2007

Small Depth Quantum Circuits

https://hdl.handle.net/2144/1684

Boston University
Guest Column: Small Depth Quantum Circuits

Debajyoti Bera, Frederic Green, Steven Homer

Abstract

Small depth quantum circuits have proved to be unexpectedly powerful in comparison to their classical counterparts. We survey some of the recent work on this and present some open problems.

1 Introduction and Motivation

Quantum circuits are the most natural and general formulation of quantum computation. They are general in the sense that they are a universal model; any quantum computation can be efficiently simulated by a quantum circuit [27, 19]. They are natural in that a quantum computation (or quantum algorithm) can best be understood as a collection of qubits being acted on by quantum operators represented as (defined by) a tensor product of quantum gates. Although the quantum circuit model is quite different than the classical one, it has nevertheless proven to be quite fruitful to look to classical circuit models for insight. Classical circuits of small depth (e.g., polylog as in the class \textbf{NC}) have been proposed as realistic models of parallel computation. Furthermore, very small (i.e., constant) depth classical circuits present us with computational models for which we can actually prove interesting lower bounds. What happens when we extend these concepts to quantum circuits?

The answer is a bit surprising, and leads fairly quickly to interesting variants of the fundamental problems of quantum computing. For example, consider the class \textbf{AC} of constant-depth,

\begin{itemize}
 \item [1]© D. Bera, F. Green, S. Homer, 2007.
 \item [2]Boston University \{dbera\}@cs.bu.edu.
 \item [3]Clark University fgreen@black.clarku.edu.
 \item [4]See Vollmer [26] for the basic definitions and facts about classical circuit classes.
\end{itemize}
polynomial-size circuits consisting of NOT together with unbounded fan-in and fan-out AND and OR gates. Some interesting functions can be computed in this class (addition of n-bit numbers for example), and some cannot (e.g., parity [11]). It would be interesting to see what an analogous quantum complexity class would look like. But if we try to translate the class AC^0 into the quantum setting, we are faced with an immediate problem. The unbounded-fan-in “quantum AND gate,” the generalized Toffoli gate (which also encompasses negation and hence OR as well) does not allow for fanout in any way we may take for granted. The reason is the “no-cloning theorem,” which says that it is in general not possible to make a copy of a quantum state. One can, however, make copies of classical bits, which suggests the idea of introducing a unitary operator to implement fanout of classical bits. (A similar operation is really implicit in the AC^0 model; we solder multiple outgoing wires to an AND gate, obtaining copies of the output. While it is not entirely realistic to have an unbounded number of wires fanning out of the gate even classically, this is a useful abstraction out of which the definition of AC^0 arises.)

We therefore seem to have two candidates for quantum analogs of AC^0. One, which just includes generalized Toffoli gates and single-qubit gates, is called QAC^0. The other, which includes fanout gates, is called QAC^0_{wf}. The latter appears to be the more realistic version, since it is straightforward to see that it includes AC^0. However, we will see in this article that QAC^0_{wf} is much more powerful than its classical counterpart. There nevertheless remains much that we do not understand. For example, the classical version of QAC^0 (in which AND and OR gates have at most constant fanout) is provably weaker than AC^0. In stark contrast, it is unknown to this day if QAC^0 is the same as QAC^0_{wf}.

This gives an interesting theoretical framework in which quantum analogs of classical circuit models are provably more powerful. But does it have bearing on reality? It might. Realizable quantum computations will have very limited duration, due to short coherence times, which suggests that highly parallelized quantum circuits (such as those we will see can be obtained using fanout) are desirable. Fanout gates as well as Toffoli gates might actually be feasible to build via ion trap [3] or bulk NMR techniques [12]. It may therefore be of more than mere theoretical interest to explore their power, both intrinsic and relative to each other.

2 Circuit Elements and Classes

In this brief survey, we will be unable to provide a review of quantum computation. For a quick introduction, we recommend Fenner [7] or Fortnow and Rogers [10]; for an in-depth treatment, see Nielson and Chuang [17].

To make the treatment as self-contained as possible, we introduce the following notation. Let H denote the 2-dimensional Hilbert space spanned by the computational basis states $|0\rangle$, $|1\rangle$. Let H_1, \ldots, H_n be n copies of H. By B_n we denote the 2^n-dimensional Hilbert space $H_1 \otimes \cdots \otimes H_n$ spanned by the usual set of computational basis states of the form $|x_1, \ldots, x_n\rangle$, where each $x_i \in \{0, 1\}$. A “state over a set of n bits” is a state in B_n. Let U_n denote the set of unitary matrices that act on states in B_n (U_n is just a convenient notation for the group $U(2^n)$). A quantum gate G corresponds to an element of U_n, which is also denoted G. Thus, for example, a single-qubit gate is an element of U_1, acting on states in B_1.

We now exhibit the main quantum gates that we will consider. The single-qubit Hadamard gate
is defined by,

\[H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]

Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a Boolean function of \(n \) inputs. Many of our gates take the form,

\[G|x_1, ..., x_n, b⟩ = |x_1, ..., x_n, b ⊕ f(x_1, ..., x_n)⟩ \]

This is just an easy form of simulating any classical function in a reversible manner. If \(f(x_1, ..., x_n) = \wedge_{i=1}^n x_i \), \(G \) is called a generalized Toffoli gate, or (in this paper) simply a Toffoli gate, and is written as \(T \). If \(f(x_1, ..., x_n) = \bigoplus_i x_i \), \(G \) is a parity gate, written \(P \). Generalizing this, define the classical Boolean function \(\text{Mod}_q : \{0,1\}^n \rightarrow \{0,1\} \) so that \(\text{Mod}_q(x_1, ..., x_n) = 1 \) iff \(\sum_{i=1}^n x_i \not\equiv 0 \) (mod \(q \)). If \(f = \text{Mod}_q \), we call \(G \) a \(\text{MOD}_q \) gate. Next, for any \(t \), define the boolean function \(s(x_1, ..., x_n) = 1 \) iff \(\sum_{i=1}^n x_i \geq t \). If \(f = s \), we call \(G \) a threshold gate and write it as \(S \). Finally, the fanout gate \(F \) is defined by,

\[F|x_1, ..., x_n, b⟩ = |b ⊕ x_1, ..., b ⊕ x_n, b⟩. \]

It is known that the \(T \)-gate for \(n = 1 \) (known as controlled-not, or “CNOT”) together with single-qubit gates (in particular, the Hadamard, phase, and \(\pi/8 \) gates) are a universal set of gates in that any unitary operator can be approximated to an arbitrary degree of precision with them.

A quantum circuit is constructed out of layers. Each layer \(L \) is a tensor product of a certain fixed set of gates. A circuit is simply a (matrix) product of layers \(L_1L_2 \cdots L_d \). (Observe that the “last” layer \(L_d \) is actually the one that is applied directly to the inputs, and \(L_1 \) is the output layer.) The number of layers \(d \) is called the depth of \(C \). A circuit \(C \) over \(n \) qubits is then a unitary operator in \(\mathcal{U}_n \). Clearly, \(C \) computes a unitary operator \(U \) exactly if for all computational basis states, \(C|x_1, ..., x_n⟩ = U|x_1, ..., x_n⟩ \). This is in general too restrictive, however. One must allow for the presence of “work bits,” called ancillae, that make extra space available in which to do a computation. In that case, in order to exactly compute the operator \(U \) we extend the Hilbert space in which \(C \) acts to the \(2^{n+m} \)-dimensional space \(\mathcal{B}_{n+m} \) spanned by computational basis states \(|x_1, ..., x_n, a_1, ..., a_m⟩ \), where again \(x_i, a_i ∈ \{0,1\} \), the \(a_i \) serving as ancillae. Then we say that \(C \) cleanly computes \(U \) if, for any \(x_1, ..., x_n \) and \(y_1, ..., y_n \),

\[⟨y_1, ..., y_n, 0, ..., 0|C|x_1, ..., x_n, 0, ..., 0⟩ = ⟨y_1, ..., y_n, 0, ..., 0|(U ⊗ I)|x_1, ..., x_n, 0, ..., 0⟩, \]

where \(I \) is the identity in the subspace that acts on the ancillae, and the number of 0’s in each state above is \(m \). That is, \(C \) does a clean computation if the ancillae begin and end all as 0’s. We assume all of our circuits perform clean computations. This is a reasonable constraint, since only then is it easy to compose the circuits.

All circuits should be understood to be elements of an infinite family of circuits \(\{C_n|n ≥ 0\} \), where \(C_n \) is a quantum circuit for \(n \) input qubits and each circuit family contains a fixed finite set of gates.

In this paper we deal with various quantum circuit classes which are defined in analogy with the classical circuit classes, e.g., similar to \(\text{NC}^k \), \(\text{QNC}^k \) is defined as \(\log^k n \) depth, polynomial size circuits containing only single qubit and CNOT gates. We list some of the quantum circuit classes below:
Definition 2.1 Quantum circuit classes

Quantum analogues of NC^k

- QNC_k: consisting of single qubit and CNOT gates (Toffoli gates with \(n = 1 \)).
- QNC_{_wf}: QNC_k + fanout gates.

Quantum analogues of AC^k

- QAC_k: consisting of single qubit and Toffoli gates.
- QAC_{_wf}: consisting of single qubit, Toffoli and fan-out gates.

Quantum analogues of ACC^k

- QACC_k: QAC_k + MOD_q gates. QACC_k = \(\cup_q QACC^k[q] \).
- QACC: QACC is defined as QACC₀ and QACC_[q] is defined as QACC₀[q].

Quantum analogues of TC^k

- QTC_k: QAC_k + arbitrary fanin threshold gates.
- QTC_{_wf}: QAC_{_wf} + arbitrary fanin threshold gates.

It should be emphasized that these are classes of unitary operators. There are various ways in which they can be used to define classes of sets, but we will not explore that here.

This is an unacceptably large array of complexity class definitions (perhaps even gratuitous). Surprisingly and happily, however, most of them are either the same or are very close, unlike the corresponding classical classes.

3 Upper Bounds

The first hint that something different is going on in quantum circuits is in the intimate relationship between fanout and parity. There is no obvious a priori relation between these operators, and indeed we wouldn’t expect there to be any on the basis of our experience with classical circuits. But as was observed by Moore [15], \(F \) is conjugate to \(P \) via an \((n + 1) \)-fold tensor product of Hadamards applied to all the bits:

\[
F = H^{\otimes (n+1)} PH^{\otimes (n+1)}
\]

(1)

This is a consequence of the well-known fact that a CNOT gate, conjugated with Hadamards, flips the input and target bits (see Figure 1).

Figure 1: The parity and fanout gates are conjugates of each other by a layer of Hadamard gates.

It is immediate from this that QAC₀_wf = QACC_{_wf}[2] = QACC[2]. Contrast this with the famous classical result of Furst, Saxe and Sipser [11] that parity is not in AC₀ (and hence ACC[2] \(\neq \) AC₀).
It is also immediate that for all \(k \), \(\text{QAC}^k_{\text{wf}} = \text{QACC}^k_{\text{wf}} = \text{QACC}^k \). Since it is possible to fanout \(n \) copies in \(\log n \) depth using CNOT (via divide and conquer), we also have \(\text{QAC}^k \subseteq \text{QACC}^k_{\text{wf}} \subseteq \text{QAC}^{k+1} \) (subsequent results in this survey lead to similar relationships for the \(k > 0 \) classes).

The \(\text{QACC}[q] \) classes for \(q \neq 2 \) present a more subtle problem. Recall the Razborov/Smolensky Theorem [21, 24] that says that for any relatively prime \(q, p \), \(\text{ACC}[q] \neq \text{ACC}[p] \), and hence \(\text{ACC}[q] \nsubseteq \text{AC}^0 \). One would think, in accordance with this, that the \(\text{QACC}[q] \) classes are all incomparable with \(\text{QACC}[2] \). In fact the opposite turns out to be true: \(\text{QACC}[q] = \text{QACC}[2] \) for all \(q \).

![Figure 2](image-url)

Figure 2: If a group of gates \(U_1, \ldots, U_n \) are simultaneously diagonalizable (\(U_i = V D_i V^\dagger \)) or are the same, then they can be applied in parallel using fanout gates. This holds even if the gates are controlled by some control qubit.

The proof that \(\text{QACC}[q] \subseteq \text{QACC}[2] \) uses the most important technique to date in this area: parallelization, which was first observed by Moore and Nilsson [16]. A series of commuting (for example, identical) unitary operations can be implemented in a constant number of layers by diagonalizing the operators and using fanout to apply the diagonal operators in parallel. The process is sketched in Figure 2. In this case, the operations we want to parallelize are those that increment a register mod \(q \):

\[
M_q|x\rangle = |(x + 1) \mod q\rangle,
\]

where \(x \) denotes \(n \) bits. Applying \(n \) controlled \(M_q \) gates in series (each \(M_q \) controlled by one of the \(x_i \)’s) leaves the sum of the bits mod \(q \) in a register. Once this is done, applying a Toffoli gate to the register yields \(\text{Mod}_q(x_1, \ldots, x_n) \). Thus, via parallelization, we can do \(\text{MOD}_q \) in constant depth using fanout.

The other direction, \(\text{QACC}[2] \subseteq \text{QACC}[q] \), essentially amounts to showing that there’s nothing really special about \(“2” \) in the conjugacy relation between fanout and parity. This relationship can be generalized to an analogous one between “fanout of digits base \(q \)” and “sum of the inputs mod \(q \).” This requires a Fourier transform which works on “quantum digit” (rather than qubit) registers, which is analogous to the Hadamard gate. By a result of Barenco et al. [2], such a constant-dimensional unitary transformation can be realized in constant depth with just CNOT and single-qubit gates. With considerable added circuitry to represent the digits as bits, these techniques result in the following:

Theorem 3.1 [13] For all \(q \), \(\text{QAC}^0_{\text{wf}} = \text{QACC}[q] = \text{QACC} \).

The biggest surprise is yet to come. Consider the class \(\text{QNC}^0 \). Like its classical counterpart, it is not very useful; as we explain later on, no output can depend on all the inputs! What if we add fanout, as in the class \(\text{QNC}^0_{\text{wf}} \)? H\o yer and Spalek showed that with high accuracy, one can compute threshold functions with only fanout and single-qubit gates, in constant depth!
Theorem 3.2 [14] Let \(\{F_n\} \) be a family of operators in \(\mathcal{QNC}_{\text{wf}}^0, \mathcal{QAC}_{\text{wf}}^0, \text{or } \mathcal{QTC}_{\text{wf}}^0 \). Then there is a family of operators \(\{G_n\} \) in either of the other classes that approximates \(\{F_n\} \) with two-sided polynomially small error.

In a strong sense, therefore, the classes \(\mathcal{QNC}_{\text{wf}}^0, \mathcal{QAC}_{\text{wf}}^0, \mathcal{QTC}_{\text{wf}}^0 \) (to say nothing of \(\mathcal{QACC} \) and all its kindred) are equivalent in computational power. The theorem essentially says that fanout and single-qubit operations form a universal set of quantum gates.

Proof sketch: The proof of Theorem 3.2 is centered around the parallelization method. To give the clearest exposition possible, we find it advantageous to follow (initially) an earlier technique of Špalek [25]. Following exactly his line of reasoning, we sketch how to simulate an exact threshold gate, in which the boolean function \(f \) in the definition is 1 iff \(\sum_{i=1}^{n} x_i = t \); using this, threshold gates can be easily constructed. The main roadblock in generalizing Theorem 3.1 to Theorem 3.2 is that the proof of the former relies heavily on the fixed dimensionality of the mod \(q \) increment operator which, by Barenco et al., can be simulated in constant depth. In order to implement an exact gate, we need to compute the sum of the inputs not mod \(q \), but mod \(n \), where \(n \) is the number of inputs (technically, mod \(n + 1 \)). Denoting \(\log n \) as \(k \), the required \(k \)-bit increment operator \(M \) is defined as,

\[
M|x\rangle = |(x + 1) \mod 2^k\rangle,
\]

where \(x \) denotes a \(k \)-bit number. \(M \) grows exponentially in \(k \) so we can no longer rely on Barenco et al. The way around this problem starts with a simple but quite interesting observation, namely that \(M \) is diagonal in the Fourier basis. This is the basis of the Hilbert space that is obtained when we perform the quantum Fourier transform,

\[
Q|x\rangle = \frac{1}{2^{k/2}} \sum_{y=0}^{2^k-1} \omega^{xy}|y\rangle,
\]

where \(\omega = e^{2\pi i/2^k} \). Specifically, a straightforward computation shows that \(M = Q^\dagger D Q \), where \(D = \text{diag}(1, \omega, \omega^2, \omega^3, \ldots, \omega^{2^k-1}) \). Although \(D \) is a “big” operator, it nevertheless can be written as a tensor product of single-qubit operators \(|b\rangle \mapsto \omega^b|b\rangle \) where \(b \in \{0,1\} \). Thus if \(x \) is a \(k \)-bit string, \(D|x\rangle = \omega^{\sum_{i=1}^{k} x_i}|x\rangle = \otimes_{i=1}^{k} (\omega^{x_i}|x_i\rangle) \).

Figure 3: Compute \(\sum_{i=1}^{n} x_i \) in constant depth by using \(Q \), fanout gates and controlled-\(D \) gates. The \(n \) \(D \)-gates are parallelized here to reduce the depth.

For computing the sum of the inputs, we really need the \(M \) (and hence \(D \)) operator to be controlled by all the respective inputs. In fact, using known properties of \(U_1 \), the controlled \(D \)
operator can be implemented in constant depth with single-qubit and CNOT gates. The next step is to use this to compute $\sum_{i=1}^{n} x_i$, and indeed this can be done with the aid of Q as shown in figure 3. In the working register of $\log n$ bits, the output is exactly the sum of the x_i's. The problem is, we don’t know if Q can be implemented in constant depth (we will see that it can, but we must avoid circular reasoning). Špalek’s inspired fix to this was simply to replace the Q and Q^\dagger with layers of Hadamards, and applying a D^{-t} operator to another set of fanned out inputs. The output is no longer the sum of the x_i's, but it is enough for our purposes: The bits in the output are all 0 if and only if $\sum_{i=1}^{n} x_i - t = 0$. With the aid of a Toffoli gate, we can now determine if $\sum_{i=1}^{n} x_i = t$, and it is done in constant depth.

Thus far we can already see a quite interesting result. If the definition of QAC_0^w allowed an unbounded number of single-qubit gates in a circuit family (in this case, the operations $|b\rangle \mapsto \omega^b|b\rangle$), which depend on n), we could conclude from the above argument that $QAC_0^w = QTC_0^w$ exactly. However, the definition stipulates that only a finite number of such gates are allowed in any circuit family. Høyer and Špalek [14] showed how to overcome this problem. Any single-qubit gate can be approximated to arbitrary accuracy by a fixed number of gates, in constant depth. The cost is a polynomially larger circuit and polynomially small $(1/n^c)$ two-sided error. This is enough to establish the part of Theorem 3.2 regarding the equivalence of QAC_0^w and QTC_0^w.

By further applications of single-qubit gates (or their approximations) and fanouts, Høyer and Špalek were able to reduce the computation of the final Toffoli gate to a measurement of a quantum register, whose outcome agrees with OR with small error. Dispensing with the Toffoli gate in this way gives the theorem as stated and concludes our proof sketch.

There are a number of immediate corollaries that follow from Theorem 3.2 when combined with some results on classical threshold circuits [23]. For example, iterated multiplication, division, and sorting of n integers can be done with polynomial-size TC^0-type circuits. Hence these operations can also be approximated in QNC_0^w.

3.1 Quantum Fourier Transform

We saw the role of the quantum Fourier transform (QFT) in the construction above. The QFT is one of the most widely used unitary transformations in quantum circuits. It is one of the key components of many quantum algorithms, like Shor’s [22] quantum algorithm for factoring. An efficient implementation of the QFT will improve a wide variety of quantum circuits and algorithms. Before we discuss low depth circuits for the QFT, it is interesting to compare it to its classical counterpart, the discrete Fourier Transform (DFT). The m-dimensional DFT maps $(a_0, \ldots, a_{m-1}) \in \mathbb{C}^m$ to $(b_0, \ldots, b_{m-1}) \in \mathbb{C}^m$ where,

$$b_x = \sum_{y=0}^{m-1} e^{(2\pi i/m)xy} a_y$$

The fast Fourier transform algorithm can compute the DFT in $O(m \log m)$ operations.

The m-dimensional quantum Fourier Transform can be seen as a unitary operation performing the DFT on the amplitudes of a log m-qubit state, mapping $\sum_{x=0}^{m-1} \alpha_x |x\rangle$ to $\sum_{x=0}^{m-1} \beta_x |x\rangle$ where,

$$\beta_x = \frac{1}{\sqrt{m}} \sum_{y=0}^{m-1} e^{(2\pi i/m)xy} \alpha_y$$

The rest of this section assumes $m = 2^n$ and uses $\omega = e^{2\pi i/2^n}$. Coppersmith [6] showed how to
compute the QFT in $O(n^2)$ size and depth.5 The bounds have been reduced further to sub-quadratic size and linear depth.

One approach to computing the QFT in constant depth can be obtained by inspecting the state of each qubit in the transformed state.

$$|\Psi_x\rangle = Q|x\rangle = \frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} \omega^{xy}|y\rangle = \frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} \sum_{k=1}^{n} \left(\omega^{x2^n-k y_n-k} |y_n-k\rangle \right) = \frac{1}{2^{n/2}} \sum_{k=1}^{n} \left(\sum_{b=0}^{2^n} \omega^{x2^n-k b} |b\rangle \right)$$

The “rotations” $\frac{1}{\sqrt{2}} \sum_{b=0}^{2^n} \omega^{x2^n-k b} |b\rangle = \frac{|0\rangle + e^{2\pi i x/2^n} |1\rangle}{\sqrt{2}}$, controlled by x, can easily be implemented in parallel using fanout gates as described before. This suffices to obtain the circuit for $|x\rangle|0\rangle \mapsto |x\rangle|\Psi_x\rangle$. This is followed by the relatively harder step $|x\rangle|\Psi_x\rangle \mapsto |0\rangle|\Psi_x\rangle$ to complete the QFT transformation $|x\rangle|0\rangle \mapsto |x\rangle|\Psi_x\rangle \mapsto |\Psi_x\rangle|0\rangle$. Cleve and Watrous \cite{4} showed how to compute the second step (with high accuracy) using log-depth circuits with just CNOT gates. Høyer and Spalek further adapted Cleve and Watrous’ technique to show that QFT can be approximated with small error probability in QNC$^0_{\text{wt}}$.

The transformation $|x\rangle|\Psi_x\rangle \mapsto |0\rangle|\Psi_x\rangle$ is computed by first estimating $|\Psi_x\rangle|0\rangle \mapsto |\Psi_x\rangle|\tilde{x}\rangle$ using quantum Fourier phase estimation and then XORing $|\tilde{x}\rangle$ to $|x\rangle$. If the estimate is accurate enough, then $\tilde{x} = x$, so we end up with the desired state.

The quantum Fourier phase estimation requires several copies of $|\Psi_x\rangle$, which can be obtained by using the reversible addition gate: $|x_1\rangle \ldots |x_t\rangle \mapsto |x_1\rangle \ldots |x_{t-1}\rangle |\sum x_i \mod 2^n\rangle$. Addition modulo 2^n can be computed using threshold gates, which as shown before can be approximated in QNC$^0_{\text{wt}}$. Using the inverse of the reversible addition gate, we can approximate in constant depth $|\Psi_x\rangle|0\rangle \ldots |0\rangle \mapsto |\Psi_x\rangle|\Psi_x\rangle \ldots |\Psi_x\rangle$. Denoting $\frac{|0\rangle + e^{2\pi i x/2^n} |1\rangle}{\sqrt{2}}$ by $|\rho_{x/2^n}\rangle$, this gives us multiple copies of $|\rho_{x/2^n}\rangle$ for each $k = 1 \ldots n$.

The quantum Fourier phase estimation part of the circuit measures the copies of $|\rho_{x/2^n}\rangle$ to approximately determine all bits of x. Measurement of $|\rho_{x/2^n}\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i (0, x_{k-1} \ldots x_0)})$ in the basis $\{\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i x/2^n} |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i \frac{x}{2^n}} |1\rangle)\}$ and $\{\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i (0, x_{k-1} \ldots x_0)})\}$ allows us to estimate x_k. Using $O(\log n/\varepsilon)$ copies of $|\rho_{x/2^n}\rangle$ gives us an estimate \tilde{x} which is ε close to x. After computing $|x \oplus \tilde{x}\rangle|\Psi_x\rangle|\tilde{x}\rangle$, the ancillae $|\tilde{x}\rangle$ are returned to their initial states to perform a clean computation. All the measurements and the estimation can be done in parallel and the measurements can be deferred till the end. That gives us a constant depth approximation for computing the QFT.

Theorem 3.3 [14] The QFT transformation can be approximated with polynomially small error by a quantum circuit of constant depth using CNOT and a fixed family of single-qubit gates.

4 Lower Bounds

In the last section we saw the surprising power provided by allowing fanout gates in constant depth quantum circuits. We now turn to the problem of whether, in the presence of single qubit

5Though this looks like an exponential improvement over the classical case, note that unlike the DFT, the QFT does not explicitly compute $\langle \hat{b}_0, \ldots \rangle$. Intuitively, the difference between DFT versus QFT is analogous to computing a probability distribution versus sampling from the distribution \cite{4}.
gates, these gates are strictly more powerful than (unbounded) Toffoli gates and are necessary for simulating stronger classes.

We seek to fill a gap in our understanding of the relative power of Toffoli and fanout gates in quantum circuits. Roughly speaking, we know that given fanout, we can do fanin, where by fanin, we mean the quantum gates, for example the Toffoli gate, in which one output qubit of the gate depends on the values of (unboundedly) many inputs qubits. But can fanout do more? Are generalized Toffoli gates and fanout gates equivalent in power, up to polynomial size and constant depth; i.e., are QAC^0 and QAC_{wf}^0 equal? We believe they are not, and thus that fanout gates are strictly more powerful.

In answering this question we find it necessary to grapple with another likely limitation of real quantum computers. It is evident that they will be limited not only in their run-time duration but also by the number of qubits used in the computation, due to the difficulty in controlling the interactions of multiple qubits. It will be necessary to identify computations which use as few ancillae as possible. Thus we consider here the number of ancillae used by a circuit as an additional computational resource, and investigate cases where this resource is limited.

The main result of this section is that one cannot compute parity (and hence fanout) with QAC^0 circuits using a constant number of ancillae. This is the first hard evidence that QAC^0 and QAC_{wf}^0 may be different, and that fanout may be necessary for all the upper bound results mentioned in Section 3 (it certainly is if we limit our computations to only constantly many ancillae). The issue of the necessity of ancillae in quantum computations is a murky one. It is generally accepted that a limited number (polynomially many relative to the number of inputs) are allowed. This seems reasonable as it allows polynomial extra space in which to carry out a computation. However, it is possible to approximate any unitary operator with a small set of universal gates without ancillae (although one needs circuits of exponential depth and size in order to do so [17]). Furthermore, no systematic investigation into the absolute necessity of ancillae for efficient quantum computation has been done.

Our main lower bound theorem states:

Theorem 4.1 [8] Let C be a circuit of depth d consisting of single-qubit gates and Toffoli gates, and using 0 ancillae. Then, if $d \in o(\log(n))$, C cannot compute the fanout operation.

The theorem can be generalized to circuits with a limited number of ancillae. Namely, in the case of a non-constant number a of ancillae and n input qubits, we have a tradeoff between a and the required depth, that results in a non-constant lower bound for fanout when $a = n^{1-o(1)}$.

It is not hard to see, via a divide and conquer technique using CNOT gates, that one can compute parity in depth $2\log n + 1$. We conjecture that this is optimal no matter what a is, and regardless of allowed size of Toffoli gates. However, the best lower bound on depth we can obtain is $1.44 \log n - 1$ for 0 ancillae. With a more careful analysis, we find that circuit depth lower bound of at least $1.44 \log m - 1$ is required for any function with the property that, for any input string x, there is a set of m bits such that flipping any one of them changes $f(x)$ (The integer m is known as the sensitivity of the function f [18]). So more succinctly, any function of sensitivity m must have at least $1.44 \log m - 1$ depth.

The proof of the lower bound is quite long and can be found in [8]. We limit ourselves here to a brief discussion of the central ideas of the proof and its most interesting aspects.

We first consider the case of QNC^0 circuits when the quantum circuit contains only 1 and 2 qubit gates. The intuition behind the proof for this case of the main theorem seems quite obvious.
Namely, if such a circuit has depth d, then any output qubit of the circuit can depend on at most 2^d input qubits. This fact is obvious for classical circuits, by a simple connectivity argument. One might think it equally easy in the quantum case, but the picture of a quantum computation as a "classical" circuit can be deceiving. It is therefore important to verify carefully the intuitive fact that a quantum circuit must connect all the qubits on which its output depends to the qubit we will measure for the output. Furthermore, the technique we use here underscores the difficulties for the more general lower bound theorem for circuits including large Toffoli gates.

Figure 4: Decomposition of the layers of the QNC0 circuit C.

Let $C = L_1 \cdots L_d$ consist entirely of arbitrary two-qubit gates and single-qubit gates. (The extension to arbitrary, but fixed-size gates is straightforward.) Further suppose that M is an observable on a single qubit in the last layer. Let L'_1 denote the gate whose output M is measuring (Figure 4). L'_1 could be a two-qubit or a single-qubit gate. In either case, $L_1 = L'_1 \otimes R_1$, where R_1 is the tensor product of all the other gates in that layer, if any. If we only had this one layer, the result of the measurement M is determined by the expectation value of the operator $(L'_1 \otimes R_1)^\dagger M (L'_1 \otimes R_1)$. Since M commutes with R_1, the R_1's cancel, and the only gate involved is L'_1. We proceed to include more layers, that is, decomposing layer i by writing $L_i = L'_i \otimes R_i$, where L'_i is a transformation that acts on some subset of the bits involving M, and R_i acts on the rest. A similar thing happens with these other layers. M remains sandwiched between some of the operators L'_i, but the R_i's cancel and by induction the width of the layers L'_i that remain is at most 2^d.

From this result on connectivity of quantum circuits, we immediately obtain,

Theorem 4.2 [8] Let C be a QNC0 circuit on n inputs and depth d with any number of ancillae that cleanly computes parity exactly. Then $d \geq \log n$. If C computes fanout in the same way, then $d \geq \log n - 2$.

The theorem actually applies not only to parity but to any function whose output depends on all of its inputs. The proof technique can also be used to establish that constant depth circuit families with gates of bounded arity are not capable of simulating Toffoli gates.

We now turn to the separation of circuits with (unbounded) Toffoli gate and fanout gates. To see how to proceed, it is useful to briefly consider classical circuits with similar constraints. Suppose we have a classical circuit with NOT gates and unbounded fan-in AND and OR gates, but that we do not allow any fanout. Once inputs (or outputs of other gates) are used in either an AND or
an OR gate, they cannot be used again. It is obvious that if such a circuit has constant depth, it cannot compute such functions as parity. The AND and OR gates can be killed off by specifying their values on a small set of inputs, resulting in a constant function, while parity depends on all the inputs.

In the quantum case, it appears again that the only thing to do is to attempt to “kill off” the large Toffoli gates. However, the quantum case is much more subtle since we must face the fact that intermediate states are a superposition of computational basis states, and furthermore that the Toffoli gates, in combination with the single-qubit gates, may cause entanglement.

Figure 5: The sets R_i and L'_i for each layer i. A Z gate involving bits in both sets is shown.

Assume we have a circuit C composed of d levels L_1, L_2, \ldots, L_d. The circuit C transforms the state $|\Psi\rangle$ to $L_1 \cdots L_d |\Psi\rangle$. We assume without loss of generality that each layer L_i is a tensor product of Z-gates\(^6\) and single-qubit gates. Further assume without loss of generality that a specific bit (say, the n^{th} bit) of C serves as the output or target bit (which eventually is supposed to agree with the output bit of a parity gate).

Our method is to work backward through the levels of C starting from the target qubit (refer to Figure 5). We fix the target bit to 0. We prove that there is a small set of bits in layer i that are involved in a quantum state $|\Psi_i\rangle$ that serves (when used as input at that layer) to keep the target bit at its fixed 0 value. Bits that are not involved in the construction of the state in the previous layer but that are inputs to Z-gates are set to 0 (to kill the Z-gate; this set of bits is denoted R_i in Figure 5). Bits that are involved (denoted L'_i in Figure 5) are allowed to propagate backwards through the layer, which can result in entanglement. The number of bits that are “committed to 0” (the size of L'_i) at any layer at most doubles as we work backwards through the layers. Thus we find that the number of bits involved in $|\Psi_i\rangle$ at the i^{th} level is at most 2^i. For the full circuit of depth d, there thus exists a state $|\Psi_d\rangle$ involving only 2^d bits that, when applied to the circuit, will force the output to be 0. Hence if there are more than 2^d input bits to the circuit, the target bit is insensitive to some inputs and the circuit cannot compute parity exactly.

The above sketch works as well for circuits with limited numbers of ancillae. The idea is simply to fix the ancilla just as we fixed the target bit, and construct a state that guarantees they are 0 by working backwards. However, fixing many ancillae (e.g., n of them) could force us to use all

\(^6\)Such gates flip the sign of $|x_1, \ldots, x_n\rangle$ iff $\bigwedge_{i=1}^{n} x_i = 1$. They are equivalent to Toffoli gates conjugated with Hadamards at the target. They are more convenient to use here as they do not have a preferred target bit.
the inputs, and the proof breaks down. Thus, for a small number of ancillae, we obtain a tradeoff between the depth of the circuit and the number of ancillae it may have. Furthermore, a more careful analysis shows that bits are committed to 0 in approximately alternate layers, which leads to the factor of the golden ratio ϕ in the theorem.

Theorem 4.3 [8] Let C be a depth d circuit of n inputs, consisting of single-qubit gates and Z-gates, and using a ancillae, with $n > (a + 1)\phi^{d+1}$. If $d < \frac{\log n}{\log \phi} - 1 \approx 1.44 \log n - 1$, then C cannot compute P, the parity gate with $n-1$ inputs and one target.

The circuits described above required the ancillae to be initialized to 0. Also all the circuits were doing clean computation, i.e., the ancillae were 0 at the end. Clean computation ensures that circuits can be easily composed and ancillae reused. There could be circuits which require the ancillae to be initialized to a specific state. A clean circuit would return the ancillae to the beginning state at the end.

There are some cases where we might want the circuit to work with any value in the ancillae. Initializing the ancillae to a specific state might be difficult. A standard technique used for clean computation is to copy the result to the output qubit and then apply the reverse computation to return the ancillae to their initial state. For some circuits this technique does not work. Parker and Plenio [20] show that arbitrary initial states can be used in the quantum part of Shor’s factoring circuit. Fang et al. [8] define robust computation if the circuit works with any initial state of the ancillae but returns the ancillae to the initial state in the end. This puts a stronger constraint on the circuit. It can be shown that any circuit needs $\log n$ depth to robustly compute parity using only single-qubit gates and Toffoli gate, regardless of the number of ancillae used.

5 **Open Problems**

1. Is QAC^0 properly contained in QAC_{wf}^0? Stated in more detail, is it not the case that a fanout gate can be computed in constant depth with polynomially many generalized Toffoli gates, single-qubit gates, and polynomially many ancillae?

2. A similar question applies to QTC^0 versus QTC_{wf}^0. It is unknown if threshold and fanout gates are equally powerful.

3. Can QTC^0 or QTC_{wf}^0 be simulated exactly by $QACC$ circuits, using a fixed number of single-qubit gates?

4. We have seen three different classes of constant depth quantum circuits namely, QNC^0, QAC^0 and QAC_{wf}^0. (QNC^0 is provably different from QAC^0 and QAC_{wf}^0, and the results of Section 4 give evidence that QAC^0 and QAC_{wf}^0 are different as well.) The last class, QAC_{wf}^0, is quite general and its computational power does not change, even if we add mod gates and threshold gates. Can every class of constant depth quantum circuits composed of single qubit gates and some finite sets of other gates be simulated by one of the classes QNC^0, QAC^0 or QAC_{wf}^0?

5. We sketched how a threshold gate can be approximated by fanout and single-qubit gates in constant depth with polynomially small error. Can the error be made exponentially small preserving constant depth?
6. The ability to compute either parity or fanout in constant depth (provided we have Hadamard and CNOT gates) is equivalent to the ability to create a “cat state,” of the form $\frac{1}{\sqrt{2}}(|00\ldots0\rangle + |11\ldots1\rangle)$ (with n 1’s and 0’s), in constant depth [8, 15]. Assuming the answer to the question posed in (1) is affirmative, what insight does this give us into the nature of entanglement? In particular, does a useful entanglement measure emerge (in terms of the size and depth requirements for producing a state)? Alternatively, can existing entanglement measures (see, for example, [5]) be used to answer the question posed in (1)?

7. A significant roadblock to lower bounds in this area is the presence of ancillae. The existing results give trade-offs between circuit size and the number of ancillae. What techniques can be developed to obtain stronger trade-offs of this type either in this context or in more general settings?

8. There are further interesting questions concerning the power of ancillae in quantum computation which have never been fully explored. For example, does there exist a function which needs more than linearly many ancillae when computed by a constant depth quantum circuit family? More specifically, is computing parity using Toffoli and single qubit gates possible using linearly many ancillae? Many other variants of this question arise easily and have no ready answer.

6. Acknowledgments

Cris Moore, together with Martin Nilsson, originated the study of small depth quantum circuit classes [16], providing the central concepts and sharing with us his first results indicating the role played by quantum fanout. We are deeply indebted to our collaborators Maosen Fang, Stephen Fenner, Chris Pollett and Yong Zhang. This work was supported in part by the National Security Agency (NSA) and Advanced Research and Development Agency (ARDA) under Army Research Office (ARO) contract number DAAD 19-02-1-0058.

References

