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PROBABILISTIC AND STATISTICAL PROBLEMS RELATED TO

LONG-RANGE DEPENDENCE

SHUYANG BAI

Boston University, Graduate School of Arts and Sciences, 2016

Major Professor: Murad S. Taqqu, Professor of Mathematics and Statistics

ABSTRACT

The thesis is made up of a number of studies involving long-range dependence (LRD),

that is, a slow power-law decay in the temporal correlation of stochastic models. Such a

phenomenon has been frequently observed in practice. The models with LRD often yield

non-standard probabilistic and statistical results. The thesis includes in particular the

following topics:

• Multivariate limit theorems. We consider a vector made of stationary sequences,

some components of which have LRD, while the others do not. We show that the joint

scaling limits of the vector exhibit an asymptotic independence property.

• Non-central limit theorems. We introduce new classes of stationary models with

LRD through Volterra-type nonlinear filters of white noise. The scaling limits of the sum

lead to a rich class of non-Gaussian stochastic processes defined by multiple stochastic

integrals.

• Limit theorems for quadratic forms. We consider continuous-time quadratic forms

involving continuous-time linear processes with LRD. We show that the scaling limit of

such quadratic forms depends on both the strength of LRD and the decaying rate of the

quadratic coefficient.

• Behavior of the generalized Rosenblatt process. The generalized Rosenblatt pro-

cess arises from scaling limits under LRD. We study the behavior of this process as its two

critical parameters approach the boundaries of the defining region.

• Inference using self-normalization and resampling. We introduce a procedure

v



called “self-normalized block sampling” for the inference of the mean of stationary time

series. It provides a unified approach to time series with or without LRD, as well as with

or without heavy tails. The asymptotic validity of the procedure is established.
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Chapter 1

Introduction

In many statistical models, the random noise sequence {Xn} is assumed to be independent

as the index n varies. For example, this is the case when n indexes different experiments

carried out independently. In time series analysis where n indexes the time, treating

dependent {Xn} is the rule rather than the exception. When the dependence is weak, the

large sample theory in statistical inference usually necessitates only a minor modification

from the independent case. This is due to the fact that when the dependence is weak (also

termed short-range dependence (SRD) or short memory), one typically has the following

central limit theorem describing the scaling behavior of the sample sum:

1

N1/2

[Nt]∑
n=1

Xn ⇒ σB(t), (1.1)

as N →∞, where B(t) is the standard Brownian motion and where

σ2 =

+∞∑
n=−∞

Cov[Xn, X0], (1.2)

the sum of auto-covariance of all orders, the so-called long-run variance. Here “⇒” stands

for weak convergence in the Skorohod space D[0, 1] (Billingsley [1999]). In the independent

case, we just have (1.1) with σ2 = Var[Xn].

On the other hand, when the dependence is so strong that the covariance function

Cov[Xn, X0] behaves like n−α as n → ∞, α ∈ (−1, 0), the long-run variance in (1.2) be-

comes infinite, and (1.1) fails to hold. This regime of strong dependence is often addressed
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as long-range dependence (LRD), also as long memory. In practice, long-range dependent

data is observed in various fields, e.g., hydrology, finance, internet, biology, etc (see the

recent monograph Beran et al. [2013]). Under long-range dependence, it is still possible to

establish limit theorems of the type

1

NH

[Nt]∑
n=1

Xn ⇒ YH(t), (1.3)

where the exponent H, called the Hurst index, takes value in the interval (1/2, 1), and

where {YH(t), t ≥ 0} is a self-similar process (i.e., {Y (ct), t ≥ 0} has the same statistical

law as {cHY (t), t ≥ 0} for any c > 0) with stationary increments. Limit theorems of

the type (1.3) are often termed non-central limit theorems. The limit process YH(t) is

typically the fractional Brownian motion, a Gaussian process with dependent increments.

But more interestingly, one can as well get convergence to a non-Gaussian limit YH(t),

which is typically represented by a multiple stochastic integral, e.g., the Hermite processes.

See, e.g., Dobrushin and Major [1979], Taqqu [1979], Surgailis [1982], Avram and Taqqu

[1987] and Ho and Hsing [1997] for such type of results.

My dissertation focuses on probabilistic and statistical problems related to (1.3). In

particular, the dissertation is organized by the following topics:

1.1 Multivariate limit theorems (Chapter 2 and 3)

In Chapter 2, motivated by the needs in statistical inference, we consider multivariate

extensions of (1.1) and (1.3) under the Gaussian subordination model. In particular, we

consider the vector sequence (Xn,1, . . . , Xn,J) = (G1(Zn), . . . , GJ(Zn)), where {Zn} is a

long-range dependent Gaussian sequence and Gj(·)′s are different functions. Depending

on the choice of Gj(·), the component {Xn,j} may be short or long-range dependent. We

establish multivariate limit theorems for the normalized sum of (Xn,1, . . . , Xn,J), where

we find the phenomenon that the short-range dependent components are asymptotically

independent of the long-range dependent components, while within each type of the com-
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ponents, there is, in general, asymptotic dependence. This part is based on Bai and Taqqu

[2013a].

In Chapter 4, we study a similar problem as in Chapter 1, but for a different model of

(Xn,1, . . . , Xn,J), where each Xn,j is a multilinear moving average of of independent and

identically distributed (i.i.d.) noise (see (1.4) below). This part is based on Bai and Taqqu

[2013b].

1.2 Non-central limit theorems (Chapter 4 and 5)

In Chapter 4, we study limit theorems for the multilinear moving average of the form

Xn =
′∑

i1,...,ik≥0

a(i1, . . . , ik)εn−i1 . . . εn−ik , (1.4)

where εi’s are i.i.d. centered random variables with finite variance, the prime ′ indicates that

the sum excludes the diagonals ip = iq, p 6= q. Depending on the decay of the coefficient

a(·), the sequence {Xn} can be short or long-range dependent. When it is long-range

dependent, the limit YH(t), H > 1/2, in (1.3) involves the multiple Wiener-Itô integral:

YH(t) = ZH,k(t) =

∫ ′
Rk

∫ t

0
g(s− x1, . . . , s− xk)ds B(dx1) . . . B(dxk), (1.5)

where B(dx) is the Brownian random measure, the prime ′ indicates the exclusion of the

diagonals in the multiple integral, and g(·) is supported on Rk+ and homogeneous with

degree H − k/2 − 1. This generalizes the Hermite processes considered in the literature

where g(·) is a product of powers. To get YH(t) with H < 1/2 beyond (1.5), an additional

linear filter needs to be applied to {Xn} in (1.4). This part is based on Bai and Taqqu

[2014a].

In Chapter 5, we consider the case where {Xn} is right at the border between short-

and long-range dependence. To establish the limit theorem in this delicate case, certain

universality result on random multilinear forms involving the Malliavin calculus are used.
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This part is based on Bai and Taqqu [2015a].

1.3 Limit theorems for quadratic forms (Chapter 6 and 7)

In Chapter 6 and 7, instead of studying limit theorems for the linear summation functional

in (1.3), we consider limit theorems for the Toeplitz type quadratic form

QT (t) =

∫ Tt

0

∫ Tt

0
a(s1 − s2)X(s1)X(s2)ds1ds2

as T → ∞ after suitable normalization, where X(s) is a Gaussian process (Chapter 6) or

Lévy-driven linear process (Chapter 7), and a(·) is a symmetric coefficient function. The

study of QT (t) is related to the nonparametric inference of the spectrum of X(s). The

type of limit we get depends on the “combined dependence” of a(·) and X(s), that is, it

depends on the rate of decay of a(·) as well as the rate of decay of correlation of X(s). When

the “combined dependence” is weak, the limit is Brownian motion; when the “combined

dependence” is strong, the limit is a non-Gaussian self-similar process represented by a

double Wiener-Itô integral. Different representations of this non-Gaussian limit process

were also studied. This part is based on Bai et al. [2015] and Bai et al. [2016a].

1.4 Behavior of the generalized Rosenblatt process (Chapter 8)

In Chapter 8, we study a special case of (1.5), that is,

Rγ1,γ2(t) =

∫ ′
R2

∫ t

0
(s− x1)γ1+ (s− x2)γ2+ ds B(dx1)B(dx2),

(γ1, γ2) ∈∆ := {(γ1, γ2) : γ1, γ2 < −1/2, γ1 + γ2 > −3/2},

called the generalized Rosenblatt process, which was first formally considered in Maejima

and Tudor [2012]. In particular, we analyzed the moments of Rγ1,γ2(t), based on which

we were able to establish interesting distributional behavior of the normalized process

Rγ1,γ2(t) as (γ1, γ2) approaches the boundaries of the triangular region ∆. On each of the
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two symmetric boundaries, the limit is non-Gaussian. On the third diagonal boundary,

the limit is Brownian motion. The rates of convergence to these boundaries are also given.

The situation is particularly delicate as one approaches the corners of the triangle, because

the limit process will depend on how these corners are approached. This part is based on

Bai and Taqqu [2015d].

1.5 Inference using self-normalization and resampling (Chapter 9)

The inference procedure for the mean of a stationary time series is usually quite different

under various model assumptions because the partial sum process (see (1.3)) behaves dif-

ferently depending on whether the time series is short or long-range dependent, or whether

it has a light or heavy-tailed marginal distribution. These procedures usually involve esti-

mation of additional nuisance parameters. It is often challenging for practitioners to decide

which procedure to use given the data, and to know whether their estimation of the nui-

sance parameters is reliable. A procedure, called self-normalized block sampling, is able

to alleviate this challenge by unifying the inference procedure for various aforementioned

model assumptions. It avoids the estimation of many nuisance parameters, and requires

only the choice of one bandwidth. In Chapter 9, we developed an asymptotic theory for

the self-normalized block sampling. Monte Carlo simulations are presented to illustrate

its competitive finite-sample performance. The asymptotic consistency of the procedure

involves a bound on maximal linear correlation between two blocks of a long-memory time

series. This part is based on Bai et al. [2016b].



Chapter 2

Multivariate limit theorems in the context of

long-range dependence

We study the limit law of a vector made up of normalized sums of functions of long-

range dependent stationary Gaussian series. Depending on the memory parameter of the

Gaussian series and on the Hermite ranks of the functions, the resulting limit law may be

(a) a multivariate Gaussian process involving dependent Brownian motion marginals, or

(b) a multivariate process involving dependent Hermite processes as marginals, or (c) a

combination. We treat cases (a), (b) in general and case (c) when the Hermite components

involve ranks 1 and 2. We include a conjecture about case (c) when the Hermite ranks are

arbitrary, although the conjecture can be resolved in some special cases.

2.1 Introduction

A stationary time series displays long-range dependence if its auto-covariance decays slowly

or if its spectral density diverges around the zero frequency. When there is long-range

dependence, the asymptotic limits of various estimators are often either Brownian Motion

or a Hermite process. The most common Hermite processes are fractional Brownian motion

(Hermite process of order 1) and the Rosenblatt process (Hermite process of order 2), but

there are Hermite processes of any order. Fractional Brownian motion is the only Gaussian

Hermite process.

Most existing limit theorems involve univariate convergence, that is, convergence to a

single limit process, for example, Brownian motion or a Hermite process (Breuer and Major
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[1983], Dobrushin and Major [1979], Taqqu [1979]). In time series analysis, however, one

often needs joint convergence, that is, convergence to a vector of processes. This is because

one often needs to consider different statistics of the process jointly. See, for example,

Lévy-Leduc et al. [2011], Rooch [2012]. We establish a number of results involving joint

convergence, and conclude with a conjecture.

Our setup is as follows. Suppose {Xn} is a stationary Gaussian series with mean 0,

variance 1 and regularly varying auto-covariance

γ(n) = L(n)n2d−1 (2.1)

where

0 < d < 1/2,

and L is a slowly varying function at infinity. This is often referred to “long-range depen-

dence”(LRD) or “long memory” in the literature, and d is called the memory parameter.

The higher d, the stronger the dependence. The slow decay (2.1) of γ(n) yields

∞∑
n=−∞

|γ(n)| =∞.

The case where
∞∑

n=−∞
|γ(n)| <∞,

is often referred to “short-range dependence” (SRD) or “short memory”. See Beran [1994],

Doukhan et al. [2003], Giraitis et al. [2012] for more details about these notions.

We are interested in the limit behavior of the finite-dimensional distributions (f.d.d.)

of the following vector as N →∞:

VN (t) =

 1

Aj(N)

[Nt]∑
n=1

(
Gj(Xn)− EGj(Xn)

)
j=1,...,J

, (2.2)
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where Gj , j = 1, . . . , J are nonlinear functions, t > 0 is the time variable, and Aj(N)’s are

appropriate normalizations which make the variance of each component at t = 1 tend to

1. Observe that the same sequence {Xn} is involved in each component of VN , in contrast

to Ho and Sun [1990] who consider the case J = 2 and {(Xn, Yn)} is a bivariate Gaussian

vector series.

Note also that convergence in f.d.d. implies that our results continue to hold if one

replaces the single time variable t in (2.2) with a vector (t1, . . . , tJ) which would make

VN (t1, . . . , tJ) a random field.

Depending on the memory parameter of the Gaussian series and on the Hermite ranks

of the functions (Hermite ranks are defined in Section 2.2), the resulting limit law for (2.2)

may be:

(a) a multivariate Gaussian process with dependent Brownian motion marginals,

(b) or a multivariate process with dependent Hermite processes as marginals,

(c) or a combination.

We treat cases (a), (b) in general and case (c) when the Hermite components involve ranks

1 and 2 only. To address case (c), we apply a recent asymptotic independence theorem of

Nourdin and Rosinski [2014] of Wiener-Itô integral vectors. We include a conjecture about

case (c) when the Hermite ranks are arbitrary. This conjecture has been recently resolved by

Nourdin et al. [2016]. We also prove that the Hermite processes in the limit are dependent

on each other. Thus, in particular, fractional Brownian motion and the Rosenblatt process

in the limit are dependent processes even though they are uncorrelated. Although our

results are formulated in terms of convergence of f.d.d. , under some additional assumption,

they extend to weak convergence in D[0, 1]J(J-dimensional product space where D[0, 1] is

the space of Càdlàg functions on [0, 1] with the uniform metric), as noted in Theorem 2.3.12

at the end of Section 2.3.

The chapter is structured as follows. We review the univariate results in Section 2.2.

In Section 2.3, we state the corresponding multivariate results. Section 2.4 contains the
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proofs of the theorems in Section 2.3. Section 2.5 shows that the different representations

of the Hermite processes are also equivalent in a multivariate setting. Section 2.6 refers

to the results of Nourdin and Rosinski [2014] and concerns asymptotic independence of

Wiener-Itô integral vectors.

2.2 Review of the univariate results

We review first results involving (2.2) when J = 1 in (2.2). Assume thatG belongs to L2(φ),

the set of square-integrable functions with respect to the standard Gaussian measure φ.

This Hilbert space L2(φ) has a complete orthogonal basis {Hm(x)}m≥0, where Hm is the

Hermite polynomial defined as

Hm(x) = (−1)m exp

(
x2

2

)
dm

dxm
exp

(
−x2

2

)
,

(Nourdin and Peccati [2012], Chapter 1.4). Therefore, every function G ∈ L2(φ) admits

the following type of expansion:

G =
∑
m≥0

gmHm, (2.3)

where gm = (m!)−1
∫
RG(x)Hm(x)dφ(x).

Since H0(x) = 1 and since we always center the series {G(Xn)} by subtracting its mean

in (2.2), we may always assume g0 = EG(Xn) = 0. The smallest index k ≥ 1 for which

gk 6= 0 in the expansion (2.3) is called the Hermite rank of G.

Since {Xn} is a stationary Gaussian series, it has the following spectral representation

Xn =

∫
R
einxdW (x), (2.4)

where W is the complex Hermitian (W (A) = W (−A)) Gaussian random measure specified

by EW (A)W (B) = F (A ∩ B). The measure F is called the spectral distribution of {Xn},



10

is also called the control measure of W , and is defined by

γ(n) = EXnX0 =

∫
R
einxdF (x),

(see Lifshits [2012], Chapter 3.2).

Multiple Wiener-Itô integrals (Major [2014])

Im(K) =

∫ ′′
Rm

K(x1, . . . , xm)dW (x1) . . . dW (xm) (2.5)

where ∫
Rm
|K(x1, . . . , xm)|2dF (x1) . . . dF (xm) <∞,

play an important role because of the following connection between Hermite polynomials

and multiple Wiener-Itô integrals (Nourdin and Peccati [2012] Theorem 2.7.7):

Hm(Xn) =

∫ ′′
Rm

ein(x1+...+xm)dW (x1) . . . dW (xm), (2.6)

where the double prime ′′ indicates that one doesn’t integrate on the hyper-diagonals

xj = ±xk, j 6= k. Throughout this chapter, Im(.) denotes a m-tuple Wiener-Itô integral of

the type in (2.5).

We now recall some well-known univariate results:

Theorem 2.2.1. (SRD Case.) Suppose the memory parameter d and the Hermite rank

k ≥ 1 of G satisfy

0 < d <
1

2
(1− 1

k
).

Then

1

A(N)

[Nt]∑
n=1

G(Xn)
f.d.d.−→ B(t),

where B(t) is a standard Brownian Motion, “
f.d.d.−→ ” denotes convergence in finite-dimensional

distributions along the time variable t > 0, A(N) ∝ N1/2 is a normalization factor such
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that

lim
N→∞

Var

(
1

A(N)

N∑
n=1

G(Xn)

)
= 1.

Remark 2.2.2. It can indeed be shown that in the setting of Theorem 2.2.1,

Var

(
N∑
n=1

G(Xn)

)
∼ σ2N, (2.7)

where

σ2 =
∞∑
m=k

g2
mm!

∞∑
n=−∞

γ(n)m. (2.8)

Recall that the gm’s are the coefficients of the Hermite expansion of G, and γ is the auto-

covariance function of {Xn}.

Remark 2.2.3. The condition 0 < d < 1
2(1− 1

k ) can be replaced with a weaker condition

∞∑
n=−∞

|γ(n)|k <∞,

or equivalently,
∑∞

n=−∞ |γG(n)| < ∞, where γG(n) is the auto-covariance function of

{G(Xn)}. See Theorem 4.6.1 in Giraitis et al. [2012]. If d = 1
2(1− 1

k ) but as N →∞,

N∑
n=−N

|γ(n)|k =
N∑
−N

n−1|L(n)|k =: L∗(N)→∞

is slowly varying, then one still gets convergence to Brownian motion (Theorem 1’ of Breuer

and Major [1983]), but with the normalization

A(N) ∝ (NL∗(N))1/2 .

For example, if the slowly varying function in (2.1) is L(n) ∼ c > 0, then A(N) ∝

(N lnN)1/2.

The original proof of Theorem 2.2.1 (Breuer and Major [1983]) was done by a method of

moments using the so-called diagram formulas (Peccati and Taqqu [2011]), which provide
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explicit ways to compute the cumulants of Hermite polynomials of Gaussian random vari-

able. Recently, a remarkable technique for establishing central limit theorems of multiple

Wiener-Itô integral was found by Nualart and Peccati [2005], Peccati and Tudor [2005],

whereby in the multiple Wiener-Itô integral setting, convergence of the fourth moment, or

some equivalent easier-to-check condition, implies directly the Gaussian limit. See Theorem

7.2.4 in Nourdin and Peccati [2012] for a proof in the case t = 1.

Theorem 2.2.4. (LRD Case.) Suppose that the memory parameter d and the Hermite

rank k ≥ 1 of G satisfy

1

2
(1− 1

k
) < d <

1

2
.

Then

1

A(N)

[Nt]∑
n=1

G(Xn)
f.d.d.−→ Z

(k)
d (t) := Ik(f

(t)
k,d),

where the control measure of Ik(.) is Lebesgue,

A(N) ∝ N1+(d−1/2)kL(N)k/2

is a normalization such that

lim
N→∞

Var

(
1

A(N)

N∑
n=1

G(Xn)

)
= 1,

and

f
(t)
k,d(x1, . . . , xk) = bk,d

eit(x1+...+xk) − 1

i(x1 + . . .+ xk)
|x1|−d . . . |xk|−d,

where

bk,d =

(
(k(d− 1/2) + 1) (2k(d− 1/2) + 1)

k! (2Γ(1− 2d) sin(dπ))k

)1/2

is the normalization constant to guarantee unit variance for Z(k)(1).

For a proof, see Dobrushin and Major [1979] and Pipiras and Taqqu [2010]. The process

Z
(k)
d (t) appearing in the limit is called a Hermite process.
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Remark 2.2.5. It can indeed be shown that in the setting of Theorem 2.2.4,

Var

(
N∑
n=1

G(Xn)

)
= LG(N)N2dG+1 (2.9)

for some slowly varying function LG(N) ∝ L(N)k and

dG = (d− 1/2)k + 1/2

(see e.g. (3.3.8) in Giraitis et al. [2012]). Since d < 1/2, increasing the Hermite rank k

decreases the memory parameter dG, hence decreases the dependence. Note that if k ≥ 2,

then the variance growth of {G(Xn)} in (2.9) is slower than the variance growth of {Xn},

Var(
N∑
n=1

Xn) = L0(N)N2d+1

for some slowly varying function L0, but is always faster than the variance growth σ2N in

the SRD case in (2.7).

The process Z
(1)
d (t), t ≥ 0 is a Gaussian process called fractional Brownian motion, and

Z
(2)
d (t), t ≥ 0 is a non-Gaussian process called Rosenblatt process. The Hermite processes

Z
(k)
d (t) are all so-called self-similar processes (Embrechts and Maejima [2002]).

2.3 Multivariate convergence results

Our aim is to study the limit of (2.2), and in particular, to extend Theorem 2.2.1 (SRD)

and Theorem 2.2.4 (LRD) to a multivariate setting.

Suppose that for each j = 1, . . . , J , the function Gj in (2.2) belongs to L2(φ), has

Hermite rank kj and admits Hermite expansion
∑∞

m=kj
gm,jHm (see (2.3)).

We start with the pure SRD case where every component {Gj(Xn)} of VN (t) in (2.2)

is SRD.

Theorem 2.3.1. (SRD Case.) If the memory parameter d is small enough so that all
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{Gj(Xn)}, j = 1, . . . , J are SRD, that is,

d <
1

2
(1− 1

kj
), j = 1, . . . , J,

then in (2.2)

VN (t)
f.d.d.−→ B(t),

as N →∞, where the normalization Aj(N) ∝ N1/2 is such that for j = 1, . . . , J ,

lim
N→∞

Var

(
1

Aj(N)

N∑
n=1

Gj(Xn)

)
= 1. (2.10)

Here

B(t) = (B1(t), . . . , BJ(t))

is a multivariate Gaussian process with standard Brownian motions as marginals, and

where the cross-covariance between two components is

Cov (Bj1(t1), Bj2(t2)) = lim
N→∞

Cov(VN,j1(t1), VN,j2(t2))

= (t1 ∧ t2)

 1

σj1σj2

∞∑
m=kj1∨kj2

gm,j1gm,j2m!

∞∑
n=−∞

γ(n)m

 (2.11)

where

σ2
j =

∞∑
m=kj

g2
m,jm!

∞∑
n=−∞

γ(n)m. (2.12)

This theorem is proved in Section 2.4.1.

Example 2.3.2. Assume that the auto-covariance function γ(n) ∼ n2d−1, 0 < d < 1/4, as

n→∞. Let J = 2,

G1(x) = aH2(x) + bH3(x) = bx3 + ax2 − 3bx− a, G2(x) = cH3(x) = cx3 − 3cx.
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Then in (2.12),

σ2
1 = 2a2

∞∑
n=−∞

γ(n)2 + 6b2
∞∑

n=−∞
γ(n)3, σ2

2 = 6c2
∞∑

n=−∞
γ(n)3,

and  1

N1/2

[Nt]∑
n=1

(X2
n − 1),

1

N1/2

[Nt]∑
n=1

(X3
n − 3Xn)

 f.d.d.−→ (σ1B1(t), σ2B2(t)) ,

where the Brownian motions B1 and B2 have the covariance structure:

Cov (B1(t1), B2(t2)) = 6b
t1 ∧ t2
σ1σ2

∞∑
n=−∞

γ(n)3.

B1 and B2 are independent when b = 0.

Next we consider the case where every component {Gj(Xn)} of VN (t) in (2.2) is LRD.

Theorem 2.3.3. (LRD Case.) If the memory parameter d is large enough so that all

Gj(Xn), j = 1, . . . , J are LRD, that is,

d >
1

2
(1− 1

kj
), j = 1, . . . , J,

then in (2.2),

VN (t)
f.d.d.−→ Zk

d (t) :=
(
Ik1(f

(t)
k1,d

), . . . , IkJ (f
(t)
kJ ,d

)
)
, (2.13)

where the normalization Aj(N) ∝ N1+(d−1/2)kjL(N)kj/2 is such that for j = 1, . . . , J ,

lim
N→∞

Var

(
1

Aj(N)

N∑
n=1

Gj(Xn)

)
= 1. (2.14)

Each component of Zk
d (t) :=

(
Z

(k1)
d (t), . . . , Z

(kJ )
d (t)

)
is a standard Hermite process, and

Ik(.) denotes k-tuple Wiener-Itô integral with respect to a common complex Hermitian
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Gaussian random measure W with Lebesgue control measure, and

f
(t)
k,d(x1, . . . , xk) = bk,d

eit(x1+...+xk) − 1

i(x1 + . . .+ xk)
|x1|−d . . . |xk|−d, (2.15)

where bk,d’s are the same normalization constants as in Theorem 2.2.4.

This theorem is proved in Section 2.4.2.

Example 2.3.4. Assume that auto-covariance function γ(n) ∼ n2d−1, 1/4 < d < 1/2, as

n→∞. Let J = 2,

G1(x) = H1(x) = x, G2(x) = H2(x) = x2 − 1,

then 1

N1/2+d

[Nt]∑
n=1

Xn,
1

N2d

[Nt]∑
n=1

(X2
n − 1)

 f.d.d.−→
(

1

d(2d+ 1)
Z

(1)
d (t),

1

d(4d− 1)
Z

(2)
d (t)

)
,

where the standard fractional Brownian motion Z
(1)
d (t) and standard Rosenblatt process

Z
(2)
d (t) share the same random measure in the Wiener-Itô integral representation. The

components Z
(1)
d and Z

(2)
d are uncorrelated but dependent as stated below.

In Theorem 2.3.3, the marginal Hermite processes

Z
(k1)
d (t) = Ik1(f

(t)
k1,d

), . . . , Z
(kJ )
d (t) = IkJ (f

(t)
kJ ,d

)

are dependent on each other. To prove this, we use a different representation of the Hermite

process, namely, the positive half-axis representation given in (2.45).

Proposition 2.3.5. The marginal Hermite processes Z
(k1)
d , . . . , Z

(kJ )
d involved in Theorem

2.3.3 are dependent.

Proof. From Ustunel and Zakai [1989], we have the following criterion for the independence

of multiple Wiener-Itô integrals: suppose that symmetric g1 ∈ L2(Rp+) and g2 ∈ L2(Rq+).
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Then Ip(g1) and Iq(g2) (p, q ≥ 1) are independent if and only if

g1 ⊗1 g2 :=

∫
R+

g1(x1, . . . , xp−1, u)g2(xp, . . . , xp+q−2, u)du = 0 in L2(Rp+q−2
+ ).

We shall apply this criterion to the positive half-axis integral representation (2.45) of

Hermite processes (see also Pipiras and Taqqu [2010]):

Z
(k)
d (t) = ck,dIk

(
g

(t)
k,d(x1, . . . , xk)

)
: = ck,d

∫ ′
Rk+

∫ t

0

k∏
j=1

x−dj (1− sxj)d−1
+ ds

 dB(x1) . . . dB(xk),

where B is Brownian motion, the prime ′ indicates the exclusion of diagonals with xj =

xk, j 6= k and ck,d is some normalization constant. In fact, for a vector made up of Hermite

processes sharing the same random measure in their Wiener-Itô integral representation,

the joint distribution does not change when switching from one representation of Hermite

process to another. See Section 2.5.

One can then see (let t = 1 and thus gk,d := g
(1)
k,d) that for all (x1, . . . , xp+q−2) ∈ Rp+q−2

+ :

(gp,d ⊗1 gq,d)(x1, . . . , xp+q−2)

=

∫
R+

∫ 1

0

p−1∏
j=1

x−dj (1− sxj)d−1
+ u−d(1− su)d−1

+ ds×

∫ 1

0

p+q−2∏
j=p

x−dj (1− sxj)d−1
+ u−d(1− su)d−1

+ ds

 du > 0

because every term involved in the integrand is positive.

Theorem 2.3.1 and Theorem 2.3.3 describe the convergence of VN (t) in (2.2) when the

{Gj(Xn)}, j = 1, . . . , J are all purely SRD or purely LRD. However, when the components

in VN (t) are mixed, that is, some of them are SRD and some of them are LRD, it is not

immediately clear what the limit behavior is and also what the inter-dependence structure
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between the SRD and LRD limit components is. We show that the SRD part and LRD

part are asymptotically independent so that one could join the limits of Theorem 2.3.1 and

Theorem 2.3.3 together, in the case when the Gj ’s in the LRD part only involve the two

lowest Hermite ranks, namely, k = 1 or k = 2. This is stated in the next theorem where

the letter “S” refers to the SRD part and “L” to the LRD part.

Theorem 2.3.6. (SRD and LRD Mixed Case.) Separate the SRD and LRD parts of

VN (t) in (2.2), that is, let VN (t) = (SN (t),LN (t)), where

SN (t) =

 1

A1,S(N)

[Nt]∑
n=1

G1,S(Xn), . . . ,
1

AJS ,S(N)

[Nt]∑
n=1

GJS ,S(Xn)

 , (2.16)

LN (t) =

 1

A1,L(N)

[Nt]∑
n=1

G1,L(Xn), . . . ,
1

AJL,L(N)

[Nt]∑
n=1

GJL,L(Xn)

 , (2.17)

where Gj,S has Hermite rank kj,S, and Gj,L has Hermite rank kj,L,

Aj,S ∝ N1/2 and Aj,L ∝ N1+(d−1/2)kj,LL(N)kj,L/2

are the correct normalization factors such that for j = 1, . . . , JS and j = 1, . . . , JL respec-

tively,

lim
N→∞

Var

(
1

Aj,S(N)

N∑
n=1

Gj,S(Xn)

)
= 1, lim

N→∞
Var

(
1

Aj,L(N)

N∑
n=1

Gj,L(Xn)

)
= 1.

(2.18)

In addition,

1

2
(1− 1

kjL,L
) < d <

1

2
(1− 1

kjS ,S
) for all jS = 1, . . . , JS , jL = 1, . . . , JL, (2.19)

where we allow arbitrary values for kj,S but only kj,L = 1 or 2. (Condition (2.19) makes

all {Gj,S(Xn)} SRD and all {Gj,L(Xn)} LRD.)
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Then we have

(SN (t),LN (t))
f.d.d.−→ (B(t),Z

(kL)
d (t)), (2.20)

where the multivariate Gaussian process B(t) is given in (2.3.1) and the multivariate stan-

dard Hermite process Z
(kL)
d (t) is given in (2.3.3). Moreover, the vectors B(t) and Z

(kL)
d (t)

are independent.

This theorem is proved in Section 2.4.3. Observe that while B(t) is made up of corre-

lated Brownian motions, it follows from Theorem 2.3.6 that if Z
(k)
d (t) contains fractional

Brownian motion as a component, then the fractional Brownian motion will be independent

of any Brownian motion component of B(t).

Example 2.3.7. Assume that the auto-covariance function γ(n) ∼ n2d−1, 1/4 < d < 1/3,

as n→∞. Let J = 2,

G1(x) = H2(x) = x2 − 1, G2(x) = H3(x) = x3 − 3x,

then σ2 = 6
∑∞

n=−∞ γ(n)3 and

 1

N2d

[Nt]∑
n=1

(X2
n − 1),

1

N1/2

[Nt]∑
n=1

(X3
n − 3Xn)

 f.d.d.−→
(

1

d(4d− 1)
Z

(2)
d (t), σB(t)

)
.

where the standard Rosenblatt process Z
(2)
d (t) and the standard Brownian motion B(t) are

independent.

The proof of Theorem 2.3.6 is based a recent result in Nourdin and Rosinski [2014]

which characterizes the asymptotic moment-independence of series of multiple Wiener-

Itô integral vectors. We also note that in Proposition 5.3 (2) of Nourdin and Rosinski

[2014], a special case of Theorem 2.3.6 with JS = JL = 1 and LRD part involving Hermite

rank k1,L = 2 is treated. To go from moment-independence to independence, however,

requires moment-determinancy of the limit, which we know holds when the Hermite rank

k = 1, 2, that is, in the Gaussian and Rosenblatt cases. If some other Hermite distribution



20

(marginal distribution of Hermite process) Z
(k)
d (k ≥ 3) is moment-determinate, then we

will allow kj,L = k in Theorem 2.3.6. So to this end, the moment-problem of general

Hermite distributions is of great interest.

We conjecture the following:

Conjecture 2.3.8. Theorem 2.3.6 holds without the restriction that kj,L be 1 or 2.

This conjecture has been recently resolved by Nourdin et al. [2016]. We also show that

the conjecture holds in the following special case:

Theorem 2.3.9. (Gaussian linear process case.) Conjecture 2.3.8 holds when

Xn =

∞∑
i=1

aiεn−i,

where εi’s are i.i.d. Gaussian and {ai} is regularly varying as i→∞ with exponent d− 1,

d ∈ (0, 1/2).

Theorem 2.3.9 is based on the arguments in Bai and Taqqu [2013b] and its proof is

sketched in Section 2.4.4. In Bai and Taqqu [2013b] a different setup is considered: a

multilinear polynomial-form process

Un =

′∑
0<i1,...,ik<∞

ai1 . . . aikεn−i1 . . . εn−ik (2.21)

obtained by applying an off-diagonal multilinear polynomial-form filter to an i.i.d. sequence

{εi}, where ′ means exclusion of the diagonals ip = iq, p 6= q, and {ai} is regularly varying.

The resulting sequence {X(n)} will then display either short or long memory. Now consider

a vector of such X(n), whose components are defined through different {ai}’s, that is,

through different multilinear polynomial-form filters, but using the same {εi}. What is the

limit of the normalized partial sums of the vector? It is shown in Bai and Taqqu [2013b]

that the resulting limit is either a) a multivariate Gaussian process with Brownian motion

as marginals, or b) a multivariate Hermite process, or c) a mixture of the two. One has a
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similar limit structure as in the present chapter, but also asymptotic independence without

restriction on the order k.

Note, however, that the setup (2.21) of Bai and Taqqu [2013b] is different from the case

considered in the present chapter even if the εi’s are Gaussian. This is because, while one

can set

a(x) = a[x]+11{x≥0}

and write

Xn =
∑
i<n

an−iεi
d
=

∫
R
a(n− x)W (dx),

one does not have

′∑
−∞<i1,...,ik<n

an−i1 . . . an−ikεi1 . . . εik
d
=

∫ ′
R
a(n− [x1]) . . . a(n− [xk])W (dx1) . . .W (dxk).

(2.22)

This is because the left-hand side of (2.22) excludes a large interval around the diagonals,

which is not the case for the right-hand side. So the result of Bai and Taqqu [2013b] does

not apply directly to the right-hand side of (2.22). Observe that this right-hand side falls

within our framework because it equals Hk(Xn).

Remark 2.3.10. As mentioned in Remark 2.2.3, the border case d = 1
2(1 − 1

kj
) often

leads to convergence to Brownian motion as well. In fact, Theorem 2.3.1 and Theorem

2.3.6 continue to hold if we extend the definition of SRD to the case whenever the limit is

Brownian motion regardless of the normalization.

In Theorem 2.3.1, Theorem 2.3.3 and Theorem 2.3.6 we stated the results only in

terms of convergence in finite-dimensional distributions, but in fact they hold under weak

convergence in D[0, 1]J (J-dimensional product space where D[0, 1] is the space of Càdlàg

functions on [0, 1] with the uniform metric). If one can check that every component of

VN (t) is tight, then the vector VN (t) is tight:

Lemma 2.3.11. Univariate tightness in D[0, 1] implies multivariate tightness in D[0, 1]J .
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Proof. Suppose every component Xj,N (a random element in S = D[0, 1] with uniform

metric d) of the J-dimensional random element XN is tight, that is, given any ε > 0, there

exists a compact set Kj in D[0, 1], so that for all N large enough:

P (Xj,N ∈ Kc) < ε

where Kc
j denotes the complement of Kj . If K = K1× . . .×KJ , then K is compact in the

product space SJ . We can associate SJ with any compatible metric, e.g., for X,Y ∈ SJ ,

dm(X,Y) := max
1≤j≤J

(d(X1, Y1), . . . , d(XJ , YJ)).

The sequence XN is tight on D[0, 1]J since

P (XN ∈ Kc) = P (∪Jj=1{Xj,N ∈ Kc
j}) ≤

J∑
j=1

P (Xj,N ∈ Kc
j ) < Jε.

The univariate tightness is shown in Taqqu [1979] for the LRD case. The tightness for

the SRD case was considered in Chambers and Slud [1989] p. 328 and holds under the

following additional assumption, that {G(Xn)} is SRD, with

∞∑
k=1

3k/2(k!)1/2|gk| <∞, (2.23)

where gk is the k-th coefficient of Hermite expansion (2.3) of G. Observe that (2.23) is a

strengthening of the basic condition: E[G(X0)2] =
∑

k=1 k!g2
k <∞. Hence we have:

Theorem 2.3.12. Suppose that condition (2.23) holds for the short-range dependent com-

ponents. Then the convergence in Theorem 2.3.1, Theorem 2.3.3, Theorem 2.3.6 and

Theorem 2.3.9 holds as weak convergence in D[0, 1]J .

Condition (2.23) is satisfied in the important special case where G is a polynomial of
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finite order.

2.4 Proofs of the multivariate convergence results

2.4.1 Proof of Theorem 2.3.1 (SRD case)

We start with a number of lemmas. The first yields the limit covariance structure in (2.11).

Lemma 2.4.1. Assume that
∑

n |γ(n)|m <∞, then as N →∞:

1

N

[Nt1]∑
n1=1

[Nt2]∑
n2=1

γ(n1 − n2)m → (t1 ∧ t2)

∞∑
n=−∞

γ(n)m. (2.24)

Proof. Denote the left-hand side of (2.24) by SN . Let a = t1 ∧ t2, and b = t1 ∨ t2, and

SN,1 =
1

N

[Na]∑
n1=1

[Na]∑
n2=1

γ(n1 − n2)m, SN,2 =
1

N

[Na]∑
n1=1

[Nb]∑
n2=[Na]+1

γ(n1 − n2)m,

so SN = SN,1 + SN,2. We have as N →∞,

SN,1 = a

[Na]−1∑
n1=−[Na]+1

[Na]− |n|
Na

γ(n)m → a

∞∑
n=−∞

γ(n)m.

We hence need to show that SN,2 → 0. Let c(n) = γ(n)m, then

SN,2 ≤
1

N

[Na]∑
n1=1

[Nb]∑
n2=[Na]+1

|c(n2 − n1)| = 1

N

[Na]∑
n1=1

cN,n1 =

∫ a

0
fN (u)du,

where

cN,n1 :=

[Nb]∑
n2=[Na]+1

|c(n2 − n1)| =
[Nb]−[Na]∑
n2=1

|c([Na] + n2 − n1)|,

and for u ∈ (0, a),

fN (u) : =

[Na]∑
n1=1

cN,n11[
n1−1
N

,
n1
N

)
(u)
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=

[Nb]−[Na]∑
n2=1

[Na]∑
n1=1

|c([Na] + n2 − n1)|1
[
n1−1
N

,
n1
N

)
(u)

=

[Nb−Na]∑
n2=1

|c([Na]− [Nu]− 1 + n2)|.

Now observe that

fN (u) ≤
∞∑

n=−∞
|c(n)| =

∞∑
n=−∞

|γ(n)|m <∞

and that [Na]− [Nu]→∞ as N →∞ . Applying the Dominated Convergence Theorem,

we deduce fN (u)→ 0 on (0, a). Applying the Dominated Convergence Theorem again, we

conclude that SN,2 → 0.

Now we introduce some notations, setting for G ∈ L2(φ),

SN,t(G) :=
1√
N

[Nt]∑
n=1

G(Xn). (2.25)

The Hermite expansion of each Gj is

Gj =

∞∑
m=kj

gm,jHm (2.26)

if Gj has Hermite rank kj . Since we are in the pure SRD case, we have as in Remark 2.2.3,

that the auto-covariance function γ(n) of {Xn}

∞∑
n=−∞

|γ(n)|kj <∞, for j = 1, . . . , J.

The following lemma states that it suffices to replace a general Gj with a finite linear

combination of Hermite polynomials:

Lemma 2.4.2. If Theorem 2.3.1 holds with a finite linear combination of Hermite poly-

nomials Gj =
∑M

m=kj
am,jHm for any M ≥ maxj(kj) and any am,j, then it also holds for

any Gj ∈ L2(φ).
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Proof. First we obtain an L2 bound for SN,t(Hm). By EHm(X)Hm(Y ) = m!E(XY )m

(Proposition 2.2.1 in Nourdin and Peccati [2012]), for m ≥ 1,

E(SN,t(Hm))2 =
1

N

[Nt]∑
n1,n2=1

EHm(Xn1)Hm(Xn2) =
m!

N

[Nt]∑
n1,n2=1

γ(n1 − n2)m

= tm!

[Nt]−1∑
n=1−[Nt]

[Nt]− |n|
Nt

γ(n)m ≤ tm!
∞∑

n=−∞
|γ(n)|m. (2.27)

Next, fix any ε > 0. By (2.27) and ‖G‖2L2(φ) =
∑∞

m=0 g
2
mm!, for M = M(ε) large

enough, one has

E
∣∣∣SN,t(Gj)− SN,t( M∑

m=kj

gm,jHm

)∣∣∣2 = E|SN,t(
∞∑

m=M+1

gm,jHm)|2

=

∞∑
m=M+1

g2
m,jE(SN,t(Hm))2 ≤ t

∞∑
n=−∞

|γ(n)|kj
∞∑

m=M+1

g2
m,jm! ≤ εt.

Therefore, the J-vector

VN,M (t) =

SN,t( M∑
m=k1

gm,1Hm), . . . , SN,t(
M∑

m=kJ

gm,jHm)


satisfies lim supN E‖VN,M (t)−VN (t)‖2 ≤ Jεt, and thus

lim
M

lim sup
N

E‖VN,M (t)−VN (t)‖2 = 0.

By assumption, we have as N → ∞ VN,M (t)
f.d.d.−→ BM (t) = (BM,1, . . . , BM,J), where the

multivariate Gaussian BM (t) has (scaled) Brownian motions as marginals with a covariance

structure computed using Lemma 2.4.1 as follows:

E(BM,j1(t1)BM,j2(t2)) = lim
N→∞

E

SN,t1(

M∑
m=kj1

gm,j1Hm)SN,t2(
M∑

m=kj2

gm,j2Hm)
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= lim
N→∞

M∑
m=kj1∨kj2

gm,j1gm,j2m!

[Nt1]∑
n1=1

[Nt2]∑
n2=1

γ(n1 − n2)m

= (t1 ∧ t2)
M∑

m=kj1∨kj2

gm,j1gm,j2m!
∞∑

n=−∞
γ(n)m.

Furthermore, as M →∞, BM (t) tends in f.d.d. to B(t), which is a multivariate Gaus-

sian process with the following covariance structure:

E(Bj1(t1)Bj2(t2)) = (t1 ∧ t2)
∞∑

m=kj1∨kj2

gm,j1gm,j2m!
∞∑

n=−∞
γ(n)m.

Therefore, applying the triangular argument in Billingsley [1999] Theorem 3.2, we have

VN (t)
f.d.d.−→ B(t).

The proof of Theorem 2.3.1 about the pure SRD case relies on Nourdin and Peccati

[2012] Theorem 6.2.3, which says that for multiple Wiener-Itô integrals, univariate conver-

gence to normal random variables implies joint convergence to a multivariate normal. We

state it as follows:

Lemma 2.4.3. Let J ≥ 2 and k1, . . . , kj be some fixed positive integers. Consider vectors

VN = (VN,1, . . . , VN,J) := (Ik1(fN,1), . . . , IkJ (fN,J))

with fN,j in L2(Rkj ). Let C be a symmetric non-negative definite matrix such that

E(VN,iVN,j)→ C(i, j).
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Then the univariate convergence as N →∞

VN,j
d→ N(0, C(j, j)) j = 1, . . . , J

implies the joint convergence

VN
d→ N(0, C).

We now prove Theorem 2.3.1.

Proof. Take time points t1, . . . , tI , let VN (t) be the vector in (2.2) in the context of Theorem

2.3.1, with Gj replaced by a finite linear combination of Hermite polynomials (Lemma

2.4.2). Thus

VN (ti) =

 M∑
m=k1

gm,1
A1(N)

SN,ti(Hm), . . . ,

M∑
m=kJ

gm,J
AJ(N)

SN,ti(Hm)

 . (2.28)

We want to show the joint convergence

(
VN (t1), . . . ,VN (tI)

)
d→
(
B(t1), . . . ,B(tI)

)
(2.29)

with B(t) being the J-dimensional Gaussian process with covariance structure given by

(2.11).

By (2.6), and because the term

gm,j
Aj(N)

SN,ti(Hm)

involves the m-th order Hermite polynomial only, we can represent it as an m-tuple Wiener-

Itô integral:

gm,j
Aj(N)

SN,ti(Hm) =: Im(fN,m,i,j)
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for some square-integrable function fN,m,i,j . Now

VN (ti) =

 M∑
m=k1

Im(fN,m,i,1), . . . ,
M∑

m=kJ

Im(fN,m,i,J)

 (2.30)

To show (2.29), one only needs to show that as N → ∞,
(
Im(fN,m,i,j)

)
m,i,j

converges

jointly to a multivariate normal with the correct covariance structure.

Note by the univariate SRD result, namely, Theorem 2.2.1, each

Im(fN,m,i,j) =
gm,j
Aj(N)

SN,ti(Hm)

converges to a univariate normal. Therefore, by Lemma 2.4.3, it’s sufficient to show the

covariance structure of
(
Im(fN,m,i,j)

)
m,i,j

is consistent with the covariance structure of

(Bj(ti))i,j as N →∞.

Note that Aj(N) = σjN
1/2 where σj is found in (2.12). If m1 6= m2,

EIm1(fN,m,i1,j1)Im2(fN,m,i2,j2) =
gm1,j1 , gm2,j2

σj1σj2N
E
(
SN,ti1 (Hm1)SN,ti2 (Hm2)

)
= 0.

If m1 = m2 = m,

EIm(fN,m,i1,j1)Im(fN,m,i2,j2)

=
gm,j1 , gm,j2
σj1σj2

1

N

[Nti1 ]∑
n1=1

[Nti2 ]∑
n2=1

E
(
Hm(Xn1)Hm(Xn2)

)
=
m!gm,j1 , gm,j2

σj1σj2

1

N

[Nti1 ]∑
n1=1

[Nti2 ]∑
n2=1

γ(n1 − n2)

→ ti1 ∧ ti2
σj1σj2

gm,j1 , gm,j2m!
∞∑

n=−∞
γ(n)m as N →∞

by Lemma 2.4.1.

Since every component of VN in (2.28) is the sum of multiple Wiener-Itô integrals, it
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follows that

EVN,j1(ti1)VN,j2(ti2)→ ti1 ∧ ti2
σj1σj2

M∑
m=kj1∨kj2

gm,j1gm,j2m!

∞∑
n=−∞

γ(n)m,

which is the covariance in (2.11), where here M is finite due to Lemma 2.4.2.

2.4.2 Proof of Theorem 2.3.3 (LRD case)

The pure LRD case is proved by extending the proof in Dobrushin and Major [1979] to the

multivariate case. Set

SN,t(G) =

[Nt]∑
n=1

G(Xn).

The normalization factor which makes the variance at t = 1 tend to 1 is

Aj(N) = ajL(N)kj/2N1+kj(d−1/2), (2.31)

where the slowly varying function L(N) stems from the auto-covariance function: γ(n) =

L(n)n2d−1 and where aj is a normalization constant.

The Hermite expansion of each Gj is given in 2.26 The following reduction lemma shows

that it suffices to replace Gj ’s with corresponding Hermite polynomials.

Lemma 2.4.4. If the convergence in (2.13) holds with gkj ,jHkj replacing Gj, then it also

holds for Gj, j = 1, . . . , J .

Proof. By the Cramér-Wold device, we want to show for every (w1, . . . , wJ) ∈ RJ , the

following convergence:
J∑
j=1

wj
SN,t(Gj)

Aj(N)

f.d.d.−→
J∑
j=1

wjZ
(kj)
d (t).

Let G∗j = gkj+1,jHkj+1 + gkj+2,jHkj+2 + . . ., then

J∑
j=1

wj
SN,t(Gj)

Aj(N)
=

J∑
j=1

wj
SN,t(gkj ,jHkj )

Aj(N)
+

J∑
j=1

wj
SN,t(G

∗
j )

Aj(N)
.
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By the assumption of this lemma and by the Cramér-Wold device,

J∑
j=1

wj
SN,t(gkj ,jHkj )

Aj(N)

f.d.d.−→
J∑
j=1

wjZ
(kj)
d (t).

Hence it suffices to show that for any t > 0,

E

 J∑
j=1

wj
SN,t(G

∗
j )

Aj(N)

2

→ 0.

By the elementary inequality: (
∑J

j=1 xj)
2 ≤ J

∑J
j=1 x

2
j , it suffices to show that for each j,

E
(
SN,t(G

∗
j )

Aj(N)

)2

→ 0.

This is because the variance growth of G∗j (see (2.7) and (2.9)) is at most

L∗j ([Nt])[Nt]
(kj+1)(2d−1)+2

for some slowly varying function L∗j , while the normalization

Aj(N)2 = a2
jLj(N)kjNkj(2d−1)+2

tends more rapidly to infinity.

The following lemma extends Lemma 3 of Dobrushin and Major [1979] to the multivari-

ate case. It states that if Lemma 3 of Dobrushin and Major [1979] holds in the univariate

case in each component, then it holds in the multivariate joint case.

Lemma 2.4.5. Let F0 and FN be symmetric locally finite Borel measures without atoms

on R so that FN → F weakly. Let WFN and WF0 be complex Hermitian Gaussian measures

with control measures FN and F0 respectively.

Let KN,j be a series of Hermitian(K(−x) = K(x)) measurable functions of kj variables
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tending to a continuous function K0,j uniformly in any compact set in Rkj as N →∞.

Moreover, suppose the following uniform integrability type condition holds for every

j = 1, . . . , J :

lim
A→∞

sup
N

∫
Rkj \[−A,A]kj

|KN,j(x)|2FN (dx1), . . . , FN (dxkj ) = 0. (2.32)

Then we have the joint convergence:

(
I

(N)
k1

(KN,1), . . . , I
(N)
kJ

(KN,J)
)

d→
(
I

(0)
k1

(K0,1), . . . , I
(0)
kJ

(K0,J)
)
. (2.33)

where I
(N)
k (.) denotes a k-tuple Wiener-Itô integral with respect to complex Gaussian ran-

dom measure WFN , N = 0, 1, 2, . . .

Proof. By the Cramér-Wold device, we need to show that for every (w1, . . . , wJ) ∈ RJ as

N →∞,

XN :=
J∑
j=1

wjI
(N)
kj

(KN,j)
d→ X0,0 :=

J∑
j=1

wjI
(0)
kj

(K0,j). (2.34)

We show first that (2.34) holds when replacing all kernels with simple Hermitian func-

tions gj of the form:

gj(u1, . . . , ukj ) =
n∑

i1,...,ik=1

ai1,...,ikj 1Ai1,j×...×Aikj ,j
(u1, . . . , ukj ),

where Ai,j ’s are bounded Borel sets in R satisfying F0(∂Ai,j) = 0, ai1,...,ikj = 0 if any two

of i1, . . . , ikj are equal, and g(u) = g(−u). We claim that

s∑
j=1

wjI
(N)
kj

(gj)
d→

s∑
j=1

wjI
(0)
kj

(gj). (2.35)

Indeed, since FN → F0 weakly and F0(∂Ai,j) = 0, we have as N →∞:

EWFN (Ai,j)WFN (Ak,l) = FN (Ai,j ∩Ak,l)→ F0(Ai,j ∩Ak,l) = EWF0(Ai,j)WFN (Ak,l),
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thus
(
WFN (Ai,j)

)
i,j

d→
(
WF0(Ai,j)

)
i,j

jointly. Since
∑s

j=1wjI
(N)
kj

(gj) is a polynomial of

WFN (Ai,j), (2.35) holds by the Continuous Mapping Theorem.

Next, due to the atomlessness of FN , the uniform convergence of KN,j to K0,j on any

compact set, (2.32) and the continuity of K0,j , for any ε > 0, there exist simple Hermitian

gj ’s j = 1, . . . , J as above, such that for N = 0 and N > N(ε) (large enough),

∫
Rkj
|KN,j(x1, . . . , xkj )− gj(x1, . . . , xkj )|

2FN (dx1) . . . FN (dxkj ) < ε. (2.36)

By (2.36) for every j = 1, . . . , J , we can find a sequence gM,j such that

‖I(0)
kj

(K0,j)− I(0)
kj

(gM,j)‖L2 < 1/M, (2.37)

‖INkj (KN,j)− INkj (gj)‖L2 < 1/M for N > N(M) (large enough), (2.38)

hence by (2.37)

X0,M :=
J∑
j=1

wjI
(0)
kj

(gM,j)
d→ X0,0 :=

J∑
j=1

wjI
(0)
kj

(K0) as M →∞. (2.39)

and by (2.38),

lim
M

lim sup
N

E|XN −XN,M |2

:= lim
M

lim sup
N

E

∣∣∣∣∣∣
J∑
j=1

wjI
(N)
kj

(KN,j)−
J∑
j=1

wjI
(N)
kj

(gM,j)

∣∣∣∣∣∣
2

= 0. (2.40)

Finally, replacing gj by gM,j in (2.35), we have

XN,M
d→ X0,M . (2.41)

Thus (2.34), namely, XN
d→ X0,0, follows now from (2.39), (2.40) and (2.41) and Theorem

3.2 of Billingsley [1999].
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We can now prove Theorem 2.3.3:

Proof. Since Lemma 2.4.5 involves only univariate assumptions and concludes with the

desired multivariate convergence (2.33), one needs to treat only the univariate case. This

is done in Dobrushin and Major [1979].

2.4.3 Proof of Theorem 2.3.6 (SRD and LRD mixed case)

The following result from Nourdin and Rosinski [2014] will be used:

Theorem 2.4.6. (Theorem 4.7 in Nourdin and Rosinski [2014].) Consider

SN =
(
Ik1,S (f1,S,N ), . . . , IkJS,S (fJS ,S,N )

)
,

LN =
(
Ik1,L(f1,L,N ), . . . , IkJL,L(fJL,L,N )

)
,

where kjS ,S > kjL,L for all jS = 1, . . . , JS and jL = 1, . . . , JL.

Suppose that as N → ∞, SN converges in distribution to a multivariate normal law,

and LN converges in distribution to a multivariate law which has moment-determinate

components, then there are independent random vectors Z and H, such that

(SN ,LN )
d→ (Z,H).

A proof of Theorem 2.4.6 can be found in Section 2.6 (see Theorem 2.6.3).

Proof of Theorem 2.3.6. Using the reduction arguments of Lemma 2.4.2 and Lemma 2.4.4,

we can replace Gj,S in (2.16) with
∑M

m=kj,S
gm,j,SHm, and we can replace Gj,L in (2.17)

with gkL,j,LHkL , where kj,S > kj,L = 1 or 2 are the corresponding Hermite ranks and gm,j,S ,

gkL,j,L are the corresponding coefficients of their Hermite expansions.

Fix finite time points ti, i = 1 . . . , I, we need to consider the joint convergence of the

following vector:

(Si,jS ,N , Li,jL,N )i,jS ,jL :=
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 1

AjS ,S

M∑
m=kjS,S

gm,jS ,SSN,ti(Hm),
1

AjL,L
gkL,jL,LSN,ti(HkL)


i,jS ,jL

, (2.42)

where i = 1, . . . , I, jS = 1, . . . , JS , jL = 1, . . . , JL.

As in the proof of Theorem 2.3.1, using (2.6), we express Hermite polynomials as

multiple Wiener-Itô integrals:

Si,jS ,N =

M∑
m=kjS,S

Im(fm,i,jS ,N ), Li,jL,N =

M∑
m=kjL,L

Im(fm,i,jL,N ),

where fm,i,jS ,N , fi,jL,N are some symmetric square-integrable functions.

Express the vector in (2.42) as (SN ,LN ), where SN := (Si,jS ,N )i,jS , LN := (Li,jL,N )i,jL .

By Theorem 2.3.1, SN converges in distribution to some multivariate normal distri-

bution, and by Theorem 2.3.3, LN converges to a multivariate distribution with moment-

determinate marginals, because by assumption the limits only involve Hermite rank k = 1

(normal distribution) and k = 2 (Rosenblatt distribution). The normal distribution is

moment-determinate. The Rosenblatt distribution is also moment-determinate because it

has an analytic characteristic function (Taqqu [1975] p.301).

We can now use Theorem 2.4.6 to conclude the proof.

2.4.4 Proof of Theorem 2.3.9 (Gaussian linear process case)

The proof below is a sketch, since the details are close to the proof of Theorem 3.5 of Bai

and Taqqu [2013b].

Proof. Firstly, using Lemma 2.4.2 and Lemma 2.4.4, instead of considering the general

nonlinear function Gj , it suffices to focus on a) for the SRD part : a finite linear combination

of Hermite polynomials whose orders are higher or equal to Hermite rank of Gj ; b) for the

LRD part : the single Hermite polynomial whose order is equal to the Hermite rank of Gj .

In addition, it suffices to consider in the SRD component only the m-truncated version:

X
(m)
n =

∑m
i=1 aiεn−i.
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Secondly, one can write Xn =
∫
R a(n− [x])W (dx) and hence by Itô’s formula

Hk(X(n)) =

∫ ′
Rk
a(n− [x1]) . . . a(n− [xk])W (dx1) . . .W (dxk),

where a(x) = a[x]+11{x≥0}, and W (·) is a Brownian random measure.

The sequence {Hk(X
(m)
n ), n ≥ 1} with k ≥ 2 for the SRD component is always uncorre-

lated with W (·) since they belong to different Wiener chaoses, and since {Hk(X
(m)
n ), n ≥ 1}

is m-dependent, the Functional Central Limit Theorem applies, yielding a limit Brownian

motion independent of W (·). The Non-Central Limit Theorem for the LRD part in this

case holds by Theorem 4.7.1 of Giraitis et al. [2012]. The random measure which defines

the limit Hermite processes is exactly the same W (·) as above. Thus the limit Brownian

motions for the SRD component and the limit Hermite processes for the LRD component

are independent.

2.5 Invariance of the joint distribution among different representations

of the Hermite process

The Hermite process admits four different representations (Pipiras and Taqqu [2010]):

Let B(.) be the real Gaussian random measure and W (.) be the complex Gaussian

random measure, as defined in Section 6 of Taqqu [1979]. H0 ∈ (1− 1/(2k), 1).

1. Time domain representation:

Z
(k)
H0

(t) = ak,H0 =

∫ ′
Rk

∫ t

0

k∏
j=1

(s− xj)H0−3/2
+ ds

B(dx1) . . . B(dxk) (2.43)

2. Spectral domain representation:

Z
(k)
H0

(t) = bk,H0

∫ ′′
Rk

ei(x1+...+xk)t − 1

i(x1 + . . .+ xk)

k∏
j=1

|xj |1/2−H0W (dx1) . . .W (dxk) (2.44)
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3. Positive half-axis representation:

Z
(k)
H0

(t) = ck,H0

∫ ′
[0,∞)k

∫ t

0

k∏
j=1

x
1/2−H0

j (1− sxj)H0−3/2
+ ds

B(dx1) . . . B(dxk)

(2.45)

4. Finite interval representation:

Z
(k)
H0

(t) =

dk,H0

∫ ′
[0,t]k

 k∏
j=1

x
1/2−H0

j

∫ t

0
xk(H0−1/2)

k∏
j=1

(s− xj)H0−3/2
+ ds

B(dx1) . . . B(dxk)

(2.46)

where ak,H0 , bk,H0 , ck,H0 , dk,H0 are constant coefficients to guarantee that Var(Z
(k)
H0

(1)) = 1,

given in (1.17) and (1.18) of Pipiras and Taqqu [2010].

Keep H0 fixed throughout. We will prove the following:

Theorem 2.5.1. The joint distribution of a vector made up of Hermite processes of possibly

different orders k, but sharing the same random measure B(.) or W (.) in their Wiener-Itô

integral representations, remains the same when switching from one of the above represen-

tations to another.

The following notations are used to denote Wiener-Itô integrals with respect to B(.)

and W (.) respectively:

I(f) :=

∫ ′
Rk
f(x1, . . . , xk)dB(x1) . . . dB(xk),

Ĩ(g) :=

∫ ′′
Rk
g(ω1, . . . , ωk)dW (ω1) . . . dW (ωk).

where ′ indicates that we don’t integrate on xi = xj , i 6= j, ′′ indicates that we don’t

integrate on ωi = ±ωj , i 6= j, f is a symmetric function and g is an Hermitian function

(g(ω) = g(−ω)).
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The next lemma establishes the equality in joint distribution between time domain

representation (2.43) and spectral domain representation (2.44), which is a multivariate

extension of Lemma 6.1 in Taqqu [1979].

Lemma 2.5.2. Suppose that Aj(x1, . . . , xkj ) is a symmetric function in L2(Rkj ), j =

1, . . . , J . Let Ã(x1, . . . , xkj ) be its L2-Fourier transform:

Ãj(ω1, . . . , ωkj ) =
1

(2π)kj/2

∫
Rm

exp(i

kj∑
n=1

xnωn)Aj(x1, . . . , xkj )dx1 . . . dxkj .

Then

(Ik1(A1), . . . , IkJ (AJ))
d
=
(
Ĩk1(Ã1), . . . , ĨkJ (ÃJ)

)
.

Proof. The proof is a slight extension of the proof of Lemma 6.1 of Taqqu [1979]. The

idea is to use a complete orthonormal set {ψi, i ≥ 0} in L2(R) to represent each Aj as an

infinite polynomial form of order kj with respect to ψi’s, as is done in (6.3) of Taqqu [1979].

Each Ikj (Aj) can be then written in the form of (6.4) of Taqqu [1979], which is essentially

a function of

Xi :=

∫
ψi(x)dB(x), i ≥ 0,

denoted

Ikj (Aj) = Kj(X),

where X = (X0, X1, . . .). Thus

(Ik1(A1), . . . , IkJ (AJ)) = K(X), (2.47)

where the vector function K = (K1, . . . ,KJ).

Now, Ãj can also be written as an infinite polynomial form of order kj with respect to
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ψ̃i, i ≥ 0, where

ψ̃i(ω) = (2π)−1/2

∫
eixωψi(x)dx

is the L2-Fourier transform of ψi, as is done in (6.5) of Taqqu [1979]. Set

Yj :=

∫
ψ̃i(ω)dW (ω), i ≥ 0.

Then, as in (6.6) of Taqqu [1979], we have

Ĩkj (Ãj) = Kj(Y),

where Kj ’s are the same as above, Y = (Y0, Y1, . . .), and thus

(
Ĩk1(Ã1), . . . , ĨkJ (ÃJ)

)
= K(Y). (2.48)

By (2.47) and (2.48), it suffices to show that X
d
= Y. This is true because by Parseval’s

identity, X and Y both consist of i.i.d. normal random variables with mean 0 and identical

variance, . For details, see Taqqu [1979].

We now complete the proof of Theorem 2.5.1. We still need to justify the equality in

joint distribution between time domain representation (2.43) and positive half-axis repre-

sentation (2.45) or finite interval representation (2.46).

First let’s summarize the arguments of Pipiras and Taqqu [2010] for going from (2.43)

to (2.45) or (2.46). The heuristic idea is that by changing the integration order in (2.43),

one would have

Z
(k)
H0

=

∫ t

0

∫ ′
Rk

k∏
j=1

(s− xj)H0−3/2B(dx1) . . . B(dxk)

 ds

=

∫ t

0
Hk

(∫
R

(s− x)
H0−3/2
+ B(dx)

)
ds, (2.49)

where Hk is k-th Hermite polynomial. But in fact g(x) := (s − x)
H0−3/2
+ /∈ L2(R), and
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consequently G(s) :=
∫
R(s− x)

H0−3/2
+ B(dx) is not well-defined.

The way to get around this is to do a regularization, that is, to truncate g(x) as

gε(x) := g(x)1s−x>ε(x) for ε > 0. Now the Gaussian process Gε(t) :=
∫
R gε(x)B(dx) is

well-defined. Next, after some change of variables, one gets the new desired representation

of Gε(t), say G∗ε (t), where G∗ε (t)
d
= Gε(t). Setting Z

(k)
ε,H0

(t) =
∫ t

0 Hk(Gε(t))dt and Z
(k)∗
ε,H0

(t) =∫ t
0 Hk(G

∗
ε (t))dt, yields

Z
(k)
ε,H0

(t)
d
= Z

(k)∗
ε,H0

(t). (2.50)

Finally by letting ε → 0, one can show that Z
(k)
ε,H0

(t) converges in L2(Ω) to the Hermite

process Z
(k)
H0

(t), while Z
(k)∗
ε,H0

(t) converges in L2(Ω) to some Z
(k)∗
H0

(t), which is the desired

alternative representation of Z
(k)
H0

(t).

The above argument relies on the stochastic Fubini theorem (Theorem 2.1 of Pipiras

and Taqqu [2010]) which legitimates the change of integration order, that is, for f(s,x)

defined on R× Rk, if ∫
R
‖f(s, .)‖L2(Rk)ds <∞

(which is the case after regularization), then

∫ ′
Rk

∫
R
f(s, x1, . . . , xk)dsB(dx1) . . . B(dxk) =

∫
R

∫ ′
Rk
f(s, x1, . . . , xk)B(dx1) . . . B(dxk)ds

almost surely.

Now, consider the multivariate case. Note that we still have equality of the the joint

distributions as in (2.50) and the equality is preserved in the L2(Ω) limit as ε→ 0. More-

over, the stochastic Fubini theorem (Theorem 2.1 of Pipiras and Taqqu [2010]) extends

naturally to the multivariate setting since the change of integration holds as an almost

sure equality. Therefore one gets equality in joint distribution when switching from (2.43)

to (2.45) or (2.46). �
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2.6 Asymptotic independence of Wiener-Itô integral vectors

We prove here Theorem 2.4.6 by extending a combinatorial proof of Nourdin and Rosinski

[2014].

First, some background. In the papers Ustunel and Zakai [1989] and Kallenberg [1991],

a criterion for independence between two random variables belonging to Wiener Chaos,

say, Ip(f) and Ip(g), is given as

f⊗1g = 0 a.s. (2.51)

where ⊗1 means contraction of order 1 and is defined below.

The result of Nourdin and Rosinski [2014] involves the following problem: if one has

sequences {fn}, {gn}, when will asymptotic independence hold between Ip(fn) and Iq(gn)

as n → ∞? Motivated by (2.51), one may guess that the criterion is fn⊗1gn → 0 as

n→∞. This is, however, shown to be false by a counterexample in Nourdin and Rosinski

[2014]: set p = q = 2, fn = gn and assume that I2(fn)
d→ Z ∼ N(0, 1). One can then show

that fn ⊗1 fn → 0, while obviously (I2(fn), I2(fn))
d→ (Z,Z). Let ‖.‖ denote the L2 norm

in the appropriate dimension and let < ., . > denote the corresponding inner product.

We now define contractions. The contraction ⊗r between two symmetric square inte-

grable functions f and g is defined as

(f ⊗r g)(x1, . . . , xp−r, y1, . . . , yq−r) :=∫
Rr
f(x1, . . . , xp−r, s1, . . . , sr)g(y1, . . . , yq−s, s1, . . . , sr)ds1 . . . dsr

If r = 0, the contraction is just the tensor product:

f ⊗0 g = f ⊗ g := f(x1, . . . , xp)g(y1, . . . , yq). (2.52)

The symmetrized contraction ⊗̃r involves one more step, namely, the symmetrization of

the function obtained from the contraction. This is done by summing over all permutations
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of the variables and dividing by the number of permutations. Note that as the contraction

is only defined for symmetric functions, replacing ⊗r with ⊗̃r enables one to consider a

sequence of symmetrized contractions of the form

(
. . .
(
(f1⊗̃r1f2)⊗̃r2f3

)
. . .
)
⊗̃rn−1fn.

We will use the following product formula (Proposition 6.4.1 of Peccati and Taqqu

[2011]) for multiple Wiener-Itô integrals

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗rg) p, q ≥ 0. (2.53)

Because the symmetrization of the integrand doesn’t change the multiple Wiener-Itô inte-

gral, ⊗r could be replaced with ⊗̃r in the product formula.

For a vector q = (q1, . . . , qk), we denote |q| := q1 + . . .+ qk. By a suitable iteration of

(2.53), we have the following multiple product formula:

k∏
i=1

Iqi(fi) =
∑

r∈C(q,k)

a(q, k, r)I|q|−2|r|
(
. . . (f1⊗̃r1f2) . . . ⊗̃rk−1

fk
)
, (2.54)

where q ∈ Nn, the index set

C(q, k) =

{r ∈
k−1∏
i=1

{0, 1, . . . , qi+1} : r1 ≤ q1, ri ≤ (q1 + . . .+ qi)− 2(r1 + . . .+ ri−1), i = 2, . . . k − 1},

and a(q, k, r) is some integer factor. The following Theorem 2.6.1 is similar to Theorem

3.4 of Nourdin and Rosinski [2014] but the proof is different1.

Theorem 2.6.1. (Asymptotic Independence of Multiple Wiener-Itô Integral Vec-

1The present proof of Theorem 2.6.1 is an extension to Wiener-Itô integral vectors of a combinatorial
proof for Wiener-Itô integral scalars given in an original version of Nourdin and Rosinski [2014].
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tors.) Suppose we have the joint convergence

(U1,N , . . . ,UJ,N )
d→ (U1, . . . ,UJ),

where

Uj,N =
(
Iq1,j (f1,j,N ), . . . , IqIj ,j (fIj ,j,N )

)
.

Assume

lim
N→∞

‖fi1,j1,N ⊗r fi1,j2,N‖ = 0 (2.55)

for all i1, i2, j1 6= j2, and

r = 1, . . . , qi1,j1 ∧ qi2,j2 ,

where ‖ · ‖ denotes the L2(Rk) norm for some appropriate dimension k.

Then using the notation uk = uk11 . . . ukmm , we have

E[Uk1
1 . . .UkJ

J ] = E[Uk1
1 ] . . .E[UkJ

J ] (2.56)

for all kj ∈ NIj

Moreover, if every component of every Uj is moment-determinate, then U1, . . . ,UJ

are independent.

Proof. The index i = 1, . . . , Ij refers to the components within the vector Uj,N , j =

1, . . . , J . For notational simplicity, we let Ij = I, that is, each Uj,N has the same number

of components.

Let |k| denote the sum of its components k1 + . . .+ km. First to show (2.56), it suffices

to show

lim
N→∞

E
J∏
j=1

(U
kj
j,N − E[U

kj
j,N ]) = 0

for any |k1| > 0, . . . , |kJ| > 0. Note that U
kj
j,N = U

k1,j
1,j,N . . . U

kI,j
I,j,k is a scalar.
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By (2.54), one gets

Iq(f)k =
∑

r∈Cq,k

a(q, k, r)Ikq−2|r|
(
. . . (f⊗̃r1f) . . . ⊗̃rk−1

f
)

where a(q, k, r)’s are integer factors which don’t play an important role, and Cq,k is some

index set. If

U
kj
j,N =

I∏
i=1

Iqi,j (fi,j,N )ki,j ,

then

U
kj
j,N =

I∏
i=1

∑
r∈Cqi,j ,ki,j

a(qi,j , ki,j , r)Iki,jqi,j−2|r|

(
. . . (fi,j,N ⊗̃r1fi,j,N ) . . . ⊗̃rki,j−1

fi,j,N

)

=
∑

r1∈Cq1,j ,k1,j

. . .
∑

rI∈CqI,j ,kI,j

I∏
i=1

a(qi,j , ki,j , r
i)Iki,jqi,j−2|ri|(hi,j,N ) (2.57)

where

hi,j,N =

(
. . . (fi,j,N ⊗̃ri1fi,j,N ) . . . ⊗̃riki,j−1

fi,j,N

)
.

If one applies the product formula (2.54) to the product in (2.57), one gets that U
kj
j,N

involves terms of the form I|pj |−2|sj |(Hj,N ) (pj and sj run through some suitable index

sets), where

Hj,N =
(
. . . (h1,j,N ⊗̃s1h2,j,N ) . . . ⊗̃sI−1hI,j,N

)
.

Since the expectation of a Wiener-Itô integral of positive order is 0 while a Wiener-Itô

integral of zero order is a constant, U
kj
j,N − E[U

kj
j,N ] involves I|pj |−2|sj |(Hj,N ) with |pj | −

2|sj | > 0 only. Therefore, every Hj,N involved in the expression of U
kj
j,N − E[U

kj
j,N ] has

nj = |pj | − 2|sj | > 0 variables.

Note that there are no products left at this point in the expression of U
kj
j,N − E[U

kj
j,N ],

only sums. But to compute E
∏J
j=1(U

kj
j,N − E[U

kj
j,N ]), one needs to apply the product

formula (2.54) again and then compute the expectation. Since Wiener-Itô integrals of

positive order have mean 0, taking the expectation involves focusing on the terms of zero
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order which are constants. Since f ⊗p g = 〈f, g〉 = EIp(f)Ip(g) for functions f and g both

having p variables, E
∏J
j=1(U

kj
j,N − E[U

kj
j,N ]) involves only terms of the form:

GN =
(
. . . (H1,N ⊗̃t1H2,N ) . . . ⊗̃tJ−2HJ−1,N

)
⊗̃tJ−1HJ,N (2.58)

=

∫
RnJ

(
H1,N ⊗̃t1H2,N ) . . . ⊗̃tJ−2HJ−1,N

)
HJ,N dx (2.59)

where the contraction size vector t = (t1, . . . , tJ−1) runs through some index set. Since

these contractions must yield a constant, we have

|t| = 1

2
(n1 + . . .+ nJ) > 0, (2.60)

where nj is the number of variables of Hj,N . There is therefore at least one component

(call it t) of t which is strictly positive and thus there is a pair j1, j2 with j1 6= j2, such

that HJ1 and Hj2 that have at least one common argument.

One now needs to show that GN in (2.59) tends to 0. This is done by applying the

generalized Cauchy-Schwartz inequalities in Lemma 2.3 of Nourdin and Rosinski [2014]

successively, through the following steps:

for any j1 6= j2, i1, i2 and r > 0, lim
N→∞

‖fi1,j1,N ⊗r fi2,j2,N‖ = 0

=⇒ for any j1 6= j2, i1, i2 and s > 0, lim
N→∞

‖hi1,j1,N ⊗s hi2,j2,N‖ = 0

=⇒ for any j1 6= j2 and t > 0, lim
N→∞

‖Hj1,N ⊗t Hj2,N‖ = 0 (2.61)

=⇒ lim
N→∞

GN = 0, (2.62)

proving (2.56). Here we illustrate some details for going from (2.61) to (2.62), and omit

the first two steps which use a similar argument.

Let C = {1, 2, . . . , (n1 + . . . nJ)/2}. Suppose c is a subset of C, then we use the notation

zc to denote {zj1 , . . . , zj|c|} where {j1, . . . , j|c|} = c and |c| is the cardinality of c. When

c = ∅, zc = ∅.
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Observe that (2.59) is a sum (due to symmetrization) of terms of the form:

∫
R|C|

H1,N (zc1) . . . HJ,N (zcJ )dzC , (2.63)

where every cj , j = 1, . . . , J , is a subset of C. Note that since |t| = t1 + . . . + tJ > 0

in (2.60), there must exist j1 6= j2 ∈ {1, . . . , J}, such that c0 := cj1 ∩ cj2 6= ∅. By the

generalized Cauchy Schwartz inequality (Lemma 2.3 in Nourdin and Rosinski [2014]), one

gets a bound for (2.63) as:

∣∣∣∣∫
R|C|

H1,N (zc1) . . . HJ,N (zcJ )dzC

∣∣∣∣ ≤ ‖Hj1,N ⊗|c0| Hj2,N‖
∏

j 6=j1,j2

‖Hj,N‖,

where ‖Hj1,N ⊗|c0| Hj2,N‖ → 0 as N → ∞ by (2.61). In addition, ‖fi,j,N‖, N ≥ 1 are

uniformly bounded due to the tightness of the distribution of Iki,j (fi,j,N ), N ≥ 1 (Lemma

2.1 of Nourdin and Rosinski [2014]). This, by the generalized Cauchy-Schwartz inequality

(Lemma 2.3 of in Nourdin and Rosinski [2014]), implies that ‖hi,j,N‖, N ≥ 1 are uniformly

bounded, which further implies the uniform boundedness of ‖Hj,N‖, N ≥ 1. Hence (2.63)

goes to 0 as N →∞ and thus (2.62) holds.

Finally, if every component of every Uj is moment-determinate, then by Theorem 3 of

Petersen [1982], the distribution of U := (U1, . . . ,UJ) is determined by its joint moments.

But by (2.56), the joint moments of U are the same as if the Uj ’s were independent. Then

the joint moment-determinancy implies independence.

Corollary 2.6.2. With the notation of Theorem 2.6.1, suppose that condition (2.55) is

satisfied and that as N →∞, each Uj,N converges in distribution to some multivariate law

which has moment-determinate components. Then there are independent random vectors

U1, . . . ,UJ such that

(U1,N , . . . ,UJ,N )
d→ (U1, . . . ,UJ). (2.64)

Proof. Since each Uj,N converges in distribution, the vector of vectors (U1,N , . . . ,UJ,N )

is tight in distribution, so any of its subsequence has a further subsequence converging in
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distribution to a vector (U1, . . .UJ). But by Theorem 2.6.1, the Uj ’s are independent.

Moreover, the convergence in distribution of each Uj,N implies that Uj,N
d→ Uj , and hence

(2.64) holds.

Now we are in the position to state the result used in Theorem 2.3.6 in the proof of the

SRD and LRD mixed case.

Theorem 2.6.3. Consider

SN =
(
Ik1,S (f1,S,N ), . . . , IkJS,S (fJS ,S,N )

)
,

LN =
(
Ik1,L(f1,L,N ), . . . , IkJL,L(fJL,L,N )

)
,

where kjS ,S > kjL,L for all jS = 1, . . . , JS and jL = 1, . . . , JL.

Suppose that as N → ∞, SN converges in distribution to a multivariate normal law,

and LN converges in distribution to a multivariate law which has moment-determinate

components, then there are independent random vectors Z and H, such that

(SN ,LN )
d→ (Z,H).

Proof. By Corollary 2.6.2, we only need to check the contraction condition (2.55). This is

done as in the proof of Theorem 4.7 of Nourdin and Rosinski [2014]. For the convenience

of the reader, we present the argument here.

Using the identity

‖f ⊗r g‖2 = 〈f ⊗p−r f, g ⊗q−r g〉

where r = 1, . . . , p∧q, f and g have respectively p and q variables, we get for r = 1, . . . , ki,L,

‖fi,S,N ⊗r fj,L,N‖2 = 〈fi,S,N ⊗ki,S−r fj,S,N , fj,L,N ⊗kj,L−r fj,L,N 〉

≤ ‖fi,S,N ⊗ki,S−r fj,S,N‖‖fj,L,N ⊗kj,L−r fj,L,N‖ → 0

because ‖fi,S,N ⊗ki,S−r fj,S,N‖ → 0 by the Nualart-Peccati Central Limit Theorem Nualart
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and Peccati [2005], and for the second term, one has by Cauchy-Schwartz inequality,

‖fj,L,N ⊗kj,L−r fj,L,N‖ ≤ ‖fj,L,N‖
2

(generalized Cauchy-Schwartz inequality in Nourdin and Rosinski [2014] Lemma 2.3), which

is bounded due to the tightness of the distribution of Ikj,L(fj,L,N ) (Lemma 2.1 of Nourdin

and Rosinski [2014]). Therefore (2.55) holds and the conclusion follows from Corollary

2.6.2.



Chapter 3

Multivariate limits of multilinear polynomial-form

processes with long memory

Consider a vector of multilinear polynomial-form processes with either short or long mem-

ory components. The components have possibly different coefficients but same noise ele-

ments. We study the limit of the normalized partial sums of the vector and identify the

independent components.

3.1 Introduction

A linear process is generated by applying a linear time-invariant filter to i.i.d. random

variables. A common model for stationary long-range dependent (LRD) (or long-memory)

time series is a causal linear process with regularly varying coefficients as the lag tends

to infinity, namely, X(n) =
∑∞

i=1 aiεn−i, where the εi’s are i.i.d. with mean 0 and finite

variance, and the coefficients satisfy

ai = id−1L(i) with 0 < d < 1/2,

and L is a slowly varying function at infinity (i.e., L(x) > 0 when x is large enough

and limx→∞ L(λx)/L(x) = 1 ∀λ > 0). Note that 0 < d < 1/2 implies
∑∞

i=1 |ai| = ∞ but∑∞
i=1 a

2
i <∞, so X(n) is well-defined in L2 sense. It is well-known that the autocovariance

γ(n) of X(n) is regularly varying with power 2d − 1, and that the partial sum of X(n)
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when suitably normalized converges to fractional Brownian motion with Hurst index

H = d+ 1/2.

See for example Chapter 4.4 of Giraitis et al. [2012].

A family of processes related to multilinear processes are the so-called multilinear

polynomial-form processes (or discrete-chaos processes), which are defined as

X(n) =
∑

1≤i1<...<ik<∞
ai1 . . . aikεn−i1 . . . εn−ik , (3.1)

where
∞∑
i=1

a2
i <∞,

and εi’s are i.i.d., and the k > 0 is the order. X(n) is also said to belong to a discrete chaos

of order k. The multilinear polynomial-form process X(n) can be viewed as generated by

nonlinear filters applied to i.i.d. random variables when k > 1. We call such a nonlinear

filter defined in (3.1) a multilinear polynomial-form filter. Such a process often arises from

considering a polynomial of a linear process (see, e.g., Surgailis [1982]).

If ai = id−1L(i) with 0 < d < 1/2, when k > 1, that is, except for linear processes, the

partial sum of X(n) when suitably normalized no longer converges to a fractional Brownian

motion, but depending on d and k, it either converges to a Hermite process if X(n) is still

LRD, or it converges to a Brownian motion if X(n) is short-range dependent (SRD), that

is, when the autocovariance of X(n) is absolutely summable. See Giraitis et al. [2012] for

more details.

In Statistics, however, one often needs convergence when X(n) is a vector rather than

a scalar. This leads us to the following question: if one applies different multilinear

polynomial-form filters to the same i.i.d. sequence {εi}, what is the joint limit behav-

ior of the J-vector of the partial sums? More specifically, assume that {εi} are i.i.d with
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mean 0 and variance 1. Consider the multilinear polynomial-form processes:

Xj(n) :=
∑

1≤i1<...<ikj<∞
ai1,j . . . aikj ,jεn−i1 . . . εn−ikj , j = 1, . . . , J,

where k1, . . . , kJ are orders for X1(n), . . . , XJ(n) respectively, {ai,j} are regularly varying

coefficients. Let

Yj,N (t) =
1

Aj(N)

[Nt]∑
n=1

Xj(n), t ≥ 0, (3.2)

where Aj(N) is a normalization factor such that limN→∞Var[Yj,N (1)] = 1, j = 1, . . . , J .

We want to study the limit of the following vector process as N →∞:

YN (t) := (Y1,N (t), . . . , YJ,N (t)) . (3.3)

Depending on {ai,j} and kj , the components of YN (t) can be either purely SRD, or purely

LRD, or a mixture of SRD and LRD. In Bai and Taqqu [2013a], a similar type of problem

is considered for nonlinear functions of a LRD Gaussian process. We show here that the

results for multilinear polynomial-form processes are similar to those in Bai and Taqqu

[2013a]. But in the present context, we are able to provide a complete answer to the

problem, in contrast to what happens in Bai and Taqqu [2013a], where the mixed SRD

and LRD case is stated as a conjecture in some cases.

In addition, we distinguish here between two types of SRD sequences, one involving a

linear process (k = 1) and one involving higher-order multilinear polynomial-form process

(k ≥ 2). For the first type of process, we get dependence with the LRD limit component,

while for the second type, we get independence.

The chapter is organized as follows. In Section 3.2, some properties of multilinear

polynomial-form processes are given and the univariate limit theorems under SRD and

LRD are reviewed. In Section 3.3, we state the multivariate convergence results in three

cases: a) pure SRD case, b) pure LRD case and c) mixed SRD and LRD case. The result

of the general mixed case is stated in Theorem 3.3.5. In Section 3.4, we give the proofs of
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the results in Section 3.3.

3.2 Preliminaries

In this section, we introduce some facts about multilinear polynomial-form processes as

well as the univariate limit theorems for the partial sums.

Suppose that X(n) is the multilinear polynomial-form process in (3.1). Note first, the

condition
∑∞

i=1 a
2
i <∞ guarantees that X(n) is well-defined in L2, since

E[X(n)2] =
∑

1≤i1<...<ik<∞
a2
i1 . . . a

2
ik
<∞.

We use throughout a convention ai = 0 for i ≤ 0. One can compute the autocovariance of

X(n) as:

γ(n) =
∑

1≤i1<...<ik<∞
an+i1ai1 . . . an+ikaik , n ∈ Z. (3.4)

The following proposition describes the asymptotic behavior of γ(n) under the assumption:

ai = id−1L(i), i ≥ 1, 0 < d < 1/2.

Proposition 3.2.1. Suppose γ(n) is defined in (3.4), ai = id−1L(i), i ≥ 1 with 0 < d < 1/2

where L is slowly varying at infinity. Then

γ(n) = L∗(n)n2dX−1,

for some slowly varying function L∗ and

dX =
1

2
− k(

1

2
− d). (3.5)

Proof. First we claim that as n→∞,

∞∑
i=1

an+iai ∼ n2d−1B(d, 1− 2d)L(n)2,
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where B(., .) is the beta function. Indeed, one can check by Potter’s bound for slowly

varying functions (Theorem 1.5.6 in Bingham et al. [1989]) and the Dominated Convergence

Theorem that as n→∞

1

L(n)2n2d−1

∞∑
i=1

an+iai =
∞∑
i=1

(
i

n
)d−1(1 +

i

n
)d−1 L(i)

L(n)

L(n+ i)

L(n)

1

n
(3.6)

→
∫ ∞

0
ud−1(1 + u)d−1du = B(d, 1− 2d).

Then note that as n→∞,

γ(n) ∼ (k!)−1(
∞∑
i=1

an+iai)
k,

(the diagonal terms with ip = iq are negligible as n → ∞. See also Giraitis et al. [2012]

p.109). Now we can deduce that

γ(n) = nk(2d−1)L∗(n) = n2dX−1L∗(n),

where

L∗(n) = (k!)−1B(d, 1− 2d)kL(n)2k.

Remark 3.2.2. According to Proposition 3.2.1, when d < 1
2(1− 1

k ) (or k(2d− 1) < −1),

we have
∑
|γ(n)| < ∞, and when d > 1

2(1 − 1
k ), we have

∑
|γ(n)| = ∞. So if we assume

ai = id−1L(i), 0 < d < 1/2, the quantity 1
2(1− 1

k ) is the boundary between SRD and LRD.

We now define precisely what SRD and LRD mean for a multilinear polynomial-form

process X(n), and from then on we use this definition whenever we talk about SRD or

LRD.

Definition 3.2.3. Let X(n) be a multilinear polynomial-form process given in (3.1) with

coefficient {ai}, autocovariance γ(n) and order k. We say that X(n) is
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(a) SRD, if for some d ∈
(
−∞, 1

2(1− 1
k )
)

and some constant c > 0,

|ai| ≤ cid−1, i ≥ 1,
∞∑

n=−∞
γ(n) > 0; (3.7)

(b) LRD, if for some d ∈
(

1
2(1− 1

k ), 1
2

)
and some L slowly varying at infinity,

ai = id−1L(i), i ≥ 1,
1

2
(1− 1

k
) < d < 1/2. (3.8)

Remark 3.2.4. The d in (3.7) and (3.8) are different. In the SRD case, {ai} is only

assumed to decay faster than a power function, which implies

∑
n

|γ(n)| ≤
∑
n

(
∞∑
i=1

|an+iai|)k <∞

by (3.6), and the particular d chosen will not matter in the limit. While in the LRD case,

the regularly varying assumption on {ai} yields a memory parameter dX = 1
2 − k(1

2 − d)

given by (3.5), and thus d plays an important role.

Next we consider the cross-covariance between of two multilinear polynomial-form pro-

cesses obtained by applying two multilinear polynomial-form filters to the same {εi}. In

particular, set

X1(n) =
∑

1≤i1<...<ip<∞
ai1 . . . aipεn−i1 . . . εn−ip , (3.9)

X2(n) =
∑

1≤i1<...<iq<∞
bi1 . . . biqεn−i1 . . . εn−iq . (3.10)

X1(n) and X2(n) share the same {εi} but the sequences {ai} and {bi} can be different.

Then the cross-covariance is

γ1,2(n) = Cov(X1(n), X2(0)) =


0 p 6= q;∑

1≤i1<...<ik<∞ ai1bn+i1 . . . aikbn+ik p = q = k

(3.11)
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for any n ∈ Z.

The following result will be used to obtain the asymptotic cross-covariance structure

between the SRD components of YN (t) in (3.3).

Proposition 3.2.5. Let X1(n) and X2(n) be given as in (3.9) and (3.10) with p = q = k,

and are both SRD in the sense of Definition 3.2.3. Then the cross-covariance γ1,2(n) =

Cov(X1(n), X2(0)) is absolutely summable:

∞∑
n=−∞

|γ1,2(n)| <∞. (3.12)

Moreover, (3.12) implies that as N →∞,

Cov

 1√
N

[Nt1]∑
n=1

X1(n),
1√
N

[Nt2]∑
n=1

X2(n)

→ (t1 ∧ t2)
∞∑

n=−∞
γ1,2(n). (3.13)

In addition, if k = 1, then
∞∑

n=−∞
γ1,2(n) = σ1σ2, (3.14)

where

σ2
j =

∑
n

Cov (Xj(n), Xj(0)) = lim
N→∞

Var

(
1√
N

N∑
n=1

Xj(n)

)
, j = 1, 2.

Proof. Suppose that {ai} and {bi} satisfy the bound in (3.7) with d = d1 and d = d2

respectively. Using a similar argument as in the proof of Proposition 3.2.1, one can show

that

|γ1,2(n)| ≤ |n|k(d1+d2−1)L∗(n)

for some function L∗(n) slowly varying at ±∞. Since by assumption d1, d2 <
1
2(1 − 1

k ),

which implies that k(d1 + d2 − 1) < −1, so we have
∑

n |γ1,2(n)| <∞.

The proof of (3.13) follows from the argument of Lemma 4.1 in Bai and Taqqu [2013a],
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after noting that

Cov

[Nt1]∑
n=1

X1(n),

[Nt2]∑
n=1

X2(n)

 =

[Nt1]∑
n1=1

[Nt2]∑
n2=1

γ1,2(n1 − n2).

Now let’s prove (3.14). When k = 1,

X1(n) =

∞∑
i=1

aiεn−i, X2(n) =

∞∑
i=1

biεn−i.

Note that by (3.7) with k = 1, we have
∑

i |ai| <∞ and
∑

i |bi| <∞. The cross-covariance

is

γ1,2(n) = Cov(X1(n), X2(0)) =

∞∑
i=1

aibi+n.

By Fubini,
∞∑

n=−∞
γ1,2(n) =

∞∑
n=−∞

∞∑
i=1

aibn+i = (
∞∑
i=1

ai)(
∞∑
n=1

bn).

Since (
∑∞

i=1 ai)
2 =

∑
n γ1(n) = σ2

1, and (
∑∞

i=1 bi)
2 =

∑
n γ2(n) = σ2

2, we get Relation

(3.14).

Let’s now review the limit theorems for partial sum of a single multilinear polynomial-

form process X(n). Let the notation “
f.d.d.−→ ” denote convergence in finite-dimensional

distributions.

Theorem 3.2.6. Suppose that X(n) defined in (3.1) is SRD. Then

1

A(N)

[Nt]∑
n=1

X(n)
f.d.d.−→ B(t),

where A(N) is a normalization factor to guarantee unit asymptotic variance at t = 1, and

B(t) is the standard Brownian motion. In fact,

A(N) ∼ σ
√
N as N →∞ with σ2 =

∑
n

γ(n).
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Theorem 3.2.7. Suppose that X(n) defined in (3.1) is LRD. Then

1

A(N)

[Nt]∑
n=1

X(n)
f.d.d.−→ Z

(k)
d (t),

where A(N) is a normalization factor to guarantee unit asymptotic variance at t = 1,

and Z
(k)
d (t) is the so-called Hermite process defined with the aid of the k-tuple Wiener-Itô

stochastic integral denoted by Ik(.) (Major [2014]):

Z
(k)
d (t) = Ik(f

(t)
k,d) :=

∫ ′
Rk
f

(t)
k,d(x1, . . . , xk)W (dx1) . . .W (dxk) (3.15)

where the prime ′ indicates the exclusion of the diagonals xi = xj for i 6= j, W (.) is

Brownian random measure, and

f
(t)
k,d(x1, . . . , xk) = ck,d

∫ t

0

k∏
j=1

(s− xj)d−1
+ ds, (3.16)

with

ck,d =

(
(k(d− 1/2) + 1) (2k(d− 1/2) + 1) Γ(1− d)k

k!Γ(d)kΓ(1− 2d)k

)1/2

.

(See Pipiras and Taqqu [2010].) In fact,

A(N) ∼ cN1+(d−1/2)kL(N)k/2 as N →∞ for some c > 0.

For the proofs of Theorem 3.2.6 and Theorem 3.2.7, we refer the reader to Chapter 4.8

in Giraitis et al. [2012], respectively Theorem 4.8.1 and Theorem 4.8.2 1. One may also

compare Theorem 3.2.6 and Theorem 3.2.7 to their counterparts in the context of nonlinear

functions of a LRD Gaussian process, stated as Theorem 2.1 and Theorem 2.2 in Bai and

Taqqu [2013a].

1The results of Chapter 4.8 in Giraitis et al. [2012] do not include a slowly varying function, nor con-
vergence of finite-dimensional distributions in the case of Theorem 3.2.6. But they can be easily extended.
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3.3 Multivariate convergence results

In this section, we state the multivariate joint convergence results for the vector process

YN (t) in (3.3). Recall that YN is normalized so that the asymptotic variance of every

component at t = 1 equals 1.

Theorem 3.3.1. Pure SRD Case. If all the components in YN defined in (3.3) are

SRD in the sense of (3.7), then

YN (t)
f.d.d.−→ B(t) = (B1(t), . . . , BJ(t)),

where B(t) is a multivariate Gaussian process with B1(t), . . . , BJ(t) being standard Brow-

nian motions with

Cov (Bp(s), Bq(t)) = (s ∧ t) σp,q
σpσq

, (3.17)

σ2
p =

∞∑
n=−∞

γp(n) :=

∞∑
n=−∞

Cov(Xp(n), Xp(0)),

σp,q =
∞∑

n=−∞
γp,q(n) :=

∞∑
n=−∞

Cov(Xp(n), Xq(0)).

The normalization Aj(N) in (3.2) satisfies Aj(N) ∼ σj
√
N as N →∞.

Remark 3.3.2. σp,q is well-defined by Proposition 3.2.5.

Remark 3.3.3. In view of (3.11) and (3.17), if all the components of the YN (t) have

different order, then the limit components Bj(t) are uncorrelated and hence independent.

Otherwise, they are in general dependent and their covariance is given by (3.17).

Theorem 3.3.4. Pure LRD Case. If all the components in YN defined in (3.3) are

LRD in the sense of (3.8) with d = d1, . . . , dJ respectively, then

YN (t)
f.d.d.−→ Zk

d(t) = (Z
(k1)
d1

(t), . . . , Z
(kJ )
dJ

(t)),
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where Z
(kj)
dj

(t) are Hermite processes sharing the same random measure W (.) in their

Wiener-Itô integral representations. The normalization Aj(N) in (3.2) satisfies

Aj(N) ∼ cjN1+(dj−1/2)kjL(N)kj/2 as N →∞, for some cj > 0.

The processes Z
(kj)
dj

, j = 1, . . . , J are dependent.

We now consider the mixed SRD and LRD case.

Theorem 3.3.5. Mixed SRD and LRD Case. Break YN in (3.3) into 3 parts:

YN = (YN,S1 ,YN,S2 ,YN,L),

where within YN,S1 (JS1−dimensional) every component is SRD and has order kj,S1 = 1,

within YN,S2 (JS2−dimensional) every component is SRD and has order kj,S2 ≥ 2, and

within YN,L (JL−dimensional) every component is LRD. Then

YN (t) = (YN,S1(t),YN,S2(t),YN,L(t))
f.d.d.−→ (W(t),B(t),ZkL

dL
(t)), (3.18)

where B(t) :=
(
B1(t), . . . , BJS2 (t)

)
is the multivariate Gaussian process appearing in The-

orem 3.3.1, ZkL
dL

(t) is the multivariate Hermite process appearing in Theorem 3.3.4,

W(t) = (W (t), . . . ,W (t)), (3.19)

where W (t) is the Brownian motion integrator for defining ZkL
dL

(t) (see (3.15)), and B(t)

is independent of (W(t),ZkL
dL

(t)).

Remark 3.3.6. To understand heuristically why B(t) and (W(t),ZkL
dL

(t)) are independent,

note that YN,S2(t) belongs to chaos of order ≥ 2, and is thus uncorrelated with YN,S1(t)

which belongs to first-order chaos, and also uncorrelated with the random noise {εi} which

also belongs to the first-order chaos, and which after summing becomes asymptotically the

Brownian measure W (.) defining ZkL
dL

(t).
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Remark 3.3.7. The independence between B(t) and ZkL
dL

(t) for kj,L ≥ 3 (the order in LRD

component) is in general only a conjecture in the framework of Bai and Taqqu [2013a]. This

conjecture is resolved in the special case of causal linear Gaussian processes (Theorem 3.9

of Bai and Taqqu [2013a]) using arguments similar to the proof of Theorem 3.3.5 of the

present chapter.

The convergence results in the above theorems are stated in terms of convergence in

finite-dimensional distributions, but one can show that in some cases they extend to weak

convergence in D[0, 1]J (J-dimensional product space where D[0, 1] is the space of Càdlàg

functions on [0, 1] with uniform metric).

Theorem 3.3.8. Weak convergence in D[0, 1]J .

1. Theorem 3.3.4 holds with “
f.d.d.−→ ” replaced by weak convergence in D[0, 1]J ;

2. If the SRD component in Theorem 3.3.1 (or Theorem 3.3.5) satisfies either of the

following conditions:

a. There exists m ≥ 0, such that the coefficients ai in (3.1) are zero for all i > m;

b. {εi} are i.i.d. Gaussian;

c. The order k = 1 and E(|εi|2+δ) <∞ for some δ > 0;

d. The order k ≥ 2,
∑∞

i=1 |ai| <∞ and E(|εi|5) <∞;

then Theorem 3.3.1 (or Theorem 3.3.5) holds with “
f.d.d.−→ ” replaced by weak conver-

gence in D[0, 1]J .

Note that tightness in the SRD case results from an interplay between the dependence

structure and the finiteness of the moments.
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3.4 Proofs for the multivariate convergence results

3.4.1 Pure SRD case

Proof of Theorem 3.3.1. Following the idea of Giraitis et al. [2012] p.108., we define the

truncated multilinear polynomial-form processes:

X
(m)
j (n) =

∑
1≤i1<...<ikj≤m

ai1,j . . . aikj ,j εn−i1 . . . εn−ikj , j = 1, . . . , J, (3.20)

where m > maxj{kj}. Note that X
(m)
j (n) is m-dependent. Set

(σ
(m)
j )2 =

∑
n

Cov
(
X

(m)
j (n), X

(m)
j (0)

)

(assume m is large enough so that σ
(m)
j > 0), and

σ(m)
p,q =

∑
n

Cov
(
X(m)
p (n), X(m)

q (0)
)

which is well-defined due to Proposition 3.2.5.

Set

YN,j(t) :=
1

σj
√
N

[Nt]∑
n=1

Xj(n), Y
(m)
N,j (t) :=

1

σ
(m)
j

√
N

[Nt]∑
n=1

X
(m)
j (n).

Theorem 3.3.1 follows if one shows that as N →∞,

Y
(m)
N (t) =:

(
Y

(m)
N,1 (t), . . . , Y

(m)
N,J (t)

)
f.d.d.−→ B(m)(t) :=

(
B

(m)
1 (t), . . . , B

(m)
J (t)

)
, (3.21)

where B
(m)
j (t)’s are Brownian motions with cross-covariance structure:

Cov(B(m)
p (t1), B(m)

q (t2)) = (t1 ∧ t2)
σ

(m)
p,q

σ
(m)
p σ

(m)
q

, p, q = 1, . . . , J, (3.22)
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and as m→∞,

σ
(m)
j → σj , σ(m)

p,q → σp,q (3.23)

as well as for any j = 1, . . . , J and t ≥ 0, as m→∞,

Var
[
Y

(m)
N,j (t)− YN,j(t)

]
→ 0 (3.24)

uniformly in N . Indeed, combining (3.21), (3.23) and (3.24), one obtains the desired

convergence:

YN (t) = (YN,1(t), . . . , YN,J(t))
f.d.d.−→ B(t) := (B1(t), . . . , BJ(t)) .

Relations (3.23) and (3.24) can be shown using the same type of arguments in Giraitis

et al. [2012] p.108. We thus only need to show (3.21) and (3.22). By Crámer-Wold device,

it suffices to show that for any (c1, . . . , cJ) ∈ RJ ,

J∑
j=1

cjY
(m)
N,j (t) =

1√
N

[Nt]∑
n=1

 J∑
j=1

cj

σ
(m)
j

X
(m)
j (n)

 f.d.d.−→
J∑
j=1

cjB
(m)
j (t) =: G(t) (3.25)

where G(t) is a non-standardized Brownian motion. This follows from the fact that the

sequence 
J∑
j=1

cj

σ
(m)
j

X
(m)
j (n), n ≥ 1


is m-dependent and is thus subject to functional central limit theorem (Billingsley [1956]

Theorem 5.2), which includes convergence in finite-dimensional distributions. The asymp-

totic cross-covariance structure (3.22) follows from Proposition 3.2.5.
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3.4.2 Pure LRD case

Proof of Theorem 3.3.4. The joint convergence is proved by combining Theorem 4.8.2. and

Proposition 14.3.3 of Giraitis et al. [2012], and the arguments leading to them.

The dependence between the limit Hermite processes with different orders is shown in

Proposition 3.1 in Bai and Taqqu [2013a].

3.4.3 Mixed SRD and LRD case

We prove Theorem 3.3.5 through a number of lemmas, one lemma implying the next.

Lemma 3.4.1. Follow the notations and assumptions in Theorem 3.3.5. Let X
(m)
j,Si

(n)

be the m-truncated multilinear polynomial-form process (see (3.20)) corresponding to the

components of YN,Si (i = 1, 2) in Theorem 3.3.5, where the orders satisfy kj,S1 = 1 and

kj,S2 ≥ 2. Let

Y
(m)
N,j,i(t) :=

1

σ
(m)
j,Si

√
N

[Nt]∑
n=1

X
(m)
j,Si

(n), j = 1, . . . , Ji, i = 1, 2,

where (assuming that m is large enough)

0 < (σ
(m)
j,Si

)2 :=
∑
n

Cov(X
(m)
j,Si

(n), X
(m)
j,Si

(0)) <∞, i = 1, 2.

Let

WN (t) := N−1/2

[Nt]∑
n=1

εn, and Y
(m)
N,Si

(t) = (Y
(m)
N,1,i(t), . . . , Y

(m)
N,JSi ,i

(t)), i = 1, 2.

Then

(
Y

(m)
N,S1

(t),Y
(m)
N,S2

(t),WN (t)
)
f.d.d.−→

(
W(t),B(m)(t),W (t)

)
, (3.26)
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where W (t) is a standard Brownian motion,

W(t) = (W (t), . . . ,W (t))

(JS2-dimensional), B(m)(t) is as given in (3.21), namely, its components are standard

Brownian motions with cross-covariance (3.22), and B(m)(t) is independent of (W(t),W (t)).

Proof. Fix any w = (a1, . . . , aJS1 , b1, . . . , bJS2 , c) ∈ RJS1+JS2+1. By the Cramér-Wold de-

vice, we want to show that

RN (t; w) :=
∑
j

ajY
(m)
N,j,1(t) +

∑
j

bjY
(m)
N,j,2(t) + cWN (t)

f.d.d.−→
∑
j

ajW (t) +
∑
j

bjB
(m)
j (t) + cW (t) =: G(t),

where G(t) is a non-standardized Brownian motion whose marginal variance is the limit of

the marginal variance of RN (t; w). Note that one can write

RN (t; w) =
1√
N

[Nt]∑
n=1

U
(m)
w (t),

where

U
(m)
w (n) =

JS1∑
j=1

aj

σ
(m)
j,S1

X
(m)
j,S1

(n) +

JS2∑
j=1

bj

σ
(m)
j,S2

X
(m)
j,S2

(n) + ce(m)
n

with

e(m)
n =

mn∑
i=(m−1)n+1

εi.

Since {U (m)
w (n)}n is m-dependent, the classical functional central limit theorem applies

(Billingsley [1956]), yielding in the limit a Brownian motion G(t) for RN (t; w). Now that

the joint normality is shown, we only need to identify the asymptotic covariance structure

as N →∞ of the left-hand side of (3.26) to the covariance structure of the right-hand side
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of (3.26).

The independence between B(m)(t) and (W(t),W (t)) follows from the uncorrelatedness

between Y
(m)
N,S2

(t) (involving chaos of order ≥ 2) and (Y
(m)
N,S1

(t),WN (t)) (involving chaos

of order 1 only). The asymptotic covariance structure within Y
(m)
N,S2

(t) is given in (3.22)

(apply Theorem 3.3.1 to Y
(m)
N,S2

). Hence we are left to show that the asymptotic covariance

structure of (Y
(m)
N,S1

(t),WN (t)) is that of (W(t),W (t)). Note that in (Y
(m)
N,S1

(t),WN (t)),

both {X(m)
j,S1

(n)} and {εn} are SRD linear processes. So applying (3.13) and (3.14) in

Proposition 3.2.5 with σ1 = σ2 = 1, the desired asymptotic covariance structure is obtained.

Remark 3.4.2. Lemma 3.4.1 can be rephrased as follows: we define an empirical random

measure on a finite interval ∆ as:

WN (∆) :=
1√
N

∑
n/N∈∆

εn.

Then the joint convergence in Lemma 3.4.1 still holds with W (t) replaced by

(WN (∆1), . . . ,WN (∆I)) where ∆i, i = 1, . . . , I are disjoint intervals, and W (t) in the limit

replaced by (W (∆1), . . . ,W (∆I)) where W (.) is the Brownian random measure. Observe

that while (3.26) involves convergence in distribution, the limit components W(t) and W (t)

both involve the same Brownian motion W (t).

Now we adopt some notations from Giraitis et al. [2012] Chapter 14.3. Let SM (Rk) be

the class of simple functions defined on Rk supported on a finite number of 1/M -cubes and

vanishing on the diagonals. Suppose that h is a function defined on Zk which vanishes on

diagonals. Let the polynomial form (or discrete multiple integral) with respect to h be

Qk(h) =
∑

i1,...,ik∈Z
h(i1, . . . , ik)εi1 . . . εik , (3.27)

where
∑

i1,...,ik
h(i1, . . . , ik)

2 < ∞. The following lemma plays a key role in the proof of

Theorem 3.3.5.
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Lemma 3.4.3. Replace (Y
(m)
N,S1

(t),Y
(m)
N,S2

(t),WN (t)) in Lemma 3.4.1 by

(Y
(m)
N,S1

(t),Y
(m)
N,S2

(t),QN ), where QN =
(
Qk1(h1,N ), . . . , QkJL (hJL,N )

)
and each Qkp(hp,N ),

p = 1, . . . , JL, is a polynomial-form defined in (3.27) with the same {εi} as those defining

Y
(m)
N,S1

(t) and Y
(m)
N,S2

(t). Assume that the “normalized continuous extension” of hp,N , that

is,

h̃p,N (x1, . . . , xkp) := Nkp/2hp,N ([Nx1], . . . , [Nxkp ]) (3.28)

satisfy that there exists fp ∈ L2(Rkp) for each p = 1, . . . , JL,

lim
N→∞

‖h̃p,N − fp‖L2(Rkp ) → 0. (3.29)

Now define the limit vector
(
W(t),B(m)(t), I

)
as follows: W(t) and B(m)(t) are as in

(3.26), independent, and

I =
(
Ikp(fp)

)
p=1,...,JL

,

where each Wiener-Itô integral Ikp(.) has as Brownian motion integrator W (.) the same as

the Brownian motion W (t) defining W(t). Then as N →∞,

(
Y

(m)
N,S1

(t),Y
(m)
N,S2

(t),QN

)
f.d.d.−→

(
W(t),B(m)(t), I

)
. (3.30)

Remark 3.4.4. Observe that B(m) is independent of (W, I).

Proof. The lemma is proved by combining Lemma 3.4.1 with the proof of Proposition

14.3.2 of Giraitis et al. [2012]. By Cramér-Wold, we need to show that for any a ∈ RJS1 ,

b ∈ RJS2 and c ∈ RJL , as N →∞,

〈a,Y(m)
N,S1

(t)〉+ 〈b,Y(m)
N,S2

(t)〉+ 〈c,QN 〉
f.d.d.−→ 〈a,W(t)〉+ 〈b,B(m)(t)〉+ 〈c, I〉, (3.31)

where 〈., .〉 denotes the Euclidean inner product.

Next following the approximation argument that leads to (14.3.14), (14.3.15) and

(14.3.16) in Giraitis et al. [2012], one can show that for any ε > 0, there exists M > 0 and
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simple functions fp,ε ∈ SM (Rkp), p = 1, . . . , JL, such that for all N ≥ N0(ε) where N0(ε) is

large enough,

‖Qkp(hp,N )−Qkp(hp,ε,N ))‖L2(Ω) ≤ ε, (3.32)

Qkp(hp,ε,N )
d→ Ikp(fp,ε) as N →∞, (3.33)

‖Ikp(fp,ε)− Ikp(fp)‖L2(Ω) ≤ ε, (3.34)

where ‖.‖L2(Ω) denotes the L2(Ω) norm,

hp,ε,N (j1, . . . , jkp) := N−kp/2fp,ε(
j1
N
, . . . ,

jkp
N

).

Set

Qε,N :=
(
Qkp(hp,ε,N )

)
p=1,...,JL

and

Iε :=
(
Ikp(fp,ε)

)
p=1,...,JL

.

Now note that Qkp(hp,ε,N ) is a multivariate polynomial (thus is a continuous function) of

random variables of the form WN (∆i) where ∆i’s are disjoint finite intervals and WN (.) is

the empirical random measure as given in Remark 3.4.2. On the other hand, Ikp(fp,ε) is a

multivariate polynomial of random variables of the form W (∆i). So by Lemma 3.4.1 (with

Remark 3.4.2) and the Continuous Mapping Theorem, we have that as N →∞,

〈a,S(m)
N,1(t)〉+ 〈b,S(m)

N,2(t)〉+ 〈c,Qε,N 〉
f.d.d.−→ 〈a,W(t)〉+ 〈b,B(m)(t)〉+ 〈c, Iε〉. (3.35)

By (3.32) and the Cauchy-Schwartz inequality, we infer that

‖ (〈c,QN −Qε,N 〉) ‖L2(Ω) ≤ ‖c‖‖QN −Qε,N‖L2(Ω) ≤ ‖c‖
√
JLε, (3.36)
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where ‖.‖ denotes the Euclidean norm. Similarly using (3.34),

‖ (〈c, I− Iε〉) ‖L2(Ω) ≤ ‖c‖‖I− Iε‖L2(Ω) ≤ ‖c‖
√
JLε. (3.37)

We now apply a usual triangular approximation argument (e.g., Lemma 4.2.1 of Giraitis

et al. [2012]). Let

U
(m)
N (t) = 〈a,Y(m)

N,S1
(t)〉+ 〈b,Y(m)

N,S2
(t)〉+ 〈c,QN 〉,

U
(m)
N,ε (t) = 〈a,Y(m)

N,S1
(t)〉+ 〈b,Y(m)

N,S2
(t)〉+ 〈c,Qε,N 〉,

U (m)
ε (t) = 〈a,W(t)〉+ 〈b,B(m)(t)〉+ 〈c, Iε〉,

U (m)(t) = 〈a,W(t)〉+ 〈b,B(m)(t)〉+ 〈c, I〉.

By (3.35), (3.37) and (3.36), we have that

U
(m)
N,ε (t)

f.d.d.−→ U (m)
ε (t) as N →∞,

U (m)
ε (t)

f.d.d.−→ U (m)(t) as ε→ 0,

lim
ε→0

lim sup
N→∞

‖U (m)
N (t)− U (m)

N,ε (t)‖L2(Ω) = 0, ∀ t ≥ 0,

which implies

U
(m)
N (t)

f.d.d.−→ U (m)(t),

proving (3.31).

The next lemma gets rid of the m-truncation.

Lemma 3.4.5. Lemma 3.4.3 holds with the m-truncated normalized partial sums Y
(m)
N,Si

(t),

i = 1, 2, replaced with the non-truncated ones:

YN,Si(t) =

 1

σj,Si
√
N

[Nt]∑
n=1

Xj,Si(n)


j=1,...,Ji

, i = 1, 2
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where Xj,Si(n) is the non-truncated multilinear polynomial-form process corresponding to

the component of YN,Si in Theorem 3.3.5, σj,Si :=
∑

n Cov(Xj,Si(n), Xj,Si(0)) and the

limit B(m)(t) is replaced by B(t), that is, as N →∞,

(
YN,S1(t),YN,S2(t),QN

)
f.d.d.−→

(
W(t),B(t), I

)
, (3.38)

where W(t) = (W (t), . . . ,W (t)), B(t) =
(
B1(t), . . . , BJS2 (t)

)
are as given in Theorem

3.3.5.

Proof. We apply again the triangular argument at the end of the proof of Lemma 3.4.3

above, but now with m→∞, namely, to show UN (t)
f.d.d.−→ U(t), we show

U
(m)
N (t)

f.d.d.−→ U (m)(t) as N →∞,

U (m)(t)
f.d.d.−→ U(t) as m→∞,

lim
m→∞

lim sup
N→∞

‖U (m)
N (t)− UN (t)‖L2(Ω) = 0, ∀ t ≥ 0,

The first step follows from Lemma 3.4.3. The second follows from (3.23) since that relation

implies that the Gaussian vector (W,B(m)(t)) converges to (W,B(t)). For the last step,

apply the argument leading to (4.8.7) of Giraitis et al. [2012] and hence for any t ≥ 0 as

N →∞,

‖Y (m)
N,j,i(t)− YN,j,i(t)‖L2(Ω) → 0, j = 1, . . . , JSi , i = 1, 2. (3.39)

Now we prove Theorem 3.3.5:

Proof of Theorem 3.3.5. In view of Lemma 3.4.5, it is only necessary to verify that the

assumption on QN are satisfied, that is, we now focus on the LRD component:

YN,L(t) =

 1

Ap,L(N)

[Nt]∑
n=1

Xp,L(n)


p=1,...,JL
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in Theorem 3.3.5. Choose as kernels hp,N in (3.28) those obtained from YN,L, that is,

h
(t)
p,N (s1, . . . , skp,L) = c(p,N)N−1+kp,L(1/2−dp,L)

[Nt]∑
n=1

kp,L∏
i=1

an−si,p,

where c(p,N) > 0 is some normalization constant. By Theorem 4.8.2 of Giraitis et al.

[2012], (3.29) holds and so therefore does Lemma 3.4.5. This concludes the proof of Theo-

rem 3.3.5.

3.4.4 Weak convergence in D[0, 1]J

We first state a lemma which will be used to prove case 2d.

Lemma 3.4.6. Let Qk(h) be a polynomial form defined in (3.27). If

∑
i1,...,ik

|h(i1, . . . , ik)| <∞, (3.40)

and E(|εi|5) <∞, then we have the following hypercontractivity inequality:

E
(
Qk(h)4

)
≤ cE

(
Qk(h)2

)2
, (3.41)

where c =
(
3 + 2E(ε4i )

)2k
.

Proof. Let hM be the truncated version of h, that is,

hM (i1, . . . , ik) = h(i1, . . . , ik)1{i1≤M,...,ik≤M}(i1, . . . , ik).

By the absolute summability of h, we have

E (|Qk(hM )−Qk(h)|) ≤ (E|εi|)k
∑

i1>M,...,ik>M

|h(i1, . . . , ik)| → 0

as M →∞, and thus

Qk(hM )
d→ Qk(h). (3.42)
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By (11.4.1) of Nourdin and Peccati [2012], we have for M ≥ k,

E
(
Qk(hM )4

)
≤
(
3 + 2E(ε4i )

)2k
E
(
Qk(hM )2

)2
. (3.43)

In addition,

E
(
|Qk(hM )|5

)
≤ A

 ∑
i1,...,ik

|h(i1, . . . , ik)|

5

<∞, (3.44)

where A > 0 is a constant accounting for the product of absolute moments of {εi}. Note

that since h vanishes on the diagonals ip = iq when p 6= q, there is no moment-order higher

than 5 involved there.

Finally, (3.44) implies that {Qk(hM )4,M ≥ 1} and {Qk(hM )2,M ≥ 1} are uniformly

integrable, and this combined with (3.42) and (3.43) yields (3.41).

Proof of Theorem 3.3.8. Convergence in finite-dimensional distributions follows from The-

orem 3.3.1, Theorem 3.3.4 and Theorem 3.3.5, so we are left to show tightness in D[0, 1]J .

Since univariate tightness implies the multivariate tightness in the product space (Lemma

3.10 of Bai and Taqqu [2013a]), we only need to show that each {Yj,N (t), N ≥ 1} in (3.2)

is tight with respect to the uniform metric. If Xj(n) is LRD, the tightness is shown in

Theorem 4.8.2 of Giraitis et al. [2012]. We only need to treat the SRD case.

Suppose that X(n) is a process defined in (3.1) which is SRD.

In case 2a of Theorem 3.3.8, note that Xn is now a stationary m-dependent sequence,

so the weak convergence of SN (t) to Brownian motion, which includes tightness, is classical

(Billingsley [1956] Theorem 5.2).

Consider next case 2b. Because εi are i.i.d. Gaussian, X(n) belongs to the k-th Wiener

chaos, or say, can be written as a multiple Wiener-Itô integral of order k (see, e.g., Nourdin

and Peccati [2012] Chapter 2.2 and Chapter 2.7). Since the k-th Wiener chaos is a linear

space,

YN (t) :=
1√
N

[Nt]∑
n=1

X(n)
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also belongs to the k-th Wiener chaos, and so does YN (t) − YN (s) for any 0 ≤ s < t. By

the hypercontractivity inequality (Theorem 2.7.2 in Nourdin and Peccati [2012]), we have

E[|YN (t)− YN (s)|4] ≤ cE[|YN (t)− YN (s)|2]2, (3.45)

where c is some constant which doesn’t depend on s, t or N . Note that
∑

n |γ(n)| < ∞

due to SRD assumption, we have

E[|YN (t)− YN (s)|2] =
1

N
E[|

[Nt]−[Ns]∑
n=1

X(n)|2]

=
[Nt]− [Ns]

N

∑
|n|<[Nt]−[Ns]

(
1− |n|

[Nt]− [Ns]

)
γ(n) ≤ [Nt]− [Ns]

N

∞∑
n=−∞

|γ(n)|. (3.46)

Combining (3.45) and (3.46), we have for some constant C > 0 that

E[|YN (t)− YN (s)|4] ≤ cE[|YN (t)− YN (s)|2]2 ≤ C|FN (t)− FN (s)|2,

where FN (t) = [Nt]/N . Now by applying Lemma 4.4.1 and Theorem 4.4.1 of Giraitis et al.

[2012], we conclude that tightness holds.

Case 2c is shown by Proposition 4.4.4 of Giraitis et al. [2012] with H = 1/2.

For case 2d, for s < t,

1

A(N)

[Nt]−[Ns]∑
n=1

X(n) =
∑

1≤i1<...<ik<∞

 1

A(N)

[Nt]−[Ns]∑
n=1

an−i1 . . . an−ik

 εi1 . . . εik .

Thus Lemma 3.4.6 applies with

h(i1, . . . , ik) =
1

A(N)

[Nt]−[Ns]∑
n=1

an−i1 . . . an−ik

since (3.40) holds due to the assumption
∑

i≥1 |ai| <∞. Tightness then follows by applying

the same argument as in case 2b.



Chapter 4

Generalized Hermite processes, discrete chaos and

limit theorems

We introduce a broad class of self-similar processes {Z(t), t ≥ 0} called generalized Hermite

processes. They have stationary increments, are defined on a Wiener chaos with Hurst

index H ∈ (1/2, 1), and include Hermite processes as a special case. They are defined

through a homogeneous kernel g, called “generalized Hermite kernel”, which replaces the

product of power functions in the definition of Hermite processes. The generalized Hermite

kernels g can also be used to generate long-range dependent stationary sequences forming

a discrete chaos process {X(n)}. In addition, we consider a fractionally-filtered version

Zβ(t) of Z(t), which allows H ∈ (0, 1/2). Corresponding non-central limit theorems are

established. We also give a multivariate limit theorem which mixes central and non-central

limit theorems.

4.1 Introduction

A stochastic process {X(t), t ≥ 0} with finite variance taking values in R is said to be self-

similar if there is a constant called Hurst coefficient H > 0, such that for any scaling factor

a > 0, X(at)
f.d.d.
= aHX(t), where

f.d.d.
= means equality in finite-dimensional distributions. If

a self-similar process {X(t), t ≥ 0} has also stationary increments, namely, if for any h ≥ 0,

{Y (t) := X(t+ h)−X(t), t ≥ 0} is a stationary process, then we say that {X(t), t ≥ 0} is

H-sssi. The natural range of H is (0, 1), which implies EX(t) = 0 for all t ≥ 0. We refer

the reader to Chapter 3 of Embrechts and Maejima [2002] for details.
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The fundamental theorem of Lamperti (Lamperti [1962]) states that H-sssi processes

are the only possible limit laws of normalized partial sum of stationary sequences, that is,

if

1

A(N)

[Nt]∑
n=1

X(n)
f.d.d.−→ Y (t)

and A(N) → ∞ as N → ∞, where {X(n)} is stationary, then {Y (t), t ≥ 0} has to be

H-sssi for some H > 0, and A(N) has to be regularly varying with exponent H. The

notation
f.d.d.−→ stands for convergence in finite-dimensional distributions (f.d.d.).

The best known example of Lamperti’s fundamental theorem is when {X(n)} is i.i.d.

or a short-range dependent (SRD) sequence, then the limit Y (t) is Brownian motion which

is 1
2 -sssi. If {X(n)} has long-range dependence (LRD), the limit Y (t) is often H-sssi with

H > 1/2. The most typical H-sssi process is fractional Brownian motion BH(t), but there

are also non-Gaussian processes, e.g, Hermite processes (Taqqu [1979], Dobrushin and

Major [1979]). The Hermite process of order 1 is fractional Brownian motion, but when

the order is greater than or equal to 2, its law belongs to higher-order Wiener chaos (see,

e.g., Peccati and Taqqu [2011]) and is thus non-Gaussian.

The Hermite processes have attracted a lot of attention. The first-order Hermite pro-

cess, namely fractional Brownian motion, has been studied intensively by numerous re-

searchers since its popularization by Mandelbrot and Van Ness [1968], and we refer the

reader to a recent monograph Nourdin [2012] and the references therein. The second-order

Hermite process, namely the Rosenblatt process, is also investigated in a number of pa-

pers. Recent works include Tudor [2008], Bardet and Tudor [2010], Veillette and Taqqu

[2013], Maejima and Tudor [2007, 2013]. Hermite processes frequently appear in statistical

inference problems involving LRD, e.g., Lévy-Leduc et al. [2011], Dehling et al. [2013].

It is interesting to note that when the stationary sequence {X(n)} is LRD, one can

obtain in the limit a much richer class of processes, whereas in the SRD case, one obtains

only Brownian motion. The type of limit theorems involving H-sssi processes other than

Brownian motion are often called non-central limit theorems. While Hermite processes are
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the main examples of H-sssi processes obtained as the limit of partial sum of finite-variance

LRD sequence, there are very few other limit H-sssi processes which have been considered,

with some exceptions Rosenblatt [1979] and Major [1981].

In this chapter, we introduce a broad class of H-sssi (H > 1/2) processes {Z(t), t ≥

0} with their laws in Wiener chaos, which includes the Hermite processes as a special

case. These processes are defined as Z(t) = Ik(ht), where Ik(·) denotes k-tuple Wiener-Itô

integral, and

ht(x1, . . . , xk) :=

∫ t

0
g(s− x1, . . . , s− xk)1{s>x1,...,s>xk}ds,

with g being some suitable homogeneous function on Rk+ called generalized Hermite kernel.

For example,

g(x1, . . . , xk) = max

(
x1 . . . xk

xk−α1 + . . .+ xk−αk

, x
α/k
1 . . . x

α/k
k

)
, x ∈ Rk+, α ∈ (−k

2
− 1

2
,−k

2
)

(4.1)

We call the corresponding H-sssi process Z(t) a generalized Hermite process. We then

construct a class of discrete chaos processes as

X(n) =
′∑

(i1,...,ik)∈Zk+

g(i1, . . . , ik)εn−i1 . . . εn−ik ,

where {εi} are i.i.d. noise, and the prime ′ exclusion of the diagonals ip = iq, p 6= q. We

show that the normalized partial sum of X(n) converges to the generalized Hermite process

Z(t) defined by the same g. We also obtain processes with H ∈ (0, 1/2) by applying an

additional fractional filter. The increments of these processes have negative dependence.

Finally, we state a multivariate limit theorem which mixes central and non-central limits,

including cases where there is an additional fractional filter.

The chapter is organized as follows. In Section 2, we review the Hermite processes. In

Section 3, the generalized Hermite processes are introduced. In Section 4, we consider the
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discrete chaos processes. In Section 5, we prove a hypercontractivity relation for infinite

discrete chaos. In Section 6, we show that the discrete chaos processes converge weakly to

the generalized Hermite processes, including situations where H < 1/2.

4.2 Brief review of Hermite processes

The Hermite processes are defined with the aid of a multiple stochastic integral called

Wiener-Itô integral. We give here a brief introduction to this integral. For the proofs of

our statements and additional details, we refer the reader to Major [2014] and Nualart

[2006], for example. The Wiener-Itô integral is defined for any f ∈ L2(Rk) as

Ik(f) :=

∫ ′
Rk
f(x1, . . . , xk)W (dx1) . . .W (dxk),

where W (·) is Brownian motion viewed as a random integrator, and the prime ′ indicates

that we don’t integrate on the diagonals xp = xq, p 6= q. The integral Ik(·) can be defined

first for elementary functions f =
∑n

i=1 ai1Ai , where Ai’s are off-diagonal cubes in Rk.

This results in a linear combination of k-fold product of independent centered Gaussian

random variables. One then extends this in the usual way to any f ∈ L2(Rk). The random

variable Ik(f) is also said to belong to the k-th Wiener chaos Hk, which is the Hilbert

space generated by Ik(f) when f varies in L2(Rk). Here we state the following important

properties of the Wiener-Itô integral Ik(·):

1. Ik(·) is a linear mapping from L2(Rk) to L2(Ω).

2. If fσ(x1, . . . , xk) := f(xσ(1), . . . , xσ(k)), where σ is any permutation of (1, . . . , k), then

Ik(fσ) = Ik(f). It hence suffices to focus on symmetric integrands (symmetrize f as

f̃(x1, . . . , xk) :=
1

k!

∑
σ

f(xσ(1), . . . , xσ(k))

when necessary).



76

3. Suppose f ∈ L2(Rp) and g ∈ L2(Rq), and both are symmetric. Then

EIp(f)Iq(g) =


k!〈f, g〉L2(Rk) = k!

∫
Rk f(x)g(x)dx, if p = q = k;

0, if p 6= q.

If f ∈ L2(Rk) is not symmetric, one gets

EIp(f)2 = ‖f̃‖2L2(Rk) ≤ k!‖f‖2L2(Rk).

An Hermite process of order k is an H-sssi process with 1/2 < H < 1, which is

represented by the following Wiener-Itô integral:

Z
(k)
H (t) = ak,d

∫ ′
Rk

∫ t

0

k∏
j=1

(s− xj)d−1
+ ds W (dx1) . . .W (dxk), (4.2)

where

and ak,d is some positive constant that makes Var(Z
(k)
H (1)) = 1. We call (4.2) the time-

domain representation. It is known that Hermite processes admit other representations in

terms of Wiener-Itô integrals (see Pipiras and Taqqu [2010]), among which we note the

spectral-domain representation:

Z
(k)
H (t) = bk,d

∫ ′′
Rk

ei(u1+...+uk)t − 1

i(u1 + . . .+ uk)
|u1|−d . . . |uk|−dŴ (du1) . . . Ŵ (duk), (4.3)

where Ŵ (·) is a complex-valued Brownian motion (with real and imaginary parts being

independent) viewed as a random integrator (see, e.g., p.22 of Embrechts and Maejima

[2002]), the double prime ′′ indicates the exclusion of the hyper-diagonals up = ±uq, p 6= q,

and bk,d is some positive constant that makes Var(Z
(k)
H (1)) = 1. In the sequel, we use

Îk(·) to denote a k-tuple Wiener-Itô integral with respect to the complex-valued Brownian

motion Ŵ (·). In fact, the kernel inside the Wiener-Itô integral in (4.3) is the Fourier

transform of the kernel in (4.2) up to some unimportant factors. The connection between
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the time-domain and spectral-domain representation is through the following general result:

Proposition 4.2.1. (Proposition 9.3.1 of Peccati and Taqqu [2011]) Let gj(x) be a real-

valued function in L2(Rkj ), j = 1, . . . , J . Let

ĝj(u) =

∫
Rkj

gj(x)ei〈u,x〉dx

be the Fourier transform. Then

(
Ik1(g1), . . . , IkJ (g2)

)
d
=
(

(2π)−k1/2Îk1(ĝ1w
⊗k1 ), . . . , (2π)−kJ/2ÎkJ (ĝ2w

⊗kJ )
)
,

for any |w(u)| = 1 and w(u) = w(−u), where w⊗k(u1 . . . uk) := w(u1) . . . w(uk).

The factors w⊗kj do not change the distributions due to the change-of-variable formula

of Wiener-Itô integrals (see, e.g., Proposition 4.2 of Dobrushin [1979]).

The Hermite process of order k = 1 is fractional Brownian motion BH(t), and that

of order k = 2 is called Rosenblatt process whose marginal distribution was discovered by

Rosenblatt [1961]. We note that all H-sssi processes with unit variance at t = 1 have

covariance

R(s, t) =
1

2
(s2H + t2H − |s− t|2H),

as is the case for Hermite process of arbitrary order.

Hermite processes arise as limits of partial sum of nonlinear LRD sequences. In the

following two theorems, A(N) is a normalization factor guaranteeing unit asymptotic vari-

ance for the partial sum process at t = 1. We use ⇒ to denote weak convergence in the

Skorohod space D[0, 1] with the uniform metric.

Theorem 4.2.2. (Dobrushin and Major [1979], Taqqu [1979].) Suppose that {X(n)} is a

Gaussian stationary sequence with autocovariance

γ(n) ∼ cn2d−1
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as n→∞ for some constant c > 0 and

1/2(1− 1/k) < d < 1/2.

Let Hk(x) := (−1)kex
2/2 dk

dxk
e−x

2/2 be the k-th Hermite polynomial, k ≥ 1. Then

1

A(N)

[Nt]∑
n=1

Hk(X(n))⇒ Z
(k)
d (t).

Theorem 4.2.3. (Surgailis [1982], see also Giraitis et al. [2012] Chapter 4.8.) Let {εi}

be an i.i.d. sequence with mean 0 variance 1,

an ∼ cnd−1

as n→∞ for some constant c > 0 and

1/2(1− 1/k) < d < 1/2.

Let

X(n) =
′∑

0<i1,...,ik<∞
ai1 . . . aikεn−i1 . . . εn−ik ,

where the prime ′ indicates that one doesn’t sum on the diagonals ip = iq p 6= q. Then

1

A(N)

[Nt]∑
n=1

X(n)⇒ Z
(k)
d (t).

Remark 4.2.4. The Hermite polynomial in Theorem 4.2.2 can be replaced by a general

function G(·) such that EG(Xn) = 0, EG(Xn)2 < ∞, due to the orthogonal expansion of

G(x) with respect to Hermite polynomials, and the fact that only the leading term in the

expansion contributes to the limit law. Similarly, the off-diagonal multilinear polynomial-

form process X(n) in Theorem 4.2.3 can be replaced by a suitable function of the linear

process Y (n) :=
∑

i≥1 aiεn−i. In both of the above theorems
f.d.d.−→ can be strengthened to
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weak convergence ⇒ (Proposition 4.4.2 of Giraitis et al. [2012]).

Remark 4.2.5. The range of the parameter d in both of the theorems guarantees that

the summand is LRD in the sense that the autocovariance decays as a power funciton with

an exponent in the range (−1, 0). We note also that the constant c > 0 appearing in both

theorems can be replaced by a slowly varying function.

4.3 Generalized Hermite Processes

We introduce first some notation, which will be used throughout. R+ = (0,∞), Z+ =

{1, 2, . . .}. x = (x1, . . . , xk) ∈ Rk, i = (i1, . . . , ik) ∈ Zk, 0 = (0, . . . , 0), 1 = (1, . . . , 1). For

any real number x, [x] = sup{n ∈ Z, n ≤ x}, and [x] = ([x1], . . . , [xk]). We write x > y (or

≥) if xj > yj (or ≥), j = 1, . . . , k. 〈x,y〉 =
∑k

j=1 xjyj , and ‖x‖ =
√
〈x,x〉, while ‖ · ‖ with

a subscript is also used to denote the norm of some other space (specified in the subscript).

Given a set A ⊂ R, Ak is the k-fold Cartesian product. 1A(·) is the indicator function of

a set A. Lp(Rk, µ) denotes the Lp-space on Rk with measure µ, and µ is omitted if it is

Lebesgue measure.

4.3.1 General kernels

The following proposition provides a general way to construct in the time-domain an H-sssi

process living in Wiener chaos:

Proposition 4.3.1. Fix an H ∈ (0, 1). Suppose that {ht(·), t > 0} is a family of functions

defined on Rk satisfying

1. ht ∈ L2(Rk);

2. ∀λ > 0, ∃β 6= 0, such that hλt(x) = λH+kβ/2ht(λ
βx) for a.e. x ∈ Rk and all t > 0;

3. ∀s > 0, ∃ a ∈ Rk, such that ht+s(x) − ht(x) = hs(x + ta) for a.e. x ∈ Rk and all

t > 0.

Then Z(t) := Ik(ht) is an H-sssi process.
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Condition 1 guarantees that the Wiener-Itô integral is well defined. Condition 2 yields

self-similarity, where the term kβ/2 in the exponent compensates for the scaling of the

k-tuple Brownian motion integrators. Condition 3 guarantees stationary increments. Self-

similarity and stationary increments can be rigorously checked by the change-of-variable

formula of Wiener-Itô integrals (Proposition 4.2 of Dobrushin [1979]).

The Hermite process, for instance, which is defined in (4.2) can be obtained following

the scheme of Proposition 4.3.1 by letting

ht(x) =

∫ t

0
g(s1− x)1{s1>x}(s)ds,

and

g(x) =
k∏
j=1

xd−1
j , xj > 0. (4.4)

It is easy to check that the conditions on ht in Proposition 4.3.1 are all satisfied with

β = −1 in condition 2 and H = kd−k/2 + 1. One can also check that the integrand in the

spectral-domain representation in (4.3) also satisfies the first two conditions in Proposition

4.3.1, but with β = 1 in Condition 2 instead. The third condition, however, must be

replaced by ĥt+s(u)− ĥt(u) = e−it〈a,u〉ĥs(u) due to the Fourier-transform relation.

Our first goal is to extend the kernel g in (4.4) to some general class of functions. To

do so, we define the following class of functions on Rk+, which first appeared in Mori and

Oodaira [1986] to study the law of iterated logarithm:

Definition 4.3.2. We say that a nonzero measurable function g(x) defined on Rk+ is a

generalized Hermite kernel, if it satisfies

A. g(λx) = λαg(x), ∀λ > 0, where α ∈ (−k+1
2 ,−k

2 );

B.
∫
Rk+
|g(x)g(1 + x)|dx <∞.

One can check that the Hermite kernel g in (4.4) satisfies the above assumptions.
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Remark 4.3.3. The range of α in Condition A is non-overlapping for different k, and

extends from −1/2 to −∞ with all the multiples of −1/2 excluded.

Remark 4.3.4. Suppose g1 and g2 are generalized Hermite kernels having order k1, k2

and homogeneity exponent α1, α2 respectively. If in addition, α1 +α2 > −(k1 + k2 + 1)/2,

then g1 ⊗ g2(x1,x1) := g1(x1)g2(x2) is a generalized Hermite kernel having order k1 + k2

and homogeneity exponent α1 + α2.

Theorem 4.3.5. Let g(x) be a generalized Hermite kernel defined in Definition 4.3.2.

Then

ht(x) =

∫ t

0
g(s1− x)1{s1>x}ds

is well-defined in L2(Rk), ∀t > 0, and the process defined by Zt := Ik(ht) is an H-sssi

process with

H = α+ k/2 + 1 ∈ (1/2, 1).

Proof. To check that ht ∈ L2(Rk), we write

∫
Rk
ht(x)2dx =

∫
Rk
dx

∫ t

0

∫ t

0
ds1ds2 g(s11− x)g(s21− x)1{s11>x}1{s21>x}.

We want to change the integration order by integrating on x first. By Fubini, we need to

check that the absolute value of the integrand is integrable, that is,

2

∫ t

0
ds1

∫ t

s1

ds2

∫
Rk
dx |g(s11− x)g(s21− x)|1{s11−x>0} ( by symmetry)

= 2

∫ t

0
ds

∫ t−s

0
du

∫
Rk+
dw |g(w)g(u1 + w)| (s = s1, u = s2 − s1, w = s11− x)

= 2

∫ t

0
ds

∫ t−s

0
du

∫
Rk+
ukdy |g(uy)g(u+ uy)|

= 2

∫ t

0
ds

∫ t−s

0
u2α+kdu

∫
Rk+
dy |g(y)g(1 + y)| (by Condition A of Definition 4.3.2),

where the last expression is finite by 2α+ k + 1 > 0 and Condition B. Hence by the same
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calculation, but without absolute values,

∫
Rk
ht(x)2dx = 2

∫ t

0
ds

∫ t−s

0
u2α+kdu

∫
Rk+
dy g(y)g(1 + y)

=
t2α+k+2

(α+ k/2 + 1)(2α+ k + 2)

∫
Rk+
dy g(y)g(1 + y).

To check self-similarity (Condition 2 of Proposition 4.3.1 with β = −1),

hλt(x) =

∫ λt

0
g(s1− x)1{s1>x}ds = λα+1

∫ t

0
g(r1− λ−1x)1{r1>λ−1x}λdr = λα+1ht(λ

−1x),

where the second equality uses Condition A of Definition 4.3.2. The Hurst coefficient H of

Ik(ht) is obtained from α+ 1 = H − k/2. To check stationary increments (Condition 3 of

Proposition 4.3.1), for any t, r > 0,

ht+r(x)− ht(x) =

∫ t+r

t
g(s1− x)1{s1>x}ds

=

∫ r

0
g(u1 + t1− x)1{u1+t1>x}du = hr(x− t1).

Remark 4.3.6. As a byproduct of the above proof, we obtain that under the conditions

of Definition 4.3.2, one has
∫ t

0 |g(s1− x)|1{s1>x}(s)ds <∞ for a.e. x ∈ Rk, and

EZ(t)2(k!)−1 ≤ ‖ht‖2L2(Rk) =
t2H

H(2H − 1)
Cg,

where Cg :=
∫
Rk+
g(x)g(1 + x)dx, and the first inequality becomes equality if g and hence

ht is symmetric. Note that Cg > 0 must hold, otherwise ht(x) =
∫ t

0 g(s1−x)1{s1>x}ds = 0

for a.e. x ∈ Rk and any t > 0, which implies that g is zero a.e., and thus contradicts the

assumption.

Remark 4.3.7. Since ∀f ∈ L2(Rk), Ik(f) = Ik(f̃), where f̃ is the symmetrization of f

(Nualart [2006] p.9), it suffices to focus on symmetric generalized Hermite kernels g only.
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In the sequel, we will not always assume that g is symmetric for convenience, while being

aware that g can always be symmetrized.

Definition 4.3.8. The process

Z(t) :=

∫ ′
Rk

∫ t

0
g(s− x1, . . . , s− xk)1{s>x1,...,s>xk}ds W (dx1) . . .W (dxk) (4.5)

which we simply write Z(t) = Ik(ht) with ht(x) =
∫ t

0 g(s1 − x)1{s1>x}ds, where g is

a generalized Hermite kernel defined in Definition 4.3.2, is called a generalized Hermite

process.

Remark 4.3.9. It is known (see, e.g., Janson [1997] Theorem 6.12) that if a random

variable X belongs to the k-th Wiener chaos, then there ∃a, b, t0 > 0 such that for t ≥ t0,

exp(−at2/k) ≤ P (|X| > t) ≤ exp(−bt2/k).

This shows that the generalized Hermite processes of different orders must necessarily have

different laws, and the higher the order gets, the heavier the tail of the marginal distribution

becomes, while they all have moments of any order.

The generalized Hermite process Z(t) admits a continuous version, which follows from

the following general result:

Proposition 4.3.10. If {Z(t), t ≥ 0} is an H-sssi process whose marginal distribution

satisfies E|Z(1)|γ <∞ for some γ > H−1, then Z(t) admits a continuous version.

Proof. Using stationary increments and self-similarity, we have

E|Z(t)− Z(s)|γ = E|Z(t− s)|γ = |t− s|HγE|Z(1)|γ .

Since Hγ > 1, Kolmogorov’s criterion applies.

Remark 4.3.11. In Mori and Oodaira [1986], the following laws of iterated logarithm are
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obtained for the generalized Hermite process Z(t):

lim sup
n→∞

Z(n)

nH(2 log2 n)k/2
= l1, lim inf

n→∞

Z(n)

nH(2 log2 n)k/2
= l2 a.s.,

where l1 = supKh and l2 = inf Kh with the set

Kh :=

{∫
Rk
h1(x)ξ(x1) . . . ξ(xk)dx : ‖ξ‖L2(R) ≤ 1

}
.

In the spirit of (4.3), we can consider the spectral-domain representation of the gener-

alized Hermite processes. Since ht(x) =
∫ t

0 g(s1−x)1{s1>x}(s)ds ∈ L2(R), it always has an

L2-sense Fourier transform ĥt. We give an explicit way to calculate ĥt when g is integrable

in a neighborhood of the origin. Note that since g is homogeneous, it suffices to assume

integrability on the unit cube (0, 1]k.

Proposition 4.3.12. Suppose that

∫
(0,1]k

|g(x)| <∞. (4.6)

Let gn(x) = g(x)1(0,n]k(x), and ĝn(u) :=
∫
Rk gn(x)ei〈u,x〉dx be its Fourier transform. Set

ĥt,n :=
eit〈u,1〉 − 1

i〈u,1〉
ĝn(−u),

then ĥt,n converges in L2(Rk) to ĥt. Moreover, there is a function ĝ(u) defined for a.e.

u ∈ Rk, such that,

ĥt(u) =
eit〈u,1〉 − 1

i〈u,1〉
ĝ(−u). (4.7)

Proof. Due to (4.6), the Fourier transform of gn is well-defined pointwise as

ĝn(u) =

∫
Rk
g(x)1(0,n]k(x)ei〈u,x〉dx. (4.8)
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Let

ht,n(x) =

∫ t

0
gn(s1− x)1{s1>x}(s)ds =

∫ t

0
g(s1− x)1{x<s1≤x+n1}(s)ds.

Note that |gn(x)| ≤ |g(x)|, so by the proof of Theorem 4.3.5, ht,n(x) ∈ L2(Rk), and by

the Dominated Convergence Theorem, ht,n converges to ht pointwise as n → ∞. Since

|ht,n| ≤
∫ t

0 |g(s1 − x)|1{s1>x}(s)ds, by the Dominated Convergence Theorem in L2(Rk),

ht,n converges to ht in L2(Rk). By Plancherel’s isometry, ĥt,n, the Fourier transform of

ht,n, converges in L2(Rk) to ĥt. But

ĥt,n(u) :=

∫
Rk

∫ t

0
g(s1− x)1{x<s1≤x+n1}(s)ds e

i〈u,x〉dx

=

∫ t

0

∫
Rk
ei〈u,s1〉g(s1− x)ei〈−u,s1−x〉1{0<s1−x≤n1}(x)dxds

=

∫ t

0
ei〈u,s1〉ds

∫
Rk
g(y)1{0<y≤n1}e

i〈−u,y〉dy

=
eit〈u,1〉 − 1

i〈u,1〉
ĝn(−u), (4.9)

where the change of integration order is valid because by (4.6),

∫ t

0
ds

∫
Rk
dx|g(s1− x)|1{x<s1≤x+n1} =

∫ t

0
ds

∫
Rk
|g(y)|1{0<y≤n1}dy <∞.

We now prove (4.7). The fact that ĥt,n converges in L2(Rk) to ĥt implies that ĝn is a

Cauchy sequence in L2(Rk, µt), where µt is the measure given by

µt(A) =

∫
A

∣∣∣∣∣eit〈u,1〉 − 1

i〈u,1〉

∣∣∣∣∣
2

du =

∫
A

2− 2 cos(t〈u,1〉)
〈u,1〉2

du

for any measurable set A ⊂ Rk. Hence there exists a ĝ ∈ L2(Rk, µt) which is the limit of

ĝn in L2(Rk, µt). Since µt is equivalent to Lebesgue measure, ĝ is determined a.e. on Rk,

and there exists a subsequence of ĝn that converges a.e. to ĝ. So (4.7) holds.

Remark 4.3.13. Note that ĝ is not the L2-sense Fourier transform of g1Rk+
, since g /∈
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L2(Rk+). One can, however, evaluate the limit of ĝn pointwise as an improper integral, as

is done in the Hermite kernel case (4.4) (see Lemma 6.2 of Taqqu [1979]).

The limit ĝ in (4.7) is also a homogeneous function:

Proposition 4.3.14. The function ĝ defined in Remark 4.3.12 satisfies for any λ > 0,

g(λu) = λ−α−kĝ(u) for a.e. u ∈ Rk.

Proof. Following (4.8) and using Condition A of Definition 4.3.2, and noting that 〈λu,x〉 =

〈u, λx〉, we have

ĝn(λu) =λ−α
∫
Rk
g(λx)1(0,n]k(x)ei〈u,λx〉dx

=λ−α−k
∫
Rk
g(y)1(0,λn]k(y)ei〈u,y〉dy = λ−α−kĝnλ(u).

Then let n→∞ through a subsequence so that both sides converge a.e..

Remark 4.3.15. The spectral-domain representation of the Hermite process in (4.3) is

indeed obtained as ĝ(u) = c
∏k
j=1 |uk|−dw(u) for some constant c > 0, where the function

w(u) =
∏k
j=1 exp

(
−sign(uj)

iπd
2

)
can be omitted (see Proposition 4.2.1).

4.3.2 Special kernels and examples

We introduce now some subclasses of the generalized Hermite kernels g defined in Definition

4.3.2, which will be of interest later when dealing with limit theorems. Note that the kernel

g is determined by its value on the positive unit sphere Sk+ := {x ∈ Rk+, ‖x‖ = 1}. Because

it is homogeneous, g is always radially continuous and it is decreasing since α < 0 in

Definition 4.3.2. Thus assuming that g is continuous on Sk+ a.e. (with respect to the

uniform measure on the Sk+) is the same as assuming g is continuous a.e. on Rk+ .

Definition 4.3.16. We say that a generalized Hermite kernel g is of Class (B) (B stands

for “boundedness”), if on Sk+, it is continuous a.e. and bounded. Consequently,

|g(x)| = ‖x‖α|g(x/‖x‖)| ≤ c‖x‖α
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for some c > 0.

Remark 4.3.17. According to Lemma 7.1 of Mori and Oodaira [1986], Class (B) forms

a dense subclass of the class of generalized Hermite kernels in the sense that for any

generalized Hermite kernel g and any ε > 0, there exists gε in Class (B), such that ‖h −

hε‖L2(Rk) < ε, where h(x) =
∫ 1

0 g(s1− x)1{s1>x}ds and hε(x) =
∫ 1

0 gε(s1− x)1{s1>x}ds.

Note that Class (B) does not include the original Hermite kernel in (4.4). We now

introduce a class of generalized Hermite kernels, called Class (L), which includes generalized

Hermite kernels of the form:

g(x) =
k∏
j=1

x
γj
j , (4.10)

where each −1 < γj < −1/2 and −k/2 − 1/2 <
∑

j γj < −k/2. These particular kernels

with k = 2 has been considered in Maejima and Tudor [2012] where the resulting process

is called non-symmetric Rosenblatt process. We hence call the kernel in (4.10) a non-

symmetric Hermite kernel. Note that despite the name, one can always symmetrize these

kernels. Class (L) will appear in the discrete chaos processes and the limit theorems

considered later.

Definition 4.3.18. We say that a generalized Hermite kernel g on Rk+ having homogeneity

exponent α is of Class (L) (L stands for “limit” as in “limit theorems”), if

1. g is continuous a.e. on Rk+;

2. |g(x)| ≤ g∗(x) a.e. x ∈ Rk+, where g∗ is a finite linear combination of non-symmetric

Hermite kernels:
∏k
j=1 x

γj
j , where γj ∈ (−1,−1/2), j = 1, . . . , k, and

∑k
j=1 γj = α ∈

(−k/2− 1/2,−k/2).

For example, g∗(x) could be x
−3/4
1 x

−5/8
2 + x

−9/16
1 x

−13/16
2 if k = 2. In this case, α =

−11/8.

Remark 4.3.19. If two functions g1 and g2 on Rk+ satisfy Condition 2 of Definition 4.3.18,

then
∫
Rk+
|g1(x)g2(1 + x)|dx < ∞ automatically holds, which can be seen by using the
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following identity: for any γ, δ ∈ (−1,−1/2),

∫ ∞
0

xγ(1 + x)δdx = B(γ + 1,−γ − δ − 1),

where B(·, ·) is the beta function. In addition,
∫

(0,1]k |g1(x)|dx <∞ also holds.

Proposition 4.3.20. Class (L) contains Class (B).

Proof. Suppose g is a generalized Hermite kernel of Class (B). Then there exist contants

C1, C2 > 0, such that

|g(x)| ≤ C1‖x‖α = C1

 k∑
j=1

x2
j

α/2

≤ C2

k∏
j=1

x
α/k
j ,

where we have used the arithmetic-geometric mean inequality k−1
∑k

j=1 yj ≥
(∏k

j=1 yj

)1/k

and α < 0. So Condition 2 of Definition 4.3.18 is satisfied with g∗ being a single term where

γ1 = . . . = γk = α/k.

Remark 4.3.21. In view of Remark 4.3.6 and Remark 4.3.19, one can check that Class

(B) or Class (L) if adding in the a.e. 0-valued function, with fixed order k and fixed

homogeneity component α ∈ (−k/2− 1/2,−k/2), forms an inner product space, with the

inner product specified as

〈g1, g2〉 :=

〈∫ 1

0
g1(s1− ·)ds,

∫ 1

0
g2(s1− ·)ds

〉
L2(Rk)

=
1

2H(2H − 1)

∫
Rk+
g1(x)g2(1 + x) + g1(1 + x)g2(x)dx,

where H = α+ k/2 + 1, which yields the norm

‖g‖ :=

∥∥∥∥∫ 1

0
g(s1− ·)ds

∥∥∥∥
L2(Rk)

=

(
1

H(2H − 1)

∫
Rk+
g(x)g(1 + x)dx

)1/2

.

Here are several examples.
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Example 4.3.22. Suppose g(x) = ‖x‖α, where α ∈ (−1/2 − k/2,−k/2). This g belongs

to Class (B) and thus also Class (L). The pseudo-Fourier transform (Proposition 4.3.12)

of g is ĝ(u) = c‖u‖−α−k ((25.25) of Samko et al. [1993]) for some constant c > 0, which

provides the spectral representation by (4.7).

Example 4.3.23. Another example of Class (B):

g(x) =

∏k
j=1 x

aj
j∑k

j=1 x
b
j

,

where aj > 0 and b > 0, yielding a homogeneity exponent α =
∑k

j=1 aj − b ∈ (−1/2 −

k/2,−k/2).

Example 4.3.24. We give yet another example of Class (L) but not (B):

g(x) = g0(x) ∨

 k∏
j=1

x
α/k
j

 .

where g0(x) > 0 is any generalized Hermite kernel of Class (B) on Rk+ with homogeneity

exponent α.

4.3.3 Fractionally filtered kernels

According to Theorem 4.3.5, the generalized Hermite process introduced above admits a

Hurst coefficient H > 1/2 only. To obtain an H-sssi process with 0 < H < 1/2, we consider

the following fractionally filtered kernel:

hβt (x) =

∫
R
lβt (s)g(s1− x)1{s1>x}ds, (4.11)

where g is a generalized Hermite kernel defined in Definition 4.3.2 with homogeneity expo-

nent

α ∈ (−k/2− 1/2,−k/2),
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and

lβt (s) =
1

β

[
(t− s)β+ − (−s)β+

]
, β 6= 0. (4.12)

One can extend it to β = 0 by writing l0t (s) = 1(0,t](s), but this would lead us back to the

generalized Hermite process case. We hence assume throughout that β 6= 0. The following

proposition gives the range of β for which Ik(h
β
t ) is well-defined.

Proposition 4.3.25. If

−1 < −α− k

2
− 1 < β < −α− k

2
<

1

2
, β 6= 0 (4.13)

then hβt ∈ L2(Rk).

Proof.

∫
Rk
hβt (x)2dx ≤2

∫ ∞
−∞

ds1

∫ ∞
s1

ds2

∫
Rk
dx lt(s1)lt(s2)|g(s11− x)g(s21− x)|1{s11>x}

(4.14)

=2

∫ ∞
−∞

ds

∫ ∞
0

du

∫
Rk+
dw lβt (s)lβt (s+ u)|g(w)g(u1 + w)|

=2

∫ ∞
−∞

ds lβt (s)

∫ ∞
0

lβt (s+ u)u2α+kdu

∫
Rk+
dy |g(y)g(1 + y)|.

We thus focus on showing
∫∞
−∞ ds l

β
t (s)

∫∞
0 lβt (s + u)u2α+kdu < ∞. Recall that for any

c > 0, we have

∫ c

0
(c− s)γ1sγ2ds = cγ1+γ2+1

∫ 1

0
(1− s)γ1sγ2ds = cγ1+γ2+1B(γ1 + 1, γ2 + 1), ∀γ1, γ2 > −1.

So by noting that β > −1 and 2α+ k > −1, we have

∫ ∞
0

lβt (s+ u)u2α+kdu =
1

β

∫ ∞
0

[
(t− s− u)β+ − (−s− u)β+

]
u2α+kdu

=
1

β

[∫ t−s

0
(t− s− u)βu2α+kdu+

∫ −s
0

(−s− u)βu2α+kdu

]
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=
B(β + 1, 2α+ k + 1)

β

[
(t− s)β+δ

+ − (−s)β+δ
+

]
,

where

δ = 2α+ k + 1 ∈ (0, 1). (4.15)

We thus want to determine when the following holds:

∫
R

(
(t− s)β+ − (−s)β+

)(
(t− s)β+δ

+ − (−s)β+δ
+

)
ds <∞.

Suppose t > 0. The potential integrability problems appear near s = −∞, 0, t. Near

s = −∞, the integrand behaves like |s|2β+δ−2, and thus we need 2β + δ − 2 < −1; near

s = 0, the integrand behaves like |s|2β+δ, and thus 2β + δ > −1; near s = t, the integrand

behaves like |t− s|2β+δ, and thus again 2β + δ > −1. In view of (4.15), these requirements

are satisfied by (4.13).

Remark 4.3.26. Using (4.14) we obtain as a byproduct of the preceding proof that if β is

in the range given in Proposition 4.3.25, then the function fx,t(s) := lt(s)|g(s1−x)|1{s1>x}

is in L1(R) for any t > 0 and a.e. x ∈ Rk.

Theorem 4.3.27. The process defined by Zβ(t) := Ik(h
β
t ) with hβt given in (4.11), namely,

Zβ(t) =

∫ ′
Rk

∫
R

1

β
[(t−s)β+−(−s)β+]g(s−x1, . . . , s−xk)1{s>x1,...,s>xk}ds W (dx1) . . .W (dxk),

(4.16)

is an H-sssi process with

H = α+ β + k/2 + 1 ∈ (0, 1).

Proof. By (4.12), one has for any λ > 0, lβλt(s) = λβlβt ( sλ), and for any t, h > 0, lβt+h(s) −

lβt (s) = lβh(s − t). In addition, g is homogeneous with exponent α. The conclusion then

follows by Proposition 4.3.1.

Remark 4.3.28. In the case β > 0, one is able to write lβt (s) =
∫ t

0 (r − s)β−1
+ dr, and thus
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by Fubini

hβt (x) =

∫ t

0
dr

∫
R
ds(r − s)β−1

+ g(s1− x)1{s1>x}. (4.17)

Remark 4.3.29. To get the anti-persistent case H < 1/2, choose

β ∈ (−α− k/2− 1,−α− k/2− 1/2).

We now state an analog of (4.7) for the spectral representation of the process Zβ(t):

Proposition 4.3.30. Suppose that (4.6) holds. Then the L2-sense Fourier transform of

hβt is

ĥβt (u) = (eit〈u,1〉 − 1)(i〈u,1〉)−β−1ĝ(−u)Γ(β), a.e. u ∈ Rk, (4.18)

where ĝ is defined in Proposition 4.3.12.

Proof. Let gn(x) = g(x)1(0,n]k(x), and lβt,n = β−1[(t− s)β+1{t−s<n} − (−s)β+1{−s<n}]. Set

hβt,n(x) =

∫
R
lt,n(s)gn(s1− x)ds.

Similar to the proof of Proposition 4.3.12, one can show that hβt,n converges in L2(Rk) to

hβt as n→∞ through the Dominated Convergence Theorem by noting that |gn| ≤ |g| and

|lβt,n| ≤ l
β
t .

Since the truncated lt,n and gn admit L1-Fourier transforms l̂t,n and ĝn respectively,

one can write the Fourier transform of hβt,n as:

ĥβt,n(u) = l̂t,n(〈u,1〉)ĝn(−u),

(compare with (4.9)). Since hβt,n converges in L2(R) to hβt as n → ∞, by Plancherel’s

isometry, ĥβt,n converges in L2(Rk) to ĥβt . One now needs to identify (4.18) with the limit

of ĥβt,n.
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We first compute l̂βt,n. When β < 0, one has by change of variable that

lβt,n(u) = β−1

(∫
R
eiux(t− x)β+1{t−x<n}dx−

∫
R
eiux(−x)β+1{−x<n}dx

)
= β−1(eiut − 1)

∫ n

0
e−iussβds. (4.19)

When β > 0, one has

lβt,n(u) =

∫
R

1[0,t)(x)(x− u)β−1
+ 1{x−u<n}dx = (1[0,t) ∗ bn)(u),

where bn(x) = (−x)β−1
+ 1{−x<n}. We have the Fourier transforms 1̂[0,t)(u) = eiut−1

iu , and

b̂n(u) =

∫
R
e−iux(−x)β−1

+ 1{−x<n}dx =

∫ n

0
e−iussβ−1ds.

So

l̂βt,n(u) =
eiut − 1

iu

∫ n

0
e−iussβ−1ds (4.20)

By Gradshteyn and Ryzhik [2007] Formula 3.761.4 and 3.761.9, for µ ∈ (0, 1),

lim
n→∞

∫ n

0
e−iussµ−1ds = |u|−µΓ(µ) cos(

µπ

2
)− isign(u)|u|−µΓ(µ) sin(

µπ

2
)

= e−isign(u)µπ/2|u|−µΓ(µ) = (iu)−µΓ(µ),

Combining the foregoing limit with (4.19) and (4.20), we deduce

lim
n→∞

l̂βt,n = l̂βt (u) := (eitu − 1)(iu)−β−1Γ(β).

Recall that there exists a subsequence ĝnk converges a.e. to the pseudo-Fourier transform

ĝ as k → ∞ (Proposition 4.3.12). So l̂t,nk(〈u,1〉)ĝnk(−u) converges to l̂t(〈u,1〉)ĝ(−u) for

a.e. u ∈ Rk. But at the same time l̂t,nk(〈u,1〉)ĝnk(−u) converges in L2(R)k to ĥβt . So we

identify ĥβt with the expression in (4.18)
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Remark 4.3.31. By Proposition 4.2.1, we get a spectral representation Zβ(t)
f.d.d.
= Î(ĥβt ).

The kernel (4.18) in the spectral-domain has been considered by Major [1981] in the special

case where ĝ(u) = c
∏k
j=1 |uj |−d is the kernel for the spectral representation of Hermite

process.

4.4 Discrete chaos processes

In this section, we introduce a class of stationary sequence which converges to a generalized

Hermite process of Class (L) as defined in Definition 4.3.18.

First we define the discrete chaos, or the discrete multiple stochastic integral, Qk(·; ε)

with respect to the i.i.d. noise ε := (εi, i ∈ Z).

Let h be a function defined in Zk such that
∑′

i∈Zk h(i)2 < ∞, where ′ indicate the

exclusion of the diagonals ip = iq, p 6= q. The following sum

Qk(h) = Qk(h, ε) =
′∑

(i1,...,ik)∈Zk
h(i1, . . . , ik)εi1 . . . εik =

′∑
i∈Zk

h(i)
k∏
p=1

εip , (4.21)

is called the discrete chaos of order k. It is easy to see that switching the arguments, say

ip and iq, p 6= q, of h(i1, . . . , ik), does not change Qk(h). So if h̃ is the symmetrization h,

then Qk(h) = Qk(h̃).

The discrete chaos is related to Wiener chaos by a limit theorem. Suppose now we have a

sequence of function vectors hn = (h1,n, . . . , hj,n) where each hj,n ∈ L2(Zkj ), j = 1, . . . , J .

The following proposition concerns the convergence of the discrete chaos to the Wiener

chaos:

Proposition 4.4.1. Let h̃j,n(x) = nkj/2hj,n ([nx] + cj), j = 1, . . . , J , where cj ∈ Zk.

Suppose that there exists hj ∈ L2(Rkj ), such that

‖h̃j,n − hj‖L2(Rkj )
→ 0
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as n→∞. Then, as n→∞,

Q :=
(
Qk1(h1,n), . . . , QkJ (hJ,n)

)
d→ I :=

(
Ik1(h1), . . . , IkJ (hJ)

)
,

where each Ikj (·), j = 1, . . . , J , denotes the kj-tuple Wiener-Itô integral with respect to the

same standard Brownian motion W .

For a proof, we refer the reader to the proof of Proposition 14.3.2 of Giraitis et al. [2012]

on the univariate case. The proof for the multivariate case (corresponding to Proposition

14.3.3 of Giraitis et al. [2012]) is similar once the Crámer-Wold Device is applied. The

difference between Proposition 4.4.1 and Proposition 14.3.3 of Giraitis et al. [2012] is that

we add the shift cj for more flexibility. This extension requires only an easy modification

to the proof.

The causal discrete chaos process of order k ≥ 1 is a stationary sequence {X(n), n ∈ Z}

defined by:

X(n) =
′∑

0<i1,...,ik<∞
a(i1, . . . , ik)εn−i1 . . . εn−ik =

′∑
−∞<i1,...,ik<n

a(n− i1, . . . , n− ik)εi1 . . . εik ,

(4.22)

where ′ indicates that the sum excludes the diagonals ip = iq, p 6= q, {εn} is an i.i.d.

sequence with mean 0 and variance 1, a(i) is a function on Zk, and we require that it

satisfies
∑′

i>0 a(i)2 <∞, so that X(n) is well-defined in the L2(Ω)-sense. Note that when

k = 1, X(n) is plainly a linear process.

Due to the off-diagonality, the autocovariance of {X(n)} is given by the simple formula

γ(n) := Cov(X(n), X(0)) = k!
′∑

i>0

ã(i)ã(i + |n|1), (4.23)

where ã(·) is the symmetrization of a(·).
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We now focus on the following case:

a(i) = g(i)L(i), (4.24)

where g is a generalized Hermite kernel of Class (L) defined in Definition 4.3.18, and L is a

bounded function on Zk+ which satisfies the following: for any x ∈ Rk+ and for any bounded

Zk-valued function B(·) defined on Z+, we have

L([nx] + B(n))→ 1, as n→∞. (4.25)

Note that X(n) is well-defined in L2(Ω) since
∑

i∈Zk+
g∗(i)2 < ∞, where g∗ is a linear

combination of terms of the form
∏k
j=1 x

γj
j with every γj < −1/2,

Remark 4.4.2. Note that the boundedness of L and (4.25) are strictly weaker than assum-

ing that L(i)→ 1 as ‖i‖ → ∞ for some norm ‖ · ‖ on Rk (recall that norms are equivalent

in the finite-dimensional space). Indeed, consider

L(i1, i2) =


2 if i2 = 1;

1 otherwise.

Suppose that B is bounded by M . Then L([nx] + B(n)) = 1 for large n. On the other

hand, consider ‖i‖ = max(i1, i2). Then if (i1, i2) = (i1, 1), i1 →∞, we have ‖i‖ = i1 →∞

but L(i1, i2) = L(i1, 1) = 2.

Remark 4.4.3. In practice, Relation (4.25) implies that for any fixed x ∈ Rk+ and c ∈ Zk+,

L([nx] + c)→ 1 as n→∞.

The following Proposition shows that one can get long-range dependence if g is of Class

(L).

Proposition 4.4.4. If a(i) is as given in (4.24), where g has homogeneity exponent α ∈

(−1/2 − k/2,−k/2) (or 2α + k ∈ (−1, 0)), then the autocovariance of the discrete chaos
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process {X(n)} satisfies

γ(n) ∼ k!Cg̃n
2H−2, as n→∞, (4.26)

where Cg̃ =
∫
Rk+
g̃(x)g̃(1+x) > 0, H = α+k/2+1 ∈ (1/2, 1), with g̃ being the symmetriza-

tion of g. In addition, as N →∞,

Var[
N∑
n=1

X(n)] ∼ k!Cg̃
H(2H − 1)

N2H . (4.27)

Proof. Assume without loss of generality that g is already symmetric.

(k!)−1γ(n) =
′∑

i>0

g(i)g(n1 + i)L(n1 + i)L(i)

=n2α+k
′∑

i>0

g

(
i

n

)
g

(
1 +

i

n

)
L(i)L(n1 + i)

1

nk

=n2α+k

∫
Rk+

1Dcn(x)gn(x)gn(1 + x)dx,

where gn(x) = g( [nx]+1
n )L([nx] + 1), Dc

n = {x ∈ Rk+, [nxp] 6= [nxq], p 6= q ∈ {1, . . . , k}}.

Note that 1Dn(x) = 1 as n becomes large enough, for any x ∈ Dc := {x ∈ Rk+, xp 6= xq, p 6=

q ∈ {1, . . . , k}}, and that the diagonal set D := Rk+ \Dc has measure 0. Since g belongs

to Class (L), g is continuous a.e., so gn(x) → g(x) a.e. as n → ∞. Furthermore, there

exists g∗(x) which is a linear combination of the form
∏k
j=1 x

γj
j (Condition 2 of Definition

4.3.18), so that for a.e. x ∈ Rk+,

|gn(x)| ≤ g∗
(

[nx] + 1

n

)
≤ g∗(x),

since L is bounded and g∗ is decreasing in its every variable. Note that
∫
Rk+
g∗(x)g∗(1 +

x)dx < ∞, and g is a.e. continuous. So it remains to apply the Dominated Convergence

Theorem.
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Finally, (4.27) follows by first noting that

Var[

N∑
n=1

X(n)] =
∑
n

(N − |n|)γ(n) = N
∑
|n|<N

γ(n)−
∑
|n|<N

|n|γ(n),

and then using the asymptotics of γ(n) just derived.

4.5 Hypercontractivity for infinite discrete chaos

Let XM be a finite discrete chaos defined as

XM =
′∑

−M1≤i≤M1

h(i)εi1 . . . εik , (4.28)

where h(i) = h(i1, . . . , ik) is a function on Zk, M ∈ Z+, and we assume that {εi} is a

sequence of i.i.d. variables with Eεi = 0, Eε2i = 1. Then we have the following moment-

comparison inequality, also called “hypercontractivity inequality”:

Proposition 4.5.1. Suppose that E|εi|p <∞ with p ≥ 2. Then

E[|XM |p]1/p ≤ dp,kE[|XM |2]1/2, (4.29)

where dp,k is a constant depending only on p and k.

For a proof of (4.29), where M is finite, see Lemma 4.3 of Krakowiak and Szulga [1986],

where the so-called MPZ(p) condition (Definition 1.5 of Krakowiak and Szulga [1986]) is

trivially satisfied since the εi’s are identically distributed.

Now we extend (4.29) to the case M =∞. The result is used in Theorem 4.6.3, 4.6.11

and 4.6.14 below for proving tightness in D[0, 1].

Proposition 4.5.2. Suppose that
∑′

i∈Zk h(i)2 < ∞. Let X =
∑′

i∈Zk h(i)
∏k
p=1 εip. If for



99

some p′ > p > 2, E|εi|p
′
<∞, then one has

E[|X|p]1/p ≤ dp,kE[|X|2]1/2 (4.30)

Proof. Let XM be the truncated finite chaos as in (4.28). The condition on h implies that

XM → X in L2(Ω). Moreover, one has by (4.29),

E[|XM |p
′
] ≤ dp

′

p′,kE[|XM |2]p
′/2 ≤ dp

′

p′,k

 ′∑
i∈Zk

h(i)2

p′/2

.

This implies that {|XM |p,M ≥ 1} and {|XM |2,M ≥ 1} are uniformly integrable, implying

convergence of the corresponding moments. So one can then let M →∞ on both sides of

(4.29) and obtain (4.30).

4.6 Joint convergence of the discrete chaoses

Our goal here is to obtain non-central limit theorems for the discrete chaos process intro-

duced in Section 4.4. We shall, in fact, prove both a central limit theorem for the SRD case

(getting Brownian motion as limit) and a non-central limit theorem for the LRD case (get-

ting the generalized Hermite process introduced in Section 4.3 as limit). We also consider

non-central limit theorems leading to the fractionally filtered generalized Hermite process

introduced in Section 4.3.3. Finally, we derive a multivariate limit theorem which mixes

central and non-central limit theorems.

We first define here precisely what SRD and LRD stand for in the context of discrete

chaos process. Recall that ã(·) denotes the symmetrization of a(·).

Definition 4.6.1. We say a discrete chaos process {X(n)} given in (4.22) is

• SRD, if
∑∞

n=−∞
∑′

i>0 |ã(i)ã(i + |n|1)| <∞ and
∑∞

n=−∞ γ(n) > 0;

• LRD, if a(i) = g(i)L(i) as given in (4.24). In particular, g is a generalized Hermite

kernel of Class (L).
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Remark 4.6.2. The definitions of SRD and LRD in Definition 4.6.1 are distinct. Indeed,

the SRD condition implies that
∑

n |γ(n)| < ∞, while LRD yields
∑

n |γ(n)| = ∞ by

Proposition 4.4.4.

4.6.1 Central limit theorem

Theorem 4.6.3. If a discrete chaos process {X(n)} given in (4.22) is SRD in the sense

of Definition 4.6.1, then

1

N1/2

[Nt]∑
n=1

X(n)
f.d.d.−→ σB(t) (4.31)

where B(t) is a standard Brownian motion, and σ2 =
∑∞

n=−∞ γ(n).

Proof. Assume without loss of generality that a(·) is symmetric. The proof is similar to

the proof of Theorem 4.2.3 found on p.108 of Giraitis et al. [2012], so we give only a

sketch. The central idea is to introduce the m-truncation of X(n), namely, X(m)(n) :=∑′
0<i≤m1 a(i)

∏k
j=1 εn−ij , and then let m → ∞. The sequence {X(m)(n), n ∈ Z} is m-

dependent, so the classical invariance principle applies (Billingsley [1956] Theorem 5.2).

The long-run variance σ2 =
∑

n γ(n) is a standard result. We now check that the L2(Ω)

approximation is valid as m→∞, that is,

lim
m→∞

sup
N∈Z+

Var[Y
(m)
N (t)− YN (t)] = 0, t > 0, (4.32)

where Y
(m)
N (t) = 1√

N

∑[Nt]
n=1X

(m)(n) and YN (t) = 1√
N

∑[Nt]
n=1X(n), which is similar to

(4.8.7) of Giraitis et al. [2012]. Indeed,

Var[Y
(m)
N (t)− YN (t)] =

1

N
Var

[Nt]∑
n=1

(X(m)
n −Xn)


=

[Nt]

N

∑
|n|<[Nt]

γm(n)(1− |n|
[Nt]

) ≤ t
∞∑

n=−∞
|γm(n)|, (4.33)
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where

γm(n) := E(Xn −X(m)
n )(X0 −X(m)

0 ) = k!
′∑

i>m1

a(i)a(n1 + i).

For a fixed n ∈ Z, γm(n)→ 0 as m→∞, and |γm(n)| ≤ ρ(n), where

ρ(n) = k!
′∑

i>0

|a(i)a(i + n1)|,

which satisfies
∑

n ρ(n) <∞ by the SRD assumption in Definition 4.6.1. Since the bound

in (4.33) does not depend on N , the Dominated Convergence Theorem applies and thus

(4.32) holds.

To strengthen the conclusion of Theorem 4.6.3 to weak convergence, we have to make

some additional assumptions to prove tightness.

Theorem 4.6.4. Theorem 4.6.3 holds with
f.d.d.−→ replaced by weak convergence⇒ in D[0, 1],

if either of the following holds:

1. There exists δ > 0, such that E(|εi|2+δ) <∞;

2. There exists an M > 0 such that a(i) = 0 whenever i > M1.

Proof. Look first at case 1. Let

YN (t) :=
1√
N

[Nt]∑
n=1

X(n)

Select p ∈ (2, 2 + δ). By Proposition 4.5.2, one has

E[|YN (t)− YN (s)|p] ≤ cE[|YN (t)− YN (s)|2]p/2, (4.34)

where c is some constant which doesn’t depend on s, t or N . Note that
∑

n |γ(n)| < ∞
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due to SRD assumption, we have

E
[
|YN (t)− YN (s)|2

]
=

1

N
E[|

[Nt]−[Ns]∑
n=1

X(n)|2]

=
[Nt]− [Ns]

N

∑
|n|<[Nt]−[Ns]

(
1− |n|

[Nt]− [Ns]

)
γ(n) ≤ [Nt]− [Ns]

N

∞∑
n=−∞

|γ(n)|. (4.35)

Combining (4.34) and (4.35), we have for some constant C > 0 that

E[|YN (t)− YN (s)|p] ≤ cE[|YN (t)− YN (s)|2]p/2 ≤ C|FN (t)− FN (s)|p/2,

where FN (t) = [Nt]/N . Now by applying Lemma 4.4.1 and Theorem 4.4.1 of Giraitis et al.

[2012], noting that p/2 > 1, we conclude that tightness holds.

For case 2, X(n) is M -dependent, so by Theorem 5.2 of Billingsley [1956] tightness

holds as well.

4.6.2 Non-central limit theorem

The following theorem shows that in the LRD case, the discrete chaos process converges

weakly to a generalized Hermite process.

Theorem 4.6.5. If a discrete chaos process {X(n)} given in (4.22) is LRD in the sense

of Definition 4.6.1, then

1

NH

[Nt]∑
n=1

X(n)⇒ Z(t), (4.36)

in D[0, 1], where Z(t) is the generalized Hermite process in (4.5), and

H = α+ k/2 + 1 ∈
(

1

2
, 1

)
,

where α ∈ (−1/2 − k/2,−k/2) is the homogeneity exponent of g and k is the order of

{X(n)}.
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Proof. Tightness in D[0, 1] is standard since H > 1/2. We only need to show convergence

in finite-dimensional distributions. Assume for simplicity that a(i) = g(i) or equivalently

L(i) = 1. The inclusion of a general L can be done as in the proof of Proposition 4.4.4.

We want to show that

1

NH

[Nt]∑
n=1

X(n) =
′∑

(i1,...,ik)∈Zk

1

Nα+k/2+1

[Nt]∑
n=1

g(n1− i)1{n1>i}εi1 . . . εik =: Qk(ht,N )
f.d.d.−→ Z(t),

(4.37)

where Qk(·) is defined in (4.21). Now in view of Proposition 4.4.1, we only need to check

that

‖h̃t,N (x)− ht(x)‖L2(Rk) → 0, (4.38)

where

ht(x) =

∫ t

0
g(s1− x)1{s1>x}ds,

and

h̃t,N (x) : = Nk/2ht,N ([Nx] + 1) =
1

Nα+1

[Nt]∑
n=1

g(n1− [Nx]− 1)1{n1>[Nx]+1}

=

[Nt]∑
n=1

g

(
n1− [Nx]− 1

N

)
1{n1>[Nx]+1}

1

N

=

∫ t

0
g

(
[Ns1]− [Nx]

N

)
1{[Ns1]>[Nx]}ds−RN (t,x).

where

RN (t,x) =
Nt− [Nt]

N
g

(
[Nt1]− [Nx]

N

)
1{[Nt1]>[Nx]}.

Note that we have replaced i by [Nx] + 1 and n by [Ns] + 1. By Condition 2 in Definition

4.3.18, there exists a positive generalized Hermite kernel g∗(x) which is a linear combination

of the form
∏k
j=1 x

γj
j , such that |g(x)| ≤ g∗(x) for a.e. x ∈ Rk+. We assume without loss of
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generality that g∗(x) =
∏k
j=1 x

γj
j . Since [Ns1] > [Nx] implies s1 > x, we have

∣∣∣∣g( [Ns1]− [Nx]

N

)∣∣∣∣ 1{[Ns1]>[Nx]} ≤

 k∏
j=1

(
[Ns]− [Nxj ]

N

)γj
1{[Ns]>[Nxj ]}

 1{s1>x} a.e..

(4.39)

Moreover, if 0 < [Ns] − [Nx] = k ∈ Z+, then Ns − 1 −Nx ≤ k, and hence s − x ≤ k+1
N .

So we have for any γ < 0 that

sup
N≥1,[Ns]>[Nx]

(
[Ns]− [Nx]

N

)γ
(s− x)−γ ≤ sup

N≥1,[Ns]−[Nx]=k≥1

(
k

N

)γ
(s− x)−γ

≤ sup
N≥1,k≥1

(
k

N

)γ (k + 1

N

)−γ
= 2−γ . (4.40)

So we have for some constant C > 0,

∣∣∣∣g( [Ns1]− [Nx]

N

)∣∣∣∣ 1{[Ns1]>[Nx]} ≤ Cg∗(s1− x)1{s1>x}. (4.41)

Since g(x) by assumption of Class (L) is continuous a.e., g
(

[Ns1]−[Nx]
N

)
1{[Ns1]>[Nx]} con-

verges a.e. to g(s1− x)1{s1>x} as N →∞. In view of (4.41), and noting that

∫
Rk
dx

(∫ t

0
g∗(s1− x)1{s1>x}ds

)2

<∞

because g∗ is a generalized Hermite kernel, one then applies the Dominated Convergence

Theorem to conclude the L2 convergence of
∫ t

0 g
(

[Ns1]−[Nx]
N

)
1{[Ns1]>[Nx]}ds to ht(x). For

the remainder term RN,t(x), one has

‖RN,t(x)‖2L2(Rk) = N−2H(Nt− [Nt])2
∑
i>0

g (i)2 → 0

as N →∞. The proof is thus complete.

Example 4.6.6. Consider the kernel g(x) defined in (4.1). It belongs to Class (L) by

Example 4.3.24. Hence by Theorem 4.6.5, we have the following weak convergence in
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D[0, 1]:

1

NH

[Nt]∑
n=1

′∑
(i1,...,ik)∈Zk+

 ∏k
j=1 ij∑k

j=1 i
k−α
j

∨
k∏
j=1

i
α/k
j

 εn−i1 . . . εn−ik ⇒

∫ ′
Rk

∫ t

0

( ∏k
j=1(s− xj)+∑k
j=1(s− xj)k−α+

)
∨

 k∏
j=1

(s− xj)α/k+

 ds W (dx1) . . .W (dxk),

where H = α+ k/2 + 1.

4.6.3 Non-central limit theorem with fractional filter

In the spirit of Rosenblatt [1979] and Major [1981], we consider here the non-central limit

theorem for the fractionally filtered generalized Hermite process introduced in Section 4.3.3.

Assume throughout that the generalized Hermite kernel g is of Class (L) (Definition 4.3.18).

Definition 4.6.7. Let X(n) =
∑′

i<n1 a(n1−i)
∏k
j=1 εij be the same discrete chaos process

as in Theorem 4.6.5. We say that a discrete process U(n) is fLRD (fractionally-filtered LRD

discrete chaos process) if

U(n) =
∞∑
m=1

CmX(n−m) =
n−1∑

m=−∞
Cn−m

′∑
i<m1

a(m1− i)
k∏
j=1

εij , (4.42)

where a(i) = g(i)L(i) as in (4.24) with g being a generalized Hermite kernel in Class (L),

Cn ∼ cnβ−1

as n→∞, and where, as in Proposition 4.3.25,

β ∈
(
−2α+ k + 2

2
,−2α+ k

2

)
. (4.43)

U(n) is well-defined in the L2(Ω) sense. Indeed, we have the following:



106

Lemma 4.6.8. We have

′∑
i∈Zk

(∑
m<n

|Cn−ma(m1− i)|1{m1>i}

)2

<∞.

Proof. Note that a(·) = g(·)L(·), where g is of Class (L). So by Definition 4.3.18, there

exists a g∗(x) > 0 which is a finite linear combination of the form
∏k
j=1 x

γj
j , such that

|g(x)| < g∗(x). Note that L is bounded and |Cn| ≤ cnβ−1. Set n = −1 without loss of

generality due to stationarity. We hence need to show that

∑
i∈Zk

( ∑
m<−1

(−m)β−1g∗(m1− i)1{m1>i}

)2

<∞. (4.44)

It suffices to show this when β > 0, since for any β′ ≤ 0 and β > 0, (−m)β
′−1 ≤ (−m)β−1

for all m < −1. The preceding sum can be rewritten as an integral by replacing m by [s]

and i by [x]:

∫
Rk

1Dcdx

(∫ −1

−∞
ds(−[s])β−1g∗([s1]− [x])1{[s1]>[x]}

)2

, (4.45)

where Dc = {x ∈ Rk : [xp] 6= [xq], p 6= q}. By [s] ≤ s, β − 1 < 0, and (4.41), (4.45) is

bounded by (up to a constant)

∫
Rk
dx

(∫ −1

−∞
ds(−s)β−1

+ g∗(s1− x)1{s1>x}

)2

=

∫ −1

−∞
ds(−s)β−1

∫ −s
0

du(−s− u)β−1u2α+k

∫
Rk+
dyg∗(y)g∗(1 + y)

=

∫ ∞
1

s2α+2β+k−1ds B(β, 2α+ k + 1) Cg∗ <∞,

where we have used a change of variable similar to the lines below (4.14), and in addition

the assumptions β > 0, 2α + k > −1, 2α + 2β + k < 0, and g∗ is a generalized Hermite

kernel.
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Remark 4.6.9. Lemma 4.6.8 not only shows that U(n) is well-defined in L2(Ω), it also

allows changing the order of summations, which will be used in proving the non-central

limit theorem below.

Next we want to obtain non-central limit theorems, that is, to show that the suitably

normalized partial sum of U(n) defined in (4.42) converges to the fractionally-filtered gen-

eralized Hermite process introduced in Section 4.3.3. We need to distinguish two cases:

β > 0 (which increases H) and β < 0 (which decreases H).

We first consider β > 0:

Theorem 4.6.10. Let U(n) be as in (4.42) with β ∈ (0,−α− k/2). Then

1

NH

[Nt]∑
n=1

U(n)⇒ Zβ(t),

where

1/2 < α+ k/2 + 1 < H = α+ β + k/2 + 1 < 1,

and Zβ(t) is the fractionally-filtered generalized Hermite process defined in Theorem 4.3.27.

It is defined using the same g and β as U(n).

Proof. Since H > 1/2, tightness in D[0, 1] is standard. We now show convergence in

finite-dimensional distributions. Assume for simplicity that Cm = mβ−1 and L(i) = 1. By

Lemma 4.6.8, we are able to change the order of the summations to write:

1

NH

[Nt]∑
n=1

U(n) =

′∑
i∈Zk

1

NH

[Nt]∑
n=1

∑
m<n

(n−m)β−1g(m1− i)1{m1>i}

k∏
j=1

εij

=
∑
i∈Zk

hβt,N (i)
k∏
j=1

εij = Qk(h
β
t,N ),

and by setting h̃βt,N (x) = Nk/2hβt,N ([Nx] + 1), we have

h̃βt,N (x) =
1

Nα+β+1

[Nt]∑
n=1

∑
m<n

(n−m)β−1g (m1− [Nx]− 1) 1{m1>[Nx]−1}
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=

[Nt]∑
n=1

∑
m<n

(
n−m
N

)β−1

g

(
m1− [Nx]− 1

N

)
1{m1>[Nx]−1}

1

N2

=

∫ t

0
ds

∫
R
dr

(
[Ns]− [Nr]

N

)β−1

+

g

(
[Nr1]− [Nx]

N

)
1{[Nr1]>[Nx]} −RN,t(x)

= :

∫ t

0
ds

∫
R
drGN (s, r,x)1KN −RN,t(x)

where we associate i with [Nx] + 1, n with [Ns] + 1, and m with [Nr] + 1,

GN (s, r,x) :=

(
[Ns]− [Nr]

N

)β−1

g

(
[Nr1]− [Nx]

N

)
,

KN = {[Ns] > [Nr], [Nr1] > [Nx]} ⊂ {s > r, r1 > x},

and

RN,t(x) =
Nt− [Nt]

N

∫
R
dr

(
[Nt]− [Nr]

N

)β−1

+

g

(
[Nr1]− [Nx]

N

)
1{[Nr1]>[Nx]}.

In view of Proposition 4.4.1, we need to show that h̃βt,N → hβt and RN,t → 0 in L2(Rk),

where

hβt (x) :=

∫ t

0
ds

∫
R
dr(s− r)β−1

+ g(r1− x)1{r1>x}.

Using (4.39) and (4.40) (note that β − 1 < 0) as in the proof of Theorem 4.6.5, we can

bound the integrand as

|GN (s, r,x)|1KN ≤ C(s− r)β−1
+ g∗(r1− x)1{r1>x}

for some C > 0, where g∗(x) is a generalized Hermite kernel from Definition 4.3.18. Because

h∗(x) := (s− r)β−1
+ g∗(r1− x)1{r1>x} ∈ L2(Rk)

by (4.17) and Proposition 4.3.25, and g is a.e. continuous, it remains to apply the Domi-

nated Convergence Theorem to conclude h̃βt,N → hβt . For the remainder term RN,t(x), one
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has

‖RN,t(x)‖2L2(Rk) = N−2H(Nt− [Nt])
∑
i∈Zk

 ∑
m<[Nt]

([Nt]−m)β−1g(m1− i)1{m1>i}

2

,

which, in view of (4.44), converges to 0 as N →∞. The proof is thus complete.

We now treat the case β < 0. This case is more delicate than the case β > 0 in two

ways: a) an additional assumption on the linear-filter response {Cn} has to be made; b) if

β is chosen such that H < 1/2, then tightness of the normalized partial sum process needs

also additional assumptions.

When β < 0, we have
∞∑
n=1

|Cn| <∞.

If fX is the spectral density of {X(n)}, then the spectral density of {U(n)} is

fU (λ) = |C(eiλ)|2fX(λ),

where C(z) :=
∑

nCnz
n, and the transfer function H(λ) := |C(eiλ)|2 is continuous. Since

X(n) is LRD (see Proposition 4.4.4), its spectral density blows up at the origin. To dampen

it we need to multiply it by an H(λ) which converges to 0 as λ → 0. This means that

H(0) = |
∑∞

n=1Cn|2 = 0, and hence we need to assume
∑∞

n=1Cn = 0.

Theorem 4.6.11. Let U(n) be as in (4.42) with β ∈ (−α − k/2 − 1, 0), and assume in

addition that
∞∑
n=1

Cn = 0. (4.46)

Then

1

NH

[Nt]∑
n=1

U(n)
f.d.d.−→ Zβ(t),
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where

0 < H = α+ β + k/2 + 1 < α+ k/2 + 1 < 1,

Zβ(t) is the fractionally-filtered generalized Hermite process defined in Theorem 4.3.27. It

is defined using the same g and β as U(n).

If in addition, either a) H > 1/2, or b) H < 1/2 and for some p > 1/H, E|εi|p < ∞,

then the above
f.d.d.−→ can be replaced with weak convergence in D[0, 1].

Proof. Note that by Lemma 4.6.8, we can change the order of summations to write:

YN (t) : =
1

NH

[Nt]∑
n=1

U(n) =
′∑

i∈Zk

1

NH

[Nt]∑
n=1

∑
m<n

Cn−m

′∑
i<m1

a(m1− i)
k∏
j=1

εij

=

′∑
i∈Zk

1

NH

∑
m∈Z

a(m1− i)1{m1>i}

[Nt]∑
n=1∨(m+1)

Cn−m

k∏
j=1

εij = Qk(h
β
t,N ),

where

hβt,N (i) =
1

NH

∑
m∈Z

a(m1− i)1{m1>i}

[Nt]∑
n=1∨(m+1)

Cn−m.

Making use of (4.46), and using l to denote a generic function such that l(i)→ 1 as i→∞,

we have if m ≥ 1,

[Nt]∑
n=1∨(m+1)

Cn−m =

[Nt]−m∑
n=1

Cn = −
∞∑

n=[Nt]−m+1

Cn = β−1l([Nt]−m+ 1)([Nt]−m+ 1)β+;

and if m ≤ 0,

[Nt]∑
n=1∨(m+1)

Cn−m =

[Nt]∑
n=1

Cn−m =

[Nt]−m∑
n=−m+1

Cn =

∞∑
n=[Nt]−m+1

Cn −
∞∑

n=−m+1

Cn

=β−1
[
l([Nt]−m+ 1)([Nt]−m+ 1)β+ − l(−m)(−m)β+

]
.
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So by letting i correspond to [Nx] + 1 and m to [Ns] + 1 (omitting L and l for simplicity),

h̃βt,N (x) = Nk/2hβt,N ([Nx] + 1)

=
1

β

∫
R
g

(
[Ns]1− [Nx]

N

)
1{[Ns]1>[Nx]}

((
[Nt]− [Ns]

N

)β
+

−
(
−[Ns]− 1

N

)β
+

)
ds.

Using similar arguments as in the proof of Theorem 4.6.5, we can bound the absolute

value of the integrand above by Cg∗(s1 − x)1{s1>x}

(
(t− s)β+ − (−s)β+

)
for some C > 0,

where g∗ is a generalized Hermite kernel from Definition 4.3.18 (for the last term, we use

[Ns] + 1 ≥ Ns). Note that β < 0 in this case. By applying the Dominated Convergence

Theorem, we get the desired f.d.d. convergence using Proposition 4.4.1.

Now we turn to the weak convergence. When H > 1/2, the tightness is standard. To

show tightness under condition H < 1/2 and E|εi|p <∞, Proposition 4.5.2 and the above

f.d.d. convergence imply that for some constant c, C > 0 free from s, t and N ,

E|YN (t)− YN (s)|p′ ≤ cE[|YN (t)− YN (s)|2]p
′/2 ≤ C|FN (t)− FN (s)|p′H ,

where FN (t) = [Nt]/N , p′ < p and p′H > 1. Now by Lemma 4.4.1 and Theorem 4.4.1 of

Giraitis et al. [2012], we conclude that tightness holds.

4.6.4 Mixed multivariate limit theorem

In Bai and Taqqu [2013a], a multivariate version of Theorem 4.2.3 is obtained, where both

central and non-central convergence appear simultaneously. We will state here a similar

theorem.

Suppose that X(n) = (X1(n), . . . , XJ(n)) is a vector of discrete chaos process defined

on the same noise but with different coefficients, that is,

Xj(n) =

′∑
0<i1,...,ikj<∞

aj(i1, . . . , ikj )εn−i1 . . . εn−ikj =

′∑
i>0

aj(i)

kj∏
p=1

εn−ip , (4.47)
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where we assume {εi} is an i.i.d. random sequence with mean 0 and variance 1. For con-

venience we let aj(i1, . . . , ikj ) = aj(i) = aj(i)1{i>0}, and ãj(·) denotes the symmetrization

of aj(·).

Definition 4.6.12. We say that the vector sequence of discrete chaos processes {X(n)} is

• SRD, if every component Xj(n) is SRD in the sense of Definition 4.6.1, and in addi-

tion, for any p 6= q ∈ {1, . . . , J},

∞∑
n=−∞

′∑
i>0

|ãp(i)ãq(n1 + i)| <∞; (4.48)

• LRD, if every component Xj(n) is LRD in the sense of Definition 4.6.1.

• fLRD, if every component Xj(n) is a fractionally-filtered LRD discrete chaos process

in the sense of Definition 4.6.7. Note: these components were denoted U(n) in that

definition.

Remark 4.6.13. If the vector sequence is SRD, then (4.48) guarantees that the cross-

covariance γp,q(n) := Cov(Xp(n), Xq(0)) satisfies
∑

n |γp,q(n)| <∞. As in Proposition 2.5

of Bai and Taqqu [2013a], we have that as N →∞,

Cov

 1√
N

[Nt1]∑
n=1

Xp(n),
1√
N

[Nt2]∑
n=1

Xq(n)

→ (t1 ∧ t2)
∞∑

n=−∞
γp,q(n). (4.49)

Note that γp,q(n) = 0 always if the orders kp 6= kq.

We will now consider a general case where SRD and LRD and fLRD vectors can all be

present in X(n). We divide X(n) into four parts

X(n) = (XS1(n),XS2(n),XL(n),XF (n))

of dimension JS1 , JS2 , JL, JF respectively, which are defined as follows:
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(i) all the components of XS1(n) = (X1,S1(n), . . . , XJS1 ,S1(n)) have order k = 1, namely,

are all linear processes;

(ii) every component of XS2(n) = (X1,S2(n), . . . , XJS2 ,S2(n)) has order k ≥ 2, and the

combined vector

XS(n) = (XS1(n),XS2(n)) = (X1,S(n), . . . , XJS ,S(n)), JS = JS1 + JS2 ,

is SRD in the sense of Definition 4.6.12;

(iii) the vector XL(n) = (X1,L(n), . . . , XJL,L(n)) is LRD in the sense of Definition 4.6.12,

with correspondingly generalized Hermite kernels g = (g1,L, . . . , gJL,L);

(iv) the vector XF (n) = (X1,F (n), . . . , XJF ,F (n)) is fLRD in the sense of Definition 4.6.12,

with correspondingly generalized Hermite kernels g = (g1,F , . . . , gJF ,F ) and fractional

exponent β = (β1, . . . , βJF ).

We now state the multivariate limit theorem. We use YN (with subscript S1, S2, L or

F ) to denote the corresponding normalized sum YN (t) := N−H
∑[Nt]

n=1X(n), where X(n)

is a component of X(n), H is such that Var(YN (1)) converges to some constant c > 0 as

N →∞.

Theorem 4.6.14. Following the notation defined above, one has

(YN,S1(t),YN,S2(t),YN,L(t),YN,F (t))
f.d.d.−→ (B1(t),B2(t),Z(t),Zβ(t)), (4.50)

where

(i) B1(t) = W(t) := (σ1W (t), . . . , σJS1W (t)) defined by the same standard Brownian

motion W (t), and

σp =
∞∑

n=−∞

∑
i>0

ap,S1(n)ap,S1(n+ i), p = 1, . . . , JS1 .
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(ii) B2(t) is a multivariate Brownian motion with the covariance given by (4.49);

(iii) Z(t) is a multivariate generalized Hermite process defined as in (4.5) by the kernels

(g1,L, . . . , gJL,L) and using the W (t) in Point (i) as Brownian motion integrator.

(iv) Zβ(t) is a multivariate fractionally-filtered generalized Hermite process defined as in

(4.16) by the kernels (g1,F , . . . , gJF ,F ), fractional exponent β = (β1, . . . , βJF ) and

using the W (t) in Point (i) as Brownian motion integrator.

Moreover, B2(t) is always independent of (B1(t),Z(t),Zβ(t)).

In addition,
f.d.d.−→ in (4.50) can be replaced with weak convergence in D[0, 1]J , if every

component of XS1 and XS2 satisfies the assumption in Theorem 4.6.4, and every component

of XF satisfies the assumption given at the end of Theorem 4.6.11.

The proof is similar to that of Theorem 3.5 of Bai and Taqqu [2013a]. We only provide

some heuristics. The processes B2(t),Z(t) and Zβ(t) involve the same integrator W (·)

because they are defined in terms of the same εi’s. To understand the independence

statement, note that the independence between B2 and W stems from the uncorrelatedness

between XS2 and XS1 , since XS2 belongs to a discrete chaos of order k ≥ 2, while XS1

belongs to a discrete chaos of order k = 1. B2 is therefore independent of B1. B2 is also

independent of Z and Zβ, because Z and Zβ have W as integrators.

Remark 4.6.15. The pairwise dependence between components of Z, of Zβ, and between

cross components in Theorem 4.6.14 can be checked using the criterion due to Ustunel and

Zakai [1989], that is, if f ∈ L2(Rp) and g ∈ L2(Rq), and both are symmetric, then the

multiple Wiener-Itô integrals Ip(f) and Iq(g) are independent, if and only if

f ⊗1 g(x1, . . . , xp+q−2) :=

∫
R
f(x1, . . . , xp−1, y)g(xp, . . . , xp+q−2, y)dy = 0 a.e..

For example, suppose that two generalized Hermite kernels g1 and g2 on Rp+ and Rq+ are

symmetric, then the corresponding two generalized Hermite processes are independent if
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and only if

∫
R

∫ t

0
g1(s− x1, . . . , s− xp−1, s− y)ds

∫ t

0
g2(s− xp, . . . , s− xp+q−2, s− y)ds dy = 0 a.e.,

(4.51)

where we use the abbreviation gj(x) = gj(x)1{x>0}, j = 1, 2. Obviously, if g1 and g2

are both positive, then the dependence always holds. This is true, for example, for the

symmetrized version of the kernels in (4.10).



Chapter 5

The universality of homogeneous polynomial

forms

and critical limits

Nourdin et al. [2010] established the following universality result: if a sequence of off-

diagonal homogeneous polynomial forms in i.i.d. standard normal random variables con-

verges in distribution to a normal, then the convergence also holds if one replaces these i.i.d.

standard normal random variables in the polynomial forms by any independent standard-

ized random variables with uniformly bounded third absolute moment. The result, which

was stated for polynomial forms with a finite number of terms, can be extended to allow an

infinite number of terms in the polynomial forms. Based on a contraction criterion derived

from this extended universality result, we prove a central limit theorem for a strongly de-

pendent nonlinear processes, whose memory parameter lies at the boundary between short

and long memory.

5.1 Introduction

In Nourdin et al. [2010], a universality result was established for the following off-diagonal

homogeneous polynomial form

Qk(Nn, fn,X) :=
∑

1≤i1,...,ik≤Nn

fn(i1, . . . , ik)Xi1 . . . Xik , (5.1)
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where fn is a sequence of symmetric functions on Zk+ vanishing on the diagonals

(fn(i1, . . . , ik) = 0 if ip = iq for some p 6= q), and X = (X1, X2, . . .) is a sequence of

standardized independent random variables, and Nn is a finite sequence such that Nn →∞

as n→∞.

The universality result says that if Z = (Z1, Z2, . . .) is an i.i.d. standard normal sequence

and Qk(Nn, fn,Z) converges weakly to a normal distribution as n → ∞, then the same

weak convergence to normal holds if Z is replaced by X, where X is any standardized

independent sequence with some uniform higher moment bound.

It is natural to try to eliminate the finiteness of Nn in the preceding result. This

extension was mentioned in Remark 1.13 of Nourdin et al. [2010], but was not explicitly

done. One would encounter a number of difficulties if one were to extend the method of

proof used for finite Nn to Nn = ∞. We will note, however, that this extension can be

easily achieved using a simple approximation argument. We find it valuable to have such

an extension and the corresponding contraction criterion (Theorem 5.2.6) since it can be

directly applied to limit theorems in the context of long memory.

We consider such an application in Section 5.3 where we suppose that

fN (i1, . . . , ik) =
1

A(N)

N∑
n=1

a(n− i1, . . . , n− ik)1{−∞<i1<n,...,−∞<ik<n},

and where the function a(·) behaves essentially like a homogeneous function with exponent

α. The resulting polynomial form Qk(fN ) is then the partial sum of a stationary process.

The exponent α is chosen in such a way that the corresponding stationary process lives on

the boundary between short and long memory. We use the contraction criterion to prove

that a central limit theorem holds but with the nonstandard normalization
√
N lnN . This

delicate case seems difficult to treat otherwise.

The chapter is organized as follows. In Section 5.2, we state the and prove the extension

of the universality result (Theorem 5.2.1), and as a byproduct, a criterion for asymptotic

normality (Theorem 5.2.6). In Section 5.3.1, we state the critical limit theorem obtained
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by applying the criterion. In Section 5.3.3 and 5.3.4 we give the proofs.

5.2 Universality of homogeneous polynomial forms

Let `2(Zk), k ≥ 1, denote the space of symmetric square summable functions on Zk van-

ishing on the diagonals equipped with the discrete L2 norm. Let X = (X1, X2, . . .) be a

sequence of independent random variables satisfying EXi = 0 and EX2
i = 1. By modifying

the notation (5.1), one defines for f ∈ `2(Zk):

Qk(f,X) :=
∑

−∞<i1,...,ik<∞
f(i1, . . . , ik)Xi1 . . . Xik .

One has

EQk(f,X) = 0.

Consider now two homogeneous polynomial forms Qk1(f1,X) and Qk2(f2,X), where f1 ∈

`2(Zk1) and f2 ∈ `2(Zk2). Then the covariance of Qk1(f1,X) and Qk2(f2,X) is

〈f1, f2〉 := EQk(f1,X)Qk(f2,X) (5.2)

=


k!
∑
−∞<i1,...,ik<∞ f1(i1, . . . , ik)f2(i1, . . . , ik), if k1 = k2 = k;

0 if k1 6= k2.

(5.3)

We then have the following extension of Nourdin et al. [2010] Theorem 1.2:

Theorem 5.2.1. For each j = 1, . . . ,m, suppose that kj ≥ 2, and let fn,j(·) be a sequence

of functions in `2(Zkj ). Let Σ be an m×m symmetric non-negative definite matrix whose

each diagonal entry is positive. Assume in addition that

sup
n

∑
−∞<i1,...,ikj<∞

fn,j(i1, . . . , ikj )
2 <∞. (5.4)

Then the following two statements are equivalent:
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1. For every sequence X = (X1, X2, . . .) where X1, X2, . . . are independent random vari-

ables satisfying EXi = 0,EX2
i = 1, and

sup
i

E|Xi|3 <∞, (5.5)

the following joint weak convergence to a multivariate normal distribution holds:

(
Qkj (fn,j ,X)

)m
j=1

d→ N(0,Σ). (5.6)

2. For a sequence Z = (Z1, Z2, . . .) of i.i.d. standard normal random variables, the

following joint weak convergence to a multivariate normal distribution holds:

(
Qkj (fn,j ,Z)

)m
j=1

d→ N(0,Σ). (5.7)

Remark 5.2.2. Condition (5.4) can be re-expressed as

sup
n

EQkj (fn,j ,Z)2 = kj ! sup
n

∑
−∞<i1,...,ikj<∞

fn,j(i1, . . . , ikj )
2 <∞. (5.8)

Remark 5.2.3. One can recover Nourdin et al. [2010] Theorem 1.2 from Theorem 5.2.1

by replacing fn,j(i1, . . . , ikj ) with fn,j(i1, . . . , ikj )11≤i1,...,ikj≤Nn(i1, . . . , ikj ).

Remark 5.2.4. In the one dimensional case: m = 1, one can relax the assumption (5.5)

by supi E|Xi|2+δ <∞ for any δ > 0. See Theorem 1.10 of Nourdin et al. [2010].

Proof of Theorem 5.2.1. We need to prove that (5.7) implies (5.6). Define theNn-truncated

functions

f̃n,j(i1, . . . , ikj ) = fn,j(i1, . . . , ikj )1{−Nn≤i1≤Nn,...,−Nn≤ikj≤Nn}
, j = 1, . . . ,m.
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For any n ∈ Z+, we can find Nn large enough, so that for all j = 1, . . . ,m,

E
∣∣∣Qkj (fn,j ,Z)−Qkj (f̃n,j ,Z)

∣∣∣2 = E
∣∣∣Qkj (fn,j ,X)−Qkj (f̃n,j ,X)

∣∣∣2
= kj !‖f̃n,j − fn,j‖2`2(Zkj )

≤ 1

n
. (5.9)

Assume without loss of generality that Nn →∞ as n→∞. By (5.7) and (5.9), one has

(
Qkj (f̃n,j ,Z)

)m
j=1

d→ N(0,Σ).

Using the original version of the universality result in Nourdin et al. [2010] Theorem 1.2,

one gets (
Qkj (f̃n,j ,X)

)m
j=1

d→ N(0,Σ). (5.10)

The conclusion (5.6) follows from (5.9) and (5.10).

Remark 5.2.5. Using the same argument as in the preceding proof, one can eliminate

the finiteness of Nn in (5.1) in the following related universality results for homogeneous

polynomial forms: (a) Theorem 1.12 of Nourdin et al. [2010] concerning for convergence to

a χ2 distribution; (b) Theorem 3.4 of Peccati and Zheng [2014] which is the counterpart of

Theorem 5.2.1 here with Zi’s being standardized Poisson random variables.

Theorem 5.2.1 gives rise to a practical criterion for the convergence (5.6). We first

introduce the discrete contraction operator: for f ∈ `p(Zp) and g ∈ `q(Zq), p, q ≥ 2, we

define

(f ?r g)(i1, . . . , ip+q−2r) =

∞∑
j1,...,jr=−∞

f(j1, . . . , jr, i1, . . . , ip−r)g(j1, . . . , jr, ip−r+1, . . . , ip+q−2r) (5.11)

for r = 0, . . . , p ∧ q, where in the case r = 0 it is understood as the tensor product.

Theorem 5.2.6. Let {fn,j(·), n ∈ Z+} be a sequence of functions in `2(Zkj ) satisfying
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(5.4), j = 1, . . . ,m, where kj ≥ 2. Let Σ be an m × m symmetric non-negative definite

matrix whose each diagonal entry is positive, such that

Σ(i, j) = lim
n→∞

〈fn,i, fn,j〉, (5.12)

where 〈·, ·〉 is defined in (5.3). Then the following are equivalent:

1. For every X = (X1, X2, . . .) with Xi’s being independent random variables satisfying

EXi = 0,EX2
i = 1 and supi E|Xi|3 <∞, we have the following joint weak convergence

to normal: (
Qkj (fn,j ,X)

)m
j=1

d→ N(0,Σ). (5.13)

2. The following contractions are vanishing:

lim
n→∞

‖fn,j ?r fn,j‖2kj−2r = 0, for all r = 1, . . . , kj − 1 and all j = 1, . . . ,m. (5.14)

where ‖ · ‖k denotes the discrete L2 norm on `2(Zk).

Proof. By Theorem 5.2.1, the statement 1 is equivalent to
(
Qkj (fn,j ,Z)

)m
j=1

d→ N(0,Σ),

where Z is a sequence of i.i.d. standard Gaussian variables. Note also that each Qkj (fn,j ,Z)

can be expressed as a kj-tuple Wiener-Itô integral with respect to Brownian motion. For

Wiener-Itô integrals, joint convergence to the normal is equivalent to marginal convergence,

and marginal convergence is equivalent to the contraction relations. More precisely, by

applying Theorem 6.2.3 and 5.2.7 of Nourdin and Peccati [2012], one gets the equivalence

to (5.14). See also Theorem 7.5 of Nourdin et al. [2010].

Remark 5.2.7. We shall use the implication “Statement 2 ⇒ Statement 1” of the pre-

ceding theorem in the sequel. As for the reversed implication, namely, “Statement 1 ⇒

Statement 2”, the stipulation “For every” is important here, as well as in Theorem 5.2.1,

because there are random variables Xi’s, for example Rademacher, that is Xi = ±1 with

probability 1/2 each, for which one may have convergence in (5.13) even when (5.14) does
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not hold (see Nourdin et al. [2010], Section 1.6, p.1956).

Remark 5.2.8. One may wonder if the universality result extends to a continuous setting,

namely, when Qk(fn) is replaced by a multiple integral on a Borel measure space (A,A, µ):

Ik(fn, ξ) =

∫ ′
Ak
fn(x1, . . . , xk)ξ(dx1) . . . ξ(dxk),

where f ∈ L2(Ak), the prime ′ indicates the exclusion of diagonals xp = xq, p 6= q, and

ξ(·) is an independently scattered random measure with an atomless control measure µ(·).

Does Ik(fn, ξ) exhibits a similar universality phenomenon? Namely, if Ik(fn, ξ) converges

in distribution to normal for a Gaussian ξ(·), does the convergence also hold for general

class of ξ(·) with the same control measure µ(·)? It is known that the law of ξ(·) has to be

infinitely divisible and ξ(·) admits the decomposition:

ξ(B) = G(B) +

∫
R

∫
A
u1B(x)N̂(du, dx), (5.15)

where G(·) is a Gaussian random measure on A and N̂(·) is an independent compensated

Poisson random measure on R× A. See Section 5.3 of Peccati and Taqqu [2011] for more

details.

One may think of adapting the approximation argument used in the proof of Theorem

5.2.1 to the multiple integral case, which would involve partitioning the space A into subsets

of small measure. The problem is that unlike the Gaussian part, the Poisson part does

not scale as µ(B) → 0. To see this in the simplest situation, take ξ(B) = P̂ (B), where

P̂ (·) is a compensated Poisson random measure on A with control measure µ(·). Note that

P̂ (B) + µ(B) follows a Poisson distribution with mean µ(B). Since its cumulants are all

equal to µ(B) (see (3.1.5) of Peccati and Taqqu [2011]), and since the third moment of a

centered random variable is equal to the third cumulant, one has E(P̂ (B))3 = µ(B). This

means that although we have the standardization

E
∣∣∣P̂ (B)/

√
µ(B)

∣∣∣2 = 1, (5.16)
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we also have

lim
µ(B)→0

E
∣∣∣P̂ (B)/

√
µ(B)

∣∣∣3 = lim
µ(B)→0

E
∣∣∣P̂ (B)

∣∣∣3 µ(B)−3/2 ≥ lim
µ(B)→0

EP̂ (B)3µ(B)−3/2

= lim
µ(B)→0

µ(B)−1/2 =∞.

This will violate condition (5.5) as the partition of A becomes finer. In fact, one can show

that P̂ (B)/
√
µ(B) → 0 in probability as µ(B) → 0, which means, in view of (5.16), that

the uniform integrability of |P̂ (B)/
√
µ(B)|2 fails. For further insights, see Rotar [1979].

5.3 Application: boundary between short and long memory

5.3.1 The setting

Bai and Taqqu [2014a] considered the following discrete chaos processes:

X(n) =
∑

−∞<i1,...,ik<n
a(n− i1, . . . , n− ik)εi1 . . . εik , (5.17)

where k ≥ 2, a(·) : Zk+ → R is symmetric and vanishes on the diagonals, and εi’s are i.i.d.

random variables with mean 0 and variance 1. Note that EX(n) = 0.

In particular, Bai and Taqqu [2014a] studied limit theorems for normalized partial sum

process of X(n):

YN (t) :=
1

A(N)

[Nt]∑
n=1

X(n),

where [·] means integer part, and A(N) is a suitable normalization factor. Depending on

the behavior of a(·), the stationary process X(n) may exhibit short or long memory.

As shown in Bai and Taqqu [2014a], in the short memory case, namely when the

coefficient in (5.17) satisfies the summability condition

∞∑
n=1

∑
0<i1,...,ik<∞

∣∣∣a(i1, . . . , ik)a(i1 + n, . . . , ik + n)
∣∣∣ <∞, (5.18)
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and E|εi|2+δ <∞ for some δ > 0, the following central limit convergence as N →∞ holds:

1

N1/2

[Nt]∑
n=1

X(n)⇒ σB(t) (5.19)

for some σ ≥ 0, where B(t) is a standard Brownian motion.

In the long memory case, assume that

a(·) = g(·)L(·)1Dc , (5.20)

where

Dc := {(i1, . . . , ik) : ip 6= iq for p 6= q} (5.21)

guarantees that a(·) vanishes on the diagonals. The function L(·) : Zk+ → R satisfies1

lim
|i|→∞

L(i) = 1, (5.22)

and g(·) : Rk → R is the so-called generalized Hermite kernel of Class (L).

Definition 5.3.1. A nonzero a.e. continuous function g(·) : Rk → R is called a generalized

Hermite kernel of Class (L) (GHK(L)) if it satisfies

1. g(·) is homogeneous with exponent α, namely, g(λx) = λαg(x), for all λ > 0, where

α ∈
(
−k + 1

2
,−k

2

)
; (5.23)

2. The function g(·) satisfies the bound

|g(x)| ≤ g∗(x) := c

m∑
j=1

x
γj1
1 . . . x

γjk
k , (5.24)

1In Bai and Taqqu [2014a] eq. (25), L(·) is assumed to satisfy a slightly weaker condition than (5.22),
that is, limN→∞ L([Nx] + B(N)) = 1 for any x ∈ Rk+ and any bounded sequence B(N) in Zk+ instead of
lim‖x‖→∞ L(x) = 0. Note that L([Nx] + B(N)), N →∞, lets the argument increase in a specific band in
the first quadrant, whereas L(x), ‖x‖ → ∞, allows x to increase in an arbitrary way in the first quadrant.
Here for simplicity we just assume (5.22), while the results stated here also hold under the weaker condition.
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with the constant c > 0, −1 < γjl < −1/2 and
∑k

l=1 γjl = α for all l = 1, . . . ,m.

If g is a GHK(L), the following constant is well-defined (the integral is absolutely

integrable)

Cg =

∫
Rk+
g(x1, . . . , xk)g(1 + x1, . . . , 1 + xk)dx1 . . . dxk, (5.25)

and Cg > 0 always (Remark 3.6 of Bai and Taqqu [2014a]). Under this setup, Theorem

6.5 of Bai and Taqqu [2014a] showed that as N →∞,

1

NH

[Nt]∑
n=1

X(n)⇒
∫ ′
R

∫ t

0
g(s1−x1, . . . , sk−xk)1{s1>x1,...,sk>xk} W (dx1) . . .W (dxk), (5.26)

where W (·) is the Brownian random measure, the prime ′ indicates the exclusion of the

diagonals xp = xq, p 6= q, and

H = α+
k

2
+ 1.

The limit in (5.26) was called a generalized Hermite process which generalizes the Hermite

process (see, e.g., Dobrushin and Major [1979] and Taqqu [1979]) which corresponds to the

special case g(x) = x
α/k
1 . . . x

α/k
k .

There is, however, a boundary case which the limit theorems (5.19) and (5.26) did not

cover. This boundary case is as follows: set as in the long memory case

a(·) = g(·)L(·)1Dc , (5.27)

where Dc is as in (5.21), L(·) is as in (5.22), and g is a function satisfying the assumptions

in Definition 5.3.1 except that instead of assuming (5.23), the homogeneity exponent is set

as α = −k+1
2 .

Remark 5.3.2. Note that if α < −k+1
2 , we are in the short memory regime. Indeed

Proposition 5.4 of Bai and Taqqu [2015b] showed that α < −k+1
2 implies (5.18), and thus

(5.19) holds. So (5.28) is exactly the boundary case between short and long memory.
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5.3.2 Statement of the limit theorems

Let throughout⇒ denote weak convergence in Skorohod space D[0, 1] with uniform metric.

We shall show by the criterion formulated in Theorem 5.2.6, that a central limit theorem

holds with an extra logarithmic factor in the normalization:

Theorem 5.3.3 (Nonlinear case). Let

X(n) =
∑

−∞<i1,...,ik<n
a(n− i1, . . . , n− ik)εi1 . . . εik

as in (5.17) with k ≥ 2 and the coefficient a(·) specified as in (5.27) where

α = −k + 1

2
. (5.28)

Assume also that E|εi|3 <∞ and Cg > 0. Then

YN (t) :=
1√

N lnN

[Nt]∑
n=1

X(n)⇒ σB(t)

where σ =
√

2Cg, and B(t) is a standard Brownian motion.

Remark 5.3.4. Theorem 5.3.3 may be compared to a similar boundary case of limit

theorems for nonlinear transform of long-memory Gaussian noise first considered in Breuer

and Major [1983] Theorem 1′. The proof there was done by a method of moments. See

also Breton and Nourdin [2008] who gave an alternative proof using the Malliavin calculus.

Note that to apply Theorem 5.2.6, the process X(n) in (5.17) needs to have order

k ≥ 2. For completeness, we state also the corresponding result for linear process, namely,

the case k = 1 in Theorem 5.3.3, though the limit theorem for linear process is classical

(see,e.g., Davydov [1970]).
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Theorem 5.3.5 (Linear case). Let

X(n) =
∑

−∞<i<n
a(n− i)εi,

where a(n) = L(n)n−1 as n→∞, and let L(n)→ c 6= 0, and the i.i.d. standardized noise

εi’s satisfy E|εi|2+δ <∞ for some δ > 0. Then as N →∞,

YN (t) :=
1√

N lnN

[Nt]∑
n=1

X(n)⇒ σB(t)

where σ =
√

2|c|, and B(t) is a standard Brownian motion.

5.3.3 Proof of Theorem 5.3.3

We first compute the asymptotic variance of the sum.

Lemma 5.3.6. Let X(n) be given as in (5.17) with the coefficient specified as in (5.27)

and α as in (5.28). Then Cg defined in (5.25) is non-negative. If Cg > 0, then as N →∞

E

[
N∑
n=1

X(n)

]2

∼ 2CgN lnN.

If Cg = 0, then

E

[
N∑
n=1

X(n)

]2

= o(N lnN). (5.29)

Proof. Assume for simplicity L(·) = 1, and it is easy to extend the following arguments to

the general case. First, since g(·) is homogeneous with exponent α = −k/2−1/2 by (5.28),

one can write

γ(n) : = EX(n)X(0) =
∑

0<i1,...,ik<∞
g(i1, . . . , ik)g(i1 + n, . . . , ik + n)1Dc (i1, . . . , ik)

= n−1
∑

0<i1,...,ik<∞
g

(
i1
n
, . . . ,

ik
n

)
g

(
i1
n

+ 1, . . . ,
ik
n

+ 1

)
1Dc (i1, . . . , ik)n

−k
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= n−1

∫
Rk+
g

(
[nx1] + 1

n
, . . . ,

[nxk] + 1

n

)
g

(
[nx1] + 1

n
+ 1, . . . ,

[nxk] + 1

n
+ 1

)
×

1Dc ([nx1], . . . , [nxk]) dx1 . . . dxk

=: n−1Cn(g).

Because the bounding function g∗ in Definition 5.3.1 is decreasing in every variable, the

absolute of the integrand above is bounded by

g∗ (x1, . . . , xk) g
∗ (x1 + 1, . . . , xk + 1) = c2

m∑
j1,j2=1

x
γj1,1
1 (x1 + 1)γj2,1 . . . x

γj1,k
k (xk + 1)γj2,k

which is integrable on Rk+ because all γp,q ∈ (−1,−1/2) and

∫
R+

xγ(x+ 1)γ
′
dx <∞ for any −1 < γ, γ′ < −1/2.

Since g is assumed to be a.e. continuous, by the Dominated Convergence Theorem, as

n→∞ we have

Cn(g)→ Cg :=

∫
Rk
g (x1, . . . , xk) g (x1 + 1, . . . , xk + 1) dx1 . . . dxk.

Hence when Cn 6= 0, one has when n > 0

γ(n) ∼ n−1Cg,

and when Cn = 0, one has

γ(n) = o(n−1).

We shall use the fact that if an ∼ n−1 as n→∞, then
∑N

n=1 an ∼ lnN as N →∞. So

when Cg 6= 0, one has

E

[
N∑
n=1

X(n)

]
=

N∑
n1,n2=1

γ(n1 − n2) = N
N−1∑

n=−N+1

γ(n)−
N−1∑

n=−N+1

|n|γ(n) ∼ 2CgN lnN.
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Note that since γ(n) ∼ n−1Cg, the term
∑N−1

n=−N+1 |n|γ(n) ∼ 2CgN and is thus negligible.

The preceding asymptotic equivalence also shows that if Cg 6= 0 then Cg > 0 because

the variance is non-negative.

If Cg = 0, following similar lines of argument, one gets (5.29).

Lemma 5.3.7. Define the mapping (·, ·)0 : R2 → R as

(x1, x2)0 =


|x1 − x2| if x1 6= x2;

1 if x1 = x2 = x.

For −1 < γ1, γ2 < −1/2 and n1, n2 ∈ {1, 2, . . .}, we have for some constant C > 0 not

depending on n1, n2 that

∑
p∈Z

(n1 − p)γ1+ (n2 − p)γ2+ ≤ C(n1, n2)γ1+γ2+1
0 .

Proof. For the case n1 = n2 = n, choose C =
∑

p<n(n− p)γ1+γ2 <∞ since γ1 + γ2 < −1.

When n1 6= n2, suppose that n1 < n2. Then

∑
p∈Z

(n1 − p)γ1+ (n2 − p)γ2+ =
∞∑
p=1

pγ1(n2 − n1 + p)γ2 ≤
∫ ∞

0
xγ1(n2 − n1 + x)γ2dx

= (n2 − n1)γ1+γ2+1

∫ ∞
0

yγ1(1 + y)γ2dy,

where the integral converges.

The following simple fact will be used.

Lemma 5.3.8. Suppose that γj < −1/2 for all j = 1, . . . , k, k ≥ 2, and γ1 + . . . + γk ≥

−k/2− 1/2. Then

−r
2
− 1

2
< γ1 + . . .+ γr < −

r

2
for all r = 1, . . . , k − 1.
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In addition, each γj > −1, j = 1, . . . , k.

Proof. The inequality γ1 + . . .+γr < − r
2 is obvious. For the other inequality, suppose that

γ1 + . . . + γr ≤ −r/2 − 1/2 for some r ∈ {1, . . . , k}. Because γr+1, . . . , γk < −1/2, we get

the contradiction: γ1 + . . .+ γk < −r/2− 1/2− (k − r)/2 = −k/2− 1/2.

Then we show by contradiction that each γj > −1. Suppose, e.g., γk ≤ −1. By what

was just proved, one has γ1 + . . .+ γk−1 < −(k − 1)/2. Thus by adding γk ≤ −1, one gets

γ1 + . . .+ γk < −k/2− 1/2, which contradicts the assumption.

We need the following lemma, which is a consequence of Corollary 1.1 (b) of Terrin and

Taqqu [1991b].

Lemma 5.3.9. If α1, . . . , αm, m ≥ 2, satisfy

α1, . . . , αn > −1,
m∑
i=1

αi +m > 1, (5.30)

then for any c > 0

∫
[0,c]m

|x1 − x2|α1 |x2 − x3|α2 . . . |xm−1 − xm|αm−1 |xm − x1|αmdx1 . . . dxm <∞.

We need also the following hypercontractivity inequality for proving tightness in D[0, 1]

(Proposition 5.2 of Bai and Taqqu [2014a])

Lemma 5.3.10. Suppose that h ∈ `2(Zk) vanishing on the diagonals. Let

X =
∑
i∈Zk

h(i)
k∏
p=1

εip , k ≥ 1.

If for some p′ > p > 2, E|εi|p
′
< ∞, then one has for some constant cp,k > 0 which does

not depend on h that

E[|X|p]1/p ≤ cp,kE[|X|2]1/2.

Proof of Theorem 5.3.3. Let C > 0 be a constant whose value can change from line to line.
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We first show that the finite-dimensional distributions of YN (t) converges to those of σB(t)

using Theorem 5.2.6. First, the convergence of the covariance structure of YN (t) to that

of σB(t) follows from Lemma 5.3.6 the fact that for s ≤ t we have

EYN (t)YN (s) =
1

2

[
EYN (t)2 + EYN (s)2 − E(YN (t)− YN (s))2

]
∼ 1

2

[
EYN (t)2 + EYN (s)2 − EYN (t− s)2

]
as N →∞, since X(n) is stationary. We now check the contraction conditions (5.14). For

simplicity we set L(·) = 1 and t = 1. We can write

YN (1) =
∑

−∞<i1,...,ik<+∞
fN (i1, . . . , ik) εi1 . . . εik

where

fN (i1, . . . , ik) =
1√

N lnN

N∑
n=1

g (n− i1, . . . , n− ik) 1Dc∩{i1<n,...,ik<n}. (5.31)

To simplify notation, we set

p = (p1, . . . , pr), q = (q1, . . . , qk−r),

i1 = (i1, . . . , ik−r), i2 = (ik−r+1, . . . , i2k−2r), i = (i1, i2),

and let 1 stand for a vector of 1’s of suitable dimension. We also use the convention that

xa = xa11 . . . xann if x = (x1, . . . , xn) and a = (a1, . . . , an). Let (Σx) = x1 + . . . + xn if

x = (x1, . . . , xn).

Set g∗(·) be as in Definition 5.3.1 which we write by splitting x = (x1,x2), where

x1 ∈ Rr+ and x2 ∈ Rk−r+ :

g∗(x1,x2) = c
m∑
j=1

x
βj
1 x

ηj
2 , βj = (γj1, . . . , γjr), ηj = (γj,r+1, . . . , γjk), (5.32)



132

so that
r∑
i=1

βji +
k−r∑
i=1

ηji =
k∑
i=1

γji = α, (5.33)

which we write simply as
∑

β +
∑

η =
∑

γ = α. For convenience, if some component xj

of x is negative, we set xa = 0 and hence g∗(x) = 0. Then in view of (5.31), (5.11) and

(5.24),

|(fN ?r fN )(i)| ≤ 1

N lnN

N∑
n1,n2=1

∑
p

g∗(n11− p, n11− i1)g∗(n21− p, n21− i2)

=
c2

N lnN

N∑
n1,n2=1

m∑
j1,j2=1

(n11− i1)ηj1 (n21− i2)ηj2
∑
p

(n11− p)βj1 (n21− p)βj2 ,

by using (5.32). By Lemma 5.3.7, we have for the last sum,

∑
p

(n11− p)βj1 (n21− p)βj2 =

∑
p1,...,pr

r∏
u=1

(n1 − pu)γj1,u
r∏

v=1

(n1 − pv)γj2,v ≤ C(n1, n2)
(Σβj1 )+(Σβj2 )+r

0 .

Hence

‖fN ?r fN‖22k−2r =
∑
i

[(fN ?r fN )(i)]2

≤ C

N2(lnN)2

∑
i

 N∑
n1,n2=1

m∑
j1,j2=1

(n1, n2)
(Σβj1 )+(Σβj2 )+r

0 (n11− i1)ηj1 (n21− i2)ηj2

2

=
C

N2(lnN)2

m∑
j1,j2,j3,j4=1

N∑
n1,n2,n3,n4=1

(n1, n2)
(Σβj1 )+(Σβj2 )+r

0 (n3, n4)
(Σβj3 )+(Σβj4 )+r

0

×
∑
i1

(n11− i1)ηj1 (n31− i1)ηj3
∑
i2

(n21− i2)ηj2 (n41− i2)ηj4

≤ C

N2(lnN)2

m∑
j1,j2,j3,j4=1

N∑
n1,n2,n3,n4=1

(n1, n2)
(Σβj1 )+(Σβj2 )+r

0 (n3, n4)
(Σβj3 )+(Σβj4 )+r

0

× (n1, n3)
(Σηj1 )+(Σηj3 )+k−r
0 (n2, n4)

(Σηj2 )+(Σηj4 )+k−r
0 (5.34)
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where we have applied again Lemma 5.3.7 to get the last inequality. Note that if one adds

up the power exponents in the last expression, one gets

(Σβj1)+(Σηj1)+(Σβj2)+(Σηj2)+(Σβj3)+(Σηj3)+(Σβj4)+(Σηj4)+2k = 4α+2k = −2,

(5.35)

by (5.33), where the last equality of (5.35) is due to assumption (5.28).

Note also that by Lemma 5.3.8, we have for r ∈ {1, . . . , k − 1} that

−r
2
− 1

2
< (Σβj1), (Σβj2), (Σβj3), (Σβj4) < −r

2
,

and

−k − r
2
− 1

2
< (Σηj1), (Σηj3), (Σηj2), (Σηj4) < −k − r

2
.

Let α1 = (
∑
βj1) + (

∑
βj2) + r be the exponent of (n1, n2)0 in (5.34). Then

−1 = −r/2− 1/2− r/2− 1/2 + r < α1 < −r/2− r/2 + r = −r + r = 0.

Define similarly α2, α3, α4 for the other exponents in (5.34), which all lie strictly between

−1 and 0. Hence, the convergence

lim
N→∞

‖fN ?r fN‖22k−2r = 0, r = 1, . . . , k − 1, (5.36)

will follow if one shows that

sup
N

N−2
N∑

n1,n2,n3,n4=1

(n1, n2)α1
0 (n2, n3)α2

0 (n3, n4)α3
0 (n4, n1)α4

0 <∞, (5.37)

where by (5.35)

−1 < αj < 0, j = 1, . . . 4, α1 + α2 + α3 + α4 = −2. (5.38)
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Let’s consider first the sum in (5.37) over only distinct n1, . . . , n4 (we use the prime ′

to indicate that the sum does not include the diagonals). In this case,

′∑
1≤n1,n2,n3,n4≤N

∣∣∣n1

N
− n2

N

∣∣∣α1
∣∣∣n2

N
− n3

N

∣∣∣α2
∣∣∣n3

N
− n4

N

∣∣∣α3
∣∣∣n4

N
− n1

N

∣∣∣α4

N−4

=

∫ ∣∣∣∣ [Nx1]− [Nx2]

N

∣∣∣∣α1
∣∣∣∣ [Nx2]− [Nx3]

N

∣∣∣∣α2
∣∣∣∣ [Nx3]− [Nx4]

N

∣∣∣∣α3
∣∣∣∣ [Nx4]− [Nx1]

N

∣∣∣∣α4

×

I{N−1 ≤ xi ≤ 1 +N−1, [Nxi] 6= [Nxj ],∀i 6= j}dx.

Note that for any x, y > 0, one has that |[Nx]− [Ny]| = n implies that |Nx−Ny| ≤ n+ 1

which implies |x− y| ≤ (n+ 1)/N , for n ≥ 0. Then since each α < 0, we get

sup
N

∣∣∣∣ [Nx]− [Ny]

N

∣∣∣∣α |x− y|−αI{[Nx] 6= [Ny]}

≤ sup
|[Nx]−[Ny]|=n,n∈Z+

( n
N

)α(n+ 1

N

)−α
= sup

n∈Z+

(
n+ 1

n

)−α
= 2−α.

Hence the the sum in (5.37) over distinct n1, . . . , n4 is bounded by

C

∫
[0,2]4

|x1 − x2|α1 |x2 − x3|α2 |x3 − x4|α3 |x4 − x1|α4dx1dx2dx3dx4,

which is finite due to Lemma 5.3.9.

Consider now the the sum in (5.37) over n1, . . . , n4 with only three of them distinct.

Let, for example, n1 = n4, and we need to show that the following

sup
N
N−2

′∑
1≤n1,n2,n3≤N

|n1 − n2|α1 |n2 − n3|α2 |n3 − n1|α3 =

sup
N
N1+α1+α2+α3

′∑
1≤n1,n2,n3≤N

∣∣∣n1

N
− n2

N

∣∣∣α1
∣∣∣n2

N
− n3

N

∣∣∣α2
∣∣∣n3

N
− n1

N

∣∣∣α3

N−3 <∞.

Note that (5.38) entails that −2 < α1 + α2 + α3 < −1. Then N1+α1+α2+α3 → 0 as

N → ∞, and the boundedness of the multiple sum can be established similarly as above

using integral approximation and Lemma 5.3.9.
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If the sum in (5.37) is over n1, . . . , n4 with only two or less of them distinct, the

boundedness is easily established through bounding all the summands by one constant,

because we have the factor N−2.

So (5.37) holds and thus (5.36) holds, and the convergence of finite-dimensional distri-

butions is proved.

Now we show tightness. By Lemma 5.3.10, one can choose p ∈ (2, 3), so that by Lemma

5.3.6 if 0 < s < t < 1, one has for N large enough,

E|YN (t)− YN (s)|p ≤C[E|YN (t)− YN (s)|2]p/2 ≤ C
[

[Nt]− [Ns]

N
· ln([Nt]− [Ns])

lnN

]p/2
≤C

[
[Nt]− [Ns]

N

]p/2−δ
,

where δ > 0 is small enough so that p/2 − δ > 1. The last inequality is true because

lnx is slowly varying as x → ∞ and so one applies the Potter’s bound (see e.g., equation

(2.3.6) of Giraitis et al. [2012]). Note that FN (t) := [Nt]/N is a non-decreasing right

continuous function on [0, 1] and that FN converges uniformly to F (t) := t as N → ∞.

Hence by Lemma 4.4.1 and Theorem 4.4.1 of Giraitis et al. [2012], the tightness in D[0, 1]

is proved.

5.3.4 Proof of Theorem 5.3.5

Proof. Set for simplicity L(n) = c. The covariance γ(n) for n > 0 is

γ(n) = EX(n)X(0) =
∞∑
i=1

ai+nai = c2
∞∑
i=1

(i+ n)−1i−1.

Note that as n→∞,

∞∑
i=2

(i+ n)−1i−1 = n−1
∞∑
i=2

(
i

n
+ 1

)−1( i
n

)−1 1

n

=n−1

∫ ∞
2/n

(
[nx]

n
+ 1

)−1( [nx]

n

)−1

dx ∼ n−1 lnn.
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The last asymptotic can be seen from:

∫ ∞
2/n

(x+ 1)−1 x−1dx ≤
∫ ∞

2/n

(
[nx]

n
+ 1

)−1( [nx]

n

)−1

dx ≤
∫ ∞

1/n
(y + 1)−1 y−1dy,

where we have used the fact x− 1/n ≤ [nx]/n ≤ x, and both the lower and upper bounds

are asymptotically equivalent to lnn as n→∞.

Hence

γ(n) ∼ c2n−1 lnn as n→∞. (5.39)

So as N →∞, one has

E

(
N∑
n=1

X(n)

)2

= N

N−1∑
n=−N+1

γ(n)−
N−1∑

n=−N+1

|n|γ(n)

∼ 2c2N
N∑
n=1

n−1 lnn ∼ 2c2N

∫ N

1
x−1 lnxdx ∼ 2c2N(lnN)2. (5.40)

Note that by (5.39) the term
∑N−1

n=−N+1 |n|γ(n) = O(N lnN) and is thus negligible. Having

obtained the asymptotic variance (5.40), the proof is then concluded by applying Davydov

[1970] Theorem 2 (though this theorem was stated for a linearly interpolated version of

YN (t) in the space C[0, 1], it is straightforward to adapt the the proof, which consists

of showing convergence of finite-dimensional distributions and establishing tightness by

moment estimate, to establish convergence in D[0, 1] with the uniform metric.)

Remark 5.3.11. One may wonder if it is possible to get a different normalization in the

nonlinear case in Theorem 5.3.3, since the normalization in the linear case in Theorem

5.3.5 has an extra
√

lnN factor. This is not possible under our setting where the kernel g

is homogeneous with exponent α and is bounded by a linear combination of products of

purely power functions xγ11 . . . xγkk , where each γj < −1/2 and γ1 + . . .+ γk = α.

Indeed, if one wanted to get some extra logarithmic factor in the covariance γ(n), one

would set for example g(x1, . . . , xk) = xγ11 . . . xγkk with γk = −1. But this will not achieve

the stated goal. Indeed, by Lemma 5.3.8, using contradiction, we have α = γ1 + . . .+ γk <
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−k/2 − 1/2, which falls into the short memory regime (see Remark 5.3.2) and thus the

normalization is
√
N as in (5.19).



Chapter 6

Functional Limit Theorems for Toeplitz Quadratic

Functionals of Continuous time Gaussian

Stationary Processes

The chapter establishes weak convergence in C[0, 1] of normalized stochastic processes,

generated by Toeplitz type quadratic functionals of a continuous time Gaussian stationary

process, exhibiting long-range dependence. Both central and non-central functional limit

theorems are obtained.

6.1 Introduction

Let {X(t), t ∈ R} be a centered real-valued stationary Gaussian process with spectral

density f(x) and covariance function r(t), that is, r(t) = f̂(t) =
∫
R e

ixt f(x) dx, t ∈ R. We

are interested in describing the limit (as T → ∞) of the following process, generated by

Toeplitz type quadratic functionals of the process X(t):

QT (t) =

∫ Tt

0

∫ Tt

0
ĝ(u− v)X(u)X(v) du dv, t ∈ [0, 1], (6.1)

where

ĝ(t) =

∫
R
eixt g(x) dx, t ∈ R, (6.2)

is the Fourier transform of some integrable even function g(x), x ∈ R. We will refer to

g(x) and to its Fourier transform ĝ(t) as a generating function and generating kernel for
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the process QT (t), respectively.

The limit of the process (6.1) is completely determined by the spectral density f(x)

(or covariance function r(t)) and the generating function g(x) (or generating kernel ĝ(t)),

and depending on their properties, the limit can be either Gaussian (that is, QT (t) with an

appropriate normalization obeys a central limit theorem), or non-Gaussian. The following

two questions arise naturally:

(a) Under what conditions on f(x) (resp. r(t)) and g(x) (resp. ĝ(t)) will the limit be

Gaussian?

(b) Describe the limit process, if it is non-Gaussian.

Similar questions were considered by Fox and Taqqu [1987], Ginovyan and Sahakyan

[2005], and Terrin and Taqqu [1990] in the discrete time case.

Here we work in continuous time, and establish weak convergence in C[0, 1] of the

process (6.1). The limit processes can be Gaussian or non-Gaussian. The limit non-

Gaussian process is identical to that of in the discrete time case, obtained in Terrin and

Taqqu [1990].

But first some brief history. The question (a) goes back to the classical monograph by

Grenander and Szegö [1958], where the problem was considered for discrete time processes,

as an application of the authors’ theory of the asymptotic behavior of the trace of prod-

ucts of truncated Toeplitz matrices (see Grenander and Szegö [1958], p. 217-219). Later

the question (a) was studied by Ibragimov [1963] and Rosenblatt [1962], in connection to

the statistical estimation of the spectral function F (x) and covariance function r(t), re-

spectively. Since 1986, there has been a renewed interest in both questions (a) and (b),

related to the statistical inferences for long memory processes (see, e.g., Avram [1988], Fox

and Taqqu [1987], Ginovyan and Sahakyan [2005], Ginovyan et al. [2014], Giraitis et al.

[2012], Giraitis and Surgailis [1990], Giraitis and Taqqu [2001], Terrin and Taqqu [1991a],

Taniguchi and Kakizawa [2012], and references therein). In particular, Avram [1988], Fox

and Taqqu [1987], Giraitis and Surgailis [1990], Ginovyan and Sahakyan [2005] have ob-
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tained sufficient conditions for the Toeplitz type quadratic forms QT (1) to obey the central

limit theorem (CLT), when the model X(t) is a discrete time process.

For continuous time processes the question (a) was studied in Ibragimov [1963] (in

connection to the statistical estimation of the spectral function), Ginovyan and Sahakyan

[2007] and Ginovyan et al. [2014], where sufficient conditions in terms of f(x) and g(x)

ensuring central limit theorems for quadratic functionals QT (1) have been obtained.

The rest of the chapter is organized as follows. In Section 6.2 we state the main results

of this chapter (Theorems 6.2.1 - 6.2.9). In Section 7.3 we prove a number of preliminary

lemmas that are used in the proofs of the main results. Section 6.4 contains the proofs of

the main results.

Throughout the chapter the letters C and c with or without indices will denote positive

constants whose values can change from line to line.

6.2 The Main Results

In this section we state our main results. Throughout the chapter we assume that f, g ∈

L1(R), and with no loss of generality, that g ≥ 0 (see Ginovyan and Sahakyan [2007] and

Giraitis and Surgailis [1990]).

We first examine the case of central limit theorems, and consider the following standard

normalized version of (6.1):

Q̃T (t) := T−1/2 (QT (t)− E[QT (t)]) , t ∈ [0, 1]. (6.3)

Our first result , which is an extension of Theorem 1 of Ginovyan and Sahakyan [2007],

involves the convergence of finite-dimensional distributions of the process Q̃T (t) to that of

a standard Brownian motion.

Theorem 6.2.1. Assume that the spectral density f(x) and the generating function g(x)
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satisfy the following conditions:

f · g ∈ L1(R) ∩ L2(R) (6.4)

and

E[Q̃2
T (1)]→ 16π3

∫ ∞
∞

f2(x)g2(x)dx as T →∞. (6.5)

Then we have the following convergence of finite-dimensional distributions

Q̃T (t)
f.d.d.−→ σB(t),

where Q̃T (t) is as in (6.3), B(t) is a standard Brownian motion, and

σ2 := 16π3

∫ ∞
−∞

f2(x)g2(x)dx. (6.6)

To extend the convergence of finite-dimensional distributions in Theorem 6.2.1 to the

weak convergence in the space C[0, 1], we impose an additional condition on the underlying

Gaussian process X(t) and on the generating function g. It is convenient to impose this

condition in the time domain, that is, on the covariance function r := f̂ and the generating

kernel a := ĝ. The following condition is an analog of the assumption in Theorem 2.3 of

Giraitis and Taqqu [2001]:

r(·) ∈ Lp(R), a(·) ∈ Lq(R) for some p, q ≥ 1,
1

p
+

1

q
≥ 3

2
. (6.7)

Remark 6.2.2. In fact under (6.4), the condition (6.7) is sufficient for the convergence in

(6.5). Indeed, let p̄ = p/(p− 1) be the Hölder conjugate of p and let q̄ = q/(q − 1) be the

Hölder conjugate of q. Since 1 ≤ p, q ≤ 2, one has by the Hausdorff-Young inequality and

(6.7) that ‖f‖p̄ ≤ cp‖r‖p, ‖g‖q̄ ≤ cq‖a‖q, and hence

f(·) ∈ Lp̄, g(·) ∈ Lq̄, 1

p̄
+

1

q̄
= 2− 1

p
− 1

q
≤ 1/2.
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Then the convergence in (6.5) follows from the proof of Theorem 3 from Ginovyan and

Sahakyan [2007]. Note that a similar assertion in the discrete time case was established in

Giraitis and Surgailis [1990].

Remark 6.2.3. Observe that condition (6.7) is fulfilled if the functions r(t) and a(t) satisfy

the following: there exist constants C > 0, α∗ and β∗, such that

|r(t)| ≤ C(1 ∧ |t|α∗−1), |a(t)| ≤ C(1 ∧ |t|β∗−1), (6.8)

where 0 < α∗, β∗ < 1/2 and α∗ + β∗ < 1/2. Indeed, to see this, note first that r(·), a(·) ∈

L∞(R). Then one can choose p, q ≥ 1 such that p(α∗ − 1) < −1 and q(β∗ − 1) < −1,

which entails that r(·) ∈ Lp(R) and a(·) ∈ Lq(R). Since 1/p + 1/q < 2 − α∗ − β∗ and

2− α∗ − β∗ > 3/2, one can further choose p, q to satisfy 1/p+ 1/q ≥ 3/2.

The next results, two functional central limit theorems, extend Theorems 1 and 5 of

Ginovyan and Sahakyan [2007] to weak convergence in the space C[0, 1] of the stochastic

process Q̃T (t) to a standard Brownian motion.

Theorem 6.2.4. Let the spectral density f(x) and the generating function g(x) satisfy

condition (6.4). Let the covariance function r(t) and the generating kernel a(t) satisfy

condition (6.7). Then we have the following weak convergence in C[0, 1]:

Q̃T (t)⇒ σB(t),

where Q̃T (t) is as in (6.3), σ is as in (6.6), and B(t) is a standard Brownian motion.

Recall that a function u(x), x ∈ R, is called slowly varying at 0 if it is non-negative

and for any t > 0

lim
x→0

u(xt)

u(x)
→ 1.

Let SV0(R) be the class of slowly varying at zero functions u(x), x ∈ R, satisfying the

following conditions: for some a > 0, u(x) is bounded on [−a, a], limx→0 u(x) = 0, u(x) =
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u(−x) and 0 < u(x) < u(y) for 0 < x < y < a. An example of a function belonging to

SV0(R) is u(x) = |ln |x||−γ with γ > 0 and a = 1.

Theorem 6.2.5. Assume that the functions f and g are integrable on R and bounded

outside any neighborhood of the origin, and satisfy for some a > 0

f(x) ≤ |x|−αL1(x), |g(x)| ≤ |x|−βL2(x), x ∈ [−a, a] (6.9)

for some α < 1, β < 1 with α + β ≤ 1/2, where L1(x) and L2(x) are slowly varying at

zero functions satisfying

Li ∈ SV0(R), x−(α+β)Li(x) ∈ L2[−a, a], i = 1, 2. (6.10)

Let, in addition, the covariance function r(t) and the generating kernel a(t) satisfy condition

(6.7). Then we have the following weak convergence in C[0, 1]:

Q̃T (t)⇒ σB(t),

where Q̃T (t) is as in (6.3), σ is as in (6.6), and B(t) is a standard Brownian motion.

Remark 6.2.6. The conditions α < 1 and β < 1 ensure that the Fourier transforms of f

and g are well defined. Observe that when α > 0 the process {X(t), t ∈ Z} may exhibit

long-range dependence. We also allow here α+ β to assume the critical value 1/2.

Remark 6.2.7. The assumptions f · g ∈ L1(R), f, g ∈ L∞(R \ [−a, a]) and (6.10) imply

that f · g ∈ L2(R), so that σ2 in (6.6) is finite.

Remark 6.2.8. One may wonder, why, in Theorem 6.2.5, we suppose that L1(x) and

L2(x) belong to SV0(R) instead of merely being slowly varying at zero. This is done in

order to deal with the critical case α+β = 1/2. Suppose that we are away from this critical

case, namely, f(x) = |x|−αl1(x) and g(x) = |x|−βl2(x), where α + β < 1/2, and l1(x) and

l2(x) are slowly varying at zero functions. Assume also that f(x) and g(x) are integrable
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and bounded on (−∞,−a)∪ (a,+∞) for any a > 0. We claim that Theorem 6.2.5 applies.

Indeed, choose α′ > α, β′ > β with α′ + β′ < 1/2. Write f(x) = |x|−α′ |x|δl1(x), where

δ = α′ − α > 0. Since l1(x) is slowly varying, when |x| is small enough, for some ε ∈ (0, δ)

we have |x|δl1(x) ≤ |x|δ−ε. Then one can bound |x|δ−ε by c |ln |x||−1 ∈ SV0(R) for small

|x| < 1. Hence one has when |x| < 1 is small enough, f(x) ≤ |x|−α′
(
c |ln |x||−1

)
. Similarly,

when |x| < 1 is small enough, one has g(x) ≤ |x|−β′
(
c |ln |x||−1

)
. All the assumptions in

Theorem 6.2.5 are now readily checked with α, β replaced by α′ and β′, respectively.

Now we state a non-central limit theorem in the continuous time case. Let the spectral

density f and the generating function g satisfy

f(x) = |x|−αL1(x) and g(x) = |x|−βL2(x), x ∈ R, α < 1, β < 1, (6.11)

with slowly varying at zero functions L1(x) and L2(x) such that
∫
R |x|

−αL1(x)dx <∞ and∫
R |x|

−βL2(x)dx < ∞. We assume in addition that the functions L1(x) and L2(x) satisfy

the following condition, called Potter’s bound (see Giraitis et al. [2012], formula (2.3.5)):

for any ε > 0 there exists a constant C > 0 so that if T is large enough, then

Li(u/T )

Li(1/T )
≤ C(|u|ε + |u|−ε), i = 1, 2. (6.12)

Note that a sufficient condition for (6.12) to hold is that L1(x) and L2(x) are bounded on

intervals [a,∞) for any a > 0, which is the case for the slowly varying functions in Theorem

6.2.5.

Now we are interested in the limit process of the following normalized version of the

process QT (t) given by (6.1), with f and g as in (6.11):

ZT (t) :=
1

Tα+βL1(1/T )L2(1/T )
(QT (t)− E[QT (t)]) . (6.13)

Theorem 6.2.9. Let f and g be as in (6.11) with α < 1, β < 1 and slowly varying at

zero functions L1(x) and L2(x) satisfying (6.12), and let ZT (t) be as in (6.13). Then for
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α+ β > 1/2, we have the following weak convergence in the space C[0, 1]:

ZT (t)⇒ Z(t),

where the limit process Z(t) is given by

Z(t) =

∫ ′′
R2

Ht(x1, x2)W (dx1)W (dx2), (6.14)

with

Ht(x1, x2) = |x1x2|−α/2
∫
R

[
eit(x1+u) − 1

i(x1 + u)

]
·

[
eit(x2−u) − 1

i(x2 − u)

]
|u|−βdu , (6.15)

where W (·) is a complex Gaussian random measure with Lebesgue control measure, and

the double prime in the integral (6.14) indicates that the integration excludes the diagonals

x1 = ±x2.

Remark 6.2.10. Comparing Theorem 6.2.9 and Theorem 1 of Terrin and Taqqu [1990],

we see that the limit process Z(t) is the same both for continuous and discrete time models.

Remark 6.2.11. Denoting by PT and P the measures generated in C[0, 1] by the processes

ZT (t) and Z(t) given by (6.13) and (6.14), respectively, Theorem 6.2.9 can be restated as

follows: under the conditions of Theorem 6.2.9, the measure PT converges weakly in C[0, 1]

to the measure P as T → ∞. A similar assertion can be stated for Theorems 6.2.4 and

6.2.5.

It is worth noting that although the statement of our Theorem 6.2.9 is similar to that of

Theorem 1 of Terrin and Taqqu [1990], the proof is different and simpler, and does not use

the hard analysis of Terrin and Taqqu [1990], although some technical results of Terrin and

Taqqu [1990] are stated in lemmas and used in the proofs. Our approach in the CLT case

(Theorems 6.2.1 - 6.2.5), uses the method developed in Ginovyan and Sahakyan [2007],

which itself is based on an approximation of the trace of the product of truncated Toeplitz

operators. For the non-CLT case (Theorem 6.2.9), we use the integral representation of
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the underlying process and properties of Wiener-Itô integrals.

6.3 Preliminaries

In this section we state a number of lemmas which will be used in the proof of the theorems.

The following result extends Lemma 9 of Ginovyan and Sahakyan [2007].

Lemma 6.3.1. Let Y (t) be a centered stationary Gaussian process with spectral density

fY (x) ∈ L1(R) ∩ L2(R). Consider the normalized process:

LT (t) :=
1

T 1/2

(∫ Tt

0
Y 2(u)du− E

[∫ Tt

0
Y 2(u)du

])
. (6.16)

Then we have the following convergence of finite-dimensional distributions:

LT (t)
f.d.d.−→ σYB(t), σ2

Y = 4π

∫ ∞
−∞

f2
Y (x)dx, (6.17)

where B(t) is standard Brownian motion.

Remark 6.3.2. Observe that the normalized processes Q̃T (t) and LT (t), given by (6.3) and

(6.16), can be expressed by double Wiener-Itô integrals (see, e.g., the proof of Lemma 6.3.10

below). In our proofs we will use the following fact about weak convergence of multiple

Wiener-Itô integrals: given the convergence of the covariance, the multivariate convergence

to a Gaussian vector is implied by the univariate convergence of each component (see

Peccati and Tudor [2005], Proposition 2).

Proof of Lemma 6.3.1. For a fixed t, the univariate convergence in distribution

LT (t)
d→ N(0, tσ2

Y ) as T →∞

follows from Lemma 9 of Ginovyan and Sahakyan [2007]. To show (6.17), in view of Remark

6.3.2 and Proposition 2 of Peccati and Tudor [2005], it remains to show that the covariance

structure of LT (t) converges to that of σYB(t). Specifically, it suffices to show that for any
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0 < s < t,

E
[
(LT (t)− LT (s))2

]
→ σ2

Y · (t− s) as T →∞. (6.18)

Indeed, using the fact that for a Gaussian vector (G1, G2) we have

Cov(G2
1, G

2
2) = 2[Cov(G1, G2)]2,

and letting rY (u) =
∫
R e

ixufY (x)dx be the covariance function of Y (t), we can write

E
[
(LT (t)− LT (s))2

]
= 2(t− s)

∫ T (t−s)

−T (t−s)

(
1− |u|

T (t− s)

)
r2
Y (u)du.

Since fY (x) ∈ L2(R), the Fourier transform rY (u) ∈ L2(R) as well. So by the Dominated

Convergence Theorem and Parseval-Plancherel’s identity, we have as T →∞

E
[
(LT (t)− LT (s))2

]
→ 2(t−s)

∫ ∞
−∞

r2
Y (u)du = 4π(t−s)

∫ ∞
−∞

f2
Y (x)dx = σ2

Y (t−s). (6.19)

We now discuss some results which allow one to reduce the general quadratic functional

in Theorem 6.2.1 to a special quadratic functional introduced in Lemma 6.3.1.

By Theorem 16.7.2 from Ibragimov and Linnik [1971], the underlying process X(t)

admits a moving average representation:

X(t) =

∫ ∞
−∞

â(t− s)B(ds) with

∫ ∞
−∞
|â(t)|2dt <∞, (6.20)

where B(t) is a standard Brownian motion, and â(t) is such that its inverse Fourier trans-

form a(x) satisfies f(x) = 2π|a(x)|2. Assuming the conditions (6.4) and (6.5), we set

b(x) = (2π)1/2a(x)(g(x))1/2,

and observe that the function b(x) is then in L2(R) due to condition (6.4). Consider the
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stationary process

Y (t) =

∫ ∞
−∞

b̂(t− s)B(ds) (6.21)

constructed using the Fourier transform b̂(t) of b(x) and the same Brownian motion B(t)

as in (6.20). The process Y (t) has spectral density (see Ginovyan and Sahakyan [2007],

equation (4.7))

fY (x) = 2πf(x)g(x). (6.22)

We have the following approximation result which immediately follows from Lemma 10 of

Ginovyan and Sahakyan [2007].

Lemma 6.3.3. Let Q̃T (t) be as in (6.3) and let LT (t) be as in (6.16) with Y (t) constructed

as in (6.21). Then under the conditions (6.4) and (6.5), for any t > 0, we have

lim
T→∞

Var[Q̃T (t)− LT (t)] = 0.

The following lemma is a straightforward adaptation of Lemma 4.2 of Giraitis and

Taqqu [1998] for functions defined on R.

Lemma 6.3.4. If pj ≥ 1, j = 1, . . . , k, where k ≥ 2 and
∑k

j=1
1
pj

= k − 1, then

∫
Rk−1

|f1(x1) . . . fk−1(xk−1)fk(x1 + . . .+ xk−1)|dx1 . . . dxk ≤
k∏
j=1

‖fj‖pj .

The following lemma will be used to establish tightness in the space C[0, 1] in Theorem

6.2.4.

Lemma 6.3.5. Let the covariance function r(t) and the generating kernel a(t) satisfy

condition (6.7), and let Q̃T (t) be as in (6.3). Then for all 0 ≤ s ≤ t ≤ 1 and T > 0, there

exists a constant C > 0, such that

E
[
|Q̃T (t)− Q̃T (s)|2

]
≤ C(t− s). (6.23)
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Proof. For convenience we use the Wick product notation: : X(u)X(v) := X(u)X(v) −

E [X(u)X(v)] . So for 0 ≤ s ≤ t ≤ 1, we can write

Q̃T (t)− Q̃T (s)

=
1√
T

(∫ Tt

0

∫ Tt

0
a(u− v) : X(u)X(v) : dudv −

∫ Ts

0

∫ Ts

0
a(u− v) : X(u)X(v) : dudv

)
=

1√
T

∫ Tt

Ts

∫ Tt

Ts
a(u− v) : X(u)X(v) : dudv +

2√
T

∫ Ts

0

∫ Tt

Ts
a(u− v) : X(u)X(v) : dudv

: = A(s, t, T ) +B(s, t, T ).

Now we estimate B(s, t, T ) (the function A(s, t, T ) can be estimated similarly). We have

by Theorem 3.9 of Janson [1997] that

E
[
B2(s, t, T )

]
=

4

T

∫ Ts

0
du1

∫ Tt

Ts
dv1

∫ Ts

0
du2

∫ Tt

Ts
dv2×

a(u1 − v1)a(u2 − v2)E (: X(u1)X(v1) :: X(u2)X(v2) :)

=
4

T

∫ Ts

0
du1

∫ Tt

Ts
dv1

∫ Ts

0
du2

∫ Tt

Ts
dv2a(u1 − v1)a(u2 − v2)×

[r(u1 − u2)r(v1 − v2) + r(u1 − v2)r(v1 − u2)]

:=B1(s, t, T ) +B2(s, t, T ).

By the change of variables x1 = u1 − v1, x2 = v2 − u2, x3 = u2 − u1, x4 = v2, and noting

that r(·) and a(·) are even functions, we have

B1(s, t, T ) ≤ 4

T

∫ Tt

Ts
dx4

∫
R3

|a(x1)a(x2)r(x3)r(x1 + x2 + x3)|dx1dx2dx3.

Since |r(t)| ≤ r(0), we have r(·) ∈ L∞(R). We also have r(·) ∈ Lp(R) by condition (6.7),

where 1/p + 1/q ≥ 3/2. The Lp-interpolation theorem states that if a function is in Lp1

and Lp2 with 0 < p1 ≤ p2 ≤ ∞, then it is in Lp
′
, p1 ≤ p′ ≤ p2. By the Lp-interpolation
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theorem, one can choose p′ ≥ p such that r(·) ∈ Lp′(R) and

1

p′
+

1

p′
+

1

q
+

1

q
= 3, that is,

1

p′
+

1

q
=

3

2
.

Then by Lemma 6.3.4, one has B1(s, t, T ) ≤ 4‖r‖2p′‖a‖2q(t− s). Similarly, one can establish

the bound B2(s, t, T ) ≤ C(t− s), and hence B(s, t, T ) ≤ C(t− s). So (6.23) is proved.

The lemmas that follow will be used in the proof of Theorem 6.2.9.

Lemma 6.3.6. Define

∆t(x) =

∫ t

0
eisxds =

eitx − 1

ix
, (6.24)

Then for any δ ∈ (0, 1), there exists a constant c > 0 depending only on δ, such that

|∆t(x)| ≤ c|t|δfδ(x), t ∈ [0, 1], x ∈ R, (6.25)

where

fδ(x) =


|x|δ−1 if |x| > 1;

1 if |x| ≤ 1.

(6.26)

Proof. In view of (6.24), we have |∆t(x)| ≤
∫ t

0 |e
isx|ds = t. So under the constraint t ∈ [0, 1],

we have |∆t(x)| ≤ t ≤ tδ. On the other hand, from Lemma 2 from Terrin and Taqqu [1990],

with some constant C > 0, we have |eix − 1| ≤ C|x|δ, δ ∈ (0, 1). So

|∆t(x)| ≤ |e
itx − 1|
|x|

≤ C|tx|δ|x|−1 = Ctδ|x|δ−1.

Combining this with (6.26), we obtain (6.25).

We quote Lemma 1 of Terrin and Taqqu [1990] in a special case, convenient for our

purposes.
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Lemma 6.3.7. Let γi < 1, γi + γi+1 > 1/2, and let δ be such that

0 ≤ δ < γi + γi+1

2
,

where i = 1, . . . , 4 (with γ5 = γ1). Then

∫
R4

fδ(y1 − y2)fδ(y2 − y3)fδ(y3 − y4)fδ(y4 − y1)|y1|−γ1 |y2|−γ2 |y3|−γ3 |y4|−γ4dy <∞,

where fδ(·) is as in (6.26).

Lemma 6.3.7 can be used to establish the following result.

Lemma 6.3.8. The function

H∗t (x1, x2) := |x1|α1/2|x2|α2/2

∫
R
|∆t(x1 + u)∆t(x2 − u)||u|−βdu (6.27)

is in L2(R2) for all (α1, α2, β) in the open region {(α1, α2, β) : α1, α2, β < 1, αi + β >

1/2, i = 1, 2}.

Proof. It suffices focus on the case where t ∈ [0, 1], otherwise a change of variable can

reduce it to this case. We have by suitable change of variables and Lemma 6.3.6 that

‖H∗t ‖2L2(R2)

=

∫
R4

∣∣∆t(y1 − y2)∆t(y2 − y3)∆t(y3 − y4)∆t(y4 − y1)
∣∣|y1|−α1 |y2|−β|y3|−α2 |y4|−βdy

≤C
∫
R4

fδ(y1 − y2)fδ(y2 − y3)fδ(y3 − y4)fδ(y4 − y1)|y1|−α1 |y2|−β|y3|−α2 |y4|−βdy.

Then apply Lemma 6.3.7, noting that δ can be chosen arbitrarily small.

Lemma 6.3.9. Define the function

H∗t,T (x1, x2) = A1,T (x1, x2)|x1x2|−α/2
∫
R
|∆t(x1 + u)∆t(x2 − u)||u|−βA2,T (u) du, (6.28)
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where

A1,T (x1, x2) =

√
L1(x1/T )

L1(1/T )

L1(x2/T )

L1(1/T )
, A2,T (u) =

L2(u/T )

L2(1/T )
. (6.29)

Then for large enough T , we have H∗t,T (x1, x2) ∈ L2(R2).

Proof. By (6.12) and (6.29), for any ε > 0 there exists C > 0, such that for T large enough,

|A1,T (x1, x2)| ≤ C(|x1|ε + |x1|−ε)(|x2|ε + |x2|−ε) (6.30)

and

|A2,T (u)| ≤ C(|u|ε + |u|−ε). (6.31)

Hence, with some constant C > 0,

|H∗t,T (x1, x2)| ≤C
∫
R
|∆t(x1 + u)∆t(x2 − u)||u|−β(|u|ε + |u|−ε)du×

|x1x2|−α/2(|x1|ε + |x1|−ε)(|x2|ε + |x2|−ε). (6.32)

Because by Lemma 6.3.8, the function H∗t in (6.27) is in L2(R2) for all (α1, α2, β) in an

open region {(α, β) : α1, α2, β < 1, αi + β > 1/2, i = 1, 2}. By choosing ε small enough, we

infer that the right-hand side of (6.32) is in L2(R2), and the result follows.

Lemma 6.3.10. Let ZT (t) be as in (6.13), and let

Z ′T (t) :=

∫ ′′
R2

Ht,T (x1, x2) W (dx1)W (dx2), (6.33)

where

Ht,T (x1, x2) = A1,T (x1, x2)|x1x2|−α/2
[∫

R
∆t(x1 + u)∆t(x2 − u)|u|−βA2,T (u) du

]
.

(6.34)

Then ZT (t)
f.d.d.
= Z ′T (t), that is, the processes ZT (t) and Z ′T (t) have the same finite-

dimensional distributions.
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Proof. Using the spectral representation ofX(t) (see, e.g., Doob [1953], Chapter XI, Section

8): X(t) =
∫
R e

itx
√
f(x)W (dx), where W (·) is a complex Gaussian measure with Lebesgue

control measure, and the diagram formula (see, e.g., Major [2014], Chapter 5), we have

X(u)X(v)− E [X(u)X(v)] =

∫ ′′
R2

ei(ux1+vx2)
√
f(x1)f(x2)W (dx1)W (dx2).

By a stochastic Fubini Theorem (see Pipiras and Taqqu [2010], Theorem 2.1) and

Lemma 6.3.9, one can change the integration order to get (note that by (6.2) we have

ĝ(t) =
∫
R e

itxg(x)dx):

[Tα+βL1(1/T )L2(1/T )]ZT (t)

=

∫ ′′
R2

√
f(x1)f(x2)

∫ Tt

0

∫ Tt

0

∫
R
ei(u−v)wg(w)dw ei(ux1+vx2)dudv W (dx1)W (dx2)

=

∫ ′′
R2

√
f(x1)f(x2)

∫
R

∫ Tt

0
eiu(x1+w)du

∫ Tt

0
eiv(x2−w)dv |w|−βL(w)dw W (dx1)W (dx2)

=

∫ ′′
R2

√
f(x1)f(x2)

∫
R

∆Tt(x1 + w)∆Tt(x2 − w)|w|−βL2(w)dw W (dx1)W (dx2).

Now we use the change of variables w → u/T , x1 → x1/T , x2 → x2/T , where the latter two

change of variables are subject to the rule W (dx/T )
d
= T−1/2W (dx) (see, e.g., Dobrushin

[1979], Proposition 4.2), to obtain

ZT (t)
f.d.d.
=

1

Tα+βL1(1/T )L2(1/T )
×
∫ ′′
R2

√
f(x1/T )f(x2/T )×∫

R
∆t(x1 + u)∆t(x2 − u)|w/T |−βL2(w/T )Tdw T−1W (dx1)W (dx2). (6.35)

Taking into account the equality f(x/T ) = |x/T |−αL1(x/T ) and equations in (6.29), we

see that the right hand side of (6.35) coincides with (6.33). This completes the proof.

The lemmas that follow will be used to establish tightness in the space C[0, 1] in The-

orem 6.2.9.

Lemma 6.3.11. Let δ be a fixed number within the range (0, (α+ β)/2), and let ZT (t) be
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as in (6.13). Then for all 0 ≤ s ≤ t ≤ 1 and T large enough, there exists a constant C > 0,

such that

E
[
|ZT (t)− ZT (s)|2

]
≤ C(t− s)2δ. (6.36)

The same estimate also holds for the corresponding limiting process Z(t) defined by (6.14),

(6.15).

Proof. First, in view of Lemma 6.3.10, we have E
[
|ZT (t)− ZT (s)|2

]
= E

[
|Z ′T (t)− Z ′T (s)|2

]
.

Next, using the linearity of the multiple stochastic integral, we can write

Z ′T (t)− Z ′T (s) =

∫ ′′
R2

Hs,t,T (x1, x2)W (dx1)W (dx2),

where

Hs,t,T (x1, x2) =A1,T (x1, x2)|x1x2|−α/2×∫
R

[∆t(x1 + u)∆t(x2 − u)−∆s(x1 + u)∆s(x2 − u)] |u|−βA2,T (u)du.

(6.37)

The term in the brackets of the integrand in (6.37) can be rewritten as follows:

∆t(x1 + u)∆t(x2 − u)−∆s(x1 + u)∆s(x2 − u)

=

∫ t

0

∫ t

0
eiw1(x1+u)eiw2(x2−u)dw1dw2 −

∫ s

0

∫ s

0
eiw1(x1+u)eiw2(x2−u)dw1dw2

=

∫ s

0
dw1

∫ t

s
dw2 . . .+

∫ t

s
dw1

∫ s

0
dw2 . . .+

∫ t

s
dw1

∫ t

s
dw2 . . .

=∆s(x1 + u)∆t−s(x2 − u) + ∆t−s(x1 + u)∆s(x2 − u) + ∆t−s(x1 + u)∆t−s(x2 − u).

Now we apply Lemma 6.3.6 to get

|∆t(x1 + u)∆t(x2 − u)−∆s(x1 + u)∆s(x2 − u)|

≤C[sδ(t− s)δ + (t− s)δsδ + (t− s)2δ]fδ(x1 + u)fδ(x2 − u)
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≤C(t− s)δfδ(x1 + u)fδ(x2 − u), (6.38)

where the last inequality follows because 0 ≤ sδ ≤ 1 and 0 ≤ (t− s)δ ≤ 1.

Next, using formula (4.5′) of Major [2014], (6.37) and (6.38), we can write

E
[
|ZT (t)− ZT (s)|2

]
= ‖Hs,t,T ‖2L2(R2) ≤ C|t− s|

2δ

∫
R2

dx1dx2A1,T (x1, x2)2|x1x2|−α×∫
R2

du1du2fδ(x1 + u1)fδ(x2 − u1)fδ(−x1 + u2)fδ(−x2 − u2)|u1u2|−βA2,T (u1)A2,T (u2)

≤C|t− s|2δ
∫
R4

dy1dy2dy3dy4A1,T (y1, y3)2A2,T (y2)A2,T (y4)×

fδ(y1 − y2)fδ(y2 − y3)fδ(y3 − y4)fδ(y4 − y1)|y1|−α|y2|−β|y3|−α|y4|−β, (6.39)

where we have applied the change of variables: y1 = x1, y2 = −u1, y3 = −x2, y4 = u2.

Since by assumption α < 1, β < 1 and α + β > 1/2, and the exponent ε in (6.30) and

(6.31) can be chosen arbitrarily small, for a fixed δ satisfying 0 < δ < (α + β)/2, we can

apply Lemma 1 of Terrin and Taqqu [1990] to conclude that the integral

∫
R4

A1,T (y1, y3)2A2,T (y2)A2,T (y4)fδ(y1 − y2)fδ(y2 − y3)fδ(y3 − y4)fδ(y4 − y1)×

|y1|−α|y2|−β|y3|−α|y4|−βdy

is bounded for sufficiently large T , which in view of (6.39) implies (6.36). The proof for

ZT (t) is thus complete. The proof for Z(t) is similar and so we omit the details.

6.4 Proof of Main Results

Proof of Theorem 6.2.1. By Lemma 6.3.3, for any 0 ≤ t1 < . . . < tn, and constants

c1, . . . , cn, we have

lim
T→∞

Var

 n∑
j=1

cj

(
Q̃T (tj)− LT (tj)

) = 0.
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Therefore the convergence of finite-dimensional distributions of Q̃T (t) to that of Brownian

motion σB(t) follows from Lemma 6.3.1 with fY (·) given in (6.22) and the Cramér-Wold

Device.

Proof of Theorem 6.2.4. In view of the well-known Prokhorov’s Theorem (see, e.g., Billings-

ley [1999], p. 58), to prove the theorem, we need to show convergence of finite-dimensional

distributions and tightness. The former has been established in Theorem 6.2.1. To prove

tightness, observe that by Lemma 6.3.5 and the hypercontractivity inequality of the multi-

ple Wiener-Itô integrals (see Major [2014], Corollary 5.6), for any T > 0 and 0 ≤ s ≤ t ≤ 1,

there exists a constant C > 0 to satisfy

E
[
|Q̃T (t)− Q̃T (s)|4

]
≤ C2

(
E
[
|Q̃T (t)− Q̃T (s)|2

])2
≤ C(t− s)2. (6.40)

Now the tightness of the family of measures generated by the processes {Q̃T (t) : T > 0} in

C[0, 1] follows from Lemma 5.1 of Ibragimov [1963].

Proof of Theorem 6.2.5. The convergence of finite-dimensional distributions follows from

Theorem 6.2.1. In fact, the assumptions on f and g in Theorem 6.2.5 imply the conditions

(6.4) and (6.5) in Theorem 6.2.1 (see the proof of Theorem 5 in Ginovyan and Sahakyan

[2007]). The tightness can be shown similarly as in the proof of Theorem 6.2.4.

Proof of Theorem 6.2.9. As in the proof of Theorem 6.2.4, we need to show convergence

of finite-dimensional distributions and tightness. We first prove the convergence of finite-

dimensional distributions, that is, ZT (t)
f.d.d.−→ Z(t) as T → ∞, where ZT (t) and Z(t) are

defined by (6.13) and (6.14), respectively.

By Lemma 6.3.10, the process ZT (t) defined in (6.13) has the same finite-dimensional

distributions as the process Z ′T (t) defined in (6.33). Therefore, taking into account the

linearity of multiple Wiener-Itô integral, and applying Crámer-Wold device, to prove
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ZT (t)
f.d.d.−→ Z(t), it is enough to show that as T →∞,

Ht,T (x1, x2) → Ht(x1, x2) in L2(R2), (6.41)

where Ht(x1, x2) and Ht,T (x1, x2) are as in (6.15) and (6.34), respectively.

First, we show pointwise convergence for a.e. (x1, x2) ∈ R2, that is,

Ht,T (x1, x2) = A1,T (x1, x2)|x1x2|−α/2
∫
R

∆t(x1 + u)∆t(x2 − u)|u|−βA2,T (u)du (6.42)

→ Ht(x1, x2) = |x1x2|−α/2
∫
R

∆t(x1 + u)∆t(x2 − u)|u|−βdu as T →∞.

(6.43)

Because L1(x) is a slowly varying function, we have A1,T (x1, x2) → 1 as T → ∞, where

A1,T is as in (6.29). To show that the integral in (6.42) converges to the integral in

(6.43), note first that by (6.29), A2,T (u)→ 1 as T →∞ because L2(x) is a slowly varying

function. Hence one only needs to bound the integrand properly and apply the Dominated

Convergence Theorem. To this end, observe that by (6.31) for T large enough, we have

gT (u;x1, x2) : = |∆t(x1 + u)||∆t(x2 − u)||u|−βA2,T (u) (6.44)

≤ C|∆t(x1 + u)||∆t(x2 − u)||u|−β(|u|ε + |u|−ε) := gε(u;x1, x2). (6.45)

By choosing ε small enough, using Fubini Theorem and Lemma 6.3.8, we conclude that

gε(· ;x1, x2) ∈ L1(R) for a.e. (x1, x2) ∈ R2. Now (6.41) follows from (6.32) and the

Dominated Convergence Theorem.

To prove tightness, first observe that by the hypercontractivity inequality of the multiple

Wiener-Itô integrals (see Major [2014], Corollary 5.6) and Lemma 6.3.11, for T large enough

and for any 0 ≤ s ≤ t ≤ 1, there exists a constant C > 0 to satisfy

E
[
|ZT (t)− ZT (s)|4

]
≤ C2

(
E
[
|ZT (t)− ZT (s)|2

])2 ≤ C|t− s|4δ, (6.46)
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where δ is a fixed number within the range 0 < 4δ < 2(α + β). Since by assumption

α+ β > 1/2, we can choose δ to satisfy 4δ > 1. Inequalities similar to (6.46) hold also for

the limit process Z(t).

In view of (6.46) and a similar inequality for Z(t), it follows from Kolmogorov’s criterion

(see, e.g., Bass [2011] Theorem 8.1(1)) that the processes ZT (t) and Z(t) admit continuous

versions when T is large enough.

Now the tightness of the family of measures generated by the processes {ZT (t) : T > 0}

in C[0, 1] follows from Lemma 5.1 of Ibragimov [1963]. Theorem 6.2.9 is proved.



Chapter 7

Limit theorems for quadratic forms of Lévy-driven

continuous-time linear processes

We study the asymptotic behavior of a suitable normalized stochastic process {QT (t), t ∈

[0, 1]}. This stochastic process is generated by a Toeplitz type quadratic functional of a

Lévy-driven continuous-time linear process. We show that under some Lp-type conditions

imposed on the covariance function of the model and the kernel of the quadratic functional,

the process QT (t) obeys a central limit theorem, that is, the finite-dimensional distributions

of the standard
√
T normalized process QT (t) tend to those of a normalized standard Brow-

nian motion. In contrast, when the covariance function of the model and the kernel of the

quadratic functional have a slow power decay, then we have a non-central limit theorem for

QT (t), that is, the finite-dimensional distributions of the process QT (t), normalized by T γ

for some γ > 1/2, tend to those of a non-Gaussian non-stationary-increment self-similar

process which can be represented by a double stochastic Wiener-Itô integral on R2.

7.1 Introduction

Let {X(t), t ∈ R} be a Lévy-driven continuous-time stationary linear process defined by

X(t) =

∫
R
a(t− s)ξ(ds), (7.1)
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where a(·) is a function from L2(R), and ξ(t) is a Lévy process satisfying the conditions:

Eξ(t) = 0, Eξ2(1) = 1 and Eξ4(1) <∞.

A Lévy process, {ξ(t), t ∈ R} is a process with independent and stationary increments,

continuous in probability, with sample-paths which are right-continuous with left limits

(càdlàg) and ξ(0) = ξ(0−) = 0. The Wiener process {B(t), t ≥ 0} and the centered

Poisson process {N(t) − EN(t), t ≥ 0} are typical examples of centered Lévy processes.

Notice that the covariance function of X(t) is given by

r(t) = EX(t)X(0) =

∫
R
a(t+ x)a(x)dx, (7.2)

and it possesses the spectral density

f(λ) =
σ2

2π
|â(λ)|2 =

σ2

2π

∣∣∣∣∫
R
e−iλta(t)dt

∣∣∣∣2 , λ ∈ R. (7.3)

The function a(·) plays the role of a time-invariant filter.

Processes of the form (7.1) appear in many fields of science (economics, finance, physics,

etc.), and cover a large class of popular models in continuous-time time series modeling.

For instance, the so-called continuous-time autoregressive moving average (CARMA) mod-

els, which are the continuous-time analogs of the classical autoregressive moving average

(ARMA) models in discrete-time case, are of the form (7.1) and play a central role in the

representation of continuous-time stationary time series. Lévy-driven CARMA processes

permit the modelling of heavy-tailed and asymmetric time series and incorporate both

distributional and sample-path information (see, e.g., Brockwell [2001, 2014]).

Consider the following Toeplitz type quadratic functional of the process X(u):

QT :=

∫ T

0

∫ T

0
b(u− v)X(u)X(v) du dv, T > 0, (7.4)
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where

b(t) := ĝ(t) =

∫
R
eiλtg(λ)dλ, t ∈ R,

is the Fourier transform of some integrable even function g(λ), λ ∈ R. We will refer to

g(λ) and to its Fourier transform b(t) as a generating function and generating kernel for

the functional QT , respectively.

In this chapter we are interested in the asymptotic behavior as (T →∞) of the stochas-

tic process {QT (t), t ∈ [0, 1]}, generated by the functional QT :

QT (t) :=

∫ Tt

0

∫ Tt

0
b(u− v)X(u)X(v)dudv, t ∈ [0, 1]. (7.5)

Our goal is to establish functional limit theorems of the form

1

A(T )
(QT (t)− EQT (t))

f.d.d.−→ L(t), (7.6)

where A(T ) is a normalization factor, L(t) is the limit process, and the symbol
f.d.d.−→ stands

for convergence of finite-dimensional distributions.

Functionals of the form (7.5) and their discrete counterparts arise naturally in the

statistical estimation of the spectrum of stationary processes. Limits such as (7.6) are

necessary to establish asymptotic properties of these estimators (see, for example, Fox and

Taqqu [1986], Ginovyan [2011], Giraitis et al. [2012], and references therein).

In the case where the underlying model {X(u), u ∈ R} is a Wiener-driven process,

that is, X(u) is a Gaussian process, limit theorems of the form (7.4) were established in

Bai et al. [2015], among others, where it was shown that if both the spectral density f of

X(u) and the generating function g are regularly varying at the origin of orders α and β,

respectively, then it is the sum α + β that determines the limiting process L(t). In fact,

when

α+ β ≤ 1/2,
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the limit process L(t) is a normalized standard Brownian motion, while when

α+ β > 1/2,

the limit L(t) is a non-Gaussian self-similar process, which can be represented as a double

Wiener-Itô integral on R2.

In this chapter, we consider the general case where the model {X(u), u ∈ R} is a

continuous-time linear process driven from Lévy noise ξ(u) with time invariant filter a(·).

Specifically, we show that under some Lp-type conditions imposed on the filter a(·) and the

kernel b(·) of the quadratic functional, the process QT (t) obeys a central limit theorem, that

is, the finite-dimensional distributions of the standard
√
T normalized process QT (t) tend

to those of a normalized standard Brownian motion. In contrast, when the functions a(·)

and b(·) have slow power decay, then we have a non-central limit theorem for QT (t), that

is, the finite-dimensional distributions of the process QT (t), normalized by T γ for some

γ > 1/2, tend to those of a non-Gaussian non-stationary-increment self-similar process

which can be represented by a double stochastic Wiener-Itô integral on R2.

We point out that our proofs of the central limit theorems are based on a new ap-

proximation approach which reduces the quadratic integral form to a single integral form.

This method can also be adapted to the discrete-time case. To prove the non-central limit

theorems, we use the spectral representation of the underlying process, the properties of

Wiener-Itô integrals, and a continuous analog of a method to establish convergence in dis-

tribution of quadratic functionals to double Wiener-Itô integrals, developed by Surgailis

[1982] (see also Giraitis et al. [2012]).

Limit theorems for quadratic forms of the type (7.5) have been considered by a number

of authors, mostly for discrete-time stationary processes (see, e.g., Grenander and Szegö

[1958], Fox and Taqqu [1985, 1987], Giraitis and Surgailis [1990], Terrin and Taqqu [1990],

Giraitis and Taqqu [1999], Ginovyan and Sahakyan [2005], and references therein). The

continuous-time case where X(t) is Gaussian has been mainly considered in Ginovian
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[1994], Ginovyan and Sahakyan [2007], and Bai et al. [2015].

To the best of our knowledge, the only work addressing the quadratic functionals of

the Lévy-driven continuous-time linear process X(t) is Avram et al. [2010], where a central

limit theorem for the quadratic functional (7.4) was stated (without proof) under some Lp-

type conditions imposed on the spectral density f(λ) of X(u) and the generating function

g(λ) (see Remark 7.2.6 below). For a related study of the sample covariances of Lévy-driven

moving average processes we refer to the recent papers by Cohen and Lindner [2013], and

Spangenberg [2015].

In our setting, where the underlying process X(t) is not necessarily Gaussian, additional

complications arise due to the contribution of the random diagonal term in the double

stochastic integral with respect to Lévy noise, which is not present in the case of Gaussian

noise (see Remark 7.2.3 below).

The chapter is organized as follows. In Section 7.2 we state the main results of the

chapter. In Section 7.3 we give a number of preliminary results that are used in the proofs

of the main results. Sections 7.4 and 7.5 contain the proofs of the main results.

7.2 Main results: central and non-central limit theorems

In this section, we state our main results, involving central and non-central limit theorems

for suitably normalized process QT (t) given by (7.5) under short and long-range dependence

conditions.

Let {X(t), t ∈ R} be a centered real-valued linear process given by (7.1) with filter

a(·) ∈ L2(R) and covariance function r(·) given by (7.2).

Throughout the chapter we will use the following notation. The symbol ∗ will stand

for the convolution:

(h ∗ g)(u) =

∫
R
h(u− x)g(x)dx,
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while the symbol ∗̄ will be used to denote the reversed convolution:

(h∗̄2)(u) = (h∗̄h)(u) =

∫
R
h(u+ x)h(x)dx.

By F and F−1 we will denote the Fourier and the inverse Fourier transforms:

(Fh)(u) = ĥ(u) =

∫
R
eixuh(x)dx, (F−1h)(u) =

1

2π

∫
R
e−ixuh(x)dx.

We will use the following well-known identities:

F(h ∗ g) = F(h) · F(g) (7.7)

and

F(h∗̄g) = F(h) · F(g). (7.8)

7.2.1 Central limit theorems

The theorem that follows contains Lp-type sufficient conditions for QT (t) to obey central

limit theorem, and is proved in Section 7.4.

Theorem 7.2.1. Let X(t) be as in (7.1), and let QT (t) be as in (7.5). Assume that

a(·) ∈ Lp(R) ∩ L2(R), b(·) ∈ Lq(R) (7.9)

with

1 ≤ p, q ≤ 2,
2

p
+

1

q
≥ 5

2
. (7.10)

Then

Q̃T (t) :=
1√
T

(QT (t)− EQT (t))
f.d.d.−→ σB(t), (7.11)
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where B(t) is a standard Brownian motion, and

σ2 =

∫
R

[2KA(v) + κ4KB(v)] dv, (7.12)

where κ4 is the fourth cumulant of ξ(1), and

KA(v) =
(

(a ∗ b)∗̄2 · a∗̄2
)

(v), KB(v) =
(

(a∗b) · a
)∗̄2

(v). (7.13)

Remark 7.2.2. Young’s inequality for convolution (see, e.g., Bogachev [2007], Theorem

3.9.4) states that for any numbers p, p1, q satisfying 1 ≤ p ≤ p1 ≤ ∞ and 1
p1

= 1
p + 1

q − 1,

and for any functions f ∈ Lp(R), g ∈ Lq(R) the function f ∗g is defined almost everywhere,

f ∗ g ∈ Lp1(R), and one has

‖f ∗ g‖p1 ≤ ‖f‖p‖g‖q. (7.14)

Applying this inequality to the convolution in (7.2), we get ‖r‖p1 ≤ ‖a‖2p < ∞, where

1 + 1/p1 = 2/p. Hence the relations (7.9) and (7.10) imply that

r(·) ∈ Lp1(R), b(·) ∈ Lq(R),
1

p1
+

1

q
=

2

p
− 1 +

1

q
≥ 5

2
− 1 =

3

2
. (7.15)

The condition (7.15) is sufficient for the convergence in Theorem 7.2.1 to hold in the case

where ξ(t) is Brownian motion (see Theorem 2.2 of Bai et al. [2015]). In fact, in this case,

the convergence in Theorem 7.2.1 holds under even a weaker condition imposed on the

generating function g(λ) and the spectral density f(λ) of X(t) (see Theorem 2.1 of Bai

et al. [2015]).

Remark 7.2.3. In contrast to the cases where the model is either a discrete-time linear

process (Giraitis and Surgailis [1990]), or a continuous-time Gaussian process (Bai et al.

[2015]), it is convenient to impose the time-domain conditions (7.9) and (7.10) on the

functions a(·) and b(·), instead of on the spectral density f(λ) and the generating function

g(λ). This allows us to analyze the random diagonal term which arises from the double
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stochastic integral with respect to a non-Gaussian Lévy process.

In the discrete-time case the random diagonal term is estimated by the full double sum

(see, e.g., Giraitis and Surgailis [1990], relation (2.3)), while in the continuous-time Gaus-

sian case, there is no such random diagonal term. In the continuous-time non-Gaussian

case, we have a random diagonal term in the form of a single stochastic integral that cannot

be controlled by the double integral, and hence we need to treat it separately (see (7.61)

in the proof of Theorem 4.6.5).

Remark 7.2.4. Observe that the long-run variance σ2 given by (7.12) can be expressed

in terms of the spectral density f(λ) and the generating function g(λ), provided that

these functions satisfy some regularity conditions. Indeed, using (7.7), (7.8) and Parseval-

Plancherel theorem, under suitable integrability conditions on a(·) and b(·), we can write

∫
R
KA(v)dv =

∫
R

(a ∗ b)∗̄2(v)a∗̄2(v)dv =
1

2π

∫
R
F
(
(a ∗ b)∗̄2

)
(λ)F (a∗̄2) (λ)dλ =

=
1

2π

∫
R
|F(a ∗ b)(λ)|2|F(a)(λ)|2dλ =

1

2π

∫
R
|â(λ)̂b(λ)|2|â(λ)|2dλ

= 8π3

∫
R
f(λ)2g(λ)2dλ,

where in the last equality we used the fact |â|2 = 2πf and b̂ = 2πg (because b(·) is an even

function). Similarly, we have

∫
R
KB(v)dv =

∫
R
dv

∫
R
dx
(

(a∗b) · a
)

(x)
(

(a∗b) · a
)

(x+ v) =

(∫
R

(a∗b)(x)a(x)dx

)2

=
1

4π2

(∫
R
â(x)̂b(x)â(x)dλ

)2

= 4π2

[∫
R
f(λ)g(λ)dλ

]2

.

So an alternative expression for σ2 in (7.12) is

σ2 = 16π3

∫
R
f(λ)2g(λ)2dλ+ κ4

[
2π

∫
R
f(λ)g(λ)dλ

]2

, (7.16)

which should be compared with Avram et al. [2010] (Theorem 4.1), and Giraitis and

Surgailis [1990] for an analogous expression in the discrete-time case.
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Remark 7.2.5. The discrete-time analog of Theorem 7.2.1 with t = 1 and ξ being Gaussian

was established in Giraitis and Surgailis [1990]. A special case of Theorem 7.2.1 with t = 1

and ξ being Gaussian was established in Ginovian [1994] and Ginovyan and Sahakyan

[2007]. Theorem 7.2.1 for Wiener-driven model (κ4 = 0) was proved in Bai et al. [2015].

Remark 7.2.6. For Lévy-driven model with t = 1 and σ2 given by (7.16), a version of

Theorem 7.2.1 was stated in Avram et al. [2010] (Theorem 4.1). They impose conditions

on the spectral density f(·) and the generating function g(·), and assume the existence

of all moments of the driving Lévy process ξ(t). The details of the proof of Theorem 4.1

in Avram et al. [2010] is unfortunately omitted. It is not clear, at least to us, how the

omitted details of the method-of-moment proof can be carried out given the complexity of

computing the moments of multiple integrals with respect to non-Gaussian Lévy noise (see

Peccati and Taqqu [2011], Chapter 7).

The following corollary, proved in Section 7.4, contains sufficient conditions for the

assumptions in Theorem 7.2.1 to hold.

Corollary 7.2.7. The convergence in (7.11) holds if the functions a(·) and b(·) satisfy the

following conditions:

a(·), b(·) ∈ L∞(R), |a(x)| ≤ c|x|α/2−1, |b(x)| ≤ c|x|β−1 (7.17)

with

0 < α, β < 1, α+ β < 1/2.

7.2.2 Non-central limit theorems

We now state the non-central limit theorems. We make the following assumptions on the

functions a(·), b(·) and on their Fourier transforms â(·) and b̂(·).

Assumption 1. The Fourier transform â(·) of a(·) ∈ L2(R) satisfies

â(x) = A(x)|x|−α/2L1/2
1 (x),
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where L1(x) is an even non-negative function slowly varying at zero and

bounded on intervals [c,∞) for any c > 0, and A(x) is a complex-valued

function satisfying |A(x)| = 1, and limx→0+ A(x) = A0 for some A0 on the

complex unit circle (since â(−x) = â(x), we also have limx→0− A(x) = A0).

Assumption 2. The generating function b̂(·) ∈ L1(R) and satisfies

b̂(x) = |x|−βL2(x),

where L2(x) is an even non-negative function slowly varying at zero and

bounded on intervals [c,∞) for any c > 0.

Assumption 3. The parameters α and β above satisfy

−1/2 < α < 1, −1/2 < β < 1, α+ β > 1/2. (7.18)

Assumption 4. There exist numbers α∗ and β∗ satisfying

0 < α∗, β∗ < 1 1 < α∗ + β∗ < α+ β + 1/2,

such that

|a(x)| ≤ C|x|α∗/2−1, |b(x)| ≤ C|x|β∗−1.

The proof of the following theorem can be found in Section 7.5.

Theorem 7.2.8. Suppose that Assumptions 1 - 4 hold. Then as T →∞

Q̃T (t) :=
1

Tα+βL1(1/T )L2(1/T )
(QT (t)− EQT (t))

f.d.d.−→ Zα,β(t), (7.19)

where

Zα,β(t) =
1

2π

∫ ′′
R2

|x1x2|−α/2
∫
R

eit(x1+u) − 1

i(x1 + u)

eit(x2−u) − 1

i(x2 − u)
|u|−βdu W (dx1)W (dx2), (7.20)
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where W (·) is a complex-valued Brownian motion, and the double prime ′′ indicates the

exclusion of the hyper-diagonals up = ±uq, p 6= q.

Remark 7.2.9. The regular variation conditions on â(·) and b̂(·) in Assumptions 1 - 3

generally do not follow from the corresponding regular variation conditions imposed on the

inverse Fourier transforms a(·) and b(·). This implication only holds under some additional

assumptions on the slowly varying factors of a(·) and b(·). For instance, it will hold if we

have (see Bingham et al. [1989], formula (4.3.7))

a(x) = xα/2−1`1(x)1[0,∞)(x), b(x) = |x|β−1`2(x), (7.21)

where 0 < α < 1, 0 < β < 1, α + β > 1/2, and `1(x) and `2(x) are even non-negative

functions which are locally bounded, slowly varying at infinity and quasi-monotone. Recall

that a slowly varying function l(·) is said to be quasi-monotone if it has locally bounded

variation, and for all δ > 0, one has (see Bingham et al. [1989], Section 2.7)

∫ x

0
tδ|d`(t)| = O(xδl(x)) as x→∞.

A sufficient condition for a slowly varying `(x) with locally bounded variation to be quasi-

monotone is that xδ`(x) is increasing and x−δ`(x) is decreasing when x is large enough,

for any δ > 0 (see Theorem 1.5.5 and Corollary 2.7.4 in Bingham et al. [1989]).

Notice also that Assumption 4 will be satisfied if (7.21) holds (see Lemma 7.5.6).

Remark 7.2.10. Let the functions a(·) and b(·) be as in (7.21) with α < 0 or β < 0 (by

(7.18) only one of α and β can be negative). Assume that α < 0 and β > 0. Then for

the corresponding regular variation of â(·) to hold, one needs to impose in addition that∫∞
0 a(x)dx = 0. In this case, one does not need to assume quasi-monotonicity for `1 (see

Corollary 1.40 of Soulier [2009]). Similar considerations hold if β < 0 and α > 0 instead.

Remark 7.2.11. Note that Assumption 1 holds with α = 0 if a(·) ∈ L1(R) and
∫∞

0 a(x) 6=

0, and Assumption 2 holds with β = 0 if b(·) ∈ L1(R) and
∫∞

0 b(x) 6= 0.
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The next theorem contains time-domain representations for the limiting process Zα,β(t)

in (7.20) in the case α, β ≥ 0, which will be proved in Section 7.5.

Theorem 7.2.12. The limiting process Zα,β(t) in (7.20) admits the following time-domain

representations:

(a) when α > 0, β > 0:

Zα,β(t)
f.d.d.
= cα,β

∫ ′
R2

∫ t

0

∫ t

0
|u− v|β−1(u− x1)

α/2−1
+ (v − x2)

α/2−1
+ dudv B(dx1)B(dx2),

(7.22)

where cα,β = Γ(1−β) sin(βπ/2)
πΓ(α/2)2

;

(b) when α > 1/2, β = 0:

Zα,β(t)
f.d.d.
= cα

∫ ′
R2

∫ t

0
(u− x1)

α/2−1
+ (u− x2)

α/2−1
+ du B(dx1)B(dx2), (7.23)

where cα = sin(απ/2)Γ(1−α/2)
πΓ(α/2) ;

(c) when α = 0, β > 1/2:

Zα,β(t)
f.d.d.
= cβ

∫ ′
[0,t]2
|x1 − x2|β−1 B(dx1)B(dx2), (7.24)

where cβ = Γ(1−β) sin(βπ/2)
π , B(·) is the real Brownian random measure and ′ indicates

the exclusion of the diagonals.

Remark 7.2.13. In view of (7.5) and (7.21), the representation (7.22) gives an explicit

insight of the convergence in Theorem 7.2.8 (see Theorem 7.2.14 below). The process in

(7.23) is known as Rosenblatt process (see Taqqu [1975]), and the corresponding conver-

gence in Theorem 7.2.8 is the continuous-time analog of the discrete-time case considered

in Fox and Taqqu [1985]. The representation (7.24) is obtained because for α = 0, the

underlying process X(t) has short memory and in this case, one expects that in the limit

X(t)dt in (7.5) can be replaced by the white noise B(dt).



171

In the cases where either α or β satisfying (7.18) is negative, we were not able to ob-

tain appropriate elementary expressions for the time-domain representation of the limiting

process Zα,β(t).

Using the time-domain representation (7.22), one can state a non-central limit theorem

in the case where α, β > 0 without going to the spectral domain. This simplifies the

assumptions imposed on the functions a(·) and b(·).

Theorem 7.2.14. Suppose that the functions a(·) and b(·) are given by (7.21), where

0 < α < 1, 0 < β < 1, α+ β > 1/2, and `1(x) and `2(x) are even functions slowly varying

at infinity and bounded on bounded intervals. Then as T →∞,

1

Tα+β`1(T )`2(T )
(QT (t)− EQT (t))

f.d.d.−→∫ ′
R2

∫ t

0

∫ t

0
|u− v|β−1(u− x1)

α/2−1
+ (v − x2)

α/2−1
+ dudv B(dx1)B(dx2).

The theorem is proved in Section 7.5.

7.3 Preliminaries

We first introduce the notion of multiple off-diagonal (Itô-type) stochastic integral with

respect to Lévy noise, called Lévy-Itô multiple stochastic integral, and briefly discuss its

properties. All the claims we shall make below can be found in Peccati and Taqqu [2011]

and Farré et al. [2010]. Let f be a function in L2(Rk). Then we can define the following

off-diagonal multiple stochastic integral:

Iξk(f) =

∫ ′
Rk
f(x1, . . . , xk)ξ(dx1) . . . ξ(dxk), (7.25)

where ξ(t) is a Lévy process with Eξ(t) = 0 and Var[ξ(t)] = σ2
ξ t, and the prime ′ indicates

that we do not integrate on the diagonals xi = xj , i 6= j. Indeed, the integral Iξk(f) can

be first defined for f = 1A1×...×Ak , where A1, . . . , Ak are disjoint Borel sets, as Iξk(f) =
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ξ(A1) . . . ξ(Ak), and then using linearity and L2-approximation to define for general f ∈

L2(Rk). The multiple integral Iξk(·) satisfies

‖Iξk(f)‖2L2(Ω) ≤ k!σ2k
ξ ‖f‖2L2(Rk). (7.26)

The inequality in (7.26) becomes equality if f is symmetric:

‖Iξk(f)‖2L2(Ω) = k!σ2k
ξ ‖f‖2L2(Rk). (7.27)

As before B(·) will stand for the real-valued Brownian motion. Setting ξ(·) = B(·), we

get the so-called multiple Wiener-Itô integral (see Itô [1951]):

IBk (f) =

∫ ′
Rk
f(x1, . . . , xk)B(dx1) . . . B(dxk). (7.28)

The Wiener-Itô integral can also be defined with respect to the complex-valued Brownian

motion:

IWk (g) =

∫ ′′
Rk
g(u1, . . . , uk)W (du1) . . .W (duk), (7.29)

where g ∈ L2(Rk) is a complex-valued function satisfying g(−u1, . . . ,−uk) = g(u1, . . . , uk),

and W (·) is a complex-valued Brownian motion (with real and imaginary parts being

independent) viewed as a random integrator (see, e.g., Embrechts and Maejima [2002],

p.22), and the double prime ′′ indicates the exclusion of the hyper-diagonals up = ±uq,

p 6= q.

The next result, which can be deduced from Proposition 9.3.1 of Peccati and Taqqu

[2011] and Proposition 4.2 of Dobrushin [1979], gives a relationship between the integrals

IBk (·) and IWk (·), defined by (7.28) and (7.29), respectively.

Proposition 7.3.1. Let fj(·) be real-valued functions in L2(Rkj ), j = 1, . . . , J , and let

f̂j(w1, . . . , wkj ) =

∫
Rkj

fj(x1, . . . , xkj )e
i
(
x1w1+...+xkjwkj

)
dx1 . . . dxkj
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be the L2-Fourier transform of fj(·). Then

(
IBk1(f1), . . . , IBkJ (fJ)

)
d
=
(

(2π)−k1/2IWk1

(
f̂1A

⊗k1
)
, . . . , (2π)−kJ/2IWkJ

(
f̂JA

⊗kJ
))

,

for any function A(u) : R → C such that |A(u)| = 1 and A(w) = A(−w) a.e., where

A⊗k(w1, . . . , wk) := A(w1) · · ·A(wk).

We also will need a stochastic Fubini’s theorem (see Peccati and Taqqu [2011], Theorem

5.12.1).

Lemma 7.3.2. Let (S, µ) be a measure space with µ(S) <∞, and let f(s, x1, . . . , xk) be a

function on S × Rk such that

∫
S

∫
Rk
f(s, x1, . . . , xk)

2dx1 . . . dxkµ(ds) <∞,

then we can change the order of the multiple stochastic integration Iξk(·) and the determin-

istic integration
∫
S f(s, ·)µ(ds):

∫
S
Iξk
(
f(s, ·)

)
µ(ds) = Iξk

(∫
S
f(s, ·)µ(ds)

)
.

There is a with-diagonal (Stratonovich-type) counterpart of the integral Iξk(f), denoted

I̊ξk(f) =

∫
Rk
f(x1, . . . , xk)ξ(dx1) . . . ξ(dxk), (7.30)

which includes all the diagonals. We refer to Farré et al. [2010] for a comprehensive

treatment of Stratonovich-type integrals I̊ξk(f). For the with-diagonal integral I̊ξk(f) to

be well-defined, the integrand f needs also to be square-integrable on all the diagonals

of Rk. More precisely, it is required that f ∈ L2(Λn), with Λn =
∑

σ∈Πn
λσ, where

Πn denotes all the partitions of {1, . . . , n}, and λσ denotes the Lebesgue measure on the

diagonals specified by the partition σ, provided that the variables in the same block of σ

are identified. For example, if σ = {{1, 2}, {3}}, then λσ is the two-dimensional Lebesgue
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measure on {x1 = x2, x3}, and

‖f‖2L2(λσ) =

∫
R3

f2(x1, x2, x3)dλσ(x1, x2, x3) =

∫
R2

f2(x1, x1, x3)dx1dx3.

For with-diagonal integrals, we have the following simple product formula:

I̊ξp(f)I̊ξq (g) = I̊ξp+q(f ⊗ g).

The with-diagonal integral I̊ξk(f) can be expressed by off-diagonal integrals of lower orders

using the Hu-Meyer formula (see Farré et al. [2010], Theorem 5.9). We shall only use the

special case when k = 2, in which case we have

I̊ξ2(f) =

∫ ′
R2

f(x1, x2)ξ(dx1)ξ(dx2) +

∫
R
f(x, x)ξ(2)

c (dx) +

∫
R
f(x, x)dx, (7.31)

where

ξ(2)
c (t) = ξ(2)(t)− Eξ(2)(t) = ξ(2)(t)− |t| (7.32)

and ξ(2)(t) is the quadratic variation of ξ(t), which is non-deterministic if ξ(t) is non-

Gaussian (see Farré et al. [2010], equation (10)). The centered process ξ
(2)
c (t) is called a

Teugels martingale (of second order), which is a Lévy process with the same filtration as

ξ(t), whose quadratic variation is deterministic:

[ξ(2)
c (t), ξ(2)

c (t)] = κ4t,

where κ4 is the fourth cumulant of ξ(1). For any f, g ∈ L2(R), one has (see Farré et al.

[2010], page 9),

E

[∫
R
g(x)ξ(2)

c (dx)

∫
R
h(x)ξ(2)

c (dx)

]
= κ4

∫
R
f(x)g(x)dx. (7.33)
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The decomposition (7.31) implies that

EI̊ξk(f) =

∫
R
f(x, x)dx.

Consider now the following integrals, the first of which is an off-diagonal double integral

and the second is a single integral with respect to Teugels martingale ξ
(2)
c (t):

∫ ′
R2

f(x1, x2)ξ(dx1)ξ(dx2) and

∫
R
g(x)ξ(2)

c (dx). (7.34)

Notice that for any f ∈ L2(R2) and g ∈ L2(R) the integrals in (7.34) are uncorrelated.

This can easily be verified in the case f = 1A×B, g = 1C for any disjoint Borel sets A and

B and any Borel set C. Indeed, treating ξ
(2)
c (·) as a random measure, we have

E[ξ(A)ξ(B)ξ(2)
c (C)] =

E
[
ξ(A)ξ(B)

(
ξ(2)
c (C ∩Ac ∩B) + ξ(2)

c (C ∩A ∩Bc) + ξ(2)
c (C ∩Ac ∩Bc)

)]
= 0 (7.35)

since, for example, ξ(A) is independent of ξ
(2)
c (C ∩ Ac ∩ B) and ξ(B), and Eξ(A) = 0.

Using linearity and L2-approximation, it can easily be shown that the integrals in (7.34)

are uncorrelated for any f ∈ L2(R2) and g ∈ L2(R).

7.4 Proof of the central limit theorems

In this section, we prove the central limit theorems stated in Section 6.2 (Theorem 7.2.1

and Corollary 7.2.7). We first derive some preliminary results. We set

RT (x1, x2) =
1√
T

∫ T

0

∫ T

0
b(u− v)a(u− x1)a(v − x2)dudv, (7.36)

and

ST (x1, x2) =
1√
T

∫ T

0
[(a ∗ b)(v − x1)] [a(v − x2)] dv. (7.37)
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Lemma 7.4.1. Let a(·) and b(·) satisfy (7.9) and (7.10), and let RT (x1, x2) and ST (x1, x2)

be as in (7.36) and (7.37) with x1 6= x2. The following assertions hold.

(a) We have

lim
T→∞

‖ST ‖2L2(R2) =

∫
R
KA(u)du, (7.38)

where KA(·) is as in (7.13).

(b) We have

lim
T→∞

‖RT − ST ‖L2(R2) = 0. (7.39)

(c) For any M > 0, there exists a function cM (·, ·) supported on [−2M, 2M ]2, so that the

function

SMT (x1, x2) =
1√
T

∫ T

0
cM (v − x1, v − x2)dv,

satisfies the relation:

lim
M→∞

lim sup
T→∞

‖RT − SMT ‖L2(R2) = 0. (7.40)

Proof of Lemma 7.4.1. We first prove assertion (a). We will use the following notation:

‖ · ‖r will denote the Lr(R) norm, and |a|(x) = |a(x)|, |b|(x) = |b(x)|, |c|(x) = |c(x)|.

By (7.9) and (7.10) we have a(·) ∈ Lp(R)∩L2(R). Hence by the Riesz-Thorin theorem,

a(·) ∈ Lp′(R) for any p ≤ p′ ≤ 2. Setting p′ = 2, we get 1 + 1/q ≤ 2, which is less than

5/2. This implies that there is a number p′ such that 2/p′+ 1/q = 5/2. Thus, without loss

of generality, we can assume that

a(·) ∈ Lp(R), b ∈ Lq(R),
2

p
+

1

q
=

5

2
. (7.41)

Let p and q be as in (7.41). Define the numbers q1, q
∗
1, q2 to satisfy the following equations:

1

q1
+

1

q∗1
= 1, 1 +

1

q∗1
=

2

p
, 1 +

1

q1
=

2

q2
, 1 +

1

q2
=

1

p
+

1

q
. (7.42)
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(Going from the last to the first equality in (7.42), one can solve successively for q2, q∗1, q1

and then verify using (7.41) that the first equality in (7.42) holds.)

Taking into account (7.42), the relation

|RT (x1, x2)| ≤ 1√
T

∫ T

0

∫ +∞

−∞
|b(u− v)a(u− x1)a(v − x2)|dudv

=
1√
T

∫ T

0
(|a| ∗ |b|)(v − x1)|a|(v − x2)dv, (7.43)

and by using Hölder’s inequality and Young’s inequality for convolution (see (7.14)), we

can write

‖RT ‖2L2(R2)

≤ 1

T

∫
[0,T ]2

dv1dv2

∫
R2

dx1dx2(|a| ∗ |b|)(v1 − x1)|a|(v1 − x2)(|a| ∗ |b|)(v2 − x1)|a|(v2 − x2)

=
1

T

∫
[0,T ]2

dv1dv2

(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v1 − v2) (7.44)

=

∫ T

−T

(
1− |v|

T

)(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v) dv ≤

∫
R

(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v) dv

≤
Hölder

‖(|a| ∗ |b|)∗̄2‖q1‖|a|∗̄2‖q∗1 ≤
Young

‖(|a| ∗ |b|)∗̄2‖q1‖a‖2p

≤
Young

‖|a| ∗ |b|‖2q2‖a‖
2
p ≤

Young

‖a‖4p‖b‖2q . (7.45)

Similarly, we get

‖ST ‖2L2(R2) ≤ ‖a‖
4
p‖b‖2q . (7.46)

In view of (7.37), (7.46) and Fubini’s theorem, we obtain

‖ST ‖2L2(R2) =

∫ T

−T

(
1− |v|

T

)(
(a ∗ b)∗̄2 · a∗̄2

)
(v) dv,

which converges to the limit claimed in (7.38) by the dominated convergence theorem.

Now we proceed to prove assertions (b) and (c).

To this end, for M > 0 we set aM (x) = a(x)1[−M,M ](x), a−M (x) = a(x) − aM (x),
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bM (x) = b(x)1[−M,M ](x) and b−M (x) = b(x)− bM (x), and define

RMT (x1, x2) =
1√
T

∫ T

0

∫ T

0
bM (u− v)aM (u− x1)aM (v − x2)dudv. (7.47)

In view of (7.36), (7.47) and the identity

baa− bMaMaM = (baa− bMaa) + (bMaa− bMaMa) + (bMaMa− bMaMaM )

= b−Maa+ bMa
−
Ma+ bMaMa

−
M ,

we have

RT (x1, x2)−RMT (x1, x2) =

1√
T

∫ T

0

∫ T

0
dudv

[
b−M (u− v)a(u− x1)a(v − x2)+

bM (u− v)a−M (u− x1)a(v − x2) + bM (u− v)aM (u− x1)a−M (v − x2)
]
.

Similar to (7.45), one gets

‖RT −RMT ‖2L2(R2) ≤ C
(
‖b−M‖

2
q‖a‖4p + ‖bM‖2q‖a−M‖

2
p‖a‖2p + ‖bM‖2q‖aM‖2p‖a−M‖

2
p

)
,

where the right-hand side does not involve T . Since ‖a−M‖p → 0 and ‖b−M‖q → 0 as M →∞,

one obtains

lim
M→∞

lim sup
T→∞

‖RT −RMT ‖L2(R2) = 0. (7.48)

Now we set

cM (x1, x2) = (aM ∗ bM )(x1)aM (x2), (7.49)

and define

SMT (x1, x2) =
1√
T

∫ T

0
cM (v − x1, v − x2)du
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=
1√
T

∫ T

0
(aM ∗ bM )(v − x1)aM (v − x2)du.

In the same way as we derived (7.48), we have

lim
M→∞

lim sup
T→∞

‖ST − SMT ‖L2(R2) = 0. (7.50)

Observe that

SMT (x1, x2) =
1√
T

∫ T

0
dv

(∫
R
dubM (v − u)aM (u− x1)

)
aM (v − x2). (7.51)

Suppose that T > M . In view of (7.47) and (7.51) and using the fact that bM (·) is

supported on [−M,M ], we have

SMT (x1, x2)−RMT (x1, x2)

=
1√
T

∫ T

0
dv

∫
R\[0,T ]

dubM (u− v)aM (u− x1)aM (v − x2)

=
1√
T

∫ T

0
dv

∫ ∞
T

dubM (u− v)aM (u− x1)aM (v − x2)

+
1√
T

∫ T

0
dv

∫ 0

−∞
dubM (u− v)aM (u− x1)aM (v − x2)

=
1√
T

∫ T

T−M
dv

∫ ∞
T

dubM (u− v)aM (u− x1)aM (v − x2)

+
1√
T

∫ M

0
dv

∫ 0

−M
dubM (u− v)aM (u− x1)aM (v − x2)

=: AMT,1(x1, x2) +AMT,2(x1, x2).

Thus, using the arguments similar to those in (7.43) and (7.45), one has

‖AMT,1‖2L2(R2) ≤
1

T

∫
[T−M,T ]2

dv1dv2

(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v1 − v2)

=
1

T

∫
[0,M ]2

dv1dv2

(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v1 − v2)

≤ M

T

∫
R
dv
(

(|a| ∗ |b|)∗̄2 · |a|∗̄2
)

(v)→ 0 as T →∞,
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where
∫
R dv

(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v) is finite due to (7.45). Similarly, one can show that

‖AMT,2‖2L2(R2) → 0 as T →∞.

Hence

lim
M→∞

lim sup
T→∞

‖SMT −RMT ‖2L2(R2) = 0. (7.52)

Combining (7.48) (7.50) and (7.52), we obtain the desired relations (7.39) and (7.40) with

cM (·, ·) as in (7.49). This completes the proof of Lemma 7.4.1.

The next result is similar to Lemma 7.4.1, where R2 is replaced by R. We set

RT (x) = RT (x, x) =
1√
T

∫ T

0

∫ T

0
b(u− v)a(u− x)a(v − x)dudv

and

ST (x) = ST (x, x) =
1√
T

∫ T

0
(a ∗ b)(v − x)a(v − x)dv

where RT (·, ·) and ST (·, ·) are as in (7.36) and (7.37).

Lemma 7.4.2. Assume that a(·) and b(·) be as in (7.9), with p and q satisfying

1 ≤ p, q ≤ 2,
2

p
+

1

q
≥ 2. (7.53)

Then the following assertions hold.

(a) We have

lim
T→∞

‖ST ‖2L2(R) =

∫
R
KB(u)du, (7.54)

where KB(·) is as in (7.13).

(b) We have

lim
T→∞

‖RT − ST ‖L2(R) = 0. (7.55)
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(c) For any M > 0, there exists a function dM (·) supported on [−2M, 2M ], so that the

function

SMT (x) =
1√
T

∫ T

0
dM (v − x)dv,

satisfies the relation:

lim
M→∞

lim sup
T→∞

‖RT − SMT ‖L2(R) = 0. (7.56)

Remark 7.4.3. Obviously the condition (7.53) is implied by condition (7.10).

Proof of Lemma 7.4.2. The proof is similar to that of Lemma 7.4.1. We thus outline the

key steps of the proof omitting the details.

As in the proof of Lemma 7.4.1, in view of the Riesz-Thorin theorem one can assume

that

a(·) ∈ Lp(R), b(·) ∈ Lq(R),
2

p
+

1

q
= 2. (7.57)

Let p and q be as in (7.57). Define the number p∗ to satisfy the following equations:

1

p
+

1

p∗
= 1, 1 +

1

p∗
=

1

p
+

1

q
.

Observe that by the equality in (7.57), one has

1

p
+

1

p∗
=

1

p
+

1

p
+

1

q
− 1 = 2− 1 = 1.

Then using Hölder’s inequality and Young’s inequality for convolution (see (7.14)), we

can write (note the difference between (7.44) and (7.58))

‖RT ‖2L2(R)

≤ 1

T

∫
[0,T ]2

dv1dv2

∫
R
dx(|a| ∗ |b|)(v1 − x)|a|(v1 − x)(|a| ∗ |b|)(v2 − x)|a|(v2 − x)

=
1

T

∫
[0,T ]2

dv1dv2

(
(|a| ∗ |b|) · |a|

)∗̄2
(v1 − v2) (7.58)

=

∫ T

−T

(
1− |v|

T

)(
(|a| ∗ |b|) · |a|

)∗̄2
(v) dv ≤

∫
R

(
(|a| ∗ |b|) · |a|

)∗̄2
(v) dv
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≤
Young

‖(|a| ∗ |b|) · |a|‖21 ≤
Hölder

‖|a| ∗ |b|‖2p∗‖a‖2p ≤
Young

‖a‖4p‖b‖2q . (7.59)

Similarly, we get

‖ST ‖2L2(R2) ≤ ‖a‖
4
p‖b‖2q . (7.60)

Then the assertion (a) of the lemma follows from (7.60), Fubini’s theorem and dominated

convergence theorem.

To prove assertions (b) and (c), we set

aM (x) = a(x)1[−M,M ](x)

and

bM (x) = b(x)1[−M,M ](x),

and consider the functions

RMT (x) =
1√
T

∫ T

0

∫ T

0
bM (u− v)aM (u− x)aM (v − x)dudv,

and

SMT (x) =
1√
T

∫ T

0
dM (v − x)dv, where dM (x) =

(
(aM ∗ bM ) · aM

)
(x).

Then using the arguments of the proof of Lemma 7.4.1 but now with x1 = x2 = x, it can

be shown that

lim
M→∞

lim sup
T→∞

‖RMT −RT ‖2L2(R) = 0,

lim
M→∞

lim sup
T→∞

‖SMT −RMT ‖2L2(R) = 0,

lim
M→∞

lim sup
T→∞

‖SMT − ST ‖2L2(R) = 0.

Lemma 7.4.2 is proved.
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Proof of Theorem 7.2.1. By (7.31) and Lemma 7.3.2 one can write

Q̃T (t) = AT (t) +BT (t),

where

AT (t) =

∫ ′
R2

1√
T

∫ Tt

0

∫ Tt

0
b(u− v)a(u− x1)a(v − x2)dudv ξ(dx1)ξ(dx2),

and

BT (t) =

∫
R

1√
T

∫ Tt

0

∫ Tt

0
b(u− v)a(u− x)a(v − x)dudv ξ(2)

c (dx). (7.61)

Choosing cM (x1, x2) as in Lemma 7.4.1 and setting

AMT (t) =

∫ ′
R2

1√
T

∫ Tt

0
cM (u− x1, u− x2)du ξ(dx1)ξ(dx2), (7.62)

one has by (7.27) and relation (7.40) of Lemma 7.4.1 that

lim
M→∞

lim sup
T→∞

E|AT (t)−AMT (t)|2 = 0, ∀t > 0. (7.63)

Choosing dM (x) as in Lemma 7.4.2 and setting

BM
T (t) =

∫
R

1√
T

∫ Tt

0
dM (u− x)du ξ(2)

c (dx), (7.64)

one has by (7.27) and relation (7.56) of Lemma 7.4.2 that

lim
M→∞

lim sup
T→∞

E|BT (t)−BM
T (t)|2 = 0, ∀t > 0. (7.65)

To complete the proof of the theorem, in view of (7.63) and (7.65), it is enough to show

that as T →∞,

Q̃MT (t) := AMT (t) +BM
T (t)

f.d.d.−→ σMB(t) (7.66)
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with σM ≥ 0 satisfying

lim
M→∞

σ2
M = lim

T→∞
Var[AT (1) +BT (1)] = σ2. (7.67)

To this end, observe first that by the stochastic Fubini Lemma 7.3.2, one has

Q̃MT (t) =
1√
T

∫ Tt

0
YM (u)du,

where

YM (u) =

∫ ′
R2

cM (u− x1, u− x2)ξ(dx1)ξ(dx2) +

∫
R
dM (u− x) ξ(2)

c (dx),

and ξ
(2)
c (·) is the Teugel martingale defined in (7.32). Note that YM (u) is independent

of the σ-field generated by {ξ(s) : s < u − 2M, s > u + 2M} since cM (·, ·) vanishes

outside [−2M, 2M ]2 and dM (·) vanishes outside [−2M, 2M ], implying that YM (u) is a

stationary 4M -dependent process. Then the convergence in (7.66) can be deduced from a

classical central limit theorem for M -dependent processes by combining the discretization

argument in the proof of Theorem 18.7.1 of Ibragimov and Linnik [1971] and Theorem 5.2

of Billingsley [1956].

To show (7.67), it is enough to note that by the arguments before (7.35), the random

variables AT (1) and BT (1) are uncorrelated. Hence by (7.27) and (7.38) with k = 2, we

have

Var[AT (1)]→ 2

∫
R
KA(u)du,

and by (7.27), (7.54) and (7.33) we obtain

Var[BT (1)]→ κ4

∫
R
KB(u)du.

This completes the proof of Theorem 7.2.1.

Proof of Corollary 7.2.7. In view of Theorem 7.2.1, it is enough to verify that the condi-
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tions (7.9) and (7.10) are satisfied. First, noting that by assumptions 0 < α, β < 1 and

α+ β < 1/2, we can choose 1 ≤ p, q ≤ 2 to satisfy

p(α/2− 1) < −1, q(β − 1) < −1 ⇐⇒ 2

p
< 2− α, 1

q
< 1− β, (7.68)

implying that

2

p
+

1

q
< 3− α− β. (7.69)

Next, since α+ β < 1/2, we have 3− α− β > 5
2 , and hence in view of (7.69) the numbers

p and q can be chosen to satisfy 2/p+ 1/q ≥ 5/2. Thus (7.10) is satisfied.

It is easy to see that with the p, q chosen above, in view of (7.17), we have

a(·) ∈ Lp(R) ∩ L2(R), b(·) ∈ Lq(R),

and thus (7.9) is satisfied.

7.5 Proof of the non-central limit theorems

In this section we prove the non-central limit theorems stated in Section 6.2 (Theorems

7.2.8-7.2.14).

We first state and prove some preliminary lemmas. The following lemma, which is a

continuous analog of Propositions 14.3.2 and 14.3.3 of Giraitis et al. [2012], plays a key role

in our proofs. It provides conditions for Lévy-Itô multiple stochastic integrals to converge

in distribution to Wiener-Itô multiple stochastic integrals.

Lemma 7.5.1. For T > 0 and fj,T (·) ∈ L2(Rkj ), j = 1, . . . , J , we set

hj,T (x1, . . . , xkj ) := T k/2fj,T (Tx1, . . . , Txkj ), (7.70)
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and assume that there exist fj ∈ L2(Rkj ) such that as T →∞

‖hj,T − fj‖L2(Rkj )
→ 0, j = 1, . . . , kj . (7.71)

Then for any Lévy process ξ(·) with Eξ(1) = 0 and Eξ2(1) = 1, we have the following joint

convergence in distribution:

(
Iξk1(f1,T ), . . . , IξkJ (fJ,T )

)
d→
(
IBk1(f1), . . . , IBkJ (fJ)

)
. (7.72)

Proof. For simplicity, we prove the result in the case where J = 1 and we will drop the

index j. In this case the proof is similar to that of Proposition 14.3.2 of Giraitis et al.

[2012]. The general case J > 1, which corresponds to Proposition 14.3.3 of Giraitis et al.

[2012], can be obtained by similar arguments using the Cramér-Wold Device.

Let SM (Rk), M ∈ Z+, be the class of functions that are piecewise constant on the

1/M -grid of [−M,M ]k (each piece of the grid has linear length 1/M), and vanishing on

the diagonals. Set Sk = ∪∞M=1SM (Rk), and observe that Sk is a dense subset of L2(Rk).

Then in view of (7.26), for any ε > 0, there exists fε ∈ Sk such that

E|IBk (f)− IBk (fε)|2 ≤ k!‖f − fε‖2L2(Rk) ≤ ε. (7.73)

Define

fε,T (x1, . . . , xk) = T−k/2fε(x1/T, . . . , xk/T ), (7.74)

and note that

‖hT − fε‖2L2(Rk) ≤ 2‖hT − f‖2L2(Rk) + 2‖f − fε‖2L2(Rk). (7.75)

By (7.71) we have limT→∞ ‖hT −f‖L2(Rk) = 0. Hence in view of (7.26), (7.75) and a change

of variable, we can write

lim sup
T→∞

E|Iξk(fT )− Iξk(fε,T )|2 ≤ k! lim sup
T→∞

‖fT − fε,T ‖2L2(Rk) =
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k! lim sup
T→∞

‖hT − fε‖2L2(Rk) ≤ 2k! lim sup
T→∞

‖f − fε‖2L2(Rk) ≤ 2ε. (7.76)

To complete the proof of the lemma, in view of formulas (7.73) and (7.76), and Theorem

8.6.2 of Resnick [1999], it remains to show that as T →∞:

Iξk(fε,T )
d→ IBk (fε). (7.77)

Since fε(·) ∈ Sk, we have

fε(x1, . . . , xk) =

′∑
1≤i1,...,ik≤N

c(i1, . . . , ik)1∆i1
×...×∆ik

(x1, . . . , xk),

where N > 0, c(i1, . . . , ik) ∈ R, ∆i’s are disjoint intervals so that ∪i∆i = [−M,M ], and

the prime ′ indicates that the sum does not include the diagonals ip = iq for p 6= q. Then

we have

Iξk(fε,T )

= T−k/2
∫ ′
Rk

′∑
1≤i1,...,ik≤N

c(i1, . . . , ik)1∆i1
×...×∆ik

(x1/T, . . . , xk/T ) ξ(dx1) . . . ξ(dxk)

=
′∑

1≤i1,...,ik≤N
c(i1, . . . , ik)ξT (∆i1) . . . ξT (∆ik), (7.78)

where

ξT (∆i) =
1√
T

∫
T∆i

ξ(dx).

Combining the discretization argument in the proof of Theorem 18.7.1 of Ibragimov and

Linnik [1971] and Theorem 5.2 of Billingsley [1956], it can be shown that the random

variables ξT (∆i) satisfy central limit theorem. Hence for any N ≥ 1, we have as T →∞

(
ξT (∆1), . . . , ξT (∆N )

)
d→
(
B(∆1), . . . , B(∆N )

)
,
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where B(·) is a Gaussian random measure appearing in the Wiener-Itô integral (7.28).

Hence applying continuous mapping theorem, from (7.78) we obtain

Iξk(fε,T )
d→

′∑
1≤i1,...,ik≤N

c(i1, . . . , ik)B(∆i1) . . . B(∆ik) = IBk (fε),

implying (7.77). Lemma 7.5.1 is proved.

From Proposition 7.3.1 and Lemma 7.5.1, we easily infer the following result which is

the spectral version of Lemma 7.5.1.

Corollary 7.5.2. Let f̂j,T be the L2-Fourier transform of fj,T . Set

ĥj,T (x1, . . . , xkj ) := T−kj/2f̂j,T (x1/T, . . . , xkj/T ), (7.79)

and assume that there exist f̂j ∈ L2(Rkj ) such that as T →∞,

‖ĥj,T − f̂j‖L2(Rkj )
→ 0, j = 1, . . . , J. (7.80)

Then for any Lévy process ξ(·) with Eξ(1) = 0 and Eξ2(1) = 1, we have the joint conver-

gence in distribution:

(
Iξk1(f1,T ), . . . , IξkJ (fJ,T )

)
d→
(

(2π)−k1/2IWk1

(
f̂1A

⊗k1
)
, . . . , (2π)−kJ/2IWkJ

(
f̂JA

⊗kJ
))

,

(7.81)

with any A(·) satisfying the conditions of Proposition 7.3.1.

The following lemma establishes a change of integration order in situations where the

Fubini’s theorem is not directly applicable.

Lemma 7.5.3. Let a(·), b(·), â(·) and b̂(·) be as in Assumptions 1-4 in Section 7.2.2. Set

gT (x1, x2) =

∫ T

0

∫ T

0
b(u− v)a(u− x1)a(v − x2)dudv.
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Then gT (·) ∈ L2(R2) and for the L2-Fourier transform ĝT of gT , we have

ĝT (w1, w2) : =

∫
R2

ei(w1x1+w2x2)g(x1, x2)dx1dx2

=
1

2π
â(−w1)â(−w2)

∫
R

eiT (w1+w) − 1

i(w1 + w)

eiT (w1−w) − 1

i(w1 − w)
b̂(w)dw

for a.e. (w1, w2) ∈ R2.

Proof. First, by the Cauchy-Schwartz inequality and Assumption 4, one has

‖gT ‖2L2(R2) ≤
∫
R2

dx1dx2

(∫ T

0

∫ T

0
|b(u− v)a(u− x1)a(v − x2)|dudv

)2

≤‖a‖4L2(R)

(∫ T

0

∫ T

0
|b(u− v)|dudv

)2

<∞. (7.82)

Let aM (x) = a(x)1[−M,M ](x), and let ĝT,M be the L2-Fourier transform of gT,M given by

gT,M (x1, x2) =

∫ T

0

∫ T

0
b(u− v)aM (u− x1)aM (v − x2)dudv.

Since, as M → ∞, aM (x) and âM (w) converge in L2 to a(x) and â(w), respectively, one

can find a subsequence Mn ↑ ∞, so that aMn(x) and âMn(w) converge a.e. to their limits.

So by (7.82) and the dominated convergence theorem, one has as n→∞

‖gT,Mn − gT ‖L2(R2) =

∫
R2

dx1dx2×(∫ Tt

0

∫ Tt

0
b(u− v) [aMn(u− x1)aMn(v − x2)− a(u− x1)a(v − x2)] dudv

)2

→ 0.

Therefore, one can choose a subsequence of Mn, still denoted by Mn, so that gT,Mn(x1, x2)

converges to gT (x1, x2) a.e. (x1, x2) ∈ R2 as well as in L2-norm, and ĝT,Mn(w1, w2) converges

to ĝT (w1, w2) a.e. (w1, w2) ∈ R2 as well as in L2-norm.

Since b(·) is an even function and b̂(·) ∈ L1(R), one has

b(x) =
1

2π

∫
R
e−ixw b̂(w)dw =

1

2π

∫
R
eixw b̂(w)dw.
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Next, taking into account that aMn(·) has a finite support, and hence is in L1(R), one can

write

∫
R
aMn(u− x)eiwxdx = eiwu

∫
R
aMn(u− x)ei(−w)(u−x)dx = eiwuâMn(−w).

Then by Fubini’s theorem, one can change the integration order to obtain

ĝT,Mn(w1, w2)

=

∫
R2

ei(w1x1+w2x2)dx1dx2

∫ Tt

0

∫ Tt

0
b(u− v)aMn(u− x1)aMn(v − x2)dudv

=
1

2π

∫
R
dw

∫ Tt

0

∫ Tt

0
dudv ei(u−v)w b̂(w) eiw1uâMn(−w1) eiw2vâMn(−w2)

=
1

2π
âMn(−w1)âMn(−w2)

∫
R

eiT t(w1+w) − 1

i(w1 + w)

eiT t(w2−w) − 1

i(w2 − w)
b̂(w)dw.

Finally, as n → ∞, we have a.e. convergence of ĝT,Mn to ĝT and the a.e. convergence of

âMn to â with Mn chosen above, and the result follows. The proof is then complete.

Lemma 7.5.4. Let α∗ and β∗ be as in Assumption 4. Then

∫
[0,1]4

du1du2du3du4

∫
R
dx
(
|u1 − u2|β

∗−1|u3 − u4|β
∗−1|u1 − x|α

∗/2−1

× |u2 − x|α
∗/2−1|u3 − x|α

∗/2−1|u4 − x|α
∗/2−1

)
<∞ (7.83)

Proof. Setting α0 = α∗/2− 1 ∈ (−1,−1/2) and β0 = β∗ − 1 ∈ (−1, 0), and noting that by

the assumption α∗ + β∗ > 1, we have

2α0 + β0 > −2. (7.84)

By the change of variables v1 = u1−u2, v2 = u3−u4, v3 = u1, v4 = u1−x, v5 = u3−x, and

by enlarging the integration region if necessary, we can use the equality
∫
R |v|

α0 |x−v|α0dv =
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cα0 |x|2α0+1 with some constant cα0 > 0, to bound the integral in (7.83) as follows:

c

∫
[−1,1]3

dv1dv2dv3 |v1|β0 |v2|β0
∫
R
|v4|α0 |v4 − v1|α0dv4

∫
R
|v5|α0 |v5 − v2|α0dv5

=c

∫
[−1,1]3

dv1dv2dv3 |v1|2α0+β0+1|v2|2α0+β0+1. (7.85)

The last integral in (7.85) is finite because by (7.84) we have 2α0 + β0 + 1 > −1.

The following lemma, which is a consequence of Corollary 1.1 (b) from Terrin and

Taqqu [1991b], will be used in the proof of Theorem 7.2.12.

Lemma 7.5.5. Let α1, . . . , αm, m ≥ 2 be real numbers satisfying

α1, . . . , αn > −1,
m∑
i=1

αi +m > 1, (7.86)

then

∫
[0,1]m

|x1 − x2|α1 |x2 − x3|α2 . . . |xm−1 − xm|αm−1 |xm − x1|αmdx1 . . . dxm <∞.

The next lemma, which provides a bound for slowly varying functions, called Potter’s

bound (see Giraitis et al. [2012], formula (2.3.6)), will be used in the proof of the main

result.

Lemma 7.5.6. Let L(·) : (0,∞) → R be a function slowly varying at u = 0 and bounded

on intervals [c,∞) for any c > 0. Then for any ε > 0, there exists a constant C > 0, so

that if T is large enough, then for any u ∈ (0,∞)

L(u/T )

L(1/T )
≤ C(|u|ε + |u|−ε). (7.87)

We now are ready to prove the non-central limit theorems stated in Section 6.2 (The-

orems 7.2.8-7.2.14).
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Proof of Theorem 7.2.8. As in the proof of Theorem 7.2.1, one can write

Q̃T (t) = AT (t) +BT (t), (7.88)

where now

AT (t) =

∫ ′
R2

1

Tα+βL1(1/T )L2(1/T )

∫ Tt

0

∫ Tt

0
b(u− v)a(u− x1)a(v− x2)dudv ξ(dx1)ξ(dx2),

(7.89)

and

BT (t) =

∫
R

1

Tα+βL1(1/T )L2(1/T )

∫ Tt

0

∫ Tt

0
b(u−v)a(u−x)a(v−x)dudv ξ(2)

c (dx). (7.90)

In view of (7.88)-(7.90), to prove the theorem, it is enough to show that AT (t) converges in

finite-dimensional distributions to the limit Zα,β(t) given by (7.20), and limT→∞ EB2
T (t) =

0.

We first prove that

AT (t)
f.d.d.−→ Zα,β(t) as T →∞. (7.91)

The relation (7.91) we deduce from Corollary 7.5.2. To this end, we write AT (t) =

Iξ2(fT,t), where

fT,t =
1

Tα+βL1(1/T )L2(1/T )

∫ Tt

0

∫ Tt

0
b(u− v)a(u− x1)a(v − x2)dudv.

Denoting by f̂T,t the L2-Fourier transform of fT,t, and using Lemma 7.5.3, we have

f̂T,t(w1, w2) =
1

2πTα+βL1(1/T )L2(1/T )
â(−w1)â(−w2)

×
∫
R

eiT t(w1+w) − 1

i(w1 + w)

eiT t(w1−w) − 1

i(w1 − w)
b̂(w)dw.
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By changing the variables w1, w2 and w by x1, x2 and u/T , respectively, one has

ĥT,t(x1, x2) :=T−1f̂T,t(x1/T, x2/T ) =
1

2π

â(−x1/T )

Tα/2L1(1/T )1/2

â(−x2/T )

Tα/2L1(1/T )1/2

×
∫
R

eit(x1+u) − 1

i(x1 + u)

eit(x1−u) − 1

i(x1 − u)

b̂(u/T )

T βL2(1/T )
du.

Next, by the Assumptions 1 and 2 and the property of slowly varying functions:

limT→∞ Li(x/T )Li(1/T ) = 1, one has

ĥT,t(x1, x2)→ f̂t(x1, x2) :=
1

2π
H(x1)H(x2)|x1x2|−α/2

×
∫
R

eit(x1+u) − 1

i(x1 + u)

eit(x2−u) − 1

i(x2 − u)
|u|−βdu (7.92)

for a.e. (x1, x2) ∈ R2, where H(x) = A0 if x ≥ 0 and H(x) = A0 if x < 0, with A0 as in

Assumption 1.

By (7.87), when T is large enough, with some constant C > 0 one has

|ĥT,t(x1, x2)| ≤ h∗t (x1, x2) := C|x1x2|−α/2(|x1|ε + |x1|−ε)(|x2|ε + |x2|−ε)

×
∫
R

∣∣∣∣∣eit(x1+u) − 1

i(x1 + u)

eit(x2−u) − 1

i(x2 − u)

∣∣∣∣∣ |u|−β(|u|ε + |u|−ε)du. (7.93)

By Lemma 3.9 of Bai et al. [2015], for small enough ε, the bounding function h∗t (x1, x2) in

(7.93) belongs to L2(R2).

Therefore, by the dominated convergence theorem, we have

lim
T→∞

‖ĥT,t − f̂t‖L2(R2) = 0.

Now we can apply Corollary 7.5.2 to obtain (7.91). Note that the function H(x) in (7.92)

can be omitted since it plays the role of the function A(·) in Proposition 7.3.1. The proof

of (7.91) is complete.
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Next we prove that

lim
T→∞

EB2
T (t) = 0. (7.94)

For simplicity we consider the case t = 1 and set

DT (x) =

∫ T

0

∫ T

0
b(u− v)a(u− x)a(v − x)dudv. (7.95)

Then by Assumption 4 and the change of variables ui → Tui and vi → Tvi, we get

‖DT ‖2L2(R) ≤ CT
2α∗+2β∗−1D(α∗, β∗), (7.96)

where

D(α∗, β∗) =

∫
[0,1]4

du1du2dv1dv2

∫
R
dx|u1 − v1|β

∗−1|u1 − x|α
∗/2−1|v1 − x|α

∗/2−1

×|u2 − v2|β
∗−1|u2 − x|α

∗/2−1|v2 − x|α
∗/2−1. (7.97)

By Lemma 7.5.4, the last integral is finite. Since L1 and L2 in (7.90) are slowly varying,

for any ε > 0 and for large enough T we have (see Bingham et al. [1989], Proposition 1.3.6)

L1(1/T ) ≥ T−ε/4, L2(1/T ) ≥ T−ε/4. (7.98)

Therefore, in view of (7.90) and (7.95)-(7.98), we can write

EB2
T (t) ≤ CT 2(α∗+β∗−α−β)+ε−1,

where 2(α∗ + β∗ − α − β) + ε − 1 < 0 by Assumption 4 if ε is chosen small enough. This

completes the proof of (7.94). Theorem 7.2.8 is proved.

Proof of Theorem 7.2.12. To prove assertion (a), we start with the corresponding “time
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domain” kernel in (7.22), namely,

ft(x1, x2) =

∫ t

0

∫ t

0
|u− v|β−1(u− x1)

α/2−1
+ (v − x2)

α/2−1
+ dudv,

and observe that ft ∈ L2(R2). Indeed, using the equality

∫
R

(u− x)
α/2−1
+ (v − x)

α/2−1
+ dx = Cα|u− v|α−1

with 0 < α < 1 and some Cα > 0, and Lemma 7.5.5 with α+ β > 1/2, one has

∫
R2

ft(x1, x2)2dx1dx2

=C2
α

∫
[0,t]4
|u1 − v1|β−1|u1 − u2|α−1|u2 − v2|β−1|v1 − v2|α−1du1dv1du2dv2 <∞.

To determine the Fourier transform f̂t of ft, we truncate ft as follows:

fAt (x1, x2) =

∫ t

0

∫ t

0
|u− v|β−1(u− x1)

α/2−1
+ (v − x2)

α/2−1
+ 1{u−x1<A,v−x2<A}dudv.

Then by the dominated convergence theorem, one has as A→∞

fAt (x1, x2)→ ft(x1, x2) in L2(R2).

Thus by Parseval-Plancherel isometry, as A→∞, for the Fourier transforms, we have

f̂At (x1, x2)→ f̂t(x1, x2) in L2(R2).

Hence we can let A→∞ through a suitable subsequence to get

f̂At (w1, w2)→ f̂t(w1, w2) a.e. (7.99)
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Next, we determine f̂t explicitly. We apply Fubini’s theorem to obtain

f̂At (w1, w2) :=

∫
ei(w1x1+w2x2)fAt (x1, x2)dx1dx2

=

∫ t

0

∫ t

0
|u− v|β−1ei(w1u+w2v)dudv

×
∫ A

0
e−iw1y1y

α/2−1
1 dy1 ×

∫ A

0
e−iw2y2y

α/2−1
2 dy2. (7.100)

We first deal with the first integral on the right-hand side of (7.100), which we rewrite in

a convenient form. To this end, observe that by formula 3.761.9 of Jeffrey and Zwillinger

[2007]

lim
B→∞

∫ B

−B
|w|−βeixwdw =

∫
R
|w|−βeixwdw

=2

∫ ∞
0

w−β cos(xw)dw = 2|x|β−1Γ(1− β) sin(βπ/2).

Set

Mβ = sup
B>0
|
∫ B

−B
|w|−βeiwdw| <∞,

and make a change of variable w′ = (u− v)w to obtain

∫ B

−B
|w|−βeiw(u−v)dw ≤Mβ|u− v|β−1.

Note also that since β > 0, we have

∫ t

0

∫ t

0
dudv|u− v|β−1 <∞.

Hence using the dominated convergence theorem, we can write

∫ t

0

∫ t

0
dudv|u− v|β−1ei(w1u+w2v)

=
1

2Γ(1− β) sin(βπ/2)

∫ t

0

∫ t

0
dudv lim

B→∞

∫ B

−B
|w|−βeiw(u−v)dw ei(w1u+w2v)
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=
1

2Γ(1− β) sin(βπ/2)
lim
B→∞

∫ B

−B

eit(w1+w) − 1

i(w1 + w)

eit(w2−w) − 1

i(w2 − w)
|w|−βdw

=
1

2Γ(1− β) sin(βπ/2)

∫ ∞
−∞

eit(w1+w) − 1

i(w1 + w)

eit(w2−w) − 1

i(w2 − w)
|w|−βdw, (7.101)

because in view of (7.93) and the fact that h∗t (x1, x2) ∈ L2(R2), the last integral converges

absolutely.

Next, we focus on the last two integrals in (7.100). By formulas 3.761.4 and 3.761.9 of

Jeffrey and Zwillinger [2007], we have

lim
A→∞

∫ A

0
e−iwyy

α/2−1
+ dy =

∫ ∞
0

e−iwyyα/2−1dy =

∫ ∞
0

[cos(wy)− i sin(wy)]yα/2−1dy

= |w|−α/2Γ(α/2) [cos(απ/4)− isign(w) sin(απ/4)]

= |w|−α/2Γ(α/2) exp [−isign(w)απ/4] . (7.102)

Combining (7.99)-(7.102), one gets

f̂t(w1, w2) =
Γ(α/2)2

2Γ(1− β) sin(βπ/2)

∫ ∞
−∞

eit(w1+w) − 1

i(w1 + w)

eit(w2−w) − 1

i(w2 − w)
|w|−βdw

× exp [−i(sign(w1) + sign(w2))απ/4] |w1w2|−α/2.

The proof of assertion (a) can be concluded using Proposition 7.3.1, and noting that the

factor

exp [−i(sign(w1) + sign(w2))απ/4]

in the last formula can be omitted as it plays the role as A⊗2(w1, w2) in Proposition 7.3.1.

To prove assertion (b), we set

1̂[0,t](x) =

∫
R

1[0,t](w)eiwxdw =
eitx−1

ix
,
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and use the property of Fourier transform for convolutions to obtain

∫
R

eit(x1+u) − 1

i(x1 + u)

eit(x2−u) − 1

i(x2 − u)
du

=

∫
R

1̂[0,t](x1 + u)1̂[0,t](x2 − u)du =
(

1̂[0,t] ∗ 1̂[0,t]

)
(x1 + x2)

= ̂(
1[0,t] · 1[0,t]

)
(x1 + x2) = 1̂[0,t](x1 + x2) =

eit(x1+x2) − 1

i(x1 + x2)
.

So in view of (7.20), the process Zα,0 can be written as follows:

Zα,0(t) =
1

2π

∫ ′′
R2

|x1x2|−α/2
eit(x1+x2) − 1

i(x1 + x2)
W (dx1)W (dx2),

which is the well-known spectral-domain representation of the Rosenblatt process (see

Taqqu [1979]). Thus, the time-domain representation stated in (7.23) follows from Theorem

1.1 of Pipiras and Taqqu [2010].

To prove assertion (c), we set

ft(x1, x2) = 1[0,t]×[0,t](x1, x2)|x1 − x2|β−1,

where β > 0, and observe that by (7.101),

f̂t(w1, w2) =
1

2Γ(1− β) sin(βπ/2)

∫ ∞
−∞

eit(w1+w) − 1

i(w1 + w)

eit(w2−w) − 1

i(w2 − w)
|w|−βdw,

which, in view of Proposition 7.3.1, implies (7.20) . This completes the proof of Theorem

7.2.12.

Proof of Theorem 7.2.14. As in the proof of Theorem 7.2.8, we can write

1

Tα+β`1(T )`2(T )
(QT − EQT ) = AT (t) +BT (t),

where AT (t) and BT (t) are given in (7.89) and (7.90), respectively, with Lj(1/T ) replaced
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by `j(T ), j = 1, 2.

Since (7.21) implies Assumption 4 of Theorem 7.2.8, as in the proof of Theorem 7.2.8,

we get limT→∞ EB2
T (t) = 0, implying that the term BT (t) is negligible.

Next, setting

ft,T (x1, x2) =
1

Tα+β`1(T )`2(T )

∫ Tt

0

∫ Tt

0
b(u− v)a(u− x1)a(v − x2)dudv,

we have AT (t) = Iξ2(ft,T ). Then in view of Lemma 7.5.1, we can write

ht,T (x1, x2) := Tft,T (Tx1, Tx2)

=
1

Tα+β−1`1(T )`2(T )

∫ Tt

0

∫ Tt

0
b(u− v)a(u− Tx1)a(v − Tx2)dudv

=

∫ t

0

∫ t

0
|u− v|β−1(u− x1)

α/2−1
+ (v − x2)

α/2−1
+

× `1(T (u− x1))

`1(T )

`1(T (v − x2))

`1(T )

`2(T (u− v))

`2(T )
dudv, (7.103)

where we have applied the change of variables u→ uT and v → vT . Let

ft(x1, x2) =

∫ t

0

∫ t

0
|u− v|β−1(u− x1)

α/2−1
+ (v − x2)

α/2−1
+ dudv. (7.104)

To complete the proof of the theorem, in view of Lemma 7.5.1, it is enough to show that

for every t > 0,

ht,T (x1, x2)→ ft(x1, x2) in L2(R2) as T →∞. (7.105)

By the property of slowly varying functions, we have as T →∞

`1(T (u− x1))

`1(T )
,
`1(T (v − x2))

`1(T )
,
`2(T (u− v))

`2(T )
→ 1

for u > x1, v > x2 and u 6= v (recall that `2(·) is an even function). Next, by Potter’s
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bound in Lemma 7.5.6, for any ε > 0, one has

1{u>x1,v>x2}

∣∣∣∣`1(T (u− x1))

`1(T )

`1(T (v − x2))

`1(T )

`2(T (u− v))

`2(T )

∣∣∣∣ ≤ CRε(x1, x2, u, v),

where

Rε(x1, x2, u, v) = [(u− x1)ε+ + (u− x1)−ε+ ][(v − x2)ε+ + (v − x2)−ε+ ][|u− v|ε + |u− v|−ε].

Thus the function ht,T (x1, x2) in (7.103) is bounded by

ft,ε(x1, x2) := C

∫ t

0

∫ t

0
|u− v|β−1(u− x1)

α/2−1
+ (v − x2)

α/2−1
+ Rε(x1, x2, u, v)dudv.

By choosing ε > 0 small enough, as in the proof of Theorem 7.2.12 (a), we can use Lemma

7.5.4 to show that ft,ε(x1, x2) ∈ L2(R2). Then the dominated convergence theorem can be

applied to obtain (7.105). Theorem 7.2.14 is proved.



Chapter 8

Behavior of the generalized Rosenblatt process

at extreme critical exponent values

8.1 Introduction

Maejima and Tudor [2012] considered recently the following process defined through a

second-order Wiener-Itô integral:

Zγ1,γ2(t) = A

∫ ′
R2

[∫ t

0
(s− x1)γ1+ (s− x2)γ2+ ds

]
B(dx1)B(dx2), (8.1)

where A 6= 0 is a constant, B(·) is a Brownian random measure, the prime ′ indicates the

exclusion of the diagonals x1 = x2 in the double stochastic integral, and the exponents

γ1, γ2 live in the following open triangular region (see Figure 8.1):

∆ = {(γ1, γ2) : − 1 < γ1 < −1/2, − 1 < γ2 < −1/2, γ1 + γ2 > −3/2}. (8.2)

This ensures that the integrand in (8.1) is in L2(R2), and hence the process Zγ1,γ2(t) is

well-defined (see Theorem 3.5 and Remark 3.1 of Bai and Taqqu [2014a]).

We shall call Zγ1,γ2(t) a generalized Rosenblatt process. The Rosenblatt process Zγ(t)

(Taqqu [1975]) becomes the special case

Zγ(t) = Zγ,γ(t), −3/4 < γ < −1/2. (8.3)

Recent studies on the Rosenblatt process Zγ(t) include Tudor and Viens [2009], Bardet
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γ1

γ2

(− 1
2 ,−

1
2 )

(− 1
2 ,−1)

(−1,− 1
2 )

m

e1

e2

d

Figure 8.1: Region ∆ defined in (8.2).
The three edges of the triangle are named e1, e2 and d (diagonal), while the middle line segment

(symmetric axis) is named m.

and Tudor [2010], Arras [2013], Maejima and Tudor [2013], Veillette and Taqqu [2013]

and Bojdecki et al. [2013]. The Rosenblatt and the generalized Rosenblatt processes are of

interest because they are the simplest extension to the non-Gaussian world of the Gaussian

fractional Brownian motion.

Fractional Brownian motion BH(t), 1/2 < H < 1 is defined through a single Wiener-Itô

(or Wiener) integral:

BH(t) = C

∫
R

[∫ t

0
(s− x)

H−3/2
+ ds

]
B(dx),

and has covariance

EBH(s)BH(t) =
C ′

2

(
|s|2H + |t|2H − |s− t|2H

)
, (8.4)

where C and C ′ are two related constants. Fractional Brownian motion reduces to Brow-

nian motion if one sets H = 1/2 in (8.4). Fractional Brownian motion has stationary

increments and, for any 1/2 < H < 1, these increments have a covariance which de-

creases slowly as the lag increases. This slow decay is often referred to as long memory or

long-range dependence. Fractional Brownian motion is also self-similar with self-similarity



203

parameter (Hurst index) H, that is, BH(λt) has the same finite-dimensional distributions as

λHBH(t) for any λ > 0. It follows from Bai and Taqqu [2014a] that the generalized Rosen-

blatt process Zγ1,γ2(t) is also self-similar with stationary increments with self-similarity

parameter

H = γ1 + γ2 + 2 ∈ (1/2, 1). (8.5)

We get 1/2 < H < 1 because γ1, γ2 < −1/2 imply H < 1 and γ1 + γ2 > −3/2 implies

H > 1/2.

Fractional Brownian motion and the generalized Rosenblatt process Zγ1,γ2(t) belong

to a broad class of self-similar processes with stationary increments defined on a Wiener

chaos called generalized Hermite processes. The generalized Hermite processes appear

as limits in various types of non-central limit theorems involving Volterra-type nonlinear

process. In particular, the generalized Rosenblatt process Zγ1,γ2(t) can arise as limit when

considering a quadratic form involving two long-memory linear processes with different

memory parameters. See Bai and Taqqu [2014a, 2015b,c] for details.

It will be convenient to express the generalized Rosenblatt process as follows,

Zγ1,γ2(t) =
A

2

∫ ′
R2

[∫ t

0
[(s− x1)γ1+ (s− x2)γ2+ + (s− x1)γ2+ (s− x2)γ1+ ]ds

]
B(dx1)B(dx2),

(8.6)

where we replaced the kernel A
∫ t

0 (s − x1)γ1+ (s − x2)γ2+ ds by its symmetrized version. The

process Zγ1,γ2(t) remains invariant under such a modification.

The goal of this chapter is to study the distributional behavior of the standardized

Zγ1,γ2(t) (where A in (8.6) is chosen so that Var[Zγ1,γ2(1)] = 1), as (γ1, γ2) approaches the

boundaries of the region ∆ defined in (8.2).

We show that on the diagonal boundary d, the limit is Brownian motion. On each of

the two symmetric boundaries e1 and e2 of ∆, the limit is non-Gaussian: it is a fractional

Brownian motion times an independent Gaussian random variable. We give two different

proofs of this convergence, one based on the method of moments, and one which provides



204

more intuitive insight. We also give the rate of convergence to the marginal distribution

in the preceding two cases.

The situation at the corners is particularly delicate. At the corner (γ1, γ2) = (−1
2 ,−

1
2),

the limit process is a linear combination of two independent degenerate chi-square pro-

cesses. At the other two corners, the limit is a linear combination of two processes: a

Brownian motion and the product of another Brownian motion times an independent Gaus-

sian random variable. These linear combinations, which depend on the direction at which

the critical exponents approach the corners, will be given explicitly.

We also show that the convergences mentioned cannot be strengthened from weak

convergence to L2(Ω) convergence, nor even to convergence in probability.

The chapter is organized as follows. In Section 8.2, we state the main results with

proofs in Section 8.3. In the following three sections, we provide some additional results:

showing that L2(Ω) convergence cannot hold, establishing the rate of marginal convergence

on the boundaries d, e1 and e2, and giving an alternate proof of the convergence on the

boundaries e1 and e2.

8.2 Main results

In the following theorems, we let ⇒ denote weak convergence in the space C[0, 1] with

uniform metric. The multiplicative factor A in (8.6) is chosen so that Var[Zγ1,γ2(1)] = 1.

See (8.21) below for an explicit expression.

We focus first on results concerning the behavior of Zγ1,γ2(t) as (γ1, γ2) approaches the

boundary of ∆ in (8.2), excluding the corners. Theorem 8.2.1 involves convergence to the

diagonal edge d of ∆, where the limit is Brownian motion. See Figure 8.2.

Theorem 8.2.1. Let Zγ1,γ2(t), (γ1, γ2) ∈ ∆, be defined in (8.6) with A = A(γ1, γ2) in

(8.21). When γ1 + γ2 → −3/2 with γ1, γ2 > −1 + ε for arbitrarily fixed ε > 0, we have

Zγ1,γ2(t)⇒ B(t), (8.7)
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γ1

γ2

(− 1
2 ,−

1
2 )

(− 1
2 ,−1)

(−1,− 1
2 )

Figure 8.2: Illustration of limit taking in Theorem 8.2.1

where B(t) is a standard Brownian motion.

One has γ1 + γ2 = −3/2 all through the diagonal d. The corners of the triangle are

excluded by the requirement γ1, γ2 > −1 + ε. Convergence to Brownian motion in (8.7)

is expected heuristically since the self-similarity parameter H = γ1 + γ2 + 2 → 1/2 (see

(8.5)), and 1/2 is the self-similarity parameter of Brownian motion.

The next Theorem 8.2.2 involves convergence to either one of the two sides e1 and e2

of ∆. The vertical side e1 and the horizontal side e2 are parameterized respectively by

(−1/2, γ) and (γ,−1/2) where −1 < γ < −1/2. See Figure 8.3.

Theorem 8.2.2. Let Zγ1,γ2(t), (γ1, γ2) ∈ ∆, be defined in (8.6) with A = A(γ1, γ2) in

(8.21). When (γ1, γ2) → (−1/2, γ) or (γ1, γ2) → (γ,−1/2), where −1 < γ < −1/2 , we

have

Zγ1,γ2(t)⇒WBγ+3/2(t), (8.8)

where Bγ+3/2(t) is a standard fractional Brownian motion with self-similarity parameter

γ + 3/2, and W is a standard normal random variable which is independent of Bγ+3/2(t).

Remark 8.2.3. The convergence (8.8) is more involved since WBγ+3/2(t) is a self-similar

process with stationary increments having self-similarity parameter H = γ+3/2 ∈ (1/2, 1),

and hence displays long-range dependence. This convergence may be understood heuristi-

cally as follows: Zγ1,γ2(t) in (8.1) can be regarded as an integrated process of a long-range
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Figure 8.3: Illustration of limit taking in Theorem 8.2.2

dependent bilinear moving average of white noise. This bilinear moving average involves

a double summation. As the exponent γ1 → −1/2, the corresponding summation yields a

term which is extremely persistent, so that it behaves like a frozen Gaussian variable which

is independent of the fractional noise defined through the other summation.

Remark 8.2.4. Although intuitively the generalized Rosenblatt processes Zγ1,γ2(t) in (8.1)

form a richer class than the Rosenblatt process Zγ(t) in (8.3), they are both self-similar with

stationary increments, and hence have the same covariance (8.4) when 2γ = γ1 + γ2. To

show that they are different processes, one can compare the higher moments, as was done

in Bai and Taqqu [2014b]. The convergence (8.8) provides another evidence that there are

values of (γ1, γ2) for which Zγ1,γ2(t) is different from Zγ(t). Indeed the limit WBγ+3/2(t)

has a symmetric marginal distribution (the so-called product-normal distribution), while

the marginal distribution of the Rosenblatt process Zγ(t) is skewed with a nonzero third

cumulant (see (10) and (12) of Veillette and Taqqu [2013], or set γ1 = γ2 = γ in (8.20)

below).

Note that in Theorem 8.2.1 and 8.2.2, we exclude the three corners (γ1, γ2) = (−1
2 ,−

1
2),

(−1,−1/2) and (−1/2,−1). It turns out that the limit behavior of Zγ1,γ2(t) at these corners

depends on the direction these corners are approached. Due to the symmetry of Zγ1,γ2(t)

in (γ1, γ2), it is sufficient to focus on the case γ1 ≥ γ2, that is, we focus on the subregion
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of ∆ in (8.2) delimited by line segments e1, d and m in Figure 8.4.

Consider first the corner (γ1, γ2) = (−1/2,−1). We will approach it through the line

γ2 =
1

ρ− 1
(γ1 + 1/2)− 1,

which can also be expressed as

γ1 + γ2 + 3/2

γ2 + 1
= ρ.

The line passes through the corner (−1/2,−1) and has a negative slope of 1/(ρ − 1),

0 ≤ ρ ≤ 1. See Figure 8.4. When ρ = 0, the line coincides with the diagonal edge d of the

triangle ∆, which has slope −1. When ρ = 1, the line coincides with the vertical side e1

of ∆, which has slope −∞.

(− 1
2 ,−

1
2 )

(− 1
2 ,−1)

(−1,− 1
2 )

m

e1

e2

d

γ1

γ2

(− 3
4 ,−

3
4 )

Figure 8.4: Illustration of limit taking in Theorem 8.2.5

Theorem 8.2.5 (The corner (γ1, γ2) = (−1/2,−1)).

Let Zγ1,γ2(t), (γ1, γ2) ∈ ∆, be defined in (8.6) with A = A(γ1, γ2) in (8.21). Suppose that

γ1 ≥ γ2. If (γ1, γ2)→ (−1/2,−1) in such a way that

γ1 + γ2 + 3/2

γ2 + 1
= 1 +

γ1 + 1/2

γ2 + 1
→ ρ ∈ [0, 1], (8.9)

then

Zγ1,γ2(t)⇒ Xρ(t) := ρ1/2WB(t) + (1− ρ)1/2B′(t), (8.10)
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Figure 8.5: Illustration of limit taking in Theorem 8.2.7

where W is a standard normal random variable, B(t) and B′(t) are standard Brownian

motions, and W , B(t) and B′(t) are independent.

Remark 8.2.6. In Theorem 8.2.5, the limit Xρ(t) is an independent linear combination of

the two limits obtained in Theorem 8.2.2 and 8.2.1 (edges e1 and d), after setting γ = −1

in Theorem 8.2.2. Note that since γ + 3/2 = −1 + 3/2 = 1/2, the fractional Brownian

motion Bγ+3/2(t) in Theorem 8.2.2 becomes Brownian motion B(t).

Consider now the corner (γ1, γ2) = (−1/2,−1/2). We will approach it through the line

γ2 =
1

ρ
(γ1 + 1/2)− 1/2,

which passes through it and has a positive slope of 1/ρ, 0 ≤ ρ ≤ 1. See Figure 8.5. When

ρ = 0, the line coincides with the vertical side e1 of ∆, which has slope +∞. When ρ = 1,

the line coincides with the middle line m, which has slope 1.

Theorem 8.2.7 (The corner (γ1, γ2) = (−1/2,−1/2)).

Let Zγ1,γ2(t), (γ1, γ2) ∈ ∆, be defined in (8.6) with A = A(γ1, γ2) in (8.21). Suppose that

γ1 ≥ γ2. If (γ1, γ2)→ (−1/2,−1/2) in such a way that

γ1 + 1/2

γ2 + 1/2
→ ρ ∈ [0, 1], (8.11)
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then

Zγ1,γ2(t)⇒ Yρ(t)

= t ·

[
(ρ+ 1)−1 + (2

√
ρ)−1√

2(ρ+ 1)−2 + (2ρ)−1
·X1 +

(ρ+ 1)−1 − (2
√
ρ)−1√

2(ρ+ 1)−2 + (2ρ)−1
·X2

]
, (8.12)

where X1 and X2 two independent standardized chi-squared random variables with one

degree of freedom (with mean 0 and variance 1). The case ρ = 0 is understood as the limit

as ρ→ 0.

Remark 8.2.8. Since by (8.5), the self-similarity parameter H equals γ1 + γ2 + 2, we

get that H tends to 1 as (γ1, γ2) → (−1/2,−1/2). It is known (see e.g., Theorem 3.1.1

of Embrechts and Maejima [2002]) that the only self-similar finite-variance processes with

stationary increments having H = 1 are degenerate processes. We see this in Theorem

8.2.7, where the limit is a random variable multiplied by t.

Remark 8.2.9. In Theorem 8.2.7, if ρ = 1, Yρ(t) reduces to tX1, where X1 is a standard-

ized chi-squared random variable with one degree of freedom. Consider now the standard-

ized Rosenblatt process Zγ(t) in (8.3). In this case, γ1 = γ2 = γ and thus ρ = 1, which

corresponds to the middle line m in Figure 8.5. From Theorem 8.2.7, we conclude that if

γ → −1/2, then the limit is tX1. This is consistent with a previous result of Veillette and

Taqqu [2013], that the limit is a standardized chi-squared random variable when t = 1.

Remark 8.2.10. If ρ = 0, Yρ(t) = t√
2
(X1 − X2), which has the same distribution as

t (WB), where W and B are two independent standard normal random variables (see

(8.31) below). This is consistent with Theorem 8.2.2, where on the edge e1 the limit is

WBγ+3/2. This tends, as γ → −1/2, to W · B1(t) = W · B · t = t(WB), where B is a

standard Gaussian random variable.

Remark 8.2.11. Theorems 8.2.1 to 8.2.7 are consistent with Theorem 3.1 of Nourdin and

Poly [2012], stating that the limit of a double Wiener-Itô integral can only be a linear

combination of a normal and an independent double Wiener-Itô integral.
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Remark 8.2.12. Theorem 8.2.5 and 8.2.7 concern the limit behavior of Zγ1,γ2(t) as (γ1, γ2)

approaches the corners along some straight-line direction. What happens if one does not

approach the corners following a straight-line direction? Then, there will be no convergence.

To see this, consider the case of Theorem 8.2.5 (a similar argument can be made for

Theorem 8.2.7). Let

ρ(γ1, γ2) =
γ1 + γ2 + 3/2

γ2 + 1
∈ (0, 1)

parameterize the straight-line direction. Suppose that ρ(γ1, γ2) does not converge as (γ1, γ2)

approaches the corner (−1
2 ,−1). Then there are two subsequences of (γ1, γ2), such that

ρ(γ1, γ2) of the first subsequence converges to ρ1 and ρ(γ1, γ2) of the second subsequence

converges to ρ2, with ρ1 6= ρ2. By Theorem 8.2.5, the corresponding processes Zγ1,γ2(t)

converge to two different limits. Therefore, the original process Zγ1,γ2(t) does not converge

if (γ1, γ2) does not follow a straight-line direction.

8.3 Proof of the main theorems

Since we will use a method of moments, we state first a cumulant formula for a linear

combination of Zγ1,γ2(t) at finite time points. We let κm(·) denote the m-th cumulant. In

the following proposition, the constant A in (8.6) is arbitrary.

Proposition 8.3.1. The m-th cumulant (m ≥ 2) of
∑n

i=1 ciZγ1,γ2(ti), ci ∈ R, ti ∈ [0,∞),

equals

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
=

1

2
(m− 1)!AmCm(γ1, γ2; t, c), (8.13)

where

Cm(γ1, γ2; t, c) =
∑

σ∈{1,2}m

n∑
i1,...,im=1

ci1 . . . cim

∫ ti1

0
ds1 . . .

∫ tim

0
dsm

m∏
j=1

[
(sj − sj−1)

γσj+γσ′
j−1

+1

+ IB(γσ′j−1
+ 1,−γσj − γσ′j−1

− 1)

+(sj−1 − sj)
γσj+γσ′

j−1
+1

+ IB(γσj + 1,−γσj − γσ′j−1
− 1)

]
, (8.14)
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where

IB(x, y) =

∫ 1

0
ux−1(1− u)y−1du =

∫ ∞
0

wx−1(1 + w)−x−ydw, x, y > 0, (8.15)

is the beta function, the sum runs over σ = (σ1, . . . , σm) with σi = 1 or 2, and σ′ is the

complement of σ, namely, σ′i = 1 if σi = 2 and σ′i = 2 if σi = 1, i = 1, . . . ,m. Moreover

σ′0 = σ′m and s0 = sm, i = 1, . . . ,m.

Proposition 8.3.1 is an extension of Theorem 2.1 of Bai and Taqqu [2014b]. We shall

use the following cumulant formula for a double Wiener-Itô integral (see, e.g., (8.4.3) of

Nourdin and Peccati [2012]):

Lemma 8.3.2. If f is a symmetric function in L2(R2), then the m-th cumulant of the

double Wiener-Itô integral X =
∫ ′
R2 f(y1, y2)B(dy1)B(dy2) is given by the following circular

integral:

κm(X) = 2m−1(m− 1)!

∫
Rm

f(y1, y2)f(y2, y3) . . . f(ym−1, ym)f(ym, y1)dy1 . . . dym.

Proof of Proposition 8.3.1. Set

g(x, y) =
A

2
(xγ1+ y

γ2
+ + xγ2+ y

γ1
+ ).

Let

ht(x, y) =

∫ t

0
g(s− x, s− y)ds,

and observe that ht is symmetric. So using the linearity of the Wiener-Itô integral and

Lemma 8.3.2, we have

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
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=κm

(∫ ′
R2

n∑
i=1

cihti(x1, x2)B(dx1)B(dx2)

)

=2m−1(m− 1)!

∫
Rm

dx

m∏
j=1

[
n∑
i=1

cihti(xj , xj+1)

]

=2m−1(m− 1)!

n∑
i1,...,im=1

ci1 . . . cim

∫
Rm

dx

m∏
j=1

∫ tij

0
g(sj − xj , sj − xj+1)dsj ,

and hence

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
=

1

2
(m− 1)!Am

n∑
i1,...,im=1

ci1 . . . cim×∫ ti1

0
ds1 . . .

∫ tim

0
dsm

( ∫
Rm

m∏
j=1

[(sj − xj)γ1+ (sj − xj+1)γ2+ + (sj − xj)γ2+ (sj − xj+1)γ1+ ]dx
)
,

(8.16)

where we view the index j as modulo m, e.g., xm+1 = x1.

Then using the notation in the statement of Proposition 8.3.1, one has

I :=

∫
Rm

m∏
j=1

[
(sj − xj)γ1+ (sj − xj+1)γ2+ + (sj − xj)γ2+ (sj − xj+1)γ1+

]
dx

=
∑

σ∈{1,2}m

∫
Rm

m∏
j=1

(sj − xj)
γσj
+ (sj − xj+1)

γσ′
j

+ dx

=
∑

σ∈{1,2}m

∫
Rm

m∏
j=1

(sj − xj)
γσj
+ (sj−1 − xj)

γσ′
j−1

+ dx,

and thus

I =
∑

σ∈{1,2}m

m∏
j=1

[
(sj − sj−1)

γσj+γσ′
j−1

+1

+ IB(γσ′j−1
+ 1,−γσj − γσ′j−1

− 1)

+ (sj−1 − sj)
γσj+γσ′

j−1
+1

+ IB(γσj + 1,−γσj − γσ′j−1
− 1)

]
, (8.17)
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where we have used the following relation valid for a, b ∈ (−1,−1/2):

∫
R

(s1−u)a+(s2−u)b+du = (s2−s1)a+b+1
+ B(a+1,−a−b−1)+(s1−s2)a+b+1

+ IB(b+1,−a−b−1).

(8.18)

(See Lemma 3.2 of Bai and Taqqu [2014b].) Substituting (8.17) into (8.16), equation (8.13)

is obtained.

Note that EZγ1,γ2(1) = 0 by the property of Wiener-Itô integral, and hence the second

and the third moments coincide with the second and the third cumulants. As two special

cases of Proposition 8.3.1, one has the following explicit formulas for the second and the

third moment of the generalized Rosenblatt distribution (Bai and Taqqu [2014b], Theorem

2.1):

The second moment of Zγ1,γ2(1) is

µ2(γ1, γ2) =
A2

(γ1 + γ2 + 2)(2(γ1 + γ2) + 3)

×
[
IB(γ1 + 1,−γ1 − γ2 − 1)IB(γ2 + 1,−γ1 − γ2 − 1)

+ IB(γ1 + 1,−2γ1 − 1)IB(γ2 + 1,−2γ2 − 1)
]
, (8.19)

The third moment of Zγ1,γ2(1) is

µ3(γ1, γ2) =
2A3

(γ1 + γ2 + 2)(3(γ1 + γ2) + 5)

×
[ ∑
σ∈{1,2}3

B(γσ1 + 1,−γσ1 − γσ′3 − 1)B(γσ′1 + 1,−γσ′1 − γσ2 − 1)

×B(γσ′2 + 1,−γσ′2 − γσ3 − 1)B(γσ′1 + γσ2 + 2, γσ′2 + γσ3 + 2)
]
. (8.20)

To standardize Zγ1,γ2(t), we set µ2(γ1, γ2) = 1. By (8.19), this determines the constant

A as:

A(γ1, γ2) =
[
(γ1 + γ2 + 2)(2(γ1 + γ2) + 3)

]1/2
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×
[
IB(γ1 + 1,−γ1 − γ2 − 1)IB(γ2 + 1,−γ1 − γ2 − 1)

+ IB(γ1 + 1,−2γ1 − 1)IB(γ2 + 1,−2γ2 − 1)
]−1/2

. (8.21)

8.3.1 Proof of Theorem 8.2.1

We will use a result for bounding integral of powers of linear functions in Euclidean space.

First some notation. Let L1(s) = 〈w1, s〉, . . . , Lm(s) = 〈wm, s〉 be linear functions on Rn,

where 〈·, ·〉 denotes the Euclidean inner product. Let

P (s) =

m∏
j=1

|Lj(s)|αj .

Set T = {w1, . . . ,wm}. For any nonempty W ⊂ T , define

S(W ) = T ∩ span{W}, (8.22)

where span{W} denotes linear subspace spanned by W , and define the quantity

d(P,W ) = |W |+
∑

j:wj∈S(W )

αj ,

where |W | is the cardinality of the set W . Then we have the following so-called power

counting lemma:

Lemma 8.3.3 (Theorem 3.1 of Fox and Taqqu [1987] ). Suppose that

d(P,W ) > 0. (8.23)
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for any W ⊂ T which consists of linearly independent wj’s
1. Then

∫
[0,1]n

P (s)ds <∞.

Lemma 8.3.4. The function

f(α1, . . . , αm) :=

∫
[0,1]m

|s1 − sm|α1 |s2 − s1|α2 . . . |sm − sm−1|αmds (8.24)

is finite and continuous on the domain

D =

{
(α1, . . . , αm) : αi > −1,

m∑
i=1

αi +m > 1

}
. (8.25)

Proof. We first show that f(α1, . . . , αm) < ∞ on D using Lemma 8.3.3. Following the

notation introduced for the lemma, we have L1(s) = s1 − sm, L2(s) = s2 − s1,. . . ,

Lm(s) = sm − sm−1, and hence w1 = (1, 0, . . . , 0,−1), w2 = (−1, 1, 0, . . . , 0), . . . , wm =

(0, . . . , 0,−1, 1) and T = {w1, . . . ,wm}.

It is easy to see that a subset W ⊂ T consists of linearly independent wj ’s if and only

if |W | ≤ m − 1. When |W | ≤ m − 2, the set S(W ) defined in (8.22) is equal to W . The

condition (8.23) is satisfied in this case because each αj > −1 and hence

D(P,W ) = |W |+
∑

j:wj∈S(W )

αj > |W |+
∑

j:wj∈W
(−1) = |W | − |W | = 0.

When |W | = m − 1, one has span(W ) = T , and hence S(W ) = T . Thus the condition

(8.23) in this case becomes

D(P,W ) = m− 1 +

m∑
i=1

αi > 0,

1Theorem 3.1 of Fox and Taqqu [1987] states that it is enough to consider W ⊂ T consisting of linearly
independent wj ’s with negative exponent αj ’s. This is because the non-negative exponents αj cannot make
the integral

∫
[0,1]n

P (s)ds blow up.
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which is satisfied in view of (8.25). Hence the integral f(α1, . . . , αm) in (8.24) is finite by

Lemma 8.3.3.

To verify the continuity of f(α1, . . . , αm), suppose that as n → ∞, αn → α :=

(α1, . . . , αm). Then for large n, αn ≥ αε := (α1 − ε, . . . , αm − ε), where the small ε is

chosen such that αε ∈ D. Denote the integrand in (8.24) by I(s;α), and recall that I(s;α)

is decreasing in every component of α. Hence when n is large, I(s;αn) ≤ I(s;αε). Since

I(s;αε) is integrable, we can apply the Dominated Convergence Theorem to obtain the

convergence f(αn)→ f(α) as n→∞, proving the continuity.

In the following corollary, the exponents are supposed to be away from the boundary

of the set D defined in (8.25).

Corollary 8.3.5. Let C1, C2 be two fixed constants such that C1 > −1 and C2 > 1. Then

the function f(α1, . . . , αm) defined in (8.24) is bounded on the domain

D(C1, C2) =

{
(α1, . . . , αm) : αi ≥ C1,

m∑
i=1

αi +m ≥ C2

}
.

Proof. Let M be a large positive constant. Define

DM (C1, C2) = D(C1, C2) ∩ (−∞,M ]m

=

{
(α1, . . . , αm) : C1 ≤ αi ≤M,

m∑
i=1

αi +m ≥ C2

}
.

Since DM (C1, C2) is a compact subset of D in (8.25), and f(α1, . . . , αm) is continuous on

D by Lemma 8.3.4, we deduce that f is bounded on DM (C1, C2). The boundedness on

D(C1, C2) follows since f decreases when any αi increases.

Lemma 8.3.6. Let A(γ1, γ2) be as in (8.21), where (γ1, γ2) ∈∆ which is defined in (8.2).

Then there exits a constant C > 0 independent of γ1 and γ2 such that

|A(γ1, γ2)| ≤ C[2(γ1 + γ2) + 3]1/2.
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Proof. This is immediate by noting that the beta function IB(x, y) defined in (8.15) is

decreasing in x and in y. Since in addition ∆ is a bounded region, the beta functions in

(8.21) are bounded from below, and hence the factor with negative power −1/2 in (8.21)

is bounded from above.

The following hypercontractivity inequality for multiple Wiener-Itô integral (see, e.g.,

Corollary 5.6 of Major [2014] or Theorem 2.7.2 of Nourdin and Peccati [2012]) is useful:

Lemma 8.3.7. For any m ∈ Z+, there exists a constant Cm > 0, such that

E|Ik(f)|2m ≤ Cm
(
E|Ik(f)|2

)m
, for all f ∈ L2(Rk).

Tightness of standardized Zγ1,γ2(t) in C[0, 1] will follow from the following lemma:

Lemma 8.3.8. Let Zγ1,γ2(t) be as in (8.6) with A as in (8.21) and (γ1, γ2) in the region

∆ defined in (8.2). Then there exists a constant C > 0 which does not depend on γ1, γ2,

such that for all 0 ≤ s ≤ t ≤ 1,

E|Zγ1,γ2(t)− Zγ1,γ2(s)|4 ≤ C(t− s)2,

which implies that the law of {Zγ1,γ2(t) : (γ1, γ2) ∈∆} is tight in C[0, 1].

Proof. Using Lemma 8.3.7, self-similarity and stationary-increment property of Zγ1,γ2(t),

one has

E|Zγ1,γ2(t)− Zγ1,γ2(s)|4 ≤ C2

(
E|Zγ1,γ2(t)− Zγ1,γ2(s)|2

)2
= C2(t− s)4H ≤ C2(t− s)2,

where H := γ1 + γ2 + 2 ≥ 1/2 and 0 ≤ t − s ≤ 1. So Zγ1,γ2(t) by Kolmogorov’s criterion

admits a continuous version. Tightness follows from, e.g., Prokhorov [1956] Lemma 2.2.

We now prove Theorem 8.2.1. By Lemma 8.3.8, tightness in C[0, 1] holds. We are left
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to show convergence of finite-dimensional distributions (
f.d.d.−→ ). From here on, we let C and

c denote constants whose values can change from line to line.

Proof of
f.d.d.−→ Theorem 8.2.1. Due to self-similarity and stationary increments, the covari-

ance of the standardized Zγ1,γ2(t) is

EZγ1,γ2(s)Zγ1,γ2(t) =
1

2

(
s2γ1+2γ2+4 + t2γ1+2γ2+4 − |s− t|2γ1+2γ2+4

)
, t, s ≥ 0,

which converges to the Brownian motion covariance EB(s)B(t) = s∧ t = 1
2(s+ t− |s− t|)

as γ1 + γ2 → −3/2. By using the method of moments, it is sufficient to show that

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
→ 0, m ≥ 3. (8.26)

As γ1 + γ2 → −3/2, the factor A(γ1, γ2) in (8.21) converges to zero by Lemma 8.3.6. It

is therefore sufficient to show that for m ≥ 3, and γ1, γ2 > −1+ε, the factor Cm(γ1, γ2; t, c)

in (8.14) is bounded.

Under the constraints γ1 + γ2 ≥ −3/2 and γ1, γ2 > −1 + ε (or equivalently γ1, γ2 <

−1/2− ε), the factors IB(γσ′j−1
+ 1,−γσj − γσ′j−1

− 1) and IB(γσj + 1,−γσj − γσ′j−1
− 1) are

bounded by a constant C > 0 for any σ and j. This is because the beta function IB(x, y)

defined in (8.15) is bounded if both x and y stay away from a neighborhood of 0. Choosing

T ≥ max(t1, . . . , tn), one then has

|Cm(γ1, γ2; t, c)| ≤C
∑

σ∈{1,2}m

∫
[0,T ]m

ds
m∏
j=1

|sj − sj−1|
γσj+γσ′

j−1
+1

≤C
∑

σ∈{1,2}m

∫
[0,1]m

ds
m∏
j=1

|sj − sj−1|
γσj+γσ′

j−1
+1
,

where the last constant C depends on T , m and ε.

We now want to apply Corollary 8.3.5 to establish the boundedness of each of the term
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in the preceding sum. Using the notation in Lemma 8.3.4, we set

αj = γσj + γσ′j−1
+ 1.

Recall that γσj and γσ′j−1
are either γ1 or γ2 and γσj + γσ′j = γ1 + γ2. Now since γ1 + γ2 ≥

−3/2 and γj ≥ −1 + ε, we have

αj ≥


2γj + 1 ≥ −1 + 2ε, if σ′j−1 = σj ;

γ1 + γ2 + 1 ≥ −3/2 + 1 = −1/2, if σ′j−1 6= σj ;

We get αj ≥ C1 := −1 + 2ε > −1.

On the other hand, when m ≥ 3,

m∑
i=1

αi +m = m(γ1 + γ2) + 2m ≥ m(−3/2) + 2m =
m

2
≥ C2 :=

3

2
> 1.

So Corollary 8.3.5 can be applied to deduce the boundedness of |Cm(γ1, γ2; t, c)| when

γ1, γ2 ≥ −1 + ε, and the proof is thus concluded.

Remark 8.3.9. Theorem 8.2.1 involves convergence to a Gaussian process. In this case,

according to the results of Nualart and Peccati [2005] and Peccati and Tudor [2005], it

suffices to show that (8.26) holds for m = 4 and n = 1. Focusing on the fourth cumulant,

the covariance structure, and the one-dimensional distribution, however, does not simplify

significantly the proof as can be seen by examining the proof of Theorem 8.2.1.

8.3.2 Proof of Theorem 8.2.2

Lemma 8.3.10. Suppose that α > −1, then for any t1, t2 ∈ R,

∫ t1

0

∫ t2

0
|x1 − x2|αdx1dx2 =

1

(α+ 1)(α+ 2)

(
|t1|α+2 + |t2|α+2 − |t1 − t2|α+2

)
.
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Proof. Suppose 0 < t1 ≤ t2. The other cases are similar. Then

∫ t1

0

∫ t2

0
|x1 − x2|αdx1dx2

=

∫ t1

0

∫ t1

0
|x1 − x2|αdx1dx2 +

∫ t1

0

∫ t2

t1

(x2 − x1)αdx2dx1

=
2

(α+ 1)(α+ 2)
tα+2
1 +

1

(α+ 1)(α+ 2)
[tα+2

2 − tα+2
1 − (t2 − t1)α+2]

=
1

(α+ 1)(α+ 2)

[
tα+2
1 + tα+2

2 − (t2 − t1)α+2
]
.

Below the notation A ∼ B means asymptotic equivalence, namely, the ratio A/B

converges to 1. We include first a fact about the asymptotics of the beta function IB(·, ·)

when one of the exponents approaches the boundary.

Lemma 8.3.11. Let 0 < b0 < b1 <∞. Then as α→ 0, we have

αIB(α, β)→ 1

uniformly in β ∈ [b0, b1]. Since the beta functions is symmetric, we also have αIB(β, α)→ 1

as α→ 0 uniformly in β ∈ [b0, b1].

Proof. Assume without loss of generality that b0 ≤ 1 ≤ b1. Fix any small ε > 0. Then

IB(α, β) =

∫ ε

0
xα−1(1−x)β−1dx+

∫ 1

ε
xα−1(1−x)β−1dx =: I1(α, β; ε) + I2(α, β; ε). (8.27)

For I1(α, β; ε), we have

α−1εα(1− ε)b1−1 =

∫ ε

0
xα−1dx(1− ε)b1−1 ≤

I1(α, β; ε) ≤
∫ ε

0
xα−1dx(1− ε)b0−1 = α−1εα(1− ε)b0−1.
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This yields that

(1− ε)b1−1 ≤ lim inf
α→0,β∈[b0,b1]

αI1(α, β, ε) ≤ lim sup
α→0,β∈[b0,b1]

αI1(α, β, ε) ≤ (1− ε)b0−1. (8.28)

For I2(α, β; ε), it is uniformly bounded with respect to α ≤ 1 and β as follows:

I2(α, β; ε) ≤ εα−1

∫ 1

ε
(1− x)β−1dx = εα−1β−1(1− ε)β ≤ ε−1b−1

0 (1− ε)b0 . (8.29)

Combining (8.27), (8.28) and (8.29), we get

(1− ε)b1−1 ≤ lim inf
α→0,β∈[b0,b1]

αIB(α, β) ≤ lim sup
α→0,β∈[b0,b1]

αIB(α, β) ≤ (1− ε)b0−1.

Since ε is arbitrary, we get that αIB(α, β)→ 1 as α→ 0.

The limit αIB(α, β)→ 1 as α→ 0 will be used extensively, mostly in the form

IB(α, β) ∼ α−1 →∞.

Lemma 8.3.12. Let WBγ+3/2(t) be the process given as Theorem 8.2.2. We also include

the case γ = −1 where Bγ+3/2(t) = B1/2(t) is Brownian motion. Then the m-th cumulant

of the linear combination of WBγ+3/2(t) at different time points is given by

κm

(
n∑
i=1

ciWBγ+3/2(ti)

)
=

(m− 1)!

 n∑
i1,i2=1

ci1ci2
2

(
|ti1 |2γ+3 + |ti2 |2γ+3 − |ti1 − ti2 |2γ+3

)m/2 (8.30)

if m is even, and 0 if m is odd.

Proof.

n∑
i=1

ciWBγ+3/2(ti) = W
n∑
i=1

ciBγ+3/2(ti) = σWZ,
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where Z is a standard normal random variable which is independent of W , and

σ =

(
Var

[
n∑
i=1

ciBγ+3/2(ti)

])1/2

=

E

n∑
i1,i2=1

ci1ci2Bγ+3/2(ti1)Bγ+3/2(ti2)

1/2

=

 n∑
i1,i2=1

ci1ci2
2

(
|ti1 |2γ+3 + |ti2 |2γ+3 − |ti1 − ti2 |2γ+3

)1/2

,

using the covariance of fractional Brownian motion. Then note that

WZ =
1

2

[(
W + Z√

2

)2

−
(
W − Z√

2

)2
]
, (8.31)

where Z2
1 :=

[
W+Z√

2

]2
and Z2

2 :=
[
W−Z√

2

]2
are two independent χ2

1 (chi-squared random

variables with one degree of freedom). The independence is due to the fact that Z + W

and Z −W are uncorrelated. Since the m-th cumulant of a χ2
1 variable is 2m−1(m − 1)!,

and using the scaling property and the additive property of cumulant under independence,

we have

κm (σWZ) =
(σ

2

)m
[κm(Z2

1 ) + (−1)mκm(Z2
2 )]

=
(σ

2

)m
[2m−1(m− 1)! + (−1)m2m−1(m− 1)!],

which is equal to 0 if m is odd, and equal to σm(m− 1)! if m is even, proving (8.30).

Remark 8.3.13. Starting with the χ2
1 characteristic function φ(t) = (1 − 2it)−1/2, it is

easy to derive using (8.31) that the characteristic function of the standard product-normal

distribution WZ is ϕ(t) = (1 + t2)−1/2.

In view of Lemma 8.3.8, we are left to prove the convergence of the finite-dimensional

distributions (
f.d.d.−→ ) in Theorem 8.2.2.

Proof of
f.d.d.−→ in Theorem 8.2.2. By the Cramér-Wold device, we need to show as γ1 →
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−1/2 and γ2 → γ ∈ (−1/2,−1) that

n∑
i=1

ciZγ1,γ2(ti)
d→

n∑
i=1

ciWBγ+3/2(ti).

Since
∑n

i=1 ciWBγ+3/2(ti) has an analytic characteristic function (Remark 8.3.13), its dis-

tribution is moment-determinate. And hence we can apply a method of moments here.

In fact, by Theorem 3.4 of Nourdin and Poly [2012], only a finite number of moments are

required to prove convergence in distribution.

The cumulant formula of
∑n

i=1 ciZγ1,γ2(ti) is given in Proposition 8.3.1, which involves

the factors A(γ1, γ2) in (8.21) (recall that Zγ1,γ2 is standardized) and Cm(γ1, γ2; t, c) in

(8.14). Assume m ≥ 2 below.

Examining A(γ1, γ2), by Lemma 8.3.11, one can see that as γ1 → −1/2 and γ2 → γ,

A(γ1, γ2)m ∼ [(γ + 3/2)(2γ + 2)]m/2
[
IB(1/2,−γ − 1/2)IB(γ + 1,−γ − 1/2)

+ IB(1/2,−2γ1 − 1)IB(γ + 1,−2γ − 1)
]−m/2

.

The first two and the fourth beta functions are bounded but the third blows up since

IB(1/2,−2γ1 − 1) ∼ (−2γ1 − 1)−1

as γ1 → −1/2 by Lemma 8.3.11. Hence as γ1 → −1/2,

A(γ1, γ2)m ∼ [(γ + 3/2)(2γ + 2)]m/2
[
IB(1/2,−2γ1 − 1)IB(γ + 1,−2γ − 1)

]−m/2
∼ (−2γ1 − 1)m/2(2γ + 3)m/2(γ + 1)m/2IB(γ + 1,−2γ − 1)−m/2, (8.32)

which converges to zero.

On the other hand, in the expression of Cm(γ1, γ2; t, c) in (8.14), the only factors

diverging to ∞ as γ1 → −1/2 and γ2 → γ are IB(γσ′j−1
+ 1,−γσj − γσ′j−1

− 1) and IB(γσj +

1,−γσj−γσ′j−1
−1) and only when σj = σ′j−1 = 1, because −γσj−γσ′j−1

−1 = −2γ1−1→ 0
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and hence the beta functions each diverge like (−2γ1 − 1)−1 by Lemma 8.3.11. To get the

highest order of divergence to∞, one chooses σ ∈ {1, 2}m such that σj = σ′j−1 = 1 happens

as many times as possible.

In the case m is odd,

max
σ∈{1,2}m

#{j : σj = σ′j−1 = 1, j = 1, . . . ,m} = (m− 1)/2,

because if σj = σ′j−1 = 1, then σ′j = 2, and we therefore cannot have σj+1 = σ′j = 1. So

Cm(γ1, γ2; t, c) ∼ cB(1/2,−2γ1 − 1)(m−1)/2 ∼ c(−2γ1 − 1)−(m−1)/2, (8.33)

which diverges to ∞ as γ1 → −1/2. By (8.32) and (8.33), when m is odd,

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
=

1

2
(m−1)!A(γ1, γ2)mCm(γ1, γ2; t, c) ∼ c(−2γ1−1)1/2 → 0. (8.34)

When m is even, the sequences σ for which one has the greatest number of j’s such

that σj = σ′j−1 = 1 is

argmax
σ∈{1,2}m

#{j : σj = σ′j−1 = 1, j = 1, . . . ,m} = (1, 2, 1, 2, . . . , 1, 2) or (2, 1, 2, 1, . . . , 2, 1),

(8.35)

and one gets maximally m/2 number of j’s where σj = σ′j−1 = 1. The product of the

m/2 contributing beta factors diverge like (−2γ1 − 1)m/2. But since the case m even will

yield a nonzero limit, we need to keep track of the multiplicative constants. Because σ =

(1, 2, 1, 2 . . . , 1, 2) and σ = (2, 1, 2, 1, . . . , 2, 1) yield the same term, one has as γ1 → −1/2

and γ2 → γ that

Cm(γ1, γ2; t, c) ∼2(−2γ1 − 1)−m/2

[
n∑

i1,...,in=1

ci1 . . . cimIB(γ + 1,−2γ − 1)m/2
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×
∫ ti1

0
. . .

∫ tim

0
|s1 − s2|2γ+1|s3 − s4|2γ+1 . . . |sm−1 − sm|2γ+1ds

]

=2(−2γ1 − 1)−m/2(2γ + 3)−m/2(γ + 1)−m/2B(γ + 1,−2γ − 1)m/2

×

 n∑
i1,i2=1

ci1ci2
2

(
|ti1 |2γ+3 + |ti2 |2γ+3 − |ti1 − ti2 |2γ+3

)m/2 , (8.36)

where the asymptotic equivalence ∼ in the first line can be justified by the Dominated

Convergence Theorem, and the last equality is due to Lemma 8.3.10.

Combining (8.13), (8.32) and (8.36), one gets as γ1 → −1/2 and γ2 → γ that for m

even,

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
→

(m− 1)!

 n∑
i1,i2=1

ci1ci2
2

(
|ti1 |2γ+3 + |ti2 |2γ+3 − |ti1 − ti2 |2γ+3

)m/2 . (8.37)

The proof is concluded by comparing (8.34) and (8.37) with Lemma 8.3.12.

We state a byproduct of the preceding proof which will be used in Section 8.5.

Corollary 8.3.14. Under the condition and the notation of Theorem 8.2.2, when m ≥ 4

is even, we have

κm (Zγ1,γ2(1)) = (m− 1)! +O (−γ1 − 1/2) .

Proof. We are focusing here on the marginal distribution and hence t = 1, c = 1 and n = 1

in (8.14). To get the rate of convergence O(−γ1− 1/2), we need to expand Cm(γ1, γ2; 1, 1)

to a higher order than (8.36). Following the preceding proof of Theorem 8.2.2, we need

to consider the σ’s with the second most occurrences of σ′j−1 = σj = 1. These σ’s have

σ′j−1 = σj = 1 occurring m/2−1 times instead of m/2 times as in (8.35). Adding this type

of σ’s into (8.36), we have

Cm(γ1, γ2; 1, 1) = cγ,m(−γ1 − 1/2)−m/2 +O
(

(−γ1 − 1/2)−m/2+1
)
,
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where cγ,m is the constant given by (8.36) with t = 1, c = 1 and n = 1. By Proposition

8.3.1,

κm (Zγ1,γ2(1)) =
1

2
(m− 1)!A(γ1, γ2)mCm(γ1, γ2; 1, 1).

So the conclusion follows in view of the expression A(γ1, γ2)m in (8.32).

8.3.3 Proof of Theorem 8.2.5

Lemma 8.3.15. Let t1, . . . , tm > 0, and m ≥ 4 be an even integer. Consider the function:

f(a, b; t) =

∫ t1

0
. . .

∫ tm

0
|x1 − xm|a|x2 − x1|b|x3 − x2|a|x4 − x3|b . . . (8.38)

× |xm−1 − xm−2|a|xm − xm−1|bdx,

where −1 < a, b < 0. Then as (a, b)→ (0,−1), we have that

f(a, b; t) ∼ (b+ 1)−m/2
∏

i=2,4,...m

(ti + ti−1 − |ti − ti−1|) .

Proof. First, assume without loss of generality that t1, . . . tm < 1. Otherwise one can scale

them by a change of variables.

We first derive a lower bound for f(a, b; t). Since each |xi − xi−1|a ≥ 1, one has by

Lemma 8.3.10 that

f(a, b; t) ≥ f(0, b; t) =
∏

i=2,4,...m

∫ ti

0

∫ ti−1

0
|xi − xi−1|bdxidxi−1

= (b+ 1)−m/2(b+ 2)−m/2
∏

i=2,4,...m

(
tb+2
i + tb+2

i−1 − |ti − ti−1|b+2
)

∼ (b+ 1)−m/2
∏

i=2,4,...m

(ti + ti−1 − |ti − ti−1|) as b→ −1. (8.39)

To get an upper bound for f(a, b; t), we apply the Cauchy-Schwarz inequality to break

the cyclic structure. In particular in (8.38), view |x1−xm|a|x3−x2|a as the integrand, and
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treat the other factors as the density of measure. We have

f(a, b; t) ≤
√
f1(a, b; t)f2(a, b; t), (8.40)

where

f1(a, b; t) =

∫ t1

0
dx1 . . .

∫ tm

0
dxm|x1 − xm|2a|x2 − x1|b|x4 − x3|b|x5 − x4|a . . .

×|xm−1 − xm−2|a|xm − xm−1|b,

and

f2(a, b; t) =

∫ t1

0
dx1 . . .

∫ tm

0
dxm|x3 − x2|2a|x2 − x1|b|x4 − x3|b|x5 − x4|a . . .

×|xm−1 − xm−2|a|xm − xm−1|b.

Set

|x|a = 1 + ha(x).

Then the integrand in f1 can be rewritten as

[1+h2a(x1−xm)]|x2−x1|b|x4−x3|b[1+ha(x5−x4)] . . . [1+ha(xm−1−xm−2)]|xm−xm−1|b.

Observe that the product of terms involving neither ha nor h2a equals f(0, b; t). Hence one

can write

f1(a, b; t) = f(0, b; t) +R(a, b; t),

where the remainder R(a, b; t) is a sum of terms each involving at least one ha or h2a. We

claim that |R(a, b; t)| = o
(
(b+ 1)−m/2

)
. Indeed, let R1(a, b; t) be the term of R(a, b; t)

involving only one h2a and no other ha. Using the fact that when f is a non-negative
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function and 0 < x1, x2 < t, we have

∫ t

0
f(x2 − x1)dx2 =

∫ t−x1

−x1
f(x)dx ≤

∫ 1

−1
f(x)dx.

Therefore,

|R1(a, b; t)|

=

∫ t1

0
dx1 . . .

∫ tm

0
dxm h2a(x1 − xm)|x2 − x1|b|x4 − x3|b . . . |xm − xm−1|b

≤
∫ t1

0
dx1

∫ t3

0
dx3 . . .

∫ tm

0
dxm h2a(x1 − xm)

∫ 1

−1
|x2|bdx2 |x4 − x3|b . . . |xm − xm−1|b

≤2(b+ 1)−1

∫ t3

0
dx3 . . .

∫ tm

0
dxm

∫ 1

−1
h2a(x1)dx1 |x4 − x3|b . . . |xm − xm−1|b

≤2(b+ 1)−1

∫ t3

0
dx3 . . .

∫ tm

0
dxm

∫ 1

−1
(|x1|2a − 1)dx1 |x4 − x3|b . . . |xm − xm−1|b

=4[(2a+ 1)−1 − 1](b+ 1)−1

∫ t3

0
dx3 . . .

∫ tm

0
dxm |x4 − x3|b|x6 − x5|b . . . |xm − xm−1|b

≤ . . . ≤ C[(2a+ 1)−1 − 1](b+ 1)−m/2 = o(1)(b+ 1)−m/2. (8.41)

Similar estimates apply to the other terms of R(a, b; t), which may involve a greater number

of ha or h2a, and end up converging faster to zero as a→ 0. Hence

f1(a, b; t) ≤ f(0, b; t) + o
(

(b+ 1)−m/2
)
∼ (b+ 1)−m/2

∏
i=2,4,...m

(ti + ti−1 − |ti − ti−1|)

using (8.39). The same estimate holds for f2(a, b; t). Hence by (8.40),

f(a, b; t) ≤ f(0, b; t) + o
(

(b+ 1)−m/2
)
∼ (b+ 1)−m/2

∏
i=2,4,...m

(ti + ti−1 − |ti − ti−1|) .

(8.42)

Combining (8.39) and (8.42) concludes the proof.
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Lemma 8.3.16. Let Xρ(t) be the limit process in (8.10). For m ≥ 3,

κm

(
n∑
i=1

ciXρ(ti)

)

=


ρm/2(m− 1)!

[∑n
i,j=1 cicj

1
2 (|ti|+ |tj | − |ti − tj |)

]m/2
if m is even;

0 if m is odd.

Proof. Then because B1(t), B2(t) and W are independent,

κm

(
n∑
i=1

ciXρ(ti)

)
= κm

(
ρ1/2

n∑
i=1

ciWB(ti)

)
+ κm

(
(1− ρ)1/2

n∑
i=1

ciB
′(ti)

)
.

Now note that the second term is Gaussian and thus the cumulants of order higher than

2 is always zero. Applying Lemma 8.3.12 (with γ = −1) to the first term concludes the

proof.

Now we proceed to the proof of Theorem 8.2.5. Again by Lemma 8.3.8, tightness always

holds. We only need to show the convergence of the finite-dimensional distributions.

Proof of
f.d.d.−→ in Theorem 8.2.5. The distribution of

∑n
i=1 ciXρ(ti) is moment-determinate

since it is a second-order polynomial in normal random variables (see, e.g., Slud [1993]).

One can therefore use a method of moments.

We analyze the asymptotics of the cumulants in (8.13) with m ≥ 3 and A(γ1, γ2) as

given in (8.21) as (γ1, γ2)→ (−1/2,−1). First, by Lemma 8.3.11,

A(γ1, γ2)m

∼ (γ1 + γ2 + 3/2)m/2
[
IB(1/2, 1/2)IB(γ2 + 1, 1/2) + IB(1/2,−2γ1 − 1)IB(γ2 + 1, 1)

]−m/2
∼ (γ1 + γ2 + 3/2)m/2

[
IB(1/2,−2γ1 − 1)IB(γ2 + 1, 1)

]−m/2
∼ (γ1 + γ2 + 3/2)m/2(−2γ1 − 1)m/2(γ2 + 1)m/2, (8.43)

which converges to 0.
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Now we analyze the asymptotics of the terms of Cm(γ1, γ2; t, c) in (8.14) as σ varies in

{1, 2}m. When m is even, consider first the two main terms where

σ = (1, 2, 1, 2, . . . , 1, 2) and σ = (2, 1, 2, 1, . . . , 2, 1),

which correspond to #{j : σj = σ′j−1 = 1} = m/2. As in the proof of Theorem 8.2.2,

the corresponding term when σ = (1, 2, 1, 2, . . . , 1, 2) in (8.14) (it is the same for σ =

(2, 1, 2, 1, . . . , 2, 1)) is

n∑
i1,...,im=1

ci1 . . . cimIB(γ1 + 1,−2γ1 − 1)m/2IB(γ2 + 1,−2γ2 − 1)m/2×

∫ ti1

0
ds1 . . .

∫ tim

0
dsm|s1 − sm|2γ1+1|s2 − s1|2γ2+1 . . . |sm−1 − sm−2|2γ1+1|sm − sm−1|2γ2+1

∼ (−2γ1 − 1)−m/2(γ2 + 1)−m

 n∑
i,j=1

cicj
1

2
(|ti|+ |tj | − |ti − tj |)

m/2 , (8.44)

where the last line is due to Lemma 8.3.11 and Lemma 8.3.15.

Any other σ term in (8.14) is negligible because it is of order O
(
(−2γ1−1)−r(γ2+1)−m

)
,

where

r = #{j : σj = σ′j−1 = 1} = #{j : σj = σ′j−1 = 2} < m/2. (8.45)

Indeed, let us suppose (8.45) and examine a corresponding σ term in the expansion of the

product
∏m
j=1 in (8.14). Call this term Pm. In Pm, there are r factors of

IB(γ1 + 1,−2γ1 − 1)|sj − sj−1|2γ1+1, (8.46)

and there are r factors of

IB(γ2 + 1,−2γ2 − 1)|sj − sj−1|2γ2+1. (8.47)

Since (8.45) implies that #{j : σj 6= σ′j−1} = m− 2r, there are also m− 2r factors in Pm,
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which are either

(sj − sj−1)γ1+γ2+1
+ IB(γ1 + 1,−γ1 − γ2 − 1) + (sj−1 − sj)γ1+γ2+1

+ IB(γ2 + 1,−γ1 − γ2 − 1),

or

(sj − sj−1)γ1+γ2+1
+ IB(γ2 + 1,−γ1 − γ2 − 1) + (sj−1 − sj)γ1+γ2+1

+ IB(γ1 + 1,−γ1 − γ2 − 1).

These last two expressions are both bounded by

|sj − sj−1|γ1+γ2+1
[
IB(γ2 + 1,−γ1 − γ2 − 1) + IB(γ1 + 1,−γ1 − γ2 − 1)

]
. (8.48)

In view of Lemma 8.3.11, the beta functions in (8.46), (8.47) and (8.48) behave like (−2γ1−

1)−1, (γ2 + 1)−1 and (γ2 + 1)−1 respectively. Therefore, the beta functions contribute an

order

(−2γ1 − 1)−r(γ2 + 1)−r(γ2 + 1)−(m−2r) = (−2γ1 − 1)−r(γ2 + 1)−(m−r).

The integrand involving |sj−1−sj |2γ2+1 contribute an order (γ2 +1)−r. So the total order is

(−2γ1− 1)−r(γ2 + 1)−m. These arguments can be rigorously justified by first applying the

Cauchy-Schwartz as in (8.40) to break the cyclic integrand, and then bound as in (8.41).

Therefore in view of (8.44), and after also including the case σ = (2, 1, 2, 1, . . . , 2, 1), we

conclude that

Cm(γ1, γ2; t, c) ∼ 2(−2γ1 − 1)−m/2(γ2 + 1)−m

 n∑
i,j=1

cicj
1

2
(|ti|+ |tj | − |ti − tj |)

m/2 ,
(8.49)

if m is even.

When m is odd, there are at most (m− 1)/2 times of σj = σ′j−1 = 1 or σj = σ′j−1 = 2.
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It can be shown similarly that Cm(γ1, γ2; t, c) is of the order

(−2γ1 − 1)−(m−1)/2(γ2 + 1)−m, (8.50)

which is dominated by the order of convergence to 0 of A(γ1, γ2)m in (8.43). Now combining

this fact with (8.9), (8.13), (8.43) and (8.49), we have when m is even,

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)

∼
(
γ1 + γ2 + 3/2

γ2 + 1

)m/2
(m− 1)!

 n∑
i,j=1

cicj
1

2
(|ti|+ |tj | − |ti − tj |)

m/2 (8.51)

→ ρm/2(m− 1)!

 n∑
i,j=1

cicj
1

2
(|ti|+ |tj | − |ti − tj |)

m/2 ,
and when m is odd,

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
→ 0.

Now use Lemma 8.3.16 to identify the limit process.

8.3.4 Proof of Theorem 8.2.7

We state first a combinatorial result.

Lemma 8.3.17. Let σ = (σ1, . . . , σm) ∈ {1, 2}m. Let σ′ = (σ′1, . . . , σ
′
m) be the complement

of σ, namely, σ′i = 1 if σi = 2 and σ′i = 2 if σi = 1, i = 1, . . . ,m. Let σ0 be understood as

σm and let σ′0 be understood as σ′m. Then for a fixed integer 0 ≤ r ≤ m/2,

#
{
σ ∈ {1, 2}m : #{j : σj = σ′j−1 = 1} = r

}
= 2

(
m

2r

)
. (8.52)

Proof. If σj−1 6= σj , we say that there is an alternation at j. There are
(
m
k

)
ways to

place k alternations. The positions of the alternations determine the whole σ up to the

replacement of 1’s into 2’s and vice-versa. Hence there are 2
(
m
k

)
possible σ’s. To relate k
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to r, note that the relation σj = σ′j−1 holds if and only if σj−1 6= σj . Since

r = #{j : σj = σ′j−1 = 1} = #{j : σj = σ′j−1 = 2},

we have

k = #{j : σj 6= σj−1} = #{j : σj = σ′j−1 = 1}+ #{j : σj = σ′j−1 = 2} = 2r.

Lemma 8.3.18. Let Yρ(t) be the limit process in (8.12). For m ≥ 3,

κm

(
n∑
i=1

ciYρ(ti)

)
=

[
(ρ+ 1)−1 + (2

√
ρ)−1

]m
+
[
(ρ+ 1)−1 − (2

√
ρ)−1

]m
[(ρ+ 1)−2 + (4ρ)−1]m/2

×

(
n∑
i=1

citi

)m
(m− 1)!

2
. (8.53)

Proof. Let

aρ =
(ρ+ 1)−1 + (2

√
ρ)−1√

2(ρ+ 1)−2 + (2ρ)−1
, bρ =

(ρ+ 1)−1 − (2
√
ρ)−1√

2(ρ+ 1)−2 + (2ρ)−1

Because X1 and X2 are two independent standardized χ2
1 random variables, we have

κm

(
n∑
i=1

ciYρ(ti)

)

= κm

(
n∑
i=1

citi(aρX1 + bρX2)

)
=

(
n∑
i=1

citi

)m
[κm(aρX1) + κm(bρX2)]

=

(
n∑
i=1

citi

)m
(amρ + bmρ )κ(X1) = 2m/2(amρ + bmρ )

(
n∑
i=1

citi

)m
(m− 1)!

2
.

The factor 2m/2(amρ + bmρ ) can be rewritten as the first factor in (8.53).

Note that a+ b ∼ A+ B for a, b, A,B > 0, if a ∼ A, b ∼ B and a/b ∼ λ, where λ is a

fixed number from 0 to ∞ (can be ∞), as will always be the case under our assumptions.
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We now prove Theorem 8.2.7. In view of Lemma 8.3.8, we only need to show the

convergence of the finite-dimensional distributions.

Proof of
f.d.d.−→ in Theorem 8.2.7. We can use a method of moments again because the limit∑n

i=1 ciYρ(ti) is a second-order polynomial in normal random variables. We analyze the

asymptotics of the cumulants in (8.13) with m ≥ 3 and A(γ1, γ2) in (8.21) as (γ1, γ2) →

(−1/2,−1/2). Lemma 8.3.11 yields

A(γ1, γ2)m ∼
[
(−γ1 − γ2 − 1)−2 + (−2γ1 − 1)−1(−2γ2 − 1)−1

]−m/2
, (8.54)

and Cm in (8.14) satisfies

Cm(γ1, γ2; t, c) ∼

(
n∑
i=1

citi

)m ∑
σ∈{1,2}m

m∏
j=1

(−γσj − γσ′j−1
− 1)−1, (8.55)

where we get the term (
∑n

i=1 citi)
m from

∑n
i1,...,im=1 ci1 . . . cim

∫ ti1
0 ds1 . . .

∫ tim
0 dsm.

Let r = #{j : σj = σ′j−1 = 1} = #{j : σj = σ′j−1 = 2}. Then using Lemma 8.3.17, we

can write

∑
σ∈{1,2}m

m∏
j=1

(−γσj − γσ′j−1
− 1)−1

=
∑

0≤r≤m/2

2

(
m

2r

)
(−2γ1 − 1)−r(−2γ2 − 1)−r(−γ1 − γ2 − 1)−(m−2r). (8.56)

Hence by (8.13), (8.54), (8.55) and (8.56), one has

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
∼ (m− 1)!

(
n∑
i=1

citi

)m ∑
0≤r≤m/2

(
m

2r

)
U(γ1, γ2;m, r). (8.57)

where

U(γ1, γ2;m, r) :=
(−2γ1 − 1)−r(−2γ2 − 1)−r(−γ1 − γ2 − 1)−(m−2r)

[(−γ1 − γ2 − 1)−2 + (−2γ1 − 1)−1(−2γ2 − 1)−1]m/2
.
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As (γ1, γ2)→ (−1/2,−1/2) and (γ1 + 1/2)/(γ2 + 1/2)→ ρ ∈ [0, 1], in the case ρ > 0, some

elementary calculation shows

U(γ1, γ2;m, r)→
[
1/(2
√
ρ)
]2r

[1/(ρ+ 1)]m−2r

[(ρ+ 1)−2 + (4ρ)−1]m/2
, (8.58)

and in the case ρ = 0,

U(γ1, γ2;m, r)→


1 if r = m/2 (m must be even in this case);

0 if r < m/2.

(8.59)

This expression (8.59) also coincides with the limit in (8.58) as ρ → 0. In the argument

below we omit the case ρ = 0, which can be either treated separately, or obtained by taking

the limit as ρ→ 0.

Set a = 1/(2
√
ρ) and b = 1/(ρ + 1). Using the identity (a + b)m + (a − b)m =∑

0≤r≤m/2 2
(
m
2r

)
a2rbm−2r, one can write following (8.57) and (8.58) that

κm

(
n∑
i=1

ciZγ1,γ2(ti)

)
→ (a+ b)m − (a− b)m

(a2 + b2)m/2

(
n∑
i=1

citi

)m
(m− 1)!

2
,

which is (8.53). Now use Lemma 8.3.18 to identify the limit process, concluding the

proof.

Additional results

We deal now with the following additional three points:

1. We show that the weak convergence proved in the previous theorems cannot be

strengthened to convergence in L2(Ω) nor even in probability;

2. We apply the results of Nourdin and Peccati [2013] and Eichelsbacher and Thäle

[2014] to determine the rate of convergence on the boundaries d and e1 (or e2);
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3. We include an alternate proof of Theorem 8.2.2 in the spirit of Remark 8.2.3 which

provides further insight on the convergence.

8.4 No convergence in L2(Ω)

The generalized Rosenblatt process Zγ1,γ2(t) was defined in (8.1) (see also (8.6)). We

have shown weak convergence (convergence in distribution) for the generalized Rosenblatt

process Zγ1,γ2(t) in previous theorems. Is it possible that some of these convergences are

actually in a stronger mode, say, in probability? We provide a negative answer here.

Theorem 8.4.1. In Theorem 8.2.1, 8.2.2, 8.2.5 and 8.2.7, the weak convergence cannot

be extended to convergence in L2(Ω), nor even to convergence in probability.

Remark 8.4.2. In fact, it suffices to show that the convergence cannot be extended to

convergence in L2(Ω). This is because, on a fixed order Wiener chaos, convergence in

L2(Ω) and convergence in probability are equivalent. See Schreiber [1969]. Alternatively,

to verify the equivalence, suppose that Xn is a sequence on a fixed order Wiener chaos,

and Xn converges in probability to X. The sequence is therefore tight. Then by, e.g,

Lemma 2.1(ii) of Nourdin and Rosinski [2014], supn E|Xn|p < ∞ for any p > 0, which

entails uniform integrability and hence convergence in L2(Ω).

To prove Theorem 8.4.1, it suffices to show that any sequence of

Zγ1,γ2 := Zγ1,γ2(1)

as (γ1, γ2) approach the boundaries is not a Cauchy sequence in L2(Ω). Let (α1, α2) and

(γ1, γ2) be in the region ∆ in (8.2). Then since Zγ1,γ2 is standardized, we have

E (Zα1,α2 − Zγ1,γ2)2 = 2− 2EZα1,α2Zγ1,γ2 . (8.60)

If (α1, α2) and (γ1, γ2) converge to the same point on the boundary, we may expect that

EZα1,α2Zγ1,γ2 → 1 and hence E (Zα1,α2 − Zγ1,γ2)2 → 0, which would prove Cauchy conver-
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gence. We will show, however, that

lim inf
(α1,α2),(γ1,γ2)→ boundary point

EZα1,α2Zγ1,γ2 < 1. (8.61)

In other words, we will show that there is no L2(Ω) continuity at the boundary.

First we compute the covariance in (8.60).

Lemma 8.4.3.

EZα1,α2Zγ1,γ2 =A(α1, α2)A(γ1, γ2)(α1 + α2 + γ1 + γ2 + 3)−1(α1 + α2 + γ1 + γ2 + 4)−1

×
[
IB(α1 + 1,−α1 − γ1 − 1)IB(α2 + 1,−α2 − γ2 − 1)

+IB(γ1 + 1,−α1 − γ1 − 1)IB(γ2 + 1,−α2 − γ2 − 1)

+IB(α2 + 1,−α2 − γ1 − 1)IB(α1 + 1,−α1 − γ2 − 1)

+IB(γ1 + 1,−α2 − γ1 − 1)IB(γ2 + 1,−α1 − γ2 − 1)
]
. (8.62)

Proof. We shall use the representation (8.6) of Zγ1,γ2(t) in order to apply the formula

EI2(f)I2(g) = 2〈f, g〉L2(R2)

for symmetric functions f and g (see (7.3.39) of Peccati and Taqqu [2011]). Using (8.18),

we get

2A(α1, α2)−1A(γ1, γ2)−1EZα1,α2Zγ1,γ2

=

∫
[0,1]2

ds

∫
R2

dx
[
(s1 − x1)α1

+ (s1 − x2)α2
+ + (s1 − x1)α2

+ (s1 − x2)α1
+

]
×
[
(s2 − x1)γ1+ (s2 − x2)γ2+ + (s2 − x1)γ2+ (s2 − x2)γ1+

]
=2

∫
[0,1]2

ds
[
(s2 − s1)α1+α2+γ1+γ2+2

+ IB(α1 + 1,−α1 − γ1 − 1)IB(α2 + 1, α2 − γ2 − 1)

+ (s1 − s2)α1+α2+γ1+γ2+2
+ IB(γ1 + 1,−α1 − γ1 − 1)IB(γ2 + 1,−α2 − γ2 − 1)

+ (s2 − s1)α1+α2+γ1+γ2+2
+ IB(α2 + 1,−α2 − γ1 − 1)IB(α1 + 1,−α1 − γ2 − 1)
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+ (s1 − s2)α1+α2+γ1+γ2+2
+ IB(γ1 + 1,−α2 − γ1 − 1)IB(γ2 + 1,−α2 − γ2 − 1)

]

Since α1 + α2 > −3/2 and γ1 + γ2 > −3/2, we have α1 + α2 + γ1 + γ2 + 2 > −1. Since

∫
[0,1]2

(s1 − s2)u+ds =

∫
[0,1]2

(s2 − s1)u+ds = (u+ 1)−1(u+ 2)−1

for u > −1, we get (8.62).

Proof of Theorem 8.4.1.

Case of Theorem 8.2.1. By (8.7), an element of the second chaos converges in distri-

bution to a Gaussian. That this cannot be extended to convergence in L2(Ω) follows from

the fact that {I2(f) : f ∈ L2(R2)} is a closed subspace in L2(Ω). Hence the L2(Ω) limit of

a double Wiener-Itô integral must still be a double Wiener-Itô integral, which means that

it cannot be Gaussian.

Case of Theorem 8.2.2. Let (α1, α2) → (−1/2, γ) and (γ1, γ2) → (−1/2, γ), where

γ ∈ (−1,−1/2). Assume in addition that the convergence speeds are comparable, that is,

(α1 + 1/2)/(γ1 + 1/2) ∼ r ∈ (0, 1). Then using (8.32) with m = 1, Lemma 8.3.11, and

(8.62), one has

EZα1,α2Zγ1,γ2 ∼(−2α1 − 1)1/2(−2γ1 − 1)1/2(2γ + 3)(γ + 1)IB(γ + 1,−2γ − 1)−1

× (2 + 2γ)−1(3 + 2γ)−1
[
2IB(γ + 1,−2γ − 1)(−α1 − γ1 − 1)−1

]
∼(−2α1 − 1)1/2(−2γ1 − 1)1/2

(−α1 − γ1 − 1)
∼ 2r1/2/(1 + r) < 1.

Case of Theorem 8.2.5. When ρ < 1, the limit in (8.10) involves a Gaussian component,

which by the same reason as in “Case of Theorem 8.2.1” implies that L2(Ω) convergence

cannot hold. We only need to consider the case ρ = 1.
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We therefore suppose that (α1, α2) → (−1/2,−1) and (γ1, γ2) → (−1/2,−1) and that

ρ = 1, that is by (8.9), that (α1 + 1/2)/(α2 + 1)→ 0 and (γ1 + 1/2)/(γ2 + 1)→ 0. Assume

in addition that (α1 + 1/2)/(γ1 + 1/2) ∼ (α2 + 1)/(γ2 + 1) ∼ r ∈ (0, 1). By (8.43) with

m = 1, Lemma 8.3.11, and (8.62), we have

EZα1,α2Zγ1,γ2

∼(α1 + α2 + 3/2)1/2(−2α1 − 1)1/2(α2 + 1)1/2(γ1 + γ2 + 3/2)1/2(−2γ1 − 1)1/2(γ2 + 1)1/2

× (α1 + α2 + γ1 + γ2 + 3)−1(−α1 − γ1 − 1)−1[(α2 + 1)−1 + (γ2 + 1)−1]

∼(α2 + 1)(−2α1 − 1)1/2(γ2 + 1)(−2γ1 − 1)1/2

(α2 + 1 + γ2 + 1)(−α1 − γ1 − 1)
[(α2 + 1)−1 + (γ2 + 1)−1]

∼2r1/2/(r + 1) < 1.

Case of Theorem 8.2.7. Suppose (α1, α2)→ (−1/2,−1/2) and (γ1, γ2)→ (−1/2,−1/2)

and that (α1 + 1/2)/(α2 + 1/2) ∼ (γ1 + 1/2)/(γ2 + 1/2) ∼ ρ, where ρ ∈ [0, 1]. Assume in

addition that (α1 + 1/2)/(γ1 + 1/2) ∼ (α2 + 1/2)/(γ2 + 1/2) ∼ r ∈ (0, 1). We apply (8.54)

with m = 1, (8.62) and Lemma 8.3.11. In this case, all beta functions in (8.62) blow up

and we get

EZα1,α2Zγ1,γ2 ∼
[
(−α1 − α2 − 1)−2 + (−2α1 − 1)−1(−2α2 − 1)−1

]−1/2

×
[
(−γ1 − γ2 − 1)−2 + (−2γ1 − 1)−1(−2γ2 − 1)−1

]−1/2 × 1

2

×
[
2(−α1 − γ1 − 1)−1(−α2 − γ2 − 1)−1 + 2(−α2 − γ1 − 1)−1(−α1 − γ2 − 1)−1

]
∼ 4r

(r + 1)2

(
(r + ρ)(1 + rρ) + (r + 1)2ρ

(1 + ρ)2 + 4ρ

)
(1 + ρ)2

(r + ρ)(1 + rρ)
,

which is close to zero if r is small. Thus (8.61) holds.

8.5 Convergence rate of marginal distribution on the boundaries

Rates of convergence of the marginal distribution of multiple Wiener-Itô integrals are

available when the limit is Gaussian or is a product of independent Gaussians. We can
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thus apply these rates when converging to the boundaries of the triangle, with some corners

excluded.

First we consider the convergence rate of the marginal distribution in the case of Theo-

rem 8.2.1 and 8.2.5 and the limit being Gaussian. We use the notation A � B, where A and

B are two nonnegative quantities, to denote that there exist constants c < C independent

of A and B such that cB ≤ A ≤ CB. Let dTV (X,Y ) denote the total variation distance

between the distributions of random variables X and Y , namely

dTV (X,Y ) = sup
S∈B(R)

|P (X ∈ S)− P (Y ∈ S)|,

where B(R) denotes the Borel sets on R.

In Nourdin and Peccati [2013] Theorem 1.2, the following result was established:

Lemma 8.5.1. Let {Fγ : γ ∈ G ⊂ Rk} be a family of random variables defined on a fixed-

order Wiener chaos satisfying EF 2
γ = 1, where G is an open set of indices. Suppose that

the third cumulant κ3(Fγ) and the fourth cumulant κ4(Fγ) converge uniformly to zero as

γ ∈ G approaches a set E ⊂ G (as the distance between the point γ and the set E converges

to zero). Then there exits a neighborhood N (E) of E in Rk, such that when γ ∈ N (E)∩G,

we have

dTV (Fγ , N) �M(Fγ), (8.63)

where N is a standard normal random variable and

M(Fγ) = max
(
|EF 3

γ |, |EF 4
γ − 3|

)
= max (|κ3(Fγ)|, |κ4(Fγ)|) . (8.64)

Remark 8.5.2. Though the theorem was originally stated in Nourdin and Peccati [2013]

for a sequence {Fn} with a discrete parameter n, examining the proof there one sees that

for (8.63) to hold, one only needs κ3(Fγ) and κ4(Fγ) to converge uniformly to zero, which

is implied by our statement of the theorem.

Remark 8.5.3. Earlier in Biermé et al. [2012], the same result (8.63) was established for
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the following distributional distance dB(·, ·):

dB(X,Y ) = sup
h∈U
{|Eh(X)− Eh(Y )|}, (8.65)

where U is the class of functions that are twice differentiable with continuous derivatives

satisfying ‖h′′‖∞ <∞.

(− 1
2 ,−

1
2 )

(− 1
2 ,−1)

(−1,− 1
2 )

N (Dε) ∩∆

Dε

Figure 8.6: Illustration of the neighborhood N (Dε) of Dε in Theorem 8.5.4

In the case of Theorem 8.2.1, we considered convergence to the boundary d through

the neighborhood N (Dε)∩∆ illustrated in Figure 8.6. Applying Lemma 8.5.1, we get the

following:

Theorem 8.5.4. Let Zγ1,γ2 = Zγ1,γ2(1), and let N be a standard normal random variable.

Then under the assumptions of Theorem 8.2.1, there exists a neighborhood N (Dε) of the

diagonal line segment Dε := {γ1 + γ2 + 3/2 = 0 : γ1, γ2 > −1 + ε}, such that when

(γ1, γ2) ∈ N (Dε) ∩∆, we2 have

dTV (Zγ1,γ2 , N) � (γ1 + γ2 + 3/2)3/2. (8.66)

Proof. Since N is Gaussian, we can apply Lemma 8.5.1. To do so, we need to compute the

cumulants κ3 and κ4 which are given in Proposition 8.3.1. We examine the relation (8.13)

2Since ∆ is an open set, N (Dε) ∩∆ does not contain the segment Dε.



242

of Proposition 8.3.1 with A = A(γ1, γ2) given in (8.21), m = 1, t = 1, and c = 1. The

factor Cm(γ1, γ2, 1, 1) in (8.14) is a positive continuous function with respect to (γ1, γ2).

This can be shown by the Dominated Convergence Theorem as in Lemma 8.3.4. Under the

assumption of Theorem 8.2.1, the parameter (γ1, γ2) is restricted away from boundary. So

Cm(γ1, γ2, 1, 1) is bounded below away from zero and bounded above away from infinity, and

so are the factors in (8.21) except [2(γ1 +γ2)+3]1/2, which goes to zero as γ1 +γ2 → −3/2.

We get

κm(Zγ1,γ2) � A(γ1, γ2)m � (γ1 + γ2 + 3/2)m/2, m ≥ 3. (8.67)

The maximum in (8.64) is then κ3(Fγ). Combining this with (8.63), we get (8.66).

From (8.67) and (8.63), it is the third cumulant that determines the rate of convergence

in the case of Theorem 8.2.1. When (γ1, γ2) is allowed to be close to the corner (−1/2,−1),

that is, in the case of Theorem 8.2.5 when ρ = 0, we will show that the fourth cumulant

may come into play in the rate of convergence.

Theorem 8.5.5. Let Zγ1,γ2 = Zγ1,γ2(1), and let N be a standard normal random variable.

Then under the assumptions of Theorem 8.2.5 when ρ = 0, that is when

−γ1 − 1/2 ∼ γ2 + 1, (8.68)

there exits a neighborhood N of (−1/2,−1), such that when (γ1, γ2) ∈ N ∩∆, we have3

dTV (Zγ1,γ2 , N) � (γ1 + γ2 + 3/2)3/2(γ2 + 1)−1
(
1 + L(γ1, γ2)

)
, (8.69)

as (γ1, γ2)→ (−1/2,−1), where

L(γ1, γ2) =
√

(−γ1 − 1/2)−1 − (γ2 + 1)−1 = o
(

(−γ1 − 1/2)−1/2
)

or o
(

(γ2 + 1)−1/2
)
.

(8.70)

3As before, since ∆ is an open set, N ∩∆ does not contain the limit point (−1/2,−1).
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Proof. First in view of (8.9) with ρ = 0, we have

V (γ1, γ2) := (γ1 + γ2 + 3/2)3/2(γ2 + 1)−1 → 0, as (γ1, γ2)→ (−1/2,−1).

By (8.13), (8.43), (8.50) with m = 3, and (8.68), we get for the third cumulant

κ3(Zγ1,γ2) � (−γ1 − 1/2)1/2(γ1 + γ2 + 3/2)3/2(γ2 + 1)−3/2 ∼ V (γ1, γ2). (8.71)

By (8.51) with m = 4 and also (8.68), we have for the fourth cumulant

κ4(Zγ1,γ2) �
(
γ1 + γ2 + 3/2

γ2 + 1

)2

∼V (γ1, γ2)

(
γ1 + γ2 + 3/2

(−γ1 − 1/2)(γ2 + 1)

)1/2

= V (γ1, γ2)L(γ1, γ2). (8.72)

Since max(x, y) � x+ y for x, y ≥ 0, we get

max [κ3(γ1, γ2), κ4(γ1, γ2)] � V (γ1, γ2) [1 + L(γ1, γ2)] .

We thus apply Lemma 8.5.1 to get (8.69). At last, note that (8.68) entails that

L(γ1, γ2) = (−γ1 − 1/2)−1/2

√
1− −γ1 − 1/2

γ2 + 1
= o

(
(−γ1 − 1/2)−1/2

)
or o

(
(γ2 + 1)−1/2

)
.

Remark 8.5.6. In view of Remark 8.5.3, Theorem 8.5.4 and 8.5.5 also hold if the distance

dTV (·, ·) is replaced by the distance dB(·, ·) defined by (8.65).

Remark 8.5.7. The rate of convergence to zero in (8.69) is always slower than that of

(8.66), which is expected since the corner (−1/2,−1) also belongs to the non-Gaussian

boundary.
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Remark 8.5.8. From (8.71) and (8.72), one has

κ4(Zγ1,γ2)

κ3(Zγ1,γ2)
�
√

(−γ1 − 1/2)−1 − (γ2 + 1)−1 = L(γ1, γ2),

which is the term (8.70) appearing in (8.69). Note that (−γ1 − 1/2)−1 > (γ2 + 1)−1 when

(γ1, γ2) ∈ ∆. Therefore in the case of Theorem 8.2.5, the fourth cumulant plays a role

in determining the rate of convergence as follows: if the fourth cumulant converges much

slower compared with the third cumulant, that is, if L(γ1, γ2)→∞, then this will slow the

rate of convergence in (8.69); if L(γ1, γ2) is asymptotically bounded, then both the third

and fourth cumulants behave like V (γ1, γ2).

Now we consider the marginal convergence rate in the case of Theorem 8.2.2 (see Figure

8.3). This theorem involves a non-Gaussian limit. For two random variables X and Y we

define the Wasserstein distance between their distributions to be

dW (X,Y ) = sup
h∈L
{|Eh(X)− Eh(Y )|},

where L is the class of 1-Lipschitz functions (h ∈ L if |h(x)−h(y)| ≤ |x−y|). The following

result follows from Eichelsbacher and Thäle [2014].

Lemma 8.5.9. Let Y = Z1Z2 where Zi’s are two independent standard normal variables

and let F = I2(f) be an element on the second-order Wiener chaos with EF 2 = 1. Then

there exists a constant C > 0 such that

dW (F, Y ) ≤ C
(

1 +
1

6
κ3(F )2 − 1

3
κ4(F ) +

1

120
κ6(F )

)1/2

. (8.73)

Proof. By Proposition 1.2(iii) of Gaunt [2014], the distribution of Z1Z2 is the symmetric

Variance-Gamma V G(1, 0, 1, 0), that is, V G(2r, 0, 1/λ, 0) with r = 1/2 and λ = 1. Inserting

these values of r and λ in Theorem 5.10(b) of Eichelsbacher and Thäle [2014] gives (8.73).
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Using the preceding result, we get the following bound for the convergence rate as

(γ1, γ2) approaches the boundary e1.

Theorem 8.5.10. Let Zγ1,γ2 = Zγ1,γ2(1), and let Y = Z1Z2 be as in Lemma 8.5.9. As

(γ1, γ2)→ (−1/2, γ), −1 < γ < −1/2,

we have

dW (Zγ1,γ2 , Y ) = O
(

(−γ1 − 1/2)1/2
)
. (8.74)

Proof. Following the proof of Theorem 8.2.2, one has by (8.34) that as (γ1, γ2)→ (−1/2, γ),

κ3(Zγ1,γ2) = O
(

(−γ1 − 1/2)1/2
)
. (8.75)

On the other hand by (8.37), we have the convergence κm(Zγ1,γ2)→ (m− 1)! for m even.

So κ4(Zγ1,γ2)→ 6 and κ6(Zγ1,γ2)→ 120, and hence

1 +
1

6
κ3(Zγ1,γ2)2 − 1

3
κ4(Zγ1,γ2) +

1

120
κ6(Zγ1,γ2)→ 1 + 0− 2 + 1 = 0.

We thus need to study the rate of convergence of the even-order cumulants κ4 and κ6. It

follows from Corollary 8.3.14 that

κ4(Zγ1,γ2) = 6 +O (−γ1 − 1/2) , κ6(Zγ1,γ2) = 120 +O (−γ1 − 1/2) . (8.76)

The proof is concluded by plugging (8.75) and (8.76) in (8.73).

Recently Arras et al. [2016] obtained the rate of convergence when the limit is
∑q

i=1 αiXi

where Xi’s are standardized chi-square random variables with one degree of freedom. Ap-

pying this result (Theorem 3.1 of Arras et al. [2016]) to the convergence of (γ1, γ2) ∈ ∆

to the corner (−1/2,−1/2) in the context of Theorem 8.2.7, they obtained as γ1 → −1/2
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that

dW (Zγ1,γ2 , Yρ(1)) = O((−γ1 − 1/2)1/2),

where Yρ(1) is as in Theorem 8.2.7. See Example 3.2 of Arras et al. [2016].

8.6 A constructive proof of Theorem 8.2.2

The method-of-moments proof of Theorem 8.2.2 gives little intuitive insight of the conver-

gence. Motivated by the observation made in Remark 8.2.3, we give an alternate proof

of Theorem 8.2.2. The proof is based on discretization which removes the singularities

at s = x1 and s = x2 of the integrand in (8.1), so that one is able to interchange the

integration orders between
∫ ′
R2 ·B(dx1)B(dx2) and

∫ t
0 ·ds. Then one uses the triangular

approximation described at the end of the proof.

The proof is based on several lemmas. We use below the notation (s, x)γN to denote:

(s, x)γN :=

(
[Ns]− [Nx] + 1

N

)γ
I{[Ns] > [Nx]}, γ < 0. (8.77)

Define also

[s− x]γN := (s− x+ 2/N)γ I{s > x+ 1/N} ≤ (s, x)γN ≤ (s− x)γ I{s > x} = (s− x)γ+.

(8.78)

Let Zγ1,γ2(t) be as in (8.1), and let

ZNγ1,γ2(t) = AN (γ1, γ2)

∫ ′
R2

∫ t

0
(s, x1)γ1N (s, x2)γ2N dsB(dx1)B(dx2), (8.79)

where the Brownian measure B(·) is the same as the one defining Zγ1,γ2(t), and where

AN (γ1, γ2) is chosen such that EZNγ1,γ2(1)2 = 1.

Lemma 8.6.1. For any t > 0, we have

lim
N→∞

lim sup
(γ1,γ2)→(−1/2,γ)

E
∣∣Zγ1,γ2(t)− ZNγ1,γ2(t)

∣∣2 = 0. (8.80)



247

Proof. We take for simplicity that t = 1, while the other cases can be proved similarly.

Note that

E
∣∣Zγ1,γ2(1)− ZNγ1,γ2(1)

∣∣2 = 2− 2EZγ1,γ2(1)ZNγ1,γ2(1).

So we need to show that

lim
N→∞

lim inf
(γ1,γ2)→(−1/2,γ)

EZγ1,γ2(1)ZNγ1,γ2(1) ≥ 1. (8.81)

Indeed, using the symmetrized kernel in (8.6), we have

EZγ1,γ2(1)ZNγ1,γ2(1) =
1

2
A(γ1, γ2)

1

2
AN (γ1, γ2)2!

∫
R2

dx1dx2

∫ 1

0

∫ 1

0
ds1ds2

× [(s1 − x1)γ1+ (s1 − x2)γ2+ + (s1 − x1)γ2+ (s1 − x2)γ1+ ]

× [(s2, x1)γ1N (s2, x2)γ2N + (s2, x1)γ2N (s2, x2)γ1N ]. (8.82)

By definition,

AN (γ1, γ2)−2 =
1

2

∫ 1

0

∫ 1

0
ds1ds2

∫
R2

dx1dx2[(s1, x1)γ1N (s1, x2)γ2N + (s1, x1)γ2N (s1, x2)γ1N ]

× [(s2, x1)γ1N (s2, x2)γ2N + (s2, x1)γ2N (s2, x2)γ1N ].

Applying the second inequality of (8.78) to (8.82), and using the normalization AN (γ1, γ2),

we have

EZγ1,γ2(1)ZNγ1,γ2(1) ≥ 1

2
A(γ1, γ2)AN (γ1, γ2)2AN (γ1, γ2)−2 =

A(γ1, γ2)

AN (γ1, γ2)
.

So (8.81) follows from the next lemma.

Lemma 8.6.2. Let the normalizations A(γ1, γ2) and AN (γ1, γ2) be as in (8.21) and (8.79).

Then

lim
N→∞

lim
(γ1,γ2)→(−1/2,γ)

A(γ1, γ2)

AN (γ1, γ2)
= 1, (8.83)
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where −1 < γ1, γ2 < −1/2.

Proof. By the second inequality of (8.78), we have

AN (γ1, γ2)−2 ≤ A(γ1, γ2)−2. (8.84)

By the first inequality of (8.78), we have

AN (γ1, γ2)−2 ≥1

2

∫ 1

0

∫ 1

0
ds1ds2

∫
R2

dx1dx2

(
[s1 − x1]γ1N [s1 − x2]γ2N + [s1 − x1]γ2N [s1 − x2]γ1N

)
×
(

[s2 − x1]γ1N [s2 − x2]γ2N + [s2 − x1]γ2N [s2 − x2]γ1N

)
=PN (γ1, γ2) +QN (γ1, γ2), (8.85)

where

PN (γ1, γ2) = 2

∫
0<s1<s2<1

ds1ds2

∫
R

[s1 − x1]γ1N [s2 − x1]γ1N dx1

∫
R

[s1 − x2]γ2N [s2 − x2]γ2N dx2,

and

QN (γ1, γ2) = 2

∫
0<s1<s2<1

ds1ds2

∫
R

[s1 − x1]γ1N [s2 − x1]γ2N dx1

∫
R

[s1 − x2]γ2N [s2 − x2]γ1N dx2.

In the integrals over R, the exponents of QN alternate where as those of PN are the same.

Note that for α, β ∈ (−1,−1/2) and 0 < s1 < s2 < 1, we have

∫
R

[s1 − x]αN [s2 − x]βNdx

=

∫ s1−1/N

−∞
(s1 − x+ 2/N)α(s2 − x+ 2/N)βdx

=

∫ ∞
0

(u+ 3/N)α(s2 − s1 + u+ 3/N)βdu (8.86)

≤
∫ ∞

0
uα(u+ s2 − s1)βdu = (s2 − s1)α+β+1IB(α+ 1,−α− β − 1),
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after setting u = s1 − x− 1/N . Thus the term QN from (8.85) satisfies

QN (γ1, γ2) ≤2(2γ1 + 2γ2 + 3)−1(2γ1 + 2γ2 + 4)−1

× IB(γ1 + 1,−γ1 − γ2 − 1)IB(γ2 + 1,−γ1 − γ2 − 1) = O(1). (8.87)

as (γ1, γ2)→ (−1/2, γ). The other term PN in view of (8.78) and (8.86) becomes

PN (γ1, γ2) =2

∫
0<s1<s2<1

ds1ds2

∫ ∞
0

(u+ 3/N)γ1(s2 − s1 + u+ 3/N)γ1du

×
∫ ∞

0
(u+ 3/N)γ2(s2 − s1 + u+ 3/N)γ2du.

Now in the second integral, use (u + 3/N)γ2 ≥ (s2 − s1 + u + 3/N)γ2 , and in the third

integral, replace u by u(s2 − s1) and then factor s2 − s1. One gets

PN (γ1, γ2) ≥2

∫
0<s1<s2<1

ds1ds2

∫ ∞
0

(s2 − s1 + u+ 3/N)2γ1du

× (s2 − s1)2γ2+1

∫ ∞
0

(
u+

3

N(s2 − s1)

)γ2 (
1 + u+

3

N(s2 − s1)

)γ2
du

Since
∫∞

0 (s2 − s1 + u+ 3/N)2γ1du = (−2γ1 − 1)−1(s2 − s1 + 3/N)2γ1+1, one has

PN (γ1, γ2) ≥2(−2γ1 − 1)−1

∫
0<s1<s2<1

ds1ds2(s2 − s1 + 3/N)2γ1+1(s2 − s1)2γ2+1

×
∫ ∞

0

(
u+

3

N(s2 − s1)

)γ2 (
u+

3

N(s2 − s1)
+ 1

)γ2
du =: RN (γ1, γ2).

(8.88)

As (γ1, γ2)→ (−1/2, γ), we have

(−2γ1 − 1)RN (γ1, γ2)→2

∫
0<s1<s2<1

ds1ds2(s2 − s1)2γ+1

×
∫ ∞

0

(
u+

3

N(s2 − s1)

)γ (
u+

3

N(s2 − s1)
+ 1

)γ
du.

As N →∞, by the Monotone Convergence Theorem, the right-hand side of the preceding
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line converges to

2

∫
0<s1<s2<1

ds1ds2(s2 − s1)2γ+1

∫ ∞
0

uγ(u+ 1)γdu

=(2γ + 3)−1(γ + 1)−1IB(γ + 1,−2γ − 1).

On the other hand, from (8.32) with m = 2 we have

A(γ1, γ2)2 ∼ (−2γ1 − 1)(2γ + 3)(γ + 1)IB(γ + 1,−2γ − 1)−1. (8.89)

Hence

lim
N→∞

lim
(γ1,γ2)→(−1/2,γ)

A(γ1, γ2)2RN (γ1, γ2) = 1 (8.90)

Combining (8.85), (8.87), (8.88) and (8.90) yields

lim inf
N→∞

lim inf
(γ1,γ2)→(−1/2,γ)

A(γ1, γ2)2

AN (γ1, γ2)2
≥ 1,

This with (8.84) yields (8.83).

We will now interchange the integrals
∫ t

0 ·ds and
∫ ′
R2 ·dx1dx2, and write

ZNγ1,γ2(t) = AN (γ1, γ2)

∫ ′
R2

[∫ t

0
(s, x1)γ1N (s, x2)γ2NB(dx1)B(dx2)ds

]
= AN (γ1, γ2)

∫ t

0

[∫ ′
R2

(s, x1)γ1N (s, x2)γ2NB(dx1)B(dx2)

]
ds, a.s., (8.91)

by the stochastic Fubini theorem (see Pipiras and Taqqu [2010] Theorem 2.1). It applies

since ∫ t

0

∫
R2

[
(s, x1)γ1N (s, x2)γ2N

]2
dx1dx2ds <∞. (8.92)

Relation (8.92) follows from the following lemma.
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Lemma 8.6.3. For any γ ∈ (−1,−1/2), t > 0 and N ∈ Z+, we have

sup
s∈[0,t]

∫
R

(s, x)2γ
N dx <∞.

Proof. In view of (8.77),

∫
R

(s, x)2γ
N dx =

1

N

∫
R

(
[Ns]− [Nx] + 1

N

)2γ

I{[Ns] > [Nx]} d(Nx)

= N−2γ−1
∑

−∞<i<[Ns]

([Ns]− i+ 1)2γ = N2γ−1
∞∑
k=2

k−2γ <∞

since γ < −1/2, where we set k = [Ns]− i+ 1. Since the last expression does not depend

on s, the conclusion of the lemma holds.

By the product formula of Wiener-Itô integrals (see, e.g., Nourdin and Peccati [2012]

Theorem 2.7.10), the process ZNγ1,γ2(t) in (8.91) can be rewritten as follows:

ZNγ1,γ2(t) = AN (γ1, γ2)

∫ t

0
ds×[∫

R
(s, x1)γ1NB(dx1)

∫
R

(s, x2)γ2NB(dx2)− E

∫
R

(s, x1)γ1NB(dx1)

∫
R

(s, x2)γ2NB(dx2)

]

Note that by the scaling property of Brownian motion, for j = 1, 2,

XN
γj (s) :=

∫
R

(s, x)
γj
NB(dx) =

∫
R

(
[Ns]− [Nx] + 1

N

)γj
I{[Ns] > [Nx]}B(dx)

f.d.d.
= N−γj−1/2

∑
−∞<i<[Ns]

([Ns]− i+ 1)γj εi,

where εi’s are i.i.d. standard normal random variables, and
f.d.d.
= means equal in finite-

dimensional distributions. Hence (recall that the Hurst index H = γ1 + γ2 + 2),

ZNγ1,γ2(t)
f.d.d.
= AN (γ1, γ2)

∫ t

0

[
XN
γ1(s)XN

γ2(s)− EXN
γ1(s)XN

γ2(s)
]
ds
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= AN (γ1, γ2)N−H
[Nt]∑
n=1

[Yγ1(n)Yγ2(n)− EYγ1(n)Yγ2(n)] +RN (t, γ1, γ2) (8.93)

where

Yγ(n) =
∑

−∞<i<n−1

(n− i)γεi =

∞∑
i=2

iγεn−i (8.94)

is a linear stationary sequence and

RN (t, γ1, γ2) =AN (γ1, γ2)N−H (Nt− [Nt])

×
(
Yγ1([Nt] + 1)Yγ2([Nt] + 1)− EYγ1([Nt] + 1)Yγ2([Nt] + 1)

)
. (8.95)

We first show that this preceding remainder term is negligible:

Lemma 8.6.4.

lim
N→∞

lim sup
(γ1,γ2)→(−1/2,γ)

ERN (t, γ1, γ2)2 = 0 (8.96)

Proof. Since Nt− [Nt] ≤ 1 and Yγ(n) is stationary, we can write

ERN (t, γ1, γ2)2 ≤ N−2HAN (γ1, γ2)2
[
EYγ1(0)2Yγ2(0)2 − (EYγ1(0)Yγ2(0))2

]
.

We have

EYγ1(0)Yγ2(0) =
∞∑
i=2

iγ1+γ2 , EYγj (0)2 =
∞∑
i=2

i2γj , j = 1, 2. (8.97)

By the diagram formula (see, e.g., Janson [1997] Theorem 1.36), we have for jointly cen-

tered Gaussian variables (Y1, Y2) that EY 2
1 Y

2
2 = 2 (EY1Y2)2 + EY 2

1 EY 2
2 . Expressing this as

EY 2
1 Y

2
2 − (EY1Y2)2 = (EY1Y2)2 + EY 2

1 EY 2
2 , one gets

ERN (t, γ1, γ2)2 ≤ N−2HAN (γ1, γ2)2

( ∞∑
i=2

iγ1+γ2

)2

+

( ∞∑
i=2

i2γ1

)( ∞∑
i=2

i2γ2

) . (8.98)

The first and last sums remain bounded as (γ1, γ2) → (−1/2, γ), but this is not the case
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for the second sum. Since the function x2γ1 is decreasing, we have for any integer k ≥ 0,

(−2γ1 − 1)−1(k + 2)2γ1+1 =

∫ ∞
2

(x+ k)2γ1dx ≤
∫ ∞

2
(x+ k)γ1xγ1dx

≤
∞∑
i=2

(i+ k)γ1iγ1 ≤
∞∑
i=2

i2γ1 ≤
∫ ∞

1
x2γ1dx = (−2γ1 − 1)−1. (8.99)

In particular,
∑∞

i=2 i
2γ1 explodes like (−2γ1 − 1)−1 as γ1 → −1/2. This, however, will be

compensated by AN (γ1, γ2)2, since by (8.83) and (8.89), we have AN (γ1, γ2) ∼ A(γ1, γ2) �

(−2γ1 − 1) as (γ1, γ2)→ (−1/2, γ). Hence (8.98) implies

lim sup
(γ1,γ2)→(−1/2,γ)

N2HERN (t, γ1, γ2)2 <∞,

which entails (8.96).

The following lemma is key:

Lemma 8.6.5. Let Yγ(n) be as in (8.94). As (γ1, γ2)→ (−1/2, γ), one has the following

joint convergence in distribution:

(
A(γ1, γ2)Yγ1(n), Yγ2(n)

)N
n=1

d→
(
σγW,Yγ(n)

)N
n=1

,

for any N ∈ Z+, where W is a standard normal random variable which is independent of

Yγ(n), and

σγ = (2γ + 3)1/2(γ + 1)1/2IB(γ + 1,−2γ − 1)−1/2. (8.100)

Proof. Since
(
A(γ1, γ2)Yγ1(n), Yγ2(n)

)N
n=1

is always a centered and jointly Gaussian vector,

we only need to show that its covariance structure converges to that of
(
σγW,Yγ(n)

)N
n=1

.

Let us first compute the covariance of A(γ1, γ2)Yγ1 . By (8.89) and (8.99), we have for

m ≥ n (similarly for m < n)

E [A(γ1, γ2)Yγ1(n)A(γ1, γ2)Yγ1(m)]
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=A(γ1, γ2)2E [Yγ1(n)Yγ1(m)]

∼(2γ + 3)(γ + 1)IB(γ + 1,−2γ − 1)−1(−2γ1 − 1)
∞∑
i=2

(i+m− n)γ1iγ1

∼(2γ + 3)(γ + 1)IB(γ + 1,−2γ − 1)−1 = σ2
γ .

Since the limit is independent of n, the limit process is indeed a fixed Gaussian random

variable, say σγW .

We now focus on the cross-covariance between A(γ1, γ2)Yγ1 and Yγ2 . We have for m ≥ n

(similarly for m < n) that

E [A(γ1, γ2)Yγ1(n)Yγ2(m)]

∼[(2γ + 3)(γ + 1)IB(γ + 1,−2γ − 1)−1(−2γ1 − 1)]1/2
∞∑
i=2

(i+m− n)γ1iγ → 0, (8.101)

because
∑∞

i=2 i
−1/2+γ < ∞. Thus we have asymptotic independence. Finally as γ2 → γ,

the covariance structure of the second term Yγ2 converges to that of Yγ . The proof is then

complete.

The following convergence of normalized sum of long-memory linear process to frac-

tional Brownian motion can be found in Giraitis et al. [2012] Corollary 4.4.1, which was

originally due to Davydov [1970].

Lemma 8.6.6. Let Yγ(n) be as in (8.94). Then as N →∞

ZNγ (t) := N−γ−2/3

[Nt]∑
n=1

Yγ(n)
f.d.d.−→ σ−1

γ Bγ+3/2(t)

where σγ is as in (8.100) and Bγ+3/2(t) is a standard fractional Brownian motion with

Hurst index γ + 3/2.

We are now ready to combine the last few lemmas into an alternate proof of Theorem

8.2.2.
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Proof of Theorem 8.2.2. Tightness still follows from Lemma 8.3.8. To prove the conver-

gence of the finite-dimensional distributions, namely, to prove that

Zγ1,γ2(t)
f.d.d.−→ WBγ+3/2 as (γ1, γ2)→ (−1/2, γ),

it is sufficient to show that the following triangular approximation relations hold (see, e.g.,

Lemma 4.2.1 of Giraitis et al. [2012]):

lim
N→∞

lim sup
(γ1,γ2)→(−1/2,γ)

E

∣∣∣∣Zγ1,γ2(t)− A(γ1, γ2)

AN (γ1, γ2)
[ZNγ1,γ2(t)−RN (t, γ1, γ2)]

∣∣∣∣2 = 0, (8.102)

A(γ1, γ2)

AN (γ1, γ2)
[ZNγ1,γ2(t)−RN (t, γ1, γ2)]

f.d.d.−→ σγWZNγ (t) as (γ1, γ2)→ (−1/2, γ), (8.103)

σγWZNγ (t)
f.d.d.−→ WBγ+3/2(t), as N →∞. (8.104)

The convergence (8.102) follows from Lemma 8.6.1, Lemma 8.6.2 and Lemma 8.6.4. For

the convergence (8.103), we have by (8.93), Lemma 8.6.5 and (8.101) that

A(γ1, γ2)

AN (γ1, γ2)
[ZNγ1,γ2(t)−RN (t, γ1, γ2)]

=N−H
[Nt]∑
n=1

[A(γ1, γ2)Yγ1(n)Yγ2(n)− EA(γ1, γ2)Yγ1(n)Yγ2(n)]

f.d.d.−→N−γ−3/2

[Nt]∑
n=1

[σγWYγ(n)− 0] = σγWZNγ (t).

Finally, (8.104) follows from Lemma 8.6.6.



Chapter 9

A unified approach to self-normalized block

sampling

The inference procedure for the mean of a stationary time series is usually quite different

under various model assumptions because the partial sum process behaves differently de-

pending on whether the time series is short or long-range dependent, or whether it has a

light or heavy-tailed marginal distribution. In the current chapter, we develop an asymp-

totic theory for the self-normalized block sampling, and prove that the corresponding block

sampling method can provide a unified inference approach for the aforementioned different

situations in the sense that it does not require the a priori estimation of auxiliary param-

eters. Monte Carlo simulations are presented to illustrate its finite-sample performance.

The R function implementing the method is available from the authors.

9.1 Introduction

Given samples X1, . . . , Xn from a stationary process {Xi}i∈Z with mean µ = E(X0), the

sample average X̄n = n−1
∑n

i=1Xi serves as a natural estimator for the population mean µ.

To conduct statistical inference on the mean µ such as hypothesis testing or the construction

of confidence intervals, one needs an asymptotic theory on the sample average for dependent

data. The development of such a theory has been an active area of research. Consider

first the classical case, where by assuming certain short-range dependence conditions, one



257

obtains the usual central limit theorem, that is,

n1/2(X̄n − µ)
d→ N(0, σ2), (9.1)

where
d→ denotes the convergence in distribution, and σ2 is the long-run variance which

typically is the sum of autocovariances of all orders. The short-range dependence conditions

mentioned above include, but are not limited to, the m-dependence condition of Hoeffding

and Robbins [1948], the strong mixing condition of Rosenblatt [1956] and its variants,

and the p-stability condition based on functional dependence measures of Wu [2005]; see

also Ibragimov and Linnik [1971], Peligrad [1996], Maxwell and Woodroofe [2000], Bradley

[2007], Wu [2011] and references therein. Once one has (9.1), an asymptotic 100(1− α)%

confidence interval of µ can be constructed as

[X̄n − n−1/2σq1−α/2, X̄n + n−1/2σq1−α/2] (9.2)

where q1−α/2 is the (1 − α/2)-th quantile of the standard normal distribution. However,

the implementation of (9.2) requires the estimation of a nuisance parameter σ, which

can itself be a challenging problem and often relies on techniques including tapering and

thresholding to achieve consistency; see for example Whitney and Kenneth [1987], Flegal

and Jones [2010], Politis [2011] and Zhang and Wu [2012] among others.

If the process (Xi)i∈Z is heavy-tailed (distributional tail behaving like x−α with α ∈

(1, 2)) so that the variance is infinite, one typically has

n1−1/α`(n)−1(X̄n − µ)
d→ Sα(σ, β, 0), (9.3)

where `(n) is a slowly varying function satisfying limn→∞ `(an)/`(n) = 1 for any a > 0,

and Sα(σ, β, 0) is the centered α-stable random variable with scale parameter σ > 0 and

skewness parameter β ∈ [−1, 1]. We refer the reader to the monographs by Samorodnitsky

and Taqqu [1994], Nolan [2015] and Resnick [2007] for an introduction. See also Adler



258

et al. [1998] for examples of heavy tails from finance, signal processing, networks, etc. Here

the use of (9.3) for constructing confidence interval as in (9.2) becomes more difficult due

to additional unknown parameters σ, α and β, as well as the unknown `(n).

There has been a considerable amount of research focusing on the situation where the

short-range dependence condition fails, and processes with long-range dependence (also

called “long memory” or “strong dependence”) has attracted a lot of attention in various

fields including econometrics, finance, hydrology and telecommunication among others; see

for example Mandelbrot and Wallis [1968], Ding et al. [1993], Leland et al. [1994] and Baillie

[1996]. We also refer the reader to the monographs by Doukhan et al. [2003], Giraitis et al.

[2012] and Beran et al. [2013] for an introduction. For long-range dependent processes, it

may be established that

n1−H`(n)−1(X̄n − µ)
d→ Y, (9.4)

where H ∈ (1/2, 1) is the Hurst index (or the long memory index), `(n) is a slowly varying

function, and Y is typically a random variable which can be expressed by a multiple Wiener-

Itô integral and is not necessarily Gaussian. The large sample theory of the form (9.4) has

been studied by Davydov [1970], Taqqu [1975], Dobrushin and Major [1979], Avram and

Taqqu [1987], Ho and Hsing [1997], Wu [2006] and Bai and Taqqu [2014a] among others.

Therefore, the asymptotic behavior of the sample average and thus the inference procedure

can become very different for long-range dependent processes, and the convergence rate in

(9.4) depends critically on the Hurst index H which characterizes the dependence strength.

Hence, in order to apply (9.4) for inference, unlike the case with short-range dependence

and light tail, one needs to estimate in addition the Hurst index H and possibly the slowly

varying function `(n), which can be quite nontrivial. Furthermore, the distribution of a

non-Gaussian Y (which also depends on H) has not been numerically evaluated in general.

For the special case of the Rosenblatt distribution where it is evaluated, see Veillette and

Taqqu [2013].

There has recently been a surge of attention in using some random normalizers to avoid,
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or reduce the number of nuisance parameters that need to be estimated for statistical

inference. For example, McElroy and Politis [2002] considered using the sample standard

deviation as the normalizer for inference on the mean of heavy-tailed linear processes that

satisfy the strong mixing condition; see also Romano and Wolf [1999] for the use of a similar

normalizer for independent observations. Lobato [2001], Shao [2010], Zhou and Shao [2013]

and Huang et al. [2015] used a normalization of the type

Dn =

n−1
n∑
k=1

(
k∑
i=1

Xi −
k

n

n∑
i=1

Xi

)2


1/2

(9.5)

for finite-variance short-range dependent time series. Fan [2010] used the normalizer Dn for

long-range dependent time series with finite variances. Results have also been obtained by

McElroy and Politis [2013] using a lag-window normalizer instead of Dn in (9.5). McElroy

and Politis [2007], moreover, considered the following non-centered stochastic volatility

model Xi = µ + σiZi, i ≥ 1, where {σi} and {Zi} are independent, {σi} is i.i.d. heavy-

tailed and {Zi} is a Gaussian process. They proposed to use a random normalizer involving

two terms that account for heavy-tailedness and long memory respectively. The term

in their normalizer which accounts for long memory requires the choice of an additional

tuning parameter. Therefore, it seems that the specific form of the normalization depends

critically on the particular time series that is being considered, and different normalizers

have been used in the literature to account for the heavy-tail and/or long-range dependent

characteristics of the time series.

The current chapter aims to provide a unified inference procedure by adopting the nor-

malizer Dn in (9.5) and developing an asymptotic theory using self-normalized block sums.

As observed by Shao [2011], self-normalization itself is not able to fully avoid the problem

of estimating the nuisance parameters, as the asymptotic distribution at least depends on

the unknown Hurst index H for long-range dependent processes. In order to provide a uni-

fied approach that does not rely on the estimation of any nuisance parameter to determine
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the strength of dependence or heavy-tailedness, certain nonparametric techniques such as

the block sampling1 must be utilized to obtain the asymptotic quantiles. However, this

requires developing an asymptotic theory on the self-normalized block sums for a general

class of processes. This task may be nontrivial if we want it to include processes with

long-range dependence and/or heavy-tails. Block sampling has been mainly studied in the

literature in the non-self-normalized setting, where the normalizer converges in probability

to a nonzero constant, thus simplifying the proof; see for example Hall et al. [1998] for non-

linear transforms of Gaussian processes, Nordman and Lahiri [2005] for linear processes,

and Zhang et al. [2013] for nonlinear transforms of linear processes. Jach et al. [2012]

applied block sampling to the model Xi = µ + σiZi, i ≥ 1, considered by McElroy and

Politis [2007] but with Zi replaced by g(Zi) where g is a possibly nonlinear function with

Hermite rank one. For more information on block sampling, see Sherman and Carlstein

[1996] and Lahiri [2003]. Betken and Wendler [2015] recently obtained interesting results

in the context of long-range dependence. They are briefly discussed in Section 9.3.2 (see

(9.58) below).

The current chapter considers self-normalized block sums using Dn in (9.5) as normal-

izer. As observed by Fan [2010], the development of an asymptotic theory in this case can

be very nontrivial even for Gaussian processes. Developing a rigorous proof is stated as an

open problem. The goal of this chapter is to develop such a proof for nonlinear functions of

Gaussian processes with either short or long-range dependence, and including heavy-tails.

The remaining of the chapter is organized as follows. Section 9.2 introduces the self-

normalized block sampling (SNBS) method, whose asymptotic theory is established in

Section 9.3. Section 9.4 contains examples. Monte Carlo simulations are carried out in

Section 9.5 to examine the finite-sample performance of the method.

1The following terms are used interchangeably in the literature: block sampling, subsampling, sampling
window method.
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9.2 Self-Normalized Block Sampling

Let X1, . . . , Xn be observations from a stationary process (Xi)i∈Z with mean µ = E(X0),

and denote by Sj,k =
∑k

i=j Xi, j ≤ k, its partial sums from j to k. Of particular interest is

S1,n =
∑n

i=1Xi. We propose using the self-normalized quantity

T ∗n =
S1,n − nµ

Dn
(9.6)

for making statistical inference on the mean µ, where Dn, defined in (9.5), can now be

written

Dn =

{
n−1

n∑
k=1

(
S1,k −

k

n
S1,n

)2
}1/2

. (9.7)

In order to make inference on µ, we need to know the distribution P (T ∗n ≤ x).

A first idea is to use the asymptotic distribution of (9.6). This would require knowing

the weak limit of the normalized partial sum process, namely,

{n−H`(n)−1(Sbntc − nµ), 0 ≤ t ≤ 1} ⇒ {Y (t), 0 ≤ t ≤ 1}, (9.8)

where t ∈ [0, 1], bntc denotes the largest integer not exceeding nt, and ⇒ denotes weak

convergence in Skorokhod space with suitable topology. By Lamperti [1962], if (9.8) holds,

then the process Y (t) is self-similar with stationary increments, with Hurst index2 0 <

H < 1(H-sssi), and with `(·) a slowly varying function. Recall that a process Y (t) is said

to be self-similar with Hurst index H if {Y (ct), t ≥ 0} has the same finite-dimensional

distributions as {cHY (t), t ≥ 0}, for any c > 0.

The most important example of (9.8) is when (Xi)i∈Z is short-range dependent and

admits finite variance, in which case one expects

{n−1/2(Sbntc − nµ), 0 ≤ t ≤ 1} ⇒ {σB(t), 0 ≤ t ≤ 1}, (9.9)

2We exclude the degenerate case H = 1.
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where B(·) is the standard Brownian motion, and σ2 > 0 is the long-run variance; see for

example, the invariance principle of Herrndorf [1984] under strong mixing, and also the

strong invariance principle of Wu [2007]. When {Xi} is short-range dependent but has

infinite variance with distributional tail regularly varying of order −α where α ∈ (1, 2),

one has typically

{n−1/α`(n)−1(Sbntc − nµ), 0 ≤ t ≤ 1} ⇒ {Lα,σ,β(t), 0 ≤ t ≤ 1}, (9.10)

where Lα,σ,β(t) is a centered α-stable Lévy process with scale parameter σ > 0 and skew-

ness parameter β ∈ [−1, 1]. See, for example, Skorokhod [1957], Avram and Taqqu [1992],

Tyran-Kamińska [2010a], Tyran-Kamińska [2010b] and Basrak et al. [2012] for the specifi-

cation of the corresponding Skorohod topology.

Under long-range dependence, the limit in (9.8) can be quite complicated. A typical

class of convergence in this case is

{n−H`(n)−1(Sbntc − nµ), 0 ≤ t ≤ 1} ⇒ {cZm,H(t), 0 ≤ t ≤ 1}, (9.11)

where 1/2 < H < 1, Zm,H(·) is the m-th order Hermite process which can be expressed by

a multiple Wiener-Itô integral (see, e.g., Dobrushin and Major [1979] and Taqqu [1979]),

and c is a constant depending on H, m and `(n). A Hermite process Zm,H(·) with m ≥ 2

is non-Gaussian, and when m = 1 it is the Gaussian process called fractional Brownian

motion, also denoted by BH(·). One can also consider the anti-persistent case H < 1/2,

where the limit can be more complicated than Zm,H(·) (see Major [1981]).

Applying the same normalization n−H`(n)−1 to both the numerator and denominator

of T ∗n in (9.6), one can establish as in Lobato [2001], via (9.8) and the Continuous Mapping

Theorem that as n→∞,

T ∗n =
n−H`(n)−1(S1,n − nµ)

n−H`(n)−1
{
n−1

∑n
k=1(S1,k − k

nS1,n)2
}1/2

d→ T :=
Y (1)

D
, (9.12)
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with

D =

[∫ 1

0
{Y (s)− sY (1)}2ds

]1/2

. (9.13)

Note that D > 0 almost surely. Indeed, if P (D = 0) > 0, then with positive probability

Y (s) = sY (1), which has locally bounded variation. This cannot happen by Theorem 3.3

of Vervaat [1985], since we assume H < 1.

In particular, in the short-range dependent case (9.9), one gets

T ∗n
d→ B(1)[∫ 1

0 {B(s)− sB(1)}2ds
]1/2

,

where the limit does not depend on any nuisance parameter. However, this nice property

no longer holds in the other cases (9.10) and (9.11), since Y (t) in either case involves

additional parameters. Therefore, except for short-range dependent light-tailed processes,

self-normalization itself is usually not able to fully avoid the problem of estimating the nui-

sance parameters, and we shall follow here Hall et al. [1998] and consider a block sampling

approach. See also Chapter 5 of Politis et al. [1999]. Let

T ∗i,bn =
Si,i+bn−1 − bnµ√

b−1
n
∑i+bn−1

k=i (Si,k − b−1
n (k − i+ 1)Si,i+bn−1)2

=:
Si,i+bn−1 − bnµ

Di,bn

, (9.14)

1 ≤ i ≤ n−bn+1, which is the block version of T ∗n in (9.6) for the subsampleXi, . . . , Xi+bn−1,

where bn denotes the block size. Observe that there is a considerable overlap between suc-

cessive blocks, since as i increases to i + 1, the subsample becomes Xi+1, . . . , Xi+bn , and

thus includes many of the same observations.

We consider using the empirical distribution function

F̂ ∗n,bn(x) =
1

n− bn + 1

n−bn+1∑
i=1

I(T ∗i,bn ≤ x), (9.15)

where I(·) is the indicator function, to approximate the distribution P (T ∗n ≤ x) of T ∗n in

(9.6). In practice, the mean µ in (9.14) is unknown and we shall replace it by the average
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X̄n of the whole sample, which turns (9.14) into

Ti,bn =
Si,i+bn−1 − bnX̄n√

b−1
n
∑i+bn−1

k=i (Si,k − b−1
n (k − i+ 1)Si,i+bn−1)2

, (9.16)

whose empirical distribution function is given by

F̂n,bn(x) =
1

n− bn + 1

n−bn+1∑
i=1

I(Ti,bn ≤ x). (9.17)

The asterisk in T ∗i,bn indicates that the centering involves the unknown population mean

µ, in contrast to Ti,bn , where the centering involves instead the sample average X̄n. We

call the above inference procedure involving using F̂n,bn(x) in (9.17) to approximate the

distribution of T ∗n in (9.6), the self-normalized block sampling (SNBS) method. One can

then construct confidence intervals or test hypotheses for the unknown population mean

µ. For instance, to construct a one-sided 100(1 − α)% confidence interval for µ, one gets

first the α-th quantile qα of the empirical distribution F̂n,bn(x) in (9.17). Since

1− α ≈ P (T ∗n ≥ qα) = P

(
S1,n − nµ

Dn
≥ qα

)
= P

(
µ ≤ X̄n − qαDn/n

)
,

where Dn is defined in (9.7), then the 100(1− α)% confidence interval is constructed as

(
−∞ , X̄n − qαDn/n

]
. (9.18)

The idea of using block sampling to approximate distributions of self-normalized quan-

tities is not new, and it has been applied by Fan [2010] and McElroy and Politis [2013] to

long-range dependent processes with finite variances. However, the aforementioned papers

did not provide a full theoretical justification for their inference procedure based on block

sampling, and as commented by Fan [2010] such a task can be very nontrivial even for

Gaussian processes and has been stated as an open problem. In addition, the aforemen-

tioned papers only considered the situation with finite variances, and therefore it has not
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been known whether one could unify the inference procedure for processes with long-range

dependence and/or heavy-tails.

Recently, Jach et al. [2012] considered this problem in the setting of stochastic volatility

models where the error term can be nicely decomposed into two independent factors, with

one being a function of long-range dependent Gaussian processes while the other being

i.i.d. heavy-tailed3. But in their paper, the nonlinear function is restricted to have Hermite

rank one and the choice of slowly varying functions is also greatly limited as neither log n

nor log log n are allowed. In addition, their random normalizer is specifically tailored to the

aforementioned stochastic volatility model, and involves two different terms to account for

the long-range dependent and heavy-tailed characteristics of the time series. Furthermore,

the term in their normalizer that accounts for long-range dependence also requires the

choice of an additional tuning parameter as in the estimation of the long-run variance for

short-range dependent processes. We also mention that the proof of Jach et al. [2012], which

relies on the θ-weak dependence, does not seem to be applicable in the current setting, since

using our random normalizer Dn in the denominator makes the self-normalized quantity a

non-Lipschitz function of the data.

The current chapter proposes to consider the use of (9.17) to provide a unified inference

procedure without the estimation of a nuisance parameter for a wide class of processes,

where the limit of the partial sum process can be a Brownian motion, an α-stable Lévy

process, a Hermite process or other processes. In Section 9.3, we develop an asymptotic

theory for the self-normalized block sums and establish the theoretical consistency of the

aforementioned method, namely,

|F̂n,bn(x)− P (T ∗n ≤ x)| → 0 (9.19)

in probability as n→∞.

3As noted in Section 9.4 below, we can recover the consistency result of Jach et al. [2012] by replacing
our normalization Dn by the one found in that paper.
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9.3 Asymptotic Theory

We establish the asymptotic consistency of self-normalized block sampling for the following

two classes of stationary processes: (a) nonlinear transforms of Gaussian stationary pro-

cesses (called Gaussian subordination), and (b) those satisfying strong mixing conditions.

The first allows for long-range dependence and non-central limits, while the second involves

short-range dependent processes. Both classes allow for heavy-tails with infinite variance.

Let D[0, 1] be the space of càdlàg (right continuous with left limits) functions defined on

[0, 1], endowed with Skorokhod’s M2 topology. The M2 topology is weaker than the other

topologies proposed by Skorokhod [1956], in particular, weaker than the most commonly

used J1 topology. A sequence of function xn(t) ∈ D[0, 1] converges to x(t) ∈ D[0, 1]

in M2 topology as n → ∞, if and only if limn supt1≤t≤t2 xn(t) = supt1≤t≤t2 x(t) and

limn inft1≤t≤t2 xn(t) = inft1≤t≤t2 x(t) for any t1, t2 at continuity points of x(t) (see state-

ment 2.2.10 of Skorokhod [1956]).

We consider the M2 topology instead of J1 since there are known examples in the

heavy tailed case where convergence fails under J1 but holds under M2 (see Avram and

Taqqu [1992], Tyran-Kamińska [2010b] and Basrak et al. [2012]). To apply the continuous

mapping argument, we need the following lemma.

Lemma 9.3.1. Integration on [0, 1] is a continuous functional for D[0, 1] under the M2

topology.

Proof. Suppose that xn(t) → x(t) in the M2 topology. For any partition T = {0 = t0 <

t1 < . . . < tk−1 < tk = 1}, define mi,n = infti−1≤t≤ti xn(t), Mi,n = supti−1≤t≤ti xn(t),

mi = infti−1≤t≤ti x(t) and Mi = supti−1≤t≤ti x(t), i = 1, . . . , k. Note that

k∑
i=1

mi,n(ti − ti−1) ≤
∫ 1

0
xn(t)dt ≤

k∑
i=1

Mi,n(ti − ti−1),

k∑
i=1

mi(ti − ti−1) ≤
∫ 1

0
x(t)dt ≤

k∑
i=1

Mi(ti − ti−1). (9.20)
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The function x(t) is Riemann integrable since, as an element in D[0, 1], it is a.e. continuous

and bounded on [0, 1]. Riemann integrability implies that for any ε > 0, one can choose a

partition T so that

0 ≤
k∑
i=1

Mi(ti − ti−1)−
k∑
i=1

mi(ti − ti−1) < ε. (9.21)

Modify the partition, if necessary, so that all the ti’s are at continuity points of x(t),

without changing (9.21). This is possible since x(t) has at most countable discontinuity

points and is bounded. By the characterization of convergence in D[0, 1] with M2 topology,

we have

lim
n

k∑
i=1

mi,n(ti − ti−1) =

k∑
i=1

mi(ti − ti−1),

lim
n

k∑
i=1

Mi,n(ti − ti−1) =
k∑
i=1

Mi(ti − ti−1). (9.22)

Combining (9.20), (9.21) and (9.22) concludes that lim supn |
∫ 1

0 xn(t)dt−
∫ 1

0 x(t)dt| ≤ ε.

9.3.1 Results in the Gaussian subordination case

Let

{Zi = (Zi,1, . . . , Zi,J), i ∈ Z} (9.23)

be an RJ -valued Gaussian stationary process satisfying EZi,j = 0 for any i, j. Define

Zqp = (Zp, . . . ,Zq) . (9.24)

We shall view Zqp as a vector of dimension J×(q−p+1) involving observations from time p to

time q. The covariance matrix of Zm1 will be written for convenience as a four-dimensional
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array involving i1, i2, j2, j2:

Σm =
(
γj1,j2(i2 − i1) := EZi1,j1Zi2,j2

)
1≤i1,i2≤m,1≤j1,j2≤J

. (9.25)

We assume throughout that Σm is non-singular for every m ∈ Z+. The cross-block covari-

ance matrix between Zm1 and Zk+m
k+1 is

Σk,m =
(
γj1,j2(i2 + k − i1) := EZi1,j1Zi2+k,j2

)
1≤i1,i2≤m,1≤j1,j2≤J

. (9.26)

Let ρ(·, ·) denote the canonical correlation (maximum correlation coefficient) between L2(Ω)

random vectors U = (U1, . . . , Up) and V = (V1, . . . , Vq). Let 〈·, ·〉 denote the inner product

in an Euclidean space of a suitable dimension. Then

ρ(U,V) = sup
x∈Rp,y∈Rq

∣∣∣Corr
(
〈x,U〉, 〈y,V〉

)∣∣∣ . (9.27)

Let ρk,m be the between-block canonical correlation:

ρk,m = ρ
(
Zm1 ,Z

k+m
k+1

)
. (9.28)

We now introduce the assumptions for the self-normalized block sampling procedure.

{Xi} is the stationary process (time series) we observe.

A1. Xi = G(Zi, . . . ,Zi−l) = G(Zii−l) with mean µ = EXi, where {Zi} is a vector-valued

stationary Gaussian process as in (9.23), and l is a fixed non-negative integer.

A2. We have weak convergence in D[0, 1] endowed with the M2 topology for the partial

sum: {
1

nH`(n)
(Sbntc − nµ), 0 ≤ t ≤ 1

}
⇒ {Y (t), 0 ≤ t ≤ 1} ,

for some nonzero H-sssi process Y (t), where 0 < H < 1 and `(·) is a slowly varying

function.
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A3. As n→∞, the block size bn →∞, bn = o(n), and satisfies

n∑
k=0

ρk,l+bn = o(n), (9.29)

where ρk,m is the between-block canonical correlation defined in (9.28).

Remark 9.3.1. The data-generating specification in A1 allows us to get a variety of limits

in A2, covering short-range dependence, long-range dependence, and heavy tails. When

the covariance function of X(n) is absolutely summable (short-range dependence), one

typically gets in A2 convergence to Brownian motion (see, e.g., Breuer and Major [1983],

Ho and Sun [1987] and Chambers and Slud [1989]). When the covariance of X(n) is

regularly varying of order between −1 and 0 (long-range dependence), one may get in A2

convergence to the Hermite-type processes (see, e.g., Taqqu [1975], Dobrushin and Major

[1979], Taqqu [1979] and Arcones [1994]).

Moreover, as shown in Sly and Heyde [2008] in the case J = 1, when G(·) is chosen such

that X(n) is short-range dependent and heavy-tailed, so that X(n) has infinite variance but

finite mean, one can obtain in A2, convergence to an infinite-variance α-stable Lévy process;

if X(n) is long-range dependent and heavy-tailed, then the limit may be a finite-variance

Hermite process, even though X(n) may have infinite variance. All these situations are

allowed under Assumptions A1–A3.

For sufficient conditions for Assumption A3 to hold, see Proposition 9.3.1 and Section

9.3.2.

Since the denominators in (9.12) are nonzero almost surely, Assumption A2, Lemma

9.3.1 and the Continuous Mapping Theorem imply the following (see Kallenberg [2006],

Corollary 4.5):

Lemma 9.3.2. T ∗i,bn in (9.14) converges in distribution to T in (9.12).

The following result allows us to relate the correlation of nonlinear functions to the

correlation of linear functions.
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Lemma 9.3.3. Let (Zi)i∈Z be a centered RJ -valued Gaussian stationary process as in (9.23),

and let Zqp be defined as in (9.24). Let FJm be the set of all functions F on RJm satisfying

EF (Zm1 )2 <∞. Then for k ≥ m, one has

sup
F,G∈FJm

∣∣∣Corr
(
F (Zm1 ), G(Zk+m

k+1 )
)∣∣∣ = ρ

(
Zm1 ,Z

k+m
k+1

)
= ρk,m. (9.30)

Proof. The equality is the well-known Gaussian maximal correlation equality. See, e.g.,

Theorem 1 of Kolmogorov and Rozanov [1960] or Theorem 10.11 of Janson [1997].

Our goal is to show that (9.19) holds, namely, F̂n,bn is a consistent estimator of P (T ∗n ≤

x). This will be a consequence of the following theorem.

Theorem 9.3.1. Assume that Assumptions A1–A3 hold. Let F (x) be the CDF (cumulative

distribution function) of T in (9.12), and let F̂n,bn(x) be as in (9.17). As n→∞, we have

F̂n,bn(x)
p→ F (x), x ∈ C(F ), (9.31)

where C(F ) denotes the set of continuity points of F (x). If F (x) is continuous, then (9.31)

can be strengthened to

sup
x

∣∣∣F̂n,bn(x)− F (x)
∣∣∣→ 0 in probability. (9.32)

Proof.

Step 1. Let F̂ ∗n,bn(x) be as in (9.15). To prove (9.31), we first show that

F̂ ∗n,bn(x)
p→ F (x), x ∈ C(F ), (9.33)

where we have replaced F̂n,bn(x) by F̂ ∗n,bn(x). A bias-variance decomposition yields:

E

([
F̂ ∗n,bn(x)− F (x)

]2
)

= [EF̂ ∗n,bn(x)]2 − E[2F (x)F̂ ∗n,bn(x)] + F (x)2 + E[F̂ ∗n,bn(x)2]− [EF̂ ∗n,bn(x)]2
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=
[
EF̂ ∗n,bn(x)− F (x)

]2
+
[
E[F̂ ∗n,bn(x)2]− [EF̂ ∗n,bn(x)]2

]
=
[
P (T ∗i,bn ≤ x)− P (T ≤ x)

]2
+ Var

[
F̂ ∗n,bn(x)

]
.

By Lemma 9.3.2, the squared bias [P (T ∗i,bn ≤ x) − P (T ≤ x)]2 converges to zero for

x ∈ C(F ) as bn → ∞. We thus need to show that Var[F̂ ∗n,bn(x)] → 0. By the stationarity

of {Xi}, which implies the stationarity of {T ∗i,bn} viewed as a process indexed by i, one has

Var[F̂ ∗n,bn(x)] = Var

[
1

n− bn + 1

n−bn+1∑
i=1

I{T ∗i,bn ≤ x}

]

=
1

(n− bn + 1)2

n−bn+1∑
i,j=1

Cov
[
I{T ∗i,bn ≤ x}, I{T

∗
j,bn ≤ x}

]
≤ 2

n− bn + 1

n∑
k=0

∣∣Cov
[
I{T ∗1,bn ≤ x}, I{T

∗
k+1,bn ≤ x}

]∣∣ , (9.34)

since for any covariance function γ(·) of a stationary sequence, we have

p∑
i,j=1

|γ(i− j)| ≤
∑
|k|<p

(p− |k|)|γ(k)| ≤ 2p

p∑
k=0

|γ(k)|.

In view of Assumption A1, Xi depends on Zi, . . . ,Zi−l. By (9.14), T ∗i,bn is a function of

Xi, . . . , Xi+bn−1. Hence T ∗1,bn depends not only on Z1, . . . ,Zbn , but also on Z1−l, . . . ,Z0,

and T ∗k+1,bn
depends on Zk+1−l, . . . ,Zk+bn . We shall now apply Lemma 9.3.3 with the same

k and m = l + bn. Then when k ≥ l + bn, one has

∣∣Cov[I{T ∗1,bn ≤ x}, I{T
∗
k+1,bn ≤ x}]

∣∣ ≤ 1

4

∣∣Corr[I{T ∗1,bn ≤ x}, I{T
∗
k+1,bn ≤ x}]

∣∣ ≤ 1

4
ρk,bn+l

(9.35)
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where we have used the following fact4: if 0 ≤ X ≤ 1, then Var[X] ≤ 1/4. We have

Var[F̂ ∗n,bn(x)] ≤ 1

2(n− bn + 1)

n∑
k=0

ρk,bn+l, (9.36)

which converges to zero because of Assumption A3. Hence F̂ ∗n,bn(x)
p→ F (x) for x ∈ C(F ).

Step 1 of the proof is now complete.

Step 2. We now show that

F̂n,bn(x)
p→ F (x) for x ∈ C(F ),

that is, we go from (9.33) to (9.31). To do so, we follow the proof of Theorem 11.3.1 of

Politis et al. [1999], and express (9.17) as

F̂n,bn(x) =
1

n− bn + 1

n−bn+1∑
i=1

I{T ∗i,bn ≤ x+ bn(X̄n − µ)/Di,bn}, (9.37)

where Di,bn is as in (9.14). The goal is to show that bn(X̄n − µ)/Di,bn is negligible. For

ε > 0, define

Rn(ε) =
1

n− bn + 1

n−bn+1∑
i=1

I{bn(X̄n − µ)/Di,bn ≤ ε} (9.38)

=
1

n− bn + 1

n−bn+1∑
i=1

I{(bHn `(bn))−1Di,bn ≥ ε−1bn(X̄n − µ)(bHn `(bn))−1}.

Since Rn(ε) is an average of indicators, we have Rn(ε) ≤ 1. Our goal is to show that

Rn(ε)
p→ 1. Note that as n→∞,

Di,bn

bHn `(bn)
=

1

bHn `(bn)

(
b−1
n

i+bn−1∑
k=i

(
Si,k − b−1

n (k − i− 1)Si,i+bn−1

)2
)1/2

converges in distribution to D in (9.13) by Assumption A2 and continuous mapping. More-

4If 0 ≤ X ≤ 1, then µ = EX ∈ [0, 1], EX2 ≤ µ and Var[X] ≤ µ − µ2 is maximized at µ = 1/2, so that
Var[X] ≤ 1/4 (for more general results, see Dharmadhikari and Joag-Dev [1989], Lemma 2.2).
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over, since bn = o(n), H < 1 and n(X̄n − µ)n−H`(n)−1 converges in distribution to Y (1)

by Assumption A2, we have

bn(X̄n − µ)(bHn `(bn))−1 = n(X̄n − µ)n−H`(n)−1 nH−1`(n)

bH−1
n `(bn)

p→ 0.

Hence for any δ > 0, with probability tending to 1 as n→∞, one has

1 ≥ Rn(ε) ≥ 1

n− bn + 1

n−bn+1∑
i=1

I{(bHn `(bn))−1Di,bn ≥ δε−1}. (9.39)

Since as T ∗i,bn in Step 1, Di,bn is also a function of Xi, . . . , Xi+bn−1, we can follow a same

argument as in Step 1, replacing T ∗i,bn by (bHn `(bn))−1Di,bn to obtain a similar result as in

(9.33), namely that the empirical distribution of (bHn `(bn))−1Di,bn converges in probability

to that of D at all points of continuity of the distribution of D. Therefore

1

n− bn + 1

n−bn+1∑
i=1

I{(bHn `(bn))−1Di,bn ≥ δε−1} p→ P (D ≥ δε−1) (9.40)

for δε−1 at continuity point of the CDF of D. Since P (D > 0) = 1, we can choose δ small

enough to make P (D ≥ δε−1) as close to 1 as desired. In view of (9.39) and (9.40), we

conclude that as n→∞,

Rn(ε)
p→ 1 (9.41)

for any ε > 0. Now notice that each summand in the sum (9.37) satisfies

I{T ∗i,bn ≤ x+ bn(X̄n − µ)/Di,bn}

=
[
I{T ∗i,bn ≤ x+ bn(X̄n − µ)/Di,bn}

][
I{bn(X̄n − µ)/Di,bn ≤ ε}+ I{bn(X̄n − µ)/Di,bn > ε}

]
≤I{T ∗i,bn ≤ x+ ε}+ I{bn(X̄n − µ)/Di,bn > ε}, (9.42)
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so that by plugging these inequalities in (9.37) and using (9.38), we get

F̂n,bn(x) ≤ F̂ ∗n,bn(x+ ε) + 1−Rn(ε).

But by (9.41), Rn(ε)
p→ 1. So for any γ > 0, one has

F̂n,bn(x) ≤ F̂ ∗n,bn(x+ ε) + γ

with probability tending to 1 as n → ∞. We can now use (9.33) to replace F̂ ∗n,bn(x + ε)

by F (x + ε), so that for arbitrary γ′ > γ, and for any x + ε ∈ C(F ), one has F̂n,bn(x) ≤

F (x+ε)+γ′ with probability tending to 1 as n→∞. Now letting ε ↓ 0 through x+ε ∈ C(F )

and using the continuity of F (·) at x, one gets with probability tending to 1 that

F̂n,bn(x) ≤ F (x) + γ′′, x ∈ C(F ), (9.43)

for any γ′′ > γ′.

A similar argument, which replaces (9.42) by

I{Ti,bn ≤ x} ≥ I{T ∗i,bn ≤ x− ε} − I{bn(X̄n − µ)/Di,bn < −ε},

will show that for any γ′′ > 0, with probability tending to 1,

F̂n,bn(x) ≥ F (x)− γ′′, x ∈ C(F ). (9.44)

Combining (9.43) and (9.44), one gets

P (|F̂n,bn(x)− F (x)| ≤ γ′′)→ 1

as n→∞, and thus (9.31) holds.

Step 3. We now show (9.32). If F (x) is continuous, then by the already established
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(9.31), we have F̂n,bn(x) → F (x) in probability for any x ∈ R. Let ni be an arbitrary

subsequence, one can then choose a further subsequence of ni, still denoted as ni, so that

F̂ni(x)→ F (x) almost surely for all rational x by a diagonal subsequence argument. Then

by Lemma A9.2 (ii) of Gut [2006], supx∈R |F̂ni(x)−F (x)| → 0 almost surely, and therefore

supx∈R |F̂n(x)− F (x)| → 0 in probability. Hence (9.32) is proved.

Consistency (9.19) is a simple corollary of Theorem 9.3.1.

Corollary 9.3.1. Assume that Assumptions A1–A3 hold. Then as n→∞,

|F̂n,bn(x)− P (T ∗n ≤ x)| → 0 in probability. (9.45)

for x ∈ C(F ). If F (x) is continuous, then the preceding convergence can be strengthened

to

sup
x∈R
|F̂n,bn(x)− P (T ∗n ≤ x)| → 0 in probability. (9.46)

Proof. The first result (9.45) follows directly from the triangle inequality

|F̂n,bn(x)− P (T ∗n ≤ x)| ≤ |F̂n,bn(x)− F (x)|+ |P (T ∗n ≤ x)− F (x)|,

where x ∈ C(F ) and F (x) = P (T ≤ x), by combining Theorem 9.3.2 or 9.3.1 with (9.12).

For the second result (9.46), one uses also the fact that (9.12) implies supx∈R |P (T ∗n ≤

x) − F (x)| → 0 as n → ∞ if F (x) is continuous (see again Lemma A9.2 (ii) of Gut

[2006]).

Bai and Taqqu [2015e] recently proved the following proposition, showing that the

bound (9.29) holds for a large class of models with long-range dependence. Thus, for

these models, one has the freedom to choose any bn = o(n), irrespective of the long-range

dependence parameter H.

Proposition 9.3.1 (Bai and Taqqu [2015e], Theorem 2.2 and 2.3). Consider the case J = 1.
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Suppose that the spectral density of the underlying Gaussian {Zi} is given by

f(λ) = fH(λ)f0(λ),

where fH(λ) = |1 − eiλ|−2H+1, 1/2 < H < 1, and f0(λ) is a spectral density which corre-

sponds to a covariance function (or Fourier coefficient) γ0(n) =
∫ π
−π f0(λ)einλdλ. Assume

that the following hold:

(a) There exists c0 > 0 such that f0(λ) ≥ c0 for all λ ∈ (−π, π];

(b)
∑∞

n=−∞ |γ0(n)| <∞;

(c) γ0(n) = o(n−1).

Then the condition (9.29) in Assumption A3 holds if bn = o(n). The result extends to the

case where the underlying Gaussian {Zi} is J-dimensional with independent components.

In Proposition 9.3.1, fH(λ) is the spectral density of a FARIMA(0, d, 0) sequence with

d = H − 1/2, and f0(λ) is the spectral density of a sequence with short-range dependence.

Under the assumptions in Proposition 9.3.1, the spectral density f(λ) cannot have a

slowly varying factor which diverges to infinity or converges to zero at λ = 0, because f0(λ)

is bounded away from infinity and zero. For H ∈ (1/2, 1), the FARIMA(p, d, q) model with

d = H−1/2 and the fractional Gaussian noise model satisfy the assumptions of Proposition

9.3.1. See Examples 2.1 and 2.2 of Bai and Taqqu [2015e].

We thus have the following result which we formulate for simplicity in the univariate

case J = 1.

Corollary 9.3.2. Assume that Assumptions A1-A2 hold with J = 1, and the underlying

Gaussian {Zi} satisfies the assumptions in Proposition 9.3.1. If bn → ∞ and bn = o(n),

then the conclusions of Theorem 9.3.1 and Corollary 9.3.1 hold.
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9.3.2 Further analysis of Assumption A3

In this section, we discuss the critical Assumption A3, which involves the covariance struc-

ture of the underlying Gaussian {Zi}. In particular, we shall give the general bound (9.49)

below for the canonical correlation ρk,m in (9.28), and discuss how it relates to Assumption

A3. As noted in Proposition 9.3.1, however, this bound, in the long memory case, can be

improved substantially so as to provide more flexibility on the choice of the block size bn.

To state this general bound, define

Mγ(k) = max
n>k

max
1≤j1,j2≤J

|γj1,j2(n)|, (9.47)

and

λm = the minimum eigenvalue of Σm. (9.48)

Note that λm > 0 since Σm is assumed to be positive definite.

Lemma 9.3.4. Let ρk,m be as in (9.28), Mγ(k) be as in (9.47) and λm be as in (9.48). We

have the bound

ρk,m ≤ min

{
Jm

M(k −m)

λm
, 1

}
. (9.49)

Proof. Let x and y be (column) vectors in RJm. Note that each Zm1 = (Z1, · · · ,Zm) and

Zk+m
k+1 = (Zk+1, · · · ,Zk+m) are Jm-dimensional Gaussian vectors translated by k units in

the time index. Therefore by (9.27),

ρk,m = ρ
(
Zm1 ,Z

k+m
k+1

)
= sup

x,y∈RJm

E
[
〈x,Zm1 〉〈y,Z

k+m
k+1 〉

]
(

Var[〈x,Zm1 〉]
)1/2(

Var[〈y,Zk+m
k+1 〉]

)1/2

= sup
x,y∈RJm

xTΣk,my√
xTΣmx

√
yTΣmy

, (9.50)

where Σm is as in (9.25), Σk,m is as in (9.26). By relations 6.58(a) and 6.62(a) in Seber
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[2008], one has

ρk,m = sup
x,y∈RJm

∣∣xTΣk,my
∣∣√

xTΣmx
√

yTΣmy
≤ sup

x,y∈RJm

1

λm

∣∣xTΣk,my
∣∣

‖x‖‖y‖
≤ 1

λm
σk,m, (9.51)

where λm is the smallest eigenvalue of Σm, and σk,m is the maximum singular value5 of

Σk,m. By Seber [2008] 4.66(b) and 4.67(b), σk,m is bounded by the linear size of the matrix

Σk,m times the maximum absolute value of all the elements of the matrix. Since the matrix

Σk,m has linear size Jm, we have

σk,m ≤ Jm max
1≤i1,i2≤m

max
1≤j1,j2≤J

|γj1,j2(i2 + k − i1)|

≤ Jm max
n>k−m

max
1≤j1,j2≤J

|γj1,j2(n)| = JmMγ(k −m).

The bound (9.49) is then obtained by noting that ρk,m ≤ 1 in view of (9.30).

Example 9.3.2. Consider the important scalar case J = 1, where Zi = Zi. Denote the

covariance function of {Zi} by γ(n) and its spectral density by f(ω). In this case, it is

known that Σm is non-singular for any m if limn→∞ γ(n) = 0 (see Proposition 5.1.1 of

Brockwell and Davis [1991]), and that the minimum eigenvalue λm satisfies

λm ≥ 2π ess infωf(ω), and lim
m→∞

λm = 2π ess infωf(ω), (9.52)

where “ess inf” denotes the essential infimum with respect to Lebesgue measure on [−π, π)

(see Grenander and Szegö [1958], Chapter 5.2). If J = 1, Mγ(k) also reduces to

Mγ(k) = max
n>k
|γ(n)|. (9.53)

Remark 9.3.3. Consider the vector case but suppose that {Zi,1}, . . . , . . . , {Zi,J} are mu-

5Note that Σk,m is not a symmetric matrix. The square of its singular values are the eigenvalues of
ΣTk,mΣk,m, which is symmetric and non-negative definite.
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tually independent, i.e., γj1,j2(n) = γj1,j2(n)I{j1 = j2}. Let

Γm,j = (γj,j(i1 − i2))1≤i1,i2≤m .

In this case, we have a block-diagonal Σm = diag(Γm,1, . . . ,Γm,J). Let

Γk,m,j = (γj,j(i2 + k − i1))1≤i1,i2≤m .

We also have a block-diagonal Σk,m = diag(Γk,m,1, . . . ,Γk,m,J). Let ρk,m,j be the between-

block canonical correlation ρ(Zm1,j ,Z
m
k,j) in component j, j = 1, . . . , J . The block-diagonal

structure implies that

ρk,m = max{ρk,m,j , j = 1, . . . , J}.

Proposition 9.3.2. Assumption A3 holds if bn = o(n) and

n∑
k=0

min

{
bn

λbn+l
Mγ(k), 1

}
= o(n). (9.54)

Proof. In view of Lemma 9.3.4, we have

n∑
k=0

ρk,bn+l ≤ (bn + l) +

n∑
k=bn+l

min

{
Jbn

M(k − bn − l)
λbn+l

, 1

}
= o(n)

since bn = o(n). Hence Assumption A3 holds.

Implications of Proposition 9.3.2.

We discuss here the implications of Condition (9.54) in various specific situations. This

discussion is restricted to the case J = 1 which is of most interest. This discussion can

be easily extended to the case of independent components via the observation made in

Remark 4.6.15. Let c, C > 0 be generic constants whose value can change from expression

to expression. The notation a � b means cb ≤ a ≤ Cb for some 0 < c < C. Assume

throughout that the covariance γ(n) → 0 and bn = o(n) as n → ∞. We distinguish two
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cases: ess infωf(ω) > 0 and ess infωf(ω) = 0.

1. Assume first ess infωf(ω) > 0.

In view of (9.52), the minimum eigenvalue λm is bounded below away from zero, and

hence Condition (9.54) holds if

bn

n∑
k=0

Mγ(k) = o(n), (9.55)

where Mγ(k) is expressed as (9.53). Consider the case
∑∞

k=0Mγ(k) < ∞, which implies

the typical short-range dependence condition:
∑∞

k=1 |γ(k)| <
∑∞

k=0Mγ(k) < ∞. Then

(9.55) reduces to bn = o(n). We get in particular:

Corollary 9.3.3. Suppose that ess infωf(ω) > 0, and |γ(n)| ≤ dn, where dn is non-increasing

and summable (typically, dn = cn−β for some constant c > 0 and β > 1). If bn = o(n),

then Assumption A3 holds.

Proof. |γ(k)| ≤ dk implies Mγ(k) ≤ dk, and hence
∑∞

k=0Mγ(k) <∞.

Consider now the situation relevant to long-range dependence:

γ(k) = k2H−2L(k), 1/2 < H < 1, (9.56)

where L(k) is a slowly varying function at infinity. By Theorem 1.5.3 of Bingham et al.

[1989], Condition (9.56) implies thatMγ(k) ∼ k2H−2L(k), which entails that
∑n

k=0Mγ(k) ≤

cn2H−1L(n). Thus (9.55) holds if

bn = o(n2−2HL(n)−1). (9.57)

So, the larger H, the smaller the block size bn.

Corollary 9.3.4. Suppose that ess infωf(ω) > 0, and |γ(n)| ≤ n2H−2L(n), where 1/2 <

H < 1 and L is slowly varying. If bn = o(n2−2HL(n)−1), then Assumption A3 holds.
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The case |γ(k)| ≤ k2H−2L(k) also encompasses the seasonal long memory situations

(see, e.g., Haye and Viano [2003]), where γ(k) oscillates within a power-law envelope.

In the long-range dependent case, Betken and Wendler [2015] obtained recently a bound

for ρk,m in (9.28) using a result of Adenstedt [1974] under some additional assumptions.

Their bound allows (9.29) to hold under the block size condition

bn = o(n3/2−H−ε) (9.58)

with arbitrarily small ε > 0. The condition (9.58) is better than (9.57) for each H, and

bn = O(n1/2) is always allowed.

We have also seen that if the model satisfies the assumptions of Proposition 9.3.1, one

can choose

bn = o(n),

irrespective of the value of H ∈ (1/2, 1).

2. Assume now ess infωf(ω) = 0.

As mentioned in (9.52), the smallest covariance eigenvalue λm → ess infωf(ω) = 0 as

m → ∞. The rate of convergence has been investigated by a number of authors. See,

e.g., Kac et al. [1953], Pourahmadi [1988], Serra [1998], Tilli [2003] and Novosel’tsev and

Simonenko [2005]. It involves the order of the zeros of f(ω). We say f(ω) has a zero of

order ν > 0 at ω = ω0 if f(ω) � |ω − ω0|ν . Roughly speaking, the rate at which λm

converges to zero follows the highest order of the zeros of f(ω), and the rate of convergence

to zero cannot be faster than exponential:

λm ≥ e−cm (9.59)

for some c > 0 (see Pourahmadi [1988] and Tilli [2003]). Let us focus on the situation

where f(ω) has a finite number of zeros of polynomial orders. Specifically, suppose that

f(ω) has zeros of order ν1, . . . , νp at p distinct points ω1, . . . , ωp, and f(ω) stays positive
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outside arbitrary neighborhoods of ω1, . . . , ωp. Then by Theorem 2.2 of Novosel’tsev and

Simonenko [2005], one has λm � m−ν where

ν = max(ν1, . . . , νp).

Therefore,

λbn+l � (bn + l)−ν � b−νn

and since Mγ(k) is non-increasing, we have

n∑
k=0

min

{
bn

λbn+l
Mγ(k), 1

}
≤

pn∑
k=0

1 + Cb1+ν
n

n∑
k=pn+1

Mγ(k) ≤ C
(
pn + nb1+ν

n Mγ(pn)
)
.

(9.60)

To satisfy (9.54), we need the last expression in (9.60) to be of order o(n). This will be so

if as n→∞, pn = o(n), and

bn = o
(

[Mγ (pn)]−1/(1+ν)
)
. (9.61)

To get the weakest restriction on bn, let in addition pn grow fast enough so that n/pn =

o(nδ) for any δ > 0 (e.g., choose n/pn � log n). We have the following two typical cases:

• Mγ(k) = O(e−k) decays exponentially. In this case, [Mγ (pn)]−1/(1+ν) = O(epn/(1+ν)),

so the condition (9.61) is certainly satisfied when bn = o(n). Hence Assumption A3

holds with bn = o(n);

• Mγ(k) = O(k−β), β > 0. In this case, (9.54) holds when

bn = o(nβ/(1+ν)−ε) (9.62)

for arbitrarily small ε > 0. So the worst case is when β is close to 0 and ν is large.

A nice example involving both ν an β is when Z(n) is anti-persistent (also called

negative memory), e.g., the fractional Gaussian noise (the increments of fractional
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Brownian motion) with H < 1/2, and FARIMA(p, d, q) with d = H − 1/2 so that

−1/2 < d < 0. In this case, we have β = 2−2H and ν = 1−2H in (9.62), and hence

(9.54) holds with bn = o(n1−ε). Therefore:

Corollary 9.3.5. Suppose that {Zn} is fractional Gaussian noise with H < 1/2 or

FARIMA(p, d, q) with −1/2 < d < 0. If bn = o(n1−ε) for ε > 0 arbitrarily small, then

Assumption A3 holds.

Remark 9.3.4. We also mention that in Zhang et al. [2013] which studies non-self-

normalized block sampling for sample mean, the condition bn = o(n1−ε) for arbitrarily

small ε > 0 is shown to suffice for consistency. The framework in their paper assumes {Xi}

to be a univariate nonlinear transform of linear non-Gaussian processes. But it is not clear

how to adapt their proof to a setting involving the self-normalization considered here.

9.3.3 Strong mixing case

Given a stationary process {Xi}, let Fba be the σ-field generated by Xa, . . . , Xb, where

−∞ ≤ a ≤ b ≤ +∞. Recall that the strong mixing (or α-mixing) coefficient is defined as

α(k) = sup
{
|P (A)P (B)− P (A ∩B)|, A ∈ F0

−∞, B ∈ F∞k
}
. (9.63)

Note that 0 ≤ α(k) ≤ 1. The process {Xi} is said to be strong mixing if

lim
k→+∞

α(k) = 0.

We refer the reader to Bradley [2007] for more details. We shall use the following inequality

which can be found in Lemma A.0.2 of Politis et al. [1999].

Lemma 9.3.5. If U ∈ F0
−∞ and V ∈ F∞k , and 0 ≤ U, V ≤ 1 almost surely, then

|Cov(U, V )| ≤ α(k) ≤ 1.

We shall assume:
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B1. {Xi} is a strong mixing stationary process with mean µ = EXi.

B2. We have the weak convergence in D[0, 1] endowed with M2 topology of the partial

sum: {
1

nH`(n)
(Sbntc − nµ), 0 ≤ t ≤ 1

}
⇒ {Y (t), 0 ≤ t ≤ 1} ,

for some nonzero H-sssi process Y (t), where 0 < H < 1 and `(·) is a slowly varying

function.

B3. The block size bn →∞ and bn = o(n) as n→∞.

The following theorem establishes the consistency of the self-normalized block sampling

under the strong mixing framework.

Theorem 9.3.2. The conclusions of Theorem 9.3.1 and of Corollary 9.3.1 hold under As-

sumptions B1–B3.

Proof. The structure of the proof and many details are similar to those of Theorem 9.3.1.

We only highlight the key differences. See also Politis et al. [1999] or Sherman and Carlstein

[1996].

In Step 1, we again need to show (9.33). The term [P (T ∗i,bn ≤ x)− P (T ≤ x)]2 → 0 as

before. We need to establish Var[F̂ ∗n,bn(x)]→ 0. We still have the bound (9.34).

In view of Lemma 9.3.5, one has that,

∣∣Cov[I{T ∗1,bn ≤ x}, I{T
∗
k+1,bn ≤ x}]

∣∣ ≤


1 if k < bn,

α(k − bn + 1), if k ≥ bn;

where α(·) is the mixing coefficient in (9.63). Hence from (9.34), we have

Var[F̂ ∗n,bn(x)] ≤ 2

n− bn + 1

(
bn−1∑
k=0

∣∣Cov
[
I{T ∗1,bn ≤ x}, I{T

∗
k+1,bn ≤ x}

]∣∣
+

n∑
k=bn

∣∣Cov
[
I{T ∗1,bn ≤ x}, I{T

∗
k+1,bn ≤ x}

]∣∣
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≤ 2

(n− bn + 1)

bn +
n∑

k=bn

α(k − bn + 1)


=

2bn
(n− bn + 1)

+
2

(n− bn + 1)

n−bn+1∑
k=1

α(k), (9.64)

which converges to zero as n→∞, because bn = o(n) by Assumption B3 , and α(k)→ 0 as

k →∞ by Assumption B1 and by applying a Cesàro summation. Hence (9.33) is proved.

Step 2 and 3 proceed exactly as the proof of Theorem 9.3.1. The argument in the

proof of Corollary 9.3.1 shows that the conclusion of that corollary continues to hold under

Assumptions B1–B3.

Remark 9.3.5. In view of Shao [2010], the self-normalized block sampling method con-

sidered in this chapter may be extended to more general statistics beyond the sample

mean. There are two aspects to consider, self-normalization and block sampling. For the

self-normalization aspect to work, the general statistics needs to be approximately linear,

namely, it admits a functional Taylor expansion in the sense of (2) in Shao [2010]. In this

case, Assumption A2 or B2 needs to be replaced by a modified version of Assumption 1

of Shao [2010]. Furthermore, the remainder term in the aforementioned functional Tay-

lor expansion has to satisfy a negligibility condition (see Assumption 2 of Shao [2010] or

Assumption II of Shao [2015]). Validating these conditions for particular statistics (e.g.,

sample quantiles) and particular models (e.g., the Gaussian subordination model in As-

sumption A1) may be considered in future work. The block sampling aspect is likely to

continue to be valid, since as shown in the proofs of Theorem 9.3.1 and 9.3.2, the key

is to have a bound on the between-block correlation, as the one in Proposition 9.3.1 in

the long-memory Gaussian subordination framework, or as in Lemma 9.3.5 in the strong

mixing framework.
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9.4 Examples

The first two examples of models concern Assumptions A1–A3. They both involve a phase

transition.

Example 9.4.1. Suppose that

Xi = G(Zi) = Z2
i ,

where {Zi} is a standardized stationary Gaussian process with covariance γ(n) = n2d−1L(n),

with d ∈ (0, 1/2), and L(n) is a positive slowly varying function. Then Assumption A1 is

satisfied. Moreover, by Taqqu [1975] in the case d < 1/4 and Breuer and Major [1983] and

Chambers and Slud [1989] in the case d > 1/4, Assumption A2 holds with the following

dichotomy: 
H = 1/2, `(n) = 1, Y (t) = σB(t) if d < 1/4;

H = 2d, `(n) = L(n), Y (t) = cHZ2,H(t) if d > 1/4,

where σ2 =
∑

n Cov[X(n), X(0)], cH is a positive constant, B(t) is the standard Brownian

motion and Z2,H is the standard Rosenblatt process (second-order Hermite process). As-

sume in addition that the assumptions for {Zi} in Proposition 9.3.1 hold. Then one can

choose a block size bn = o(n) to satisfy Assumption A3. Hence Theorem 9.3.1 and Corol-

lary 9.3.1 hold. Without the additional assumptions in Proposition 9.3.1, Assumption A3

is guaranteed at least by the choice bn = o(n1−2dL(n)−1) in view of (9.57).

Example 9.4.2. Let Fα be the cdf of tα distribution with 1 < α < 2, so that it has finite

mean but infinite variance. Let Φ be the cdf of a standard normal. Suppose that

Xi = F−1
α (Φ(Zi)),

where {Zi} is a standardized stationary Gaussian process with covariance γ(n) = n2d−1L(n),

d ∈ (0, 1/2), and L(n) is a positive slowly varying function. The marginal distribution of

{Xi} is a tα. Then Assumption A1 is satisfied. By Sly and Heyde (2008), Assumption A2
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holds with the following dichotomy (for 0 < d < 1/2, 1 < α < 2):


H = 1/α, `(n) = 1, Y (t) = c1Lα(t) if d+ 1/2 < 1/α;

H = d+ 1/2, `(n) = L(n), Y (t) = c2BH(t) if d+ 1/2 > 1/α,

where c1 and c2 are positive constants, Lα(t) is a symmetric α-stable Lévy process, and

BH(t) is a standard fractional Brownian motion. Assume in addition that the assumptions

for {Zi} in Proposition 9.3.1 hold. This will be the case if {Zi} is fractional Gaussian noise

or FARIMA(p, d, q). Then bn = o(n) implies (9.29). Hence Theorem 9.3.1 and Corollary

9.3.1 hold. Without the additional assumptions in Proposition 9.3.1, Assumption A3 is

guaranteed at least by the choice bn = o(n1−2dL(n)−1) in view of (9.57).

Example 9.4.3. Consider the following long-memory stochastic duration (LMSD) model

(for modeling inter-trade duration, see Deo et al. [2010]):

Xi = ξi exp(Zi),

where {ξi} are i.i.d. positive random variables satisfying P (ξi > x) ∼ Ax−α as x→∞, A >

0, α ∈ (1, 2), Zi is a Gaussian linear process Zi =
∑∞

j=1 j
d−1l(j)εi−j with d ∈ (0, 1/2), l(j) a

positive and slowly varying function, {εi} i.i.d. centered Gaussian, and {εi} is independent

of {ξi}. Note that µ = EXi > 0. The model has the interesting feature that although

EX2
i =∞, it has the following finite covariance for h 6= 0, namely,

Cov[Xi, Xi+h] = Cov[exp(Z0), exp(Zh)]µ2
ξ ∼ ch2d−1l2(h),

as h → ∞, where µξ = Eξi, and we have used the fact that the exponential function has

Hermite rank 1 (see Taqqu [1975]). To satisfy Assumption A1, one can rewrite the model

as

Xi = g(Z ′i) exp(Zi),
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where {Z ′i} are i.i.d. standard Gaussian with g chosen such that g(Z ′i) is equal in distribu-

tion to ξi. This makes the model satisfy Assumption A1 with J = 2, l = 0, Zi = (Z ′i, Zi)

and G(x1, x2) = g(x1) exp(x2). By (4.100) and (4.101) of Beran et al. [2013], Assumption

A2 holds with the following dichotomy:


H = 1/α, `(n) = 1, Y (t) = cαLα,1,1(t) if d+ 1/2 < 1/α;

H = d+ 1/2, `(n) = l2(n), Y (t) = cdBH(t) if d+ 1/2 > 1/α,

where cα, cd are positive constants, Lα,1,1(t) is an α-stable Lévy process with skewness

β = 1 (see (9.10)), and BH(t) is the standard fractional Brownian motion. If in addition,

the assumptions for {Zi} in Proposition 9.3.1 hold, then Assumption A3 is satisfied if bn =

o(n). Hence Theorem 9.3.1 and Corollary 9.3.1 hold. Without the additional assumptions

in Proposition 9.3.1, Assumption A3 is at least satisfied if bn = o(n1−2dl(n)−2) (see (9.57)

and Remark 4.6.15).

Remark 9.4.4. Consider the non-centered stochastic volatility model Xi = σig(Zi) + µ

in Jach et al. [2012], where σi and g(Zi) are independent, σi is i.i.d. with heavy tails

and {Zi} is Gaussian with long-range dependence and g has Hermite rank one. This

model can be similarly embedded into Assumption A1. However, as far as we know,

the functional convergence6 needed in Assumption A2 has not been established (only the

marginal convergence was established in Jach et al. [2012]). Assumption A2 for this model

is, nevertheless, expected to hold in view of its similarity7 to the model treated in Kulik

and Soulier [2012], Theorem 4.1 (see also Theorem 4.19 of Beran et al. [2013]). Checking

Assumption A2 in details is outside the scope of the current chapter. Assumption A3 is

dealt with as in Example 9.4.3.

6The weak convergence assumed in Assumption A2 allowed us to take advantage of Lemma 9.3.1 in
order to establish Lemma 9.3.2.

7Both Jach et al. [2012] and Kulik and Soulier [2012] treated stochastic volatility models of the form
Xi = LiHi (for limit theorems it does not matter whether a level is added or not), where Li has finite
variance and is long-range dependent, while Hi has infinite variance and is i.i.d.. The difference between
the two papers is that in Jach et al. [2012] Li is centered and Hi is not, while in Kulik and Soulier [2012]
Hi is centered and Li is not.
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Nevertheless, the consistency of the self-normalized block sampling in Jach et al. [2012]

can be shown to hold under our A1 and A3 framework. This is done by adopting the

normalization of Jach et al. [2012], with A2 replaced by marginal convergence involving

partial sums and sample covariances8, and to ensure A3, by assuming bn = o(n) and that

{Zi} is a long-range dependent sequence satisfying the assumptions of Proposition 9.3.1.

We now give two examples with strong mixing. The first involves a nonlinear time series

and the second involves heavy tails.

Example 9.4.5. Suppose that

Xi = ρ|Xi−1|+ εi, 0 < ρ < 1, (9.65)

where εi’s are i.i.d. standard Gaussian. Thus {Xi} follows a threshold autoregressive model

(Tong [1990]). The Markov process {Xi} is strong mixing because it is ergodic9 (see Petruc-

celli and Woolford [1984], Theorem 2.1, or Doukhan [1994] p.103), and hence Condition B1

holds. The conditions of Theorem 3(ii) of Wu [2005] are satisfied10 and therefore Condition

B2 holds with H = 1/2, `(n) = 1 and Y (t) = σB(t), where σ2 =
∑

n γ(n) > 0 and B(t) is

standard Brownian motion. Condition B3 holds for any block size bn = o(n). Therefore,

Theorem 9.3.2 holds.

In the following example, both Assumptions A1–A3 and B1–B3 hold.

Example 9.4.6. Consider the MA(1) model

Xi = εi + aεi−1,

where a ≥ 0 and {εi} are i.i.d.. Assume that Eεi = 0, Eε2i = ∞, and εi is in the domain

of attraction of a stable distribution with an index α ∈ (1, 2). Let bn = o(n). By choosing

8More precisely, convergence in distribution of a 3-dimensional vector specified in Theorem 3 of Jach
et al. [2012].

9that is, the Markov chain is irreducible aperiodic and positive recurrent (see Tweedie [1975]).
10In the terminology of Wu [2005], R(x, ε) = ρ|x|+ ε, Lε = ρ, δp(n) = O(nr) for some 0 < r < 1, so that∑∞
n=0 nδp(n) <∞, implying Theorem 3(ii).
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appropriate transforms, we can express εi as function of Gaussian. Therefore Assumption

A1 holds. Assumption B1 holds because {Xi} is 2-dependent. By Theorem 2’ of Avram

and Taqqu [1992], Assumptions A2 and B2 hold with H = 1/α, some slowly varying

function `(n), and Y (t) is an α-stable Lévy process. Also A3 holds with any bn = o(n)

since ρk,m = 0 when k ≥ m + 2. Therefore, both assumptions A1–A3 and B1–B3 hold in

this case.

9.5 Monte Carlo Simulations

We shall carry out here Monte Carlo simulations to examine the finite-sample performance

of the self-normalized block sampling (SNBS) method and make a comparison with the

recent result of Zhang et al. [2013]. Instead of resorting to self-normalization, the method

of Zhang et al. [2013] exploits the regularly varying property of the asymptotic variance to

avoid the problem of estimating the nuisance Hurst index. We first consider the case with

Gaussian subordination. For this, let

Xi = K(Zi), Zi =
∞∑
j=0

ajεi−j , i = 1, . . . , n, (9.66)

where K(·) is a possibly nonlinear transformation and {εk} are i.i.d. standard normal

random variables11. We consider the following configurations for (9.66):

(a) K(x) = x and aj = (1 + j)d−1, j ≥ 0;

(b) K(x) = x2 and aj = (1 + j)d−1, j ≥ 0;

(c) K(x) = Φ−1
t [ΦN{(

∑∞
j=0 a

2
j )
−1/2x}] and aj = (1 + j)d−1, j ≥ 0,

where ΦN is the CDF of the standard normal and Φt is the CDF of the Student’s t-

distribution with degree of freedom 1.5, whose tail probability decays like |x|−3/2 as |x| →

∞ so that it has infinite variance but finite mean.

11To generate the process, we use the approximation Zi ≈
∑bn3/2c−1
j=0 ajεi−j in our simulation, and the

fast Fourier transform (FFT) as mentioned in Wu et al. [2011] is implemented to facilitate the computation.
Note that the cutoff n3/2 is much greater than the sample size n.
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Case (a) represents the Gaussian linear process which has been extensively used in the

literature for modeling time series data. It has long-range dependence if 0 < d < 1/2. We

let d ∈ {0.25,−1}. The choice d = 0.25 corresponds to long-range dependence (LRD) and

the choice d = −1 corresponds to short-range dependence (SRD).

Case (b) involves an additional nonlinear transformation and now {Xi} is LRD if 0.25 <

d < 0.5. We let d ∈ {0.4, 0.2,−1}. When d = 0.4, both {Zi} and {Xi} have LRD (the

limit for {Xi} is the Rosenblatt process); when d = 0.2, {Zi} has LRD and {Xi} has SRD

(the limit for {Xi} is Brownian motion); when d = −1, both {Zi} and {Xi} have SRD (the

limit for {Xi} is Brownian motion). See for example Wu [2006] and Zhang et al. [2013].

Case (c) corresponds to a process {Xi} with marginal distribution t with 1.5 degrees

of freedom and hence with infinite variance. We let d ∈ {0.4, 0.2,−1}. When d = 0.4 and

d = 0.2, both {Zi} and {Xi} have LRD (the limit for {Xi} is the fractional Brownian

motion); when d = −1, both {Zi} and {Xi} have SRD (the limit for {Xi} is symmetric

(3/2)-stable Lévy motion). See Sly and Heyde [2008] for the boundary between SRD

and LRD in the heavy tail case. We also consider the situation with a non-constant

slowly varying function, where we let aj = (1 + j)d−1 log(1 + j), j ≥ 0, and denote the

corresponding cases by (a∗), (b∗) and (c∗), respectively.

We consider the problem of constructing the lower and upper one-sided confidence

interval where the nominal level is taken as 90%; see also Nordman and Lahiri [2005]

and Zhang et al. [2013] for similar performance assessment of this type. Following Zhang

et al. [2013], we use throughout the block sizes bn = bcn0.5c, c ∈ {0.5, 1, 2}. This does

not necessarily represent the optimal choice of bn, but provides us with a spectrum of

reasonable block sizes in our finite-sample simulations. For each realization we compute

the self-normalized block sums and its empirical distribution function F̂n,bn as in (9.17).

Examples of realized F̂n,bn can be found in Figure 9.1 for models (a)–(c) with different

choices of d. Let qα (α=10%) be the 10%-quantile of F̂n,bn , then the lower 90% one-sided
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confidence interval can be constructed as−∞ , X̄n − n−1

{
n−1

n∑
k=1

(S1,k −
k

n
S1,n)2

}1/2

qα

 ;

Similarly, if q1−α (1− α=90%) denotes the 90%-quantile of F̂n,bn , then the corresponding

uppper 90% one-sided confidence interval is

X̄n − n−1

{
n−1

n∑
k=1

(S1,k −
k

n
S1,n)2

}1/2

q1−α , +∞

 .

See (9.18) for details.

In Tables 9.1 and 9.2, we report the empirical coverage probabilities of the constructed

confidence intervals based on 5000 realizations for each scenario12. For example, Table 9.1

displays the following results of simulation. If d = 0.25, c = 0.5 and n = 100, then the

self-normalized block sampling (SNBS) simulation yielded the following: the lower 90%

confidence interval included the unknown mean µ, 88.3% of the times and the upper 90%

confidence interval included the unknown mean µ, 91.1% of the times. We also report the

results of the subsampling method of Zhang et al. [2013] for a comparison in the column

ZHWW2013. Note that the method of Zhang et al. [2013] does not take advantage of the

technique of self-normalization and therefore it requires an additional bandwidth to utilize

the regularly varying property of the asymptotic variance.13.

It can be seen from Tables 9.1 and 9.2 that the method proposed in this chapter

performs reasonably well, as most of the empirical coverage probabilities are reasonably

close to their nominal level of 90%, except for situations with heavy tails where deviations

under small sample sizes are expected. However, the results seem to improve as the sample

size increases from n = 100 to n = 500 and the performance is comparable to the method

12When evaluating the empirical coverage probability of the constructed confidence interval, we use the
averaged mean of 1000 realizations as an approximation to the true mean.

13In Tables 9.1 and 9.2, we let the second bandwidth be ln = bn0.9c when using the method of Zhang
et al. [2013]. Many other choices are possible. We also used ln = b0.5n0.9c and obtained similar results.
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Figure 9.1: Examples of realized F̂n,bn for models (a)–(c) with n = 500, c = 1 and differ-
ent choices of d. The x-axis represents the self-normalized block sums, which have been
appropriately centered and scaled.

of Zhang et al. [2013]14. Note that the choice of sample size n = 100 is considered to

be challengingly small for inference of long-range dependent processes. Because of self-

normalization, our method has the advantage over the one by Zhang et al. [2013] in not

requiring the choice of a second bandwidth.

Finally, consider the strong mixing Example 9.4.5, where Xi = ρ|Xi−1| + εi, following

the threshold autoregressive model [Tong, 1990]. The εi’s are i.i.d. Gaussian. The results

for ρ = 0.5 are summarized in Table 9.3. Observe that the method works quite well in this

case as well.

14The theoretical assumptions in Zhang et al. [2013] do not allow for infinite variance.
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n = 100 n = 500
d c SNBS ZHWW2013 SNBS ZHWW2013

Model (a)
0.25 0.5 (88.3, 91.1) (86.8, 90.3) (92.2, 92.0) (92.0, 91.5)

1 (86.1, 86.6) (85.7, 85.3) (89.6, 91.2) (89.3, 91.3)
2 (82.3, 83.7) (81.0, 82.2) (87.5, 87.5) (87.4, 87.2)

-1 0.5 (93.5, 94.2) (93.0, 92.9) (93.2, 93.1) (92.9, 93.0)
1 (89.5, 90.7) (89.0, 90.2) (91.4, 92.1) (91.1, 91.7)
2 (87.1, 86.3) (86.9, 85.6) (90.0, 89.0) (89.9, 89.5)

Model (b)
0.4 0.5 (90.3, 95.7) (89.2, 95.2) (93.2, 96.2) (92.9, 95.6)

1 (84.7, 93.6) (83.8, 92.7) (88.2, 94.8) (88.4, 94.9)
2 (75.9, 91.8) (75.3, 91.4) (84.3, 92.8) (84.0, 92.9)

0.2 0.5 (94.6, 95.8) (94.0, 94.8) (95.7, 96.0) (95.8, 95.6)
1 (88.8, 93.6) (88.2, 93.3) (93.8, 93.6) (93.7, 93.9)
2 (81.4, 91.5) (80.3, 90.8) (89.4, 92.0) (89.3, 91.9)

-1 0.5 (97.6, 86.3) (97.5, 85.5) (97.0, 86.0) (97.0, 86.1)
1 (94.1, 84.2) (93.5, 83.3) (94.5, 86.5) (94.3, 86.5)
2 (87.2, 84.0) (86.7, 83.6) (91.3, 86.6) (91.2, 86.7)

Model (c)
0.4 0.5 (74.8, 84.4) (72.5, 82.9) (82.2, 78.0) (81.8, 77.1)

1 (78.0, 76.9) (76.5, 75.8) (77.7, 79.3) (76.9, 78.9)
2 (75.5, 73.4) (74.8, 72.2) (74.6, 78.6) (73.8, 78.4)

0.2 0.5 (78.8, 81.4) (76.7, 79.0) (80.8, 79.9) (80.0, 79.6)
1 (77.0, 80.6) (75.9, 79.6) (79.1, 80.8) (78.7, 80.0)
2 (77.9, 74.8) (76.6, 74.1) (81.1, 77.3) (80.9, 76.3)

-1 0.5 (82.3, 83.7) (80.9, 82.2) (83.6, 85.3) (83.3, 84.2)
1 (84.1, 80.0) (83.2, 79.4) (81.6, 86.0) (80.6, 85.5)
2 (87.4, 71.2) (86.2, 70.3) (82.0, 82.9) (81.7, 82.8)

Table 9.1: Empirical coverage probabilities of lower and upper (paired in parentheses) one-sided 90%
confidence intervals with different combinations of the index d, sample size n and block size bn = bcn0.5c
when aj = (1 + j)d−1, j ≥ 0.
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n = 100 n = 500
d c SNBS ZHWW2013 SNBS ZHWW2013

Model (a∗)
0.25 0.5 (87.8, 87.9) (86.4, 86.5) (91.9, 91.6) (92.0, 91.6)

1 (84.0, 84.2) (82.7, 83.0) (90.4, 89.4) (90.1, 88.9)
2 (78.0, 79.2) (76.8, 78.6) (84.7, 85.1) (84.4, 84.8)

-1 0.5 (93.7, 93.6) (93.1, 92.5) (94.0, 94.4) (93.6, 94.4)
1 (90.9, 89.8) (90.1, 88.6) (93.2, 91.9) (92.8, 92.0)
2 (86.4, 86.4) (85.9, 85.4) (90.6, 90.3) (90.2, 90.1)

Model (b∗)
0.4 0.5 (84.7, 95.1) (83.3, 94.3) (90.3, 98.0) (90.4, 97.7)

1 (80.4, 92.3) (79.4, 91.8) (86.2, 96.0) (86.4, 96.0)
2 (71.7, 90.2) (70.5, 89.6) (79.5, 93.6) (79.6, 93.9)

0.2 0.5 (89.3, 96.8) (88.7, 96.3) (94.3, 97.7) (94.4, 97.5)
1 (83.6, 93.9) (83.0, 93.3) (90.8, 96.7) (91.1, 96.7)
2 (77.7, 91.2) (76.8, 90.4) (85.1, 95.6) (85.1, 95.2)

-1 0.5 (98.3, 86.3) (97.9, 85.6) (97.1, 87.0) (97.1, 87.1)
1 (93.1, 85.2) (92.8, 84.6) (95.1, 85.6) (94.7, 85.7)
2 (88.6, 84.1) (87.9, 83.5) (92.2, 85.9) (92.1, 85.5)

Model (c∗)
0.4 0.5 (86.3, 85.8) (84.6, 83.7) (92.6, 88.0) (92.3, 88.0)

1 (83.4, 77.7) (82.3, 76.1) (87.3, 83.3) (87.7, 83.5)
2 (74.9, 75.2) (73.2, 74.0) (81.1, 81.7) (81.1, 81.1)

0.2 0.5 (83.0, 85.2) (80.4, 83.3) (86.6, 84.6) (86.8, 84.9)
1 (80.4, 80.5) (79.5, 78.7) (84.4, 81.7) (84.5, 80.7)
2 (77.9, 73.5) (76.9, 72.9) (80.4, 78.8) (80.9, 78.3)

-1 0.5 (83.9, 83.1) (82.3, 81.7) (88.5, 84.0) (87.5, 83.0)
1 (80.6, 83.1) (80.0, 81.7) (86.8, 83.4) (85.9, 82.8)
2 (83.2, 76.7) (82.2, 75.8) (85.8, 82.3) (85.4, 81.5)

Table 9.2: Empirical coverage probabilities of lower and upper (paired in parentheses) one-sided 90%
confidence intervals with different combinations of the index d, sample size n and block size bn = bcn0.5c
when aj = (1 + j)d−1 log(1 + j), j ≥ 0.

n = 100 n = 500
c SNBS ZHWW2013 SNBS ZHWW2013

0.5 (92.1, 94.3) (91.7, 93.7) (93.2, 89.6) (93.0, 89.4)
1 (90.0, 88.9) (88.8, 88.8) (91.0, 88.0) (91.3, 88.5)
2 (86.9, 84.7) (86.1, 84.0) (89.9, 87.2) (90.1, 87.3)

Table 9.3: Empirical coverage probabilities of lower and upper (paired in parentheses) one-sided 90%
confidence intervals with the TAR model (9.65) for different combinations of sample size n and block size
bn = bcn0.5c.
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