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Abstract

Partial occlusions are commonplace in a variety of real
world computer vision applications: surveillance, intelli-
gent environments, assistive robotics, autonomous naviga-
tion, etc. While occlusion handling methods have been
proposed, most methods tend to break down when con-
fronted with numerous occluders in a scene. In this pa-
per, a layered image-plane representation for tracking peo-
ple through substantial occlusions is proposed. An image-
plane representation of motion around an object is asso-
ciated with a pre-computed graphical model, which can
be instantiated efficiently during online tracking. A global
state and observation space is obtained by linking transi-
tions between layers. A Reversible Jump Markov Chain
Monte Carlo approach is used to infer the number of people
and track them online. The method outperforms two state-
of-the-art methods for tracking over extended occlusions,
given videos of a parking lot with numerous vehicles and a
laboratory with many desks and workstations.

1. Introduction

In computer vision, reliable tracking through occlusions
is a critical problem. Even partial occlusions can con-
found many trackers, leading to fragmentation or total loss
of tracks. While inference methods have been proposed
that can stitch track segments together and link across gaps,
such methods can be brittle. And while detailed 3D scene
models can be used to predict and handle occlusions, such
models must be painstakingly defined for each scene.

This paper proposes a framework for tracking multiple
people who move around in structured environments with
numerous occluders, like desks in an office, or vehicles
in parking lots. The image-plane representation of mo-
tion around each object is associated with a pre-computed
graphical model, which can be instantiated efficiently dur-
ing online tracking. A global state and observation space
are obtained by linking transitions between layers. In our
experiments, the method outperforms two state-of-the-art
methods [7, 8] in tracking over extended occlusions.

2. Basic Idea

In the proposed approach, motion patterns around a
known object, for instance a desk or a vehicle, are first ab-
stracted by considering zones around that object in 3D. An
example parking lot application is shown in Fig. 1. Zones
are object-centered in the sense that a zone location for
“emerging from driver’s side of car” is generic in a car-
centered coordinate system, but its location in world coor-
dinates depends on the car’s position and orientation in the
world. For person tracking applications, each activity zone
is a person-sized box in 3D.

Transitions between an object’s zones are represented via
a Markov model: each zone has a vertex in the model, and
edges convey the degree to which a zone is “reachable”
from another. For instance, movements between adjacent
zones around a car are probable, but jumps over a car are
not. A single graphical model can be trained for a whole
class of objects and then instantiated as needed by copy-
ing the graphical model for each object instance. Edges be-
tween the objects’ graphical models are determined by the
proximity of corresponding zones in world coordinates.

Pixels corresponding to a particular zone’s projection in
the image plane are approximated by a rectangle, hereafter
referred to as a receptive field. We define a 2.5D graphical
model comprising (a) the occluder’s mask (b) a set of re-
ceptive fields depth-ordered with respect to and clipped by
the mask (c) a state graph whose nodes are identified with
receptive fields and whose edges encode transition proba-
bilities. Multiple 2.5D models interact when their masks
overlap, as shown in Fig. 2 and described in detail in Sec. 4.

Given approximate ground plane calibration, a database
of such 2.5D models can be pre-computed. Subsequently,
we can instantiate our representation, given image-plane lo-
cations in partial order of model instances. As our exper-
iments show, the proposed framework can handle coarse
masks (e.g., for modelling cars, only two categories: sedan
and van), which are not exactly aligned.

Receptive fields can overlap in the image as shown in
Fig. 1(c). The challenge then is to infer the active zone(s)
based on motion observed in overlapping receptive fields.
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(a) (b) (c)
Figure 1. Illustrative example: parking lot application. (a) 3D vehicle models are placed in the scene given ground plane calibration, and car
masks are rendered via computer graphics. Each car mask instantiates a layer of the graphical model, as described in the text. (b) Occlusion
of some receptive fields by the depth-ordered vehicle masks (red pixels are not occluded). (c) Receptive fields obtained as projections of

person-sized activity zones surrounding a vehicle, where receptive fields take into account occlusion from car masks in front.

Given the potentially huge number of zones (thousands), it
is impractical to define a state-space dimension equal to the
number of zones. Instead, the dimension can be defined as
the number of people in the scene at any given time. This
state-space dimension will increase/decrease as people en-
ter/leave the scene. Reversible Jump Markov Chain Monte
Carlo provides an efficient framework for approximate in-
ference and tracking in this setting [7].

Our approach enables tracking of people moving among
objects, with multiple partial occlusions, without losing
track. The occlusion handling represents an improvement
over prior work, as outlined in the next section.

3. Related Work

The BraMBLe system [2] utilized a 3D representation:
knowledge of the camera geometry was combined with a
generalized-cylinder representation of a human to model
the foreground accurately. By utilizing the probabilistic ex-
clusion principle the system effectively reasoned about the
number and location of multiple occluding people in a hall-
way scene. Such a design is suitable for short-term and self-
occlusions, but not for situations where portions of people
are invisible for extended periods of time.

Many methods have been proposed that reason about oc-
clusion in the image plane, operating purely in 2D. Han-
dling of multi-object occlusions in person tracking was
studied by Pérez, et al. [5], but experiments were limited to
scenarios with short-lived occlusions. An appearance-based
tracker that handles short-term occlusions was proposed by
Takala and Pietikainen [8], but this method does not com-
pare favorably in our experiments.

In another 2D approach, Smith, et al. [7] propose a
Reversible Jump Markov Chain Monte Carlo (RIMCMC)
based particle filter to accommodate shrinking and expan-
sion of the state space in tracking varying number of people.
A global observation model including both foreground and
background distributions enables comparison of likelihoods
for different numbers of hypothesized pedestrians to help
accurately predict the number of people. A Markov Ran-
dom Field (MRF) via an interaction potential term keeps

clusters of nearby image rectangles from collapsing to the
same location. A similar interaction term is also employed
by Khan, et al. [4] for tracking ants.

The framework proposed in this paper belongs to a class
of 2.5D approaches that employ layered scene represen-
tations to handle static occluders. Learning of occlusion
masks and their depth ordering has been demonstrated by
Renno, et al. [6]. Assuming pedestrians take all possible
paths through the scene, the system can learn per-pixel inte-
ger depths of static objects. However, the requirement that
pedestrians explore a large portion of the scene before sta-
tic occluders are resolved can be limiting. For instance, in a
parking lot surveillance application occluders (cars) arrive
and leave frequently, but the occlusion map must be avail-
able immediately for pedestrian tracking.

Tracking through occlusions via a set of foreground and
background layers was proposed by Zhou and Tao [11].
However, that framework did not model motion of objects
around occluding layers.

Our sampling-based inference algorithm for tracking is
influenced by the work of Smith, et al. [7]. Their formula-
tion is designed for a continuous state space and works well
when there are no significant occlusions. In our formula-
tion, people are constrained to move on an object-centered
grid allowing occlusion-aware reasoning and structural con-
straints to be incorporated. These two approaches are hence
complementary and we envision a handoff with the former
tracking in free space and the latter taking over in regions
with known static occluders.

4. Approach

We now elaborate on the basic ideas of the framework
given in Sec. 2. For clarity of exposition, the approach is
illustrated in a specific application: pedestrian tracking in a
parking lot. However, it should be noted that the framework
is general and thus can be used in other application settings.

Each object layer is a graphical model defined by: an oc-
clusion car mask obtained by rendering a 3D vehicle tem-
plate, receptive field image regions surrounding the vehicle
(their firing will serve as the observations), transition prob-
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(a) (b)
Figure 2. Example interactions between receptive fields. (a) A ve-
hicle centric model allows transition between neighboring zones
but not jumping between front and back. (b) Two instantiated ac-
tivity models that are spatially disjoint do not interact. (c) Spatially
overlapping masks induce interaction between corresponding ac-
tivity models: a person in front of ¢; can transition behind c».

abilities between receptive fields, and an observation likeli-
hood for receptive field firing given a pedestrian state. Each
object in the scene has its own graphical model layer, and
layers are sorted by increasing depth from the camera.

Receptive fields are rectangles that approximate the
image projections of person-sized activity zones defined
around the vehicle. Fig. 1(c) illustrates the instantiation of
receptive field layers for one vehicle in a scene. Recep-
tive fields are cropped by masks of vehicles that come later
(closer to the viewer) in the depth-ordered layers; each re-
ceptive field hence corresponds only to the visible portion
of its activity zone.

Transition probabilities between receptive fields of an
object layer are based on the expected motion patterns
around an instance of that particular object class. For exam-
ple, for each vehicle in the parking lot application, a person
is more likely to remain stationary near a car door, unlikely
to jump over the car, etc.

With all object layers defined, we add interactions be-
tween them to obtain a global graphical model for person
tracking. Overlap and/or proximity can induce transitions
between receptive fields of adjacent vehicles. Fig. 2 illus-
trates intuitively some of the constraints for receptive field
transitions within and between vehicle layers. The resulting
global transition matrix shown in Fig. 3 demonstrates the
significant sparsity induced by the above constraints.

In the next section, an observation likelihood is formu-
lated taking into account correlations in the receptive field
firings due to their overlap in the image plane.

4.1. Observation Likelihood

Consider the observation likelihood P(Z;|X;), where
Z; € R is the observation vector consisting of N recep-
tive field responses and X; = {x}, ..., ¥} the set of discrete
receptive field indices occupied by k pedestrians at time ¢.
Each pedestrian occupies one receptive field at each frame.

Receptive fields regions in the image overlap; thus, their
responses are correlated. A pedestrian hypothesized at a
specific activity zone will lead to firing in the correspond-
ing and overlapping receptive fields. To account for this, we
define an MRF over hidden variables v, as depicted in the
example of Fig. 4. The v are considered as random vari-

Figure 3. Each instantiated layer model contributes a block to the
global transition matrix on the right. For example, the upper-left
block (dashed red square) is specified by the activity model of the
left-nearest model. The model behind it contributes the second
diagonal block. Interaction between activity models is encoded by
the off-block-diagonal entries shown in the red rectangle.
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Figure 4. Four receptive fields and their MRF to account for cor-
relations. The v are considered as random variables influenced by
the underlying pedestrian state variable z. The observations z; are
linked to the corresponding v;. Edges between v are only present
for receptive fields that overlap.

N

ables influenced by the underlying pedestrian state variable
x. The edges (v;,v;) are only present for receptive fields
that overlap, i.e. r; Nr; # (. The observations z; are linked
to the corresponding v/;.

Given the graph GG, we define a global observation model
with respect to a set C' of maximal cliques ¢

N
p(217"'7ZNaV17"'aVN) X Hwn(znayn) Hd)c(yc)
n=1

ceC

where 9. is a compatibility function defined to capture cor-
relations. For instance in Fig. 4, 1. (v1, 12, v3) assigns low
compatibility to (17 = 1 — ¢,v5 = 1 — €, 3 = ¢€) for small
e > 0. We simplify the model assuming a deterministic
relationship between v and x given by,

area(r, Nr
vp| X = area(rn 0 7x) X).

area(r, )
Where, rx is the union of receptive field regions
corresponding to  hypothesized person locations,
ry = UnE x "n- The observation likelihood can then
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To obtain p(z,|v,) a distribution linking observed features
to overlap values, we employ a linear combination of two
learned densities: pi,(-) for observations in a receptive field
that fully overlaps a moving pedestrian and p oy (-) for re-
ceptive field response not caused by pedestrian motion, i.e.,
due to image noise:

p(zn|Vn) = Vnpin(zn) + (1 - Vn)pout(zn)'

In our implementation, we have experimented with two
types of observation features.

Motion features. Motion-based features are useful when
the distance to objects is large or when occlusions are
severe. These features are obtained by averaging mo-
tion estimated within each receptive field.

Background subtraction features. When foreground ob-
jects occupy a sufficient number of pixels, precision
based features can be used [7]. The observation value
zn, equals the percentage of the receptive field r,, oc-
cupied by the foreground blob.

4.2. Tracking/inference

Given the above observation model, the multi-person
state space is given by a Cartesian product of single per-
son states, X; = {x;}¥_ , for k > 0. Since the state
space is large and changes dimensionality when people ar-
rive and depart, exact inference is intractable. Even on our
discretized grid, the number of states N * is enormous.

Reversible-Jump Markov Chain Monte Carlo (RJM-
CMC) is particularly suited to this problem. The varying
state space dimensionality is handled by employing birth
and death moves to hypothesize a new track or remove
an existing one. Smith, et al. [7] employed this approach
with excellent results for tracking pedestrians — but unlike
our framework, their system did not handle substantial pro-
longed occlusions by static objects. We now extend the
RIMCMC filter of [7] to discrete state space by reformulat-
ing the acceptance ratios for birth, death, and update moves.

For the discrete formulation, the filtering distribution

p(X¢|Z1t) = C'p(Z]Xy) x

/ (X X)X | Zr1)dX o
X1
is approximated by M samples

M
P(Xi| Z1a) = C'p(Zi] X )po(X0) Y pv (X1 X))

m=1

observation likelihood at time ¢

p(Z:| X¢)

pv(X¢|X¢—1) person dynamics; a random walk with
given receptive field transition probabilities

{X},..., X7} chain of MCMC sampled states at time ¢
X[ a proposed state at iteration n of MCMC

chain for time ¢

X7 accepted state at n'" iteration

1*  id of target chosen at a MCMC iteration to
apply one of the moves, i* € {1,....,k+1}
acceptance probabilities for MCMC moves

aba ada aua Qg

pu(+)  probability for sampling each of four
moves
¢(x;, ;) interaction term to prevent collapse of mul-
tiple people states onto a single location
ab(+),qa(+) constraints on receptive field locations

where pedestrians can enter/exit the scene
Table 1. Symbols for the MCMC sampler formulation.

Samples from Eq. 1 are drawn via MCMC with four move
types: birth, death, update, swap. birth move changes the
model order from k£ to k& + 1, death move is its inverse,
update changes target’s position, and swap swaps identities
for a pair of targets.

In iteration n of the MCMC chain at time ¢, a state X
is chosen at random from the sample set at ¢t — 1, X ~
{X} .., X2} . A target ix and move v are randomly
chosen and applied to X/ resulting in a proposed state X /**.
X' is accepted with probability (), X" = X[*; if re-
jected, X" = XL,

The Birth move’s proposal distribution ¢;(-) keeps all cur-
rent objects fixed and assigns non-zero probability to con-
figurations containing a new target i*. ¢(z;,x;) is an in-
teraction term to prevent states of multiple people from col-
lapsing onto a single location. The acceptance ratio is

ap = min (1, Ry)
R, _ PZIXM) [, ¢(Xilh X57) po(death) qa(ix)
p(Z X1 1 po(birth) qp(ix)

The Death move’s proposal distribution ¢,(-) assigns non-
zero probability to configurations in which all objects are
fixed and ¢* has been removed. The acceptance ratio is
ag = min (1, Rd)

p(Z| X]™) 1
P(Z X7 Tjec,, (G5, X50T)

Do (birth) qp(ix)

po(death) qq(ix)
The Update move’s proposal distribution incorporates target
dynamics py (-) for target ¢* while all other targets fixed.

The acceptance ratio is
[ec,. o(X55 X5 )

. p(Z:| X7™)
o, =min | 1, Py 1 wn_1
p(ZX?77)  Tljeo,. o(Xi X70)

Rq
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Figure 5. Three rows of tables with computers create occlusion
layers. Receptive fields are instantiated for all layers. A few of the
receptive fields are displayed (visible parts are shown in red and
occluded parts in blue).
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Figure 6. Tracking result time-lines for laboratory sequence whose
sample frames are shown in Fig. 7. Vertical axis gives the track-id
and horizontal axis the frame numbers. Blue segments are ground-
truth start and end for person tracks. The circles in red are tracking
results for our approach. Solid circles indicate that the person was
hypothesized in the correct layer and an open circles implies an
incorrect layer. Vertical lines mark instances of inter-person oc-
clusions. Details are further described in the text.

The Swap move’s proposal distribution swaps two targets’
state values and histories keeping the rest fixed. The accep-
tance ratio is
Z AX’HA<
or =i (1, ZE2)
P(Z]X{7)

Using the above tracking formulation, it becomes possi-
ble to track a time-varying number of people through chal-
lenging occlusions. Moreover, this can be done at near
video frame rates, as is demonstrated in the next section.

5. Experiments

The method is now demonstrated in tracking multiple
people, with occlusions, in two different settings: a com-
puter laboratory with tables and workstations, and an out-
door parking lot in daytime.

5.1. Video of computer laboratory

The first example is the simpler of the two, and is de-
signed to demonstrate the method’s ability to assign tracks
to appropriate layers. Video sequences were collected in a

lab setting, as shown in Fig .5. Three rows of tables with
workstations serve as occlusion layers, the aisle on the left
is modeled as a transparent layer. The layer masks are in-
stantiated manually. Ground plane calibration is used to
instantiate person-sized receptive fields in each layer (total
number of receptive fields is 64).

The parameter settings for the implementation of our
method were as follows. For the MCMC sampler, prob-
ability of birth, death, update, and swap moves were
[0.1,0.01, 0.9, 0.0] (the probability of swaps was set to zero,
since there was no model of appearance). The observation
likelihood pin(z,,) was specified using a two-component
Gaussian mixture model, and poy (25, ) was modeled as a sin-
gle Gaussian. The interaction potential ¢(-, -) was modeled
as @(-,+) o< exp(—Ar ) with p specifying the ratio of re-
ceptive field overlap over their union, A ; = 100 for objects
in the same layer and A\; = 0 for objects in different lay-
ers. The observation vector is comprised of precision val-
ues for receptive fields, as described in the previous section.
Background subtraction is performed using Local Binary
Pattern histograms (LBPH) [1, 8]. 40 samples are drawn in
the MCMC chain of which 25% are burn-in samples.

Sample frames from the tracking sequence are shown in
Fig. 7 and a time-line summary is shown in Fig. 6. As can
be seen, the three persons entering the scene are tracked ac-
curately with respect to their image plane locations and their
layer assignment. Layers are sometimes times confused
when the person is walking in the left aisle since motion
here is less constrained than when walking between desks.
The tracker can handle many instances of persons occlud-
ing each other and occlusions by static objects (desks and
workstations) in the scene.

5.2. Videos of parking lot

In the second example, unscripted video sequences were
collected during the morning rush hour at an office parking
lot. The “MINI-Cooper” sequence (2000 frames) contains
two people walking together first in the open area and then
amidst parked cars. The “far-field” sequence (2300 frames)
contains two drivers getting out of cars while another vehi-
cle passes. A tracker in this setting has to contend with low
resolution and prolonged occlusions. Given the repeated
structure of static occluders (the cars) this setup is a good
match for our approach utilizing pre-computed layers.

Fig. 9(a) shows the performance of Smith’s approach
[7] for the “MINI-Cooper” sequence. ARO dynamics (ran-
dom walk) and the LBPH foreground model are used for
fairness of comparison. The tracker is initialized with two
pedestrian models in frame 588. The tracker handles brief
occlusions of one pedestrian by another (in frame 1129).
In frame 1223 only heads are visible as indicated by two
green arrows and both tracks are lost. This is to be ex-
pected since the appearance and size of the foreground blob



Figure 7. Samples from the multi-person posterior for the indoor lab sequence corresponding to timeline in Fig. 6. The rectangles corre-
spond to receptive fields and are different sizes based on their layer and cropping by occlusion masks in front. The tracker is able to track
three persons who enter the scene through multiple instances of occlusion. Layer associations for the most part are correct. Identity swaps

do happen since we do not incorporate a person appearance model.

changes drastically. On the second “far-field” sequence, too
few pixels are available to learn a stable appearance model
leading to unreliable performance.

Fig. 9(b) shows the performance of Takala’s tracker [§]
on the MINI sequence. In this case, the tracker automati-
cally initializes to track the same two pedestrians initially
as a single entity, then splits them correctly into two pedes-
trians, and correctly detects occlusion of one pedestrian by
another. Unfortunately, this tracker also looses track when
only heads are visible (indicated by green arrows in the fig-
ure). With the “far-field” sequence, Takala’s tracker only
picks up the track when a person moves close to the cam-
era, the results are not shown due to space limitations.

For our approach, a car layer is pre-computed with its oc-
clusion mask, 18 receptive fields, and associated transition
probabilities. Car masks for vehicles in the lot are posi-
tioned manually given ground plane calibration. A total of
230 receptive fields are automatically instantiated. Between
layer transitions are constrained by geometry and proximity.
Motion features are used as observations. Observation like-
lihoods pin(z5) and pin(z,) are modelled as histograms and
learned from data using a separate training sequence. We
set ¢() the same as for our indoor sequence. 160 MCMC
samples are drawn at each frame with 25% burn-in sam-
ples. The birth moves are constrained to occur at receptive
fields adjacent to the driver or passenger side doors.

We choose a subset of 350 frames from the “MINI-
Cooper” sequence with two persons walking between
the vehicles to run our proposed approach. Probabil-
ities for birth, death, and update moves was set to
[0.0001,0.0001,0.9999] as within this sequence the number
of persons to track is constant. In Fig. 10(a) frame 1171, we
initialized the tracker to track two pedestrians at locations
indicated by green arrows. A subset of the set of recep-
tive fields that overlap with pedestrians in the first frame
are chosen as initial particles. In frame 1221, despite se-
vere occlusion the particle set concentrates around the true
location. In frame 1386 uncertainty in depth for one pedes-
trian causes particles (dark blue) to diffuse a bit. In frame
1514, particles are correctly concentrated on both sides of
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Figure 8. Tracking result time-lines for “far-field” sequence,
Fig. 10(b). Please refer to Fig. 6 for plot annotation.

the MINI Cooper. We do not know of any other system that
can correctly place two closely-spaced targets on both sides
of an occluding layer in such a setting.

For the “far-field” sequence, we use 350 frames with in-
teresting activity shown in Fig. 10(b) (and time-line shown
in Fig. 8). A vehicle (indicated by the orange arrow)
passes as pedestrians (green arrows) get out of parked cars.
Birth, death, and update move probabilities was set to
[0.001,0.0005,0.9985] so the system created and deleted
tracks on its own. A person in the farthest car remains
seated after opening the driver-side door, his track hence
latches on to the moving car and stops as the car moves out
of the receptive field area. The person exits his car around
frame 1070, his track is picked up and continues till end
of the sequence. The driver of the mini-van in the mid-
field walks around his vehicle as the car passes. His track
is not lost because the receptive fields activated by the car
do not have transitions from the person’s location. Instead,
a new short track is created. As in the case of the “MINI-
Cooper” sequence, inferred hidden states reveal proximity
to driver-side door and the passenger-side door. Takala’s
tracker shown with the thick black line only picks up one
person after he moves closer to the camera.

Our C++ code runs at 4 fps for the laboratory video and
at near video frame rate for the outdoor sequences. These
results, while not extensive, nonetheless demonstrate the
promise of the proposed framework. The layers of graph-
ical models provide a much richer source of information
than image-plane bounding boxes, leading to an observation
model that can explicitly handle occlusions. As a result, the
proposed approach can track where most competing track-
ers would clearly fail.



Figure 9. Tracking in continuous state space results on "MINI-Cooper” sequence using (a)Smith’s [7] approach (b)Takala’s [8] approach.
Both trackers successfully track two pedestrians till they approach the SUV. Around this time, the two people walk on either side of the
SUV with only their heads being visible causing the trackers to loose track.

6. Conclusions

We propose a graphical model for representing scene
structure with static occluders employing pre-computed
templates for motion around objects. Each template is rep-
resented by a graphical model. A global scene model is
obtained by layering these graphical models and adding in-
teractions between them. The richer encoding of the scene
provides a layer association for the pedestrian tracks.

The full potential of our approach is perhaps best shown
in the “far-field” sequence where there are variable numbers
of people who open car doors and emerge at different times,
(just as other vehicles pass by), resolution is poor, and se-
vere occlusions by parked vehicles leave very few pixels for
tracking. And in the MINI Cooper sequence, only foreheads
remain visible, yet our method maintains track, where other
blob-based trackers would fail.

Directions for future research include automatic learning
of static occluding layers, e.g., via [9, 10]. The method also
should be ecasily extended to a PTZ camera (using mosaic-
building methods like [3]), since occlusion relations would
be invariant for a fixed camera center. And as mentioned
in the introduction, the approach is amenable to storing a
database of precomputed object layer templates; this idea
remains for future development.
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(a) MINI-Cooper sequence: the tracker is initialized with two pedestrians left of the SUV. The proposed approach successfully
tracks and associates with the correct layer as the two persons walk on either side of the SUV and enter the MINI-Cooper.

(b) Far-field sequence corresponding to time-line in Fig. 8. A person at the back (green arrow) opening the car door is picked
up but he remains seated causing the track to be terminated. His track is reacquired in the middle of the sequence with a correct
layer assignment. A second person exits the mini-van in left-center of the lot and walks around the vehicle, his track is not lost
as a car passes-by due to the strong person dynamics constraint. The receptive field layer for the second pedestrian is accurate
over the whole sequence.

Figure 10. Tracking results for two parking lot sequences showing samples drawn from the multi-person posterior.



