Lightweight Formal Methods for the Development of High-Assurance Networking Systems

Kfoury, Assaf

Boston University Computer Science Department

http://hdl.handle.net/2144/1732

Boston University
Overview. In recent years, concepts and techniques rooted in formal methods of computer science and, more generally, mathematical logic have acquired an increasingly important role in systems research. One particular area that has witnessed a blossoming of formal approaches to specification, analysis, and verification, is that of networking systems. The iBench [2] and snBench [6] projects, both based in the Computer Science Department of Boston University, pursue several research activities in this direction. The following is a recent sample, listing the topic and the main collaborators on each:

 (mostly A. Bestavros, A. Kfoury, and M. Ocean).

2. An Application of Model Checking: Safe Composition of Arbitrary Network Protocols
 (mostly A. Bradley, A. Bestavros, and A. Kfoury).

3. Resource Allocation in Sensor Networks using a Strongly-Typed Domain-Specific Language
 (mostly A. Bestavros, A. Kfoury, and M. Ocean).

4. The Stable-Paths Problem and the Promise of an Automatic Lightweight Proof-Assistant
 (K. Donnelly, A. Kfoury, and A. Lapets).

Small as it is, the preceding sample is illustrative of a far wider area, with many approaches pursued by many researchers around the world, to promote the use of formal methods in networking systems research.

In this talk I will focus on topic 1, explaining the formal methodology we are currently developing, in the context of the iBench project, for what we call compositional analysis of networking systems. Some preliminary reports can be downloaded from the iBench publications page [3].

For the three last topics in my sample, I refer to our published reports and articles. For topic 2, search the iBench publications page [3] for articles containing the keyword “CHAIN” (Canonical Homomorphic Abstraction of Infinite Network) with Adam Bradley as co-author. For topic 3, search the snBench homepage [6] for reports which include Michael Ocean among its co-authors. For topic 4, preliminary results are reported in [1, 5, 4].

What Is Compositional Analysis? Many networking problems naturally lend themselves to graph-theoretic formulations that are far more complex than classical problems of graph theory. The modeling graphs are typically large, with hundreds or thousands or more nodes, often placed on a fluctuating grid, e.g., paths between nodes may fail or degrade or reappear, slowly or abruptly, and parameters regulating flow along paths may be conflicting requirements or defined differently at different nodes, locally or globally.

We propose a methodology for the specification and analysis of networking systems which attempts to support such uneven features in the large graphs modeling them. The proposed methodology would allow for a compositional (as opposed to whole-system) analysis which is additionally incremental (distributed in time) and modular.
logic, our methodology calls for the definition of a strongly-typed
then analyzing the combination (this is whole-system analysis).
Applying Compositional Analysis to Networks of Vehicular Tra-
c networks.
c, etc.), each with its own specific characteristics. For
c, vehicular tra
c, air tra
c, railroad tra

and techniques lightweight, i.e., making the parts available to users “friendly” (relatively simple and easy to use)
network configurations and the invariants we wish to enforce. We pay special attention to keeping these concepts
computational complexit

and at di
erent times.

interfaces, “
Our envisioned compositional analysis will not be invalidated by the presence of holes (the empty envelops or
interfaces (denoted by a “
above), then we can adopt the alternative approach of a compositional analysis:
Our schema above, contrasting compositional and whole-system analyses, calls for several additional provisos,
if we are interested in certifying that a particular invariant is preserved throughout the network without running into the limitations of a
whole-system analysis – inability to deal with incomplete or fluctuating topologies, or incurring the cost of having
re-examine the entire network – and if we can formalize this invariant using type-theoretic notions at module
interfaces (denoted by a “
above), where we can place different modules satisfying the same interface types, interchangeably
and at different times.

Our schema above, contrasting compositional and whole-system analyses, calls for several additional provisos,
if we are to reap all the benefits of the former. We mention only one such proviso, namely, that the cost of
combining two analyses via “
(this is compositional analysis) should be far smaller – specifically, below a computational complexity that is acceptable to the user – than the cost of combining two networks via “
and
then analyzing the combination (this is whole-system analysis).

In addition to concepts borrowed from formal methods of computer science and, more generally, mathematical
logic, our methodology calls for the definition of a strongly-typed domain-specific language (DSL) to specify
network configurations and the invariants we wish to enforce. We pay special attention to keeping these concepts
and techniques lightweight. i.e., making the parts available to users “friendly” (relatively simple and easy to use)
while the more complicated parts remain hidden “under the hood”.

Traffic networks are ideally suited as a test bed for such a methodology. There is a wide range of traffic networks
(Internet traffic, air traffic, railroad traffic, vehicular traffic, etc.), each with its own specific characteristics. For
definiteness, we choose vehicular traffic networks.

Applying Compositional Analysis to Networks of Vehicular Traffic. If \(M \) and \(N \) are vehicular traffic
networks, and \(M : (I_1, O_1) \) and \(N : (I_2, O_2) \) are typings of \(M \) and \(N \) assigning appropriately defined types to
their input (entering) and output (exiting) links, then the formal syntax of our strongly-typed DSL is defined by
rules of the form:

\[
\text{Connect} \quad \Gamma \vdash M : (I_1, O_1) \quad \Gamma \vdash N : (I_2, O_2) \quad \Gamma \vdash \text{conn}_{\theta,m,n}(M, N) : (I, O) \\
\text{parameters}(M) \cap \text{parameters}(N) = \emptyset \\
m = \text{length}(I_1), \ n = \text{length}(I_2), \ \theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\} \\
I = I_1 \cdot (I_2/\text{range}(\theta)), \ O = (O_1/\text{domain}(\theta)) \cdot O_2, \ [\text{Typ}(I_1)]_p \ll [\text{Typ}(I_2)]_q \text{ for every } (p, q) \in \theta
\]
Without delving into the details of the rule CONNECT, it formalizes the idea that, if we want to safely connect the p-th exiting link of M to the q-th entering link of N, then the type of the exiting link must be a subtype of the type of the entering link. Another rule of our DSL is of the form:

\[
\text{LET } \Gamma \vdash M_1 : (I_1, O_1) \cdots \Gamma \vdash M_n : (I_n, O_n) \quad \Gamma, X : (I, O) \vdash N : (I', O') \\
\text{for every } 1 \leq m \leq n, \quad \text{parameters}(M_m) \cap \text{parameters}(N) = \emptyset \\
\text{for every } 1 \leq m \leq n, \quad \text{length}(I_m) = \text{length}(I) \quad \text{and} \quad \text{length}(O_m) = \text{length}(O) \\
\text{Typ}(I_1) = \cdots = \text{Typ}(I_n) = \text{Typ}(I) \quad \text{and} \quad \text{Typ}(O_1) = \cdots = \text{Typ}(O_n) = \text{Typ}(O)
\]

The rule LET formalizes the idea that, in a hole X of a network N, we can place at will any of n different networks $\{M_1, \ldots, M_n\}$ that satisfy the same interface types.

There are various refinements of the preceding two rules, as well as several other rules (omitted here), that define the syntax of typed specifications for networks of vehicular traffic. The types for this application are velocity types and density types, which are both formalized as non-empty intervals over the natural numbers. They are inferred for a network by starting from the constraints regulating traffic at each of the nodes in the network. Constraints are equalities and inequalities between polynomial expressions over velocity and density parameters.

With such a DSL, we can enforce various desirable invariants across a traffic network, such as fairness (there is no link along which traffic is permanently prevented from moving), conservation of flow (traffic flow entering the network is equal to exiting traffic flow), gridlock-free (mutually conflicting traffic along some of the links ultimately result in blocking traffic along all links), etc.

Presentation. Slides for the presentation can be downloaded from the iBench publications webpage [3] or the snBench homepage [6]. The slides are in three parts and include details considerably expanding the lecture at VeCOS 2009: Part 1 (slides 1-49), Part 2 (slides 50-86), and Part 3 (slides 87-111).

References