface, when enough knots are inserted.

The hierarchal fitting scheme was also evaluated on
the nine view sequence with 192 features shown in
Figure 10. Here the initial spline was bi-quadratic with
seven knots in each parametric direction. Subdivision
was applied 6 times, resulting in the bi-quadratic patch
with 16 knots in each parametric direction shown in
Figure 10(c).

6 Discussion and Future Work

As exhibited in the experiments this approach is
able to extract the shape of surfaces modeled as 3D
rational spline patches. While the basic shape of the
object was recovered, the visual quality of the re-
constructions depends on how well features were ex-
tracted. In particular solutions exhibit oscillation in
places of the surface when there were not many or
poorly tracked features. This behavior is expected; to
compensate, smoothness terms could be added to the
objective function, (18). Despite this shortcoming, re-
sults of this method are promising.

In future work we hope to enhance this system in
several ways. First, we plan to incorporate feature
estimation within the framework. Currently, feature
estimation is a separate step. We expect better over-
all performance if feature tracking is incorporated di-
rectly within surface estimation framework. By doing
this we may incorporate other image features, such as
lines and the silhouette edges of the surface.

Another area in which we intend to develop is the
initial selection of the (s; t) for each feature point.
Presently these are found from a frontal facing view
of the object, but perhaps views can be combined to
extract the (s; t)’s for arbitrary complex surfaces.

We also plan to extend the surface representation
to deal with more complex surfaces by considering
closed spline surfaces and by detecting and modeling
surface creases.
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(a) (b)

Figure 3. Here the experimental setup of the synthetic data is shown. In (a) the object is shown along with the cameras
used for imaging. In (b) the cross sections which are used for in comparing the ground truth object with the spline
estimate are highlighted.

(a) (b) (c)

(c) (d) (e)

Figure 4. Results of sensitivity analysis. Here the fitting error between the ground truth object and the spline estimate
is evaluated along the horizontal and vertical slices shown in Figure 3 (b). The top row corresponds to the horizontal
slice and the bottom row the the vertical. The error is computed as average minimum distance from a point on the true
object to the projectively aligned reconstruction. Each column corresponds to the the level of Gaussian noise added to
the feature observation generated in the configuration shown in Figure 3(a).
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(a) (b)

Figure 5. Example reconstruction of the synthetic data generated from the configuration shown in 3 (a). In (a) the
reconstruction is shown. The (o)’s represent the ground truth sample point locations while the (*)’s indicate the spline
estimates for those features. Also shown in green is the spline surface estimate. In (b) the aligned error between the
actual saddle surface and the spline estimate is shown. The error is the minimum distance between samples on the true
saddle and the the spline estimate. These distances are found by from samples of the spline surface.

(a) (b)

(c) (d)

Figure 6. Example reconstruction of a wedge shaped bottle. Here the reconstruction algorithm is applied to a six
frame sequence. Two frames of the sequence are show in (a) and (b). Also shown are the 67 tracked features as (o)’s
and the spline predicted feature locations as (+)’s. in (c) and (d) are two views of the reconstructed surface. Notice the
recovered wedge shape is consistent with the true shape of the object.
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(a) (b)

(c) (d)

Figure 7. Example reconstruction of a cup. Here the reconstruction algorithm is applied to a six frame sequence. Two
frames of the sequence are shown in (a) and (b). Also shown are the 98 tracked features as (o)’s and the spline predicted
feature locations as (+)’s. in (c) and (d) are two views of the reconstructed surface. Notice the cylindrical shape of the
spline reconstruction is consistent with the true shape of the object.

(a) (b)

(c) (d)

Figure 8. Example reconstruction of a mushroom. Here the reconstruction algorithm is applied to a five frame
sequence. Two frames of the sequence are show in (a) and (b). Also shown are the 89 tracked features as (o)’s and the
spline predicted feature locations as (+)’s. in (c) and (d) are two views of the reconstructed surface.
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(a) (b)

(c) (d)

Figure 9. Example reconstruction using hierarchal fitting. Here the synthetic scene shown in (a) is reconstructed by
using the hierarchal fitting scheme described in Section 3. The actual object is shown in (b). A reconstruction using
a bi-quadratic spline with 7 knots in each parameteric direction is shown in (c). Here the reconstruction is projective
and was aligned by means of a homography that maps the estimated feature locations, the (+)’s, to the ground truth, the
(o)’s. In (d), the reconstruction after 10 subdivisions is shown. Notice that in (c) the general shape is recovered with
many of the details smoothed out, while in (d) more surface detail is recovered.
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Figure 10. Example hierarchical reconstruction of an egg carton from a nine frame sequence. Two frames of the
sequence are shown in (a,b). Also shown are the 192 tracked features as (o)’s and the spline predicted feature locations
as (+)’s. Some of the features are not present in all the frames. The reconstructed surface is shown in (c). The shape of
the spline reconstruction is consistent with the true shape of the object.
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