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Major Professor: Sidney Redner, Professor of Physics

ABSTRACT

In this thesis, I investigate in detail two basic problems in nonequilibrium statistical

mechanics. First, if a spin system such as a kinetic Ising model or a kinetic Potts model is

quenched from supercritical temperature to subcritical temperature, how does the system

coarsen, and what complexities arise as the system descends in energy toward one of its

equilibrium states? Second, if a kinetic Ising model is evolved from a deterministic initial

condition at zero temperature, how do the domain interfaces evolve in time?

I first study the nonconserved coarsening of the kinetic spin systems mentioned above.

The coarsening of a 2d ferromagnet can be described exactly by an intriguing connection

with continuum critical percolation. Furthermore, careful simulations of phase ordering in

the 3d Ising model at zero temperature reveal strange nonstatic final states and anomalously

slow relaxation modes, which we explain in detail. I find similarly rich phenomena in the

zero-temperature evolution of a kinetic Potts model in 2d, where glassy behavior is again

manifest. We also find large-scale avalanches in which clusters merge and dramatically

expand beyond their original convex hulls at late times in the dynamics.

Next, I study the geometrically simpler problem of the evolution of a single corner

interface in the Ising model. We extend prior work by investigating the Ising Hamiltonian

with longer interaction range. We solve exactly the limiting shapes of the corner interface

in 2d for several interaction ranges. In 3d, where analytical treatments are notoriously

vi



difficult, we develop novel methods for studying corner interface growth. I conjecture a

growth equation for the interface that agrees quite well with simulation data, and I discuss

the interface’s surprising geometrical features.

In the summary, I discuss the broader implications of our findings and offer some

thoughts on possible directions for future work.
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Chapter 1

Introduction

Physics is the most fundamental of the sciences. A physicist’s aspiration is to reduce Nature

to a minimal set of mathematical laws and general principles from which all natural phe-

nomena may be understood. On a basic level, the theories of classical mechanics, quantum

mechanics, relativity, and electromagnetism have produced a highly satisfactory description

of practically all everyday phenomena in the natural world. Yet the vast majority of modern

research has drifted toward applied science or engineering applications.

Statistical physics is a unique field: It is neither pure nor applied. Nonequilibrium

natural phenomena generally do not all reduce to a simple fundamental description, such

as Newton’s laws of classical mechanics, Schrodinger’s equation of quantum mechanics, or

Maxwell’s equations of classical electromagnetism. There is no well-defined starting point

for the study of systems with enormously many degrees of freedom. A statistical physicist

typically makes progress by carefully studying ”toy” models that are believed to capture

the essential behavior of a real physical, economic, or social system. Then, it is hoped that,

through universality, results on highly simplified models will deliver valuable insights into

far more complex real-world phenomena.

1
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1.1 Phase-Ordering Kinetics

The subject of phase-ordering kinetics involves the growth of locally stable regions that

all compete for the final state of a particular process. Examples of phase-ordering kinetics

abound in nature: condensation of clouds, phase separation of binary alloys, motion of anti-

phase boundaries in condensed matter systems, formation of opinions in social systems, etc..

One of the most important applications of the theory of phase-ordering kinetics is to the

phenomenon of ferromagnetism. Ferromagnetic metals abound in Nature, the most familiar

examples being iron, nickel, and cobalt. Above each material’s Curie temperature, magnetic

moments within the material are all randomly aligned. Below the Curie temperature,

domains of well-defined magnetization form within the material as the microscopic magnetic

moments align within each domain. Without any perturbing external fields, the material is

typically unmagnetized since the ferromagnetic domains are randomly oriented with respect

to each other. However, each of these materials at room temperature can be magnetized

by application of an external magnetic field, which forces large numbers of ferromagnetic

domains to align, giving the macroscopic material a nonzero magnetic moment. When the

magnetic field is removed, a ferromagnetic material will remain magnetized, a property

known as hysteresis.

1.2 Kinetic Ising Model and its Variants

At the start of the 20th century, the development of quantum mechanics proved instru-

mental in understanding the behavior of the chemical elements. Yet understanding the

existence of ferromagnetism remained an important challenge in statistical mechanics. The

Gibbs-Boltzmann measure accurately describes classical gases and materials at high tem-

perature. But spontaneous symmetry breaking is observed at low temperature in many

systems, and at the time, it was not clear if this phenomenon could be understood within

the framework of the partition function. Physicists were seeking a physical understanding

of how ferromagnetism emerges in some materials.
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In 1920, physicist Wilhelm Lenz invented a simple statistical mechanical model that he

hoped would shed light on some of these issues. The original version of Lenz’s model consists

of a one-dimensional lattice of discrete variables that each assume one of two equivalent spin

states (Fig. 1.1). A spin feels the influence of only its two nearest neighbors. Increasing the

numbers of nearest-neighbor pairs of aligned spins lowers the energy of the model.

Figure 1.1: The one-dimensional Ising model.

Lenz posed the problem to his student Ernst Ising, after whom the Ising model is named.

In 1925, Ising provided an analytic solution of the partition function of this 1d interacting

spin system [1]. The free energy of the 1dmodel exhibits no singularities and thus there is no

equilibrium phase transition in one dimension. Based on the 1d solution, Ising incorrectly

concluded that his model shows no phase behavior in any number of spatial dimensions.

Shortly afterward in 1936, Rudolf Peierls proved mathematically that the two-dimensional

version of the Lenz-Ising model exhibits ordering below some critical temperature [2]. Lars

Onsager later provided the full analytic solution for the partition function of the 2d Ising

model [3], the first toy system in statistical mechanics to demonstrate spontaneous symme-

try breaking. Subsequent work focused on understanding behavior of observables such as

specific heat and magnetic susceptibility at temperatures close to the second-order phase

transition temperature. The universality of various scaling exponents around the transition

temperature and their observation in physical systems was a remarkable success for the

highly simplified Ising model of ferromagnetism.

Yet an Ising model defined solely by a Hamiltonian function may only be mathematically

studied in the equilibrium context. To model kinetic effects in ferromagnetism (for example,

rapidly changing the temperature of a ferromagnetic material about its Curie point), one

must additionally define a dynamics for the Ising spin system. Interestingly, the choice of

dynamics is not unique. To guarantee that the Ising spin system reaches equilibrium at any
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finite temperature, we make our choice of dynamics consistent with the detailed balance

principle [4]. Mathematically,

piwi→j = pjwj→i, (1.1)

where pi is the probability that the system is in state i, and wi→j is the transition rate

from state i to state j. Physically, detailed balance demands that the net flux between

any two microstates of the system be zero. Although the exact choice of dynamics is not

unique, based on universality, different rules that all satisfy the detailed balance condition

are believed to give qualitatively similar results.

More recently, the Ising model has been extended in many ways. One may employ

nonuniform couplings Jij between different spins in the lattice to mimic anisotropy in real

materials. Changing some of the couplings to be antiferromagnetic leads to a slow approach

to the equilibrium state. One may also extend the spin-spin coupling length to more distant

neighboring spins, and perhaps modify the underlying graph determining how spins interact

with each other.

In this work, I focus mainly on simple forms of the Ising model. My studies on a deep

temperature quench of a three-dimensional Ising model involve only the simplest scenario

with nearest-neighbor, uniform, ferromagnetic spin couplings. Even in two-dimensions, we

use mostly this simplest form of the Ising model, occasionally making modifications to the

interaction Hamiltonian for technical reasons. In all Ising model simulations, we use simple

square (2d) or cubic (3d) lattices.

Below its second-order phase transition temperature TC , the kinetic Ising model in

dimension d > 1 is globally ordered in equilibrium. But this raises the question: What

happens if a kinetic Ising model is rapidly cooled from a high supercritical temperature to

a low subcritical temperature. Does the system quickly equilibrate? On the surface, this

may seem a trivial question, but in reality, the Ising system does not take a direct route to

the equilibrium state.

To appreaciate the complexities associated with coarsening in the simple Ising model,

consider Figure 1.2. The two-dimensional spin system is initially prepared in a totally



5

uncorrelated random state, corresponding to initial temperature TI = ∞. Starting at time

t = 0 the operating temperature is set to TF = 0, and the Ising spin system evolves

according to zero-temperature single-spin-flip dynamics. Physically, only energy-lowering

spin flips are allowed to occur.

(a) t=0 (b) t=10 (c) t=200 (d) t=20000

Figure 1.2: Coarsening in the two-dimensional Ising model using single-spin-flip dynamics
at zero temperature. The competition between the two phases leads to nontrivial long-time
states. The system size is L× L, with L = 256.

With the supercritical initial state, the average initial magnetization is zero. However,

stochasticity in the spatial distribution of up/down spins and in the first spin-flip events

naturally cause some regions of the lattice to contain mostly up spins while other regions

contain mostly down spins (Fig. 1.2). Spins within each small region of the lattice quickly

equilibrate with their immediate neighbors, but spins in distant regions of the graph do

not all drift toward the same equilibrium state. At intermediate times after the quench, a

patchwork of equilibrium domains forms throughout the lattice, and neighboring domains

compete to select the global equilibrium state. Early researchers noted that, at late times

in the evolution, stochastic single spin-flip dynamics is effectively replaced by deterministic

motion that only occurs on domain walls between clusters. This led to the development

of simple deterministic descriptions of phase-ordering kinetics in the Ising model that are

based on a coarse-grained order-parameter field representing the magnetization density in

a local region of space.
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1.3 Time-Dependent Ginzburg-Landau Theory

In statistical mechanics, complex, non-equilibrium, strongly-interacting systems are often

incredibly difficult or impossible to understand rigorously. In our present case, a micro-

scopic, fundamental analytical treatment of coarsening in spin systems is effectively hope-

less. To make progress in understanding the long-time state of a kinetic Ising system

following a deep temperature quench, it is helpful to set up a phenomenological descrip-

tion of coarsening. Phenomenological theories relate macroscopic physical observables in

ways that are consistent with fundamental physics, but these theories are not derived from

microscopic interactions.

For the case of the Ising model, we construct a coarse-grained order-parameter field

φ(~x, t) that will become the object of our attention. Intuitively, the field φ(~x, t) represents,

at time t, the average magnetization in a small region of space about ~x whose length scale

is large compared with the lattice spacing a but small compared with the system size L. In

this limit, φ(~x, t) varies continuously in ~x and t.

To describe phase-ordering physics and to be of practical use, our constructed order

parameter field must satisfy a simple equation of motion that respects fundamental ther-

modynamic principles. A suitable Landau free-energy functional to describe the Ising model

dynamics is

F [φ(~x, t)] =

∫

1

2

{

[∇φ(~x, t)]2 + [φ(~x, t)− 1]2[φ(~x, t) + 1]2
}

ddx (1.2)

To obtain an equation of motion for a nonconserved order parameter field, we compute the

functional derivative

∂φ

∂t
= −δF [φ]

δφ
= ∇2φ+ 2φ(1− φ2) (1.3)

This is the time-dependent Ginzburg-Landau (TDGL) equation for a nonconserved order

parameter field [5, 4]. Intuitively, the local spin-spin interactions tend to favor all spins

in a small neighborhood to be aligned (φ = +1 or φ = −1). This behavior is captured in

the potential term in Eq. (1.3). Also, the order parameter field at a point ~x drifts toward
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the average magnetization of points in its neighborhood on the lattice. This is represented

by the Laplacian term in Eq. (1.3). In the late stages of evolution, all activity occurs on

the domain walls between ordered phases (Fig. 1.2(c-d)). Smooth domain walls move and

straighten so as to minimize their surface tension.

If we choose to believe that this deterministic reaction-diffusion equation captures all

essential physics of a deep temperature quench of a kinetic Ising model, then we should be

able to extract information about the late-time statistics of the Ising quench by studying

late-time solutions to Eq. 1.3. In numerical studies, we must average the TDGL evolution

over many independent random initial conditions to obtain meaningful statistics. However,

we can analytically extract useful information about scaling phenomena in nonconserved

coarsening.

For simplicity, first consider a circular domain of magnetization φ = +1 in a background

of magnetization φ = −1 (Fig. 1.3(a)). We expect

φ(r, t) = f(r −R(t)), (1.4)

where R(t) is the radius of the circular cluster at time t. Writing the TDGL equation in

spherical coordinates and using the form (1.4), we obtain

0 =
d2f

dr2
+

(

d− 1

r
+

dR

dt

)

df

dr
− dV

df

Multiplying this equation by df/dr and integrating through the interface gives

dR(t)

dt
= −d− 1

R
,

After integrating, we obtain R2(t) = R2(0)− 2(d− 1)t. From this, we see that the time for

a circular domain of initial radius R(0) to disappear scales as t ∼ R2(0).

More generally, for an arbitrarily curved interface between spin domains, we identify

that the gradient of the field φ(~x, t) can be written as ∇φ = (∂φ/∂n)tn̂, where n̂ is a unit

vector normal to the domain wall between clusters. Then, plugging ∇2φ = (∂2φ/∂n2)t +
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(a) (b)

Figure 1.3: (a) A circular domain of one phase in a background of the opposite phase. (b)
A wedge-shaped domain.

(∂φ/∂n)t∇ · n̂ and (∂φ/∂t)n = −(∂φ/∂n)t(∂ṅ/∂t)φ into Eq. (1.3), we arrive at

v = −∇ · n̂ = −(d− 1)κ, (1.5)

where v is the interface velocity, and κ is the mean curvature of the interface. Eq. (1.5) is

the Allen-Cahn equation, which describes domain wall motion in the late-time evolution of

an order parameter field governed by the TDGL equation [6, 5].

From the general Allen-Cahn equation, we can understand on physical grounds the

scaling result that the time for a domain of initial length scale L(0) to shrink to zero size

scales as tz, with dynamic exponent z = 1/2. We denote by [L] the characteristic length

scale of a cluster and by [T ] the characteristic time for the domain to collapse under its own

surface tension. Since the mean curvature of an interface has dimension 1/[L], dimensional

analysis on the Allen-Cahn equation (1.5) yields

d[L]

d[T ]
∼ 1

[L]
,

and power counting gives [L]2 ∼ [T ].

If the order parameter is strictly conserved, as in phase separation of a binary alloy, then

the Allen-Cahn equation does not apply, and the task of finding scaling relations becomes

more complicated. In conserved coarsening processes, the general scaling result L(0) ∼ tz

still holds, but now with dynamic exponent z = 1/3 [5]. In this thesis, I focus exclusively
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on dynamics that do not conserve the order parameter.

1.4 Current Research

Our analysis thus far may lead one to naively expect that nonconserved coarsening behaves

as follows. Shortly after a quench to subcritical temperature, domains of plus and minus

phase grow throughout the system and compete for the equilibrium state. Due to random

fluctuations in microscopic domain ordering and due to the effects of correlations in the

initial state, one of the two equilibrium phases will grow to occupy a larger fraction of the

system. When the largest cluster’s length scale becomes of the order of the system size,

the system has reached one of its two equilibrium states. This overly-simplistic view of

coarsening may be called the “central dogma” of phase-ordering kinetics when the order

parameter is not globally conserved.

The central dogma of nonconserved coarsening actually makes correct predictions for

one-dimensional systems. For the one-dimensional Ising model, for example, the dynamics

at zero temperature corresponds to each interface between spin domains (that is, each

point where an up spin is adjacent to a down spin) performing a symmetric random walk.

When two interfaces between spin domains meet, they annihilate each other, and the total

number of spin clusters decreases by one. Since the domain length scale grows as
√
t, the

time required for all domain walls to meet and annihilate in a finite system of length L scales

as L2. In a one-dimensional TDGL system, the only possible final state at zero temperature

is similarly one of the two ground states, with the caveat that the time to reach one of the

two ground states scales exponentially in the system size L [4].

However, in greater than one spatial dimension, systems with nonconserved, scalar order

parameters tend to become trapped in long-lived metastable states, thereby complicating

the approach to equilibrium. A two-dimensional kinetic Ising model, for example, may be-

come trapped in a metastable “stripe” state following a deep temperature quench (Fig. 1.2).

Notice that, since all spin clusters span the lattice, flipping any spin in Figure 1.2(d) results

in an increase in the number of antialigned spin pairs, and hence raises the energy. At
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very low temperatures, such energy-raising moves are strongly suppressed, and this sys-

tem remains trapped in this metastable configuration. Similar, but much more complex,

metastable long-time states appear in the quench of a three-dimensional Ising model, al-

though in the 3d setting metastable states appear much more ubiquitously. If the operating

temperature is T = 0, then, depending on the model, a system that falls into one of these

metastable configurations typically cannot reach the ground state, and the freezing becomes

permanent. So while the central dogma of coarsening is morally correct by incorporating

fundamental, qualitative physical behavior of out-of-equilibrium coarsening dynamics, it

neglects important features of discrete spin models, and it is definitely not the last word in

generically understanding phase-ordering kinetics.

Thus far, we have discussed the final outcome of a coarsening system starting from a

high-temperature, random initial state. A complementary problem involves domain wall

motion in a nonconserved coarsening system starting from a smooth, deterministic initial

condition. As an example of the latter case, consider Figure 1.3(b). Starting from the

macroscopically smooth “wedge” geometry in 2d, the domain in the upper-right of the

figure will deterministically shrink under the influence of its surface tension. Naively, one

may hope that the equation of motion for the smooth domain interface in this example is

given by the Allen-Cahn result, i.e., that interface motion is driven purely by local curvature

of the interface.

In this thesis, I carefully study two connected problems:

• Starting from a random, high-temperature initial condition, how do spin domains

form and evolve with dynamics that do not conserve the order parameter? Can the

late-time outcome of a typical temperature quench be predicted from theory? Can

the metastable states that form in two and higher spatial dimensions be reliably

characterized? Specifically, what are the zero- and finite-temperature mechanisms

responsible for slow late-time behavior in quenched ferromagnets? Additionally, how

is late-time behavior modified if there are more than two competing equivalent spin

states?
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• Starting instead from a smooth, deterministic initial domain structure, and incorpo-

rating non-conserved order parameter dynamics, how do the interfaces between spin

domains evolve? Does the Allen-Cahn result provide a faithful description of do-

main wall motion universally for all microscopic models that would be expected to

obey curvature-driven coarsening in a macroscopic sense? If not, then how do lattice

anisotropies and spin-spin interactions affect deterministic interfacial equations of mo-

tion? What is the role of the spatial dimension in constructing suitable equations of

domain wall motion? Also, what are the limiting interface shapes that result from

different interfacial equations of motion in both two and higher dimensions?

We begin by studying the quench of a kinetic spin system from high supercritical tem-

perature to zero temperature. While freezing has been shown to occur [7], the myriad

complexities that arise as a kinetic spin system approaches equilibrium have been mostly

overlooked. A unifying theme in two-dimensional nonconserved coarsening, either of a

kinetic spin system or of the TDGL equation, is a high degree of universality in the prob-

abilities of a given system reaching any of an infinite number of metastable stripe states.

Researchers in the past several years began observing an intriguing connection between do-

main patterns in coarsening 2d ferromagnets and continuum critical percolation. In Chap-

ter 2 of this thesis, I demonstrate, both analytically and numerically, that the connection

between two-dimensional coarsening and percolation is much deeper than had previously

been anticipated.

Three-dimensional coarsening of kinetic spin systems is far more complex. A pioneering,

detailed numerical study on the quench of a three-dimensional kinetic Ising model to T = 0

[7] revealed non-static final states and hinted at an anomalously slow relaxation of the en-

ergy. A major focal point of my thesis research involves characterizing the non-static behav-

ior and understanding the slow energy relaxation of a three-dimensional zero-temperature

kinetic Ising ferromagnet. Our new results on three-dimensional coarsening, together with

our novel visualization and animation techniques, are presented in Chapter 3. Amazingly,

the exotic features of three-dimensional coarsening of a kinetic spin system also appear in
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the subcritical temperature quench of a two-dimensional kinetic Potts model. Chapter 4

focuses on details of a quench of a kinetic Potts model to zero temperature, and more

generically on multi-state TDGL coarsening.

The remainder of this dissertation focuses on understanding curvature-driven domain

wall motion with smooth, deterministic initial conditions. For microscopically discrete

spin systems in two and three dimensions, we do not find a universal governing equation

for interface motion. In Chapter 5, for each spin dynamics model that we consider in

two dimensions, we establish the correct equations for interface motion. For interesting

idealized initial geometries, we then solve our governing equations to obtain exact forms

for the limiting interface shapes. Domain wall motion in three dimensions, examined in

Chapter 6, is much more challenging. We use some novel analysis, incorporating limiting

behavior, symmetries, and a little help from numerics, to conjecture an amazingly simple

and elegant equation of motion for three-dimensional corner growth. We solve our growth

equation analytically and find outstanding agreement with simulations of the corner growth

process in three dimensions.



Chapter 2

Universality of Two-Dimensional

Curvature-Driven Coarsening

In the first half of this dissertation, I consider the following question: How does phase-

ordering proceed if an Ising model is instantaneously quenched from a random, infinite-

temperature initial state to zero temperature? By instantaneously quenching the tempera-

ture, we avoid any complications due to the quenching protocol, and we can focus exclusively

on the time scales associated with coarsening.

According to the standard picture from phase-ordering kinetics [5], shortly after the

temperature quench, an intricate domain mosaic develops, and domain coarsening becomes

a deterministic process driven by local domain wall curvature. Exact results in the theory of

phase-ordering kinetics have proven difficult to achieve. Rare exactly soluble models include

the Glauber model in one dimension and the n-vector model with n → ∞ [5]. To develop

understanding for the vast majority of statistical systems that exhibit coarsening, physicists

rely heavily on computer simulations and physical experiments, combined with only qual-

itative and approximate theoretical arguments. Despite the complexity of nonconserved

coarsening, there exists a surprisingly high degree of universality in the two-dimensional

setting. As we shall see, recent connections between coarsening in a two-fold degenerate

system and percolation theory have opened a powerful route to understanding the beauti-

ful intricacies of two-dimensional coarsening while providing precise predictions for various

13
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coarsening outcomes.

2.1 Predictions from Percolation Theory

Percolation theory is the field of mathematics concerning the connectivity of clusters in

random graphs [8]. Mathematically, one has a collection of nodes that are joined by bonds,

and each bond may be active or inactive. A group of nodes that are all connected via

a sequence of active bonds is termed a connected cluster. The basic physical question

that percolation theory addresses is: Which statistical configurations of nodes and bonds

produce connected paths through a system? Percolation theory is versatile and powerful,

providing important understanding in diverse fields, including physics, materials science,

complex network science, epidemiology, filtration, and spreading of forest fires.

We are interested in nonconserved coarsening in the two-dimensional Ising model. Spirin,

Krapivsky, and Redner [7] found that a 2d Ising model quenched to zero temperature reaches

the ground state with probability ∼ 2/3. Surprisingly, the remaining fraction of realizations

become trapped in infinitely long-lived “stripe” states at zero temperature (Fig. 1.2). At

some early time in the dynamics, a percolating stripe phase may form. As coarsening

progresses, any percolating stripes will gradually straighten under their surface tension, but

topologically they can never vanish. For a percolating stripe to disappear after a long time

would require a sufficient thermal fluctuation to carve a path through the stripe, but at

zero-temperature, such thermally-activated processes cannot occur.

Can percolation theory tell us anything about freezing into stripe states in two-dimensional

ferromagnets? The answer is yes. However, there are some subtleties. For instance, site

percolation on a square lattice is not applicable for describing coarsening. For site perco-

lation on the square lattice, computer simulations have determined the critical density of

occupied sites for the existence of a spanning cluster to be pc = 0.59274605(3) [9]. In the

limit of infinite system size, for density p < pc, there never exists a spanning cluster, while

for p > pc, there always exists a spanning cluster. The initial densities of plus and minus

spins in the Ising model at T = ∞ are each equal to 1/2, strictly less than the threshold
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for site percolation on a square lattice. Therefore, at time t = 0, no spin clusters span the

system.

Instead, imagine we have a continuous and random potential function V (x, y) on a two-

dimensional lattice. The random potential will have hills and valleys, and its mean over

all space is V . To draw parallels with the 2d Ising model, we may color regions where

V (x, y) > 0 in white and regions where V (x, y) < 0 in black. Physically we may ask: For a

given value of V , do any white or black domains span the 2d lattice? It turns out that for

V < 0, there is a black cluster that percolates with probability 1, while for V > 0, there is a

white cluster that percolates with probability 1. The interesting case of V = 0 corresponds

to critical continuum percolation, where crossing probabilities of black and white clusters are

strictly between 0 and 1 [10, 11, 12]. These results hold with a high degree of universality;

i.e., they are correct for a broad class of random potential functions [13].

Within the last decade, it has been noticed that the 2d Ising model shortly after a tem-

perature quench visually resembles cluster patterns in continuum percolation [14, 15]. At

supercritical initial temperature, the Ising model has zero magnetization. The magnetiza-

tion remains zero during the early stages of coarsening, so a mapping of the Ising model

shortly after a quench to critical continuum percolation is plausible. Over the past several

years, numerical evidence in support of such a connection has mounted, and the mapping

with percolation appears to be exact for a broad class of dynamical models. Crucially,

once the kinetic Ising system has reached the state of critical continuum percolation, the

subsequent evolution of the spin domains is essentially deterministic since the evolution is

driven solely by mean curvature of the interfaces between spin domains [15].

To demonstrate the power of the percolation mapping, consider the distribution of

hull-enclosed areas in the quench of a 2d Ising model. A hull is defined as any closed

interface of a cluster, which may or may not enclose additional smaller clusters. Arenzon

et. al. [14] recognized that the statistics of hull-enclosed areas at a time shortly after

the quench in 2d nonconserved coarsening and in 2d critical continuum percolation are

identical. Combining results for hull-enclosed area statistics in percolation theory [16] with
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curvature-driven coarsening, they predicted that the number of hulls per unit area of the

system Nh(A, t) with enclosed area greater than A at time t is given by

Nh(A, t) =
1

4π
√
3(A+ λt)

, (2.1)

where λ is a model-dependent parameter. Scaling, i.e. that the typical area A in the

system scales with time t, follows naturally from this more general prediction. Numerical

experiments on coarsening in the 2d Ising model verified Eq. (2.1), which is quite remarkable

as two-dimensional nonconserved coarsening was long believed to be beyond the reach of

precise mathematical analysis [5].

2.2 Stripe States in Models that Exhibit Nonconserved Coars-

ening

In this chapter, we study coarsening in several simple two-dimensional models that have

two-fold degeneracy of the ground state. Specifically, we are concerned with the long-time

state after the growing domains have become commensurate with the system size.

To understand coarsening into stripe states with mathematical precision, we rely on two

key observations:

1. Shortly after the temperature quench, the typical size of a domain is large compared

with the lattice spacing a and is small compared with the system size L. The cluster

patterns visually resemble those of critical continuum percolation.

2. Once the state of critical continuum percolation has been reached, domain walls be-

tween spin clusters are macroscopically smooth, and curvature-driven interface motion

becomes deterministic.

We want to predict the probabilities for a two-dimensional ferromagnet to coarsen into

a long-lived stripe state at zero temperature. If percolation theory can predict quantitative

features of hull area distributions in coarsening 2d ferromagnets, then can it also predict
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various stripe state probabilities?

Boundary conditions play an important role in the allowed late-time cluster patterns.

With free boundary conditions, there are only four allowed topologies: no spanning (Fh̄v̄),

dual spanning (Fhv = Fh̄v̄ by symmetry), horizontal spanning (Fhv̄), or vertical spanning

(Fh̄v). Thus we have the normalization condition

2Fhv + Fhv̄ + Fh̄v = 1. (2.2)

Beautiful expressions for crossing probabilities have been calculated using conformal field

theory [10, 11, 17, 18], and some of these have been proven [19]. We have

Fh̄v(r) =

√
3

2π
λ 3F2

(

1, 1,
4

3
;
5

3
, 2;λ

)

(2.3)

as the probability for vertical spanning on a rectangle with aspect ratio r (ratio of height to

width). Here, pFq(a1, . . . , ap; b1, . . . , bq;λ) is the generalized hypergeometric function [20],

λ = λ(r) is defined implicitly by

λ =

(

1− k

1 + k

)2

, r =
2K(k2)

K(1− k2)
,

and K(u) is the complete elliptic integral of the first kind [20]. Furthermore, by symmetry,

we have the duality relation

Fhv̄

(

1

r

)

= Fh̄v(r).

The predictions for freezing into various stripe topologies were tested in Ref. [15] for different

aspect ratios r, and the agreement with numerics is excellent. Consider a square lattice with

free boundaries (r = 1), so that these equations reduce to

2Fhv =
1

2
+

√
3

2π
ln

(

27

16

)

= 0.644240 . . . (2.4)

for the probability of reaching a ground state.

For the case with periodic boundaries, we do not have a clean analytical prediction
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for the probability of reaching a ground state, due to the possibility for stripes that wind

multiple times in both directions around the torus. (Mathematically, there is no simple

conservation law corresponding to Eq. (2.2) with finitely-many terms.) Numerically, our

prediction is:

Pground = 0.661169 . . . . (2.5)

To probe new aspects of 2d coarsening, we focus here on periodic boundary conditions.

Consider the probability

Pa,b(r) =
Za,b(6; r)− 2Za,b(

8
3 ; r) + Za,b(

2
3 ; r)

2[η(e−2πr)]2
(2.6)

for a 2d critical continuum percolating system to feature oppositely-colored spanning clus-

ters with winding numbers a and b on a rectangle with aspect ratio r and periodic boundaries

[11]. The function Za,b(G; r) is the infinite sum

Za,b(G; r) =

√

G

r

∞
∑

j=−∞
exp

[

−πG

(

a2

r
+ b2r

)

j2
]

. (2.7)

These formulae for continuum percolation crossing probabilities were expanded in Ref. [15]

with (a, b) = (1, 0), (0, 1) for various aspect ratios The observed probabilities of freezing

into horizontal (a = 1, b = 0) and vertical (a = 0, b = 1) stripes in 2d Monte Carlo

coarsening simulations for different aspect ratios was shown to agree phenomenally well with

predictions [15]. This is actually quite surprising, as the continuum percolation results were

derived from an equilibrium statistical ensemble, while our coarsening systems are far from

equilibrium. The numerical probabilities of coarsening into stripe states reported in [15]

are sufficiently close to the percolation probabilities that one wonders if the correspondence

may be exact in the thermodynamic limit.

We further exploit this connection to understand coarsening into more esoteric stripe

topologies. First considering just the periodic square lattice, we wish to predict the prob-

ability of coarsening into stripes with general winding numbers a, b. We use the series
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representation of the Dedekind η function [12]

[η(ρ12)]−2 = ρ−1(1 + 2ρ12 + 5ρ24 + 10ρ36 + . . .) (2.8)

with ρ ≡ e−π/6 in (2.6) to obtain

P0 =

√

8

3
ρ3(1− ρ12 − ρ24 + 4ρ32 + . . .) (2.9)

P1 =

√

8

3
ρ7(1 + 2ρ12 + 2ρ24 + 4ρ36 + . . .) (2.10)

Pn =

√

32

3
ρ4n

2+3(1 + 2ρ12 + 5ρ24 + 10ρ36 + . . .) (2.11)

as the probabilities for coarsening into a state with horizontal or vertical stripes (P0 =

P1,0 + P0,1 = 2P1,0), a state with diagonal stripes either in the (1, 1) or (−1, 1) directions

(P1 = P1,1+P−1,1 = 2P1,1), or a state with stripes of higher winding numbers in any of the

four (±n, 1) or (±1, n) directions (Pn = 4Pn,1). Figure 2.2 shows the formation of a (1,1)

diagonal stripe and a (2,1) diagonal stripe on a periodic square lattice.

(a) t=200 (b) t=1000 (c) t=5000 (d) t=50000

(e) t=200 (f) t=1000 (g) t=5000 (h) t=50000

Figure 2.1: Formation of a (1,1) diagonal stripe (top) and a (2,1) diagonal stripe (bottom) in
the 2d Ising model quenched to zero temperature. The system size is L×L, with L = 1024.
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Secondly, we may consider the formation of stripes with winding numbers (±n, 1) on

an L× nL rectangle. We find that in continuum critical percolation, these diagonal stripe

states on L× nL lattices occur with probability

Πn =

√

8

3n
ρ7n(1 + 2ρ12n + 2ρ24n + . . .). (2.12)

2.2.1 Simulation Results

We numerically tested two basic questions: First, do the probabilities of coarsening into

various stripe topologies agree for different model systems? We simulated three models:

the kinetic Ising model (KIM) with homogeneous nearest-neighbor spin-spin interactions,

the KIM with homogeneous nearest- and (diagonal) next-nearest-neighbor spin-spin in-

teractions, and the TDGL equation (1.3). Second, do these probabilities agree with our

predictions from critical continuum percolation?

Our simulation procedure is as follows. We initialize a square lattice with L2 spin

variables with L2/2 spins in the “up” state and the remaining L2/2 spins in the “down”

state. We order the up and down spins randomly on the grid, thereby mimicking a quench

from infinite temperature. The working temperature is instantaneously set to zero, and

we employ strictly energy-lowering Glauber dynamics [21]. We could just select a spin

equiprobably from all L2 spins, check the energy change that would result from flipping

the spin, flip or not flip the spin accordingly, and repeat for the desired Monte Carlo time.

However, this direct simulation method is hopelessly inefficient because at late times in

the zero-temperature dynamics, nearly all activity occurs on domain boundaries—a small

subset of all spins in the system. Therefore, we maintain a list of spins in the system that

are eligible to flip on the next attempt. We choose only spins from this list to flip, and

after each move, we update the list accordingly. This is just a reorganization of standard

Glauber [21] or Metropolis [22] dynamics, and the enhanced technique goes by many names,

including the kinetic Monte Carlo method [23], the Gillespie algorithm [24], and the n-fold

way [25].
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For different values of system size L, we run many realizations. Figure 2.2 shows our data

for the three models, and our predictions for each measurement are shown as red arrows.

The agreement between the three models in the large-L limit and the match between theory

and experiment are excellent.

2.3 Stability of Topologies

Cooperative behavior in 2d coarsening should not depend in any fundamental way on the

range of spin-spin interactions as long as these interactions decay rapidly with the distance

between spins. There are however important subtleties that arise. A horizontal or vertical

stripe state is stable at T = 0 with NN interactions (Fig. 1.2(d)). A diagonal stripe that

winds once horizontally and once vertically around the torus (Fig. 2.2(top)) is unstable with

only NN interactions. A staircase interface in the (1, 1) direction has equal numbers of inner

and outer corners. With NN interactions, each inner and outer corner can flip equiprobably,

and a staircase interface on an L × L lattice has of order L of these height extrema. In

a single time step, the interface’s center of mass typically moves a distance ∆y ∼
√
L/L,

which gives an effective interface diffusivity D ∼ (∆y)2 ∼ L−1. For two domain walls to

meet in a diagonal stripe state, one has to wait a time t ∼ L2/D ∼ L3. However, with

NN interactions and weaker NNN interactions, the staircase in the (1, 1) direction becomes

stable at T = 0. Similarly, a (2, 1) stripe state (Fig. 2.2(bottom)) is unstable for both NN

interactions and for NN and weaker NNN interactions, but becomes stable with additional

longer-range interactions.

The interaction range has subtle implications for the late-time behavior of the 2d KIM.

We introduce the survival probability S(t) as the probability that a given realization of the

T = 0 quench has flippable spins remaining at time t. Figure 2.3 shows S(t) for an L = 64

system with only NN interactions and another L = 64 system with NN and weaker NNN

interactions. In both curves, notice the separation of time scales. S(t) decays exponentially

as exp(−t/τ) with time constant τ ∼ L2 during the early-time regime. After the kink, S(t)

again decays exponentially, but now with time constant τ ∼ L3. For the KIM with only



22

0 0.02 0.04 0.06

1 / L

0.30

0.33

0.36

0.39
P0

0 0.02 0.04 0.06

1 / L

0

0.02

0.04P1

0 0.01 0.02 0.03 0.04

1 / L

0

0.0001

0.0002

P2

0 0.02 0.04 0.06

1 / L

0

0.0004

0.0008

Π2

Figure 2.2: Probabilities of coarsening into a (1,0) stripe on a square, a (1,1) stripe on a
square, a (2,1) stripe on a square, and a (2,1) stripe on a rectangle with aspect ratio r = 2
(top to bottom). For each case, the probabilities for the Ising model with NN interactions
(black circles), the Ising model with NNN interactions (red diamonds), and the TDGL
equation (blue triangles) are shown. For simulations of the KIM, 3.2×106 realizations were
used for L = 16, 32, 64, and 128, and 3.2 × 105 realizations were used for L = 256. For
simulations of the TDGL equation, 106 realizations were used for L = 16, 32, 64, and 128,
and 5× 105 realizations were used for L = 256.
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NN interactions, the roughly 5% of realizations that are still active at times beyond the

kink are predominantly (1, 1) stripes. For the KIM with NN and weaker NNN interactions,

the fraction ≈ 10−4 of realizations that are still active at late times are predominantly

(2, 1) stripes. These numbers are remarkably close to our predictions for the probabilities of

forming (1, 1) and (2, 1) stripes, 0.0419 and 1.567×10−4, from percolation theory, providing

a nice theoretical understanding of our survival probability data.

0 20000 40000 60000
t

10
-6

10
-4

10
-2

10
0

S(t)

Figure 2.3: Survival probability S(t) for an L = 64 KIM with only NN interactions
(solid/black, 105 realizations) and for NN and NNN interactions (dashed/red, 106 real-
izations).

Let’s assume that we have spin-spin interactions that decay rapidly with distance. What

are the criteria for stability of a staircase with general winding numbers a and b on the square

lattice? As a first rule, note that adjacent horizontal and vertical segments of an interface

cannot both be longer than 1 without the interface being unstable. For example, a (1, 1)

stripe can be composed of a sequence of horizontal and vertical segments each of width two,

but this structure will evolve into a staircase with horizontal and vertical segments each of

width one. We denote this latter configuration as 1∞ and each individual building block

as 1 = [1, 1]. The (1, 2) stripe is composed of building blocks 2 = [1, 2], leading to a 2∞

staircase. We see that the only stable staircase of a (1, n) stripe is n∞, with n = [1, n].

As additional examples, the staircase (12)∞ yields a stable stripe in the (2, 3) direction,

the staircase (112)∞ yields a stable stripe in the (3, 4) direction, and the staircase (122)∞
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yields a stable stripe in the (3, 5) direction.

There are an infinite number of possibilities for forming a stripe with given winding

numbers (a, b). For example, a (2, 3) stripe can have the staircase (12)∞, the staircase

(1122)∞, or an infinite number of other possibilities. Yet the latter form is unstable and

eventually decays into (12)∞. This suggests a second rule for constructing stripe states:

Only minimal representations are stable.

We also note a connection between combining elemental building blocks for staircases

and the Farey sequences and the Stern-Brocot tree [26]. For example, consider a staircase

(23)∞ made up of alternating 2∞ = [1, 2] and 3∞ = [1, 3] segments. To obtain the winding

numbers of the resulting staircase, we take the mediant

1

2
⊕ 1

3
=

1 + 1

2 + 3
=

2

5
.

This suggests that the stable staircase in the (2, 5) direction is (23)∞.

2.4 Discussion

This connection is surprising because it relates an equilibrium model—continuum percolation—

with a far-from-equilibrium dynamical phenomenon—nonconserved coarsening. One natu-

rally wonders what necessary characteristics a nonconserved coarsening process must possess

to fall into this universality class of stripe state outcomes. Stripe states have similarly been

observed in the majority vote model [27], the AB model [28], the naming game [28], and

recently the confident voter model [29]. More detailed numerical work is needed on these

models to accurately determine the probabilities of various coarsening outcomes. It would

also be worthwhile to simulate the Toom model [30], in which each spin on a square grid

interacts with only two of its neighbors along different directions (for example, a spin may

interact with its neigboring spins above and to the right, but not with its neighboring spins

below and to the left). Does this system also fall into our continuum critical percolation

universality class?
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Recent quantitative evidence from simulations linking continuum percolation models

with both the early-time coarsening and the late-time outcomes of 2d nonconserved coars-

ening is mounting. We hope that these remarkable results will ignite rigorous mathematical

studies on the nature of this connection.



Chapter 3

Freezing in Three-Dimensional Ising

Ferromagnets

Phase transitions have typically been studied in the equilibrium framework. Above a critical

temperature Tc, a system shows no order, while below this critical temperature, the order

parameter is nonzero. A recent interest has been in describing ordered states that arise

below the critical temperature in a dynamical setting.

The prototypical model for studying phase transitions in statistical physics is the Ising

model, which proved instrumental in understanding ferromagnetism. When endowed with

a kinetics that does not conserve the magnetization, this becomes a Model A system in the

classification of Hohenberg and Halperin [31]. In one dimension, the critical temperature is

at T = 0. In two and higher dimensions, there is a finite critical temperature. In equilibrium,

systems with T < Tc tend to order their spins, and a nonzero value of magnetization results.

What happens if, instead, a system starting at an infinite temperature is rapidly quenched

to T < Tc? What is the final state following the quench, and what are the time scales

involved in the approach to the final state?

Few answers to the above questions have been rigorously proven, with some exceptions

for idealized one-dimensional models [5]. For d > 1, studies are typically based on simula-

tions combined with approximate and heuristic arguments. Mathematical studies of spin

systems generally focus on the T = 0 limit where theorems can be proven. Most prior results

26
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have supported the validity of a simple theoretical framework for understanding coarsening

following a quench to zero temperature. This ‘central dogma’ of coarsening at T = 0 can

be summarized by the following statements:

• There exist two ground states of the system corresponding to the two possible values

of the (scalar) order parameter. These ground states are the only possible final states

of the evolution.

• The characteristic length scale of the coarsening domain mosaic grows in time as t1/2

[32, 5, 33, 4]. Thus one of the two possible final states is reached in a time that scales

as L2.

• The final states are frozen, since at T = 0, energy-raising moves are forbidden, and

the system is stuck in one of the two ground states.

To test these predictions, we simulate the evolution of a kinetic Ising system when it

is quenched from above to below the critical temperature. Phenomenologically, the sys-

tem evolves by minimizing a coarse-grained Landau free-energy functional to determine its

long-time state following a quench. However, this mean-field description represents a con-

siderable oversimplification. Finite-range interactions in various models may support many

metastable states, and the approach to equilibrium is generally not nearly as simple as any

mean-field picture might suggest [34, 35].

In the one-dimensional Ising system, each pair of antialigned spins on the line represents

a domain wall. The motion of domain walls is diffusive. When two domain walls meet, a

larger domain forms, and the system coarsens. Thus the ultimate outcome of the dynamics

for d = 1 is always the ground state regardless of initial condition, so the central dogma

provides an accurate description of the KIM in d = 1. For d > 1, starting from a state with

excess positive (negative) magnetization, the final state after a quench to T = 0 is generally

believed to be the positive (negative) ground state with probability equal to one. This has

been proven recently in the mean-field (d → ∞) limit [36].
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In d = 2, the final state of the Ising system following a quench from T = ∞ to T = 0

however is not so simple [37, 7, 38, 39]. With probability ≈ 1/3, the system gets stuck in an

infinitely long-lived metastable state which consists of two (rarely more than two) stripes

of opposite spin [15] (Fig. 1.2). Note that for one of the stripes to evaporate requires an

energy-raising spin flip, but at T = 0, such moves are forbidden. Thus if a system coarsens

into the state shown in Fig. 1.2, it becomes stuck there forever.

3.1 Quench of a Three-Dimensional Kinetic Ising Model to

T = 0

In three dimensions, a quench from T = ∞ to T = 0 results in a bizarre final state, and the

central dogma of coarsening completely fails. In stark contrast to the above predictions for

coarsening at T = 0, we find:

• In the large-system limit, the probability of the system reaching one of the two ground

states approaches zero. Instead, the system consists of two highly interwoven, topo-

logically complex domains.

• While the majority of coarsening occurs in a time that scales as L2, the relaxation

time for the energy (and other observables) scales as exp(L2).

• The final states are dynamic. There is always stochastic flipping of spins, even though

the system has relaxed to a final state at T = 0.

We study the homogeneous, ferromagnetic Ising model defined by the Hamiltonian

H = −J
∑

<ij>

σiσj

on a simple cubic lattice, with the interaction strength J set to 1. σi = ±1 represents

the spin at site i, and the sum is over all nearest-neighbor pairs of spins. We use periodic

boundary conditions in all directions. Each realization begins with an antiferromagnetic
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initial state. We experimented with both random and antiferromagnetic initial states, and

while both give essentially the same results, except for minor quantitative differences in

distributions of observables, the antiferromagnetic configuration is simpler. The system

evolves starting at time t = 0 by zero-temperature single-spin-flip dynamics, so that only

energy-lowering spin flips are permitted. For computational efficiency, we employ the same

kinetic Monte Carlo technique in our simulations as in Chapter 2. A single selected spin

flips according to the update rule

flipping probability =























1 if ∆E < 0,

p if ∆E = 0,

0 if ∆E > 0,

with a single parameter p. Here we use p = 1/2 which corresponds to zero-temperature

Glauber dynamics [21], although the choice p = 0, corresponding to Metropolis dynamics

[22], would have been more efficient. While the evolution is essentially the same for all

p > 0, the case p = 0 gives rise to a different final state with jammed configurations [40, 41].

These jammed configurations naturally arise in kinetically constrained models [42], which

are used for studying glassy dynamics. Here we do not consider the case p = 0.

Starting at t = 0 every spin in the lattice is flippable. We choose an eligible spin at

random (a spin for which ∆E ≤ 0 if that spin were to flip) and we apply the above update

rule. There is initially a rapid drop in energy. After a time t = 5L2, each realization

has coarsened, and for large systems, almost all realizations are stuck in a “plumber’s

nightmare” state (Fig. 3.3).

Running a realization of the 3d Ising model to it’s final lowest-energy state following a

quench to zero temperature with unbiased Glauber dynamics is prohibitively slow, even for

small system sizes. For times beyond the coarsening time, which scales as L2, the evolution is

characterized by long periods of wandering through constant-energy configurations. Occas-

sionally and at progressively later times, there are isolated energy-lowering spin-flip events

(Fig. 3.1). In Figure 3.2, the average time interval between two successive energy-lowering
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spin-flip events is plotted versus the average time for the nth such energy-lowering spin-flip

event to occur. The time between energy-lowering moves increases roughly exponentially

over an appreciable time range.

To speed up the simulations, we devised an acceleration algorithm based on driving the

system with a weak bias magnetic field so that the rare energy-lowering events happen more

quickly. Our method is summarized as follows:

i Glauber dynamics is applied until time t = 5L2. This time is sufficiently beyond the

coarsening time that energy-lowering events have become rare.

ii At t = 5L2, an infinitesimal bias magnetic field is applied. This forces zero-energy spins

of one type (+ / -) to flip, while zero-energy spins of the opposite type (- / +) cannot

flip.

iii After each energy-lowering move, the sign of the bias field is reversed. This overall

process allows energy-lowering moves to happen quickly.

iv If no active spins remain while the bias field is applied in one direction, then the sign

of the bias field is reversed. If, with the reversed bias field, there is again no drop in

energy and no active spins remain, then the system has reached its final state.

Our acceleration algorithm drastically speeds up the zero-temperature dynamics of the 3d

KIM, and it accurately reproduces the final state if true Glauber dynamics had been run to

the end of each simulation. For details on tests of the accuracy of our acceleration algorithm,

see Appendix A.

We now describe the strange features of the plumber’s nightmare states in detail.

3.1.1 Final State Geometry

While it is possible that an Ising ferromagnet of size L3 quenched to T = 0 reaches the

ground state, this outcome is exceedingly rare as the system size L → ∞. After the

initial coarsening stage, the system almost always reaches a state with two—and only two—

interpenetrating clusters of opposite spin. Two examples of typical final states are shown in
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Figure 3.1: Time dependence of the energy for a single realization of an L = 20 system
quenched to T = 0. While the system settles into its final state at t ≈ 41712, it features
drops in energy at surprisingly late times (inset). Note that the abscissa of the inset is ln t.

Figure 3.2: Configuration average of the time ∆tn between successive energy drops as a
function of tn, the average time at which the nth such energy drop occurred, for 1024
realizations of a 10× 10× 10 system. The data are smoothed over a 100-point range.

Figure 3.3. For such a system to reach the ground state requires energy-raising spin flips,

but at T = 0 such moves are forbidden. Thus a system that collapses into a plumber’s

nightmare configuration at zero temperature is stuck there forever. (Detailed statistics on

the final state are provided in Appendix B.)

Two important characteristics of the long-time state of a finite system are the energy
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Figure 3.3: Examples of low-genus (g = 3) and high-genus (g = 16) domains on a 203

lattice.

and the genus. The energy E of a final state is proportional to the total number of bonds

between unlike neighboring spins. (The ground state energy is set at zero.) The quantity

EL is the average energy E for a given system size L. EL decays as a power law in L, but

with substantial finite-size corrections. An extrapolation yields EL ∼ L−ǫ, with ǫ ≈ 1, in

agreement with previous smaller-scale simulations [7]. This result implies that the surface

area of domains in a final state of linear size L scales as L2. The scaled energy distribution

P (E/EL) shows good data collapse (Figure 3.5(a)). It is defined by a peak that is close to

being Gaussian, and a linear tail at low energies. Intriguingly, the linear tail only appears

if the system begins in an antiferromagnetic initial state, and not for the random initial

state. We do not have an explanation for this minor difference in final energy distributions

between the two initial conditions.

In the long-time state, spin domains are topologically complex. Geometrically, the spin

clusters bear a resemblance to complex geometrical structures that arise naturally in two-

phase micellar systems [43]. (These topologically complex final states arising from the Ising

model quench are the analogues of zero-mean-curvature surfaces in TDGL evolution [44, 45].

Subtle differences between microscopic dynamics and macroscopic (curvature-driven) flow

will be presented later.) One way to characterize this complexity is through the genus g of a

domain. Mathematically, the genus is the maximum number of cuts that can be made along
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nonintersecting closed simple curves on the surface without disconnecting the manifold.

The genus is related to the Euler characteristic χ of a surface and can be calculated by

enumerating simple features of the interface [46].

χ = 2(1− g) = V − E + F (3.1)

Here, V is the number of vertices on the interface, E is the number of edges, and F is the

number of faces. As elementary examples, the genus of a sphere is 0, and the genus of a

donut is 1. To illustrate, consider an isolated cube. The cube has 8 vertices, 12 edges, and

6 faces, so its genus is 0. (This is expected, since a cube is topologically equivalent to a

sphere.) For further example, consider a linear 2×1 filament that wraps around a 23 lattice.

A simple calculation gives V = 8, E = 16, and F = 8, corresponding to g = 1. Note that the

length scale of the discretization does not change the value of g. Now consider Figure 3.4.

The image on the left is a cluster that wraps periodically in two Cartesian directions, for

which V = 8, E = 20, and F = 10, corresponding to g = 2. For the cluster on the right

which wraps periodically in all three Cartesian directions, V = 8, E = 24, and F = 12,

corresponding to g = 3.

Figure 3.4: Simple examples of interfaces with genus g = 2 and g = 3 for a periodic 2×2×2
system.

To measure the topology of the final state, we first identify all spin clusters using a

cluster multilabeling algorithm [47]. The final state almost always consists of just two in-

terpenetrating clusters. Spin configurations with more than two clusters do occur—although
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rarely—for the finite systems we studied (see Appendix B). The largest number of clusters

we observed in the final state of a realization was seven. This occured for a 383 system in

which there were six narrow filaments of one phase in a background of the opposite phase.

However in the L → ∞ limit, the probability of observing greater than two clusters or only

one cluster in the final state approaches zero.

Once all spin domains are labeled, we enumerate the numbers of vertices, edges, and

faces for each domain. The value of F is easily computed from the total energy of the

system, since each pair of antialigned spins represents a face. For each face, we add the

numbers of vertices and edges on the face to their total counts, making sure to not overcount

a vertex or edge that was already counted as part of another previously-encountered face.

If the final state contains only two clusters, then the two clusters by definition share the

same surface area, so they have the same genus. If there are more than two clusters, then

the largest genus among all clusters is taken to be the genus of the lattice.

As for the average energy EL, the average genus 〈g〉 shows power-law behavior in L

in the large-system limit, but with finite-size corrections. An extrapolation to L → ∞

yields 〈g〉 ∼ Lγ , with γ ≈ 1.7. The final genus distribution also shows good scaling in the

variable g/ 〈g〉 (Fig. 3.5(b)). The high-genus tail of the distribution decays approximately

exponentially.

Through basic topological considerations, the energy and genus of a system are related.

First, note that each face on a cluster is bounded by four edges, and each edge on a cluster

is shared between two faces. Thus

E = 2F .

Similarly, each edge on a cluster is bounded by two vertices, and each vertex on a cluster is

shared among three, four, five, or six edges. This leads to the inequality

E
3
≤ V ≤ 2E

3
.



35

(a) (b)

Figure 3.5: The final-state energy (a) and genus (b) distributions for L = 54 (©), L = 76
(△), and L = 90 (▽).

Plugging these two relations into Eq. (3.1), we obtain

−F
3

≤ χ ≤ F
3
.

We then use the stronger upper bound χ ≤ 2 to obtain

0 ≤ g ≤ F
6
+ 1. (3.2)

Note that the total number of faces F is directly related to the energy, viz. F ∝ L3EL.

Finally, assuming that the value of g for a realization is typically about halfway between

its upper and lower bounds, we obtain the exponent inequality

ǫ+ γ ≤ 3. (3.3)

Our measured values ǫ ≈ 1 and γ ≈ 1.7 are consistent with Eq. (3.3).

One may further relate the genus of a domain with the types of vertices on the domain’s

surface. Let Vm denote the number of vertices of degree m, with m = 3, 4, 5, or 6. As

shown in Figure 3.6, the degree of a vertex equals the number of edges joining at that vertex.
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The ‘defect’ of a vertex is defined to equal the difference between the sum of the angles

of all faces at the vertex and 2π. Thus, one sees that the defects of vertices of degrees 3,

4, 5, and 6 are π/2, 0, −π/2, and −π, respectively. Further, the discrete extension of the

Gauss-Bonnet theorem states that the sum of all defects on the domain surface equals 2πχ.

Thus we arrive at

π

2
V3 −

π

2
V5 − πV6 = 2πχ = 4π(1− g),

so the genus of a domain can be calculated from

g = 1 +
1

8
(2V6 + V5 − V3) .

5

3

6

4

Figure 3.6: A sample portion of a domain interface showing vertices of degrees 3, 4, 5, and
6.

3.1.2 Blinker States

When one thinks of the long-time state of a physical system at T = 0, one generally regards

all components of the system as ‘frozen’, since there are no thermal agitations from the

environment. While a quench of a two-dimensional Ising ferromagnet to T = 0 may result

in a ‘stripe state’, such states are indeed frozen. For a 2d system that has reached a stripe

configuration, there are no remaining possible spin flips. The outcome of a quench to T = 0

is quite different in d = 3, where the non-trivial final states that result are in general not

static, but contain a small subset of ‘blinker’ spins. These blinker spins have three up

neighbors and three down neighbors. Since each blinker spin is in a zero-energy state, it is
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capable of flipping at T = 0. When one blinker spin flips, one (or more) of its neighboring

spins typically become blinkers, so that even in the t → ∞ limit, these blinker spins never

cease to exist.

As a visual example of a blinker state in 3d, consider Figure 3.7. The three bounding

slabs wrap periodically in the three coordinate directions, so their boundaries are merely

visual artifacts. The zero-energy spins at inner and outer corners in the region where the

three slabs join are ‘blinker spins’. In the fully-deflated state (left image), there is one spin

(not colored) in the innermost corner where the slabs intersect that is capable of flipping. In

the fully-inflated state (right image), the single colored spin at the corner can flip. Blinker

states typically exist between these extremes so that the blinker lives in the half-inflated

state (middle image). Note that, if this system is at zero temperature, there must always

be at least one blinker spin in the system.

Figure 3.7: An 83 blinker on a 203 cubic lattice, showing the fully-deflated state (left), an interme-
diate state (middle), and the fully-inflated state (right). The bounding slabs wrap periodically in
the three Cartesian directions.

While Figure 3.7 may seem idealized, blinker states are ubiquitous in Ising ferromagnets

following a deep quench. The requirement for a lattice supporting blinker states is that the

linear lattice size L ≥ 5. As L increases, essentially all realizations end up with blinkers;

thus the final states are in general non-static (Fig. 3.7). Figure 3.8 shows a real blinker

state following a quench to zero temperature.

The fraction of total spins that are blinkers in the final state at any given time is small;

typically around 3 × 10−3 to 4 × 10−3 when the system size L . 50. The number of
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blinker spins fluctuates in time in any given realization, and therefore is not a meaningful

characteristic. To characterize blinker states, we define a ‘blinker region’ to be a subset of

spins in the lattice that are capable of being blinkers. The corresponding ‘blinker volume’

is the total percentage of the lattice that is accessible to blinker spins. Once a given

realization has reached its final state, the total blinker volume for that realization is fixed

in time. Consider again Figure 3.7. The left and right lattices contain only one blinker

spin, while the middle lattice has many blinker spins. The 8× 8× 8 region bounded by the

confluence of the three stationary slabs is the blinker region of this system. The blinker

volume is 83 = 512 spins, although the actual number of blinker spins in the system at any

given time is much smaller.

The blinker volume in Figure 3.7 can be determined visually, but we need a systematic

way of numerically probing the blinker volume. Consider Figure 3.7 (middle image). For

illustration, let the colored cubes indicate ‘up’ spins, while empty space corresponds to

‘down’ spins. If one applies a bias magnetic field in the ‘up’ direction, then all flippable

down spins in the blinker region will flip, until the entire blinker region is filled with up

spins (right image). Denote this spin configuration C+. Starting again from the middle

image, if one applies a bias magnetic field in the ‘down’ direction, then all flippable up spins

will flip, and one is left with the left image, whose configuration is denoted C−. Taking the

difference in spin configurations |C+−C−| (and dividing by two), one is left with the blinker

volume of the system. We apply this procedure to numerically measure the blinker volume

of many independent realizations following a quench. The blinker volume in the final state

is typically around 9%—a macroscopic fraction of the lattice.

3.1.3 Ultra-Slow Relaxation

As described thus far, the evolution of a quenched three-dimensional Ising ferromagnet is

far richer that one would naively expect. Two major aspects of the long-time state, namely

(i) topologically-complex domains and (ii) non-static blinker configurations, are completely

neglected by the Ginzburg-Landau coarse-grained description of the Ising model. We now
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Figure 3.8: Example of a blinker state on a 203 lattice with periodic boundaries. The
highlighted blocks indicate blinker spins.

describe another major counterintuitive aspect of a deep quench.

Starting from an antiferromagnetic (or random) initial spin state, one may consider how

long it takes for the 3d system to relax to its final configuration. By ‘final configuration’,

we refer to the state of the spin system after it has reached its lowest value of energy. As

shown above, systems quenched to T = 0 in general do not reach the ground state, but end

up being frozen in a domain configuration for which E > 0.

Specifically, we consider the ‘survival probability’ S(t), which is the probability that

a given realization of the dynamics is still decreasing in energy at time t following the

quench. Since energy-lowering spin-flip events occur less frequently at long times, it is

not immediately obvious whether the system has reached its lowest value of energy. To

measure S(t), we devised an algorithm to test whether any additional drops in energy

are possible at long times following the quench. Starting from time t = 0, we track the

numbers of positive-energy and zero-energy flippable spins in the system. The former will

systematically decrease as the system coarsens. When there are no remaining positive-

energy flippable spins, it is possible that the system has reached its asymptotic value of

energy. Let C0 denote the spin configuration and T0 the time at which no positive-energy
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flippable spins remain. We then proceed as follows:

i Starting from C0, an infinitesimal bias magnetic field is applied to the system. This forces

only up (down) flippable spins to flip. If a drop in energy occurs in the presence of the

bias field, then the system has not reached its asymptotic value of energy. The system is

returned to C0 and subsequently evolves by zero-temperature Glauber dynamics without

a bias field until the number of positive-energy spins again reaches zero, and a new

candidate final state C0 and time T0 are reached.

ii If the number of flippable spins reaches zero without a drop in energy, then the sign

of the infinitesimal bias field is reversed, which forces only down (up) flippable spins

to flip. If a drop in energy occurs, then the system is returned to C0 and subsequently

evolves without a bias field until a new candidate final state C0 and time T0 are reached.

iii If the bias field is applied in both directions without a drop in energy, then the system

has reached its asymptotic value of energy. T0 is the survival time of the system.

We calculate the survival time T0 for many realizations, from which we infer the survival

probability S(t) (Figure 3.9). Surprisingly, the time scale for the energy relaxation is many

orders of magnitude larger than the coarsening time, even for small systems. For example,

for lattices of size L = 10, 40 out of 107 realizations had not relaxed to their asymptotic

energy by t = 109. For L & 20, S(t) is reasonably smooth. Plotting S(t) versus ln t on a

double logarithmic scale, the data is approximately fit by

S(t) ∼ (ln t)−σ, σ ≈ 3. (3.4)

Related aspects of slow domain coarsening in the homogeneous kinetic Ising model

[48] and in the kinetic Ising model with competing ferromagnetic and antiferromagnetic

interactions [49] has been found previously. Yet the extremely slow energy relaxation seen

in the zero-temperature KIM is bizarre. The domain structure and topology form in a time

that scales only as L2. Also, at T = 0, only energy-preserving and energy-lowering spin
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Figure 3.9: (left image) Survival probability S(t) versus time t. Data is based on 107

realizations for L = 4, 6, 8, and 10, 10240 realizations for L = 14, 20, and 30, and 2048
realizations for L = 40 (lower left to upper right). (right image) S(t) vs. ln t for L = 20, 30,
and 40 (lower left to upper right) on a double logarithmic scale. The data is reasonably fit
by the inverse logarithmic dependence Eq. (3.4).

flips are permitted. Thus one would expect the asymptotic value of energy to be reached

quickly.

To understand the anomalously slow energy relaxation seen in S(t), consider again the

blinker state shown in Fig. 3.7. The number of blinker spins on the interface of the blinker

and the types of blinker spins (inner or outer corners, i.e. up/down spins) vary with different

configurations of the blinker interface. If the blinker is mostly deflated, then there are more

inner corners than outer corners on the blinker interface. Thus on the next update event, it

is most probable that a spin at an inner corner will flip. Similarly, a mostly-inflated blinker

will have an excess of outer corners. On the next update event, it is most likely that a spin

at an outer corner will flip. The mismatch in numbers of inner and outer corners (up/down

spins) on the interface for different blinker configurations tends to drive the blinker interface

toward the half-inflated state (middle panel of Fig. 3.7).

Now consider the ℓ × ℓ two-dimensional analog of a blinker state. This is the growth

model proposed in [50] except with the two edges of the interface fixed in position (Fig. 3.11).

Starting from the fully-deflated state (right panel), one may ask: What is the mean first-



42

passage time to reach the fully-inflated state (left panel). The blinker initially fills out

quickly to reach the half-inflated state (middle panel). To make it from the half-inflated

state to the fully-inflated state, the blinker must work against an effective bias due to the

mismatch in the numbers of inner and outer corners on the interface. Note that the typical

interface velocity is given by the difference in numbers of inner and outer corners on the

interface, so we estimate v2 ∼ N− − N+ = −1 in two dimensions. The effective diffusion

coefficient of the interface motion is proportional to the mean-square displacement of the

interface in a single time step, which is proportional to ℓ. Thus we infer D2 ∼ ℓ. The

interface must advance a distance of order ℓ2 to reach the fully-inflated state: ∆x2 ∼ ℓ2.

With these three estimates, the dominant Arrhenius factor [51] for the time to reach the

fully-inflated state is given by

ln τ2 ∼
v2∆x2
D2

∼ ℓ. (3.5)

This analysis may be repeated for a real ℓ × ℓ × ℓ blinker in three dimensions. The

difference in numbers of up/down spins on the interface is now of order ℓ, giving v3 ∼

N− −N+ ∼ ℓ. The mean-square displacement of the interface in one time unit is of order

ℓ2. Also, on the order of ℓ3 spins must flip for the 3D blinker to reach the fully-inflated

state. Thus we estimate the time to reach the fully-inflated state in three dimensions to be

given by

ln τ3 ∼
v3∆x3
D3

∼ ℓ2. (3.6)

Generally in d dimensions, the time for a d-dimensional blinker of linear size ℓ to reach

the fully-inflated state satisfies

ln τd ∼ ℓd−1.

We numerically tested our predictions for the first-passage times τ2 and τ3 (Fig. 3.10).

For the idealized 2d ℓ×ℓ blinkers, we simulated blinkers with 2 ≤ ℓ ≤ 14, and the exponential

fit (3.5) shows excellent agreement with data. We also simulated 3d blinkers with 2 ≤ ℓ ≤ 5.

The data for very small blinkers is qualitatively consistent with our prediction (3.6).

The salient point is that the time for a half-inflated blinker to reach its fully-inflated
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state grows rapidly with the linear blinker size ℓ. Intriguingly, it may be possible to compute

the asymptotic form of the amplitudes in Eqs. (3.5) and (3.6), since there are connections

between blinker states and the entropies of random tilings [52]. For example, for the two-

dimensional blinkers (Fig. 3.11), the asymptotically exact evaporation time may be given

by ln t = aL with a = 2 ln 2 ≈ 1.386, which is in excellent agreement with our (limited)

numerical data.
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Figure 3.10: First-passage time for a fully-deflated blinker to reach the fully-inflated state in two
(◦) and three (△) dimensions. The fit to the two-dimensional data is τ2 = 1.40 exp(1.33 ℓ). The
curve overlaying the three-dimensional data, τ3 = 3 exp(0.8 ℓ2), is a guide for the eye.

We have identified an extremely long time scale in the dynamics of a single blinker state

in three dimensions: the typical inflation time. But all configurations of a particular blinker

state have the same energy. To understand the ultra-slow energy relaxation seen in a quench

to T = 0, consider two blinker states as shown in Fig. 3.7 that are oppositely oriented so

that when each blinker is in its half-inflated state (middle panel), the blinkers do not touch.

However, when both blinkers are in their fully-inflated states, they just overlap corner-to-

corner. In the rare event that both blinkers are simultaneously inflated, there is an energy-

lowering spin-flip event. The two adjacent blinkers subsequently merge. Due to the finite

(though astronomically long) lifetime of such a two-blinker arrangement, we term this a

‘pseudo-blinker’ configuration. Since the average time for a single blinker to become inflated
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is extraordinarily long, energy-lowering pseudo-blinker coalescence events are responsible for

the remarkably slow relaxation seen in a quench of a real Ising ferromagnet. A schematic

illustration of a pseudo-blinker coalescence event is shown in Fig. 3.12.
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Figure 3.11: Two-dimensional analog of the blinker states in Fig. 3.7.
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Figure 3.12: Schematic two-dimensional illustration of a blinker coalescence event.

3.1.4 Effects of the Initial Condition

The data presented above is for the quench of a 3D Ising ferromagnet to zero temperature

starting from an antiferromagnetic initial condition. The other natural choice is to start

with a random initial spin configuration, corresponding to infinite initial temperature. We

emphasize that all of our central results outlined in this section also hold when starting from

an infinite temperature initial state. We do however observe minor quantitative differences

in distributions of observables depending on the choice of initial condition. Consider, for

example, the final magnetization and energy distributions at T = 0 starting from the anti-

ferromagnetic versus random initial spin states (Figure 3.13). Note that the magnetization

distribution is more strongly peaked about zero with the random initial condition, signaling

that the system is more likely to become trapped in topologically-complex metastable states
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when starting from infinite temperature. It is unclear why the magnetization distribution

is narrower when starting from random initial condition.
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Figure 3.13: The final-state magnetization (a) and energy (b) distributions for L = 32
using antiferromagnetic and random initial conditions. The two initial conditions seem to
produce different distributions of observables, even in the L → ∞ limit.

3.1.5 Non-Cubic Geometries

What if we quench the 3d KIM on a noncubic L×L× aL lattice? We still observe pinning

of clusters at T = 0, but the number of clusters in a realization typically grows as the lattice

becomes compressed in one or two directions. If a is small, then there are typically many

clusters that percolate along the short axis, leading to pictures that resemble Swiss cheese

(Fig. 3.14(left)). If a is large, then tiny beads form along the long axis (Fig. 3.14(right)).

Clearly, clusters are able to percolate most easily along the short axes.

3.2 Quench of a Three-Dimensional Kinetic Ising Model to

T > 0: The Approach to Equilibrium

These counterintuitive results cannot be obtained from any mean-field description; they

are consequences of the nearest-neighbor interactions between spins on the cubic lattice.
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Figure 3.14: Example long-time states of a 32× 32× 8 system (left), a 32× 32× 32 system
(center), and a 32× 8× 8 system (right).

Yet the zero-temperature Ising system is a highly idealized model of ferromagnetism and

just one of many simple models featuring non-conserved order parameter coarsening. One

naturally asks: Do any of the bizarre features of the zero-temperature quench of a 3d Ising

model also appear in other models of coarsening?

We next consider the three-dimensional KIM quenched to finite subcritical temperature.

We employ a rejection-free Glauber dynamics in which each of the Ni spins in the system

with energy Ei is selected to flip with relative probability Pi = Ni/(1 + e∆Ei/T ), where

∆Ei is the energy change that would result if a spin with energy Ei is flipped. After each

update, the time is incremented by ∆t = 1/(
∑

i Pi).

For the quench of an Ising model to T = 0, we used the antiferromagnetic initial con-

dition for simplicity, although both antiferromagnetic and random initial conditions give

essentially the same zero-temperature final state. Here we employ the random initial con-

dition (with magnetization fixed at zero) to study the quench of an Ising ferromagnet to

finite temperature. The random initial state corresponds to infinite initial temperature and

adds realism to the problem.

We now ask: Starting from the random initial state, how does the system evolve at

subcritical quench temperature? At zero temperature in any dimension d ≥ 3, a system

that is stuck in a plumber’s nightmare geometry remains stuck forever with E > 0. At any

positive quench temperature, the system must ultimately relax to equilibrium. Yet as we
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will see, the approach to equilibrium is both nontrivial and slow, with the energy relaxation

showing very different behavior at different time scales in the evolution.

As for the zero-temperature quench, the dynamics is not self-averaging, so we average our

measurements over many realizations to learn of the typical approach to equilibrium. The

simulations are quite messy and difficult to rigorously quantify. Furthermore, we restrict

our study to quench temperatures T ≤ TC/2, which is below the roughening temperature

TR ≈ 0.54401(1)TC [53] for the 3d Ising model. This ensures that the domain interfaces

have finite width as the system size L → ∞. We obtained a general picture of how the 3d

ferromagnet relaxes to equilibrium by defining roughly four stages in the evolution, which

we now describe.

3.2.1 Stage I: Coarsening

Immediately following the quench, the Ising-Glauber system begins coarsening into a mosaic

of oppositely-oriented spin domains. During a time interval t . L2, domains are small and

their linear scale grows in time as r ∼
√
t. By symmetry, the densities of up and down spins

during the initial coarsening regime remain roughly equal.

The energy of the system decays smoothly at early times. In the absence of an external

magnetic field, the total energy of a ferromagnet is proportional to the surface area between

domains of up and down spins. Consider that there are N distinct spin clusters, and each

cluster has surface area A ∼ r2 ∼ t. For any finite-size system regardless of boundary

conditions, the number of spin clusters N scales inversely with the volume V ∼ r3 ∼ t3/2

of a typical cluster. This gives the energy of the system as [35]

E(t)− Eeq ∼ NA ∼ t−1/2.

This predicted energy dependence on time agrees well with simulations at early times.
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3.2.2 Stage II: Plumber’s Nightmare

After a time t & L2, the typical domain size r has reached the system size L. In general and

for low enough quench temperatures (T . TC/4), the system is stuck in a metastable state

similar to those states found in the zero-temperature quench, and the typical coarsening

with smooth energy relaxation is interrupted. For any dynamical evolution rule that satisfies

detailed balance, the system is driven to and transitions rapidly among the many equilibrium

states, so finite-temperature plumber’s nightmare configurations are unstable. Nonetheless,

gyroid phases play an observable role in the finite-temperature relaxation because they

evaporate slowly, on a time scale much longer than the coarsening time. Fig. 3.15 shows a

gyroid phase that developed following a quench to T = TC/8.

Figure 3.15: A genus g = 10 sponge-like topology at time t = 1024 for a quench of an
L = 32 system to T = TC/8. We ran this realization until the energy first reached the
numerically-measured equilibrium value of energy for this system size and temperature.
This realization reached equilibrium at time t ≈ 105—roughly two orders of magnitude
longer than the coarsening time.

Of course the exact nature of these finite-temperature metastable states will depend

strongly on the quench temperature. For quenches to T = ǫ (ǫ ≪ TC), thermal fluctuations

play a negligible role, and the characteristics of the metastable states that develop shortly

after a quench (energy, genus, etc.) are essentially the same as for a zero-temperature

quench. For quenches to T = TR − ǫ, thermal agitations are sufficiently large that systems
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do not get trapped in plumber’s nightmare geometries.

Once a system reaches a finite-temperature gyroid phase, its energy begins decreasing

slowly and in discrete steps (Fig. 3.16). Intuitively, the various interpenetrating “arms”

that constitute the spin domains must evaporate one-at-a-time. Consider Fig. 3.17(a),

which shows an ℓ × ℓ × L bar of “up” spins that joins another L × ℓ × ℓ bar of “up”

spins, all in a background of “down” spins. To understand the energy relaxation shown

in Fig. 3.16, note that it is energetically favorable that a spin on the edge of the bar flips

before any lower-energy spin flips (Fig. 3.17(b)). The newly-created corner spins are now in

a zero-energy environment and freely diffuse (Fig. 3.17(c)). It is most probable that these

excitations will just recombine, and the system will quickly return to the configuration

shown in Fig. 3.17(a). If a second energy-raising flip occurs on an edge (Fig. 3.17(d)),

then another 1 × 1 × L column of spins is able to diffuse. Now consider the bar after ℓ

independent nucleation events that occur in succession (Fig. 3.17(e)). What was formally a

1× ℓ×L slab of spins on the front surface of the bar is now two disjoint slabs, each able to

recede separately until the system reaches the new configuration with a bar of dimensions

(ℓ − 1) × ℓ × L (Fig. 3.17(f)). This nucleation and subsequent rapid erosion of an arm

of a plumber’s nightmare state corresponds to one of the discrete energy drops shown in

Fig. 3.16.

To quantify this discrete energy relaxation, we compute three quantities: the total

number N(t) of discrete energy drops that have occurred by time t, the average size S(t)

of each energy drop up to time t, and the average time interval T (t) between energy drops

up to time t. Our results for a quench to T = TC/8 are plotted in Fig. 3.18.

These plots reveal that: (a) the discrete energy drops shown in Fig. 3.16 become less

frequent as the evolution progresses in time, and (b) the size (|∆E|) of each energy drop

decreases (on average) in time. Although our data plotted here are for specific values of

system size and temperature, we verified that these plots look essentially the same for a

range of subcritical temperature values. Perhaps most striking is that the average time

between discrete energy drops versus time is described excellently by a linear fit over a wide



50

0 1×10
4

2×10
4

3×10
4

4×10
4

5×10
4

t

0.015

0.02

0.025

0.03

0.035

E

Figure 3.16: Energy versus time for three independent realizations of a quench to T = TC/8
for a 323 system. Energy is scaled so that the antiferromagnetic state energy is equal to 1,
and the ground state energy is equal to 0.

range of times.

3.2.3 Stage III: Slab State

At long times in the evolution, a system may get trapped in a state with two coexisting

phases, each domain being in local thermodynamic equilibrium and having zero mean cur-

vature on its interface (Fig. 3.19(a)). We term such a configuration a “slab state”. These

slab states are the three-dimensional analogues of the stripes seen in the quench of a two-

dimensional ferromagnet. Yet 3d slab states occur more rarely than their 2d counterparts,

with only a fraction 0.077(2) of realizations quenched from infinite temperature to T = Tc/2

getting trapped in slab geometries (Fig. 3.19(b)). We were unable to accurately determine

the slab state probability for quench temperatures T < Tc/2 due to computational limita-

tions. While a quench of a 3d TDGL system to T = 0 also gives rise to slab states, the

probability of getting trapped in a slab, 0.054(2), differs significantly with that for the 3d

Ising-Glauber system. The salient point is that while slab states in 3d resemble stripe states

in 2d, there is no longer universality in the probability of reaching these outcomes.
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: A two-arm state evaporating in the 3d KIM at finite temperature.

3.2.4 Stage IV: Equilibrium

With any single-spin-flip dynamics that satisfies detailed balance, at quench temperatures

T > 0, equilibrium is reached. This subtle point distinguishes finite-temperature coarsening

from zero-temperature coarsening. Yet for all quench temperatures T . TC/2, the erosion

of each arm of a gyroid phase seems to be driven by independent activated spin flips that

must occur in succession (Fig. 3.17). Therefore, the average time to reach equilibrium

appears to grow exponentially in the system size—a feature that is not seen in curvature-
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Figure 3.18: N(t), S(t), and T (t) for a quench of a 323 system to T = TC/8. The data are
obtained by averaging over 104 realizations.

driven phase-ordering kinetics. This exponentially long time to equilibrium is insensitive to

boundary conditions. For the range of quench temperatures that we studied (T ≤ TC/2),

the extraordinarily long time scales prevented us from obtaining quality data on time to

reach equilibrium.

3.3 Time-Dependent Ginzburg-Landau Coarsening in Three

Dimensions

We also simulated the time-dependent Ginzburg-Landau equation (1.3) in three dimen-

sions. We employed a simple explicit scheme with centered differencing in space. The

absense of a noise term in (1.3) means we are effectively working at zero temperature. For
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Figure 3.19: (left) Example of two roughly 16×322 slabs on a 323 lattice following a quench
of a KIM to T = TC/8. (right) Probability of getting trapped in a slab state for the
Ising-Glauber (©) and TDGL (△) systems. The KIM data is based on 106 realizations for
L = 16, 22, and 32, 5 × 105 realizations for L = 46, and 105 realizations for L = 64. The
TDGL data is based on 1576000 realizations for L = 16, 424000 realizations for L = 22,
287000 realizations for L = 32, 67000 realizations for L = 46, and 7040 realizations for
L = 64.

our initial state, we draw the order parameter value at each lattice site from a uniform dis-

tribution between −1 and +1, and the order parameter values at neighboring lattice sites

are uncorrelated. Unlike simulations of the stochastic Ising model, the TDGL evolution is

predetermined for all time once the initial condition is fixed. To get reliable statistics on the

typical long-time state of a TDGL quench, we therefore average over many random initial

conditions.

At early times in the 3d TDGL evolution, we sometimes observe periodic saddle-type

structures with approximately zero curvature on their domain walls resembling the geome-

tries described in [43] (Fig. 3.20). However, it has been mathematically proven [54] that

such triply-periodic minimal surfaces are unstable for non-volume-preserving perturbations.

Therefore, these types of structures, whenever they form, disappear quickly in the TDGL

simulations. Remarkably, we again observe slab states at late times. These states appear

slightly less frequently in 3d TDGL evolution than they do in 3d kinetic Ising systems at
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(a) t = L2/32 (b) t = L2/128

Figure 3.20: Examples of coarsening in two independent realizations of the evolution of the
3d TDGL equation. In both cases, the system size is L = 32.

finite temperature (Figure 3.19(b)).

3.4 Discussion

The lattice structure has a crucial effect on the long-time state of any spin system following

a deep quench [55]. We anticipate that a KIM on another type of even-coordinated lattice

in 3d will show similarly bizarre behavior [34, 35]. An Ising model on an odd-coordinated

lattice will also freeze into a metastable state, but in the case of odd-coordinated lattices,

this freezing is a spurious lattice-induced effect. For example, note that a honeycomb-

shaped cluster of up spins in a sea of down spins on the hexagonal lattice is trivially stable

(Fig. 3.21). This is because each “+” spin has more “+” neighbors than “-” neighbors,

leading to purely local freezing of many small clusters. Another example of trivial freezing

is the KIM with zero-temperature Kawasaki spin-exchange dynamics [4], where local defects

again arise that quickly halt the overall relaxation process.

One tantalizing challenge is to realize spin systems with Glauber dynamics in an ex-

perimental setting. Recent experiments on one-dimensional spin chains have revealed rich
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Figure 3.21: A honeycomb-shaped cluster on a hexagonal lattice that is trivially frozen at
T = 0.

behavior [56]. It would likewise be intriguing to establish firm connections between the

pinnings seen in the 3d Ising model and structures in real condensed matter systems.



Chapter 4

Zero-Temperature Freezing in the

Two-Dimensional Potts Model

We have thus far considered nonconserved coarsening of a scalar order parameter, both on 2d

and 3d lattices. Two-dimensional nonconserved coarsening appears to be exactly described

by a mapping with critical continuum percolation theory, and three-dimensional coarsening

of Ising domains on a cubic lattice shows bizarre anomalies that are overlooked by the coarse-

grained TDGL formalism. The discreteness effects in the coarsening of Ising domains in 3d

are not easily packaged into a clean mathematical description, so our treatment was heavily

numerical.

If we now have more than two equivalent species all competing for the equilibrium

state, how does the coarsening change? The outcome again depends on the initial and final

temperatures, the spatial dimension d, and the dynamics. As in Chapters 2 and 3, we focus

here on coarsening at zero temperature. Just as in the case of two degenerate states, we can

study either microscopic stochastic dynamics or a more general TDGL-style description of

multi-state coarsening. The formulation of TDGL partial differential equations with three

or more competing states is new and is discussed in detail in the chapter. This continuous

approach is special because it is based mainly on symmetry considerations and not on

specific microscopic dynamics on a particular lattice.

We’d like to study a generalization of the Ising model with additional spin states. A

56
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simple model system with multiple competing states is the Potts model [57] with Hamilto-

nian

H = −
∑

<ij>

δ(σi, σj), (4.1)

where σi and σj are neighboring spins on a lattice, the sum < ij > is over all nearest-

neighbor pairs of spins, and δ is the Kronecker delta function [57]. One sees that the energy

of the system is lowered by maximizing the number of bonds between like spins. There are

many choices for the underlying lattice, but we use the square lattice here for simplicity.

In many ways, the kinetic Potts model connects more directly with physical systems than

does the kinetic Ising model. Magnetic grains in metallurgical aggregates can typically take

numerous spatial orientations and are successfully modeled by the kinetic Potts model with

many states [58]. Time-dependent behavior of soap froths, in which gas typically diffuses

through soap films to equalize pressure differences, is also modeled well by coarsening in

the many-state Potts model [59]. Connections have additionally been formed between Potts

model dynamics and the physics of some cellular tissues [60].

Surprisingly, the kinetic Potts model quenched to subcritical temperature was studied

already in the 1980’s, much earlier than the zero-temperature Ising model [61]. Even in two

dimensions, these studies revealed that the Potts model becomes trapped at low tempera-

tures in a disordered state, even with homogeneous interactions. However, some subtleties

were also found regarding the pinning of domain walls. For example, on the triangular

lattice, the system coarsens at all final quench temperatures. Also, with NNN interactions

between agents on the square lattice, the system coarsens at all final quench temperatures.

This suggests that the pinning that was observed on the square lattice with just NN inter-

actions is not typical in more generic models of multi-state coarsening. We will explore the

nature of pinning of domain walls in multi-state coarsening in-depth in this chapter.

Just as in Chapters 2 and 3, we endow the model with single-spin-flip Glauber dynamics

[21], and we again use the n-fold way in selecting spins to flip [25]. Given the state of the

system at step n, we identify all possible microscopic updates that may take the system to
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step n+ 1. Performing Glauber dynamics on the Potts model is more tedious than on the

Ising model, because a single spin may undergo many possible transitions. (For example,

in a Potts model with q = 5 states, a single spin with each of its four nearest neighbor spins

on the square lattice in different states can flip in four different ways. Since each transition

would be energy-preserving, the total flip rate for the spin is 4× 1/2 = 2.) We keep lists of

the different spin types according to their local environment, and we randomly pick a spin

with probability proportional to its flipping rate. After flipping the spin, the spin lists are

updated, and the next spin-flip event is performed.

4.1 Nonsymmetric Initial Condition

We have many initial conditions from which to choose. The case with equal densities of all

phases corresponds to supercritical temperature with zero external magnetic field. With a

magnetic field applied, some of the phases will initially occupy a larger fraction of the lattice.

We consider first a 3-state Potts model with a single phase in the majority. Simulations

show that the system always reaches the ground state of the majority phase as the system

size L → ∞.

Next, we prepare the system with two species occupying exactly equal numbers of lattice

sites, with the third species slightly in the minority. While convergence to thermodynamic

behavior is slow, it appears that this initial condition results in Ising-like behavior. To test

this systematically, we measure the probability of the Potts model coarsening into a (1,0)

(equivalently (0,1)) or a (1,1) stripe topology (see Chapter 2). We evolve initial states with

spin densities 1/3 + ǫ, 1/3 + ǫ, and 1/3 − 2ǫ past the coarsening regime, and we simulate

different system sizes L. At time t = L2, we stop the evolution, label all clusters in the

system [47], and simultaneously identify percolating clusters [62]. As shown in Fig. 4.1, the

probabilities Π3 appear to be approaching our predictions for the kinetic Ising model. As a

visual example, Figure 4.2 shows an L = 768 Potts model with red initially in the minority

(ǫ = 1/96) coarsening into a diagonal stripe state.

More generally, we may consider a q-state Potts model with initial densitiesm1,m2, . . . ,mq.
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Figure 4.1: Probability for a 3-state Potts model with two species initially in the majority
to coarsen into a horizontal/vertical (left) or diagonal (right) stripe topology.

Figure 4.2: An L = 768 Potts model coarsening into a blue-green stripe state with red
initially slightly in the minority (ǫ = 1/96).

We can always relabel the densities of the q species such that m1 ≤ m2 ≤ . . . ≤ mq. For

the 3-state Potts model with nonsymmetric initial condition, our data indicates that:

• m1 > m2 ≥ m3: The system reaches the ground state of species 1.

• m1 = m2 > m3: The system reaches the ground state of species 1 or species 2 with

combined probability given by Eq. (2.5). All remaining realizations end in stripe

states of species 1 and species 2. 1-(2.5).

• m1 = m2 = m3: The long-time behavior is unique.

Based on our findings for the 3-state Potts model, we conjecture that the long-time

state of a q-state Potts model with initial spin densities m1 = . . . = mQ > . . . ≥ mq is

identical to the long-time state of a Q-state Potts model with all Q phases initially equal.

This simple conjecture may be invalidated by local pinning effects as the number of Potts
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states q becomes large [63]. We tried testing this numerically, but our computing resources

were insufficient to collect reliable statistics. Nonetheless, it appears that the symmetric

point with all q phases initially equal is the only point that represents unique behavior

in the q-state Potts model, so we focus on the symmetric initial condition throughout the

remainder of the chapter.

4.2 The Long-Time State

Starting from a symmetric initial condition, the Potts model evolves to a highly non-trivial

long-time state. In our simulations, we always observe one of three basic outcomes:

• The system reaches one of the ground states.

• The system reaches a frozen state consisting of at least two spin clusters.

• The system reaches a non-static blinker state that is similar to the states observed in

the quench of a 3d Ising model (see Chapter 3).

We ask the basic question: What is the typical long-time state following the quench

to T = 0 in the thermodynamic limit. Intriguingly, we have not been able to answer this

question definitively for any q ≥ 3.

Early studies revealed that the Potts model tends to become pinned permanently at T =

0 [61]. Many studies have additionally focused on behavior during the coarsening regime

and on long-time thermally-activated process following a quench to positive subcritical

temperature [63, 64, 65]. These works implicitly lead one to believe that the T = 0 final

state in the thermodynamic limit always consists of a patchwork of spin domains frozen in

place. Indeed, we have simulated the Potts model with q = 3, 4, 5, and 6, and we typically

observe beautiful domain mosaics at late times (Fig. 4.3). It is easy to see how such complex

cluster patterns arise. In Fig. 4.4, three spin domains meet at right angles. On the square

lattice with only nearest-neighbor spin-spin interactions, none of the four spins at the center

of this T-junction can flip at zero temperature, since such a move would raise the energy.
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This is a crucial distinction between the 2d Ising model and the 2d Potts model, since in the

former system domain boundaries must always form closed loops. As the number of states

q increases, it therefore seems natural that pinning of clusters should occur more readily,

as shown in Fig. 4.3.

Figure 4.3: Typical outcomes for the q = 3 (top), q = 4 (middle), and q = 6 (bottom) Potts
models after being quenched to zero temperature. The number of clusters in the final state
typically increases as q increases.

To begin to understand coarsening in the Potts model, consider Figure 4.5, which shows

the energy (averaged over many realizations) versus time shortly after the quench. The

energy decays roughly as a power law and consistently with the understanding E ∼ L−1/2

from the theory of nonconserved coarsening [5, 35]. We see that by time t = L2, the decay

in energy has essentially stopped, but there are subtle relaxation mechanisms that will be
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Figure 4.4: A T-junction, where three spin domains meet at right angles, is stable at zero
temperature.

described in detail later.

10
-4

10
-2 2

t / L
2

10
2

10
3

10
4

10
5

<E> q=6, L=192
q=5, L=160
q=4, L=128
q=3, L=96

Figure 4.5: Energy versus time for q = 3, 4, 5, and 6. The energy was averaged over 4096
realizations for q = 3 and over 512 realizations for each q = 4, 5, and 6.

We now perform a more systematic analysis. We quench 3, 4, 5, and 6-state Potts

models from infinite to zero temperature. For concreteness, for each system size L, we

record data at time t = 2L2. The time t = 2L2 is sufficently beyond the initial coarsening

regime that the system consists of a cluster geometry whose global structure is essentially

frozen in place.

First consider the average energy per spin, E/L2, versus L (Fig. 4.6(a)). For q = 3,

fitting this data to a power law gives this normalized energy decaying as roughly L−0.8.

Fitting to a power law becomes more dubious as the number of spin states is increased, yet

one sees that the normalized energy decays more slowly with L as q increases. This makes

sense, since for larger q, clusters at the coarsening time are smaller and the total amount

of interface between domains increases.
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We also measured the average number of clusters, NC , at late times. We expect this

quantity to grow as a power law in L, and for q = 6, it appears that NC ∼ L2. This

means that for q = 6, the freezing of spin clusters is purely local. Since the typical length

scale of clusters is constant, the normalized energy per spin approaches a nonzero constant

in the thermodynamic limit. Interestingly, in Ref. [63], the normalized energy per spin is

extrapolated to the thermodynamic limit for different q, and the authors conclude that the

critical number of states for which purely local pinning occurs, i.e. NC ∼ L2, is q = 5. We

did not exhaust this point in our studies because we discovered new late-time coarsening

mechanisms that make it difficult to reliably predict thermodynamic behavior, even for

q = 3.

Figure 4.6(c) is perhaps most interesting. In this plot, we show the probability of the

system reaching one of the possible ground states. Shockingly, this probability approaches

zero and then apparently begins rising sharply as L is increased for all q ≥ 3. What could

be causing this conspicuous non-monotonic behavior? As we shall see, the Potts model

features a slew of hidden complexities that become apparent after careful examination.
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Figure 4.6: (a) The average energy per spin and (b) the average number of clusters for a
q-state Potts model after a quench, with q = 3, 4, 5, and 6. (c) The probability for a Potts
model to reach the ground state by time t = 2L2 after a quench to zero temperature. Data
are based on 214 realizations for the largest two values of L for q = 3 and for the largest
value of L for each q = 4, 5, and 6. All other data points are based on 217 realizations.
Error bars are smaller than the size of the symbols.
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4.2.1 Blinker States

Similarly to the 3d Ising model, typical long-time states in the Potts model feature either

permanent or extremely long-lived blinker states. Blinker states feature many spins at any

given time that are capable of changing state with no energy cost to the system. Blinkers are

much easier to conceptualize in the Potts model that in the 3d Ising model. In Fig. 4.7(a),

we see four blinker interfaces that lie diagonally with respect to the x- and y-axes. Each of

these blinker states is pinned at its two ends by T-junctions, and the spins on the blinker

interfaces can flip repeatedly at zero temperature.

(a) (b) (c)

Figure 4.7: Example of a blinker state in the 2d Potts model.

(a) (b) (c)

Figure 4.8: Blinkers tend to remain in their intermediate states (a), rather than in an
inflated or a deflated state ((b) or (c)).

An important feature of blinker interfaces is that they tend to remain in their inter-

mediate states. Consider Fig. 4.8(b). There are four red blinker spins on the interface

and only three green blinker spins. Since each blinker spin—red or green—flips with equal
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probability, the red interface will tend to recede. Now consider Fig. 4.8(c). There are four

green blinker spins on the interface and only three red blinker spins, so the green interface

will tend to recede. In Section 3.1.3, we determined the typical time for a 2d blinker region

of linear size ℓ to reach its fully inflated or fully deflated state as exp(ℓ). Therefore, the

blinker interface tends to spend most of its time in an intermediate state, Fig. 4.8(a).

4.2.2 Pseudo-Blinker States

Also similarly to the 3d Ising model, the Potts model features pseudo-blinker states at late

times that are responsible for extraordinarily slow relaxation to a fixed-energy state. A

single blinker interface as shown in Fig. 4.7 or 4.8 cannot affect the energy of a system, but

two oppositely-oriented blinker states (Fig. 4.9) can lead to isolated energy-lowering events

at extraordinarily late times.

(a) t=251.0 (b) t=16160676.9 (c) t=16160677.0 (d) t=16160677.7

Figure 4.9: Example of a pseudo-blinker state and a late-time coalescense event in the 2d
Potts model. The energy drops from E = 188 to E = 185.

We may ask: What is the probability S(t) that a given realization of the quench has not

reached a fixed-energy state by time t. We use an algorithm similar to that for measuring

the corresponding survival probability in the 3d Ising model:

i We separately track the number of flippable spins that would lower the energy on being

flipped, N−, and the number of flippable spins that would not change the energy on

being flipped, N0. When the former quantity goes to zero while the latter remains

nonzero, the system could be in a fixed-energy state. We save the lattice C0 and the

time T0.
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ii Starting at time T0, we apply an infinitesimal bias field in the -1 direction:

H = ǫ
∑

<i>

δ(σi, 1)−
∑

<ij>

δ(σi, σj) (4.2)

This forces all blinker spins in state 1 to flip to either state 2 or 3. If there are energy-

lowering moves while the bias field is applied, then the system is not in its lowest-energy

configuration. The bias field is removed, the system is returned to configuration C0 and

time T0, and evolution continues until the next energy-lowering move occurs, at which

time this test is repeated.

iii If there are no energy-lowering moves with a bias field applied in the -1 direction, then

bias fields are also applied in the -2 and then the -3 directions. If no energy-lowering

moves occur after application of all three bias fields, then the system’s lowest-energy

configuration is C0, and its survival time is T0

The survival probability S(t) for both the 3- and 6-state Potts models is shown in

Fig. 4.10. Similarly to the 3d Ising case, it was difficult to obtain clean data collapse.

Dividing time by L2.3 gives reasonable collapse in the early-time coarsening regime for q = 3,

but this procedure becomes more dubious for q = 6. The salient point is that pseudo-blinker

states and their associated late-time relaxation play an increasingly important role as both

the system size and the number of spin states increase. Even for q = 3 and L = 48, there

are realizations that have not yet reached a fixed-energy configuration at times a factor 105

longer than the coarsening time!

4.2.3 Cluster “Avalanches” at Late Times

There is a crucial difference between pseudo-blinker states in the 3d Ising model and the

Potts model. In the Ising case, pseudo-blinkers are benign, each leading to a tiny drop

in energy of the system at some late time. However, in the Potts model, pseudo-blinker

coalescence events (Fig. 4.9) can effect drastic reorderings of the domain structure and

macroscopic drops in energy, even at extraordinarily late times. To see how this happens,
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Figure 4.10: Survival probability for the 3-state (left) and 6-state (right) Potts models. The
data for each curve is averaged over 104 realizations.

consider Fig. 4.11, which shows a 6-state Potts model with L = 192 that reaches a pseudo-

blinker state with a complex cluster geometry by roughly time t = L2. At t = 630000,

the system is still trapped in the pseudo-blinker state. By t = 633000, notice that the two

yellow pseudo-blinker interfaces have merged. Remarkably, an “avalanche” ensues, whereby

a newly-merged yellow cluster fills out its convex hull, eventually merging with other yellow

clusters, which then fill out their convex hulls, etc. By t = 640000, this realization has

reached its final fixed-energy state, and the global domain structure has changed drastically.

During the avalanche, the system undergoes a nearly 50% drop in energy—from 5051 to

2849!

Notice in Figure 4.11 that the convex envelopes of the two large yellow clusters in (c)

and (d) do not overlap. How is it possible for these two clusters to eventually merge?

Consider Figure 4.12, which shows this merging process in detail. The key feature is that a

cluster can expand beyond its original convex envelope. In Figure 4.12(h), the large yellow

cluster at left expands its convex hull one unit to the right. How did this happen? In

Figure 4.12(g), there is a red spin bounded by another red spin below, a yellow spin at left,

and blue spins above and to the right. This red spin flips to yellow (Fig. 4.12(h)), which

is an energy-preserving move. In Figures 4.12((l) and (n)), the yellow cluster expands its
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(a) t=36864 (b) t=630000 (c) t=633000

(d) t=633500 (e) t=634500 (f) t=640000

Figure 4.11: Example of a late-time cluster avalanche in the 6-state Potts model on an
L = 192 lattice.

convex hull again, and in Figure 4.12(n), the irreversible merging of the two large yellow

clusters is complete. Figure 4.13 offers another view at how a cluster can expand beyond

its original convex envelope. Notice that “2” flipping to “1” (first and second panels) is an

energy-preserving move, and is thus permissible.

Equally surprising is that the long-time fixed-energy state of a Potts model is generally

unpredictable, even at late times. If we take the second panel in Fig. 4.11 (shortly after the

two pseudo-blinker interfaces have touched) and use this as our initial configuration, we find

that the system takes markedly different paths as it descends in energy (Fig. 4.14). We ran

104 realizations of the avalanche, and the energies of the final states range from a minimum

E = 490 to a maximum E = 4383, with average Ē = 2827 and standard deviation σE =

1159. This makes it nearly impossible to infer the lowest-energy configuration following a

given quench from the early-time data. The trick of applying bias fields that was used for

studying the 3d Ising model would influence the avalanches artificially, so this technique is



69

(a) t=634000.0 (b) t=634267.0 (c) t=634267.5

(d) t=634350.0 (e) t=634388.0 (f) t=634389.0

(g) t=634396.5 (h) t=634396.8 (i) t=634454.0

(j) t=634455.0 (k) t=634459.4 (l) t=634459.7

(m) t=634471.5 (n) t=634471.7 (o) t=634490.0

Figure 4.12: An example of a cluster expanding beyond its original convex envelope during
an avalanche.
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Figure 4.13: Schematic showing the upward expansion of the convex hull of the “1” domain.

not well suited for studying the Potts model.

Figure 4.14: Examples of four different outcomes of the avalanche shown in Fig. 4.11.

4.3 Reaching the Ground State

We’d like to generically understand the final outcome of the 2d Potts model quenched to

T = 0. The pseudo-blinker states and the unpredictable avalanches that they generate

manifest in a time that grows exponentially in the system size. While these phenomena are

interesting, the nonmonotonicity in the probability to reach the ground state shortly after

the initial coarsening (Fig. 4.6) is peculiar.

Shown in Fig. 4.15 are two independent realizations of the 6-state L = 192 Potts model

coarsening into a ground state shortly after the quench. In both realizations, it appears

that the system is quickly becoming pinned into a complex domain mosaic ((a) and (e)).

Focus now on the top four images. In (b), notice that two green clusters, oriented northeast-

southwest, have grown in size and have just barely merged into a single cluster. This larger

green cluster grows rapidly, quickly engulfing all other clusters and driving the system

to the green ground state. A similar phenomenon occurs in the realization shown in the

bottom row. In (f), two purple clusters oriented northwest-southeast barely merge, and this
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merging again triggers a rapid expansion that ends in the purple ground state. Among the

realizations that reach the ground state, the characteristic time for reaching the ground state

is of the order of the coarsening time, and the distribution of times to reach the ground state

is approximately exponential. We conjecture that the Potts model has a greater propensity

for reaching a ground state as both the number of states q and the system size L increase,

and this claim is supported by Fig. 4.6.

(a) t=30 (b) t=100 (c) t=1000 (d) t=7694

(e) t=100 (f) t=330 (g) t=1000 (h) t=6784

Figure 4.15: Examples of two realizations (top and bottom) of the 6-stats L = 192 Potts
model coarsening rapidly into a ground state.

The avalanching seen in the Potts model bears strong resemblance to the phenomenon

of bootstrap percolation [66, 8]. In this 2d binary cellular automaton, a square lattice is

initially prepared with a fraction p of its sites randomly chosen to be alive. The update rule

is that a site is born if two or more of its neighbors are active, and all active sites remain

alive forever. What fraction of sites need to be alive initially for all L2 cells in the system to

become activated? It has been proven [67] that, as L → ∞ and p → 0, an avalanche always

ensues that results in all L2 sites being activated, although it is difficult to appreciate this

asymptotic behavior from computer simulations on finite-size grids. The avalanches in the

Potts model are subtly different from bootstrap percolation. In a Potts model avalanche,
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recall that clusters can expand their convex envelopes, a feature absent from bootstrap

percolation. Also in the Potts model, interfaces between two clusters can typically diffuse

in both directions. However, the presence of additional spin states creates opportunities

for irreversible spin flips during an avalanche so that growing clusters tend to fill out their

convex hulls. The qualitative connections with bootstrap percolation nonetheless raise the

question: Does the kinetic Potts model always reach one of its q ground states in the

thermodynamic limit?

4.4 A Time-Dependent Ginzburg-Landau Description of Multi-

State Coarsening

Many possibilities arise in choosing microscopic rules for the Potts model. For example,

we may simulate the 3-state Potts model on a triangular lattice rather than the square

lattice. The rationale is that the coordination number of 6 for the triangular lattice is a

more natural setting for 3-state coarsening. Do complex cluster geometries still arise for

the 3-state Potts model on the triangular lattice? We did not simulate this system, but

Grest and coworkers [61] examined this question several decades ago and did not find any

pinning on the triangular lattice. For the Potts model quenched to T = 0 on the triangular

lattice, they found standard coarsening with the Allen-Cahn growth exponent 1/2. Clearly,

one must be careful in extracting generic conclusions about multi-state coarsening from

simulations on any particular lattice.

In the spirit of generality, can one formulate a simple TDGL-style description of multi-

state coarsening? We found several studies [68, 69, 70] that address this question, although

they do not present clear results on the long-time state.

We invented a simple description of 3-state coarsening that is based on a two-component

vector order parameter ~φ(x, t) = {φ1(x, t), φ2(x, t)}. We propose the free-energy functional

F3[~φ] =

∫

1

2

[

(∇φ1)
2 + (∇φ2)

2 + (~φ− ~A)2(~φ− ~B)2(~φ− ~C)2
]

ddx , (4.3)
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Notice that our potential now has three wells symmetrically distributed at the three vertices

of a triangle, representing equal strength of competition between the three phases. Taking

the functional derivative of (4.3), we get

∂φ1

∂t
= ∇2φ1 −

1

2

δ

δφ1

[

(~φ− ~A)2(~φ− ~B)2(~φ− ~C)2
]

(4.4)

∂φ2

∂t
= ∇2φ2 −

1

2

δ

δφ2

[

(~φ− ~A)2(~φ− ~B)2(~φ− ~C)2
]

(4.5)

When evolved from a disordered initial state, these two coupled equations will either take

the TDGL system to one of the three ground states with equal probability, or will result

in a frozen domain structure similar to the configurations seen in the square-lattice Potts

model. There are several natural initial conditions to consider: an order parameter with (i)

unit radius and random angular distribution, (ii) unit radius and always in one of the three

symmetric wells (discrete angular distribution), (iii) unit radius and always outside of the

wells, (iv) radius close to zero with random angular distribution, etc.

While most realizations of 3-state TDGL reached the ground state, we also observed

non-trivial geometries (Fig. 4.16). In roughly 11% of realizations, three hexagons form. In

roughly 8% of realizations we obtain configurations with two squares and two octagons. In

a tiny fraction (< 1%) of realizations, six hexagons materialize and are pinned in place. We

also observe Ising-like horizontal and vertical stripe states with roughly 10% probability.

The remaining approximately 70% of realizations reach one of the three ground states

(Fig. 4.17). For a given system size L, the long-time outcome appears to be most sensitive

to the length of the initial order parameter vector. (Notice that for an order parameter

with smaller radius, the TDGL system tends to more easily reach a ground state.)

The average number of clusters in the long-time state in TDGL coarsening (for an

initial order parameter with unit radius and random angular distribution) grows only from

1.22(1) for L = 16 to 1.57(3) for L = 128. (The growth in the number of clusters with L

is similar or slower for different initial conditions.) Clearly, the Potts model on the square

lattice becomes pinned much more readily than the isotropic TDGL system, as we may
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Figure 4.16: Examples of long-time states in 3-state TDGL (top) and in the 3-state Potts
model (bottom).
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Figure 4.17: Probability for a 3-state TDGL evolution to end in one of the ground states
(a), an Ising-like vertical or horizontal stripe state (b), a state with three hexagons (c), or
a state with four clusters (d), as a function of 1/L and for different initial conditions. The
triangles represent simulations with an initial order parameter radius equal to 1/10.

have suspected. Consider Fig. 4.18, which shows a multi-colored stripe state. In the Potts

model, the state (a) is stable at zero temperature, but unstable in 3-state TDGL. To see

why, notice that in the Potts model on the square lattice, domain boundaries always meet at

right angles. In 3-state TDGL, three domain boundaries must meet at 120◦ angles. In (b),

as the angles in the T-junctions begin to equalize, a curvature is generated on the domain

interfaces, which tends to further shrink the multi-colored stripe (c). The final state in 3-

state TDGL is just the green ground state (d). This subtle difference may explain why the
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Potts model on the square lattice becomes pinned much more readily than 3-state TDGL.

Figure 4.18: A multi-colored stripe state (a) is stable in the Potts model but is unstable in
multi-state TDGL (b-d).

4.5 Discussion

Intriguingly, a significant fraction of realizations of the quench of the Potts model show

features that are reminiscent of the 3d Ising model. We typically observe freezing into a

geometrically complex long-time state. Blinker interfaces that lie diagonally with respect

to the x- and y-axes abound, leading to many non-static final states at T = 0. We also

identify pseudo-blinker states that lead to drops in energy at extraordinarily long times in

the dynamics, further enhancing the parallel with the 3d Ising model.

Yet the Potts model is unique in many ways. Domain interfaces in two dimensions

may terminate at T-junctions, and we attribute the intricate late-time cluster geometries

to this efficient pinning of domain interfaces. Surprisingly, pseudo-blinker states introduce

unforeseen complexities into the late-time relaxation. Pseudo-blinker merging events can

lead to avalanches that have macroscopic effects on observables such as energy and number

of clusters. Crucially, a pseudo-blinker merging event can trigger an avalanche that results

in a ground state being reached. One of our main results is that the Potts model for all

q ≥ 3 reaches a ground state with nonzero probability in the thermodynamic limit.

Our other central result is that the multi-state TDGL equations (4.4) and (4.5) also

lead to nontrivial cluster patterns at late times. It would be interesting to do more careful

numerical work on multi-state TDGL in an attempt to infer thermodynamic behavior. To
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generically describe coarsening with q competing states, we can introduce a vector order

parameter in (q−1)-dimensional space, and we can orient the potential wells symmetrically

at the q corners of a simplex. This results in q−1 coupled TDGL equations for the evolution

of the order parameter. We have not yet simulated this TDGL system for q > 3. It would

be interesting to see if this simple model reproduces the complex cluster patterns seen in

the quench of a high-state Potts model on the square lattice.



Chapter 5

Two-Dimensional Interface Growth with

Nearest-Neighbor and Longer-Range Ising

Interactions

In Chapters 2, 3, and 4, I focused on the ultimate fate of a kinetic Ising or Potts ferromagnet

quenched from a random, high-temperature initial state to zero temperature. Perhaps our

most important result is that an intriguing and so far unexplained connection with critical

continuum percolation seems to exactly predict the probabilities of freezing into various

stripe topologies in two dimensions. Our conjecture of universality of two-dimensional

coarsening— that many stochastic single-spin-flip systems and curvature-driven coarsening

models have the same final-state statistics—is profound. While there are always open

questions, our recent work tremendously enhances understanding of two-dimensional non-

conserved coarsening with scalar order parameter.

In the second half of this dissertation, I examine a complementary problem. If we begin

in a state with smooth, macroscopic domain boundaries in 2d, how do the domain interfaces

evolve in time? One nice feature of this problem is that equations are simple and deter-

ministic. Recall that with random initial condition and discrete spin variables, we carefully

tested the trapping probabilities for various Hamiltonians to demonstrate universality. If

we test the same models against one another with smooth initial condition, do domain

interfaces all evolve the same? The answer is no, as we shall see.

78
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5.1 Standard Ising Interactions

Consider a two-dimensional Ising model on a square lattice with nearest-neighbor ferromag-

netic interactions.

H = −
∑

<ij>

σiσj (5.1)

Rather than starting with an infinite temperature state, we begin at zero temperature with

a wedge, or corner, geometry (Fig. 5.1(left)). Note that at zero temperature, all spins in

the bulk and all spins on the flat domain boundary are not flippable, because flipping such

a spin would raise then energy of the system. The only flippable spins at zero temperature

are corner spins. Initially, there is only one eligible corner spin to flip. After the first spin

flip, there are two minus spins that are eligible to flip, while the spin that flipped to plus

on the previous move can flip back to minus.

Figure 5.1: The initial interface is the boundary of a quadrant (left). At a later time t, the
interface encloses an area St (right).

Figure 5.1(right) shows the interface between the plus and minus phases after several

spin flips. Let N+ and N− denote the numbers of inner and outer corners on the interface,

respectively. In Figure 5.1(right), for example, we have 6 inner corners and 5 outer corners.

As the interface grows in time, the quantities N+ and N− naturally increase. However, the

difference

N+ −N− = 1, (5.2)

is a topological invariant in two dimensions, holding true at all times in the interface growth
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process. If inner and outer corner spins flip with equal rates, corresponding to zero external

bias magnetic field, then, on average, the interface will grow in time t, and the average total

number of flipped spins St = t. After many spin flips, the interface growth becomes more

deterministic. Indeed, since the interface grows diffusively, if we plot the variable ξ = x/
√
4t

versus η = y/
√
4t, we find that the interface approaches a well-defined limiting shape as

t → ∞.

To understand this limiting shape analytically, we map the unbiased corner growth

process in two-dimensions onto an effective one-dimensional particle-hopping process [71,

72, 73] (Fig. 5.2). Note that our interface has simply been rotated 45◦ counterclockwise

for easy visualization. In this picture, each northwest-southeast segment of the interface

maps onto a particle, while each southwest-northeast segment of the interface maps onto a

vacancy. The unbiased corner growth process may now be specified completely in terms of

the one-dimensional particle dynamics: A spin flipping from minus to plus corresponds to a

particle hopping one unit to the right, while a spin flipping from plus to minus corresponds

to a particle hopping one unit to the left. This one-dimensional particle mapping is just

the simple exclusion process (SEP) introduced by Spitzer [74] and is a paradigmatic simple

model in statistical mechanics [75].

Figure 5.2: Mapping of the corner growth model onto the simple exclusion process.

While both models describe the same process, the one-dimensional simple exclusion

process is more amenable to mathematical analysis. We need a suitable hydrodynamic

description of the SEP. Let us define the average density ρ(z, t) of particles in a small region
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on the line. The region of interest must be large relative to the lattice spacing but small

compared with the overall extent of the nontrivial density profile. In our hydrodynamic

description of the SEP, we use the diffusion equation

∂ρ

∂t
=

∂

∂z

(

D(ρ)
∂ρ

∂z

)

(5.3)

with, in general, a density-dependent diffusion coefficient D(ρ), and the initial condition

ρ(z, t = 0) =











1, if z < 0

0, if z > 0
(5.4)

corresponding to the wedge geometry in the original 2d corner problem. For the symmetric

SEP, the diffusion coefficient is independent of density: D(ρ) = 1. The Green’s function for

our diffusion equation for the density profile is a Gaussian, and convolving with the step

initial condition gives a complementary error function

ρ(z, t) =
1

2
erfc

(

z√
4t

)

(5.5)

for the average particle density profile.

To determine the limiting shape of the Ising corner, we use the implicit integral equation

y =

∫ ∞

x−y
ρ(z, t)dz (5.6)

to obtain

η =
1√
π

∫ ∞

ξ−η
du

∫ ∞

u
dve−v2 , (5.7)

where we have used the properly scaled variables ξ = x/
√
4t and η = y/

√
4t.

5.2 Long-Range Ising Interactions

We would now like to extend our treatment to an Ising corner geometry with next-nearest-

neighbor spin-spin interactions. Is the limiting shape (5.7) universal? Generally, we consider
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a class of Ising Hamiltonians

Hk = −
k

∑

n=1

∑

|i−j|=n

Jnσiσj (5.8)

with the Manhattan metric |i−j| = |i1−j1|+|i2−j2|. k is the interaction range. With k = 1,

Eq. (5.8) reduces to Eq. (5.1), while with k = 2, Eq. (5.8) describes an Ising model with NN

and (diagonal and weaker) NNN spin-spin interactions. Spins separated by a Manhattan

distance greater than k simply do not interact. All couplings Jn are ferromagnetic and

rapidly decreasing with n, so at zero temperature, only the interaction range k matters.

Formally, our treatment for next-nearest-neighbor (NNN) interactions is similar to our

analysis for nearest-neighbor (NN) interactions. We employ the particle mapping in the

45◦-rotated frame, and our task is to again solve the hydrodynamic equation of motion

(5.3), but now with a nontrivial density-dependent diffusion coefficient. To fix ideas, we

would like to develop an intuitive feel for how NNN Ising interactions influence the particle

dynamics. For both NN and NNN interactions, we start with the half-filled line

and the first move is the hopping of the rightmost particle one unit to the right

On the second move, the particle hopping possibilities are different depending on the range

of the Ising interactions. With only NN interactions (k = 1), the allowed moves are

but with NN and NNN interactions (k = 2), the allowed moves are
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Note that with NNN Ising interactions, the rightmost particle cannot hop backward to its

starting position, since doing so would raise the energy. The general rule for NNN Ising

interactions is that a particle hop is allowed only if the move would not increase the number

of nearest-neighbor pairs of particles.

By a lengthy formal derivation [76], the density-dependent diffusion coefficient in the

particle mapping of the NNN corner problem is

D(ρ) =











(1− ρ)−2, if 0 < ρ < 1
2

ρ−2, if 1
2 < ρ < 1.

(5.9)

Notice that the diffusivity of the lattice gas is maximal (D = 4) where the density ρ = 1/2.

To get an intuitive feel for this result, first note that where ρ ≈ 0 (ρ ≈ 1), a single particle

(vacancy) can diffuse freely, giving D = 1. For the case ρ = 1/2, consider a particle

configuration with a single defect:

The single eligible move in this configuration is

Thus a single particle hopping event by one lattice site in the case ρ = 1/2 generates a

disturbance that propagates by two lattice sites. Since D ∼ (∆x)2, we infer D = 4 when

ρ = 1/2, which is consistent with (5.9).

Substituting (5.9) into (5.3), and using the scaling form

ρ(z, t) = f(ζ), ζ =
z√
4t
, (5.10)
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we arrive at the ordinary differential equation

d

dζ

[

(1− f)−2 df

dζ

]

+ 2ζ
df

dζ
= 0 (5.11)

for the scaled interface profile. By symmetry, we need to only consider the half-line ζ ≥ 0

with boundary conditions

f(ζ) =











1
2 if ζ = 0

0 as ζ → ∞.
(5.12)

We solved this boundary value problem numerically and obtained the corner interface shape

shown in Figure 5.3.

0 1 2 3
ξ

0

1

2

3

η k = 1
k = 2

Figure 5.3: Plot of the two-dimensional corner interface with nearest-neighbor (k = 1) and
nearest- and next-nearest-neighbor (k = 2) Ising interactions. (Note that the curves have
been scaled to each have unit area.)

Clearly, universality does not hold for two-dimensional interface motion with varying

interaction range between Ising spins. As a simple quantitative comparison, consider the

growth of the 2d Ising interface along the diagonal. That is, we are considering the inter-
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section of the interface with the ray x = y. A simple integration of Eq. (5.7) gives

xdiag√
t

=
ydiag√

t
=

1√
π
≈ 0.5642 (5.13)

at the middle point for NN interactions. For NNN interactions, we can solve numerically

for the middle point:

xdiag√
t

=
ydiag√

t
≈ 0.8655. (5.14)

The locations of the middle points on the interface in the two models differ substantially. As

a second demonstration of lack of universality, we may consider the total number of spins

that have flipped from initially down to up by time t. This is just the total area A under the

nontrivial part of the interface. In the model with NN interactions, the relation is simple:

A = t. This equality is exact in the infinite-time limit and follows directly from Eq. (5.2);

since inner corners always exceed outer corners by exactly one, the interface grows at rate

1. With NNN interactions, the relation is equally simple: A = 2t. This formula is easy

to explain. At late times, the interface near the diagonal point, for an increasingly large

fraction of time, consists of an alternating sequence of particles and holes. On the section

of the interface below the diagonal, the number of flippable inner corner spins exceeds

the number of flippable outer corner spins by exactly one, and similarly for the section of

the interface above the diagonal. So for the entire interface at late times, when the lattice

spacing is small compared with the total size of the growing interface, the number of eligible

inner corner spins exceeds the number of eligible outer corner spins by 2, from which A = 2t

intuitively follows.

5.3 Biased Motion

Let’s now consider the growing corner interface in the presence of an external bias magnetic

field. The external magnetic field is infinitesimal and favors the majority phase, so that

spins at inner corners can flip, but spins at outer corners cannot flip. A theoretical analysis

of biased corner growth is simpler than that of the unbiased growth of the previous section.
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Consider first the growth of an Ising corner with a bias magnetic field and NN spin-

spin interactions. This biased growth process maps perfectly onto the asymmetric simple

exclusion process (ASEP) [4]. In ASEP, particles may only hop to the right; moves to the

left are forbidden. Just as in the symmetric case, exclusion demands that no two particles

may occupy the same lattice site at the same time.

Mathematically, in the hydrodynamic mapping, our task is to solve the continuity equa-

tion

∂ρ

∂t
+

∂J

∂z
= 0 (5.15)

where J(z) is the particle current. For ASEP, it has been proven mathematically that

J = ρ(1− ρ) (5.16)

Miraculously, the dependence of the particle current J on particle density ρ is essentially

mean-field. A particle hopping event occurs if site i is occupied and site i+1 is vacant, and

since ASEP has stationary product measure, the pair correlation function factorizes to give

(5.16). After substitution, the resulting hydrodynamic equation

∂ρ

∂t
+

∂[ρ(1− ρ)]

∂z
= 0 (5.17)

is just the inviscid Burgers equation and can be solved using standard techniques. In terms

of the variable z = x− y, the particle density is

ρ =
1

2

(

1− z

t

)

. (5.18)

Using the geometrical mapping between the density ρ in the ASEP mapping and the Carte-

sian coordinates x and y,

ρ =
∂y
∂x

∂y
∂x − 1

, (5.19)
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we arrive at the scaled limiting shape

√

x

t
+

√

y

t
= 1 (5.20)

for the two-dimensional corner growth process with biased dynamics and NN interactions

[77].

What if we consider instead biased corner growth with NN and NNN spin-spin interac-

tions? How does the limiting interface shape change?

With NNN spin-spin interactions, it is again possible to map the interface profile onto

a particle exclusion process with longer-range interactions [78]. To find the limiting shape

for NNN spin-spin interactions, it is instructive to consider more carefully our analytical

results outlined above for NN interactions. By differentiating (5.20), the corner growth

process with only NN interactions may be alternatively understood in terms of the interface

growth velocity

yt =
yx

yx − 1
, (5.21)

where we use the standard PDE notation yt and yx to denote ∂y/∂t and ∂y/∂x, respectively.

A striking feature is that the corner interface growth velocity at any point is independent of

the curvature yxx of the interface. Since all higher-order spatial derivatives beyond yx are

negligible, for simplicity, let’s focus on a small segment of the interface that is essentially

flat. Our region of interest is small compared with the overall scale of the growing curved

interface but large compared with the lattice spacing. In the ASEP mapping, we compute

the particle current at this point on the interface via the pair correlation function

J =< pi(1− pi+1) >, (5.22)

where pi is the probability, at any given instant, that site i in the ASEP particle mapping

is occupied. As mentioned above, this quantity factorizes in ASEP, so our equation for J

simplifies to

J =< pi > (1− < pi+1 >) =< p > (1− < p >). (5.23)
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Now let’s connect (5.23) with the interface geometry. On our small segment of the interface,

each particle corresponds to a tiny geometrical line segment δy, and each vacancy corre-

sponds to a tiny geometrical line segment δx. The total number of particles in the ASEP

mapping on this section of interface is just ∆y =
∑

δy, and the total number of vacancies

is just ∆x =
∑

δx. Next, note that the rate that each tiny horizontal line segment δx

increases its position vertically in time is equal to the particle current J divided by the den-

sity of vacancies (1− < p >), and this quantity is just the growth velocity yt. Combining

these pieces, we obtain our already-known result

yt =
J

1− < p >
=< p >=

∣

∣

∣

∣

∆y

∆y +∆x

∣

∣

∣

∣

=
yx

yx − 1
(5.24)

with minimal effort. (Note that the minus sign arises because the slope yx is negative.)

This simple geometrical route to obtaining the growth equation (5.21) is powerful for

helping us understand 2d corner growth with NNN spin-spin interactions. Let’s consider

the portion of the interface below the diagonal. Note that holes are always separated by

at least one particle. Below the diagonal, we can perform a second particle mapping: Each

particle-hole pair is mapped onto an “A” particle, and all remaining holes are each mapped

onto “B” particles. Notice that with the particle hopping rules outlined above for NNN Ising

interactions with a bias field, in the second particle mapping, the “A” and “B” particles and

their dynamics form another asymmetric simple exclusion process in which an “A” particle

hops one unit to the right if its neighbor to the right is a “B” particle.

Now just as with NN interactions, let’s connect the “AB” particle dynamics with the

geometry of the growing corner interface. Each “A” particle corresponds to a vertical

segment of the interface next to a horizontal segment of the interface (δy). Each remaining

“B” particle corresponds to one of the horizontal line segments that was not already counted

as part of an “A” particle (δx − δy). If we denote by NA and NB the numbers of A and

B particles on a small segment of the interface, then, repeating the analysis above for NN
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biased interactions, we obtain for the NNN dynamics:

xt =
J

< NA >
=< NB >=

NB

NA +NB
=

∣

∣

∣

∣

∆x−∆y

∆y + (∆x−∆y)

∣

∣

∣

∣

= 1− 1

|xy|
. (5.25)

By symmetry, it follows that for points above the diagonal (y > x), yt = 1− 1/|yx|. Using

the simple relation yt = −yxxt for points below the diagonal (y < x), we obtain the interface

growth velocity with biased NNN interactions:

yt =











1 + 1
yx
, if y ≥ x

−yx(1 + yx), if y < x.
(5.26)

Using elementary techniques, we solve the growth equations for interface points above and

below the diagonal, and we obtain for the limiting shape of the corner with NN and NNN

interactions:

y

t
=











1− 2
√

x
t , if y ≥ x

1
4

[

1− 2x
t +

(

x
t

)2
]

, if y < x.
(5.27)

The limiting shapes for NN and NNN Ising spin-spin interactions with biased dynamics are

shown in Figure 5.4. Notice that a point on the interface with slope yx = −1 would have

zero growth velocity. This seems paradoxical since the interface is forever growing in time:

How can the middle point be stationary? To solve this dilemma, the growing NNN corner

interface with biased dynamics forms a kink at the point x = y, so that the slope yx there is

undefined. This intriguing kink at the center of the growing interface with biased dynamics

remains as the interaction range increases beyond next-nearest-neighbor spins [79].

Let’s now derive the interface shape for NNN Ising interactions more formally. The

average current J(ρ) has been computed [76]

J(ρ) =











ρ(1−2ρ)
1−ρ , if 0 < ρ < 1

2

(1−ρ)(2ρ−1)
ρ , if 1

2 < ρ < 1.
(5.28)

This form for the current appears in a number of models [78]. The maximal current Jmax =

J(ρ∗) = J(ρ∗) = 3− 2
√
2 occurs for the densities ρ∗ = 1√

2
and ρ∗ = 1− 1√

2
.
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Figure 5.4: The corner interface in the presence of a bias magnetic field and for k = 1
(upper curve) and k = 2 (lower curve).

Again, note that the density admits a scaling form

ρ(z, t) = R(Z), Z =
z

t
. (5.29)

Plugging this form into Eq. (5.29), we obtain a rarefaction wave

R(Z) =



































1, if Z < −1

(2 + Z)−1/2, if −1 < Z < 0

1− (2− Z)−1/2, if 0 < Z < 1

0, if Z > 1

(5.30)

for the initial condition given by (5.4). After an elementary integration (5.6), we recover

Eq. (5.27) for the scaled limiting shape.
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5.4 Discussion

Amusingly, the statistically more complex problem of two-dimensional nonconserved coars-

ening (Chapter 2) shows universal behavior, while the analytically simpler corner growth

process of this chapter depends strongly on microscopic details. This chapter focused on de-

veloping simple, intuitive understanding of interfacial growth equations and limiting shapes

in two-dimensional corner growth. Analogous growth models in 3d are substantially more

resistive to theoretical methods. The next chapter focuses on one such three-dimensional

corner growth process.



Chapter 6

Three-Dimensional Interface Growth

Inside a Corner

6.1 The Model

The study of growing interfaces has attracted much interest among statistical physicists.

Many growth processes on one-dimensional substrates are thoroughly understood with

regards to stochastic height fluctuations and limiting shapes. Surface growth on two-

dimensional substrates is considerably more difficult, and few exact results have been proven

[80]. The models studied typically involve flat two-dimensional substrates and therefore flat

(on average) interfaces, considerably simplifying the analysis.

Here, our goal is to describe the limiting shape of a large crystal growing inside an

infinite corner. As our model for crystal growth, consider a single octant of 3-space that is

initially empty. Elemental 1 × 1 × 1 unit cubes are stochastically deposited into available

‘inner’ corners (Fig. 6.1). Initially at t = 0, there is only one inner corner and thus one

place where the first cube will fit. After the first deposition event, there are three available

inner corners where the next cube can be adsorbed. The stochastic deposition of cubes into

inner corners continues until the interface approaches a deterministic limiting shape.

This growth model may alternately be viewed as the erosion of a three-dimensional

crystal that initially occupies an infinite corner. In this picture, each elemental cube can

also be interpreted as an ‘up’ spin in a 3d Ising model, while the surrounding empty space

92
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Figure 6.1: 3d crystal of volume 4. The next elemental cube can be deposited equiprobably
at any one of the 6 inner corners.

is filled with ‘down’ spins. Then the problem is equivalent to the motion of the domain

wall between two ordered phases. This growth model can also be viewed as the tiling of

a hexagonal coordinate system with three distinct types of rhombi, and a deposition event

corresponds to the cyclic rearrangement of three adjacent elemental rhombi. This system

bears similarities with a recently proposed “zigzag model” [81], which is an infinite set

of coupled exclusion processes in the plane. Here for simplicity we keep the picture of

deposition of elemental cubes into available inner corners.

Much is known on the statistical properties of similar growth models in two dimensions.

There are three natural settings to consider: (i) uniform measure, (ii) Ising dynamics, and

(iii) growth dynamics. For the uniform measure, the interface has the shape of an irregular

staircase and is nonincreasing from left to right. Such interfaces are known as Young

diagrams in mathematics. Each interface configuration of total area N is given weight

1/p(N), where p(N) is the number of distinct diagrams with area N . In two dimensions,

the limiting shape is given by e−ξ + e−η = 1, with ξ = πx/(6
√
N) and η = πy/(6

√
N) [82].

The uniform measure in three dimensions has also been solved parametrically [83]. The

counting of the numbers of Young diagrams in dimensions greater than 3 remains unsolved.

In the Ising dynamics, cubes are equiprobably added to ‘inner’ corners or removed from

‘outer’ corners. In Figure 6.1, for example, there are six inner corners and three outer

corners. When desorption of elemental cubes is allowed, the linear scale of the interface
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grows diffusively as
√
t. In the long-time limit, fluctuations become small, and a limiting

shape is reached, although in two dimensions this shape has no simple explicit form (see

Chapter 5).

In this chapter, we focus on the growth dynamics. Thus, we consider only the case in

which elemental cubes are added to available inner corners. The limiting shape of the corner

growth model in 2d was first studied and solved by Rost [77]. In the long-time limit, the

interface grows and approaches a deterministic limiting shape in which fluctuations become

small. The equation governing the motion of the interface was presented in Chapter 5 [84]:

yt =
yx

yx − 1
. (6.1)

It can easily be shown that
√
x+

√
y =

√
t (6.2)

is a solution to the above PDE and is the correct limiting shape for the growth dynamics in

two dimensions. This result can also be obtained by mapping the two-dimensional growth

model onto the totally asymmetric simple exclusion process. Interface height fluctuations

in the 2d corner growth model are also well understood [85, 86].

6.2 Conjectural Governing Equation for Growth in Three

Dimensions

For the corner growth problem in three dimensions, we have not succeeded in deriving a

governing PDE from the underlying stochastic dynamics. We expect such an equation to

have a form similar to Eq. (6.1), i.e.,

zt = f(zx, zy). (6.3)

To make progress, we make educated guesses for the form of f(zx, zy). In particular, note

the following:
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• The equation (6.3) must reduce to (6.1) on the boundaries of the interface where x = 0

(zx = −∞) and where y = 0 (zy = −∞).

• The equation (6.3) must be invariant under the exchange of any pair of coordinates.

These conditions severely constrain the forms of possible equations. As a first guess, it

is natural to try zt = [zx/(zx − 1)][zy/(zy − 1)], which is a simple product form of the exact

governing equations on the x = 0 and y = 0 planes. Note that when zx = −∞, we recover

the exact governing equation on the plane x = 0 (and similarly for y). However, this form

is not invariant under the exchange of z and x or z and y, so it is incorrect. We proceed by

assuming the following form for zt:

zt =
zx

zx − 1

zy
zy − 1

A(zx, zy) (6.4)

and the challenge is to guess a form for A(zx, zy) that makes Eq. (6.4) invariant. We have

found two valid forms for A(zx, zy) that satisfy this requirement. Also, by combining these

two forms for A(zx, zy) we have found infinitely many valid governing equations of the form

(6.4), although these equations are more complex.

To guess the correct form for A(zx, zy), we use a clue from simulation data. Note that

the form (6.3) implies that the local velocity of a point on the interface depends only on

the local slopes zx and zy. Although this is not proven in 3d, physical intuition suggests

that higher-order derivatives are asymptotically negligible. Our idea is to simulate a flat

interface with periodic boundaries. (This growth model is known as the ‘hypercube stacking

model’ and was introduced by Forrest and Tang [87] to study interface height fluctuations.)

This model evolves by the same stochastic dynamics of depositing elemental cubes into

available inner corners. However, the periodic boundaries bring a huge simplification to the

analysis. One simply allows the flat plane to evolve, measures the total vertical distance it

moved, and divides by the total time elapsed to obtain an average velocity. We simulated

the flat plane with slopes zx = zy = −1. For the (average) vertical velocity of this plane,
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we measure

v flat plane ≈ 0.378.

Note that 0.378 is very close to the rational number 3/8 = 0.375. We conjecture that the

interface velocity for the hypercube stacking model and zt for the corner interface at the

point x = y = z are identical, which requires that Eq. (6.4) reduces to exactly 3/8 in the

limit t → ∞, viz.

zt
∣

∣

zx,zy=−1
=

(

1

2

)(

1

2

)

A(zx, zy)
∣

∣

zx,zy=−1
=

3

8
.

which obviously implies

A(zx, zy)
∣

∣

zx,zy=−1
=

3

2
.

Note that the form A(zx, zy) = 1 − 1/(zx + zy) reduces to 3/2 with zx = zy = −1, so we

conjecture that the correct governing equation in 3d is

zt =
zx

zx − 1

zy
zy − 1

(

1− 1

zx + zy

)

. (6.5)

This equation satisfies all theoretical requirements for describing 3d corner growth. We

have numerically tested this equation on flat planes with different values of the slopes zx

and zy, and in all cases we have found our prediction (6.5) and the measured velocity to

agree within roughly 1%.

6.2.1 Simulation Results

We proceed by solving our conjectural governing equation (6.5) for the case of an initially

empty corner. As this is a first-order PDE, it is amenable to the method of characteristics.

However, our equation is fully non-linear, which complicates the analysis. For illustration

of the method, consider the corresponding two-dimensional (exact) governing equation

zt =
zx

zx − 1
.
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We would like to solve this equation for the case of an initially empty corner using the

method of characteristics. Following the standard procedure for a fully non-linear equation,

we write the governing equation in the form

F (z, t, x, p, q) = p− q

q − 1
= 0,

where we have set p = zt, q = zx. The characteristics equations are

dt

ds
=Fp = 1

dx

ds
=Fq =

1

(q − 1)2

dz

ds
=pFp + qFq =

q2

(q − 1)2

dp

ds
=− Ft − pFz = 0

dq

ds
=− Fx − qFz = 0

Thus along the characteristics, we immediately read off t = s, while the interface velocity p

and slope q are both constant. This allows us to write, for −∞ < q < 0,

x

t
=

1

(q − 1)2
,

z

t
=

q2

(q − 1)2
(6.6)

Eliminating the single parameter q from (6.6), we recover the known result
√
x+

√
z =

√
t

for the intersection of the 3d interface with the y = 0 plane.

For the general hyperbolic partial differential equation

F (z, t, x, y, p, q, r) = 0,
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the characteristics equations are

dt

ds
=Fp

dx

ds
=Fq

dy

ds
=Fr

dz

ds
=pFp + qFq + rFr

dp

ds
=− Ft − pFz

dq

ds
=− Fx − qFz

dr

ds
=− Fy − rFz

Rewriting the governing equation as

F = p− q

q − 1

r

r − 1

(

1− 1

q + r

)

= 0,

we find t = s, and the interface velocity p as well as the two spatial derivatives q and r

are all constant along the characteristics. Physically, the characteristics are rays eminating

from the origin defined by

ax = by = z = ct

Thus for any choice a and b, the interface recedes at constant velocity dz/dt = c, and the

slopes q and r are constant in time. Thus, the characteristics equations further reduce to

x

t
= A(q, r),

y

t
= B(q, r),

z

t
= C(q, r) (6.7)
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where

A =
1

(q − 1)2
r

r − 1

[

1− 1

q + r

]

− q

q − 1

r

r − 1

1

(q + r)2

B =
q

q − 1

1

(r − 1)2

[

1− 1

q + r

]

− q

q − 1

r

r − 1

1

(q + r)2

C =
q

q − 1

r

r − 1

[

1− 1

q + r

] [

1 +
1

q − 1
+

1

r − 1

]

− q

q − 1

r

r − 1

1

q + r

and the parameters q = zx and r = zy vary on the interval −∞ < q, r ≤ 0. This is a full

parametric solution of the 3d governing equation (6.5) for the interface shape for an initially

empty corner.

As a check of consistency, note that for r = −∞, we have x/t = (q − 1)−2, y/t = 0,

z/t = q2(q − 1)−2. Eliminating q we get
√
x +

√
z =

√
t, so we recover Eq. (6.2) for the

intersection of the interface (6.7) with the y = 0 plane. The simulated interface is shown in

Fig. 6.2(left), and Eq. (6.7) is presented for comparison (Fig. 6.2(right)).

Figure 6.2: (left) The growth process at time t = 140. (right) The interface (6.7).

We now quantitatively compare our predicted interface shape (6.7) with simulation

results. Consider first the position of the middle point on the interface, where x = y = z.
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This point recedes from the origin at a constant velocity w,

x = y = z = wt.

Note that the motion of the middle point is governed by

dz

dt
= zt +

dx

dt
zx +

dy

dt
zy,

but at the middle point, dx/dt = dy/dt = dz/dt. Also, by symmetry, zx = zy = −1, so

dz

dt
=

zt
3
.

Using our conjectured form (6.5) for zt and substituting zx = zy = −1, we obtain the

prediction

w =
1

8
= 0.125.

(This can also be obtained directly from Eq. (6.7) by setting q = r = −1.) Numerically, we

measure w ≈ 0.1261(2), which agrees with our prediction within 0.9%.

As a second test, consider the total crystal volume (i.e., the total number of deposited

cubes) after time t. Since the linear scale of the interface grows ballistically, it follows that

V = vt3, and we must determine the amplitude v. Using (6.7) and changing from the

physical variables (x, y) to the parametric coordinates (q, r), we obtain

v =

∫ 0

−∞

∫ 0

−∞
dq dr C(q, r)

∂(A,B)

∂(q, r)
.

This is an elementary but cumbersome integral. We compute the Jacobian ∂(A,B)
∂(q,r) and the

integral using Mathematica to find

v =
3π2

211
≈ 0.014457.

Numerically, we measure v ≈ 0.01472(3), which agrees with our prediction within 1.8%.

It seems difficult to eliminate the parameters q and r from Eq. (6.7) and obtain an
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explicit expression for the interface shape in terms of (x, y, z). Nonetheless, some lines on

the surface may be explicitly solved for. Consider the intersection of the 3d interface with

the diagonal plane where x = y. On this plane, q = r by symmetry, so Eq. (6.7) reduces to

x

t
=

1

2

z

t
− 3

4

(z

t

)2/3
+

1

4
. (6.8)

This prediction is an excellent match to simulation data (Fig. 6.3).

0 0.1 0.2 0.3
x/t

0

0.5

1

z/t
t=50
t=400
t=20000
prediction

Figure 6.3: The intersection of the interface with the plane x = y. The simulated curves
are shown for t = 50, 400, and 20000, and the theoretical curve (6.8) is also plotted.

A major challenge is in determining if experimental predictions match the simulational

data exactly, or as a highly accurate approximation. The maximum time we ran any

simulation to was t = 20000, and we are still contending with significant finite-size and

finite-time effects. In the simulations, the values of the coefficients w and v are slightly but

significantly larger than their corresponding predicted values.

To treat finite-time effects systematically, we assume that w and v are given at finite
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times by

w(t) = w + w∗t
−wβ

v(t) = v + v∗t
−vβ

with the correction exponents wβ > 0 and vβ > 0 so that in the limit t → ∞ the asymptotic

values w and v are recovered. Our 3d corner growth model is believed to belong to the (2+1)-

dimensional Kardar-Parisi-Zhang (KPZ) universality class of kinetic interface fluctuations

[88, 89, 80]. According to the theory of KPZ scaling, the height at the center of the interface

(where all spatial coordinates are equal) obeys

h(t) = ht+ ξtβ

where β is the universal KPZ growth exponent and ξ is a stationary random variable with

〈ξ〉 > 0. Dividing by t and averaging the noise gives

w(t) = h(t)/t = w + w∗t
β−1, (6.9)

which suggests that the correction exponent wβ = −β + 1.

To find the correction exponent vβ, note that for d-dimensional corner growth, fluctua-

tions in volume occur over a (d− 1)-dimensional surface area and have width tβ:

V (t) = V td + ξtd−1+β

Again, dividing by td and averaging the noise, we get

v(t) = V (t)/td = v + v∗t
β−1, (6.10)

so we find vβ = −β + 1.

Eq. (6.9) was proven for some growing one-dimensional interfaces in [90], while our

growing surface is two-dimensional. Yet we anticipate (6.9) and (6.10) to hold in our model

as well. The values of the KPZ growth exponents β1 and β2 for 1- and 2-dimensional
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surfaces are 1/3 and ≈ 0.23, respectively [75, 90, 91, 92]. Thus we anticipate wβ to equal

2/3 and ≈ 0.77 for two- and three-dimensional corner growth, respectively.

Figure 6.4: (left) The coefficient w2(t). (right) The coefficient w3(t).

Figure 6.5: (left) The coefficient v2(t). (right) The coefficient v3(t).

The data for the coefficients w(t) and v(t) show high linear correlation in each case

(r > 0.999); also the data is over a fairly narrow time range (t = 884 to t = 20000). The

asymptotic values w and v in 2d are 1/4 and 1/6, respectively. Note that the errors in

the extrapolated values of w and v are roughly an order of magnitude larger in 3d, making

it doubtful that our predictions are exact results. (The errors quoted in this section were

obtained by a direct weighted linear regression, so they are likely too small. Multiplying

these errors by a factor of ten makes the 2d extrapolations agree well with their theoretically
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exact values, so the 3d extrapolated errors may be safely multiplied by a factor of ten.) The

highest linear correlation r for the three-dimensional coefficients w(t) and v(t) was obtained

by plotting w(t) versus t−0.742 (r = 0.9996) and by plotting v(t) versus t−0.732 (r = 0.99998).

These correction exponents are strikingly close to the estimate vβ = 0.77 obtained from KPZ

theory, and the resulting extrapolated values w = 0.12609(2) and v = 0.014709(3) still differ

significantly from theoretical predictions.

6.3 Alternate Evolution Equations and Extensions to Higher

Dimensions

While it is conceivable that some slow decorrelation effect is making the approach to the

asymptotic state unexpectedly slow [93, 94], it seems more plausible that our theory is an

excellent approximation. We made a highly educated guess to arrive at Eq. (6.5), using

limiting behavior, symmetry constraints, and a single well-chosen measurement as clues.

Deriving this equation from the stochastic dynamics, even as an approximation (if it is an

approximation), is a tall order. In lieu of a derivation, we proceed by establishing some

theoretical justification for our evolution equation.

Consider the one-parameter family of equations

zt =
zx

zx − 1

zy
zy − 1

zx + zy + λ

zx + zy
. (6.11)

If (6.11) is to describe corner growth, then this equation must imply

xt =
xy

xy − 1

xz
xz − 1

xy + xz + λ

xy + xz
. (6.12)

Applying the relations zx = 1/xz, zy = −zxxy, and zt = −zxxt, (6.11) becomes

xt =
xy

xy − 1

xz
xz − 1

xy − λxz − 1

xy + xz
. (6.13)

We see that the choice λ = −1 is required by symmetry constraints, and we arrive at our
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original guess (6.5).

Taking this analysis further, consider the infinite-parameter family of evolution equa-

tions

zt =
zx

zx − 1

zy
zy − 1

∞
∑

n=−∞

λn

(zx + zy)n
. (6.14)

Note that the evolution equation must be analytic on the boundaries of the interface, where

zx = −∞ (for x = 0) and zy = −∞ (for y = 0). This forces all λn<0 = 0. The requirement

that (6.14) reduces to the two-dimensional form zx/(zx−1) and zy/(zy−1) on the boundaries

fixes λ0 = 1. Also, for (6.14) to obey the symmetry constraints, we must have λ1 = −1 and

λn>1 = 0. Thus our original educated guess, Eq. (6.5), is the only equation in the class of

equations (6.14) that is appropriate for describing corner growth.

Nonetheless, Eq. (6.5) is not the only properly invariant evolution equation suitable for

describing hypercube stacking. Consider the following equation:

zt =
zx

zx − 1

zy
zy − 1

[

1 +
1

zxzy − zx − zy

]

. (6.15)

Although this form looks more complicated than (6.5), it can be written in a simpler form

by replacing derivatives with their reciprocals:

1

zt
= 1− 1

zx
− 1

zy
. (6.16)

This is an alternate evolution equation in 3d that satisfies all theoretical requirements

for describing the corner growth process. Surprisingly, the solution to this equation is a

straightforward generalization of the limiting shape for two-dimensional corner growth:

√
x+

√
y +

√
z =

√
t. (6.17)

The corresponding predictions based on this surface profile, w3 = 1/9 and v3 = 1/90,

substantially disagree with simulation results, suggesting that (6.15) is wrong.

It is difficult to find any other simple evolution equations that satisfy all theoretical
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constraints. We may further conjecture two composite forms for the evolution equation: an

additive family

zt =
zx

zx − 1

zy
zy − 1

[

1− 1 + ca
zx + zy

− ca
zxzy − zx − zy

]

and a multiplicative family

zt =





1− 1
zx+zy

(

1− 1
zx

)(

1− 1
zy

)





1+cm
[

1− 1

zx
− 1

zy

]cm

.

These are valid evolution equations in 3d. The best fit to the measured value of v3

is provided by choosing ca = 0.079 for the additive family of equations, and by choosing

cm = 0.074 for the multiplicative family of equations. However, such anomalously small

values for the parameters ca and cm suggest that these conjectured composite forms are

highly accurate approximations rather than exact results.

We have found even more esoteric equations that satisfy all requirements for describing

corner growth in three dimensions. For example, consider the equation

zt =





1− 1
zx+zy

(

1− 1
zx

)(

1− 1
zy

)





1+c1
[

1− 1

zx
− 1

zy

]c1 [ (1− zx − zy)
n

1 + (−zx)n + (−zy)n

]c2

with two fitting parameters c1 and c2. Consider also the equation

zt =





1− 1
zx+zy

(

1− 1
zx

)(

1− 1
zy

)





1+c3
[

1− 1

zx
− 1

zy

]c3
[

(1− zx − zy)
n + c5(zxzy)

n/3

1 + (−zx)n + (−zy)n + c6(zxzy)n/3

]c4

with fitting parameters c3, c4, c5, and c6. Both of these equations also satisfy all theoretical

symmetry requirements and reduce to the correct limits.

One finds that there are infinitely many valid evolution equations. One can, in principle,

construct an arbitrarily complex equation and tune fitting parameters to obtain agreement

with simulation data to the desired accuracy.

Perhaps the hypercube stacking problem for three- and higher-dimensional interfaces

cannot be described by a simple function of zx and zy. The corner growth problem in d = 2
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is solvable because the underlying exclusion process has stationary product measure—a non-

generic feature of 1d ASEP. In d = 3, corner growth can be mapped onto a 2d hexagonal

lattice covered with three distinct types of rhombi. The deposition of an elemental cube

corresponds in this picture to a cyclic rearrangement of three adjacent rhombi, and the

problem of mathematically deriving an equation of motion from these stochastic dynamics

seems intractable. If indeed there is no closed-form exact governing equation for the interface

profile, then the aesthetically simple and highly accurate guess, Eq. (6.5), is quite intriguing.

Mathematically, one may consider stacking of d-dimensional hypercubes inside an initially-

empty d-dimensional corner in any spatial dimension d. Such an extension of the 2d and

3d models is rather abstract without any obvious connection to physics. Nonetheless, the

mathematical problem of generalizing our three-dimensional governing equations to higher

dimensions naturally presents itself.

Similarly to the three-dimensional corner growth problem, we have not made any formal

derivations from the stochastic dynamics. To make progress, we begin by writing Eq. (6.5)

in the somewhat suggestive form

zt =
1− 1

zx+zy
(

1− 1
zx

)(

1− 1
zy

) .

Note that the right-hand side of this equation contains factors of the form (1−1/X), where

X represents a sum of partial derivatives. With the clue that the 4d governing equation

must be manifestly symmetric in three of the four spatial coordinates (x, y, z, and h), we

conjecture the form

ht =

(

1− 1
hx+hy

)(

1− 1
hy+hz

)(

1− 1
hz+hx

)

(

1− 1
hx

)(

1− 1
hy

)(

1− 1
hz

) A(hx, hy, hz),

which contains an unknown function A(hx, hy, hz). However, intuition suggests that the
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unknown factor should be equal to

A(hx, hy, hz) =
1

1− 1
hx+hy+hz

,

and we arrive at the following guess for the 4d evolution equation:

ht =

(

1− 1
hx+hy

)(

1− 1
hy+hz

)(

1− 1
hz+hx

)

(

1− 1
hx

)(

1− 1
hy

)(

1− 1
hz

)(

1− 1
hx+hy+hz

) . (6.18)

It is simple to verify that Eq. (6.18) satisfies all theoretical requirements for describing

hypercube stacking in four dimensions.

Generally in d dimensions, the same line of reasoning suggests that the height h(x1, . . . , xd−1; t)

obeys

ht =
∏

1≤i1<...<ip≤d−1

(

1− 1

hi1 + . . .+ hip

)(−1)p

(6.19)

For 4d corner growth, we measure the middle of the interface at w ≈ 0.084, which is

roughly 6% greater than our prediction 34/45 based on Eq. (6.18). However, our measure-

ments on 4d corner growth are not as systematic as our measurements in three dimensions.

We have not done numerical tests on corner growth in dimensions d > 4, and we leave these

equations as conjectures. It is possible that the higher-dimensional equations become pro-

gressively worse approximations for describing hypercube stacking as the spatial dimension

d is increased. A generalization of Eq. (6.16) to d dimensions is straightforward:

1

ht
= 1−

d−1
∑

i=1

1

hi
(6.20)

Using (6.19) and (6.20), we may construct an additive family

ht = (1 + c)





∏

1≤i1<...<ip≤d−1

(

1− 1

hi1 + . . .+ hip

)(−1)p


− c

[

1−
d−1
∑

i=1

1

hi

]−1
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and a multiplicative family

ht =





∏

1≤i1<...<ip≤d−1

(

1− 1

hi1 + . . .+ hip

)(−1)p




1+c
[

1−
d−1
∑

i=1

1

hi

]c

of evolution equations for describing corner growth in d dimensions.

6.4 Geometrical Characteristics of the Interface

We briefly discuss the total numbers of inner and outer corners on the interface. By defini-

tion, cubes are added to inner corners and desorbed from outer corners. In Figure 6.1, for

example, there are six inner corners and three outer corners. Let N+ and N− denote the

numbers of inner and outer corners, respectively. There are four simple cases to consider:

pure growth dynamics and Ising dynamics, each in both the two- and three-dimensional

settings.

We first consider the growth dynamics. By definition, N+ = dVd/dt, which gives

N+ = dvdt
d−1

as the leading asymptotic behavior. In 2d, the conservation law

N+ −N− = 1 (2d).

holds at all times in the evolution. In greater than two dimensions, however, we can say

nothing analytically about N−. One may anticipate that N+ > N− in 3d, since the interface

is macroscopically concave. While our data suggests that N+ and N− both grow as t2 to

leading order, we surprisingly find that the difference N+−N− < 0 and diverges as t → ∞.

We find

〈N+〉 = C+t
2, C+ = 0.0442(2)

〈N−〉 = C−t
2, C− = 0.0459(2)
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In Figure 6.6, we see that N−/N+ converges to a value greater than 1 in the long-time limit.

0 0.002 0.004 0.006

t
 - 0.77

1.032

1.036

1.04

out/in

data
fit:  out/in = 1.0395(8) - 1.2(2) t

 - 0.77

Figure 6.6: The ratio N−/N+ versus t−0.77. This quantity appears to exceed 1 as t → ∞.

This result seems paradoxical: How can the number of outer corners on the interface

exceed the number of inner corners if the interface is globally concave? Figure 6.7 aids in

our understanding. In the image at left, we have a flat plane that extends to infinity in all

directions with exactly equal numbers of inner and outer corners. In this case, N+ = N−

seems like an intuitively obvious result. Now consider the image at right. We’ve made a

small dimple at each outer corner on the infinite plane, so that now N−/N+ = 3/2. Even

though N− > N+, the plane is still macroscopically flat! This illustration shows that, in

general, the statistics of inner and outer corners on an interface cannot be directly inferred

from the interface’s macroscopic geometry.

6.5 Discussion

The accurate description of the 3d corner growth model with simple mathematics highlights

the power of using limits, symmetries, and well-chosen numerical clues to tackle otherwise

intractable problems. While our equations probably form an approximate description of
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Figure 6.7: Illustration showing how the numbers of inner and outer corners can be unequal
for a flat plane. (left) A flat interface with equal numbers of inner and outer corners. (right)
A flat interface with three outer corners for every two inner corners.

higher-dimensional corner growth, the agreement between theory and simulation is out-

standing. From an experimental context, can our equations accurately describe crystal

growth phenomena? If one constructed a concave corner substrate and introduced some

deposition process, would the limiting shape of a physical growing cubic crystal mimic the

idealized shape we see from simulations? We can also consider the dual interpretation of

the interface growth process: Beginning with a perfect macroscopic cubic crystal in three

dimensions, and introducing some mechanism for erosion, the corner will gradually smooth.

How closely is an eroding cubic crystal corner mathematically described by our 3d interface

growth equations (Figure 6.8)?

The understanding of Kardar-Parisi-Zhang interfacial fluctuations in 3d growth models

is in its nascent stages. Aside from elementary relations between scaling exponents for

statistics of interface observables [88, 95, 96, 97, 91], almost nothing is known analytically

about the (2+1)-dimensional KPZ universality class [80, 98]. Incidentally, our equations of

motion provide a highly accurate approximation for the characteristic directions of 3d corner

growth. Do temporal correlations [99, 100] in interface height statistics decay differently
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Figure 6.8: A 3d cubic crystal eroding from a corner.

along the characteristic directions predicted by our growth equations? How rapidly to

temporal correlations in height fluctuations decay in time as the interface grows? Our

phenomenological theory may help shed light on these issues.

One wonders if similarly nonrigorous approaches will yield conjecturally exact predic-

tions for other theoretical growth models in higher dimensions. Recall the corner growth

process in two dimensions with unbiased dynamics (Equation (5.7)). More physically, the

equation of motion in this case is

yt =
yxx

(yx − 1)2
.

Can a similar equation be found for unbiased corner growth in three dimensions? A recent

conjecture by Krapivsky for the 3d corner growth process in which elemental cubic crystals

may be both adsorbed and desorbed is based on similar phenomenology [73]:

zt =

(

1− 1
zx+zy

)2

(

1− 1
zx

)2 (

1− 1
zy

)2

[

zxx
z2x

+
zyy
z2y

− zxy
zxzy

]

.

This equation was constructed so that the interface growth rate is linear in the local cur-

vature of the interface, just as in the two-dimensional unbiased corner growth process. The
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factor in front is not unique. For example, we could just as well write

zt =
1

(

1− 1
zx

− 1
zy

)2

[

zxx
z2x

+
zyy
z2y

− zxy
zxzy

]

,

which also satisfies all theoretical requirements of unbiased corner growth. We have had

trouble extracting clean predictions from these equations, however, so they remain nu-

merically untested. The description of the equilibrium crystal [83], in which the rate of

desorption from the interface slightly exceeds the rate of adsorption, remains a tantalizing

unsolved problem in greater than three spatial dimensions.



Chapter 7

Concluding Remarks

A central theme of this dissertation is the existence of a vast number of metastable states

into which a zero-temperature kinetic spin system can freeze. A 3d Ising model quenched to

zero temperature always features two highly intertwined clusters that produce a sponge-like

final state. The gyroid phases are nonstatic, having blinker spins on domain interfaces that

flip forever stochastically and with no energy cost. These blinker states additionally generate

a mechanism for extremely slow relaxation. In a typical quench, we observe isolated drops

in energy at extraordinarily late times, well after the global domain structure has been

established. The paradigmatic Ising model in its original form continues to wonderfully

surprise us nearly a century after its conception.

Can results from percolation theory help us understand the inevitable freezing that

occurs when a large 3d ferromagnet is quenched to T = 0? While analytical results for

continuum percolation in d > 2 are lacking, the critical percolation density has numerically

been observed to be less than 1/2. In a supercritical initial state, where both phases occupy

equal fractions of the system, percolation of both phases shortly after a deep quench is

guaranteed. (Even at time t = 0, a supercritical state is guaranteed to have percolating

clusters because the threshold for site percolation on a cubic lattice is less than 1/2.) This

may help to explain why the 3d Ising model at T = 0 freezes into a complex domain

structure with probability one as L → ∞. What if the 3d Ising model is prepared in an

initial state with unequal densities of the two phases? Our simulations suggest that for
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any tiny difference in densities of the plus and minus phases, the system will quickly reach

the ground state of the phase that is initially in the majority. Curvature-driven flow in

three dimensions likely makes any metastable cluster pattern with uneven initial condition

unstable. This may shed light on why the ground state in the thermodynamic limit is

apparently always reached.

One wonders why a T = 0 TDGL system in 3d, quenched from a disordered state with

equal densities of the two phases, always reaches one of the two ground states. Shortly after

the quench, the system consists of two complex and interconnected domains that span the

system in all three directions, as would be predicted from percolation theory in 3d. However,

in 3d curvature-driven TDGL coarsening, topologically-complex domains are unstable with

respect to non-volume-preserving perturbations [54]. While the states of both a 3d Ising

model and a 3d TDGL system may be statistically similar shortly after a zero-temperature

quench, it is precisely the discrete, nearest-neighbor spin-spin interactions that cause the

3d Ising system to freeze. Fortuitously, in 2d TDGL evolution, spanning clusters at early

times in the evolution are stable to perturbations, so the topology at a time shortly after

the quench determines the ultimate zero-temperature fate of the system.

Our studies of nonconserved coarsening in the 2d Potts model similarly reveal a cornu-

copia of intricate metastable states. We also observe an unexpected phenomenon: A ground

state of one of the multiple phases is reached with nonzero probability in the thermody-

namic limit. The apparent freezing into a complex cluster mosiac that occurs for small

system sizes has been an enigma in prior studies of the kinetic Potts model. However, we’ve

revealed an avalanching mechanism that qualitatively resembles bootstrap percolation. It

would be interesting to see if the Potts model on the square lattice reaches a ground state

with probability one in the thermodynamic limit.

Indeed, the universality in the special case of 2d nonconservative coarsening with a

doubly-degenerate ground state is quite remarkable. For years, it was generally accepted

that coarsening of a scalar order parameter in two dimensions is too complex to admit a

tractable analytical understanding. We now appear to have an exact mapping between
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nonconserved two-state coarsening in 2d and critical continuum percolation, but the precise

nature of the connection between these systems is unresolved. Mathematical physicists

have shown that, for a broad class of random potentials, crossing probabilities in continuum

percolation models are universal [13]. This universality of continuum critical percolation

statistics for different random fields may help explain the universality of nonconserved 2d

coarsening.

Open questions in 2d scalar coarsening remain. How broad is its universality class?

To what extent can we modify model parameters without observing different cluster size

statistics and/or stripe state probabilities? More fundamentally, can any aspect of coarsen-

ing with a conserved order parameter be understood from percolation theory? Conserved

coarsening at late times is driven by diffusion of the order parameter—not simply by do-

main wall curvature—and therefore the domain topology at early times in the kinetics is

not necessarily invariant [14].

We also examined interface growth starting from smooth, deterministic initial condi-

tions. We derived exact equations of motion for growth in 2d with NN and NNN spin

interactions via mapping onto a simple exclusion process. We also constructed beauti-

fully symmetric equations as approximations for interface growth in 3d, and we presented

generalizations of our equations to higher spatial dimensions.

Open problems abound in the field of interface shapes and statistics. As an example,

finding the limiting shape of an equilibrium crystal in greater than three spatial dimen-

sions is a tantalizing mathematical question. Our extensive analytical massaging and ed-

ucated guesswork delivered an outstanding approximation for three-dimensional interface

growth inside a corner. Will anyone succeed in finding the exact formula for counting multi-

dimensional Young diagrams? Does such a formula even exist? If so, can the limiting shape

of an equilibrium crystal be analytically computed in higher dimensions? One wonders if

a similarly sophisticated consideration of limiting behavior, symmetry constraints, and a

small number of well-chosen numerical clues will help deliver answers to these questions.
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Appendix A

Acceleration Algorithm for the

Zero-Temperature 3d KIM

To test our acceleration algorithm, we evolve the system with unbiased Glauber dynamics

until a cutoff time τ . We then apply an infinitesimal bias magnetic field that drives the

system so that drops in energy occur more quickly. The bias magnetic field reverses direction

after each energy drop until the system reaches its lowest-energy configuration. Table A.1

gives the average final energy EL as a function of cutoff time τ . The final energy depends

extremely weakly on cutoff time, which indicates the accuracy of our acceleration algorithm.

The data for L = 10, 20, and 100 are based on 107, 10240, and 128 realizations, respectively.

The last column R gives the ratio of the computing time needed to run a system to t = τ

before applying the bias field over the computing time needed to run a system to t = 5L2

before applying the bias field. For instance, it took 67 times longer to run a L = 100 system

to t = 107 and apply the bias field than it took to run a L = 100 system to t = 5L2 and

apply the bias field. The relative difference in energies for these two protocols is 5× 10−5.

This weak dependence of the the final energy on cutoff time τ is our justification for use of

the acceleration algorithm.

118



119

L τ EL R

10 500 .4245900960
109 .4245901020 34
1010 .4245901020 60

20 2000 .283285352
105 .283287939 1.4
106 .283287939 5.2
107 .283287939 39
108 .283288232 378

100 5× 104 .083666469
105 .083663406 1.2

5× 105 .083662656 4.7
106 .083662594 7.2
107 .083662531 67

Table A.1: Average final energies EL for different cutoff times τ and system sizes L.



Appendix B

The 3d KIM: Small Systems, Number of

Clusters, Blinker States

The L = 2 system with antiferromagnetic initial state helps to illustrate the complexities

of much larger systems. For L = 2, we have enumerated all 9 possible paths to the final

state—either the ferromagnetic state (F) or a metastable slab state (M) (Table B.1). The

latter state consists of a square of four spins of one sign adjacent to a square of four spins of

the opposite sign. The average survival time of the L = 2 system is 221/120 = 1.841666 . . .,

and the probability of reaching the F final state is 11/14.

Direct enumerations for larger systems are not feasible, but our data strongly suggests

that all realizations end in blinker states as L → ∞ (Table B.2). Amuzingly, the smallest

value of L that supports blinker states is L = 5 (though this system has an odd number of

spins, so an initial state with exactly zero magnetization is not possible). Table B.3 shows

the probabilities of coarsening into states with different numbers of clusters for different

L. It appears that, while blinker states are always reached in the thermodynamic limit,

these blinker states are supported by only two highly entangled clusters that each span the

lattice.
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Path # of Flips Time Probability Final State

1 4 43/56 2/21 M
2 4 143/168 1/14 M
3 6 341/280 1/21 M
4 4 85/56 3/14 F
5 6 1583/840 1/35 F
6 6 1793/840 4/35 F
7 6 127/56 4/21 F
8 6 395/168 1/7 F
9 8 761/280 2/21 F

Table B.1: The nine possible paths to the final state for an L = 2 system, starting from the
antiferromagnetic state.

L Pg Pf Pb

2 11/14 3/14 0
4 0.6814(1) 0.3186(1) 0
6 0.3523(2) 0.6353(2) 0.01246(4)
8 0.1842(1) 0.7373(1) 0.07853(9)
10 0.1045(1) 0.7170(1) 0.1785(1)
20 0.01377(4) 0.3059(1) 0.6803(1)
32 0.00322(8) 0.1091(4) 0.8877(4)
54 0.00066(6) 0.0406(4) 0.9587(4)
76 0.00040(6) 0.0250(5) 0.9746(5)
90 0.00039(6) 0.0199(4) 0.9797(4)

Table B.2: Probability of reaching a ground state Pg, a frozen state Pf , or a blinker state
Pb versus L following a quench from the antiferromagnetic initial state.

L P (1) P (2) P (3) P (> 3)

2 11/14 3/14 0 0
4 0.6814(1) 0.3186(1) 0 <0.0000001
6 0.3523(2) 0.6475(2) 0.000245(5) <0.0000001
8 0.1842(1) 0.8128(1) 0.00303(2) 0.0000004(2)
10 0.1045(1) 0.8866(1) 0.00893(3) 0.000015(1)
20 0.01377(4) 0.96052(6) 0.02475(5) 0.00096(1)
32 0.00322(8) 0.9720(2) 0.0230(2) 0.00180(6)
54 0.00066(6) 0.9802(3) 0.0171(3) 0.0020(1)
76 0.00040(6) 0.9824(4) 0.0150(4) 0.0022(1)
90 0.00039(6) 0.9839(4) 0.0133(4) 0.0024(2)

Table B.3: Probability of reaching a state with one cluster, two clusters, three clusters, or
greater than three clusters versus L following a quench from the antiferromagnetic initial
state.
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