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PROBABILISTIC AND STATISTICAL PROBLEMS RELATED TO
LONG-RANGE DEPENDENCE
SHUYANG BAI
Boston University, Graduate School of Arts and Sciences, 2016

Major Professor: Murad S. Taqqu, Professor of Mathematics and Statistics

ABSTRACT

The thesis is made up of a number of studies involving long-range dependence (LRD),
that is, a slow power-law decay in the temporal correlation of stochastic models. Such a
phenomenon has been frequently observed in practice. The models with LRD often yield
non-standard probabilistic and statistical results. The thesis includes in particular the
following topics:

e Multivariate limit theorems. We consider a vector made of stationary sequences,
some components of which have LRD, while the others do not. We show that the joint
scaling limits of the vector exhibit an asymptotic independence property.

e Non-central limit theorems. We introduce new classes of stationary models with
LRD through Volterra-type nonlinear filters of white noise. The scaling limits of the sum
lead to a rich class of non-Gaussian stochastic processes defined by multiple stochastic
integrals.

e Limit theorems for quadratic forms. We consider continuous-time quadratic forms
involving continuous-time linear processes with LRD. We show that the scaling limit of
such quadratic forms depends on both the strength of LRD and the decaying rate of the
quadratic coeflicient.

e Behavior of the generalized Rosenblatt process. The generalized Rosenblatt pro-
cess arises from scaling limits under LRD. We study the behavior of this process as its two
critical parameters approach the boundaries of the defining region.

e Inference using self-normalization and resampling. We introduce a procedure



called “self-normalized block sampling” for the inference of the mean of stationary time
series. It provides a unified approach to time series with or without LRD, as well as with

or without heavy tails. The asymptotic validity of the procedure is established.
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Chapter 1
Introduction

In many statistical models, the random noise sequence {X,,} is assumed to be independent
as the index n varies. For example, this is the case when n indexes different experiments
carried out independently. In time series analysis where n indexes the time, treating
dependent { X} is the rule rather than the exception. When the dependence is weak, the
large sample theory in statistical inference usually necessitates only a minor modification
from the independent case. This is due to the fact that when the dependence is weak (also
termed short-range dependence (SRD) or short memory), one typically has the following

central limit theorem describing the scaling behavior of the sample sum:

[N?]

1
WZX,, = o B(t), (1.1)
=1

n
as N — oo, where B(t) is the standard Brownian motion and where

+oo
0% = Z Cov[Xp, Xo], (1.2)

n=—oo

the sum of auto-covariance of all orders, the so-called long-run variance. Here “=" stands
for weak convergence in the Skorohod space D[0, 1] (Billingsley [1999]). In the independent
case, we just have (1.1) with o = Var[X,,].

On the other hand, when the dependence is so strong that the covariance function
Cov[X,, Xo] behaves like n=% as n — oo, a € (—1,0), the long-run variance in (1.2) be-

comes infinite, and (1.1) fails to hold. This regime of strong dependence is often addressed



as long-range dependence (LRD), also as long memory. In practice, long-range dependent
data is observed in various fields, e.g., hydrology, finance, internet, biology, etc (see the
recent monograph Beran et al. [2013]). Under long-range dependence, it is still possible to

establish limit theorems of the type

[NY]
1
N > Xn = Ya(t), (1.3)
n=1

where the exponent H, called the Hurst inder, takes value in the interval (1/2,1), and
where {Yz(t), t > 0} is a self-similar process (i.e., {Y(ct), t > 0} has the same statistical
law as {cY(t), t > 0} for any ¢ > 0) with stationary increments. Limit theorems of
the type (1.3) are often termed non-central limit theorems. The limit process Yx(t) is
typically the fractional Brownian motion, a Gaussian process with dependent increments.
But more interestingly, one can as well get convergence to a non-Gaussian limit Y (t),
which is typically represented by a multiple stochastic integral, e.g., the Hermite processes.
See, e.g., Dobrushin and Major [1979], Taqqu [1979], Surgailis [1982], Avram and Taqqu
[1987] and Ho and Hsing [1997] for such type of results.

My dissertation focuses on probabilistic and statistical problems related to (1.3). In

particular, the dissertation is organized by the following topics:

1.1 Multivariate limit theorems (Chapter 2 and 3)

In Chapter 2, motivated by the needs in statistical inference, we consider multivariate
extensions of (1.1) and (1.3) under the Gaussian subordination model. In particular, we
consider the vector sequence (Xp1,...,Xpn 1) = (G1(Zy),...,Gi(Zy)), where {Z,} is a
long-range dependent Gaussian sequence and G,(-)'s are different functions. Depending
on the choice of Gj(-), the component {X,, ;} may be short or long-range dependent. We
establish multivariate limit theorems for the normalized sum of (X, 1,..., X, s), where
we find the phenomenon that the short-range dependent components are asymptotically

independent of the long-range dependent components, while within each type of the com-



ponents, there is, in general, asymptotic dependence. This part is based on Bai and Taqqu
[2013a].

In Chapter 4, we study a similar problem as in Chapter 1, but for a different model of
(Xn1,...,X5,7), where each X, ; is a multilinear moving average of of independent and
identically distributed (i.i.d.) noise (see (1.4) below). This part is based on Bai and Taqqu
[2013D).

1.2 Non-central limit theorems (Chapter 4 and 5)

In Chapter 4, we study limit theorems for the multilinear moving average of the form

/

Xo= > aliv,.. ik)en—i - en iy, (1.4)

115001520

where ¢;’s are i.i.d. centered random variables with finite variance, the prime ’ indicates that
the sum excludes the diagonals i, = i¢, p # ¢. Depending on the decay of the coefficient
a(-), the sequence {X,} can be short or long-range dependent. When it is long-range

dependent, the limit Yy (¢t), H > 1/2, in (1.3) involves the multiple Wiener-It6 integral:

Yu(t) = Zui(t) = /]R,k /Otg(s —Z1,...,8—xg)ds B(dzy)... B(dxy), (1.5)

where B(dx) is the Brownian random measure, the prime ’ indicates the exclusion of the
diagonals in the multiple integral, and g(-) is supported on Rﬁ and homogeneous with
degree H — k/2 — 1. This generalizes the Hermite processes considered in the literature
where g(-) is a product of powers. To get Yy (t) with H < 1/2 beyond (1.5), an additional
linear filter needs to be applied to {X,,} in (1.4). This part is based on Bai and Taqqu
[2014a].

In Chapter 5, we consider the case where {X,} is right at the border between short-
and long-range dependence. To establish the limit theorem in this delicate case, certain

universality result on random multilinear forms involving the Malliavin calculus are used.



This part is based on Bai and Taqqu [2015a].

1.3 Limit theorems for quadratic forms (Chapter 6 and 7)

In Chapter 6 and 7, instead of studying limit theorems for the linear summation functional

in (1.3), we consider limit theorems for the Toeplitz type quadratic form

Tt Tt
Qr(t) = /0 /0 a(s) — s2) X (s1)X (s2)ds1dse

as T' — oo after suitable normalization, where X (s) is a Gaussian process (Chapter 6) or
Lévy-driven linear process (Chapter 7), and a(-) is a symmetric coefficient function. The
study of Qr(t) is related to the nonparametric inference of the spectrum of X(s). The
type of limit we get depends on the “combined dependence” of a(-) and X(s), that is, it
depends on the rate of decay of a(-) as well as the rate of decay of correlation of X (s). When
the “combined dependence” is weak, the limit is Brownian motion; when the “combined
dependence” is strong, the limit is a non-Gaussian self-similar process represented by a
double Wiener-Ito integral. Different representations of this non-Gaussian limit process

were also studied. This part is based on Bai et al. [2015] and Bai et al. [2016a].

1.4 Behavior of the generalized Rosenblatt process (Chapter 8)

In Chapter 8, we study a special case of (1.5), that is,

Ry s (t) = /R/O (s — 1)) (s — 22)}2ds B(dx1)B(dx2),

(71,72) € A= {(71,72) 171,72 < —1/2, y1 + 72 > —3/2},

called the generalized Rosenblatt process, which was first formally considered in Maejima
and Tudor [2012]. In particular, we analyzed the moments of R,, ,(t), based on which
we were able to establish interesting distributional behavior of the normalized process

R, +,(t) as (y1,72) approaches the boundaries of the triangular region A. On each of the



two symmetric boundaries, the limit is non-Gaussian. On the third diagonal boundary,
the limit is Brownian motion. The rates of convergence to these boundaries are also given.
The situation is particularly delicate as one approaches the corners of the triangle, because
the limit process will depend on how these corners are approached. This part is based on

Bai and Taqqu [2015d].

1.5 Inference using self-normalization and resampling (Chapter 9)

The inference procedure for the mean of a stationary time series is usually quite different
under various model assumptions because the partial sum process (see (1.3)) behaves dif-
ferently depending on whether the time series is short or long-range dependent, or whether
it has a light or heavy-tailed marginal distribution. These procedures usually involve esti-
mation of additional nuisance parameters. It is often challenging for practitioners to decide
which procedure to use given the data, and to know whether their estimation of the nui-
sance parameters is reliable. A procedure, called self-normalized block sampling, is able
to alleviate this challenge by unifying the inference procedure for various aforementioned
model assumptions. It avoids the estimation of many nuisance parameters, and requires
only the choice of one bandwidth. In Chapter 9, we developed an asymptotic theory for
the self-normalized block sampling. Monte Carlo simulations are presented to illustrate
its competitive finite-sample performance. The asymptotic consistency of the procedure
involves a bound on maximal linear correlation between two blocks of a long-memory time

series. This part is based on Bai et al. [2016D].



Chapter 2

Multivariate limit theorems in the context of

long-range dependence

We study the limit law of a vector made up of normalized sums of functions of long-
range dependent stationary Gaussian series. Depending on the memory parameter of the
Gaussian series and on the Hermite ranks of the functions, the resulting limit law may be
(a) a multivariate Gaussian process involving dependent Brownian motion marginals, or
(b) a multivariate process involving dependent Hermite processes as marginals, or (c) a
combination. We treat cases (a), (b) in general and case (c) when the Hermite components
involve ranks 1 and 2. We include a conjecture about case (c) when the Hermite ranks are

arbitrary, although the comjecture can be resolved in some special cases.

2.1 Introduction

A stationary time series displays long-range dependence if its auto-covariance decays slowly
or if its spectral density diverges around the zero frequency. When there is long-range
dependence, the asymptotic limits of various estimators are often either Brownian Motion
or a Hermite process. The most common Hermite processes are fractional Brownian motion
(Hermite process of order 1) and the Rosenblatt process (Hermite process of order 2), but
there are Hermite processes of any order. Fractional Brownian motion is the only Gaussian
Hermite process.

Most existing limit theorems involve univariate convergence, that is, convergence to a

single limit process, for example, Brownian motion or a Hermite process (Breuer and Major



[1983], Dobrushin and Major [1979], Taqqu [1979]). In time series analysis, however, one
often needs joint convergence, that is, convergence to a vector of processes. This is because
one often needs to consider different statistics of the process jointly. See, for example,
Lévy-Leduc et al. [2011], Rooch [2012]. We establish a number of results involving joint
convergence, and conclude with a conjecture.

Our setup is as follows. Suppose {X,} is a stationary Gaussian series with mean 0,

variance 1 and regularly varying auto-covariance

7(n) = L(n)n*! (2.1)

where

0<d<1/2,

and L is a slowly varying function at infinity. This is often referred to “long-range depen-
dence”(LRD) or “long memory” in the literature, and d is called the memory parameter.

The higher d, the stronger the dependence. The slow decay (2.1) of y(n) yields

o0
> v(n)| = co.
n=—oo
The case where
o
> )| < oo,
n=—oo

is often referred to “short-range dependence” (SRD) or “short memory”. See Beran [1994],
Doukhan et al. [2003], Giraitis et al. [2012] for more details about these notions.
We are interested in the limit behavior of the finite-dimensional distributions (f.d.d.)

of the following vector as N — oo:

[Ni]
V() = | iy 2 (600 - BGy(x) , (22)




where G, j = 1,...,J are nonlinear functions, ¢ > 0 is the time variable, and A;(N)’s are
appropriate normalizations which make the variance of each component at ¢t = 1 tend to
1. Observe that the same sequence {X,,} is involved in each component of V, in contrast
to Ho and Sun [1990] who consider the case J = 2 and {(X,,,Y,)} is a bivariate Gaussian
vector series.

Note also that convergence in f.d.d. implies that our results continue to hold if one
replaces the single time variable ¢ in (2.2) with a vector (¢1,...,t;) which would make
Vn(t1,...,ts) arandom field.

Depending on the memory parameter of the Gaussian series and on the Hermite ranks
of the functions (Hermite ranks are defined in Section 2.2), the resulting limit law for (2.2)

may be:

(a) a multivariate Gaussian process with dependent Brownian motion marginals,
(b) or a multivariate process with dependent Hermite processes as marginals,

(c) or a combination.

We treat cases (a), (b) in general and case (¢) when the Hermite components involve ranks
1 and 2 only. To address case (c), we apply a recent asymptotic independence theorem of
Nourdin and Rosinski [2014] of Wiener-It6 integral vectors. We include a conjecture about
case (c) when the Hermite ranks are arbitrary. This conjecture has been recently resolved by
Nourdin et al. [2016]. We also prove that the Hermite processes in the limit are dependent
on each other. Thus, in particular, fractional Brownian motion and the Rosenblatt process
in the limit are dependent processes even though they are uncorrelated. Although our
results are formulated in terms of convergence of f.d.d. , under some additional assumption,
they extend to weak convergence in D[0, 1]”(J-dimensional product space where D[0, 1] is
the space of Cadlag functions on [0, 1] with the uniform metric), as noted in Theorem 2.3.12
at the end of Section 2.3.

The chapter is structured as follows. We review the univariate results in Section 2.2.

In Section 2.3, we state the corresponding multivariate results. Section 2.4 contains the



proofs of the theorems in Section 2.3. Section 2.5 shows that the different representations
of the Hermite processes are also equivalent in a multivariate setting. Section 2.6 refers
to the results of Nourdin and Rosinski [2014] and concerns asymptotic independence of

Wiener-Ito integral vectors.

2.2 Review of the univariate results

We review first results involving (2.2) when J = 1in (2.2). Assume that G belongs to L?(¢),
the set of square-integrable functions with respect to the standard Gaussian measure ¢.
This Hilbert space L?(¢) has a complete orthogonal basis { H,, () };m>0, where H,, is the

Hermite polynomial defined as

Hon() = (~1)" exp (2) O e (‘2) ,

(Nourdin and Peccati [2012], Chapter 1.4). Therefore, every function G € L?(¢) admits

the following type of expansion:

G= Z gmHm7 (23)

m>0
where g, = (m!)™! [ G(z)Hp(2)do ().
Since Hy(x) = 1 and since we always center the series {G(X},)} by subtracting its mean
in (2.2), we may always assume go = EG(X,,) = 0. The smallest index k > 1 for which
gr # 0 in the expansion (2.3) is called the Hermite rank of G.

Since {X,,} is a stationary Gaussian series, it has the following spectral representation

Xn:/RemxdW(x), (2.4)

where W is the complex Hermitian (W (A) = W(—A)) Gaussian random measure specified

by EW(A)W(B) = F(AN B). The measure F is called the spectral distribution of {X,},



10

is also called the control measure of W, and is defined by

v(n) =EX, X, = / e dF (x),
R

(see Lifshits [2012], Chapter 3.2).

Multiple Wiener-It6 integrals (Major [2014])

"

I,(K) = o K(xi,...,zm)dW (z1)...dW (xy) (2.5)

where

/m |K(21,...,%m)2dF(x1) ... dF(z,) < oo,

play an important role because of the following connection between Hermite polynomials

and multiple Wiener-It6 integrals (Nourdin and Peccati [2012] Theorem 2.7.7):

"
Hpn(X,) = / eM@t A Tn) g (1) AW (), (2.6)

m

where the double prime ”

indicates that one doesn’t integrate on the hyper-diagonals
xj = txy, j # k. Throughout this chapter, Ip,,(.) denotes a m-tuple Wiener-It6 integral of
the type in (2.5).

We now recall some well-known univariate results:

Theorem 2.2.1. (SRD Case.) Suppose the memory parameter d and the Hermite rank
k>1 of G satisfy

1
“(1- ).
0<d< =( k)
Then
1 f.d.d

. ‘ . d.d. . o .
where B(t) is a standard Brownian Motion, “~— 7 denotes convergence in finite-dimensional

distributions along the time variable t > 0, A(N) o< NY/2 is a normalization factor such



11

that
1 N

Remark 2.2.2. It can indeed be shown that in the setting of Theorem 2.2.1,

N
Var (Z G(Xn)> ~ %N, (2.7)
n=1

where

o? = Z g2 m! Z y(n)™. (2.8)
m=k

n=—00
Recall that the g,,’s are the coefficients of the Hermite expansion of G, and - is the auto-

covariance function of {X,,}.

Remark 2.2.3. The condition 0 < d < %(1 — %) can be replaced with a weaker condition

Y. )l < oo,

n=—oo

or equivalently, > >° _ |yg(n)| < oo, where yg(n) is the auto-covariance function of

{G(Xn)}. See Theorem 4.6.1 in Giraitis et al. [2012]. If d = 3(1 — 1) but as N — o0,

N N
> m)F = nTHL(n)[F = L*(N) = oo
n=—N —N

is slowly varying, then one still gets convergence to Brownian motion (Theorem 1’ of Breuer

and Major [1983]), but with the normalization
A(N) « (NL*(N))¥2.

For example, if the slowly varying function in (2.1) is L(n) ~ ¢ > 0, then A(N)
(N1InN)Y2,

The original proof of Theorem 2.2.1 (Breuer and Major [1983]) was done by a method of

moments using the so-called diagram formulas (Peccati and Taqqu [2011]), which provide
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explicit ways to compute the cumulants of Hermite polynomials of Gaussian random vari-
able. Recently, a remarkable technique for establishing central limit theorems of multiple
Wiener-Ito integral was found by Nualart and Peccati [2005], Peccati and Tudor [2005],
whereby in the multiple Wiener-1t6 integral setting, convergence of the fourth moment, or
some equivalent easier-to-check condition, implies directly the Gaussian limit. See Theorem

7.2.4 in Nourdin and Peccati [2012] for a proof in the case ¢ = 1.

Theorem 2.2.4. (LRD Case.) Suppose that the memory parameter d and the Hermite

rank k > 1 of G satisfy

1 1
—(1- %) <d< o
Then
1 X fdd. (k ¢

where the control measure of Iy (.) is Lebesgue,
A(N) x N1+(d71/2)kL(N)k/2

is a normalization such that

and
eit(x1+“.+xk) -1

i($1+...+a}k>

t — _
fé,gl(xlw-'axk):bk,d |1‘1‘ d|xk| d,

where

b (A =1/2)+1) (2k(d — 1/2) + 1) 1/2
kd = k! (2D(1 — 2d) sin(dr))"

is the normalization constant to guarantee unit variance for Z®)(1).

For a proof, see Dobrushin and Major [1979] and Pipiras and Taqgqu [2010]. The process

Zc(lk) (t) appearing in the limit is called a Hermite process.
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Remark 2.2.5. It can indeed be shown that in the setting of Theorem 2.2.4,
N
Var (Z G(Xn)> = Lg(N)N%ct! (2.9)
n=1
for some slowly varying function Lg(N) oc L(N)* and
dg=(d—1/2)k+1/2

(see e.g. (3.3.8) in Giraitis et al. [2012]). Since d < 1/2, increasing the Hermite rank k
decreases the memory parameter d¢, hence decreases the dependence. Note that if k£ > 2,

then the variance growth of {G(X,)} in (2.9) is slower than the variance growth of {X,},

N
Var()  X,) = Lo(N)N**+!
n=1

for some slowly varying function L, but is always faster than the variance growth ¢?N in

the SRD case in (2.7).

The process Z{gl)(t), t > 0 is a Gaussian process called fractional Brownian motion, and
Zc(l2) (t), t > 0 is a non-Gaussian process called Rosenblatt process. The Hermite processes

Zc(lk) (t) are all so-called self-similar processes (Embrechts and Maejima [2002]).

2.3 Multivariate convergence results

Our aim is to study the limit of (2.2), and in particular, to extend Theorem 2.2.1 (SRD)
and Theorem 2.2.4 (LRD) to a multivariate setting.

Suppose that for each j = 1,...,.J, the function G; in (2.2) belongs to L?*(¢), has
Hermite rank k; and admits Hermite expansion ano:kj Gm,jHm (see (2.3)).

We start with the pure SRD case where every component {G;(X,,)} of Vy(t) in (2.2)
is SRD.

Theorem 2.3.1. (SRD Case.) If the memory parameter d is small enough so that all



{G;(Xn)},i=1,...,J are SRD, that is,

then in (2.2)

V() L8 B(1),

as N — oo, where the normalization A;(N) o N2 s such that for j =1,...,J,

N
Jim_ Var (AjgN) nzl(;j(xn)> =1. (2.10)

Here

B(t) = (Bi(t), ..., B;(t))

is a multivariate Gaussian process with standard Brownian motions as marginals, and

where the cross-covariance between two components is

Cov (le (t1), Bj, (t2)) = lim COV(VNJd (t1), VN j2 (t2))

N—oo
oo o0
= (t1 A t2) e Z G, jr Gm, jo M Z v(n)™ (2.11)
T2 =k, Vky, n=—00
where
oo o
ojzz gfn’jm! Z y(n)™. (2.12)
m=k; n=-—00

This theorem is proved in Section 2.4.1.

Example 2.3.2. Assume that the auto-covariance function y(n) ~ n?¢=1, 0 < d < 1/4, as

n — oo. Let J = 2,

G1(x) = aHy(x) + bH3(z) = ba® 4+ ax? — 3bx —a, Go(x) = cHs(z) = ca® — 3ca.



15

Then in (2.12),

[e.o]

ot =2a> Y ()’ +6> > y(n)?’, o3 =6 > ~(n)?,

n=—oo n=—oo n=—oo

and
(VY]

[Nit]
1 1 f.d.d.
N1/2 Z(XTQL - 1), N1/2 Z(Xg - 3Xﬂ) — (UlBl(t>v U2BQ(t)) )
n=1 n=1

where the Brownian motions B; and By have the covariance structure:

Cov (Bi(h), Ba(ta) = 66712 57 o(n)?.

0102

=—00
Bj and Bs are independent when b = 0.

Next we consider the case where every component {G;(X,)} of V(t) in (2.2) is LRD.

Theorem 2.3.3. (LRD Case.) If the memory parameter d is large enough so that all
Gj(Xn),j=1,...,J are LRD, that is,

1
d>-(1—-—), j=1,...,J,
k;
then in (2.2),
f.d.d.
V() Bz ) = (1, U0 I (), (2.13)

where the normalization Aj(N) oc N1k [(N)ki/2 s such that for j =1,...,J,

. 1
Jim Var (Aj(N) ;Gj(xn)> =1. (2.14)

Each component of ZX(t) = (Zc(lkl)(t), . .,Zék‘])(t)> is a standard Hermite process, and

I(.) denotes k-tuple Wiener-Ité integral with respect to a common complex Hermitian
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Gaussian random measure W with Lebesgue control measure, and

eit($1+---+$k) 1

f,iﬁ?i(:vl, oy X)) = b a-

—d —d
x T , 2.15
z(:cl—i—...-i-a:k)‘ 2 [zl (2.15)

where by, q4’s are the same normalization constants as in Theorem 2.2.4.

This theorem is proved in Section 2.4.2.

Example 2.3.4. Assume that auto-covariance function y(n) ~ n?=1 1/4 < d < 1/2, as

n — oo. Let J =2,
Gi(z) = Hi(z) = =, Go(x) = Ha(x) = ® — 1,

then

[N1] V]
1 1 > fd.d. 1 1) 1 )
N1/2+d nZle N2d HZI(X” Y (d(Qd +1) Za (1) d(4d — 1) Za M)

where the standard fractional Brownian motion Z(gl)(t) and standard Rosenblatt process

Zc(lz) (t) share the same random measure in the Wiener-It6 integral representation. The

components Zél) and Zf) are uncorrelated but dependent as stated below.

In Theorem 2.3.3, the marginal Hermite processes

k k
Z((i 1)(t) = Ikl(fzg),d), cey Z((i J)(t) = IkJ(fli?,d)

are dependent on each other. To prove this, we use a different representation of the Hermite

process, namely, the positive half-axis representation given in (2.45).

Proposition 2.3.5. The marginal Hermite processes Zékl), e Zc(lkJ) tnvolved in Theorem

2.3.3 are dependent.

Proof. From Ustunel and Zakai [1989], we have the following criterion for the independence

of multiple Wiener-Ito integrals: suppose that symmetric g; € L*(R%) and go € L*(R%).
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Then I,(g1) and I;(g2) (p,q > 1) are independent if and only if

g1 ®1 go := / gi(z1,...,2p—1,uw)g2(xp, . .., Tprg—2,u)du =0 in LZ(R’j_+q_2).
Ry
We shall apply this criterion to the positive half-axis integral representation (2.45) of

Hermite processes (see also Pipiras and Taqqu [2010]):

2P0 = exali (g1, o)
t k

!
D= Ck,d/ / H m;d(l - s:nj)flflds dB(z1)...dB(xg),
RE [Jo ;5
]_
where B is Brownian motion, the prime ’ indicates the exclusion of diagonals with z; =
x,J # k and ¢y, 4 is some normalization constant. In fact, for a vector made up of Hermite
processes sharing the same random measure in their Wiener-Ito integral representation,
the joint distribution does not change when switching from one representation of Hermite
process to another. See Section 2.5.

One can then see (let t = 1 and thus gj 4 := g,glzl) that for all (z1,...,2piq—2) € RT“‘]_Z:

(gp,d X1 gq,d)(xh s 737p+q—2)

1P 1
/ / saﬁj):lL Lu=d(1 - su)flfldsx
Ry

1p+q 2
/ 41— S:L‘])i Ly=d(1 - su)‘j__lds du >0

because every term involved in the integrand is positive. O

Theorem 2.3.1 and Theorem 2.3.3 describe the convergence of V5 (¢) in (2.2) when the
{G;(Xn)}, 7= ,J are all purely SRD or purely LRD. However, when the components
in Vy(t) are mixed, that is, some of them are SRD and some of them are LRD, it is not

immediately clear what the limit behavior is and also what the inter-dependence structure
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between the SRD and LRD limit components is. We show that the SRD part and LRD
part are asymptotically independent so that one could join the limits of Theorem 2.3.1 and
Theorem 2.3.3 together, in the case when the G;’s in the LRD part only involve the two
lowest Hermite ranks, namely, £ = 1 or £ = 2. This is stated in the next theorem where

the letter “S” refers to the SRD part and “L” to the LRD part.

Theorem 2.3.6. (SRD and LRD Mixed Case.) Separate the SRD and LRD parts of
V() in (2.2), that is, let V(t) = (Sn(t), Ln(t)), where

[NY]

Sn(t) = AlS ZGlS ,...,AJ& ZGJSS , (2.16)
[Nt] [Nt]

Ly(t) = AlL ZGM AJ ZGJL, , (2.17)
L, _

where Gj g has Hermite rank kj; g, and G 1, has Hermite rank k; p,
Ajg o NY2  and Ajp N1+(d_1/2)’“j,LL(N)kj,L/2

are the correct normalization factors such that for j =1,...,Jg and j =1,...,J respec-

tively,

N N
1 1
li _— E (X)) =1, 1 _— E iL(Xn) | =1
Am Var (Aj,S(N) 2 Gjis( )) am Var (Aj,L(N) 2 Gji( ))

(2.18)
In addition,
1 1 1 . .
—(1- ) <d< =(1- ) foralljs=1,...,Js, jr=1,...,JL, (2.19)
2 ki, I 2 kis.s

where we allow arbitrary values for k; s but only kjp =1 or 2. (Condition (2.19) makes

all {Gj,5(Xn)} SRD and all {G;1.(Xn)} LRD.)
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Then we have

(Sn(1), L(8) Z2% (B(1), 257 (1)), (2.20)

where the multivariate Gaussian process B(t) is given in (2.3.1) and the multivariate stan-
dard Hermite process ZglkL)(t) is given in (2.5.3). Moreover, the vectors B(t) and ZglkL)(t)

are independent.

This theorem is proved in Section 2.4.3. Observe that while B(¢) is made up of corre-
lated Brownian motions, it follows from Theorem 2.3.6 that if Z((ik) (t) contains fractional
Brownian motion as a component, then the fractional Brownian motion will be independent

of any Brownian motion component of B(t).

Example 2.3.7. Assume that the auto-covariance function y(n) ~ n??1, 1/4 < d < 1/3,

asn — o0o. Let J =2,
Gi(z) = Ho(x) = z? -1, Go(z) = H3(x) = x> — 3z,

then 02 = 65.°° (n)?® and

n=—oo |

[V] [Nt]
1 2 1 3 fdd (1 (9
N2d nz::l(Xn 1)’ N1/2 nzz:l(Xn 3Xn) — <d(4d — 1) Zd (t)7O'B(t) .

where the standard Rosenblatt process ZC(IQ) (t) and the standard Brownian motion B(t) are

independent.

The proof of Theorem 2.3.6 is based a recent result in Nourdin and Rosinski [2014]
which characterizes the asymptotic moment-independence of series of multiple Wiener-
It6 integral vectors. We also note that in Proposition 5.3 (2) of Nourdin and Rosinski
[2014], a special case of Theorem 2.3.6 with Jg = J;, = 1 and LRD part involving Hermite
rank ki = 2 is treated. To go from moment-independence to independence, however,
requires moment-determinancy of the limit, which we know holds when the Hermite rank

k = 1,2, that is, in the Gaussian and Rosenblatt cases. If some other Hermite distribution
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(marginal distribution of Hermite process) Zc(lk) (k > 3) is moment-determinate, then we
will allow k;; = k in Theorem 2.3.6. So to this end, the moment-problem of general
Hermite distributions is of great interest.

We conjecture the following:
Conjecture 2.3.8. Theorem 2.3.6 holds without the restriction that kj be 1 or 2.

This conjecture has been recently resolved by Nourdin et al. [2016]. We also show that

the conjecture holds in the following special case:

Theorem 2.3.9. (Gaussian linear process case.) Conjecture 2.3.8 holds when

0o
X, = g Qi€n—i,
=1

where €;’s are i.i.d. Gaussian and {a;} is reqularly varying as i — oo with exponent d — 1,

de (0,1/2).

Theorem 2.3.9 is based on the arguments in Bai and Taqqu [2013b] and its proof is
sketched in Section 2.4.4. In Bai and Taqqu [2013b] a different setup is considered: a

multilinear polynomial-form process

!

U, = Z @iy - iy €p—iy - - - €n—iy, (2.21)

0<t1,..,05 <00

obtained by applying an off-diagonal multilinear polynomial-form filter to an i.i.d. sequence
{€;}, where ' means exclusion of the diagonals i, = iq, p # ¢, and {a;} is regularly varying.
The resulting sequence { X (n)} will then display either short or long memory. Now consider
a vector of such X(n), whose components are defined through different {a;}’s, that is,
through different multilinear polynomial-form filters, but using the same {¢;}. What is the
limit of the normalized partial sums of the vector? It is shown in Bai and Taqqu [2013b]
that the resulting limit is either a) a multivariate Gaussian process with Brownian motion

as marginals, or b) a multivariate Hermite process, or ¢) a mixture of the two. One has a
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similar limit structure as in the present chapter, but also asymptotic independence without
restriction on the order k.

Note, however, that the setup (2.21) of Bai and Taqqu [2013b] is different from the case
considered in the present chapter even if the ¢;’s are Gaussian. This is because, while one

can set

a(z) = ap)+1l{z>0}

and write

X, = Zan_iei g / a(n — z)W(dx),
i<n R

one does not have

!/

/
d
ST it 6 / a(n — [21]) ... a(n — [za)W(dz1) ... W(dzy).
—00<11 4., <N R
(2.22)
This is because the left-hand side of (2.22) excludes a large interval around the diagonals,
which is not the case for the right-hand side. So the result of Bai and Taqqu [2013b] does
not apply directly to the right-hand side of (2.22). Observe that this right-hand side falls

within our framework because it equals Hy(X,,).

Remark 2.3.10. As mentioned in Remark 2.2.3, the border case d = 1(1 — %) often
leads to convergence to Brownian motion as well. In fact, Theorem 2.3.1 and Theorem
2.3.6 continue to hold if we extend the definition of SRD to the case whenever the limit is

Brownian motion regardless of the normalization.

In Theorem 2.3.1, Theorem 2.3.3 and Theorem 2.3.6 we stated the results only in
terms of convergence in finite-dimensional distributions, but in fact they hold under weak
convergence in D[0,1]” (J-dimensional product space where D[0, 1] is the space of Cadlag
functions on [0, 1] with the uniform metric). If one can check that every component of

Vn(t) is tight, then the vector V y(t) is tight:

Lemma 2.3.11. Univariate tightness in D0, 1] implies multivariate tightness in D[0,1]7.
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Proof. Suppose every component X; n (a random element in S = DI[0,1] with uniform
metric d) of the J-dimensional random element X is tight, that is, given any € > 0, there

exists a compact set K; in DJ0, 1], so that for all N large enough:
P(X;neK)<e

where KJC denotes the complement of K;. If K = K; x ... x K, then K is compact in the

product space SY. We can associate S” with any compatible metric, e.g., for X, Y € §7,

dm(Xa Y) = 1T§Ja<><J(d(X1, Yl)a s 7d<XJ7 YJ))

The sequence X is tight on D[0, 1]/ since
J
P(Xy € K% = P(U_{X;n € K§}) <) P(X;n € K§) < Je.
j=1

O

The univariate tightness is shown in Taqqu [1979] for the LRD case. The tightness for
the SRD case was considered in Chambers and Slud [1989] p. 328 and holds under the

following additional assumption, that {G(X,,)} is SRD, with
> 32k g | < oo, (2.23)
k=1

where gy, is the k-th coefficient of Hermite expansion (2.3) of G. Observe that (2.23) is a

strengthening of the basic condition: E[G(X)?] = Y_,_; kg7 < co. Hence we have:

Theorem 2.3.12. Suppose that condition (2.23) holds for the short-range dependent com-
ponents. Then the convergence in Theorem 2.3.1, Theorem 2.3.3, Theorem 2.3.6 and

Theorem 2.3.9 holds as weak convergence in D[0,1]7.

Condition (2.23) is satisfied in the important special case where G is a polynomial of



23

finite order.

2.4 Proofs of the multivariate convergence results
2.4.1 Proof of Theorem 2.3.1 (SRD case)
We start with a number of lemmas. The first yields the limit covariance structure in (2.11).

Lemma 2.4.1. Assume that ), |y(n)|™ < oo, then as N — oco:

Ntl] [Ntz o0
— Z Z 7‘L1 — ng (tl A tg) Z ’y(n)m (2.24)
n1 1 no=1 n=-—0oo

Proof. Denote the left-hand side of (2.24) by Sy. Let a = t; A ta, and b = t1 V to, and

[Na] [Na] Nad] [N?Y]
SNI—NZ Z (n1 —mn2)™, SN2—NZ Z y(n1 —n2)™,
ni=1no=1 n1=1ny=[Na]+1

so Sy = Sy, + Sn2. We have as N — oo,
[Na]—1 0o
[Na] B ‘n| m
Sni=a Y T’Y(n) —a Y (n)

ni=—[Na]+1 n=—00

We hence need to show that Sy 2 — 0. Let ¢(n) = v(n)™, then

[Na]  [N9] [Na]
SN2_NZ Z lc(n2 —n1)| NZCNm /fN

n1=1ny=[Na]+1 n1=1

where
[NY] [Nb]—[Na]
Ny = Y, lena—m)|= Y |e([Na]+ng2 —n1)],
no=[Na|+1 na=1
and for u € (0,a),
[Na]
fv(u): = Z_: eN i mit ny) (W)
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[Nb]—[Na] [Na]

- ¥ Z|c([Na]+n2—n1)\1[n1T—1,%)(u)

ne=1 mn1=1
[Nb—Na]

= Y le([Na] - [Nu] =1+ ng)].

no=1

Now observe that

fv) < Y lem)l= Y )™ <o

n=-—00 n=-—00
and that [Na] — [Nu| — oo as N — oo . Applying the Dominated Convergence Theorem,
we deduce fy(u) — 0 on (0,a). Applying the Dominated Convergence Theorem again, we

conclude that Sy o — 0. O

Now we introduce some notations, setting for G' € L?(¢),

[Nt]
1
Sna(G) 1= —=>_ G(X,). (2.25)
\/N n=1
The Hermite expansion of each G; is
Gj= Z Im,jHm (2.26)
m=k;

if G; has Hermite rank k;. Since we are in the pure SRD case, we have as in Remark 2.2.3,

that the auto-covariance function y(n) of {X,}

Z y(n)|¥ < 0o, forj=1,...,.J.

n=—oo

The following lemma states that it suffices to replace a general G; with a finite linear

combination of Hermite polynomials:

Lemma 2.4.2. If Theorem 2.3.1 holds with a finite linear combination of Hermite poly-
nomials Gj = Z%:kj am,jHm for any M > max;(k;) and any ap ;, then it also holds for

any Gj € L*(¢).
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Proof. First we obtain an L? bound for Sy¢(Hy,). By EHp(X)Hn(Y) = m!E(XY)™

(Proposition 2.2.1 in Nourdin and Peccati [2012]), for m > 1,

[N1] [N]
1 m!
E(SN,t(Hm))2 = N Z EHm(Xn1)Hm(Xn2) = W Z fy(nl _n2)m
ni,n2=1 ni,no=1
[Nt]—1 o
(Nt] = |n| m
=tm! Y )" < tm! > ). (2.27)
n=1—[Nt] n=-00
Next, fix any ¢ > 0. By (2.27) and HG||%2(¢) = Y ,g2ml, for M = M(e) large
enough, one has
E[Sn(Gy) = Sna( D gmsHm)| = EISnal Y g Hon)
m=Fk; m=M+1
= Z 9r E(SN(Hm))? < t Z Iy ()| Z g ym! < et
m=M-+1 n=—oo m=M-+1

Therefore, the J-vector

M M
VN,M(t) — SN,t( Z gm,le)a v 7SN,t( Z gm,me)

m=k1 m=ky

satisfies limsupy E||Vyar(t) — V()| < Jet, and thus

limlimsup E|| Vv (t) — Va()]|? = 0.
M N
. .d.d.
By assumption, we have as N — oo V(%) f—) By (t) = (Bwma,-- -, Bu,y), where the
multivariate Gaussian B (t) has (scaled) Brownian motions as marginals with a covariance

structure computed using Lemma 2.4.1 as follows:

M M
E(Bujr (1) Ba,jp (t2)) = lim E { Sy, ( > gmi Hn)Sne( Y gmjoHim)
m=kj,

m=kj,
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M [Nt1] [Nt2]
= lim Z m! Z E (np—n
N 9Im,j19m,j2 1 2
’n’LZk:jl\/k ni=1ng=1
M 0o
= (tl /\t2) Z gm,jlgm,jgm! Z y(n m
m:kjl\/kj2 n=—oo

Furthermore, as M — oo, Bs(t) tends in f.d.d. to B(t), which is a multivariate Gaus-

sian process with the following covariance structure:

o0 o
E(Bj, (t1)Bj,(t2)) = (1 Ata) Y gmjigmpm! Y ()™
m=l€j1 \/]Cj2 n=—00

Therefore, applying the triangular argument in Billingsley [1999] Theorem 3.2, we have

V() LS B@).

O

The proof of Theorem 2.3.1 about the pure SRD case relies on Nourdin and Peccati
[2012] Theorem 6.2.3, which says that for multiple Wiener-It6 integrals, univariate conver-
gence to normal random variables implies joint convergence to a multivariate normal. We

state it as follows:

Lemma 2.4.3. Let J > 2 and k1, ..., k; be some fized positive integers. Consider vectors

Vv =Wna, s Vng) = T (fna)s - Tk, ()
with fnj; in L?(R¥35). Let C be a symmetric non-negative definite matriz such that

E(VNiVN;) — C(i,]).
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Then the univariate convergence as N — 0o
d . .
Vn; = N(0,C(j,5) j=1,...,J

implies the joint convergence

We now prove Theorem 2.3.1.

Proof. Take time points t1,...,tr, let Vy(t) be the vector in (2.2) in the context of Theorem

2.3.1, with G, replaced by a finite linear combination of Hermite polynomials (Lemma

2.4.2). Thus
U g &l 9m,J
Va(ti) = ol St (Hom), - - )G (Hp) | 2.28
N( ) mz—il Al(N) Nﬂfz( ) m%J AJ(N) N,Q( ) ( )
We want to show the joint convergence
d
(VN(tl), .. ,VN(t1)> KA <B(t1), .. ,B(t,)) (2.29)

with B(¢) being the J-dimensional Gaussian process with covariance structure given by
(2.11).
By (2.6), and because the term

gm,j
Aj(N) Sivts (Hom)

involves the m-th order Hermite polynomial only, we can represent it as an m-tuple Wiener-

It6 integral:

gm,j . o
A](N) SN,ti (Hm) = Im(fN,m,z,])
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for some square-integrable function fy ,,; ;. Now

M M
V) = Y In(fxmin)s - Y In(fNmins) (2.30)
m=k1 m=k y

To show (2.29), one only needs to show that as N — oo, (I (fn m”))mw converges
jointly to a multivariate normal with the correct covariance structure.

Note by the univariate SRD result, namely, Theorem 2.2.1, each

L (fNm,ig) = AQTK[) SNt (Him)
J

converges to a univariate normal. Therefore, by Lemma 2.4.3, it’s sufficient to show the

covariance structure of ( ( In mw))m”’ is consistent with the covariance structure of

(Bj(ti))@j as N — oo.

Note that A;(N) = o; N2 where 0, is found in (2.12). If m; # ma,

9mi,j15 Yma,ja E

EIml(fN7m7i1,j1)Im2(fN,m,iz,j2)_ oo N
J1¥J2

(SNt ( ml)sN,tiQ(HmQ))zo_

If mqy = mo =m,

Lo (fNmiy ) Im (FNmia.ga)
g p [Nt 1[NVt
mﬂ]l’ m,j2 Hm Xn
e N S Y E( (X))

ni=1 no=1
[Nt ] [Nti,]

:mgmjlagn%h 2 : 2 : nl—ng
0-.710-]2 ni=1 no=1

. ti, Nty

Gmjr» G jo ! Z y(n)™ as N — oo

0,0
71932 oo

by Lemma 2.4.1.

Since every component of Vy in (2.28) is the sum of multiple Wiener-It6 integrals, it
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follows that

tiy Aty = >
BV i (i) VN o (i) = ———= > Gmagmpm! >, ()"
J17732 m:k]'l\/k]'2 n=—oo
which is the covariance in (2.11), where here M is finite due to Lemma 2.4.2. O

2.4.2 Proof of Theorem 2.3.3 (LRD case)

The pure LRD case is proved by extending the proof in Dobrushin and Major [1979] to the

multivariate case. Set
[Vt]

Sna(G) =D G(X,)
n=1

The normalization factor which makes the variance at ¢ = 1 tend to 1 is
Aj(N) = a; L(N)ki/2 N1+ki(d=1/2) (2.31)

where the slowly varying function L(N) stems from the auto-covariance function: y(n) =
L(n)n??~! and where a; is a normalization constant.
The Hermite expansion of each G is given in 2.26 The following reduction lemma shows

that it suffices to replace G;’s with corresponding Hermite polynomials.

Lemma 2.4.4. If the convergence in (2.13) holds with gy, jHy, replacing G, then it also
holds for G, j =1,...,J.

Proof. By the Cramér-Wold device, we want to show for every (wi,...,w;) € R’, the

following convergence:
J

SNt f a4 (k)
Zw] ZwZ
7=1

Let G; = gk’j-‘rl,ijj-i-l —+ gkj+2,jHl€j+2 + .. ©y then

J
S
Z: ij Nt %J Zwﬂ A ;
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By the assumption of this lemma and by the Cramér-Wold device,

j=1 j=1
Hence it suffices to show that for any ¢ > 0,
2
J *
N(GF)
E wj——2=1 =0
2 A;(N)

By the elementary inequality: (ijl z;)?<J Z}]:l x?, it suffices to show that for each j,

This is because the variance growth of G7 (see (2.7) and (2.9)) is at most
L3 ([N#))[Ng] kst D (2d=1)+2
for some slowly varying function L7 , while the normalization
Aj(N)2 = a2L;(N )k Nk =1+

tends more rapidly to infinity. O

The following lemma extends Lemma 3 of Dobrushin and Major [1979] to the multivari-
ate case. It states that if Lemma 3 of Dobrushin and Major [1979] holds in the univariate

case in each component, then it holds in the multivariate joint case.

Lemma 2.4.5. Let Fy and F be symmetric locally finite Borel measures without atoms
on R so that Fy — F weakly. Let Wr,, and Wg, be complex Hermitian Gaussian measures
with control measures Fiy and Fy respectively.

Let K ; be a series of Hermitian(K(—x) = K(x)) measurable functions of k; variables
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tending to a continuous function Ko ; uniformly in any compact set in Rk as N — oo.
Moreover, suppose the following uniform integrability type condition holds for every

j=1,...,J:
lim sup/ |Kn (%) Fn(dzy), . .. , Fn(doy;) = 0. (2.32)
A=oo N JRFi\[-A,Alk
Then we have the joint convergence:

(N (K)o I Kn) S (100w, 10K ). (2.39)

where I,gN)(.) denotes a k-tuple Wiener-1té integral with respect to complexr Gaussian ran-

dom measure Wg,,, N =0,1,2,...

Proof. By the Cramér-Wold device, we need to show that for every (wy,...,wy) € R7 as
N — oo,
Xy = Zw] N(Knj) % Xo0 = Zw] (Koj)- (2.34)
7=1

We show first that (2.34) holds when replacing all kernels with simple Hermitian func-

tions g; of the form:

n

gj(ulv e ,’U,kj) = E a’il,...,ikj lAilﬂjX“'XAikj i ('LLl, ceey Ukj),
01,0 yip=1

where A; ;’s are bounded Borel sets in R satisfying F(0A; ;) = 0, @iy, = 0 if any two

of i1,...,ik; are equal, and g(u) = g(—u). We claim that

Zw] gJ —>Zw]I( (g5)- (2.35)
7j=1

Indeed, since Fy — Fpy weakly and Fy(0A; ;) = 0, we have as N — oo:

EWry (Aij)Wry (Akg) = Fn(Aij N Aky) = Fo(Aij N Agp) = EWrky (A ) Wey (Akg),
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thus (WFN (Al,])) i

Wry (Ai ), (2.35) holds by the Continuous Mapping Theorem.

4 (WFO(AM)) jointly. Since >°°_; w;I} i )(gj) is a polynomial of

Next, due to the atomlessness of Fv, the uniform convergence of Ky ; to Kg ; on any

compact set, (2.32) and the continuity of Ky ;, for any € > 0, there exist simple Hermitian

gj’'s j=1,...,J as above, such that for N =0 and N > N(e) (large enough),

/R’%’ |KN (@1, xp,) — gi(@1, - ,xkj)\QFN(dxl) o Fy(dayy) <€
By (2.36) for every j =1,...,J, we can find a sequence gys,; such that
Hfzg?)(Ko,j) - I;S)(gM,j)HLz <1/M,

1Y (K ) = I ()|l 2 < 1/M for N > N(M) (large enough),

hence by (2.37)

XOM —Zw] gM] —)Xoo —Zw] Ko) as M — oo.

7=1

and by (2.38),
limlimsup E| X — XN,M|2
M N

—hmhmsupE w; KN7 w gM7 =0.
R SRS S T

Finally, replacing g; by gar,; in (2.35), we have

d
XN,M — X(]’M.

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Thus (2.34), namely, Xy LN Xo,0, follows now from (2.39), (2.40) and (2.41) and Theorem

3.2 of Billingsley [1999].

O]
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We can now prove Theorem 2.3.3:

Proof. Since Lemma 2.4.5 involves only univariate assumptions and concludes with the
desired multivariate convergence (2.33), one needs to treat only the univariate case. This

is done in Dobrushin and Major [1979). O

2.4.3 Proof of Theorem 2.3.6 (SRD and LRD mixed case)
The following result from Nourdin and Rosinski [2014] will be used:

Theorem 2.4.6. (Theorem 4.7 in Nourdin and Rosinski [2014].) Consider

Sy = (Ikl,s(fl,s,iv), . -,ijsﬁs(st,s,N)) ,

Ly = (Ikl,L(fl,L,N% e ,IkJL,L(fJL,L,N)> ;

where kjg s > kj, 1 for all js=1,...,Js and jp, =1,...,JL.
Suppose that as N — oo, Sy converges in distribution to a multivariate normal law,
and Ly converges in distribution to a multivariate law which has moment-determinate

components, then there are independent random vectors Z and H, such that
d
(SN,LN) — (Z, H)

A proof of Theorem 2.4.6 can be found in Section 2.6 (see Theorem 2.6.3).

Proof of Theorem 2.3.6. Using the reduction arguments of Lemma 2.4.2 and Lemma 2.4.4,
we can replace G g in (2.16) with Z%:kj’s Gm,j,sHm, and we can replace G, r, in (2.17)
with gi, ;. Hg, , where kj ¢ > kj = 1 or 2 are the corresponding Hermite ranks and g, ; s,
9k, ;L are the corresponding coefficients of their Hermite expansions.

Fix finite time points t;, ¢ = 1...,1, we need to consider the joint convergence of the
following vector:

(SiVjS’N’ Li’jL’N)iujS?jL =
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1
AJS,S

M
1

E : gm,js,SSN,ti(Hm)7A gkL,jL:LSNyti(HkL) ’ (2‘42)

Jr,L

m=k;q. s L
s ,7S5JL

wherei=1,.... I, js=1,...,Js, 5 =1,...,JL.
As in the proof of Theorem 2.3.1, using (2.6), we express Hermite polynomials as

multiple Wiener-It6 integrals:

M M
Si:jS7N = Z Im(fmzisz7N)’ Li:ijN = Z Im(fm7i’jL7N)’
m:kjs’s ’H’L:k]'L,L

where fp,;s.N, fij,, N are some symmetric square-integrable functions.

Express the vector in (2.42) as (Sn, L), where Sy := (S jg N )ijs> LN := (Lij, . N)ijp-

By Theorem 2.3.1, Sy converges in distribution to some multivariate normal distri-
bution, and by Theorem 2.3.3, Ly converges to a multivariate distribution with moment-
determinate marginals, because by assumption the limits only involve Hermite rank k =1
(normal distribution) and & = 2 (Rosenblatt distribution). The normal distribution is
moment-determinate. The Rosenblatt distribution is also moment-determinate because it
has an analytic characteristic function (Taqqu [1975] p.301).

We can now use Theorem 2.4.6 to conclude the proof. ]

2.4.4 Proof of Theorem 2.3.9 (Gaussian linear process case)

The proof below is a sketch, since the details are close to the proof of Theorem 3.5 of Bai

and Taqqu [2013D].

Proof. Firstly, using Lemma 2.4.2 and Lemma 2.4.4, instead of considering the general
nonlinear function G, it suffices to focus on a) for the SRD part: a finite linear combination
of Hermite polynomials whose orders are higher or equal to Hermite rank of Gj; b) for the
LRD part: the single Hermite polynomial whose order is equal to the Hermite rank of G);.
In addition, it suffices to consider in the SRD component only the m-truncated version:

Xr(Lm) = Z?il Ai€n—j.
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Secondly, one can write X, = [ a(n — [2])W (dz) and hence by Ito’s formula

Hi(X(n)) = /le a(n —[z1])...a(n — [zg] )W (dxy) ... W(dzy),

where a(x) = ajy)411{z>0}, and W(-) is a Brownian random measure.

The sequence {H, k(Xflm)), n > 1} with k£ > 2 for the SRD component is always uncorre-
lated with W (-) since they belong to different Wiener chaoses, and since {H, k(X,(Lm)), n>1}
is m-dependent, the Functional Central Limit Theorem applies, yielding a limit Brownian
motion independent of W(-). The Non-Central Limit Theorem for the LRD part in this
case holds by Theorem 4.7.1 of Giraitis et al. [2012]. The random measure which defines
the limit Hermite processes is exactly the same W (-) as above. Thus the limit Brownian

motions for the SRD component and the limit Hermite processes for the LRD component

are independent. ]

2.5 Invariance of the joint distribution among different representations

of the Hermite process

The Hermite process admits four different representations (Pipiras and Taqqu [2010]):
Let B(.) be the real Gaussian random measure and W (.) be the complex Gaussian

random measure, as defined in Section 6 of Taqqu [1979]. Hp € (1 —1/(2k),1).

1. Time domain representation:
k ' . Ho—3/2
Zé,)(t):ak,HO:/k / [1(s— =)™ *2ds | B(az)).. Bldz) — (2.43)
R 0 ;

2. Spectral domain representation:

" ogi(@itotap)t _ 1k

7% ) = / (1/2=Ho 9.44
e (t) = b 1, ” Z.(x1+._'+xk)jl;[1!%! W(dzy)... W(dzy)  (2.44)
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3. Positive half-axis representation:

Ziga (1) = e /0 /H Vet (1 _ sp )T | B(day) . .. B(day)

(2.45)
4. Finite interval representation:
k
Zig) (1) =
/ k
dye, 1, / xy/2 Mo / (Ho— 1/2>H DT | B(day) ... B(day)
045 \ ;=4 0
(2.46)

where ay m,, bk, Hy» Ck,Ho » Ak, H, are constant coefficients to guarantee that Var(Zgg(l)) =1,
given in (1.17) and (1.18) of Pipiras and Taqqu [2010].

Keep Hy fixed throughout. We will prove the following:

Theorem 2.5.1. The joint distribution of a vector made up of Hermite processes of possibly
different orders k, but sharing the same random measure B(.) or W (.) in their Wiener-Ito
integral representations, remains the same when switching from one of the above represen-

tations to another.

The following notations are used to denote Wiener-1t6 integrals with respect to B(.)

and W (.) respectively:

I(f) := R/k f(z1,...,xx)dB(z1)...dB(xy),

I(g) == /RZ g(wi, ... ,wi)dW (wr) ... dW (wg).

!/

where " indicates that we don’t integrate on z; = x;,i # j, ” indicates that we don’t

integrate on w; = *wj, i # j, f is a symmetric function and g is an Hermitian function

(9(w) = g(~w)).
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The next lemma establishes the equality in joint distribution between time domain
representation (2.43) and spectral domain representation (2.44), which is a multivariate

extension of Lemma 6.1 in Taqqu [1979].

Lemma 2.5.2. Suppose that Aj(z1,...,xx;) is a symmetric function in L2(RF), j =

1,...,J. Let /Nl(:zl, o, Tg;) be its L?-Fourier transform:

~ 1

k;
Aj(wl, N ,wk].) = W/ exp(i Z xnwn)Aj(xl, P ,J}kj)dx1 P dIL’kj.
m n:]_

Then
(T (A1), Ty (A) £ (T (A1), iy (A)))

Proof. The proof is a slight extension of the proof of Lemma 6.1 of Taqqu [1979]. The
idea is to use a complete orthonormal set {t;,7 > 0} in L*(R) to represent each A; as an
infinite polynomial form of order k; with respect to v;’s, as is done in (6.3) of Taqqu [1979].
Each Iy (A;) can be then written in the form of (6.4) of Taqqu [1979], which is essentially

a function of

Xi = /wl(w)dB(l'), ZZ 0,

denoted

where X = (Xg, X1,...). Thus
(T (A1), -+ I, (Ag)) = K(X), (2.47)

where the vector function K = (K1, ..., Ky).

Now, flj can also be written as an infinite polynomial form of order k; with respect to
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z/;i,z' > 0, where

Yi(w) = (27r)1/2/eimwi(a:)da:

is the L2-Fourier transform of 1);, as is done in (6.5) of Taqqu [1979]. Set

Yj = /&i(w)dW(w), i > 0.

Then, as in (6.6) of Taqqu [1979], we have

where K;’s are the same as above, Y = (Yp,Y1,...), and thus
(T (A1), o Ty (Ag)) = K(Y). (2.48)

By (2.47) and (2.48), it suffices to show that X 2 Y. This is true because by Parseval’s
identity, X and Y both consist of i.i.d. normal random variables with mean 0 and identical

variance, . For details, see Taqqu [1979]. O

We now complete the proof of Theorem 2.5.1. We still need to justify the equality in
joint distribution between time domain representation (2.43) and positive half-axis repre-
sentation (2.45) or finite interval representation (2.46).

First let’s summarize the arguments of Pipiras and Taqqu [2010] for going from (2.43)
to (2.45) or (2.46). The heuristic idea is that by changing the integration order in (2.43),

one would have
) t ; k
Zy) :/ /kH(s—xj)HO3/2B(da:1)...B(dxk) ds
0 Rk -
7j=1

- /Ot H,, </R(s - x)f°_3/2B(d:v)) ds, (2.49)

where Hj, is k-th Hermite polynomial. But in fact g(z) := (s — x)fO_B/Q ¢ L*(R), and
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consequently G(s) := [p(s — :Ir)fo_S/gB(dac) is not well-defined.

The way to get around this is to do a regularization, that is, to truncate g(x) as
ge(x) := g(x)1ls_g>e(x) for € > 0. Now the Gaussian process Ge(t) := [p ge(x)B(dx) is
well-defined. Next, after some change of variables, one gets the new desired representation
of Ge(t), say G2(t), where G2(t) £ Ge(t). Setting Z'% (t) = [i He(Ge(t))dt and Z) (1) =
Jy Hy(GE(t))dt, yields

A ROEFANGY (2.50)

Finally by letting e — 0, one can show that Ze(lgo (t) converges in L?(f2) to the Hermite

process ZI(LZ) (t), while Zg(k}){z (t) converges in L?(f2) to some Zg?*(t), which is the desired
alternative representation of Zl(ﬁfo) (t).
The above argument relies on the stochastic Fubini theorem (Theorem 2.1 of Pipiras

and Taqqu [2010]) which legitimates the change of integration order, that is, for f(s,x)
defined on R x R, if

L1 M < o0

(which is the case after regularization), then

/ /f(s,xl,...,xk)dsB(dxl)...B(dxk):/ f(s,z1,...,zk)B(dxy1) ... B(dzy)ds
Rk JR R JRE

almost surely.

Now, consider the multivariate case. Note that we still have equality of the the joint
distributions as in (2.50) and the equality is preserved in the L?() limit as ¢ — 0. More-
over, the stochastic Fubini theorem (Theorem 2.1 of Pipiras and Taqqu [2010]) extends
naturally to the multivariate setting since the change of integration holds as an almost
sure equality. Therefore one gets equality in joint distribution when switching from (2.43)

to (2.45) or (2.46). O
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2.6 Asymptotic independence of Wiener-1t6 integral vectors

We prove here Theorem 2.4.6 by extending a combinatorial proof of Nourdin and Rosinski
[2014].

First, some background. In the papers Ustunel and Zakai [1989] and Kallenberg [1991],
a criterion for independence between two random variables belonging to Wiener Chaos,
say, Ip(f) and Ip(g), is given as

Jeng =0 as. (2.51)

where ®1 means contraction of order 1 and is defined below.

The result of Nourdin and Rosinski [2014] involves the following problem: if one has
sequences {fn}, {gn}, when will asymptotic independence hold between I,,(f,) and I;(gn)
as n — oo? Motivated by (2.51), one may guess that the criterion is f,®19, — 0 as
n — oo. This is, however, shown to be false by a counterexample in Nourdin and Rosinski
[2014]: set p = q¢ =2, f,, = gn, and assume that Iz(fy) 47~ N(0,1). One can then show
that f, ®1 fu — 0, while obviously (Io(fn), I2(fn)) % (Z, Z). Let ||.|| denote the L? norm
in the appropriate dimension and let < .,. > denote the corresponding inner product.

We now define contractions. The contraction ®, between two symmetric square inte-

grable functions f and g is defined as

(f Qr g)(l'l,- <y Tp—ry Y1y - - ayq—T) =

f@1,. o Tpery S15- 3 S0)9(Y1s -, Yges, S15- -+, Sp)dST ... dsy
Rr
If » = 0, the contraction is just the tensor product:
f@og=Ff@g:=f(x1,...,2p)9(y1,- -, Yq)- (2.52)

The symmetrized contraction ®, involves one more step, namely, the symmetrization of

the function obtained from the contraction. This is done by summing over all permutations
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of the variables and dividing by the number of permutations. Note that as the contraction
is only defined for symmetric functions, replacing ®, with ®, enables one to consider a

sequence of symmetrized contractions of the form

(- (Ao f@nfs) . ) Grs

We will use the following product formula (Proposition 6.4.1 of Peccati and Taqqu

[2011]) for multiple Wiener-It6 integrals

b0 =3 () (Vs o) pazo (2:53)

r=0

Because the symmetrization of the integrand doesn’t change the multiple Wiener-1t6 inte-
gral, ®, could be replaced with ®, in the product formula.
For a vector q = (q1,...,qr), we denote |q| := ¢q1 + ...+ qx. By a suitable iteration of

(2.53), we have the following multiple product formula:

k

H Iqi(fi) = Z a(qv k, I‘)I\q|—2|r| ( .- (f1®r1f2> s ®7'k—1fk') ) (2'54)

i=1 reC(ak)

where q € N”, the index set

Cla, k) =

k—1
{I‘EH{O,l,...,qurl}:’l"lSql,’l"ig(ql—|—...—|—qi)—2(?“1—|—...—|—7“Z',1),’L':2,...k‘—1},
=1

and a(q, k,r) is some integer factor. The following Theorem 2.6.1 is similar to Theorem

3.4 of Nourdin and Rosinski [2014] but the proof is different®.

Theorem 2.6.1. (Asymptotic Independence of Multiple Wiener-Ité Integral Vec-

!The present proof of Theorem 2.6.1 is an extension to Wiener-Ité integral vectors of a combinatorial
proof for Wiener-Itd integral scalars given in an original version of Nourdin and Rosinski [2014].
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tors.) Suppose we have the joint convergence
d
(U17N,...,UJ7N) — (Ul,...,UJ),

where

Ui = (T, (i) Tan (1)) -

Assume

i I fir 1. N ®r fiy joN|| =0 (2.55)

for all iy, iz, j1 # j2, and

r=1,... s Qin g1 N Qig, o

where || - || denotes the L?>(R¥) norm for some appropriate dimension k.

Then using the notation u* = u]fl .ulmwe have

E[UY ... UY] = E[U¥].. . E[UY/] (2.56)

I,
for all k; € N
Moreover, if every component of every U; is moment-determinate, then Uy,...,U;

are independent.

Proof. The index 7 = 1,...,1; refers to the components within the vector Ujy, j =
1,...,J. For notational simplicity, we let I; = I, that is, each U; y has the same number
of components.
Let |k| denote the sum of its components k; + ...+ ky,. First to show (2.56), it suffices
to show
k;

J
lim E (U —EUR]) =0
j=1

N—oo

for any |ki| > 0,...,|ks| > 0. Note that U;{JN = Uflj]N . Uﬁjk is a scalar.
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By (2.54), one gets

Iq(f)k = Z a(Q7 k‘, r)qufZM ( . (f®r1f) s ®7’16—1 f)

I‘Ecq,k

where a(q, k,r)’s are integer factors which don’t play an important role, and Cyj is some

index set. If

I

k; ki s

Uy = HIQi,j(fi,j,N) i
i1

then

I
k; ~ ~
U =11 Y. algskijr)l, g2 (---(fz‘,j,N@nfz‘,j,N)---®rki7j71fi7j,N>
i=1r€Cy; ; ki 5
1
= > > T e kig ) g, —opes (i) (2.57)

rlqul,rij rIECqI’jﬂkI’j i=1

where

hijN = ( (fig N Dy figN) - i ,_lfz‘,j,N> :
V)

If one applies the product formula (2.54) to the product in (2.57), one gets that U;{JN
involves terms of the form I, | o5, |(Hjn) (P; and s; run through some suitable index

sets), where

Hin= (... (h1jN®s hojN) .- Qs hijN) -

Since the expectation of a Wiener-It6 integral of positive order is 0 while a Wiener-It6
integral of zero order is a constant, U;(JN — ]E[U;(JN] involves I, |_ojs;|(HjN) with [p;] —
2|sj| > 0 only. Therefore, every H; n involved in the expression of U;{JN — IE[U;(JN] has
n; = |p;| — 2|s;| > 0 variables.

k;
J}N]’

Note that there are no products left at this point in the expression of U?JN —E[U
only sums. But to compute Eszl(U;(JN - E[U?N]), one needs to apply the product
formula (2.54) again and then compute the expectation. Since Wiener-Itd integrals of

positive order have mean 0, taking the expectation involves focusing on the terms of zero
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order which are constants. Since f ®, g = (f,9) = EI,(f)I,(g) for functions f and g both

having p variables, E szl(U;(JN - E[U;{JN]) involves only terms of the form:

Gy = ( .. (Hl,N®t1H2,N) . ®tJ_2HJ,1,N) ®tJ_1HJ’N (2.58)
:/ (Hi,n®y Hon) ... @, yHy1n) Hyn dx (2.59)
R"J
where the contraction size vector t = (¢1,...,%t;_1) runs through some index set. Since

these contractions must yield a constant, we have
1
|t|:§(n1+...+nJ)>0, (2.60)

where n; is the number of variables of H; . There is therefore at least one component
(call it t) of t which is strictly positive and thus there is a pair ji, jo with j; # ja, such
that H; and Hj, that have at least one common argument.

One now needs to show that Gy in (2.59) tends to 0. This is done by applying the
generalized Cauchy-Schwartz inequalities in Lemma 2.3 of Nourdin and Rosinski [2014]

successively, through the following steps:

for any j1 # jo, 91,92 and v >0, lim ||fi, j; N ®r fiyjo.N] =0
N—oo
= for any jl 75 jQ, 11,192 and s > 0, lim Hhil,jLN Rs hig,jg,N” =0
N—oo
= for any j; # j2 and ¢t > 0, ]\}im |Hj, N ®¢ Hj, n|| =0 (2.61)
— 00

— lim Gy =0, (2.62)
N—o0

proving (2.56). Here we illustrate some details for going from (2.61) to (2.62), and omit
the first two steps which use a similar argument.

Let C ={1,2,...,(n1+...ny)/2}. Suppose c is a subset of C, then we use the notation
z. to denote {zj,,..., 2} where {j1,...,jjq} = c and || is the cardinality of c. When

c=0,z,=0.
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Observe that (2.59) is a sum (due to symmetrization) of terms of the form:

o Hl,N(ch) . HJ,N(ZCJ)CZZC, (263)
R

where every ¢;, j = 1,...,J, is a subset of C. Note that since [t| =t + ... +t; > 0
in (2.60), there must exist ji # jo € {1,...,J}, such that ¢g := ¢j, N¢j, # 0. By the
generalized Cauchy Schwartz inequality (Lemma 2.3 in Nourdin and Rosinski [2014]), one

gets a bound for (2.63) as:

Hy N (2ey) - Hin(2e,)dzo| < |Hjy n @) Hipn |l [ I1H N,
J#J1,J2

RICI

where ||Hj, N ®¢o) Hjy N|| — 0 as N — oo by (2.61). In addition, ||f;;n|, N > 1 are
uniformly bounded due to the tightness of the distribution of Iy, .(fijn~), N > 1 (Lemma
2.1 of Nourdin and Rosinski [2014]). This, by the generalized Cauchy-Schwartz inequality
(Lemma 2.3 of in Nourdin and Rosinski [2014]), implies that ||h; ; v||, N > 1 are uniformly
bounded, which further implies the uniform boundedness of ||H; x|, N > 1. Hence (2.63)
goes to 0 as N — oo and thus (2.62) holds.

Finally, if every component of every U; is moment-determinate, then by Theorem 3 of
Petersen [1982], the distribution of U := (Uy,...,Uy) is determined by its joint moments.
But by (2.56), the joint moments of U are the same as if the U;’s were independent. Then

the joint moment-determinancy implies independence. ]

Corollary 2.6.2. With the notation of Theorem 2.6.1, suppose that condition (2.55) is
satisfied and that as N — oo, each U y converges in distribution to some multivariate law
which has moment-determinate components. Then there are independent random vectors
Uy,..., Uy such that

(Uin,...,Usn) S (Uy,...,U)). (2.64)

Proof. Since each Uj n converges in distribution, the vector of vectors (Ui n,...,Ujn)

is tight in distribution, so any of its subsequence has a further subsequence converging in
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distribution to a vector (Uy,...Uy). But by Theorem 2.6.1, the Uj’s are independent.
Moreover, the convergence in distribution of each U  implies that U; x a4 U;, and hence

(2.64) holds. O

Now we are in the position to state the result used in Theorem 2.3.6 in the proof of the

SRD and LRD mixed case.

Theorem 2.6.3. Consider

SN = <Ik1,s(f1,S,N), vy Ik:‘]s,s(fJS,S,N)) ’

Ly = <Ik1,L(f1,L,N), .. ’IkJL,L(fJL,L,N)) ’

where kjg s > kj, 1 forall js =1,...,Js and jp, =1,...,JL.
Suppose that as N — 0o, Sy converges in distribution to a multivariate normal law,
and Ly converges in distribution to o multivariate law which has moment-determinate

components, then there are independent random vectors Zi and H, such that
d
(SN,LN) — (Z, H)

Proof. By Corollary 2.6.2, we only need to check the contraction condition (2.55). This is
done as in the proof of Theorem 4.7 of Nourdin and Rosinski [2014]. For the convenience
of the reader, we present the argument here.

Using the identity

Hf Qr gH2 = <f ®p—r f:g®q—r g>

wherer = 1,...,pAq, f and g have respectively p and ¢ variables, we get forr =1,...,k; 1,

I fisn @ finnl? = (fisn ks s—r f3.5N5 [j.LN Qk; p—r fjLN)

<||fis,n @k, g—r [isNIfiL.N @k p—r fiLN] — 0

because || fi s, ¥ @k, s—r fj,5,n] = 0 by the Nualart-Peccati Central Limit Theorem Nualart
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and Peccati [2005], and for the second term, one has by Cauchy-Schwartz inequality,

1 f5.L.8 @k, —r Fiznl < I

(generalized Cauchy-Schwartz inequality in Nourdin and Rosinski [2014] Lemma 2.3), which
is bounded due to the tightness of the distribution of Iy, (fjzn) (Lemma 2.1 of Nourdin
and Rosinski [2014]). Therefore (2.55) holds and the conclusion follows from Corollary
2.6.2. O



Chapter 3

Multivariate limits of multilinear polynomial-form

processes with long memory

Consider a vector of multilinear polynomial-form processes with either short or long mem-
ory components. The components have possibly different coefficients but same noise ele-
ments. We study the limit of the normalized partial sums of the vector and identify the

independent components.

3.1 Introduction

A linear process is generated by applying a linear time-invariant filter to i.i.d. random
variables. A common model for stationary long-range dependent (LRD) (or long-memory)
time series is a causal linear process with regularly varying coefficients as the lag tends
to infinity, namely, X (n) = Y 7 ajen—;, where the ¢’s are i.i.d. with mean 0 and finite

variance, and the coefficients satisfy
a; =i 1L() with 0 < d < 1/2,

and L is a slowly varying function at infinity (i.e., L(z) > 0 when z is large enough
and lim, o L(Az)/L(z) = 1 YA > 0). Note that 0 < d < 1/2 implies )7, |a;| = co but
2, a? < 0o, s0 X (n) is well-defined in L? sense. It is well-known that the autocovariance

)

v(n) of X(n) is regularly varying with power 2d — 1, and that the partial sum of X (n)
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when suitably normalized converges to fractional Brownian motion with Hurst index
H=d+1/2.

See for example Chapter 4.4 of Giraitis et al. [2012].
A family of processes related to multilinear processes are the so-called multilinear

polynomial-form processes (or discrete-chaos processes), which are defined as

X(n)= Z @iy o Qi €n—iy - - En—ips (3.1)

1<41 <. < <00

where
o0
E a? < 0o
) 9
i=1

and ¢;’s are i.i.d., and the k£ > 0 is the order. X (n) is also said to belong to a discrete chaos
of order k. The multilinear polynomial-form process X (n) can be viewed as generated by
nonlinear filters applied to i.i.d. random variables when & > 1. We call such a nonlinear
filter defined in (3.1) a multilinear polynomial-form filter. Such a process often arises from
considering a polynomial of a linear process (see, e.g., Surgailis [1982]).

If a; = i L(4) with 0 < d < 1/2, when k > 1, that is, except for linear processes, the
partial sum of X (n) when suitably normalized no longer converges to a fractional Brownian
motion, but depending on d and k, it either converges to a Hermite process if X (n) is still
LRD, or it converges to a Brownian motion if X (n) is short-range dependent (SRD), that
is, when the autocovariance of X (n) is absolutely summable. See Giraitis et al. [2012] for
more details.

In Statistics, however, one often needs convergence when X (n) is a vector rather than
a scalar. This leads us to the following question: if one applies different multilinear
polynomial-form filters to the same i.i.d. sequence {¢;}, what is the joint limit behav-

ior of the J-vector of the partial sums? More specifically, assume that {¢;} are i.i.d with
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mean 0 and variance 1. Consider the multilinear polynomial-form processes:

X](n) = E ai17j...aikj7jen_i1...en_ikj, ] = 1,...,J,

1§i1<...<ikj <o

where ki,...,ky are orders for Xi(n),..., X (n) respectively, {a; ;} are regularly varying
coefficients. Let
1 [Nt]
Y.n(t) = —— X t>0 3.2
]7N() A](N)Z ](n)7 S ( )
n=1
where A;(N) is a normalization factor such that limy_,o Var[Y; n(1)] =1, j =1,...,J.

We want to study the limit of the following vector process as N — oc:

Yn(t) = Yin(t), ..., Yon(t)). (3.3)

Depending on {a; ;} and k;, the components of Y () can be either purely SRD, or purely
LRD, or a mixture of SRD and LRD. In Bai and Taqqu [2013a], a similar type of problem
is considered for nonlinear functions of a LRD Gaussian process. We show here that the
results for multilinear polynomial-form processes are similar to those in Bai and Taqqu
[2013a]. But in the present context, we are able to provide a complete answer to the
problem, in contrast to what happens in Bai and Taqqu [2013a], where the mixed SRD
and LRD case is stated as a conjecture in some cases.

In addition, we distinguish here between two types of SRD sequences, one involving a
linear process (k = 1) and one involving higher-order multilinear polynomial-form process
(k > 2). For the first type of process, we get dependence with the LRD limit component,
while for the second type, we get independence.

The chapter is organized as follows. In Section 3.2, some properties of multilinear
polynomial-form processes are given and the univariate limit theorems under SRD and
LRD are reviewed. In Section 3.3, we state the multivariate convergence results in three
cases: a) pure SRD case, b) pure LRD case and c) mixed SRD and LRD case. The result

of the general mixed case is stated in Theorem 3.3.5. In Section 3.4, we give the proofs of
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the results in Section 3.3.

3.2 Preliminaries

In this section, we introduce some facts about multilinear polynomial-form processes as
well as the univariate limit theorems for the partial sums.
Suppose that X (n) is the multilinear polynomial-form process in (3.1). Note first, the

condition Y 30, a? < oo guarantees that X (n) is well-defined in L2, since

E[X(n)?] = Z a2 ...a} < co.

1< <. <1 <00

We use throughout a convention a; = 0 for ¢ < 0. One can compute the autocovariance of
X(n) as:

v(n) = Z Anetiy Qi - - - Anyig Qif, T E L. (3.4)
1<i1 <. <4, <00

The following proposition describes the asymptotic behavior of v(n) under the assumption:

a; =i 1L(i), i>1, 0<d < 1/2.

Proposition 3.2.1. Suppose y(n) is defined in (3.4), a; = 19" L(i), i > 1 with0 < d < 1/2

where L is slowly varying at infinity. Then
y(n) = L*(n)n*> 1,

for some slowly varying function L* and

Proof. First we claim that as n — oo,

oo
Z aniai ~n2tB(d, 1 — 2d)L(n)?,
i=1
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where B(.,.) is the beta function. Indeed, one can check by Potter’s bound for slowly
varying functions (Theorem 1.5.6 in Bingham et al. [1989]) and the Dominated Convergence

Theorem that as n — 0o

i.g_1 L) L(n+1d)1
2n2d 1 Zanﬂal - ; )d s n)d 1L(n)Wﬁ (36)
%/ 11 +wuw)¥tdu = B(d,1 - 2d).

Then note that as n — oo,
o0
I(Z an+iai)k,
i=1

(the diagonal terms with i, = i, are negligible as n — co. See also Giraitis et al. [2012]

p.109). Now we can deduce that
,y(n) — nk(Zd—l)L*(n) — ’I’L2dX_1L*(7’L),

where

L*(n) = (k)"'B(d,1 — 2d)*L(n)?*.
O

Remark 3.2.2. According to Proposition 3.2.1, when d < (1 — #) (or k(2d — 1) < —1),
we have >° [y(n)| < oo, and when d > 1(1 — 1), we have Y |y(n)| = co. So if we assume

a; = i 'L(i), 0 < d < 1/2, the quantity 5(1— }) is the boundary between SRD and LRD.

We now define precisely what SRD and LRD mean for a multilinear polynomial-form

process X (n), and from then on we use this definition whenever we talk about SRD or

LRD.

Definition 3.2.3. Let X (n) be a multilinear polynomial-form process given in (3.1) with

coefficient {a;}, autocovariance y(n) and order k. We say that X (n) is
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(a) SRD, if for some d € (—o0,5(1 — )) and some constant ¢ > 0,

o0

la;| < cidt, i >1, Z v(n) > 0; (3.7)

n=—oo

(b) LRD, if for some d € (3(1 — 1), 3) and some L slowly varying at infinity,

1 1
ai = i%7L@G), i > 1, G- <d<1/2 (3.8)

Remark 3.2.4. The d in (3.7) and (3.8) are different. In the SRD case, {a;} is only

assumed to decay faster than a power function, which implies

Z Iv(n)| < Z(Z |an+iai|)k < o0
n =1

n  i=

by (3.6), and the particular d chosen will not matter in the limit. While in the LRD case,
the regularly varying assumption on {a;} yields a memory parameter dx = % — k(% —d)

given by (3.5), and thus d plays an important role.

Next we consider the cross-covariance between of two multilinear polynomial-form pro-
cesses obtained by applying two multilinear polynomial-form filters to the same {¢;}. In

particular, set

X1 (n) == Z (07 aipen,il e En,ip, (39)
1< <. <ip<oo
XQ(TL) = Z bil e biqen,il e Gn,iq. (310)

1<i1 <. <ig<oo

Xi1(n) and Xo(n) share the same {¢;} but the sequences {a;} and {b;} can be different.

Then the cross-covariance is

0 p# G
71,2(n) = Cov(X1(n), X2(0)) = (3.11)

do1<iy <. <ip<oo it Ontiy -+ Qipbnyiy, P=q=k
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for any n € Z.
The following result will be used to obtain the asymptotic cross-covariance structure

between the SRD components of Y () in (3.3).

Proposition 3.2.5. Let X1(n) and Xa(n) be given as in (3.9) and (3.10) withp = q =k,
and are both SRD in the sense of Definition 3.2.3. Then the cross-covariance v12(n) =
Cov(Xy(n), X2(0)) is absolutely summable:

> ha(n)] < oo (3.12)

n=—o00
Moreover, (3.12) implies that as N — oo,

[Ntl [th]

1 } 1 >
Cov N nzl X1 (n), N nzl Xo(n) | = (i At2) D y12(n). (3.13)

n=—oo

In addition, if k = 1, then
Z Y ,2(n) = o109, (3.14)

n=—oo

where
1 N
2 X, X. — Iim V. 75 - | =
0 = En COV( ](n)7 ](0))_1\}2}20 ar(\/ﬁnle](n)>’ J=12

Proof. Suppose that {a;} and {b;} satisfy the bound in (3.7) with d = d; and d = d
respectively. Using a similar argument as in the proof of Proposition 3.2.1, one can show

that
a(n)] < JnfF@+d=D L*(p)

for some function L*(n) slowly varying at +o0o. Since by assumption di,dy < %(1 - %),
which implies that k(d; + d2 — 1) < —1, so we have Y |y1,2(n)| < co.

The proof of (3.13) follows from the argument of Lemma 4.1 in Bai and Taqqu [2013a],
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after noting that
[Nt1 [th] [Ntl] [th]
Z Xi1(n Z Xao(n) | = Z Z 71.2(n1 — ng).
n=1

ni=1ng=1

Now let’s prove (3.14). When k = 1,

Zaz€n i X2 Zb €n—i-

Note that by (3.7) with k = 1, we have ) . |a;| < oo and ), |b;| < co. The cross-covariance

is

7172( ) COV(XI Zaz i+n-
By Fubini,
Z Y1,2(n) = Z Zaibn+i = (Z ai)(z by).
n=—00 n=—o0 i=1 =1 n=1
Since (3072, ai)* = Y, mi(n) = o7, and (372, 0:;)* = 3, 72(n) = 03, we get Relation
(3.14). -

Let’s now review the limit theorems for partial sum of a single multilinear polynomial-
: d.d. : o .
form process X(n). Let the notation ¢ 144 denote convergence in finite-dimensional

distributions.

Theorem 3.2.6. Suppose that X (n) defined in (3.1) is SRD. Then

QL

A(lN) S x(n) 124 B(e),

where A(N) is a normalization factor to guarantee unit asymptotic variance att =1, and

B(t) is the standard Brownian motion. In fact,

A(N) ~ VN as N — oo with o :Z'y(n)
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Theorem 3.2.7. Suppose that X (n) defined in (3.1) is LRD. Then

V1)
v X Bz,

n=1

where A(N) is a normalization factor to guarantee unit asymptotic variance at t = 1,
and Zc(lk) (t) is the so-called Hermite process defined with the aid of the k-tuple Wiener-Ito
stochastic integral denoted by Ii(.) (Major [2014]):

ZW ) = L(f( /fkdml,..., W (dzy) ... W (dak) (3.15)

/

where the prime " indicates the exclusion of the diagonals x; = x; for i # j, W(.) is

Brownian random measure, and

t k
f;i’fﬁl(xl,---, —de/ H s — ;)% s, (3.16)

with

(kA= 1/2) + 1) (2k(d — 1/2) + 1) T(1 — d)*\ /*
ot = < KT (d)*T(1 — 2d)k ) :

(See Pipiras and Taqqu [2010].) In fact,
A(N) ~ eNYFEA=Y2R (N2 05 N — o0 for some ¢ > 0.

For the proofs of Theorem 3.2.6 and Theorem 3.2.7, we refer the reader to Chapter 4.8
in Giraitis et al. [2012], respectively Theorem 4.8.1 and Theorem 4.8.2 . One may also
compare Theorem 3.2.6 and Theorem 3.2.7 to their counterparts in the context of nonlinear

functions of a LRD Gaussian process, stated as Theorem 2.1 and Theorem 2.2 in Bai and

Taqqu [2013a).

!The results of Chapter 4.8 in Giraitis et al. [2012] do not include a slowly varying function, nor con-
vergence of finite-dimensional distributions in the case of Theorem 3.2.6. But they can be easily extended.
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3.3 Multivariate convergence results

In this section, we state the multivariate joint convergence results for the vector process
Yn(t) in (3.3). Recall that Y is normalized so that the asymptotic variance of every

component at ¢ = 1 equals 1.

Theorem 3.3.1. Pure SRD Case. If all the components in Y defined in (3.3) are
SRD in the sense of (3.7), then

Y)Y B(t) = (Bi(t), ..., Bs(t)),

where B(t) is a multivariate Gaussian process with Bi(t), ..., Bj(t) being standard Brow-

nian motions with

Cov (By(s), By(t)) = (s A t)%, (3.17)
op= > wn)i= Y Cov(X,(n), X,(0)),
Opg = Z Vpg(n) = Z Cov(Xp(n), Xq(0)).

The normalization A;(N) in (3.2) satisfies A;(N) ~ 0;v'N as N — oo.
Remark 3.3.2. 0, is well-defined by Proposition 3.2.5.

Remark 3.3.3. In view of (3.11) and (3.17), if all the components of the Y x(¢) have
different order, then the limit components B;(t) are uncorrelated and hence independent.

Otherwise, they are in general dependent and their covariance is given by (3.17).
Theorem 3.3.4. Pure LRD Case. If all the components in Y defined in (3.3) are

LRD in the sense of (3.8) with d =dy,...,d; respectively, then

Ya(t) "z = (207, ... 280 (1)),
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where Zg(lfj)(t) are Hermite processes sharing the same random measure W (.) in their

Wiener-1to integral representations. The normalization A;(N) in (3.2) satisfies
Aj(N) ~ cj]VlJr(dj*l/Z)kjL(N)kj/2 as N — oo, for some cj > 0.

The processes Zc(l];j), ji=1,...,J are dependent.
We now consider the mixed SRD and LRD case.

Theorem 3.3.5. Mized SRD and LRD Case. Break Yy in (3.3) into 3 parts:
YN =(YnNs: YN YNL),

where within Y n g, (Js, —dimensional) every component is SRD and has order kj g, =1,
within Y., (Js,—dimensional) every component is SRD and has order kj s, > 2, and

within Y N 1, (Jr—dimensional) every component is LRD. Then

d.d.
Y (t) = (Y (0 Y (8), Yo (8) 225 (W(2), B(1), Z5 (1)), (3.18)
where B(t) := (Bl (t),..., By, (t)) is the multivariate Gaussian process appearing in The-

orem 3.5.1, Zgi (t) is the multivariate Hermite process appearing in Theorem 3.5./,
W(t) = (W(t),....W(t)), (3.19)

where W (t) is the Brownian motion integrator for defining Zlgi (t) (see (3.15)), and B(t)
.o k
is independent of (W (1), Z 3" (t)).

Remark 3.3.6. To understand heuristically why B(¢) and (W (¢), Z}éi (t)) are independent,
note that Yy g, (t) belongs to chaos of order > 2, and is thus uncorrelated with Yy g, (t)
which belongs to first-order chaos, and also uncorrelated with the random noise {¢;} which
also belongs to the first-order chaos, and which after summing becomes asymptotically the

Brownian measure W (.) defining Zlc‘li (t).
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Remark 3.3.7. The independence between B(t) and Zgi (t) for kj 1, > 3 (the order in LRD
component) is in general only a conjecture in the framework of Bai and Taqqu [2013a]. This
conjecture is resolved in the special case of causal linear Gaussian processes (Theorem 3.9
of Bai and Taqqu [2013a]) using arguments similar to the proof of Theorem 3.3.5 of the

present chapter.

The convergence results in the above theorems are stated in terms of convergence in
finite-dimensional distributions, but one can show that in some cases they extend to weak
convergence in D[0,1]7 (J-dimensional product space where D0, 1] is the space of Cadlag

functions on [0, 1] with uniform metric).
Theorem 3.3.8. Weak convergence in D|0,1]’.
1. Theorem 3.3.4 holds with “ M’ ” replaced by weak convergence in D[0,1]7;

2. If the SRD component in Theorem 3.3.1 (or Theorem 3.3.5) satisfies either of the

following conditions:

a. There exists m > 0, such that the coefficients a; in (3.1) are zero for all i > m;
b. {€} are i.i.d. Gaussian;

c. The order k =1 and E(|¢;|**°) < oo for some & > 0;

d. The order k> 2, > |a;| < 0o and E(|e;]?) < oo;

“© fdd ”

then Theorem 3.3.1 (or Theorem 3.3.5) holds with “ =" 7" replaced by weak conver-

gence in D[0,1]”.

Note that tightness in the SRD case results from an interplay between the dependence

structure and the finiteness of the moments.
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3.4 Proofs for the multivariate convergence results

3.4.1 Pure SRD case

Proof of Theorem 3.5.1. Following the idea of Giraitis et al. [2012] p.108., we define the

truncated multilinear polynomial-form processes:

X](m) (n) = Z Ajy5 - aikj J €En—iy - - - en,ikj, ] == 1, ey J, (320)

1<i1<...<ig; <m

where m > maz;j{k;}. Note that X](m) (n) is m-dependent. Set
(02 = > Cov (X (m), X{™(0))

(assume m is large enough so that aj(m) > 0), and

o) =" Cov (X" (n), X{™(0))

which is well-defined due to Proposition 3.2.5.

Set
1 [Nt () 1 [Nt] ()
Yn;(t) = ——= Xi(n), Y, m (t) = ——— xm (n).
’ oiVN i A o(-m)\/NnZ::l ’

Theorem 3.3.1 follows if one shows that as N — oo,
Y () = (Y]S,J)(t), . ,Y&}(t)) [24 gm)(1) = (B§ )(#),...,BY )(t)> . (321

m . . . .
where BJ( )(t)’s are Brownian motions with cross-covariance structure:

(m)

Cov(B{™ (t1), B{™ (t2)) = (t1 A h)%, pg=1,...,J (3.22)
Op "Ogq
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and as m — oo,

a](-m) — 0y, UI()ZL) — Opg (3.23)
as well as for any j =1,...,J and t > 0, as m — oo,
Var [Y{" () — Ya (1) — 0 (3.24)

uniformly in N. Indeed, combining (3.21), (3.23) and (3.24), one obtains the desired

convergence:

Yu(t) = (Yua(t), ... Yy (t) 224 B(t) .= (By(t), ..., By(t)).

Relations (3.23) and (3.24) can be shown using the same type of arguments in Giraitis

et al. [2012] p.108. We thus only need to show (3.21) and (3.22). By Créamer-Wold device,

it suffices to show that for any (ci,...,c5) € RY,
J 1 Ry Cj f.dd
S ey = i S ﬁX](m) (n) | “5 S B (1) = G() (3.25)
j=1 n=1 \j=10; j=1

where G(t) is a non-standardized Brownian motion. This follows from the fact that the

sequence
J
Cj 5 (m)
> oy X (), n>1

7=19;

is m-dependent and is thus subject to functional central limit theorem (Billingsley [1956]
Theorem 5.2), which includes convergence in finite-dimensional distributions. The asymp-

totic cross-covariance structure (3.22) follows from Proposition 3.2.5. t
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3.4.2 Pure LRD case

Proof of Theorem 3.3.4. The joint convergence is proved by combining Theorem 4.8.2. and
Proposition 14.3.3 of Giraitis et al. [2012], and the arguments leading to them.
The dependence between the limit Hermite processes with different orders is shown in

Proposition 3.1 in Bai and Taqqu [2013a]. O

3.4.3 Mixed SRD and LRD case

We prove Theorem 3.3.5 through a number of lemmas, one lemma implying the next.

Lemma 3.4.1. Follow the notations and assumptions in Theorem 3.3.5. Let X](Tgl)(n)
be the m-truncated multilinear polynomial-form process (see (3.20)) corresponding to the

components of Yns, (i = 1,2) in Theorem 3.3.5, where the orders satisfy k;j s, = 1 and

kjs, > 2. Let
AL
Y = ——=S " x"n), j=1,...,J i=12
O R R

where (assuming that m is large enough)

0< ZCOV ), X2 (0)) < o0, i =1,2.
Let
(VY]
W (t) : 1/22 ny and Y () = (Y]E,ﬁ?i(t),...,Y]E;:?sm(t)), i=1.2.
Then

(Y&, 0, Y%, 0, wv(®) B (W), B (1), W), (3.26)
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where W (t) is a standard Brownian motion,

(Js,-dimensional), B (t) is as given in (3.21), namely, its components are standard

Brownian motions with cross-covariance (3.22), and BU™(t) is independent of (W (t), W (t)).

Proof. Fix any w = (aq,..., ajg b1 ,bJSQ,C) € R/sit/s: 1 By the Cramér-Wold de-

vice, we want to show that

Rn(t:w -:Zajy,(v"})l +Zb‘YJ(V”;)2(t)+cWN(t)

fddza] +Zb3 t)+cW(t) = G(t),

where G(t) is a non-standardized Brownian motion whose marginal variance is the limit of

the marginal variance of Ry (t; w). Note that one can write

where

Jsy

U‘g"m)(n)zz ~(m) J51 +Z ]52 +Ce( g

.])Sl j 52

with

= Y e

i=(m—1)n+1
Since {U‘Evm) (n)}n is m-dependent, the classical functional central limit theorem applies
(Billingsley [1956]), yielding in the limit a Brownian motion G(t) for Ry (t; w). Now that
the joint normality is shown, we only need to identify the asymptotic covariance structure

as N — oo of the left-hand side of (3.26) to the covariance structure of the right-hand side
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of (3.26).

The independence between B(™ () and (W (t), W (t)) follows from the uncorrelatedness
between Y%?é (t) (involving chaos of order > 2) and (Y](\T;l (t), Wn(t)) (involving chaos
of order 1 only). The asymptotic covariance structure within Y]((,n;Q (t) is given in (3.22)
(apply Theorem 3.3.1 to YE\?%Q). Hence we are left to show that the asymptotic covariance
structure of (Y} (), W(t)) is that of (W(£),W (). Note that in (Y3 (£), Wi (1)),
both {Xj(ngf (n)} and {e,} are SRD linear processes. So applying (3.13) and (3.14) in
Proposition 3.2.5 with 01 = 09 = 1, the desired asymptotic covariance structure is obtained.

O

Remark 3.4.2. Lemma 3.4.1 can be rephrased as follows: we define an empirical random

measure on a finite interval A as:

Wi (A) ::\/1N 3 e

n/NeA

Then the joint convergence in Lemma 3.4.1 still holds with W (t) replaced by

(Wn(A1),...,Wn(Af)) where A;,i = 1,..., I are disjoint intervals, and W (t) in the limit
replaced by (W (Aq),...,W(Ar)) where W(.) is the Brownian random measure. Observe
that while (3.26) involves convergence in distribution, the limit components W (¢) and W (t)

both involve the same Brownian motion W (t).

Now we adopt some notations from Giraitis et al. [2012] Chapter 14.3. Let Sy;(R¥) be
the class of simple functions defined on R* supported on a finite number of 1/M-cubes and
vanishing on the diagonals. Suppose that h is a function defined on Z* which vanishes on

diagonals. Let the polynomial form (or discrete multiple integral) with respect to h be

Qr(h) = D h(i,...,i)ei, €, (3.27)
i1yeesik €L
where Z”Zk h(ii,...,ix)? < oo. The following lemma plays a key role in the proof of

Theorem 3.3.5.
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Lemma 3.4.3. Replace (Y%’gl (15),Y§$5)72 (t), Wn(t)) in Lemma 3.4.1 by

(Y (0, Y% (5), Qu), where Q = (le(hw), e Quy, (hJL,N)) and each Qx, (hp x),
p=1,...,Jr, is a polynomial-form defined in (3.27) with the same {€;} as those defining
Y%??S)H (t) and Y%?%Z (t). Assume that the “normalized continuous extension” of hy n, that
18,

(@1, oy, = NE 20y, (N, [N, ) (3.28)

satisfy that there exists f, € L>(R*) for eachp=1,...,Jp,
J\}i—I}’lOO [ep.n = foll p2(mrwy — 0. (3.29)

Now define the limit vector (W(t),B(m)(t),I) as follows: W(t) and BU™(t) are as in
(3.26), independent, and

I= (Ikp(fp))p:L.. Jp’

JL

where each Wiener-Ité integral Iy, (.) has as Brownian motion integrator W (.) the same as

the Brownian motion W (t) defining W (t). Then as N — oo,

(Yﬁ,gl (£, Y%, (1), QN) reg (W(t), B (1), I) . (3.30)

Remark 3.4.4. Observe that B(™ is independent of (W, T).

Proof. The lemma is proved by combining Lemma 3.4.1 with the proof of Proposition
14.3.2 of Giraitis et al. [2012]. By Cramér-Wold, we need to show that for any a € R/s1,

b e R’S2 and ¢ € RL, as N — o0,

m m f.d.d. m

(a, Y% (1) + (b, Y% (1) + (c,Qu) =5 (a, W(B)) + (b, BU (1)) + (c,I),  (3.31)
where (.,.) denotes the Euclidean inner product.

Next following the approximation argument that leads to (14.3.14), (14.3.15) and

(14.3.16) in Giraitis et al. [2012], one can show that for any € > 0, there exists M > 0 and
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simple functions f,. € Sy (R¥), p=1,...,Jp, such that for all N > Ny(e) where Ny(e) is

large enough,

1Qk, (hpn) — Qe (hpe M) 2200y < €, (3.32)
Qk, (hp.n) 5 I, (fpe) as N — oo, (3.33)
HIkp<fp,e) - Ikp(fp)HLQ(Q) <€ (334)

where ||.||z2(q) denotes the L?(£2) norm,

jﬁ)

L P
hp,e,N(jl,...,jkp) =N kp/gfp,e(ﬁ"”’ N

Set
QN = (Qkp (hp,e,N)>

p=1,...,J

and

Ie = (Ikp(fp75)>p:1,...,JL ’

Now note that Qp,(hpn) is a multivariate polynomial (thus is a continuous function) of
random variables of the form Wy (A;) where A;’s are disjoint finite intervals and Wiy (.) is
the empirical random measure as given in Remark 3.4.2. On the other hand, Iy (fp.) is a
multivariate polynomial of random variables of the form W (A;). So by Lemma 3.4.1 (with

Remark 3.4.2) and the Continuous Mapping Theorem, we have that as N — oo,

(a, ST (1) + (b, SYIH) + (e, Qo) 2% (2, W(1)) + (b, BO(1)) + (c,L).  (3.35)

By (3.32) and the Cauchy-Schwartz inequality, we infer that

(e, Qn = Qen)) lz2(0) < llelllQn — Qe iz () < llellv e, (3.36)
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where ||.|| denotes the Euclidean norm. Similarly using (3.34),
(e, T=T)) 2y < ellliT = Tel[20) < [lellv/ Jre. (3.37)

We now apply a usual triangular approximation argument (e.g., Lemma 4.2.1 of Giraitis

et al. [2012]). Let

UG () = (a, Y (6) + (b, Y% (8) + (c. Qu),
USY () = (a, Y% (6) + (b, Y% (8) + (e, Qen),
U™ () = (a, W(1)) + (b, B™ (1)) + (c, L),

UM (1) = (a, W(t)) + (b, BU()) + (c,T).
By (3.35), (3.37) and (3.36), we have that

U () T U0 (1) as N oo,
U ) L4 U 1) as e — 0,

limlimsup [UY" (1) — USY ()] 20y = 0, ¥ ¢ >0,

=0 N 00 €

which implies

Uy (0 S U,
proving (3.31). O

The next lemma gets rid of the m-truncation.

Lemma 3.4.5. Lemma 3.4.3 holds with the m-truncated normalized partial sums Y%ngz (1),

i = 1,2, replaced with the non-truncated ones:

[Nt]
1 .
YN7Si(t) = m ZXsl(n) =12
7,94 n=1 )
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where X g,(n) is the non-truncated multilinear polynomial-form process corresponding to
the component of Yy, in Theorem 3.3.5, 0jg, =y, Cov(X;s,(n),X;s,(0)) and the

limit B™(t) is replaced by B(t), that is, as N — oo,

(Vv (8, Ysa(8), Qu ) 225 (W), B@), 1), (3.38)
where W(t) = (W(t),...,W(t)), B(t) = <B1(t),...,BJS2 (t)) are as given in Theorem
3.8.5.

Proof. We apply again the triangular argument at the end of the proof of Lemma 3.4.3

above, but now with m — oo, namely, to show Un(t) fdq U(t), we show

U () 29 U () as N = oo,
U™ (¢) fdd U(t) as m — oo,

lim limsup |UYY () = Un(8) || 2y = 0, ¥ ¢ >0,

m—o0 N—00

The first step follows from Lemma 3.4.3. The second follows from (3.23) since that relation
implies that the Gaussian vector (W, B (t)) converges to (W, B(t)). For the last step,
apply the argument leading to (4.8.7) of Giraitis et al. [2012] and hence for any ¢ > 0 as
N — o0,

YA (1) = Yivi(®)llr2) = 0, G =1,...,Js,, i=1,2. (3.39)
O

Now we prove Theorem 3.3.5:

Proof of Theorem 3.3.5. In view of Lemma 3.4.5, it is only necessary to verify that the

assumption on Qu are satisfied, that is, we now focus on the LRD component:

[N]

1
Y [ —=Y x
b (t) Ava (N) n=1 " (n)
p=1,...,JL
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in Theorem 3.3.5. Choose as kernels hy, v in (3.28) those obtained from Yy 1, that is,

[Nt] k
B0t y) = e NN 780002000 3™ T
n=1 =1

where ¢(p, N) > 0 is some normalization constant. By Theorem 4.8.2 of Giraitis et al.
[2012], (3.29) holds and so therefore does Lemma 3.4.5. This concludes the proof of Theo-
rem 3.3.5. -
3.4.4 Weak convergence in D[0,1]/

We first state a lemma which will be used to prove case 2d.

Lemma 3.4.6. Let Qi (h) be a polynomial form defined in (3.27). If

> hlit, . ik)] < oo, (3.40)

Ul yeenylk

and E(|€;]%) < oo, then we have the following hypercontractivity inequality:

2
E (Qu(h)*) < B (Qi(h))”, (3.41)
4N\ 2k
where ¢ = (3 + 2E(e}))
Proof. Let hp; be the truncated version of h, that is,
Poar(ins - oo yik) = h(i, - ik) L <<y (15 - - -5 0k)-

By the absolute summability of h, we have
E(1Qx(har) = Qr(W)) < (Ele)* > [A(ir,. . yig)| = 0

as M — oo, and thus

— Qi(h). (3.42)
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By (11.4.1) of Nourdin and Peccati [2012], we have for M > k,
2k 2
E(Qr(hm)*) < (3+2E(e}))™ E (Qr(ha)?)”. (3.43)

In addition,
5

E(IQe(han)P) <A D |hlin,... i)l | < oo, (3.44)

where A > 0 is a constant accounting for the product of absolute moments of {¢;}. Note
that since h vanishes on the diagonals i, = i, when p # ¢, there is no moment-order higher
than 5 involved there.

Finally, (3.44) implies that {Qg(har)*, M > 1} and {Qx(har)?, M > 1} are uniformly
integrable, and this combined with (3.42) and (3.43) yields (3.41). O

Proof of Theorem 3.3.8. Convergence in finite-dimensional distributions follows from The-
orem 3.3.1, Theorem 3.3.4 and Theorem 3.3.5, so we are left to show tightness in D|0, 1]J.
Since univariate tightness implies the multivariate tightness in the product space (Lemma
3.10 of Bai and Taqqu [2013a]), we only need to show that each {Y; n(t), N > 1} in (3.2)
is tight with respect to the uniform metric. If X;(n) is LRD, the tightness is shown in
Theorem 4.8.2 of Giraitis et al. [2012]. We only need to treat the SRD case.

Suppose that X (n) is a process defined in (3.1) which is SRD.

In case 2a of Theorem 3.3.8, note that X, is now a stationary m-dependent sequence,
so the weak convergence of Sy (t) to Brownian motion, which includes tightness, is classical
(Billingsley [1956] Theorem 5.2).

Consider next case 2b. Because ¢; are i.i.d. Gaussian, X (n) belongs to the k-th Wiener
chaos, or say, can be written as a multiple Wiener-It6 integral of order k (see, e.g., Nourdin
and Peccati [2012] Chapter 2.2 and Chapter 2.7). Since the k-th Wiener chaos is a linear

space,
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also belongs to the k-th Wiener chaos, and so does Yy (t) — Yy(s) for any 0 < s < t. By

the hypercontractivity inequality (Theorem 2.7.2 in Nourdin and Peccati [2012]), we have

E(|Yn(t) = Yn(s)['] < cB[[Yn(t) - Yn(s)I*)%, (3.45)

where c is some constant which doesn’t depend on s,t or N. Note that ) |y(n)| < oo

due to SRD assumption, we have

| g
El[Yn(t) = Yn(s)*) = Bl Y. X))
n=1
_NIZ NS s <1 WV ‘f|[ NS]) MOESLL= AL SN RERD
In|<[Nt]—[Ns] n=—o0

Combining (3.45) and (3.46), we have for some constant C' > 0 that
EllYn () = Yn(s)['] < cE[[Yn(t) = Yn(s))* < ClFn(¢) — Fn(s)P,

where Fi(t) = [Nt]/N. Now by applying Lemma 4.4.1 and Theorem 4.4.1 of Giraitis et al.
[2012], we conclude that tightness holds.
Case 2c is shown by Proposition 4.4.4 of Giraitis et al. [2012] with H = 1/2.

For case 2d, for s < t,

1 [Nt]—[Ns] 1 [Nt]—[Ns]
A(N) Z X(n) = ‘ Z A(N) Z Ap—jy « - An—iy, | €iq - - €jp, -
n=1 1< <. <t <00 n=1
Thus Lemma 3.4.6 applies with
1 [Nt]—[Ns]
h(ii,...,ix) = m Z Qp—iy -+ - Ap—ij,
n=1

since (3.40) holds due to the assumption » ;- |a;| < oo. Tightness then follows by applying

the same argument as in case 2b. O



Chapter 4

Generalized Hermite processes, discrete chaos and

limit theorems

We introduce a broad class of self-similar processes {Z(t),t > 0} called generalized Hermite
processes. They have stationary increments, are defined on a Wiener chaos with Hurst
index H € (1/2,1), and include Hermite processes as a special case. They are defined
through a homogeneous kernel g, called “generalized Hermite kernel”, which replaces the
product of power functions in the definition of Hermite processes. The generalized Hermite
kernels g can also be used to generate long-range dependent stationary sequences forming
a discrete chaos process {X(n)}. In addition, we consider a fractionally-filtered version
Z8(t) of Z(t), which allows H € (0,1/2). Corresponding non-central limit theorems are
established. We also give a multivariate limit theorem which mizes central and non-central

limit theorems.

4.1 Introduction

A stochastic process {X(t),t > 0} with finite variance taking values in R is said to be self-
similar if there is a constant called Hurst coefficient H > 0, such that for any scaling factor
a >0, X(at) Tdd mx (t), where T2 neans equality in finite-dimensional distributions. If
a self-similar process { X (t),t > 0} has also stationary increments, namely, if for any h > 0,
{Y(t) == X(t+h) — X(t),t > 0} is a stationary process, then we say that {X(¢),t > 0} is
H-sssi. The natural range of H is (0,1), which implies EX(¢) = 0 for all ¢ > 0. We refer

the reader to Chapter 3 of Embrechts and Maejima [2002] for details.
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The fundamental theorem of Lamperti (Lamperti [1962]) states that H-sssi processes

are the only possible limit laws of normalized partial sum of stationary sequences, that is,

if
v

A(lN) S X(n) 24 v
n=1

and A(N) — oo as N — oo, where {X(n)} is stationary, then {Y(¢),t > 0} has to be
H-sssi for some H > 0, and A(N) has to be regularly varying with exponent H. The
notation 2%¢ stands for convergence in finite-dimensional distributions (f.d.d.).

The best known example of Lamperti’s fundamental theorem is when {X(n)} is i.i.d.
or a short-range dependent (SRD) sequence, then the limit Y'(¢) is Brownian motion which
is §-sssi. If {X(n)} has long-range dependence (LRD), the limit Y (¢) is often H-sssi with
H > 1/2. The most typical H-sssi process is fractional Brownian motion By (t), but there
are also non-Gaussian processes, e.g, Hermite processes (Taqqu [1979], Dobrushin and
Major [1979]). The Hermite process of order 1 is fractional Brownian motion, but when
the order is greater than or equal to 2, its law belongs to higher-order Wiener chaos (see,
e.g., Peccati and Taqqu [2011]) and is thus non-Gaussian.

The Hermite processes have attracted a lot of attention. The first-order Hermite pro-
cess, namely fractional Brownian motion, has been studied intensively by numerous re-
searchers since its popularization by Mandelbrot and Van Ness [1968], and we refer the
reader to a recent monograph Nourdin [2012] and the references therein. The second-order
Hermite process, namely the Rosenblatt process, is also investigated in a number of pa-
pers. Recent works include Tudor [2008], Bardet and Tudor [2010], Veillette and Taqqu
[2013], Maejima and Tudor [2007, 2013]. Hermite processes frequently appear in statistical
inference problems involving LRD, e.g., Lévy-Leduc et al. [2011], Dehling et al. [2013].

It is interesting to note that when the stationary sequence {X(n)} is LRD, one can
obtain in the limit a much richer class of processes, whereas in the SRD case, one obtains
only Brownian motion. The type of limit theorems involving H-sssi processes other than

Brownian motion are often called non-central limit theorems. While Hermite processes are
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the main examples of H-sssi processes obtained as the limit of partial sum of finite-variance
LRD sequence, there are very few other limit H-sssi processes which have been considered,
with some exceptions Rosenblatt [1979] and Major [1981].

In this chapter, we introduce a broad class of H-sssi (H > 1/2) processes {Z(t),t >
0} with their laws in Wiener chaos, which includes the Hermite processes as a special
case. These processes are defined as Z(t) = Ij(h:), where Ij(-) denotes k-tuple Wiener-It6

integral, and

t
he(z1,...,xx) = / g(s =1, .., 8 = Tp)ssay,. . s>a, 1 5,
0

with g being some suitable homogeneous function on Rﬁ called generalized Hermite kernel.

For example,

Ty...Tk a/k a/k k k 1 k

Z1,...,Tk) = max , T R , XeERY, ae(—=— =, —=
glo ) (:c’fo‘—k...—{—xga ! b > ( 2 2 2)
(4.1)

We call the corresponding H-sssi process Z(t) a generalized Hermite process. We then

construct a class of discrete chaos processes as

!/

X(n)= D glin,i)eniy - en iy,
(i1,-yik ) EZE.

where {¢;} are i.i.d. noise, and the prime " exclusion of the diagonals i, = iq, p # q. We
show that the normalized partial sum of X (n) converges to the generalized Hermite process
Z(t) defined by the same g. We also obtain processes with H € (0,1/2) by applying an
additional fractional filter. The increments of these processes have negative dependence.
Finally, we state a multivariate limit theorem which mixes central and non-central limits,
including cases where there is an additional fractional filter.

The chapter is organized as follows. In Section 2, we review the Hermite processes. In

Section 3, the generalized Hermite processes are introduced. In Section 4, we consider the
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discrete chaos processes. In Section 5, we prove a hypercontractivity relation for infinite
discrete chaos. In Section 6, we show that the discrete chaos processes converge weakly to

the generalized Hermite processes, including situations where H < 1/2.

4.2 Brief review of Hermite processes

The Hermite processes are defined with the aid of a multiple stochastic integral called
Wiener-Ito integral. We give here a brief introduction to this integral. For the proofs of
our statements and additional details, we refer the reader to Major [2014] and Nualart

[2006], for example. The Wiener-Ito integral is defined for any f € L?(R¥) as

Ik(f) = R/k f(:L‘l, PN ,{L‘k)W(dl‘l) NN W(dl’k),

where W (-) is Brownian motion viewed as a random integrator, and the prime ’ indicates
that we don’t integrate on the diagonals x, = x4, p # ¢. The integral Ij(-) can be defined
first for elementary functions f = > ' | a;14,, where A;’s are off-diagonal cubes in RE.
This results in a linear combination of k-fold product of independent centered Gaussian
random variables. One then extends this in the usual way to any f € L?*(R¥). The random
variable Ij(f) is also said to belong to the k-th Wiener chaos #Hj, which is the Hilbert
space generated by Ir(f) when f varies in L?(R¥). Here we state the following important

properties of the Wiener-1t6 integral Ij(-):
1. I(-) is a linear mapping from L?(R*) to L?(Q).

2. If fo(21,- - 2k) := f(To(1)s - - - To(k))> Where o is any permutation of (1,...,k), then

I (f5) = Ix(f). It hence suffices to focus on symmetric integrands (symmetrize f as

1
f(l'la'--,xk) = HZf(xo(l)a'--axa(k))

when necessary).
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3. Suppose f € L?(RP) and g € L?(R?), and both are symmetric. Then

KL, 9) r2mey = K Jon f(X)g(x)dx,  if p=q=Fk;

0, if p#q.

EIL,(f)1,(9) =

If f € L?(R*) is not symmetric, one gets
Elp(f)2 = H]ZH%%Rk) < k!||f|’%2(Rk)-

An Hermite process of order k is an H-sssi process with 1/2 < H < 1, which is

represented by the following Wiener-It6 integral:

/ t k
Z04) = aa /R k /0 T1(s — ;)% 1ds Widey) ... W(day), (4.2)
j=1

where

and ay, g is some positive constant that makes Var(Zg;)(l)) = 1. We call (4.2) the time-
domain representation. It is known that Hermite processes admit other representations in
terms of Wiener-It6 integrals (see Pipiras and Tagqu [2010]), among which we note the

spectral-domain representation:

Z(k) ) " e'(u1+...+uk)t -1 _d —d/W i /V[7 J 43
00 = b [ s W ) W), (43

where W() is a complex-valued Brownian motion (with real and imaginary parts being
independent) viewed as a random integrator (see, e.g., p.22 of Embrechts and Maejima
[2002]), the double prime ” indicates the exclusion of the hyper-diagonals u, = tu,, p # ¢,
and by 4 is some positive constant that makes Var(ng)(l)) = 1. In the sequel, we use
I, k() to denote a k-tuple Wiener-It6 integral with respect to the complex-valued Brownian

motion /W() In fact, the kernel inside the Wiener-It6 integral in (4.3) is the Fourier

transform of the kernel in (4.2) up to some unimportant factors. The connection between
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the time-domain and spectral-domain representation is through the following general result:

Proposition 4.2.1. (Proposition 9.3.1 of Peccati and Taqqu [2011]) Let gj(x) be a real-

valued function in L*>(R*), j =1,...,J. Let

3w = [ gy
R™

be the Fourier transform. Then

(1 (91)s -+ Ty 92)) £ (20) 720 @), (2m) 592 (G0

for any |w(u)| =1 and w(u) = w(—u), where W& (uy ... ug) := w(uy) ... wug).

The factors w®* do not change the distributions due to the change-of-variable formula
of Wiener-It6 integrals (see, e.g., Proposition 4.2 of Dobrushin [1979]).

The Hermite process of order k = 1 is fractional Brownian motion By(t), and that
of order k = 2 is called Rosenblatt process whose marginal distribution was discovered by
Rosenblatt [1961]. We note that all H-sssi processes with unit variance at ¢ = 1 have

covariance

1
R(s,t) = 5(s2H + 121 |5 — t]2H),

as is the case for Hermite process of arbitrary order.

Hermite processes arise as limits of partial sum of nonlinear LRD sequences. In the
following two theorems, A(/N) is a normalization factor guaranteeing unit asymptotic vari-
ance for the partial sum process at ¢t = 1. We use = to denote weak convergence in the

Skorohod space D[0, 1] with the uniform metric.

Theorem 4.2.2. (Dobrushin and Major [1979], Taqqu [1979].) Suppose that {X (n)} is a

Gaussian stationary sequence with autocovariance

A(n) ~ en®*!
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as n — oo for some constant ¢ > 0 and
1/2(1-1/k) <d < 1/2.

Let Hi(x) := (71)196&/257’16_;52/2 be the k-th Hermite polynomial, k > 1. Then

[Nt]
A(lN) S H(X(n) = 20 ).

n=1

Theorem 4.2.3. (Surgailis [1982], see also Giraitis et al. [2012] Chapter 4.8.) Let {¢;}

be an i.i.d. sequence with mean 0 variance 1,

Ay, ~ en®1

as n — oo for some constant ¢ > 0 and
1/21-1/k) < d < 1/2.

Let

/

X(n)= Z @iy - Qi Ep—iy - - En—ips

0<i1,... ik <00

where the prime ' indicates that one doesn’t sum on the diagonals i, =iq p # q. Then

v
A(lN) S X(n) = 2P).
n=1

Remark 4.2.4. The Hermite polynomial in Theorem 4.2.2 can be replaced by a general
function G(-) such that EG(X,) = 0, EG(X,)? < oo, due to the orthogonal expansion of
G(x) with respect to Hermite polynomials, and the fact that only the leading term in the
expansion contributes to the limit law. Similarly, the off-diagonal multilinear polynomial-
form process X (n) in Theorem 4.2.3 can be replaced by a suitable function of the linear

.d.d.
process Y (n) := Y., ajen—;. In both of the above theorems 144 can be strengthened to
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weak convergence = (Proposition 4.4.2 of Giraitis et al. [2012]).

Remark 4.2.5. The range of the parameter d in both of the theorems guarantees that
the summand is LRD in the sense that the autocovariance decays as a power funciton with
an exponent in the range (—1,0). We note also that the constant ¢ > 0 appearing in both

theorems can be replaced by a slowly varying function.

4.3 Generalized Hermite Processes

We introduce first some notation, which will be used throughout. Ry = (0,00), Z; =
{1,2,...}. x = (21,...,2) € R¥ i= (i1,...,ix) € Z¥, 0= (0,...,0), 1 = (1,...,1). For
any real number z, [z] = sup{n € Z,n < z}, and [x] = ([z1],..., [zk]). We write x >y (or
>)ifx; >y (or >),j=1,...,k (x,y) = Zle zjy;, and ||x|| = \/(x,x), while || - || with
a subscript is also used to denote the norm of some other space (specified in the subscript).
Given a set A C R, A* is the k-fold Cartesian product. 14(-) is the indicator function of
a set A. LP(RF, ) denotes the LP-space on R¥ with measure y, and yu is omitted if it is

Lebesgue measure.

4.3.1 General kernels

The following proposition provides a general way to construct in the time-domain an H-sssi

process living in Wiener chaos:

Proposition 4.3.1. Fiz an H € (0,1). Suppose that {hi(-),t > 0} is a family of functions

defined on R* satisfying
1. hy € L2(RF);
2. YA >0, 38 # 0, such that hy,(x) = NTHE8/2h, (A\Px) for a.e. x € RF and all t > 0;

3. Vs >0, 3 acRF such that hyys(x) — hi(x) = hs(x + ta) for a.e. x € R¥ and all

t>0.

Then Z(t) := Iy(hy) is an H-sssi process.
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Condition 1 guarantees that the Wiener-1t6 integral is well defined. Condition 2 yields
self-similarity, where the term k(3/2 in the exponent compensates for the scaling of the
k-tuple Brownian motion integrators. Condition 3 guarantees stationary increments. Self-
similarity and stationary increments can be rigorously checked by the change-of-variable
formula of Wiener-1t6 integrals (Proposition 4.2 of Dobrushin [1979]).

The Hermite process, for instance, which is defined in (4.2) can be obtained following

the scheme of Proposition 4.3.1 by letting

he(x) = /0 951 = )1 410y (5)ds,

and
k
g(x)=[J=¢" = >o0. (4.4)
j=1

It is easy to check that the conditions on h; in Proposition 4.3.1 are all satisfied with
B = —1 in condition 2 and H = kd — k/2+ 1. One can also check that the integrand in the
spectral-domain representation in (4.3) also satisfies the first two conditions in Proposition
4.3.1, but with § = 1 in Condition 2 instead. The third condition, however, must be
replaced by ﬁtﬂ(u) - ﬁt(u) = e‘“<a’“>ﬁs(u) due to the Fourier-transform relation.

Our first goal is to extend the kernel g in (4.4) to some general class of functions. To
do so, we define the following class of functions on Ri, which first appeared in Mori and

Oodaira [1986] to study the law of iterated logarithm:

Definition 4.3.2. We say that a nonzero measurable function g(x) defined on R is a

generalized Hermite kernel, if it satisfies

e’ k+1 ky.
A. g(Ax) = X\%(x), VA > 0, where o € (=5, —5);
B. fR'i lg(x)g(1 + x)|dx < 0.

One can check that the Hermite kernel g in (4.4) satisfies the above assumptions.
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Remark 4.3.3. The range of a in Condition A is non-overlapping for different k, and

extends from —1/2 to —oo with all the multiples of —1/2 excluded.

Remark 4.3.4. Suppose g1 and g9 are generalized Hermite kernels having order ki, ko
and homogeneity exponent oy, ay respectively. If in addition, oy + ag > — (k1 + ko + 1) /2,
then g1 ® ga2(x1,x%1) := 91(X1)g2(x2) is a generalized Hermite kernel having order ki + ko

and homogeneity exponent a; + as.

Theorem 4.3.5. Let g(x) be a generalized Hermite kernel defined in Definition 4.3.2.

Then

t
hi(x) = /0 951 = %)1 {4150

is well-defined in L?>(R¥), ¥t > 0, and the process defined by Z; = I(hy) is an H-sssi
process with

H=a+k/2+1€ (1/2,1).

Proof. To check that h; € L*(RF), we write

t t
/ ht(x)QdX = / dX/ / d51d52 9(811 - X)g(SQ]- - X)1{511>x}1{521>x}-
R¥ RF 0 JO

We want to change the integration order by integrating on x first. By Fubini, we need to

check that the absolute value of the integrand is integrable, that is,

t t
2 / dsy / ds / dx[g(s11 = X)g(521 = %)|T a1 xo0p by symmetry)
0 s R
t ' t—s
:2/ ds/ du/ dw |g(w)g(ul + w)| (s =s1, u=282—81, W=s511—-x)
0 0 INA

t t—s
2 (s [ [ dtay lgu)gtu+uy)
0 0 1N

t t—s
2/ ds/ w Ry / dy 19(y)g(1+y)] (by Condition A of Definition 4.3.2),
0 0 R

+

where the last expression is finite by 2a + k 4+ 1 > 0 and Condition B. Hence by the same
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calculation, but without absolute values,

t t—s
/ hy(x)%dx = 2/ ds/ utkdy, / dy g(y)g(1+y)
Rk 0 0 Rk

t2a+k+2

= / dy 9(y)g(1 +y).
RE.

(a+k/24+1)2a+k+2)

To check self-similarity (Condition 2 of Proposition 4.3.1 with § = —1),

At t
ha(x) = / 9(s1 = X)1{515xpds = A>T / g(r1 = A7'%) 1 g Adr = AT hy (A1),
0 0

where the second equality uses Condition A of Definition 4.3.2. The Hurst coefficient H of
Ii.(ht) is obtained from o+ 1 = H — k/2. To check stationary increments (Condition 3 of

Proposition 4.3.1), for any ¢, > 0,

t+r
hiyr(x) — he(x) = / g(s1 — X)l{sl>x}d5
t

:/ g(ul + 11 — x) 114155 du = he(x — £1).
0

O]

Remark 4.3.6. As a byproduct of the above proof, we obtain that under the conditions
of Definition 4.3.2, one has f(f |9(51 = X)|1{515x) (s)ds < oo for a.e. x € R¥, and

tQH

EZ(t)z(k:!)fl < HhtH%2(Rk) = m

Cy,

where Cj := ka 9(x)g(1 4+ x)dx, and the first inequality becomes equality if g and hence
hy is symmetric. Note that Cy > 0 must hold, otherwise h(x fo (s1—x 1{51>x}ds =0
for a.e. x € RF and any t > 0, which implies that ¢ is zero a.e., and thus contradicts the

assumption.

Remark 4.3.7. Since Vf € L2(R¥), I,(f) = I;(f), where f is the symmetrization of f

(Nualart [2006] p.9), it suffices to focus on symmetric generalized Hermite kernels g only.
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In the sequel, we will not always assume that g is symmetric for convenience, while being

aware that g can always be symmetrized.

Definition 4.3.8. The process

/ t
= /k / g(s —x1,...,8— xk))l{s>x1,...,s>xk}ds W(dzxy) ... W(dxy) (4.5)
Rk Jo

which we simply write Z(t) = Ix(hy) with hy(x fo (s1 — x)1{51>xds, where g is
a generalized Hermite kernel defined in Definition 4.3.2, is called a generalized Hermite

PTroCess.
Remark 4.3.9. It is known (see, e.g., Janson [1997] Theorem 6.12) that if a random
variable X belongs to the k-th Wiener chaos, then there da, b,tg > 0 such that for ¢ > ¢,

exp(—at?’*) < P(|X| > t) < exp(—bt**).

This shows that the generalized Hermite processes of different orders must necessarily have
different laws, and the higher the order gets, the heavier the tail of the marginal distribution

becomes, while they all have moments of any order.

The generalized Hermite process Z(t) admits a continuous version, which follows from

the following general result:

Proposition 4.3.10. If {Z(t),t > 0} is an H-sssi process whose marginal distribution

satisfies B|Z(1)|7 < oo for some v > H~Y, then Z(t) admits a continuous version.

Proof. Using stationary increments and self-similarity, we have
E|Z(t) — Z(s)|" = E|Z(t — 5)|" = |t — s|""E[Z(1)]".

Since Hvy > 1, Kolmogorov’s criterion applies. O

Remark 4.3.11. In Mori and Oodaira [1986], the following laws of iterated logarithm are
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obtained for the generalized Hermite process Z(t):

=1y, liminf Z(n)

) 2(n)
ey n—oo nfl(2log, n)k/2

I L — 1y as.
nsoo Nt (2logyn)k/2 2 a8

where [; = sup K}, and [y = inf K}, with the set

K= { [ e ..o el < 1.

In the spirit of (4.3), we can consider the spectral-domain representation of the gener-
alized Hermite processes. Since h:(x fo (s1—x)1 155 (8)ds € L?(R), it always has an
L?-sense Fourier transform ht. We give an explicit way to calculate /f;t when g is integrable
in a neighborhood of the origin. Note that since g is homogeneous, it suffices to assume

integrability on the unit cube (0, 1]*.

Proposition 4.3.12. Suppose that

/ l9(x)] < oo. (46)
(0,1]*

Let gn(x) = g(x)1(g nj»(X), and gn(u) := [pi gn(x )eiUX) dx be its Fourier transform. Set

eit(u,l) -1

ht,n = Wgn(_U),

then ﬁt,n converges in L?(RF) to ?Lt. Moreover, there is a function g(u) defined for a.e.

u € R*, such that,

. 6it(u,l) —1.
hi(u) = Wﬂ(—u)- (4.7)

Proof. Due to (4.6), the Fourier transform of g, is well-defined pointwise as

() = | g1 g, (00 (4.8)
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Let

t
i n(x / x)L{s15x)(8)ds _/0 9(81 = x)Lxcs1<xtn1) (8)ds.

Note that |g,(x)| < |g(x)|, so by the proof of Theorem 4.3.5, h¢,(x) € L*(RF), and by
the Dominated Convergence Theorem, h;,, converges to h; pointwise as n — oo. Since
|hin| < fg |9(s1 — x)[1{515x}(s)ds, by the Dominated Convergence Theorem in L%(RF),
hi,n converges to h; in LQ(Rk). By Plancherel’s isometry, ﬁtm, the Fourier transform of
ht n, converges in L2(R*) to ﬁt. But
ht n /]c / S]. — X)l{x<51<x+n1}( )dS 6 <u x>dX
R
:/ / €i<u’51>9(51 _X)6i<7u’817x>1{0<317x<n1}(x)dXd3
0 JRk -
t
:/ ez<“731>ds/kg(y)1{0<y§n1}€l<u’y>dy
0 R

eit(u7l) -1

:7“11’ 1 gn(—u), (4.9)

where the change of integration order is valid because by (4.6),

t t
[ s [ ixlatst = tpecnseiny = [ ds [ 19 ocyzandy < ox.
0 RF 0 RE

We now prove (4.7). The fact that ﬁt,n converges in L2(R*) to hy implies that g, is a

Cauchy sequence in L? (Rk, 1e), where g is the measure given by

pe(A) = /A

for any measurable set A C R¥. Hence there exists a § € L?(R¥, uy) which is the limit of

6it(u,l) -1
i(u,1)

2
[ 2—2cos(t(u,1)) u
du _/A [, 1) d

Gn in L?(R*, ;). Since py is equivalent to Lebesgue measure, § is determined a.e. on R¥,
and there exists a subsequence of g,, that converges a.e. to g. So (4.7) holds.

O

Remark 4.3.13. Note that § is not the L?-sense Fourier transform of glR;JCr , since g ¢
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L? (Rﬁ) One can, however, evaluate the limit of g, pointwise as an improper integral, as

is done in the Hermite kernel case (4.4) (see Lemma 6.2 of Taqqu [1979)]).

The limit g in (4.7) is also a homogeneous function:

Proposition 4.3.14. The function g defined in Remark 4.3.12 satisfies for any X > 0,

g(hu) = A7*7*g(u) for a.e. u € R*.

Proof. Following (4.8) and using Condition A of Definition 4.3.2, and noting that (Au, x) =

(u, A\x), we have

Gu(u) =20 / 91 i ()8 i
Rk

A g1 )y = X G (),

Then let n — oo through a subsequence so that both sides converge a.e.. O

Remark 4.3.15. The spectral-domain representation of the Hermite process in (4.3) is
indeed obtained as g(u) = cl_[?:1 |ug|~%w(u) for some constant ¢ > 0, where the function

ind

w(u) = H?:l exp (—sign(u;)*5%) can be omitted (see Proposition 4.2.1).

4.3.2 Special kernels and examples

We introduce now some subclasses of the generalized Hermite kernels g defined in Definition
4.3.2, which will be of interest later when dealing with limit theorems. Note that the kernel
g is determined by its value on the positive unit sphere S¥ := {x € R%,||x|| = 1}. Because
it is homogeneous, ¢ is always radially continuous and it is decreasing since a < 0 in
Definition 4.3.2. Thus assuming that g is continuous on Sﬁ a.e. (with respect to the

uniform measure on the S_]ﬁ) is the same as assuming ¢ is continuous a.e. on ]Ri .

Definition 4.3.16. We say that a generalized Hermite kernel g is of Class (B) (B stands

for “boundedness”), if on S_]f_, it is continuous a.e. and bounded. Consequently,

() = [Ix[*lg(e/[[x[D] < eflx][*
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for some ¢ > 0.

Remark 4.3.17. According to Lemma 7.1 of Mori and Oodaira [1986], Class (B) forms
a dense subclass of the class of generalized Hermite kernels in the sense that for any
generalized Hermite kernel g and any € > 0, there exists g, in Class (B), such that [|h —

hell L2@mry < €, where h(x fo (51 —x)1g515x)ds and he( fo ge(s1 — x) 1151551 ds.

Note that Class (B) does not include the original Hermite kernel in (4.4). We now
introduce a class of generalized Hermite kernels, called Class (L), which includes generalized

Hermite kernels of the form:

g(x) =[] =), (4.10)

where each —1 < v; < —1/2 and —k/2 —1/2 < 3, v; < —k/2. These particular kernels
with k£ = 2 has been considered in Maejima and Tudor [2012] where the resulting process
is called non-symmetric Rosenblatt process. We hence call the kernel in (4.10) a non-
symmetric Hermite kernel. Note that despite the name, one can always symmetrize these
kernels. Class (L) will appear in the discrete chaos processes and the limit theorems

considered later.

Definition 4.3.18. We say that a generalized Hermite kernel g on le_ having homogeneity

exponent « is of Class (L) (L stands for “limit” as in “limit theorems”), if
1. g is continuous a.e. on Ri;

2. |g(x)| < g*(x) a.e. x € RE | where g* is a finite linear combination of non-symmetric

Hermite kernels: Hf 1 j , where v; € (=1,-1/2), j =1,...,k, and Z?:l V=o€

(—k/2 — 1/2,—k/2).

—3/4

For example, ¢*(x) could be z; o/8

~9/16_—13/16 .
Ty 1/ Ty /16 4f

+ x = 2. In this case, a =
—11/8.
Remark 4.3.19. If two functions g; and gs on R’i satisfy Condition 2 of Definition 4.3.18,

then [er |91(x)g2(1 4+ x)|dx < oo automatically holds, which can be seen by using the
+



88

following identity: for any 7,6 € (—1,—1/2),
/ (1 +2)’de =B(y+1,—y—06 1),
0

where B(+,-) is the beta function. In addition, f(o 1k |g1(x)|dx < oo also holds.
Proposition 4.3.20. Class (L) contains Class (B).

Proof. Suppose ¢ is a generalized Hermite kernel of Class (B). Then there exist contants

C1,C5 > 0, such that

a/2
k k
gl <Cilxl =01 (Y a3 <]
j=1 j=1

1/k
where we have used the arithmetic-geometric mean inequality k~* E?Zl yj > (H?Zl yj>
and a < 0. So Condition 2 of Definition 4.3.18 is satisfied with g* being a single term where

y=...=3%=alk. O

Remark 4.3.21. In view of Remark 4.3.6 and Remark 4.3.19, one can check that Class
(B) or Class (L) if adding in the a.e. 0-valued function, with fixed order k and fixed
homogeneity component « € (—k/2 — 1/2, —k/2), forms an inner product space, with the

inner product specified as

(91, 92) := </01 gi(s1 = ')ds’/OIQQ(Sl - .)d8>L2(Rk)

1

T 2H(2H — 1) /Rk 91(x)g2(1 + x) + g1(1 + x)ga(x)dx,

where H = a+ k/2 + 1, which yields the norm

) . 1/2
loll = [ ots1 s = (H(QHD / ig<x>g<1+x>dx> .

Here are several examples.
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Example 4.3.22. Suppose g(x) = ||x||*, where a € (—=1/2 — k/2,—k/2). This g belongs
to Class (B) and thus also Class (L). The pseudo-Fourier transform (Proposition 4.3.12)
of g is g(u) = cllul| =% ((25.25) of Samko et al. [1993]) for some constant ¢ > 0, which

provides the spectral representation by (4.7).

Example 4.3.23. Another example of Class (B):

H]?:1 !
9(x) = Jk jb )
2j=17;

where a; > 0 and b > 0, yielding a homogeneity exponent a = Z§:1 aj —be (-1/2 -
k/2,—k/2).

Example 4.3.24. We give yet another example of Class (L) but not (B):

k

9(x) =go(x) v [ [T =5

j=1
where go(x) > 0 is any generalized Hermite kernel of Class (B) on R’j_ with homogeneity
exponent «.
4.3.3 Fractionally filtered kernels

According to Theorem 4.3.5, the generalized Hermite process introduced above admits a
Hurst coefficient H > 1/2 only. To obtain an H-sssi process with 0 < H < 1/2, we consider

the following fractionally filtered kernel:

hf(x) = /le(s)g(sl =X)L 515x3d8; (4.11)

where g is a generalized Hermite kernel defined in Definition 4.3.2 with homogeneity expo-

nent

a € (—k/2—1/2,—k/2),
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and

F(s)==|t-s5)7—(=s)1|, B#£0. (4.12)

1
B
One can extend it to 3 = 0 by writing 19 (s) = L(o,¢(8), but this would lead us back to the

generalized Hermite process case. We hence assume throughout that 8 # 0. The following

proposition gives the range of 8 for which Ik(hf ) is well-defined.

Proposition 4.3.25. If

k k
—-1l<-a-—-—-1<f<-a—-3<

5 5 <3 B#0 (4.13)

N

then hf € L?(R%).

Proof.

/k hf(x)de <2/ dsl/ d52/ dx Ii(s1)li(s2)|g9(511 — x)g(s21 — %) 115, 15%)
R

o0

(4.14)

2/00 ds [ du / dw 12(s)17 (s 4 u)|g(w)g(ul + w)|

00 0

=2/ ds 1) (s )/ 7 (s + u)u**Fdu /Rk dy g9(y)g(1 +y)l

+

We thus focus on showing [ ds lf(s) I ltﬁ(s + w)u?*t*du < oo. Recall that for any

¢ > 0, we have

c 1
/ (c — 5)1s72ds = 2t / (1—s)"s72ds = T2 TIB(y + 1,99 + 1), V1,72 > —1.
0 0

So by noting that 8 > —1 and 2a + k > —1, we have

/ l’B(S—i-u) 2otk dy = ﬁ/ t— s—u)’i (— s—u)ﬂ otk dy,
0

t—s
= 1 [/ (t—s— 5 w2ty +/ *8 w? Ty
B Lo 0
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BB+ 1L,2a+k+1)
a B

(t— )7 = (=),

where

§=2a+k+1¢€(0,1). (4.15)

We thus want to determine when the following holds:

/R ((t - s)ﬁ — (—s)i) ((t _ s)_ﬁ” B (75)?5) ds < .

Suppose t > 0. The potential integrability problems appear near s = —o00,0,f. Near
s = —oo, the integrand behaves like |s|2°79=2 and thus we need 23 4+ § — 2 < —1; near
s = 0, the integrand behaves like |s|?’*9, and thus 28 + § > —1; near s = t, the integrand
behaves like |t — s[25%9 and thus again 2846 > —1. In view of (4.15), these requirements

are satisfied by (4.13). O

Remark 4.3.26. Using (4.14) we obtain as a byproduct of the preceding proof that if 3 is
in the range given in Proposition 4.3.25, then the function fx+(s) := l¢(s)[g(s1 —x)[1{s15x}

is in L'(R) for any ¢ > 0 and a.e. x € R*.

Theorem 4.3.27. The process defined by Z°(t) = Ik(htﬁ) with hf given in (4.11), namely,

/
1
250 = [ [ 510-5] =9 als 100500 g W (d) . W),
(4.16)
1s an H-sssi process with

H=a+8+k/2+1€(0,1).

Proof. By (4.12), one has for any A > 0, lft(s) = Aﬁlf(i), and for any ¢,h > 0, lf+h(s) —
lf (s) = l}’f (s — t). In addition, g is homogeneous with exponent «. The conclusion then

follows by Proposition 4.3.1. O

Remark 4.3.28. In the case 5 > 0, one is able to write ltﬁ(s) = fg(r - s)ﬁfldr, and thus
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by Fubini
t
W (x) = /0 dr/Rds(r — s)i_lg(sl — %) Ls15%)- (4.17)

Remark 4.3.29. To get the anti-persistent case H < 1/2, choose
pge(—a—k/2—-1,—a—k/2—1/2).

We now state an analog of (4.7) for the spectral representation of the process Z°(t):
Proposition 4.3.30. Suppose that (4.6) holds. Then the L*-sense Fourier transform of
ht’B s

B2 () = (@) 1) (3w, 1)) P 1G(-wT(B), a.c. ue RE, (4.18)

where g is defined in Proposition 4.3.12.

Proof. Let gn(x) = g(x)1(g 5+ (x), and lfn =Bt - s)il{t—s<n} — (_S)il{—8<n}]' Set
htﬁ,n(x) = / lt,n(s)gn(Sl — X)dS.
R

Similar to the proof of Proposition 4.3.12, one can show that hf’n converges in L%(R¥) to
h? as n — oo through the Dominated Convergence Theorem by noting that |g,| < |g| and
). <.

Since the truncated I, and g, admit L'-Fourier transforms l:n and g, respectively,

one can write the Fourier transform of hf 88
7 () = Ty (1, 1))Gn (1),

(compare with (4.9)). Since htﬁm converges in L?(R) to hf as n — oo, by Plancherel’s
isometry, ?Lf ,, converges in L2(R¥) to ?Lf . One now needs to identify (4.18) with the limit
of iALt’B n-
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We first compute Ttﬁn When 8 < 0, one has by change of variable that

ltén(u) = /871 </]R eium(t - x)f—l{tfx<n}dx - /

Rei“x(—x)il{x<n}d;c>

n

= g1 (e — 1)/ e~ 5P s, (4.19)
0

When g8 > 0, one has

2 (u) = /R Lo)(@)(@ — 0)7 ™ s wempdz = (1o * bu) (u),

)

where b, (v) = (—m)ﬁ_ll{,x<n}. We have the Fourier transforms 1/[(;) (u) = 6“;:;1, and
buw) = [ ) o= [ s s
R 0
So
ut 1 n )
Egn(u) . / e s Pl s (4.20)
’ w 0

By Gradshteyn and Ryzhik [2007] Formula 3.761.4 and 3.761.9, for p € (0,1),

n

lim [ e shlds = [u|"FD(u) cos(%) — dsign(u)|u|PT(u) sin(%)

n—oo 0

— O T () = (i) T (1),
Combining the foregoing limit with (4.19) and (4.20), we deduce

lim 17, =1/ (u) == (" = 1)(iu) " *~'T(8).

n—oo ’

Recall that there exists a subsequence gy, converges a.e. to the pseudo-Fourier transform
g as k — oo (Proposition 4.3.12). So E7nk(<u, 1))gn, (—u) converges to lAt(<u, 1))g(—u) for
a.e. u € R*. But at the same time /l;nk((u, 1))gn, (—u) converges in L?(R)* to iAltﬁ So we

identify ﬁtﬁ with the expression in (4.18) O
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Remark 4.3.31. By Proposition 4.2.1, we get a spectral representation Z5(t) T (ﬁf ).
The kernel (4.18) in the spectral-domain has been considered by Major [1981] in the special
case where g(u) = CH?ZI luj|~¢ is the kernel for the spectral representation of Hermite

process.

4.4 Discrete chaos processes

In this section, we introduce a class of stationary sequence which converges to a generalized
Hermite process of Class (L) as defined in Definition 4.3.18.

First we define the discrete chaos, or the discrete multiple stochastic integral, Qy(-; €)
with respect to the i.i.d. noise € := (¢, € Z).

Let h be a function defined in Z* such that Y i h(i)* < oo, where ’ indicate the

exclusion of the diagonals ¢, = 74, p # ¢. The following sum

/ !/

k
Qu(h) = Qu(he) = > h(ir,....ip)e, ..., = > h(i) [] &, (4.21)
(i1,..,ip ) EZF iczk p=1

is called the discrete chaos of order k. It is easy to see that switching the arguments, say
ip and iq, p # ¢, of h(i1,..., i), does not change Q(h). So if h is the symmetrization h,
then Q(h) = Qi (h).

The discrete chaos is related to Wiener chaos by a limit theorem. Suppose now we have a
sequence of function vectors h, = (hin,...,h;,) where each h;, € L3(ZF5), j=1,...,J.
The following proposition concerns the convergence of the discrete chaos to the Wiener

chaos:

Proposition 4.4.1. Let izjm(x) = nki/thvn([nx]—i—cj), j=1,...,J, where c; € ZF.

Suppose that there exists hj € L?(R¥i), such that

||ilj,n - thLQ(Rkj) —0
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as n — co. Then, as n — 0o,

Q.= (le(hm), N .,ij(hj,n)) L g (Ikl(hl), o ,IkJ(hJ)),

where each Iy, (-), j = 1,...,J, denotes the k;-tuple Wiener-It6 integral with respect to the

same standard Brownian motion W .

For a proof, we refer the reader to the proof of Proposition 14.3.2 of Giraitis et al. [2012]
on the univariate case. The proof for the multivariate case (corresponding to Proposition
14.3.3 of Giraitis et al. [2012]) is similar once the Cramer-Wold Device is applied. The
difference between Proposition 4.4.1 and Proposition 14.3.3 of Giraitis et al. [2012] is that
we add the shift c¢; for more flexibility. This extension requires only an easy modification
to the proof.

The causal discrete chaos process of order k > 1 is a stationary sequence {X (n),n € Z}

defined by:

/ !/

X(n)= Z alin, ..., 9)€n—is - - En—iy = Z a(n —i1,...,n —ig)€;, ... €,
0<t1 yennyif <OO —00< 1] eyt <M

(4.22)

where /

indicates that the sum excludes the diagonals i, = iy, p # ¢, {€,} is an ii.d.
sequence with mean 0 and variance 1, a(i) is a function on ZF, and we require that it
satisfies Y i. o a(i)? < oo, so that X (n) is well-defined in the L?(Q2)-sense. Note that when
k =1, X(n) is plainly a linear process.

Due to the off-diagonality, the autocovariance of {X(n)} is given by the simple formula

¥(n) := Cov(X(n), X(0)) = k!> _a(i)a(i+ |n|1), (4.23)

i>0

where a(-) is the symmetrization of a(-).
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We now focus on the following case:

a(i) = g(i)L(i), (4.24)

where g is a generalized Hermite kernel of Class (L) defined in Definition 4.3.18, and L is a
bounded function on Zﬁ which satisfies the following: for any x € R’i and for any bounded

ZF-valued function B(-) defined on Z, , we have
L([nx] + B(n)) — 1, as n — oo. (4.25)

Note that X (n) is well-defined in L?({2) since Ziez’j’r g*(1)? < oo, where g* is a linear

Vi

combination of terms of the form H§:1 z;” with every v; < —1 /2,

Remark 4.4.2. Note that the boundedness of L and (4.25) are strictly weaker than assum-
ing that L(i) — 1 as ||i|| = oo for some norm || - || on R¥ (recall that norms are equivalent

in the finite-dimensional space). Indeed, consider

- 2 ifiy = 1;
L(iy,iz) =
1 otherwise.
Suppose that B is bounded by M. Then L([nx] + B(n)) = 1 for large n. On the other
hand, consider ||i|] = max(i1,i2). Then if (i1,42) = (i1,1), i1 — oo, we have ||i|| = i3 — oo
but L(’il,ig) = L(il, 1) = 2.
Remark 4.4.3. In practice, Relation (4.25) implies that for any fixed x € le_ and ¢ € Z’j_,

L([nx] +¢c) — 1 as n — oc.
The following Proposition shows that one can get long-range dependence if g is of Class

(L).

Proposition 4.4.4. If a(i) is as given in (4.24), where g has homogeneity exponent o €

(=1/2 —k/2,—k/2) (or 2a+ k € (—1,0)), then the autocovariance of the discrete chaos
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process {X (n)} satisfies

v(n) ~ k!IC5n*71 2 as n — oo, (4.26)

where Cg = [pr §(x)g(1+x) >0, H = a+k/2+1 € (1/2,1), with § being the symmetriza-
+
tion of g. In addition, as N — oo,

Var[} ~ X(n)] ~ mN . (4.27)

n=1

Proof. Assume without loss of generality that ¢ is already symmetric.

()" 'y(n) = g(i)g(n1 + 1) L(nl +i)L(i)
i>0

/ . .

—p2oth g(:)g <;> g (1 + ;) L(i)L(nl + i)%

2 [ 1 (g (x)gn(1 + x)dx.

Y

where g, (x) = Q(W)L([nx] +1), DS = {x € RE, [nx,] # [nz,], p#q € {1,....k}}
Note that 1p,, (x) = 1 as n becomes large enough, for any x € D¢ := {x € R’j_, Ty F# Xq, pF
q € {1,...,k}}, and that the diagonal set D := R* \ D¢ has measure 0. Since g belongs
to Class (L), g is continuous a.e., so gn(x) — g(x) a.e. as n — oo. Furthermore, there
exists ¢g*(x) which is a linear combination of the form Hle x}j (Condition 2 of Definition
4.3.18), so that for a.e. x € R’i,

[nx] + 1

a0 <" (P5) < g0

since L is bounded and g* is decreasing in its every variable. Note that [pr ¢*(x)g*(1 +
+
x)dx < oo, and ¢ is a.e. continuous. So it remains to apply the Dominated Convergence

Theorem.
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Finally, (4.27) follows by first noting that

N
Var[y - X(n)] =D (N = [nl)y(n) =N Y y(n) = Y Inly(n),
n=1 n [n|<N [n|<N

and then using the asymptotics of y(n) just derived.

0
4.5 Hypercontractivity for infinite discrete chaos
Let X s be a finite discrete chaos defined as
/
Xy= Y h)e.. €, (4.28)
—~M1<i<M1
where h(i) = h(i1,...,i) is a function on Z¥, M € Z., and we assume that {¢;} is a

sequence of i.i.d. variables with Ee¢; = 0, Ee? = 1. Then we have the following moment-

comparison inequality, also called “hypercontractivity inequality”:

Proposition 4.5.1. Suppose that Ele;|P < oo with p > 2. Then
ElIXn|")'7 < dp kB[ X0 P]/2, (4.29)

where dy, j s a constant depending only on p and k.

For a proof of (4.29), where M is finite, see Lemma 4.3 of Krakowiak and Szulga [1986],
where the so-called MPZ(p) condition (Definition 1.5 of Krakowiak and Szulga [1986]) is
trivially satisfied since the ¢;’s are identically distributed.

Now we extend (4.29) to the case M = co. The result is used in Theorem 4.6.3, 4.6.11

and 4.6.14 below for proving tightness in D[0, 1].

Proposition 4.5.2. Suppose that > i h(i)? < co. Let X = >, h(i) H];:1 €i,. If for
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somep >p> 2, E|ei|p/ < 00, then one has
E[IX[P]'7 < dp s B[ X))/ (4.30)

Proof. Let Xy be the truncated finite chaos as in (4.28). The condition on A implies that
Xy — X in L?(Q). Moreover, one has by (4.29),
, P'/2
EllXnl"] < dy (EIXu PP 2 < dpy | D h(D)?
iezk
This implies that {|X /[P, M > 1} and {|Xa|?, M > 1} are uniformly integrable, implying
convergence of the corresponding moments. So one can then let M — oo on both sides of

(4.29) and obtain (4.30). O

4.6 Joint convergence of the discrete chaoses

Our goal here is to obtain non-central limit theorems for the discrete chaos process intro-
duced in Section 4.4. We shall, in fact, prove both a central limit theorem for the SRD case
(getting Brownian motion as limit) and a non-central limit theorem for the LRD case (get-
ting the generalized Hermite process introduced in Section 4.3 as limit). We also consider
non-central limit theorems leading to the fractionally filtered generalized Hermite process
introduced in Section 4.3.3. Finally, we derive a multivariate limit theorem which mixes
central and non-central limit theorems.

We first define here precisely what SRD and LRD stand for in the context of discrete

chaos process. Recall that a(-) denotes the symmetrization of a(-).
Definition 4.6.1. We say a discrete chaos process {X(n)} given in (4.22) is

e SRD, if >0 i gla(i)a(i+ |n|1)] < co and Y o0 (n) > 0;

n=—oo n—=——oo Py

e LRD, if a(i) = ¢g(i)L(i) as given in (4.24). In particular, g is a generalized Hermite
kernel of Class (L).
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Remark 4.6.2. The definitions of SRD and LRD in Definition 4.6.1 are distinct. Indeed,
the SRD condition implies that ) |y(n)] < oo, while LRD yields )", |y(n)| = oo by

Proposition 4.4.4.

4.6.1 Central limit theorem

Theorem 4.6.3. If a discrete chaos process {X(n)} given in (4.22) is SRD in the sense

of Definition 4.6.1, then

(N f o
N1/2 Z X(n oB(t) (4.31)
where B(t) is a standard Brownian motion, and o* =% ~(n).

Proof. Assume without loss of generality that a(-) is symmetric. The proof is similar to
the proof of Theorem 4.2.3 found on p.108 of Giraitis et al. [2012], so we give only a
sketch. The central idea is to introduce the m-truncation of X (n), namely, X (n) :=
Zi)<i§m1 a(i) H§:1 €n—i;, and then let m — oo. The sequence {X(™)(n),n € Z} is m-
dependent, so the classical invariance principle applies (Billingsley [1956] Theorem 5.2).
The long-run variance 0 = > ~(n) is a standard result. We now check that the L*(Q)

approximation is valid as m — oo, that is,

lim sup Var[Yy ym )( t)—Yn(t)] =0, t >0, (4.32)

m— 00 NEZ+

where Y\™ (1) = S Y X (n) and Ya(t) = e S0 X(n), which is similar to
(4.8.7) of Giraitis et al. [2012]. Indeed,

Var[YU™ () — Yar(1)] = %Var 3O (X - x,)

o P IRHOIE R SEHG (1.33)

In|<[Nt]



101

where

Ym(n) = E(X, — X[™)(Xo — X™) = k1Y ali)a(nd +1i).

i>ml

For a fixed n € Z, v, (n) — 0 as m — oo, and |y, (n)| < p(n), where

p(n) = k! Z la(i)a(i+ nl)|,

i>0

which satisfies ), p(n) < oo by the SRD assumption in Definition 4.6.1. Since the bound
in (4.33) does not depend on N, the Dominated Convergence Theorem applies and thus
(4.32) holds. O

To strengthen the conclusion of Theorem 4.6.3 to weak convergence, we have to make

some additional assumptions to prove tightness.

Theorem 4.6.4. Theorem 4.6.3 holds with Jﬂ' replaced by weak convergence = in D]0, 1],

if either of the following holds:
1. There exists § > 0, such that E(]e;|*+°) < oo;
2. There exists an M > 0 such that a(i) = 0 whenever i > M1.

Proof. Look first at case 1. Let

Select p € (2,2 + §). By Proposition 4.5.2, one has
E[[Yn(t) = Yn(s)[P] < cB[|Yn () — Yiv(s) /2, (4.34)

where c is some constant which doesn’t depend on s,t or N. Note that ) |y(n)| < oo
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due to SRD assumption, we have

LS
E[lvw(t) - Ya)P| = Bl Y. X0
n=1
BAURILCRNS'S (1_%]‘_%) 1y < YV SA ) (a3s)

[n|<[Nt]—[Ns]

Combining (4.34) and (4.35), we have for some constant C' > 0 that
E[IYn(t) = Yn(s)]”] < eB[Yn(t) — Yn(s) PP < ClEn () — Fn(s)I”?,

where Fiy(t) = [INt]/N. Now by applying Lemma 4.4.1 and Theorem 4.4.1 of Giraitis et al.
[2012], noting that p/2 > 1, we conclude that tightness holds.
For case 2, X (n) is M-dependent, so by Theorem 5.2 of Billingsley [1956] tightness

holds as well.

4.6.2 Non-central limit theorem

The following theorem shows that in the LRD case, the discrete chaos process converges

weakly to a generalized Hermite process.

Theorem 4.6.5. If a discrete chaos process {X(n)} given in (4.22) is LRD in the sense

of Definition 4.6.1, then

[Ni]
1
N > X(n)= Z(t), (4.36)
n=1
in D[0,1], where Z(t) is the generalized Hermite process in (4.5), and
1
H=a+k/2+1€ (2,1),

where o € (—=1/2 — k/2,—k/2) is the homogeneity exponent of g and k is the order of
{X(n)}.
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Proof. Tightness in DJ0, 1] is standard since H > 1/2. We only need to show convergence
in finite-dimensional distributions. Assume for simplicity that a(i) = g(i) or equivalently
L(i) = 1. The inclusion of a general L can be done as in the proof of Proposition 4.4.4.

We want to show that

[V] / [Nt]
1 . f.d.d.
NH ZX > Ntk D gl = Dlguspe -6, = Qrlhyn) == Z(t),
n=1

(i1,e-yig ) EZF

(4.37)

where Q(+) is defined in (4.21). Now in view of Proposition 4.4.1, we only need to check

that
17, (%) — he(x)]| p2(rry = 0, (4.38)
where
t
ht(x) = / 9(81 - X)1{31>x}d37
0
and
(V]
h‘t,N( ) = Nk/zht N([NX] + 1) No+1 Z g nl — [NX] )1{n1>[Nx]+1}
n=1
_ [gt:] w ! 1
{n1>[Nx}+1}N
t Ns1] — [Nx
_/ g <[]NH> Livs1]>[vx]pds — Ry (t, x).
0
where

Nt — [Nt Ntl] — [Nx
Rn(t,x) = N[ ]9 <[ ]N | ]> Livea)>[Nx}-

Note that we have replaced i by [Nx]+ 1 and n by [Ns]+ 1. By Condition 2 in Definition
4.3.18, there exists a positive generalized Hermite kernel g*(x) which is a linear combination

of the form [J* such that [g(x)| < g*(x) for a.e. x € RY. We assume without loss of

le’
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¥ 2. Since [Ns1] > [Nx] implies s1 > x, we have

generality that g*(x) = [[;_; ;

Linssva,)y | Lsisxy a-e-.

‘g ([NSl]N_[NX]> ‘ Lynst)s v} < ﬁ <[Ns];V[ij]>7j

j=1
(4.39)
Moreover, if 0 < [Ns] — [Nz] = k € Z,, then Ns — 1 — Na < k, and hence s — z < &tL,

So we have for any v < 0 that

_ v v
sup <[NS]W> (s—x) 7 < sup <k> (s—x)7
N>1,[Ns|>[Nz] N N>1,[Ns|—[Na]=k>1 \ IV

E\” (k + 1)‘7
< su - Lo =277, (4.40
_NZLEZl (N) N (4.40)

So we have for some constant C' > 0,

'g ([Nsl] ~ [Nx]

W > ' Linsaysivxgt < Cg™ (51 — x) 115 (4.41)

Since g(x) by assumption of Class (L) is continuous a.e., g (W) L{[Nvs1]>[Nx]} COD-

verges a.e. to g(s1 — x)1415x) as N — co. In view of (4.41), and noting that
2

t
/ dx (/ g (sl — X)1{81>x}d8> < 00
Rk 0

because g* is a generalized Hermite kernel, one then applies the Dominated Convergence
Theorem to conclude the L? convergence of fot g (W) L{Ns1)>[Nx]yds to hi(x). For

the remainder term Ry ¢(x), one has
RN ()72 gy = N2 (Nt = [N#])* D g (1)° =0
i>0
as N — oo. The proof is thus complete. ]

Example 4.6.6. Consider the kernel g(x) defined in (4.1). It belongs to Class (L) by

Example 4.3.24. Hence by Theorem 4.6.5, we have the following weak convergence in
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DJo,1]:

k
D SV e =

n=1 (iy,...,ix)EZE Z] 11 J

.....

ot [T5_i(s - : [k
J= \/ (s — ;)T ds W(dxy)...W(dzy),
/ 0 (Zle( (Jl_[l (dz1) (dzy)

—_

where H = a+ k/2 + 1.

4.6.3 Non-central limit theorem with fractional filter

In the spirit of Rosenblatt [1979] and Major [1981], we consider here the non-central limit
theorem for the fractionally filtered generalized Hermite process introduced in Section 4.3.3.

Assume throughout that the generalized Hermite kernel g is of Class (L) (Definition 4.3.18).

Definition 4.6.7. Let X (n) = > i_,; a(nl—i) Hle €i; be the same discrete chaos process

as in Theorem 4.6.5. We say that a discrete process U(n) is fLRD (fractionally-filtered LRD

discrete chaos process) if

00 n—1 / k
= Z C’mX(n - m) = Z Crn—m Z ml —i H €ij» (4'42)
m=1 J=1

m=—00 i<ml

where a(i) = g(i)L(i) as in (4.24) with g being a generalized Hermite kernel in Class (L),
C, ~ enP1

as n — oo, and where, as in Proposition 4.3.25,

ﬁ€<—2a+k+2 _20z—|—k:>. (4.43)

2 ' 2

U(n) is well-defined in the L?(Q) sense. Indeed, we have the following:
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Lemma 4.6.8. We have

/ 2
Z (Z ‘Cn—ma(ml - i)|1{m1>i}> < 00.

iezk \m<n

Proof. Note that a(-) = g(-)L(-), where g is of Class (L). So by Definition 4.3.18, there
exists a ¢g*(x) > 0 which is a finite linear combination of the form H?:l x;-“ , such that
lg(x)| < ¢g*(x). Note that L is bounded and |C,| < en®~!. Set n = —1 without loss of

generality due to stationarity. We hence need to show that

2
> < Y (=m)P gt (ml - i)l{m1>i}> < o0. (4.44)

iczk \m<-1
It suffices to show this when £ > 0, since for any § < 0 and 8 > 0, (—m)? 1 < (—=m)P#~!
for all m < —1. The preceding sum can be rewritten as an integral by replacing m by [s]
and i by [x]:

/Rk 1pedx (/__1 ds(—[s])’g*([s1] — [X])l{[sl]>[x}}>2, (4.45)

[e.e]

where D¢ = {x € R¥ : [z,] # [z,], p # q}. By [s] < s, B—1<0, and (4.41), (4.45) is

bounded by (up to a constant)

—1
/ dx </ ds(_s)iilg*(S]- - X)1{81>x}>
R —00

1 —s
= s(—s)P1 u(—s — u)P 2otk * *
_/ ds(—s) /0 du( ) */R dyg*(y)g*(1+y)

— k
o0 +

o, ¢]
:/ §2et2B+k=1gs B(8, 200 + k + 1) Cyg+ < 00,
1

2

where we have used a change of variable similar to the lines below (4.14), and in addition
the assumptions 8 > 0, 2a+ k > —1, 2a+ 28 + k < 0, and g* is a generalized Hermite

kernel.
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Remark 4.6.9. Lemma 4.6.8 not only shows that U(n) is well-defined in L?(Q), it also
allows changing the order of summations, which will be used in proving the non-central

limit theorem below.

Next we want to obtain non-central limit theorems, that is, to show that the suitably
normalized partial sum of U(n) defined in (4.42) converges to the fractionally-filtered gen-
eralized Hermite process introduced in Section 4.3.3. We need to distinguish two cases:
B > 0 (which increases H) and 5 < 0 (which decreases H).

We first consider 5 > 0:
Theorem 4.6.10. Let U(n) be as in (4.42) with § € (0, —a — k/2). Then
[N1]

NHZU ) = Z8(t),

where

1/2<a+k/2+1<H=a+pB+k/2+1<1,

and ZP(t) is the fractionally-filtered generalized Hermite process defined in Theorem 4.8.27.

It is defined using the same g and  as U(n).

Proof. Since H > 1/2, tightness in DJ[0,1] is standard. We now show convergence in
finite-dimensional distributions. Assume for simplicity that C,,, = m®~! and L(i) = 1. By

Lemma 4.6.8, we are able to change the order of the summations to write:

1 [Nt] / [Nt]
i U = 37 1 30 ) gl i 1{m1>1}Hez]
n=1 iczk n=1m<n

Y RO T = Q)

iezk J=1
and by setting ﬁfN(X) = Nk/2h§N([NX] + 1), we have
[Nt]

BtﬁyN( NO¢+B+1 Z Z n-— ml - [NX] - 1) 1{m1>[Nx] 1}

n=1m<n
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n—m\""' /m1—[Nx]—-1 . 1
et g N {m1>[Nx]-1} N2

/ot /]Rdr (S]J:T[NT])B_l 9 (W) Linvrays(vxgy — Bva(x)

+

::/ ds/dTGN(S,T,X)lKN — Ry (%)
0 R

[Nt]

where we associate i with [Nx] + 1, n with [Ns] + 1, and m with [Nr| +1

e e ]

Ky ={[Ns| > [Nr]|,[Nrl] > [Nx]} C {s > r,r1 > x},

and

Rn(x) = Nt;V[Nt] /Rdr ([Nt]_N[Nr]x_lg (W) N> (vxgy-

In view of Proposition 4.4.1, we need to show that hﬁN — hﬁ and Ry, — 0 in L2(RF),

t
:/ ds/ dr(s —r)_ﬁflg(rl —x)1{r15x-
0 R

Using (4.39) and (4.40) (note that § — 1 < 0) as in the proof of Theorem 4.6.5, we can

where

bound the integrand as
G (5,7 %)Ly < Cs =) 'g" (1L = %) L1

for some C' > 0, where ¢g*(x) is a generalized Hermite kernel from Definition 4.3.18. Because
P(x) = (s = 1) g7 (L = X)L a5y € LA(RY)

by (4.17) and Proposition 4.3.25, and g is a.e. continuous, it remains to apply the Domi-

nated Convergence Theorem to conclude ilf N~ hf . For the remainder term Ry +(x), one
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has

IR0 Fagey = NT2H(NE =[N Y | D (N = m)P lg(ml = D)lpmasyy |
iezZk \m<[Nt]

which, in view of (4.44), converges to 0 as N — oo. The proof is thus complete. O

We now treat the case < 0. This case is more delicate than the case § > 0 in two
ways: a) an additional assumption on the linear-filter response {C),} has to be made; b) if
B is chosen such that H < 1/2, then tightness of the normalized partial sum process needs
also additional assumptions.

When £ < 0, we have
D [Cnl < 0.
n=1

If fx is the spectral density of {X(n)}, then the spectral density of {U(n)} is

fu() = 1C(eM)Pfx(N),

where C(z) := Y, C,z", and the transfer function H(\) := |C(e*")|? is continuous. Since
X (n) is LRD (see Proposition 4.4.4), its spectral density blows up at the origin. To dampen
it we need to multiply it by an H(A) which converges to 0 as A — 0. This means that
H(0) =[Y22°, Cy|? =0, and hence we need to assume Y oo C,, = 0.

Theorem 4.6.11. Let U(n) be as in (4.42) with € (—a — k/2 — 1,0), and assume in

addition that

i C,=0. (4.46)

Then
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where

O<H=a+B+k/2+1<a+k/2+1<1,

ZB(t) is the fractionally-filtered generalized Hermite process defined in Theorem 4.3.27. It
is defined using the same g and 3 as U(n).
If in addition, either a) H > 1/2, or b) H < 1/2 and for some p > 1/H, E|¢;|P < oo,

then the above f'd—'df can be replaced with weak convergence in D[0, 1].

Proof. Note that by Lemma 4.6.8, we can change the order of summations to write:

[N1] [NVt] / k
1
YN(t)::WZU(n Z NHZZC" m > alml—i) H
n=1 i€z n=1m<n i<ml j=1
!/
1 .
= Z NH Z a(ml — 1)1{m1>i} Z Crn-m H €i; = Qk(th),
iezk meZ n=1V(m+1) Jj=1
where
1 [Nt]
hf:N(i) = NH Z a(ml - i)l{m1>i} Z Cn—m-
MmEZ n=1V(m+1)

Making use of (4.46), and using [ to denote a generic function such that I(i) — 1 as i — oo,

we have if m > 1,

[N] [Nt]—m o
Yo Com= Y Co=— > Co=B (N —m+1)(Nt] —m+1){;
n=1V(m+1) n=1 n=[Nt]-m+1
and if m <0,
[Ni] [Ni] [Nt]—m 0o 00
Z Cn m Z Cn m = Z C Z Cn - Z Cn
n=1V(m+1) n=—m+1 n=[Nt]—m+1 n=-—m-+1

=37 [UNE] =+ (N8 = m o+ 1) = U=m) (—m)? ]
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So by letting i correspond to [Nx]+ 1 and m to [Ns] + 1 (omitting L and [ for simplicity),

Ry (%) = N2 (INx] + 1)

= ;/Rg (Ws]l]\;wx]) Lines vy ((WN[NS]X - (_[]\f;}_lx) ds.

Using similar arguments as in the proof of Theorem 4.6.5, we can bound the absolute
value of the integrand above by Cg*(s1 — x)1,15x) <(t - 3)53r - (—3)&) for some C' > 0,
where ¢g* is a generalized Hermite kernel from Definition 4.3.18 (for the last term, we use
[Ns] 4+ 1> Ns). Note that 5 < 0 in this case. By applying the Dominated Convergence
Theorem, we get the desired f.d.d. convergence using Proposition 4.4.1.

Now we turn to the weak convergence. When H > 1/2, the tightness is standard. To
show tightness under condition H < 1/2 and El¢;|P < 0o, Proposition 4.5.2 and the above

f.d.d. convergence imply that for some constant ¢, C > 0 free from s,t and N,
E|Yi(t) = Yn ()" < cB[[Yn(t) = Ya(s)PJP'/? < C[Fn(t) — Fn(s)"H,

where F(t) = [Nt]/N, p’ < p and p’H > 1. Now by Lemma 4.4.1 and Theorem 4.4.1 of

Giraitis et al. [2012], we conclude that tightness holds. O

4.6.4 Mixed multivariate limit theorem

In Bai and Taqqu [2013a], a multivariate version of Theorem 4.2.3 is obtained, where both
central and non-central convergence appear simultaneously. We will state here a similar
theorem.

Suppose that X(n) = (X1(n),..., X (n)) is a vector of discrete chaos process defined

on the same noise but with different coefficients, that is,

/ kj

/
Xjn)= > ajlin,... in)en—i - e enmiy, = > a;() ] en—in (4.47)

0<i1,...,ik]. <oo i>0 p=1
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where we assume {¢;} is an i.i.d. random sequence with mean 0 and variance 1. For con-
venience we let a;(i1,...,i;) = a;j(i) = a;(i)1{>0}, and a;(-) denotes the symmetrization

of Qj ()
Definition 4.6.12. We say that the vector sequence of discrete chaos processes {X(n)} is

e SRD, if every component X;(n) is SRD in the sense of Definition 4.6.1, and in addi-

tion, for any p # q € {1,...,J},

> > lap(i)ag(nd + )| < oo; (4.48)

n=—o0 i>0
e LRD, if every component X;(n) is LRD in the sense of Definition 4.6.1.

e fLRD, if every component X;(n) is a fractionally-filtered LRD discrete chaos process
in the sense of Definition 4.6.7. Note: these components were denoted U(n) in that

definition.

Remark 4.6.13. If the vector sequence is SRD, then (4.48) guarantees that the cross-
covariance 7, 4(n) := Cov(X,(n), X4(0)) satisfies >, |vpq(n)| < co. As in Proposition 2.5

of Bai and Taqqu [2013a], we have that as N — oo,
1 [Nt1] 1 [th] 00
Cov N ; X,(n), N n; Xo(n) | = (1 At) D Ypqln). (4.49)

n=—oo

Note that v, 4(n) = 0 always if the orders k, # k.

We will now consider a general case where SRD and LRD and fLRD vectors can all be

present in X (n). We divide X(n) into four parts
X(n) = (Xs, (n), Xs,(n), Xp(n), Xp(n))

of dimension Jg,, Js,, Jr, Jr respectively, which are defined as follows:
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(i) all the components of Xg, (n) = (Xi,5,(n),..., X g s (n)) have order k = 1, namely,

are all linear processes;

(ii) every component of Xg,(n) = (Xi,5,(n),...,Xg s,(n)) has order k¥ > 2, and the

combined vector

Xs(n) = (Xs,(n), Xs, (1)) = (X1,5(n), .., Xys.5(n),  Js = Js; + Js,,

is SRD in the sense of Definition 4.6.12;

(ili) the vector Xp(n) = (X1,.(n),..., X, r(n)) is LRD in the sense of Definition 4.6.12,

with correspondingly generalized Hermite kernels g = (g1.,,...,9.7,.1.);

(iv) the vector Xp(n) = (X1 r(n),..., X, r(n)) is fLRD in the sense of Definition 4.6.12,

with correspondingly generalized Hermite kernels g = (g1, r, . . ., 97, r) and fractional

exponent B = (S1,...,B7x)-

We now state the multivariate limit theorem. We use Yy (with subscript Si, S2, L or
F) to denote the corresponding normalized sum Yy (t) := N1 Eg\ﬂ X (n), where X (n)
is a component of X(n), H is such that Var(Yy (1)) converges to some constant ¢ > 0 as

N — o0.

Theorem 4.6.14. Following the notation defined above, one has

(YN,51 (t), YN,SQ (t)v YN,L(t)v YN,F(t)) ]ﬂ) (Bl(t)7 BQ(t)v Z(t)’ zP (t))7 (4‘50)

where

(i) Bi(t) = W(t) := (W (1),...,055 W(t)) defined by the same standard Brownian

motion W (t), and

o0

p = Z Zapﬂsl(n)apvsl(n+i)7 pzl,...,ng.

n=—o00 >0
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(ii) Ba(t) is a multivariate Brownian motion with the covariance given by (4.49);

(i1i) Z(t) is a multivariate generalized Hermite process defined as in (4.5) by the kernels

(91,Ls---+97,,1) and using the W (t) in Point (i) as Brownian motion integrator.

(iv) ZP(t) is a multivariate fractionally-filtered generalized Hermite process defined as in

(4.16) by the kernels (g1,F,-..,97p,F), fractional exponent 3 = (B1,...,Bs,) and

using the W (t) in Point (i) as Brownian motion integrator.

Moreover, Bo(t) is always independent of (B1(t), Z(t), ZP(t)).
In addition, Ldd i (4.50) can be replaced with weak convergence in D[0,1]7, if every
component of Xg, and Xg, satisfies the assumption in Theorem 4.6.4, and every component

of X satisfies the assumption given at the end of Theorem 4.6.11.

The proof is similar to that of Theorem 3.5 of Bai and Taqqu [2013a]. We only provide
some heuristics. The processes Bo(t), Z(t) and ZA(t) involve the same integrator W(:)
because they are defined in terms of the same ¢;’s. To understand the independence
statement, note that the independence between Bs and W stems from the uncorrelatedness
between Xg, and Xg,, since Xg, belongs to a discrete chaos of order £ > 2, while Xg,
belongs to a discrete chaos of order kK = 1. Bs is therefore independent of By. Bs is also

independent of Z and ZP, because Z and ZP have W as integrators.

Remark 4.6.15. The pairwise dependence between components of Z, of Z?, and between
cross components in Theorem 4.6.14 can be checked using the criterion due to Ustunel and
Zakai [1989], that is, if f € L?(RP) and g € L?(RY), and both are symmetric, then the

multiple Wiener-It6 integrals I,,(f) and I,;(g) are independent, if and only if

f@1g(@1,. . Tprg—2) :_/Rf(xla---:xp—lvy)g(xpy---7xp+q—2ay)dy—0 a.e..

For example, suppose that two generalized Hermite kernels g; and g on R} and RY are

symmetric, then the corresponding two generalized Hermite processes are independent if
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and only if

/ /tgl(s—:cl,...,s—xp_l,s—y)ds/tgg(s—xp,...,s—;cp+q_2,s—y)ds dy=0 a.e.,

o ’ (4.51)
where we use the abbreviation g;(x) = g;(x)l{x>0}, j = 1,2. Obviously, if g1 and go
are both positive, then the dependence always holds. This is true, for example, for the

symmetrized version of the kernels in (4.10).



Chapter 5

The universality of homogeneous polynomial
forms

and critical limits

Nourdin et al. [2010] established the following universality result: if a sequence of off-
diagonal homogeneous polynomial forms in i.i.d. standard normal random variables con-
verges in distribution to a normal, then the convergence also holds if one replaces these i.i.d.
standard normal random variables in the polynomial forms by any independent standard-
ized random wvariables with uniformly bounded third absolute moment. The result, which
was stated for polynomial forms with a finite number of terms, can be extended to allow an
infinite number of terms in the polynomial forms. Based on a contraction criterion derived
from this extended universality result, we prove a central limit theorem for a strongly de-
pendent nonlinear processes, whose memory parameter lies at the boundary between short

and long memory.

5.1 Introduction

In Nourdin et al. [2010], a universality result was established for the following off-diagonal

homogeneous polynomial form

Qk(Nn;fTuX) = Z fn(l‘17"‘7ik)Xi1 sz7 (51)

1<i1,..., ik <Nn
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where f,, is a sequence of symmetric functions on Zﬁ vanishing on the diagonals
(fu(it, ... ix) = 0 if i) = i, for some p # ¢), and X = (X1, Xo,...) is a sequence of
standardized independent random variables, and N, is a finite sequence such that IV,, — oo
as n — oo.

The universality result says that if Z = (Z1, Za, .. .) is an i.i.d. standard normal sequence
and Qg (Ny, fn,Z) converges weakly to a normal distribution as n — oo, then the same
weak convergence to normal holds if Z is replaced by X, where X is any standardized
independent sequence with some uniform higher moment bound.

It is natural to try to eliminate the finiteness of N,, in the preceding result. This
extension was mentioned in Remark 1.13 of Nourdin et al. [2010], but was not explicitly
done. One would encounter a number of difficulties if one were to extend the method of
proof used for finite IV, to N,, = co. We will note, however, that this extension can be
easily achieved using a simple approximation argument. We find it valuable to have such
an extension and the corresponding contraction criterion (Theorem 5.2.6) since it can be
directly applied to limit theorems in the context of long memory.

We consider such an application in Section 5.3 where we suppose that

N
fn(in, ... i) = AN Za(n — i1y = i) L ocii<m,. —oo<ip<n}s

and where the function a(-) behaves essentially like a homogeneous function with exponent
a. The resulting polynomial form Qx(fxn) is then the partial sum of a stationary process.
The exponent « is chosen in such a way that the corresponding stationary process lives on
the boundary between short and long memory. We use the contraction criterion to prove
that a central limit theorem holds but with the nonstandard normalization v/ N In N. This
delicate case seems difficult to treat otherwise.

The chapter is organized as follows. In Section 5.2, we state the and prove the extension
of the universality result (Theorem 5.2.1), and as a byproduct, a criterion for asymptotic

normality (Theorem 5.2.6). In Section 5.3.1, we state the critical limit theorem obtained
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by applying the criterion. In Section 5.3.3 and 5.3.4 we give the proofs.

5.2 Universality of homogeneous polynomial forms

Let (2(Z*), k > 1, denote the space of symmetric square summable functions on Z* van-
ishing on the diagonals equipped with the discrete L? norm. Let X = (X1, X2,...) be a
sequence of independent random variables satisfying EX; = 0 and EXZ-2 = 1. By modifying
the notation (5.1), one defines for f € ¢2(Z"):

— 00 yernybf <OO
One has
EQx(f,X) =0.

Consider now two homogeneous polynomial forms Qp, (f1,X) and Qp,(f2,X), where f; €

(2(ZF) and fo € £2(Z*2). Then the covariance of Qy, (f1,X) and Qg, (f2, X) is

(f1, f2) == EQu(f1,X)Qk(f2, X) (5.2)

k‘! Z—oo<i1,...,ik<oo fl(il, e ,ik)fQ(il, e ,ik), if ]{31 = ]{32 = ]{3;

0 if by  ko.

We then have the following extension of Nourdin et al. [2010] Theorem 1.2:

Theorem 5.2.1. For each j =1,...,m, suppose that k; > 2, and let f, ;(-) be a sequence
of functions in (>(Z¥1). Let ¥ be an m x m symmetric non-negative definite matriz whose

each diagonal entry is positive. Assume in addition that

Sup Z Jnj(it,. .. ,ikj)Z < o0. (5.4)

n . .
—oo<11,“.,zkj <00

Then the following two statements are equivalent:
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1. For every sequence X = (X1, Xa,...) where X1, Xo, ... are independent random vari-

ables satisfying EX; = 0,EX? = 1, and
sup E| X;|? < oo, (5.5)
i
the following joint weak convergence to a multivariate normal distribution holds:

(ij(fn,j,X))ﬁ N, (5.6)

2. For a sequence Z = (Z1,Z3,...) of i.i.d. standard normal random wvariables, the

following joint weak comvergence to a multivariate normal distribution holds:

(@i, (£ ) 4 N(0,3), (5.7)

Remark 5.2.2. Condition (5.4) can be re-expressed as

sup EQg, (fn.j Z)* = k;! sup Z fni(in, ... ,z'kj)2 < 0. (5.8)

—Oo<i1,...,ikj <00
Remark 5.2.3. One can recover Nourdin et al. [2010] Theorem 1.2 from Theorem 5.2.1
by replacing fn,j(ily Ce. ,ikj) With fn,j(ila . 7ikj)11§i1,...,ikj <Np (il, Ce ,ikj).

Remark 5.2.4. In the one dimensional case: m = 1, one can relax the assumption (5.5)

by sup; E|X;|?*° < oo for any 6 > 0. See Theorem 1.10 of Nourdin et al. [2010].

Proof of Theorem 5.2.1. We need to prove that (5.7) implies (5.6). Define the N,,-truncated

functions

T (i1, oo sig) = fag(in, . 'aikj)1{—Nn§i1§Nn,...,—Nn§ikjSNn}a J=1...,m.
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For any n € Z,, we can find N, large enough, so that for all j =1,...,m,

B| @4, (s 2) — Qi (s D) = B |Q, (g X) = Qi (o X0

~ 1
— L. ]2 il
= kg — Fuilaggi < o (5.9)
Assume without loss of generality that N,, — oo as n — oo. By (5.7) and (5.9), one has

(@i (fuss )" 4 N(0,3).

Using the original version of the universality result in Nourdin et al. [2010] Theorem 1.2,

one gets
~ m d
(@4, (Fng: X)) = N(0,3). (5.10)
The conclusion (5.6) follows from (5.9) and (5.10). O

Remark 5.2.5. Using the same argument as in the preceding proof, one can eliminate
the finiteness of NV, in (5.1) in the following related universality results for homogeneous
polynomial forms: (a) Theorem 1.12 of Nourdin et al. [2010] concerning for convergence to
a x? distribution; (b) Theorem 3.4 of Peccati and Zheng [2014] which is the counterpart of

Theorem 5.2.1 here with Z;’s being standardized Poisson random variables.

Theorem 5.2.1 gives rise to a practical criterion for the convergence (5.6). We first

introduce the discrete contraction operator: for f € ¢P(ZP) and g € ¢1(Z9), p,q > 2, we

define
(f *r g)(ilv ce. 7ip+q—2r) -
e}
Z f(jlau-,jr»ila---aipfr)g(jla---ajryipfr+1a~--,ip+q72r) (5-11)
j17--.7jr:—00
for r =0,...,p A g, where in the case r = 0 it is understood as the tensor product.

Theorem 5.2.6. Let {f,;(:), n € Zy} be a sequence of functions in 0%(ZF3) satisfying
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(54), 7 =1,...,m, where k; > 2. Let ¥ be an m X m symmetric non-negative definite

matriz whose each diagonal entry is positive, such that
Z(i,j) = lim <fn,ia fn,j>v (5.12)
n—oo

where (-, ) is defined in (5.3). Then the following are equivalent:

1. For every X = (X1, Xo,...) with X;’s being independent random variables satisfying
EX; = 0,EX? = 1 and sup; E|X;|> < 0o, we have the following joint weak convergence

to normal:

(ij(fn,j,X))@ 1 4 N(0,%). (5.13)

1=

2. The following contractions are vanishing:
im || foj % fojllok;—2r =0, forallr=1,...;kj =1 and allj=1,...,m. (5.14)
n—o0

where || - || denotes the discrete L? norm on (%(ZF).

Proof. By Theorem 5.2.1, the statement 1 is equivalent to (ij(fn,j, Z));n:l S N(0,%),
where Z is a sequence of i.i.d. standard Gaussian variables. Note also that each Q; (fn.j, Z)
can be expressed as a kj-tuple Wiener-Ito integral with respect to Brownian motion. For
Wiener-1t6 integrals, joint convergence to the normal is equivalent to marginal convergence,
and marginal convergence is equivalent to the contraction relations. More precisely, by
applying Theorem 6.2.3 and 5.2.7 of Nourdin and Peccati [2012], one gets the equivalence
to (5.14). See also Theorem 7.5 of Nourdin et al. [2010]. O

Remark 5.2.7. We shall use the implication “Statement 2 = Statement 1”7 of the pre-
ceding theorem in the sequel. As for the reversed implication, namely, “Statement 1 =
Statement 2”7, the stipulation “For every” is important here, as well as in Theorem 5.2.1,
because there are random variables X;’s, for example Rademacher, that is X; = £1 with

probability 1/2 each, for which one may have convergence in (5.13) even when (5.14) does
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not hold (see Nourdin et al. [2010], Section 1.6, p.1956).

Remark 5.2.8. One may wonder if the universality result extends to a continuous setting,

namely, when Q(f,) is replaced by a multiple integral on a Borel measure space (A, A, u):

In(fn, &) = /A,k folz1, .oy zk)€(dzy) . .. &(dzy),

where f € L?(AF), the prime ’ indicates the exclusion of diagonals Tp = xq, P # q, and
&(+) is an independently scattered random measure with an atomless control measure pu(-).
Does Ii(fn,§) exhibits a similar universality phenomenon? Namely, if I;(f,,{) converges
in distribution to normal for a Gaussian £(-), does the convergence also hold for general
class of £(-) with the same control measure p(-)? It is known that the law of £(-) has to be

infinitely divisible and £(-) admits the decomposition:

£(B) = G(B) + /R /A ()N (du, dz), (5.15)

where G(-) is a Gaussian random measure on A and N(-) is an independent compensated
Poisson random measure on R x A. See Section 5.3 of Peccati and Taqqu [2011] for more
details.

One may think of adapting the approximation argument used in the proof of Theorem
5.2.1 to the multiple integral case, which would involve partitioning the space A into subsets
of small measure. The problem is that unlike the Gaussian part, the Poisson part does
not scale as pu(B) — 0. To see this in the simplest situation, take {(B) = ]3(B), where
P(-) is a compensated Poisson random measure on A with control measure x(-). Note that
P(B) + w(B) follows a Poisson distribution with mean pu(B). Since its cumulants are all
equal to u(B) (see (3.1.5) of Peccati and Taqqu [2011]), and since the third moment of a
centered random variable is equal to the third cumulant, one has E(P(B))? = u(B). This

means that although we have the standardization

E’ﬁ(B)/\/u(B)‘Q —1, (5.16)
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we also have
i E)P YV ’ — lim E‘PB‘ wW(B)32> lim EP(B)*u(B)~%?
w(B)—0 n(B)—0

= i B)™1/? = .
(B =

This will violate condition (5.5) as the partition of A becomes finer. In fact, one can show
that P(B)/\/u(B) — 0 in probability as z(B) — 0, which means, in view of (5.16), that
the uniform integrability of |P(B)/+/u(B)|? fails. For further insights, see Rotar [1979).

5.3 Application: boundary between short and long memory

5.3.1 The setting

Bai and Taqqu [2014a] considered the following discrete chaos processes:

X(n)= > aln—iy,...,n—ip)e ..., (5.17)
—00<1] ey b <N
where k > 2, a(-) : Z’j_ — R is symmetric and vanishes on the diagonals, and ¢;’s are i.i.d.
random variables with mean 0 and variance 1. Note that EX(n) = 0.
In particular, Bai and Taqqu [2014a] studied limit theorems for normalized partial sum

process of X (n):

v
Yn(t) := AN ZX(n)a
n=1

where [-] means integer part, and A(N) is a suitable normalization factor. Depending on
the behavior of a(-), the stationary process X (n) may exhibit short or long memory.
As shown in Bai and Taqqu [2014a], in the short memory case, namely when the

coefficient in (5.17) satisfies the summability condition

Z Z ’a(il,...,ik)a(il—|—n,...,ik+n) < 00, (5.18)

n=10<4i1,...,i <00
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and E|¢;|?T < oo for some § > 0, the following central limit convergence as N — oo holds:

v
ﬁ S X(n) = 0 B() (5.19)
n=1

for some o > 0, where B(t) is a standard Brownian motion.

In the long memory case, assume that

a(-) = g(-)L()1pe, (5.20)
where
D¢ :={(i1,...,i) : ip # iq for p # ¢} (5.21)

guarantees that a(-) vanishes on the diagonals. The function L(-) : Z%¥ — R satisfies!

lim L(i) = 1, (5.22)

li|—o0
and g(-) : R¥ — R is the so-called generalized Hermite kernel of Class (L).

Definition 5.3.1. A nonzero a.e. continuous function g(-) : R¥ — R is called a generalized

Hermite kernel of Class (L) (GHK(L)) if it satisfies

1. g(-) is homogeneous with exponent «, namely, g(Ax) = A%*g(x), for all A > 0, where
E+1 k
AL I 9
a € < 5 2) ; (5.23)

2. The function g(-) satisfies the bound

9)| < g* (%) =) a2, (5.24)
j=1

Tn Bai and Taqqu [2014a] eq. (25), L(-) is assumed to satisfy a slightly weaker condition than (5.22),
that is, limy o L([N%] + B(N)) = 1 for any x € R% and any bounded sequence B(N) in Z% instead of
lim x| 00 L(x) = 0. Note that L([Nx]+ B(N)), N — oo, lets the argument increase in a specific band in
the first quadrant, whereas L(x), ||x|| — oo, allows x to increase in an arbitrary way in the first quadrant.
Here for simplicity we just assume (5.22), while the results stated here also hold under the weaker condition.



125

with the constant ¢ > 0, —1 < y;; < —1/2 and Zle yiip=oaforalll=1,....,m.

If g is a GHK(L), the following constant is well-defined (the integral is absolutely

integrable)

Cg - /k g(xbaxk)g(1+$17’1+xk)dwld$k’ (525)
R+

and Cy; > 0 always (Remark 3.6 of Bai and Taqqu [2014a]). Under this setup, Theorem
6.5 of Bai and Taqqu [2014a] showed that as N — oo,

[N?]

1 / t
NHZX(n)é/ /g(sl—xl,...,sk—xk)1{51>x17”_7sk>xk} W(d) ... W(day), (5.26)
n=1 R 0

" indicates the exclusion of the

where W (-) is the Brownian random measure, the prime
diagonals x;, = x4, p # ¢, and

k
H:Oé+§+].

The limit in (5.26) was called a generalized Hermite process which generalizes the Hermite
process (see, e.g., Dobrushin and Major [1979] and Taqqu [1979]) which corresponds to the
special case g(x) = :c(ll/k . .:c,(:/k.

There is, however, a boundary case which the limit theorems (5.19) and (5.26) did not

cover. This boundary case is as follows: set as in the long memory case

a(-) = g()L()1pe, (5.27)

where D¢ is as in (5.21), L(-) is as in (5.22), and ¢ is a function satisfying the assumptions
in Definition 5.3.1 except that instead of assuming (5.23), the homogeneity exponent is set

as @ = —%.

Remark 5.3.2. Note that if a < —%, we are in the short memory regime. Indeed

Proposition 5.4 of Bai and Tagqu [2015b] showed that o < —%%! implies (5.18), and thus

(5.19) holds. So (5.28) is exactly the boundary case between short and long memory.
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5.3.2 Statement of the limit theorems

Let throughout = denote weak convergence in Skorohod space D[0, 1] with uniform metric.
We shall show by the criterion formulated in Theorem 5.2.6, that a central limit theorem

holds with an extra logarithmic factor in the normalization:

Theorem 5.3.3 (Nonlinear case). Let
X(n) = Z a(n—ih...,n—ik)eil...eik
—00< 1] eyl <N

as in (5.17) with k > 2 and the coefficient a(-) specified as in (5.27) where

|
o= —k%. (5.28)

Assume also that Ele;|* < oo and Cy > 0. Then

[Nt]

Y X(n) = oB(t)

n=1

1

WO = e

where 0 = /2Cy, and B(t) is a standard Brownian motion.

Remark 5.3.4. Theorem 5.3.3 may be compared to a similar boundary case of limit
theorems for nonlinear transform of long-memory Gaussian noise first considered in Breuer
and Major [1983] Theorem 1’. The proof there was done by a method of moments. See

also Breton and Nourdin [2008] who gave an alternative proof using the Malliavin calculus.

Note that to apply Theorem 5.2.6, the process X(n) in (5.17) needs to have order
k > 2. For completeness, we state also the corresponding result for linear process, namely,
the case k = 1 in Theorem 5.3.3, though the limit theorem for linear process is classical

(see,e.g., Davydov [1970]).
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Theorem 5.3.5 (Linear case). Let

1

where a(n) = L(n)n™" as n — oo, and let L(n) — ¢ # 0, and the i.i.d. standardized noise

ei’s satisfy Ele;|*° < oo for some § > 0. Then as N — oo,

[Nt]

> X(n) = oB(t)

n=1

WO = oy

where o = \/2|c|, and B(t) is a standard Brownian motion.

5.3.3 Proof of Theorem 5.3.3

We first compute the asymptotic variance of the sum.

Lemma 5.3.6. Let X (n) be given as in (5.17) with the coefficient specified as in (5.27)

and « as in (5.28). Then Cy defined in (5.25) is non-negative. If Cq > 0, then as N — oo

N 2
E ZX(n)] ~20,N1n N.
n=1
If Cy =0, then
N 2
E ZX(n)] =o(NInN). (5.29)
n=1

Proof. Assume for simplicity L(-) = 1, and it is easy to extend the following arguments to
the general case. First, since g(-) is homogeneous with exponent @ = —k/2—1/2 by (5.28),

one can write
Y(n):=EX()X(0)= > glin,....ix)glir +n, ... ik +n)lpe (in,... ,ix)

1 i1 ik i1 ik . Nk
= — ., — —+1,....—=4+1) 1pe
n Z g<na 7n>g<n+ 3 7n+ ) D (7“17 >Zk)n

0<1,...,05, <00
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:”_l/ g([nx1]+17“.7[nfck]+1>g<[n:v1]+1 +1’.”7[nxk]+1 +1> y
RE n n n n
1pe ([nz1], ..., [nag]) dxy ... dzg

=n"1C,(g).

Because the bounding function ¢* in Definition 5.3.1 is decreasing in every variable, the

absolute of the integrand above is bounded by

m
G (21, mi) " @1+ T ) = S @ (g 1) gl (4 1)
J1,52=1

which is integrable on R¥ because all v, 4 € (—1,—1/2) and
/ 2 (x+1)"de < oo for any —1 < 7,7 < —1/2.
Ry

Since g is assumed to be a.e. continuous, by the Dominated Convergence Theorem, as

n — 0o we have

Cn(g) = Cy := /ng(:nl,...,xk)g(fcl +1,...,2+ 1)dry ... doy.
Hence when C,, # 0, one has when n > 0
y(n) ~n1C,,
and when C,, = 0, one has

A(n) = o(n™").

We shall use the fact that if a, ~n~! as n — oo, then 27]1\[:1 an ~InN as N = oco. So
when C, # 0, one has

N-1

N N N-1
ZX(n)] = Z v(ni —n2) =N Z v(n) — Z |n|y(n) ~ 2CyN In N.

ni,na=1 n=—N-+1 n=—N+1

E

n=1
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Note that since v(n) ~ n~1Cy, the term EnNz__lNH In|y(n) ~ 2CyN and is thus negligible.
The preceding asymptotic equivalence also shows that if Cy; # 0 then C; > 0 because
the variance is non-negative.

If Cy = 0, following similar lines of argument, one gets (5.29).

Lemma 5.3.7. Define the mapping (-,-)o : R> = R as

|z1 — x| if x1 # xo;
(w1, 22)0 =

1 if 1 =x9 = .

For —1 < 1,72 < —1/2 and ni,ne € {1,2,...}, we have for some constant C > 0 not

depending on ni,no that

> (= p) P (2 — )P < Clna,ma)gt 2
PEL

Proof. For the case n1 = ny = n, choose C' = Zp<n(n — p)M T2 < oo since y; + 2 < —1.

When nj # no, suppose that ny < ns. Then

0 00
Z(nl —p) (e —p) = ZP% (ng —n1 +p)y < / 7 (ng —ny + x)da
pEL p=1 0

oo
= (n2 — n1)71+72+1/ y" (1 +y)dy,
0
where the integral converges. O
The following simple fact will be used.
Lemma 5.3.8. Suppose that v; < —1/2 for all j =1,...,k, k> 2, and y1 + ... + 7 >

—k/2—1/2. Then

1
—g—§<’yl+...+%<—% forallr =1,... k—1.
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In addition, each v; > —1, 5 =1,... k.

Proof. The inequality 71 +. ..+, < —3 is obvious. For the other inequality, suppose that
M+ +7% < —r/2—-1/2 for some r € {1,...,k}. Because y,41,...,7% < —1/2, we get
the contradiction: v + ...+ < —r/2—-1/2—(k—71)/2=—k/2—1/2.

Then we show by contradiction that each v; > —1. Suppose, e.g., v, < —1. By what
was just proved, one has v1 + ...+ 7,_1 < —(k — 1)/2. Thus by adding v < —1, one gets

M+ ...+ < —k/2 —1/2, which contradicts the assumption. O

We need the following lemma, which is a consequence of Corollary 1.1 (b) of Terrin and

Taqqu [1991Db].

Lemma 5.3.9. If aq,...,0a,, m > 2, satisfy
m
Q> =1 Y it m> 1, (5.30)
i=1
then for any ¢ > 0
/ |x1 — x| wo — 23| . Tt — T Y T, — @1 |Y Xy . dgy, < 00,
[0,c]™

We need also the following hypercontractivity inequality for proving tightness in DJ0, 1]

(Proposition 5.2 of Bai and Taqqu [2014al])

Lemma 5.3.10. Suppose that h € (?(ZF) vanishing on the diagonals. Let

k
X=> h(i)]__Ileip, k> 1.
s

iezk

If for some p' > p > 2, E|ei\p/ < 00, then one has for some constant c, 1 > 0 which does
not depend on h that
E[|IX[P]V/P < cp B[ X212,

Proof of Theorem 5.3.3. Let C' > 0 be a constant whose value can change from line to line.
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We first show that the finite-dimensional distributions of Yy (¢) converges to those of o B(t)
using Theorem 5.2.6. First, the convergence of the covariance structure of Yy (t) to that

of 0 B(t) follows from Lemma 5.3.6 the fact that for s < ¢ we have

EYn(t)Yn(s) = % [EYn(t)? + EYn(s)? — E(Yn () — Yn(s))?]

N % [EYn(t)* + EYn(s)? — EYn(t — 5)?

as N — oo, since X (n) is stationary. We now check the contraction conditions (5.14). For

simplicity we set L(-) =1 and ¢t = 1. We can write

Yy (1) = Z In(in, oo ik) €y .- €,

—00< 1] yeenylf <400

where
1 N
fN(il, - ,ik) = m ;g (n — A1y, — lk) 1Dcﬂ{i1<n,...,ik<n}' (5'31)

To simplify notation, we set

p:(plu"'apr)7 q:(q17"')qk—7‘)a

il — (ila"'aik)—’r’)a i2 = (Z.k—'r‘—i-lw"aiQk—ZT)’ i= (i17i2))

and let 1 stand for a vector of 1’s of suitable dimension. We also use the convention that
x* =o' .2l if x = (z1,...,2,) and a = (ay,...,a,). Let (¥x) = z1 + ... + zp if
X = (T1,...,%n).

Set g*(-) be as in Definition 5.3.1 which we write by splitting x = (x1,X2), where

x; €R’, and x3 € Rﬁfr:

m
g (Xl,XQ) = CZX1]X2Ja /3_7 = (’7]'1’ s aFYjT)v n] = (’7j,7’+17' .. a’ij)’ (532)
i=1
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so that
r k—r k
DBl Y mi=Y vi=a, (5.33)
i=1 i=1 i=1

which we write simply as > 8+ > m = >~ = a. For convenience, if some component x;
of x is negative, we set x* = 0 and hence ¢g*(x) = 0. Then in view of (5.31), (5.11) and

(5.24),

1
NIn N

N
Z Zg*(nll —p,n1—1i1)g"(n2l — p,nol —iy)

ni,ng=1 p

N m
ST (1 —i)Mi(nel — i) Y (1 — p)Pii (a1 — p)Pae,

ni,n2=1j1,j2=1 P

[(fn % fN)D)] <

2

c
NIn N

by using (5.32). By Lemma 5.3.7, we have for the last sum,

Z(nll - p)ﬁjl (TL21 — p)ﬁjz =

p
T T
X8 pcp
> TLou —payoes [T m = pu)er < Clmpnayy "5
PlseeoyPr u=1 v=1

Hence

(PR i e N (N el

i

2
C A (£8;,)+(28;,)+r - .
= N2(InN)? 2 2 2 (mma (n11 —i1)"1 (nol — ip)"52
i ni,n2=1ji,j2=1
= L i i\[: (n n )(Zﬁjl)-l—(Eng)—I—r(n n )(Eﬁj3)+(25].4)+7~
N2(InN)2 = 4~ 1L, 12)o0 3,M4)g
J1,J2,J3,Ja=1n1,n2,n3,n4=1
X Z(nll — 1)1 (ngl —ip)"s Z(n21 — )2 (g1 — ip)™s
i is
< N i i (n1,n )(Eﬂj1)+(26j2)+r(n n )(25j3)+(2@j4)+7«
~ N2(InN)2 £~ 1,M2)o 3, 14)
J1,J2,J3,Ja=1n1,n2,n3,n4=1
0, )+ (50, ) +k— S0 )+ (S0, )+k—
X (m,ns)(() i ¢ 7"(nz,m)(() Map ) (B SRy (5.34)



133

where we have applied again Lemma 5.3.7 to get the last inequality. Note that if one adds

up the power exponents in the last expression, one gets

(28j,)+(En;,)+(28;,)+(Enj,) +(38;,) + (Enj,) + (38,,) +(En;,) +2k = 4a+2k = -2,
(5.35)
by (5.33), where the last equality of (5.35) is due to assumption (5.28).

Note also that by Lemma 5.3.8, we have for r € {1,...,k — 1} that

1
—5 =5 < (38,).(38,,), (2B,,). (£8;,) < —5.
and
k—r 1 i
— 2 : B 5 < (Enjl)’ (Enjs)’ (Enjz)’ (277]'4) < 2 -

Let oy = (3° Bj,) + (3 Bj,) + 1 be the exponent of (n1,n2)o in (5.34). Then
—1=-r/2-1/2—r/2-124r<a1 < -1/2—7/247r=—r+71=0.

Define similarly as, ag, ay for the other exponents in (5.34), which all lie strictly between

—1 and 0. Hence, the convergence
lim || fx % fNl3e_er =0, r=1,...,k—1, (5.36)
N—o0

will follow if one shows that
N

sup N2 (n,me)gt (n2,m8)52 (03, )G (g, 1)t < oo, (5.37)

ni,n2,n3,ng=1

where by (5.35)

—1<a;<0,5=1,...4, a1 +az+az+ay=-2. (5.38)
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Let’s consider first the sum in (5.37) over only distinct nq,...,n4 (we use the prime ’

to indicate that the sum does not include the diagonals). In this case,

aq Qs as ay

z/: E - @ @ - @ @ — % E _ E N_4
1<n1,n2,n3,n14<N N N N N N N N N
_ [Nz1] — [Naa] | | [N2o] — [Nas] |°2 | [Nas] — [Naa] |*% | [Nay] — [Naq] |
_/ N N ¥ -

N <@ <1+ N7Y [Na] # [Naj], Vi # jdx.

Note that for any z,y > 0, one has that |[Nz] — [Ny]| = n implies that [Nx — Ny| <n+1

which implies |z —y| < (n+1)/N, for n > 0. Then since each o < 0, we get

«

Nzx| — [Ny _
sup [ L e 2 vy
N
1\ ¢ 1\ “
< sup (ﬁ)a <n—|— > = sup <n+ ) =27
(Na)-[Nyl|=nnezy NN N neZy \
Hence the the sum in (5.37) over distinct ny,...,ny is bounded by
C |x1 — x2|* 2o — 23| % |23 — 4|*? |24 — 21| dr1dTodT3d2y,
[0,2]

which is finite due to Lemma 5.3.9.
Consider now the the sum in (5.37) over ny,...,n4 with only three of them distinct.

Let, for example, n; = n4, and we need to show that the following

/

sup N E |n1 — na|*ng — n3|*?ng — ny|*? =
N 1<n1,n2,n3<N
/
SupN1+a1+a2+a3 E E,@al @7@042 @—EQSN_3<OO
N N N N N N N

1<ni1,n2,n3<

Note that (5.38) entails that —2 < a3 + az + a3 < —1. Then Nlfartaxtas () 59
N — oo, and the boundedness of the multiple sum can be established similarly as above

using integral approximation and Lemma 5.3.9.
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If the sum in (5.37) is over ni,...,ns with only two or less of them distinct, the
boundedness is easily established through bounding all the summands by one constant,
because we have the factor N 2.

So (5.37) holds and thus (5.36) holds, and the convergence of finite-dimensional distri-
butions is proved.

Now we show tightness. By Lemma 5.3.10, one can choose p € (2, 3), so that by Lemma
5.3.6 if 0 < s < t < 1, one has for N large enough,

—[Ns] In([Nt] - [Ns]) p/2
N In N

BIYx (1) — Ya(s)]P <CIE|Yx(t) — ¥Yx(s)PP2 < C [[N”

9

[Nt] — [Ns] ] p/2=9

<
PR

where 6 > 0 is small enough so that p/2 — § > 1. The last inequality is true because
Inz is slowly varying as x — oo and so one applies the Potter’s bound (see e.g., equation
(2.3.6) of Giraitis et al. [2012]). Note that Fy(¢) := [Nt]/N is a non-decreasing right
continuous function on [0, 1] and that Fy converges uniformly to F(t) :=t as N — oo.
Hence by Lemma 4.4.1 and Theorem 4.4.1 of Giraitis et al. [2012], the tightness in D0, 1]

is proved. O

5.3.4 Proof of Theorem 5.3.5

Proof. Set for simplicity L(n) = c¢. The covariance y(n) for n > 0 is
oo o0
A1) = BX()X(0) = 3 aignai = (i 4n) Hi
i=1 i=1
Note that as n — oo,

i(i +n)titt=n"t g (; + 1) - (72)_1 %

=2

=n~! /2: <[T;x] + 1) - <[Tf]> - dz ~n ‘lnn.
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The last asymptotic can be seen from:

/2:(x+1)—1x1dx§ /2: <[Tf]+1>1 (Djlgj])ldx . /1:(y+1)_1y1dy,

where we have used the fact x — 1/n < [nz]/n < z, and both the lower and upper bounds

are asymptotically equivalent to Inn as n — oo.

Hence
y(n) ~cn"tinn asn — oco. (5.39)
So as N — 00, one has
N 2 N-1 N-1
B(Sx) v ¥ - X o
n=1 n=—N+1 n=—N+1

~ 2c2N§:n1 Inn ~ 2¢2N /N z M Inzdr ~ 2¢2N (In N)2 (5.40)

n=1 1
Note that by (5.39) the term Zﬁ[:__lNH In|y(n) = O(N In N) and is thus negligible. Having
obtained the asymptotic variance (5.40), the proof is then concluded by applying Davydov
[1970] Theorem 2 (though this theorem was stated for a linearly interpolated version of
Yn(t) in the space C]0,1], it is straightforward to adapt the the proof, which consists
of showing convergence of finite-dimensional distributions and establishing tightness by

moment estimate, to establish convergence in DI0, 1] with the uniform metric.) O

Remark 5.3.11. One may wonder if it is possible to get a different normalization in the
nonlinear case in Theorem 5.3.3, since the normalization in the linear case in Theorem
5.3.5 has an extra v/In N factor. This is not possible under our setting where the kernel g
is homogeneous with exponent « and is bounded by a linear combination of products of
purely power functions x]" ... 2", where each v; < —1/2 and 1 + ... + v = .

Indeed, if one wanted to get some extra logarithmic factor in the covariance v(n), one

71

would set for example g(z1,...,z;) = z{' ... 2" with v, = —1. But this will not achieve

the stated goal. Indeed, by Lemma 5.3.8, using contradiction, we have o =y 4+ ...+ <
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—k/2 — 1/2, which falls into the short memory regime (see Remark 5.3.2) and thus the
normalization is v/N as in (5.19).



Chapter 6

Functional Limit Theorems for Toeplitz Quadratic
Functionals of Continuous time Gaussian

Stationary Processes

The chapter establishes weak convergence in C[0,1] of normalized stochastic processes,
generated by Toeplitz type quadratic functionals of a continuous time Gaussian stationary
process, exhibiting long-range dependence. Both central and non-central functional limit

theorems are obtained.

6.1 Introduction

Let {X(t), t € R} be a centered real-valued stationary Gaussian process with spectral
density f(z) and covariance function r(t), that is, r(t) = f(¢) = Jg €™ f(z)dz, t € R. We
are interested in describing the limit (as 7' — oo) of the following process, generated by

Toeplitz type quadratic functionals of the process X (¢):
Tt Tt
Qr(t) = / / g(u—v)X(u)X(v)dudv, tel0,1], (6.1)
o Jo

where

g(t) = /Remtg(x) dz, t eR, (6.2)

is the Fourier transform of some integrable even function g(x), x € R. We will refer to

g(z) and to its Fourier transform g(t) as a generating function and generating kernel for
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the process Qr(t), respectively.

The limit of the process (6.1) is completely determined by the spectral density f(x)
(or covariance function r(t)) and the generating function g(z) (or generating kernel g(t)),
and depending on their properties, the limit can be either Gaussian (that is, Qp(t) with an
appropriate normalization obeys a central limit theorem), or non-Gaussian. The following

two questions arise naturally:

(a) Under what conditions on f(x) (resp. r(t)) and g(z) (resp. g(t)) will the limit be

Gaussian?
(b) Describe the limit process, if it is non-Gaussian.

Similar questions were considered by Fox and Taqqu [1987], Ginovyan and Sahakyan
[2005], and Terrin and Taqqu [1990] in the discrete time case.

Here we work in continuous time, and establish weak convergence in C[0, 1] of the
process (6.1). The limit processes can be Gaussian or non-Gaussian. The limit non-
Gaussian process is identical to that of in the discrete time case, obtained in Terrin and
Taqqu [1990].

But first some brief history. The question (a) goes back to the classical monograph by
Grenander and Szeg6 [1958], where the problem was considered for discrete time processes,
as an application of the authors’ theory of the asymptotic behavior of the trace of prod-
ucts of truncated Toeplitz matrices (see Grenander and Szegd [1958], p. 217-219). Later
the question (a) was studied by Ibragimov [1963] and Rosenblatt [1962], in connection to
the statistical estimation of the spectral function F(x) and covariance function r(t), re-
spectively. Since 1986, there has been a renewed interest in both questions (a) and (b),
related to the statistical inferences for long memory processes (see, e.g., Avram [1988], Fox
and Taqqu [1987], Ginovyan and Sahakyan [2005], Ginovyan et al. [2014], Giraitis et al.
[2012], Giraitis and Surgailis [1990], Giraitis and Taqqu [2001], Terrin and Taqqu [1991a],
Taniguchi and Kakizawa [2012], and references therein). In particular, Avram [1988], Fox

and Taqqu [1987], Giraitis and Surgailis [1990], Ginovyan and Sahakyan [2005] have ob-
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tained sufficient conditions for the Toeplitz type quadratic forms Q7(1) to obey the central
limit theorem (CLT), when the model X () is a discrete time process.

For continuous time processes the question (a) was studied in Ibragimov [1963] (in
connection to the statistical estimation of the spectral function), Ginovyan and Sahakyan
[2007] and Ginovyan et al. [2014], where sufficient conditions in terms of f(z) and g(x)
ensuring central limit theorems for quadratic functionals Q7 (1) have been obtained.

The rest of the chapter is organized as follows. In Section 6.2 we state the main results
of this chapter (Theorems 6.2.1 - 6.2.9). In Section 7.3 we prove a number of preliminary
lemmas that are used in the proofs of the main results. Section 6.4 contains the proofs of
the main results.

Throughout the chapter the letters C and ¢ with or without indices will denote positive

constants whose values can change from line to line.

6.2 The Main Results

In this section we state our main results. Throughout the chapter we assume that f,g €
L'(R), and with no loss of generality, that g > 0 (see Ginovyan and Sahakyan [2007] and
Giraitis and Surgailis [1990]).

We first examine the case of central limit theorems, and consider the following standard

normalized version of (6.1):

Qr(t) =T (Qr(t) —E[Qr(t)]), te0,1]. (6.3)

Our first result , which is an extension of Theorem 1 of Ginovyan and Sahakyan [2007],
involves the convergence of finite-dimensional distributions of the process @T(t) to that of

a standard Brownian motion.

Theorem 6.2.1. Assume that the spectral density f(x) and the generating function g(x)
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satisfy the following conditions:

f-ge LYR)NL*[R) (6.4)
and
B[O2(1)] - 1673 / @) (@)de as T — oo. (6.5)

Then we have the following convergence of finite-dimensional distributions
~ .d.d.
Qr(t) "4 0B (),
where Qr(t) is as in (6.8), B(t) is a standard Brownian motion, and
o0
o? = 16773/ (x)g?(z)dx. (6.6)

To extend the convergence of finite-dimensional distributions in Theorem 6.2.1 to the
weak convergence in the space C[0, 1], we impose an additional condition on the underlying
Gaussian process X (¢) and on the generating function g. It is convenient to impose this
condition in the time domain, that is, on the covariance function r := f and the generating
kernel a := §. The following condition is an analog of the assumption in Theorem 2.3 of

Giraitis and Taqqu [2001]:

r(-) € LP(R), a(-) € LYR) for some p,g>1, —+—->

N

(6.7)

| =

1
p
Remark 6.2.2. In fact under (6.4), the condition (6.7) is sufficient for the convergence in
(6.5). Indeed, let p = p/(p — 1) be the Holder conjugate of p and let § = q/(¢ — 1) be the
Holder conjugate of ¢q. Since 1 < p, ¢ < 2, one has by the Hausdorff-Young inequality and
(6.7) that [|£lly < cylirlly. l9llz < cgllallys and hence

f() € Lﬁv g() € Lg?

1 1
+i=2--_2<1/2
p

1
q q

=
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Then the convergence in (6.5) follows from the proof of Theorem 3 from Ginovyan and
Sahakyan [2007]. Note that a similar assertion in the discrete time case was established in

Giraitis and Surgailis [1990)].

Remark 6.2.3. Observe that condition (6.7) is fulfilled if the functions r(¢) and a(t) satisfy

the following: there exist constants C' > 0, o* and £*, such that
Ol < CAATTY,  Ja()] < CAARPT, (6.8)

where 0 < o, 8* < 1/2 and o* + * < 1/2. Indeed, to see this, note first that r(-), a(-) €
L>°(R). Then one can choose p,q > 1 such that p(a® — 1) < —1 and ¢(5* — 1) < —1,
which entails that 7(-) € LP(R) and a(-) € LY(R). Since 1/p+1/¢ < 2 — a* — p* and

2 —a* — §* > 3/2, one can further choose p, q to satisfy 1/p+ 1/q > 3/2.

The next results, two functional central limit theorems, extend Theorems 1 and 5 of
Ginovyan and Sahakyan [2007] to weak convergence in the space C[0,1] of the stochastic

process Qr(t) to a standard Brownian motion.

Theorem 6.2.4. Let the spectral density f(x) and the generating function g(x) satisfy
condition (6.4). Let the covariance function r(t) and the generating kernel a(t) satisfy

condition (6.7). Then we have the following weak convergence in C[0,1]:
Qr(t) = oB(t),
where Qp(t) is as in (6.8), o is as in (6.6), and B(t) is a standard Brownian motion.

Recall that a function u(z), = € R, is called slowly varying at 0 if it is non-negative

and for any ¢t > 0

im u(xt)
z—0 u(x)

Let SVH(R) be the class of slowly varying at zero functions u(z), = € R, satisfying the

following conditions: for some a > 0, u(z) is bounded on [—a, a], lim,_o u(z) =0, u(z) =
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u(—x) and 0 < u(z) < u(y) for 0 < = < y < a. An example of a function belonging to

SVo(R) is u(z) = |In|z||”” with v > 0 and a = 1.

Theorem 6.2.5. Assume that the functions f and g are integrable on R and bounded

outside any neighborhood of the origin, and satisfy for some a > 0
f@) < Ja|"Li(z),  |9(x)| < |e|PLa(2), = € [~a,d] (6.9)

for some a < 1, B < 1 with a + B < 1/2, where L1(z) and Lao(z) are slowly varying at

zero functions satisfying
Li € SVo(R), =z~ *PLi(z) € L*[-a,a], i=1,2. (6.10)

Let, in addition, the covariance function r(t) and the generating kernel a(t) satisfy condition

(6.7). Then we have the following weak convergence in C|0,1]:
Qr(t) = oB(t),

where Qp(t) is as in (6.3), o is as in (6.6), and B(t) is a standard Brownian motion.

Remark 6.2.6. The conditions @ < 1 and 8 < 1 ensure that the Fourier transforms of f
and g are well defined. Observe that when o > 0 the process {X(¢),t € Z} may exhibit

long-range dependence. We also allow here a + 3 to assume the critical value 1/2.

Remark 6.2.7. The assumptions f - g € LY(R), f,g € L*°(R\ [~a,a]) and (6.10) imply

that f-g € L?>(R), so that o2 in (6.6) is finite.

Remark 6.2.8. One may wonder, why, in Theorem 6.2.5, we suppose that Li(x) and
Lso(x) belong to SV(R) instead of merely being slowly varying at zero. This is done in
order to deal with the critical case a+ 5 = 1/2. Suppose that we are away from this critical
case, namely, f(z) = |z|~%l;(z) and g(x) = || Ply(x), where o + § < 1/2, and I1(z) and

lo(x) are slowly varying at zero functions. Assume also that f(z) and g(z) are integrable
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and bounded on (—oo, —a) U (a, +00) for any a > 0. We claim that Theorem 6.2.5 applies.
Indeed, choose o/ > a, f > § with o/ + § < 1/2. Write f(z) = |z|~*|z|°l1(z), where
d =o' —a > 0. Since [y (z) is slowly varying, when |z| is small enough, for some ¢ € (0, §)
we have |z|%l;(z) < |z|°~¢. Then one can bound |z|°~¢ by ¢|In|z||™* € SVy(R) for small
|z| < 1. Hence one has when |z| < 1 is small enough, f(z) < |z|~ (c[ln ]a;H_l) . Similarly,
when |z| < 1 is small enough, one has g(z) < |z|=* (c|ln |9c]|71) . All the assumptions in

Theorem 6.2.5 are now readily checked with «a, 8 replaced by o’ and (', respectively.

Now we state a non-central limit theorem in the continuous time case. Let the spectral

density f and the generating function g satisfy
f(5) = [ Li(x) and g(z) = ol PLa(z), zER, a<l,f<1,  (611)

with slowly varying at zero functions L;(x) and Ly(z) such that [; ||~ Ly (z)dz < oo and
Jg |z PLa(z)dz < co. We assume in addition that the functions Ly (z) and Lo(z) satisfy
the following condition, called Potter’s bound (see Giraitis et al. [2012], formula (2.3.5)):
for any € > 0 there exists a constant C' > 0 so that if T is large enough, then

Li(u/T)

L < Clul + ™), i=1.2 (6.12)

Note that a sufficient condition for (6.12) to hold is that L;(z) and La(x) are bounded on
intervals [a, 00) for any a > 0, which is the case for the slowly varying functions in Theorem
6.2.5.

Now we are interested in the limit process of the following normalized version of the
process Qr(t) given by (6.1), with f and g as in (6.11):

Zp(t) : !

= mr LT (@ -~ Eer). (6.13)

Theorem 6.2.9. Let f and g be as in (6.11) with « < 1, < 1 and slowly varying at
zero functions Li(x) and Lo(x) satisfying (6.12), and let Zr(t) be as in (6.13). Then for
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a+ B >1/2, we have the following weak convergence in the space C|0,1]:

Zr(t) = Z(1),

where the limit process Z(t) is given by

Z(t) = R;/ Ht(acl, .’Eg)W(d.ﬁL‘l)W(d{L‘Q), (6.14)

with

eit(a:1+u) -1
i(x1 + u)

i(za —u)

Hy(x1,22) = |£L‘1$2|_a/2/ [
R

it(ra—u) _ 1
: [e ] | Bdu | (6.15)

where W (-) is a complex Gaussian random measure with Lebesque control measure, and
the double prime in the integral (6.14) indicates that the integration excludes the diagonals

r1 = :ELEQ.

Remark 6.2.10. Comparing Theorem 6.2.9 and Theorem 1 of Terrin and Tagqu [1990],

we see that the limit process Z(t) is the same both for continuous and discrete time models.

Remark 6.2.11. Denoting by Pr and P the measures generated in C[0, 1] by the processes
Z7(t) and Z(t) given by (6.13) and (6.14), respectively, Theorem 6.2.9 can be restated as
follows: under the conditions of Theorem 6.2.9, the measure Pr converges weakly in C10, 1]
to the measure P as T' — oo. A similar assertion can be stated for Theorems 6.2.4 and

6.2.5.

It is worth noting that although the statement of our Theorem 6.2.9 is similar to that of
Theorem 1 of Terrin and Taqqu [1990], the proof is different and simpler, and does not use
the hard analysis of Terrin and Taqqu [1990], although some technical results of Terrin and
Taqqu [1990] are stated in lemmas and used in the proofs. Our approach in the CLT case
(Theorems 6.2.1 - 6.2.5), uses the method developed in Ginovyan and Sahakyan [2007],
which itself is based on an approximation of the trace of the product of truncated Toeplitz

operators. For the non-CLT case (Theorem 6.2.9), we use the integral representation of
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the underlying process and properties of Wiener-It6 integrals.

6.3 Preliminaries

In this section we state a number of lemmas which will be used in the proof of the theorems.

The following result extends Lemma 9 of Ginovyan and Sahakyan [2007].

Lemma 6.3.1. Let Y (t) be a centered stationary Gaussian process with spectral density

fy(x) € LY(R) N L*(R). Consider the normalized process:

1 Tt

Lr(t) = 775 ( OTt Y%(u)du — E [

YQ(u)du]> . (6.16)

0

Then we have the following convergence of finite-dimensional distributions:

Lo(t) 24 oy B, <ﬁzm/mﬁm@, (6.17)

where B(t) is standard Brownian motion.

Remark 6.3.2. Observe that the normalized processes Qr(t) and Ly (t), given by (6.3) and
(6.16), can be expressed by double Wiener-1to integrals (see, e.g., the proof of Lemma 6.3.10
below). In our proofs we will use the following fact about weak convergence of multiple
Wiener-Ito integrals: given the convergence of the covariance, the multivariate convergence
to a Gaussian vector is implied by the univariate convergence of each component (see

Peccati and Tudor [2005], Proposition 2).

Proof of Lemma 6.5.1. For a fixed t, the univariate convergence in distribution
Lr(t) % N(0,t62) as T — oo

follows from Lemma 9 of Ginovyan and Sahakyan [2007]. To show (6.17), in view of Remark
6.3.2 and Proposition 2 of Peccati and Tudor [2005], it remains to show that the covariance

structure of Lp(t) converges to that of oy B(t). Specifically, it suffices to show that for any
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0<s<t,

E|(Lr(t) — L(s)?| = 0% - (t—s) as T — ooc. (6.18)

Indeed, using the fact that for a Gaussian vector (G1,G2) we have
Cov(G2,G3) = 2[Cov(G1, Go))?,
and letting ry (u) = [ € fy (x)dx be the covariance function of Y(t), we can write

E [(LT(t) - LT(S))ﬂ —2(t — ) / e <1 - T(’“‘> r2 (u)du.

—T'(t—s) t— 3)

Since fy(x) € L?(R), the Fourier transform ry (u) € L?(R) as well. So by the Dominated

Convergence Theorem and Parseval-Plancherel’s identity, we have as T' — oo

o0

B [(Lr() - Lr(s)?] - 2(t—s)/

—00

r2 (u)du = 4r(t—3) /_Oo 2(2)dz = 02 (t—5). (6.19)

O]

We now discuss some results which allow one to reduce the general quadratic functional
in Theorem 6.2.1 to a special quadratic functional introduced in Lemma 6.3.1.
By Theorem 16.7.2 from Ibragimov and Linnik [1971], the underlying process X (t)

admits a moving average representation:

X(t) = /Oo a(t — s)B(ds)  with /Oo |a(t)[2dt < oo, (6.20)

— 00 —00

where B(t) is a standard Brownian motion, and a(¢) is such that its inverse Fourier trans-
|2

form a(x) satisfies f(z) = 27|a(x)|*. Assuming the conditions (6.4) and (6.5), we set

b(x) = (2m)"?a(z)(g(x))"?,

and observe that the function b(z) is then in L?(R) due to condition (6.4). Consider the
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stationary process

Y(t) = / " bt — 5)B(ds) (6.21)
—oc0
constructed using the Fourier transform b(t) of b(x) and the same Brownian motion B(t)
as in (6.20). The process Y (t) has spectral density (see Ginovyan and Sahakyan [2007],
equation (4.7))

fy (@) =2nf(z)g(x). (6.22)

We have the following approximation result which immediately follows from Lemma 10 of

Ginovyan and Sahakyan [2007].

Lemma 6.3.3. Let Qp(t) be as in (6.3) and let Ly (t) be as in (6.16) with Y (t) constructed
as in (6.21). Then under the conditions (6.4) and (6.5), for any t > 0, we have

Jim Var[Qr(t) — Lr(t)] = 0.

The following lemma is a straightforward adaptation of Lemma 4.2 of Giraitis and

Taqqu [1998] for functions defined on R.

Lemma 6.3.4. Ifp; > 1, j=1,...,k, where k > 2 and Z?:l =k —1, then

1

Pj
k

/R“ [f1(x1) - feot(@re1) fr(mr + - zen)|day o dae < I, -
j=1

The following lemma will be used to establish tightness in the space C[0, 1] in Theorem
6.2.4.

Lemma 6.3.5. Let the covariance function r(t) and the generating kernel a(t) satisfy
condition (6.7), and let Qr(t) be as in (6.3). Then for all0 < s <t <1 and T > 0, there

exists a constant C > 0, such that

E ||Qr(t) — Qr(s)’| < C(t —s). (6.23)
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Proof. For convenience we use the Wick product notation: : X(u)X(v) := X(u)X(v) —

E[X(u)X(v)]. So for 0 < s <t <1, we can write

Qr(t) -

L (/Tt/Tt (u — ) :X(u)X(v):dudv—/TS/TSa(u—v):X(u)X(v):dudv)

Ts
\F TS/ alu—v): X(u)X(v): dudv+/ / a(u —v): X(u)X(v) : dudv
i = A(s,t,T) + B(s,t,T).

Now we estimate B(s,t,T") (the function A(s,t,7T") can be estimated similarly). We have

by Theorem 3.9 of Janson [1997] that

Ts Ts Tt
E [B2 (s,t, T / du1/ dvl/ dUQ/ dvg X
0 Ts

(u1 — 1)1 (UQ — UQ)E )X(’Ul) X('LLQ)X(UQ) :)

Ts Ts
/ dul/ dvl/ dUQ/ dvaa(uy — vy)a(ug — va) X

[r(u1 — ug)r(vy —ve) 4+ r(u; — vo)r(vy — ug)]

::Bl(s, t, T) + BQ(S, t, T)

By the change of variables x1 = w1 — vy, x2 = v9 — u2, 3 = us — u1, T4 = ve2, and noting

that () and a(-) are even functions, we have
(5,4,T) < / day | la(@)alza)r(@)r(es + 2 + 23)|deidrada,

Since |r(t)| < r(0), we have r(-) € L*°(R). We also have r(-) € LP(R) by condition (6.7),
where 1/p+ 1/q > 3/2. The LP-interpolation theorem states that if a function is in LP!

and LP? with 0 < p; < pg < oo, then it is in Lp/7 p1 < p' < po. By the LP-interpolation
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theorem, one can choose p’ > p such that r(-) € L” (R) and

1 1 1 1 o1 1 3
—+ =5 +-+-=3, thatis, - +—-=_.
Y v oq q P 2

Q|

Then by Lemma 6.3.4, one has Bi(s,t,T) < 4Hr||§,||a|]2(t —s). Similarly, one can establish

the bound Bs(s,t,T) < C(t — s), and hence B(s,t,T) < C(t — s). So (6.23) is proved.

O
The lemmas that follow will be used in the proof of Theorem 6.2.9.
Lemma 6.3.6. Define
t eitx -1
A¢(x) —/ e ds = ———, (6.24)
0 1x
Then for any § € (0,1), there exists a constant ¢ > 0 depending only on &, such that
|Av(z)| < cft fs(x), te(0,1], z€R, (6.25)
where
27t if o] > 1
fo(z) = (6.26)

1 if |x| < 1.

Proof. In view of (6.24), we have |A.(z)| < fg |e?s®|ds = t. So under the constraint ¢ € [0, 1],
we have |A;(x)| <t < t9. On the other hand, from Lemma 2 from Terrin and Taqqu [1990],

with some constant C' > 0, we have |¢®* — 1| < Cz|?, § € (0,1). So

’eitx _ ‘

|A¢(z)] < Tl

< Cltzl®|z| ™t = CtO)x|* L.

Combining this with (6.26), we obtain (6.25). O

We quote Lemma 1 of Terrin and Taqqu [1990] in a special case, convenient for our

purposes.
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Lemma 6.3.7. Let v; < 1, v; +vit+1 > 1/2, and let § be such that

<94
0<d< 5

where i = 1,...,4 (with v5 = v1). Then

/R4 fs(yr — v2) fs(y2 — y3) fs(y3 — ya) fs(ya — y)lya |~ |y2| 72 ys| =% ya| ~7dy < oo,

where f5(-) is as in (6.26).
Lemma 6.3.7 can be used to establish the following result.

Lemma 6.3.8. The function
Hi (1, x9) := |x1\a1/2\x2a2/2/ AL (21 + u)A(zg — u)||u|Pdu (6.27)
R

is in L*>(R?) for all (ay,as, B) in the open region {(ay,a2,8) 1 a1,00,8 < 1, a; + 8 >
1/2, i =1,2}.
Proof. Tt suffices focus on the case where ¢ € [0,1], otherwise a change of variable can

reduce it to this case. We have by suitable change of variables and Lemma 6.3.6 that

1H7 (17 2 e
= /R4 |Ar(yr — y2) Ae(y2 — y3) Ae(ys — ya) Ae(ya — y)| [y~ |y2l P lys| = |yl =P dy

<C [ Foton =) ot = ) o — (o = )l = ol | | Py,

Then apply Lemma 6.3.7, noting that § can be chosen arbitrarily small. O

Lemma 6.3.9. Define the function

HZT($1,$2) = ALT(ajl,ajg)\xlxg\_am/ |A (1 + u)Ay(ze — u)]|u|_ﬁA27T(u) du, (6.28)
R
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where

Then for large enough T, we have H} 1(x1,x2) € L*(R?).

Proof. By (6.12) and (6.29), for any € > 0 there exists C' > 0, such that for T" large enough,
[ A (21, 22)] < C(lza ]+ [z (|22 + |22 ™) (6.30)

and
[ A2, (u)| < C(ul 4 [ul ™). (6.31)

Hence, with some constant C > 0,

|Hy (21, 22)] SC/ |Ar(ar +u)Ag(az —w)lfu] 7 (Jul + fu]~)dux
R
1] =2 (Jara ] + Jara] ) (Jaal + a2 ). (6.32)
Because by Lemma 6.3.8, the function H; in (6.27) is in L?(R?) for all (a1, a9, 3) in an

open region {(a, ) : a1, 2,8 < 1,a; + 5 > 1/2,i = 1,2}. By choosing € small enough, we

infer that the right-hand side of (6.32) is in L?(IR?), and the result follows. O

Lemma 6.3.10. Let Zp(t) be as in (6.13), and let
1
Z0(t) = /  Hyr(an,a2) Wdn)W (d), (6.33)
R
where

Ht7T(ZL‘1,$2) = AlyT($1,$2)|l‘1x2|_a/2 [/ At(l‘l + U)At(l’z — u)|u|_ﬁA2,T(u) du .
R
(6.34)
Then Zrp(t) Jdd Zl(t), that is, the processes Zr(t) and ZI.(t) have the same finite-

dimensional distributions.
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Proof. Using the spectral representation of X (¢) (see, e.g., Doob [1953], Chapter XI, Section
8): X(t) = [ e/ f(z)W(dz), where W (-) is a complex Gaussian measure with Lebesgue

control measure, and the diagram formula (see, e.g., Major [2014], Chapter 5), we have

X(u)X (v) - B[X (u) X (v)] = / " v ST Fea)W (den )W (dasy).

R2

By a stochastic Fubini Theorem (see Pipiras and Taqqu [2010], Theorem 2.1) and

Lemma 6.3.9, one can change the integration order to get (note that by (6.2) we have
9(t) = [g " g(z)da):
[T+ Ly (1/T) Lo (1/T)) Z (1)
" Tt ,Tt ) )
:/ V(1) f(z2) / / / = g () dw ! HVR2) dudy W (da )W (day)
R2 o Jo Jr
" Tt Tt
:/ V f(x1) f(x2) / / ew(xﬁ'w)du/ eV @2=0) gy | TP L(w)dw W (da1 )W (dao)
R2 R JO 0
"
= [ VF@OFG) [ Arler ) Ao - w)lul P Law)de W (de)W (doo)
R R
Now we use the change of variables w — u/T', x1 — x1/T, x9 — x2/T, where the latter two

change of variables are subject to the rule W (dz/T') 4 T—'2W (dz) (see, e.g., Dobrushin

[1979], Proposition 4.2), to obtain

dd. 1 "
200 " e < L V@ M T

/R Ay(z1 + ) Ap(zy — u)|w/T| 7P Ly(w/T)Tdw T W (da)W (dz3).  (6.35)

Taking into account the equality f(z/T) = |x/T| " *Li(xz/T) and equations in (6.29), we

see that the right hand side of (6.35) coincides with (6.33). This completes the proof. [

The lemmas that follow will be used to establish tightness in the space C[0,1] in The-

orem 6.2.9.

Lemma 6.3.11. Let § be a fized number within the range (0, (o + 3)/2), and let Z(t) be
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as in (6.18). Then for all0 < s <t <1 and T large enough, there exists a constant C > 0,

such that
E(|Zr(t) - Zr(s)PP] < Ot — 5)*. (6.36)

The same estimate also holds for the corresponding limiting process Z(t) defined by (6.14),

(6.15).

Proof. First, in view of Lemma 6.3.10, we have E [| Zp(t) — Zr(s)[?] = E [|Z}.(t) — Zi(s)[?].

Next, using the linearity of the multiple stochastic integral, we can write
ZT / HstT IL‘1,:L‘2 W(dl‘l)W(d{L‘Q),
where

Hoyr(z1,22) =Ay 1(21, 22) 2122 72X
/ (A (21 +u)As(zg — u) — Ag(z1 4 u)As(2 — u)] [u| = Ag 1 (u)du.
R

(6.37)

The term in the brackets of the integrand in (6.37) can be rewritten as follows:

Ap(zy +u)Ay(ze — u) — As(z1 + u)Ag(z2 — 1)

/ / iwy (z14u) zwg(mz u dwldwg _/ / twy (z14u) zwz(xg “)dwldwg
:/ dwl/dwg...+/dw1/dwg...+/dw1/de...
0 s s 0 s s

=Ag(z1 + u)Ai—s(x2 —u) + Ay—s(x1 + u)As(x2 — u) + Ap—s(x1 + u)Ap_s(z2 — u).
Now we apply Lemma 6.3.6 to get

A (1 + u)Ap(ze — u) — As(z1 + u)Ag(z2 — u)|

SO[°(t = 8)° + (t = 5)°s” + (¢ — )*] fy (21 +u) f5(w2 — )
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<C(t - 8)° f5 (w1 + u) f5 (22 — u), (6.38)

where the last inequality follows because 0 < s <1 and 0 < (t —s)° <1

Next, using formula (4.5") of Major [2014], (6.37) and (6.38), we can write

E(1Zr(t) - Zr()] = 1 Hypr |2 < Clt — 5| /

, d(L‘ldl‘QAl’T(l‘l, x2)2|$1x2|_0‘ X
R

/2 duydus f5(z1 + 1) f5(xa — wr) f5(—x1 + u2) f5(—xa — ua)|usus| ™ Ay 7 (ur) Ao 1 (us)
R
<C|t —s|® /4 dyrdyadysdys Ar 7 (y1, y3)? Aa 7 (ya) Ao (ya) X

R

Falyr —y2) fs(yz — ) f3(ys — ya) f3(ya — yu)lyal ™ ly2l = lysl Iyl 7, (6.39)

where we have applied the change of variables: y; = x1, yo = —u1, y3 = —Z2, Y4 = Us.
Since by assumption o < 1, 8 < 1 and o+ > 1/2, and the exponent ¢ in (6.30) and
(6.31) can be chosen arbitrarily small, for a fixed § satisfying 0 < § < (a + 3)/2, we can

apply Lemma 1 of Terrin and Tagqu [1990] to conclude that the integral

[ Avrn ) Aar () s () o — ) (o = ) (o ) fn = )

)™ y2 P s~ ya| P dy

is bounded for sufficiently large 7', which in view of (6.39) implies (6.36). The proof for

Zp(t) is thus complete. The proof for Z(t) is similar and so we omit the details. O

6.4 Proof of Main Results

Proof of Theorem 6.2.1. By Lemma 6.3.3, for any 0 < t; < ... < t,, and constants

c1,...,Cp, we have
lim Var Zc]- (@T(tj) - LT(%‘)) = 0.

T—o0 -
Jj=1
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Therefore the convergence of finite-dimensional distributions of Qr(t) to that of Brownian
motion oB(t) follows from Lemma 6.3.1 with fy(-) given in (6.22) and the Cramér-Wold
Device. Ul

Proof of Theorem 6.2.4. In view of the well-known Prokhorov’s Theorem (see, e.g., Billings-
ley [1999], p. 58), to prove the theorem, we need to show convergence of finite-dimensional
distributions and tightness. The former has been established in Theorem 6.2.1. To prove
tightness, observe that by Lemma 6.3.5 and the hypercontractivity inequality of the multi-
ple Wiener-It6 integrals (see Major [2014], Corollary 5.6), forany 7' > 0 and 0 < s <t < 1,

there exists a constant C' > 0 to satisfy
B[13r() - Gro)l] < 0 (B[10r() - Qrs)P]) <0t -5 (6.40)

Now the tightness of the family of measures generated by the processes {Qr(t) : T > 0} in
(10, 1] follows from Lemma 5.1 of Ibragimov [1963]. O

Proof of Theorem 6.2.5. The convergence of finite-dimensional distributions follows from
Theorem 6.2.1. In fact, the assumptions on f and g in Theorem 6.2.5 imply the conditions
(6.4) and (6.5) in Theorem 6.2.1 (see the proof of Theorem 5 in Ginovyan and Sahakyan

[2007]). The tightness can be shown similarly as in the proof of Theorem 6.2.4. O

Proof of Theorem 6.2.9. As in the proof of Theorem 6.2.4, we need to show convergence
of finite-dimensional distributions and tightness. We first prove the convergence of finite-
dimensional distributions, that is, Zp(t) L4 Z(t) as T — oo, where Zp(t) and Z(t) are
defined by (6.13) and (6.14), respectively.

By Lemma 6.3.10, the process Zr(t) defined in (6.13) has the same finite-dimensional
distributions as the process Z/.(t) defined in (6.33). Therefore, taking into account the

linearity of multiple Wiener-It6 integral, and applying Cramer-Wold device, to prove
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Zp(t) L4 Z(t), it is enough to show that as T" — oo,

Hyr(w1,72) — Hy(z1,22) in  L*(R?), (6.41)

where Hy(x1,22) and Hy p(x1,22) are as in (6.15) and (6.34), respectively.

First, we show pointwise convergence for a.e. (z1,72) € R?, that is,

Hyr(xy,20) = Al,T(xl,I2)|$1$2\a/2/ Ag(z1 +u)Ag(z2 — w)|u| P Ay p(u)du  (6.42)
R
— Hy(z1,20) = ]mlxgy_o‘/Q/ Ay(z1 4+ w) Ay (zg — w)|u|Pdu as T — co.
R

(6.43)

Because Li(x) is a slowly varying function, we have Ay r(x1,22) — 1 as T' — oo, where
A7 is as in (6.29). To show that the integral in (6.42) converges to the integral in
(6.43), note first that by (6.29), Asr(u) — 1 as T — oo because La(z) is a slowly varying
function. Hence one only needs to bound the integrand properly and apply the Dominated

Convergence Theorem. To this end, observe that by (6.31) for T large enough, we have

gr(u; 1, 22) « = |Ag(xy + u)||A¢ (w2 — u)|Ju] P Az (u) (6.44)

< Oy +u)l| Az = w)llul ™ (jul* + [u] ™) = ge(usz1,22). (6.45)

By choosing € small enough, using Fubini Theorem and Lemma 6.3.8, we conclude that
ge(-;w1,22) € LY(R) for a.e. (x1,22) € R2 Now (6.41) follows from (6.32) and the
Dominated Convergence Theorem.

To prove tightness, first observe that by the hypercontractivity inequality of the multiple
Wiener-It6 integrals (see Major [2014], Corollary 5.6) and Lemma 6.3.11, for T large enough

and for any 0 < s <t < 1, there exists a constant C > 0 to satisfy

E [|Zr(t) — Zr(s)|Y] < Ca (B [|Zr(t) — Zr(s)[2])* < Clt — %, (6.46)
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where 0 is a fixed number within the range 0 < 40 < 2(a + [3). Since by assumption
a+ > 1/2, we can choose 0 to satisfy 40 > 1. Inequalities similar to (6.46) hold also for
the limit process Z(t).

In view of (6.46) and a similar inequality for Z(¢), it follows from Kolmogorov’s criterion
(see, e.g., Bass [2011] Theorem 8.1(1)) that the processes Zr(t) and Z(t) admit continuous
versions when 7T is large enough.

Now the tightness of the family of measures generated by the processes {Zr(t) : T' > 0}

in C|0, 1] follows from Lemma 5.1 of Ibragimov [1963]. Theorem 6.2.9 is proved. O



Chapter 7

Limit theorems for quadratic forms of Lévy-driven

continuous-time linear processes

We study the asymptotic behavior of a suitable normalized stochastic process {Qr(t), t €
[0,1]}. This stochastic process is generated by a Toeplitz type quadratic functional of a
Lévy-driven continuous-time linear process. We show that under some LP-type conditions
imposed on the covariance function of the model and the kernel of the quadratic functional,
the process Qr(t) obeys a central limit theorem, that is, the finite-dimensional distributions
of the standard /T normalized process Qr(t) tend to those of a normalized standard Brow-
nian motion. In contrast, when the covariance function of the model and the kernel of the
quadratic functional have a slow power decay, then we have a non-central limit theorem for
Qr(t), that is, the finite-dimensional distributions of the process Qr(t), normalized by T
for some v > 1/2, tend to those of a non-Gaussian non-stationary-increment self-similar

process which can be represented by a double stochastic Wiener-Ito integral on R2.

7.1 Introduction

Let {X(t), t € R} be a Lévy-driven continuous-time stationary linear process defined by

X(t) = /R ot — $)E(ds), (7.1)
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where a(+) is a function from L?(R), and £(¢) is a Lévy process satisfying the conditions:
E¢(t) = 0, E€%(1) = 1 and E¢Y(1) < oo.

A Lévy process, {£(t), t € R} is a process with independent and stationary increments,
continuous in probability, with sample-paths which are right-continuous with left limits
(cadlag) and £(0) = £(0—) = 0. The Wiener process {B(t), ¢ > 0} and the centered
Poisson process {N(t) — EN(t), t > 0} are typical examples of centered Lévy processes.

Notice that the covariance function of X (t) is given by

r(t) =EX(t)X(0) = /Ra(t + z)a(z)dz, (7.2)

and it possesses the spectral density

2
. AER. (7.3)

o2 o2

fN) = Gy G(A)fz = m

/ e~ Ma(t)dt
R

The function a(-) plays the role of a time-invariant filter.

Processes of the form (7.1) appear in many fields of science (economics, finance, physics,
etc.), and cover a large class of popular models in continuous-time time series modeling.
For instance, the so-called continuous-time autoregressive moving average (CARMA) mod-
els, which are the continuous-time analogs of the classical autoregressive moving average
(ARMA) models in discrete-time case, are of the form (7.1) and play a central role in the
representation of continuous-time stationary time series. Lévy-driven CARMA processes
permit the modelling of heavy-tailed and asymmetric time series and incorporate both
distributional and sample-path information (see, e.g., Brockwell [2001, 2014]).

Consider the following Toeplitz type quadratic functional of the process X (u):

T T
Qr = /0 /0 b(u—v)X(u)X(v)dudv, T >0, (7.4)
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where

b(t) :=g(t) = /R eMg(NdA, tER,

is the Fourier transform of some integrable even function g(\), A € R. We will refer to
g(\) and to its Fourier transform b(t) as a generating function and generating kernel for
the functional Q7, respectively.

In this chapter we are interested in the asymptotic behavior as (T" — o0) of the stochas-

tic process {Qr(t), t € [0,1]}, generated by the functional Qr:

Tt Tt
Qr(t) = /0 /0 b(u —v) X (u)X (v)dudv, te€][0,1]. (7.5)

Our goal is to establish functional limit theorems of the form

77 (@) = BQr(0) 2 Lo (76)
where A(T") is a normalization factor, L(t) is the limit process, and the symbol 194 stands
for convergence of finite-dimensional distributions.

Functionals of the form (7.5) and their discrete counterparts arise naturally in the
statistical estimation of the spectrum of stationary processes. Limits such as (7.6) are
necessary to establish asymptotic properties of these estimators (see, for example, Fox and
Taqqu [1986], Ginovyan [2011], Giraitis et al. [2012], and references therein).

In the case where the underlying model {X(u), u € R} is a Wiener-driven process,
that is, X (u) is a Gaussian process, limit theorems of the form (7.4) were established in
Bai et al. [2015], among others, where it was shown that if both the spectral density f of
X (u) and the generating function g are regularly varying at the origin of orders « and f3,
respectively, then it is the sum « +  that determines the limiting process L(t). In fact,

when

a+p3<1/2,
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the limit process L(t) is a normalized standard Brownian motion, while when

a+p>1/2,

the limit L(¢) is a non-Gaussian self-similar process, which can be represented as a double
Wiener-Ito integral on R2.

In this chapter, we consider the general case where the model {X(u), u € R} is a
continuous-time linear process driven from Lévy noise &(u) with time invariant filter a(-).
Specifically, we show that under some LP-type conditions imposed on the filter a(-) and the
kernel b(+) of the quadratic functional, the process Q7 () obeys a central limit theorem, that
is, the finite-dimensional distributions of the standard /7T normalized process Qr(t) tend
to those of a normalized standard Brownian motion. In contrast, when the functions a(-)
and b(-) have slow power decay, then we have a non-central limit theorem for Q7 (¢), that
is, the finite-dimensional distributions of the process Qp(t), normalized by T for some
v > 1/2, tend to those of a non-Gaussian non-stationary-increment self-similar process
which can be represented by a double stochastic Wiener-It6 integral on R2.

We point out that our proofs of the central limit theorems are based on a new ap-
proximation approach which reduces the quadratic integral form to a single integral form.
This method can also be adapted to the discrete-time case. To prove the non-central limit
theorems, we use the spectral representation of the underlying process, the properties of
Wiener-Ito6 integrals, and a continuous analog of a method to establish convergence in dis-
tribution of quadratic functionals to double Wiener-It6 integrals, developed by Surgailis
[1982] (see also Giraitis et al. [2012]).

Limit theorems for quadratic forms of the type (7.5) have been considered by a number
of authors, mostly for discrete-time stationary processes (see, e.g., Grenander and Szegd
[1958], Fox and Taqqu [1985, 1987], Giraitis and Surgailis [1990], Terrin and Taqqu [1990],
Giraitis and Taqqu [1999], Ginovyan and Sahakyan [2005], and references therein). The

continuous-time case where X(¢) is Gaussian has been mainly considered in Ginovian
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[1994], Ginovyan and Sahakyan [2007], and Bai et al. [2015].

To the best of our knowledge, the only work addressing the quadratic functionals of
the Lévy-driven continuous-time linear process X (t) is Avram et al. [2010], where a central
limit theorem for the quadratic functional (7.4) was stated (without proof) under some LP-
type conditions imposed on the spectral density f(A) of X (u) and the generating function
g(A) (see Remark 7.2.6 below). For a related study of the sample covariances of Lévy-driven
moving average processes we refer to the recent papers by Cohen and Lindner [2013], and
Spangenberg [2015].

In our setting, where the underlying process X (¢) is not necessarily Gaussian, additional
complications arise due to the contribution of the random diagonal term in the double
stochastic integral with respect to Lévy noise, which is not present in the case of Gaussian
noise (see Remark 7.2.3 below).

The chapter is organized as follows. In Section 7.2 we state the main results of the
chapter. In Section 7.3 we give a number of preliminary results that are used in the proofs

of the main results. Sections 7.4 and 7.5 contain the proofs of the main results.

7.2 Main results: central and non-central limit theorems

In this section, we state our main results, involving central and non-central limit theorems
for suitably normalized process Qr(t) given by (7.5) under short and long-range dependence
conditions.

Let {X(t), t € R} be a centered real-valued linear process given by (7.1) with filter
a(-) € L*(R) and covariance function r(-) given by (7.2).

Throughout the chapter we will use the following notation. The symbol * will stand

for the convolution:

(h s g)(u) = / h(u — 2)g(x)dz,
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while the symbol * will be used to denote the reversed convolution:

(h**)(u) = (h*h)(u) = / h(u + z)h(x)dz.

R

By F and F~! we will denote the Fourier and the inverse Fourier transforms:

(FR)(w) = h(u) = /R T (@) dz,  (F ) () = % /R e~ () .
We will use the following well-known identities:
F(h=g)=F(h) F(g) (7.7)
and
F(hxg) = F(h) - F(g). (7.8)

7.2.1 Central limit theorems

The theorem that follows contains LP-type sufficient conditions for Qr(t) to obey central

limit theorem, and is proved in Section 7.4.

Theorem 7.2.1. Let X (t) be as in (7.1), and let Qr(t) be as in (7.5). Assume that
a(-) € LP(R)N L*(R), b(-) € LY(R) (7.9)

with

5
> .1
> (7.10)

Then
— oB(t), (7.11)
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where B(t) is a standard Brownian motion, and

o2 = / 2K a(v) + #aKp(v)] dv, (7.12)
R

where Ky is the fourth cumulant of £(1), and

Ka(v) = <(a +b)%2. am)(v), Kp(v) = ((a*b) -a) ). (7.13)

Remark 7.2.2. Young’s inequality for convolution (see, e.g., Bogachev [2007], Theorem
3.9.4) states that for any numbers p, p1, g satisfying 1 < p < p; < oo and p% = % + % -1,
and for any functions f € LP(R), g € LY(R) the function f*g is defined almost everywhere,
f*g € LP*(R), and one has

1 gllpe < [ fllpllgllq- (7.14)

Applying this inequality to the convolution in (7.2), we get ||r]l,, < [la]|? < oo, where

1+ 1/p1 = 2/p. Hence the relations (7.9) and (7.10) imply that

r() € IP(R), b() € LI(R), — 41—

2 5 3
- >Z _1=2=. (7.15)
PL g P 2 2

The condition (7.15) is sufficient for the convergence in Theorem 7.2.1 to hold in the case
where £(t) is Brownian motion (see Theorem 2.2 of Bai et al. [2015]). In fact, in this case,
the convergence in Theorem 7.2.1 holds under even a weaker condition imposed on the
generating function g(A) and the spectral density f(\) of X (¢) (see Theorem 2.1 of Bai
et al. [2015]).

Remark 7.2.3. In contrast to the cases where the model is either a discrete-time linear
process (Giraitis and Surgailis [1990]), or a continuous-time Gaussian process (Bai et al.
[2015]), it is convenient to impose the time-domain conditions (7.9) and (7.10) on the
functions a(-) and b(-), instead of on the spectral density f(A) and the generating function

g(M\). This allows us to analyze the random diagonal term which arises from the double
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stochastic integral with respect to a non-Gaussian Lévy process.

In the discrete-time case the random diagonal term is estimated by the full double sum
(see, e.g., Giraitis and Surgailis [1990], relation (2.3)), while in the continuous-time Gaus-
sian case, there is no such random diagonal term. In the continuous-time non-Gaussian
case, we have a random diagonal term in the form of a single stochastic integral that cannot
be controlled by the double integral, and hence we need to treat it separately (see (7.61)

in the proof of Theorem 4.6.5).

Remark 7.2.4. Observe that the long-run variance 2 given by (7.12) can be expressed
in terms of the spectral density f(A) and the generating function g()\), provided that
these functions satisfy some regularity conditions. Indeed, using (7.7), (7.8) and Parseval-

Plancherel theorem, under suitable integrability conditions on a(-) and b(-), we can write

/KA dv—/(a*b)*2( a*?( /f ((a*b)™) (\)F (a*2) (\)dA =
/]]—"a*b )2 F (a) (A ]2d/\— /\a N la(\)[2ax

= 81 2
e /R FON)2g(N)2dA,

where in the last equality we used the fact [a|> = 27 f and b=2mg (because b(-) is an even

function). Similarly, we have

/KB dv—/dv/d:c ((a#b) -a) (@) ((axt) - a) (x4 v) = </R(a*b)(x)a(a?)dx)2

— 1z ( [aite ><>dx)2 | [ f(A)g()\)d)\r.

So an alternative expression for o2 in (7.12) is

o2 = 1673 /R FOV2g(N)2dA + ks [QW /R f()\)g()\)d)\r, (7.16)

which should be compared with Avram et al. [2010] (Theorem 4.1), and Giraitis and

Surgailis [1990] for an analogous expression in the discrete-time case.
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Remark 7.2.5. The discrete-time analog of Theorem 7.2.1 with ¢ = 1 and £ being Gaussian
was established in Giraitis and Surgailis [1990]. A special case of Theorem 7.2.1 with ¢t = 1
and & being Gaussian was established in Ginovian [1994] and Ginovyan and Sahakyan
[2007]. Theorem 7.2.1 for Wiener-driven model (k4 = 0) was proved in Bai et al. [2015].
Remark 7.2.6. For Lévy-driven model with ¢ = 1 and o2 given by (7.16), a version of
Theorem 7.2.1 was stated in Avram et al. [2010] (Theorem 4.1). They impose conditions
on the spectral density f(-) and the generating function ¢(-), and assume the existence
of all moments of the driving Lévy process £(t). The details of the proof of Theorem 4.1
in Avram et al. [2010] is unfortunately omitted. It is not clear, at least to us, how the
omitted details of the method-of-moment proof can be carried out given the complexity of
computing the moments of multiple integrals with respect to non-Gaussian Lévy noise (see
Peccati and Taqqu [2011], Chapter 7).

The following corollary, proved in Section 7.4, contains sufficient conditions for the

assumptions in Theorem 7.2.1 to hold.

Corollary 7.2.7. The convergence in (7.11) holds if the functions a(-) and b(-) satisfy the

following conditions:
a(-), b() € L*(R), la(z)| < clz[**7",  [b(x)] < cfa]*~ (7.17)

with
0<a,B8<1l, a+p<1/2
7.2.2 Non-central limit theorems

We now state the non-central limit theorems. We make the following assumptions on the

functions a(-), b(-) and on their Fourier transforms a(-) and 6()

Assumption 1. The Fourier transform a(-) of a(-) € L?(R) satisfies

a(z) = A(x)|a] 2Ly (2),
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where Lj(x) is an even non-negative function slowly varying at zero and
bounded on intervals [c,00) for any ¢ > 0, and A(z) is a complex-valued

function satisfying |A(z)| = 1, and lim,_,q+ A(x) = A for some Ay on the

complex unit circle (since a(—z) = a(x), we also have lim,_,,- A(z) = Ap).

Assumption 2. The generating function b(-) € L!(R) and satisfies

b(z) = |z| P La(w),

where La(x) is an even non-negative function slowly varying at zero and

bounded on intervals [c, o) for any ¢ > 0.

Assumption 3. The parameters o and 3 above satisfy

-12<a<l, -—-1/2<8<1, a+p>1/2 (7.18)
Assumption 4. There exist numbers o and * satisfying
0<a™"p'<l 1l<a'"+p"<a+p+1/2,
such that
la(x)] < Cla|* 27, |b(e)| < Cla)”
The proof of the following theorem can be found in Section 7.5.
Theorem 7.2.8. Suppose that Assumptions 1 - 4 hold. Then asT — oo
Qr(t) = 1 (@rlt) ~ BQr() % Zys(),  (7.29)
T TodB L (1T Lo (1)T) * 7 T ®B\ET '
where
1 " eit(a;1+u) -1 eit(zg—u) -1
Zop(t) = — —a/2 “Bdu W(d d 2
wi®) = 5 [ maal /2 [ ek Sl W (da W), (7:20)
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!

where W (-) is a complex-valued Brownian motion, and the double prime " indicates the

exclusion of the hyper-diagonals u, = fug, p # q.

Remark 7.2.9. The regular variation conditions on a(-) and 3() in Assumptions 1 - 3
generally do not follow from the corresponding regular variation conditions imposed on the
inverse Fourier transforms a(-) and b(-). This implication only holds under some additional
assumptions on the slowly varying factors of a(-) and b(-). For instance, it will hold if we

have (see Bingham et al. [1989], formula (4.3.7))
a(x) = 2% U (2) 1) 0o (2),  b(x) = |2]" " es(2), (7.21)

where 0 < @ < 1,0 < S < 1, o+ 3 > 1/2, and ¢1(z) and ¢3(x) are even non-negative
functions which are locally bounded, slowly varying at infinity and quasi-monotone. Recall
that a slowly varying function [(-) is said to be quasi-monotone if it has locally bounded

variation, and for all § > 0, one has (see Bingham et al. [1989], Section 2.7)

/x £21de(t)] = O(2°l(z)) as z — oo.
0

A sufficient condition for a slowly varying ¢(x) with locally bounded variation to be quasi-
monotone is that 2°/(z) is increasing and z~%4(z) is decreasing when z is large enough,
for any 6 > 0 (see Theorem 1.5.5 and Corollary 2.7.4 in Bingham et al. [1989)]).

Notice also that Assumption 4 will be satisfied if (7.21) holds (see Lemma 7.5.6).

Remark 7.2.10. Let the functions a(-) and b(-) be as in (7.21) with & < 0 or 5 < 0 (by
(7.18) only one of a and 8 can be negative). Assume that & < 0 and 5 > 0. Then for
the corresponding regular variation of a(-) to hold, one needs to impose in addition that
fooo a(x)dx = 0. In this case, one does not need to assume quasi-monotonicity for ¢; (see
Corollary 1.40 of Soulier [2009]). Similar considerations hold if # < 0 and a > 0 instead.

Remark 7.2.11. Note that Assumption 1 holds with o = 0if a(-) € L'(R) and [} a(z) #

0, and Assumption 2 holds with 3 =0 if b(-) € L*(R) and [;~ b(x) # 0.
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The next theorem contains time-domain representations for the limiting process Z, g(t)

in (7.20) in the case «, 8 > 0, which will be proved in Section 7.5.

Theorem 7.2.12. The limiting process Z, g(t) in (7.20) admits the following time-domain

representations:

(a)

(b)

(c)

when a >0, > 0:

d.d. ortot B o/2— o/2—
Za p(t) fd. Ca 3 /2/ / lu — v\ﬁ 1(u — x1)+/2 1(1} — x2)+/2 Ldudv B(dz1)B(dz2),
Rr2 Jo Jo

(7.22)
where cq 5 = —F(l;g)(:7§fzﬂ/2) ;
when o > 1/2, B =0:
1ot
Zos(t) T / 2 / (= 20)2 M — 2)%"* du B(dey)B(das),  (7.23)
R2 J0
where ¢, = Sin(af;/ggof/(;)—a/?) ;
when o =0, > 1/2:
f.dd '
Zag(t) =" 05/[ . |21 — 22|~ B(dxy)B(dzs), (7.24)
0,t

is the real Brownian random measure and ' indicates

where cg = L(=p)sin(Br/2) in(ﬁwﬂ), B(+)

the exclusion of the diagonals.

Remark 7.2.13. In view of (7.5) and (7.21), the representation (7.22) gives an explicit

insight of the convergence in Theorem 7.2.8 (see Theorem 7.2.14 below). The process in

(7.23) is known as Rosenblatt process (see Taqqu [1975]), and the corresponding conver-

gence in Theorem 7.2.8 is the continuous-time analog of the discrete-time case considered

in Fox and Taqqu [1985]. The representation (7.24) is obtained because for o = 0, the

underlying process X (¢) has short memory and in this case, one expects that in the limit

X(t)dt in (7.5) can be replaced by the white noise B(dt).
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In the cases where either a or (3 satisfying (7.18) is negative, we were not able to ob-
tain appropriate elementary expressions for the time-domain representation of the limiting

process Zy g(t).

Using the time-domain representation (7.22), one can state a non-central limit theorem
in the case where o, > 0 without going to the spectral domain. This simplifies the

assumptions imposed on the functions a(-) and b(-).

Theorem 7.2.14. Suppose that the functions a(-) and b(-) are given by (7.21), where
0<a<l,0<p<1l,a+B>1/2, and t1(x) and l2(x) are even functions slowly varying

at infinity and bounded on bounded intervals. Then as T — oo,

Tawll ()<@T<> EQr(t) 144

/ / / lu — v]?~Y( )i/Q_l(v—xg)i/Q_ldudv B(dz1)B(dxs).
R2

The theorem is proved in Section 7.5.

7.3 Preliminaries

We first introduce the notion of multiple off-diagonal (Ito6-type) stochastic integral with
respect to Lévy noise, called Lévy-1t6 multiple stochastic integral, and briefly discuss its
properties. All the claims we shall make below can be found in Peccati and Taqqu [2011]
and Farré et al. [2010]. Let f be a function in L?(R¥). Then we can define the following

off-diagonal multiple stochastic integral:

_ /R/k Flan,. . ap)e(dr) . .. €(day), (7.25)

where (1) is a Lévy process with E£(¢) = 0 and Var[{(¢)] = O'gt, and the prime ’ indicates
that we do not integrate on the diagonals x; = x;, ¢ # j. Indeed, the integral I,f( f) can

be first defined for f = 14,x..xa,, where Aj,..., A are disjoint Borel sets, as I,f(f) =
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€(Ay)...€(Ag), and then using linearity and L?-approximation to define for general f €

L?(R¥). The multiple integral I,f() satisfies

1S3 200y < RIoZ 1122 - (7.26)

The inequality in (7.26) becomes equality if f is symmetric:

VS22 = Ko2 I £ 112 - (7.27)

As before B(-) will stand for the real-valued Brownian motion. Setting £(-) = B(-), we

get the so-called multiple Wiener-It6 integral (see It6 [1951]):

IP(f) = /R; f(z1,...,21)B(dxy) ... B(dxy). (7.28)

The Wiener-It6 integral can also be defined with respect to the complex-valued Brownian

motion:

V(g) = /R/; glut, ..., up)Wi(duy) ... W(duy), (7.29)

where g € L?(R¥) is a complex-valued function satisfying g(—uz, ..., —ug) = g(uy, ..., ug),
and W (-) is a complex-valued Brownian motion (with real and imaginary parts being
independent) viewed as a random integrator (see, e.g., Embrechts and Maejima [2002],

/

p.22), and the double prime

p#q.
The next result, which can be deduced from Proposition 9.3.1 of Peccati and Taqqu

indicates the exclusion of the hyper-diagonals u, = Fu,,

[2011] and Proposition 4.2 of Dobrushin [1979], gives a relationship between the integrals
IP(:) and 1}V (), defined by (7.28) and (7.29), respectively.

Proposition 7.3.1. Let f;(-) be real-valued functions in L2(RF), j=1,...,J, and let

~

fi(wi, .. wy;) = fi(x1,... ,:Ukj)ei<w1w1+"'+xkfwkj>dml codzy,

RFi
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be the L*-Fourier transform of f;(-). Then

(LB () 1B (0n) £ (@my B2y (fasw) . o2l (Fa%) ),

for any function A(u) : R — C such that |[A(u)] = 1 and A(w) = A(—w) a.e., where
A®k(w1, ce ,wk) = A(wl) T A(wk)

We also will need a stochastic Fubini’s theorem (see Peccati and Taqqu [2011], Theorem

5.12.1).

Lemma 7.3.2. Let (S, 1) be a measure space with (S) < oo, and let f(s,x1,...,zx) be a

unction on S x R* such that
f

/ . f(s,z1,...,x)2%dxy . .. dzgp(ds) < oo,
S JR

then we can change the order of the multiple stochastic integration I,g() and the determin-

istic integration [ f(s,-)u(ds):

[ airts s = 15 ([ sts.uas))

There is a with-diagonal (Stratonovich-type) counterpart of the integral I,f( f), denoted

£ = [ . oedn).. g(dn), (7.30)

which includes all the diagonals. We refer to Farré et al. [2010] for a comprehensive
treatment of Stratonovich-type integrals I,g( f). For the with-diagonal integral I,ﬁ( f) to
be well-defined, the integrand f needs also to be square-integrable on all the diagonals
of R¥. More precisely, it is required that f € L2(A,), with A, = > e, Ao, Where
I1,, denotes all the partitions of {1,...,n}, and A, denotes the Lebesgue measure on the
diagonals specified by the partition o, provided that the variables in the same block of &

are identified. For example, if o = {{1,2},{3}}, then )\, is the two-dimensional Lebesgue
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measure on {z1 = x2,r3}, and

1£11Z20,) 2/ (21,22, 23)dNs (21,22, 23) = | f*(21, 21, 23)dx1das.
R3 R2

For with-diagonal integrals, we have the following simple product formula:

IS(HIEg) =I5 (f @ g).

The with-diagonal integral I,f( f) can be expressed by off-diagonal integrals of lower orders
using the Hu-Meyer formula (see Farré et al. [2010], Theorem 5.9). We shall only use the

special case when k = 2, in which case we have

B = [ S medneln) + [ feaed @+ [ fao, @

where

£D(t) =@ (t) - Be@ (1) =P (1) — | (7.32)

and £@)(t) is the quadratic variation of &(t), which is non-deterministic if £(t) is non-
Gaussian (see Farré et al. [2010], equation (10)). The centered process {éQ) (t) is called a
Teugels martingale (of second order), which is a Lévy process with the same filtration as

&(t), whose quadratic variation is deterministic:

(£ (), P (#)] = rat,

where ry4 is the fourth cumulant of £(1). For any f,g € L?(R), one has (see Farré et al.

[2010], page 9),

5 [ [ s [ h<x>§£2><dx>] — [ f)glads (7.33)
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The decomposition (7.31) implies that

EIS(f) = /Rf(x,at)da;.

Consider now the following integrals, the first of which is an off-diagonal double integral

and the second is a single integral with respect to Teugels martingale §£2) (t):

!/

J(a1, 22)E(dan)E(dws)  and /R 9(2)E® (da). (7.34)

RQ

Notice that for any f € L?(R?) and g € L?(R) the integrals in (7.34) are uncorrelated.
This can easily be verified in the case f = 14xp, g = 1¢ for any disjoint Borel sets A and

B and any Borel set C. Indeed, treating géz)(-) as a random measure, we have

E[E(A)¢(B)EP ()] =
E [g(A)f(B) (59(0 NA°AB)+ 2D (CNANBY) + D (CnAn BC))} =0 (7.35)

since, for example, £(A) is independent of 5((;2)(0 N A°N B) and &(B), and E{(A) = 0.
Using linearity and L?-approximation, it can easily be shown that the integrals in (7.34)

are uncorrelated for any f € L?(R?) and g € L*(R).

7.4 Proof of the central limit theorems

In this section, we prove the central limit theorems stated in Section 6.2 (Theorem 7.2.1

and Corollary 7.2.7). We first derive some preliminary results. We set

1 T T
Ry(z1,x2) = i /0 /0 b(u —v)a(u — z1)a(v — z2)dudv, (7.36)

and

1 /7
Sr(x1,x) = \/T/o [(a*b)(v—21)][a(v — xz2)] dv. (7.37)
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Lemma 7.4.1. Let a(-) and b(-) satisfy (7.9) and (7.10), and let Ry (x1,x2) and St (x1, x2)
be as in (7.36) and (7.37) with 1 # x2. The following assertions hold.

(a) We have

. 2 _
Jim ST 72 ) /RKA(U)du, (7.38)
where KA(+) is as in (7.13).

(b) We have
lim ||RT - STHLQ(RQ) =0. (739)
T—o0

(c) For any M > 0, there exists a function cp(-,-) supported on [—2M,2M]?, so that the

function

1 (T
SM (1, 29) = \/T/o e (v — 1, v — x2)dv,

satisfies the relation:

Jim_Tim sup || Ry — S\ 2@ey = 0. (7.40)

Proof of Lemma 7.4.1. We first prove assertion (a). We will use the following notation:
| - || will denote the L™(R) norm, and |a|(z) = |a(z)], |b|(x) = |b(z)], |c|(x) = |c(x)].

By (7.9) and (7.10) we have a(-) € LP(R) N L?(R). Hence by the Riesz-Thorin theorem,

a(-) € LV (R) for any p < p/ < 2. Setting p’ = 2, we get 1 + 1/¢ < 2, which is less than

5/2. This implies that there is a number p’ such that 2/p’ +1/q = 5/2. Thus, without loss

of generality, we can assume that
2 1 5
a(-) € LP(R), be LYR), —+-= 3 (7.41)

Let p and ¢ be as in (7.41). Define the numbers ¢, ¢, g2 to satisfy the following equations:

1 1 1 2 1 2 1 1 1
—F =1 1+ 5=—, 1+—=—, 1+ —=—+-. (7.42)
@ooq @ P @ g2 2 P g
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(Going from the last to the first equality in (7.42), one can solve successively for 2, ¢f, q1
and then verify using (7.41) that the first equality in (7.42) holds.)

Taking into account (7.42), the relation

T “+o00
| Ry (21, x2)| S\/lf/o /_ |b(u — v)a(u — z1)a(v — z2)|dudv
I )
:\/T/o (lal b)) (v = z1)|al(v — z2)dv, (7.43)

and by using Holder’s inequality and Young’s inequality for convolution (see (7.14)), we

can write

1R [17 2 ey

1

<_— dvldvg/ dzydxa(|al = [b])(v1 — z1)|a|(v1 — x2)(|a] * |b])(ve — z1)|a|(ve — x2)
(0,7]2 R2

_l *2 *2 _
—— [07T12dvldv2<(|a|*|b|) a2 (v1 = v2) (7.44)

:/i ( — |;|> ((|a\ *[b[)™2 - ,aﬁz)(v) dv < /R <(|a| . b)) - |a’;2) (v) do

< |lal * 8)*2lq, llal™

a < llal* 16D, lall;

Holder Young
< |lal = [olllZllally < lalip)ol3- (7.45)
Young Young

Similarly, we get

15772 g2y < llall 10115 (7.46)

In view of (7.37), (7.46) and Fubini’s theorem, we obtain

15711722y = /Z( - ‘”T|) ((a %)) (v) do,

which converges to the limit claimed in (7.38) by the dominated convergence theorem.

Now we proceed to prove assertions (b) and (c).

To this end, for M > 0 we set ay(z) = a(x)l_arag(®), ay () = a(z) — ap(z),
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ba(w) = b(x) 1 _prar)(z) and by () = b(z) — bas (), and define
o 1 T pT
Ry (1, 2o :/ / bayr(u —v)ap(u — x1)apy (v — x2)dudv. 7.47
Forvan) = 2= [ [ burtu=vjaw(u=anan(o =) (1.47)
In view of (7.36), (7.47) and the identity

baa — byrapran = (baa — byraa) + (baraa — byrapra) + (baranra — bararrans)

= by,aa + byaya+ byanay,,
we have

Ry(xy,22) — RY (21, 20) =

f/ / dudv [by,(u— v)a(u — z1)a(v — z2)+

b (u —v)ay (u— z1)a(v — z2) + bar(u — v)an (u — z1)ay (v — z2)].
Similar to (7.45), one gets
IRy — Ry [ 72mey < C (I l7lally + NoarlIZlan lpllals + loarlizllanl}llan117)-

where the right-hand side does not involve T'. Since ||a},||, — 0 and [|b},||, — 0 as M — oo,

one obtains

lim hm sup |Rr — R¥ | 22(r2) = 0. (7.48)
M —oc0
Now we set
CM(:L‘l, 1‘2) = (CLM * bM)(l’l)aM(l‘g), (749)

and define

1 /T
SM (1, 29) :\/T/O e (v —z1,v —x2)du
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T
:\/1? /0 (apr *bar)(v — xp)ap (v — z2)du.

In the same way as we derived (7.48), we have

lim limsup ||S7 — S| f2(re) = 0. (7.50)

M—=oo T 400

Observe that

SM (21, ) = \/1? /OT dv (/R duby (v — w)ans (u — ml)) ant(v — ). (7.51)

Suppose that T > M. In view of (7.47) and (7.51) and using the fact that bps(-) is
supported on [—M, M|, we have

S (a1, m9) — Ry (w1, 32)
\/>/ o dubpr(u — v)ay (u — x1)ap (v — x2)
\F/ / dubps(u —v)ap (v — x1)ap (v — x2)

_l_

\/T/O dv/OodubM(u—v)aM(u—m)aM(U—@)
1 o
= ﬁ . dv/T dubps(u — v)ap (v — x1)ap (v — x2)

M 0
+\/1T/0 dv/_MdubM(uv)aM(uxl)aM(vxg)

=: A%l(xl,wg) + A%z(xl,xg).

Thus, using the arguments similar to those in (7.43) and (7.45), one has

1 * *
A7z o) < T/ dordvs((Ja] +[b]) - o) (v1 = v2)
[T—M,T)?
1 - _
— d d b *2 . *2 o
T J g 002 (a8 10l (01 = 2)

M I
<= dv((m «|b)%2 - |a|*2)(v) 5 0as T — oo,
T Jr
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where fR dv<(|a] % |b])*2 - |a‘12) (v) is finite due to (7.45). Similarly, one can show that
||A7]\“/,[2||%2(R2) —0asT — o0.

Hence

Mlim lim sup || SM — RTMH%Q(RQ) =0. (7.52)

—0 T o0

Combining (7.48) (7.50) and (7.52), we obtain the desired relations (7.39) and (7.40) with

cm(-, ) as in (7.49). This completes the proof of Lemma 7.4.1. O

The next result is similar to Lemma 7.4.1, where R? is replaced by R. We set

T T
Ry (z) = Ry(z,z) = \/IT/Q /0 b(u —v)a(u — z)a(v — z)dudv
and
1 (T
St(z) = Sr(z,z) = \/T/o (a*b)(v—x)a(v—x)dv
where Ryp(-,-) and Sp(-,-) are as in (7.36) and (7.37).

Lemma 7.4.2. Assume that a(-) and b(-) be as in (7.9), with p and q satisfying

2 1
1<p,g<2, —+->2 (7.53)
p g
Then the following assertions hold.
(a) We have
. 2 o
Jim 157l3e) = [ K(u)d (7.50)
where Kp(-) is as in (7.13).
(b) We have
lim ||RT - ST”LQ(R) = 0. (755)
T—o00
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(c) For any M > 0, there exists a function dp(-) supported on [—2M,2M], so that the

function

SM (2 \F/ dar(v — z)do,

satisfies the relation:

hm limsup || Ry — S 22y = 0. (7.56)

M—oo 700

Remark 7.4.3. Obviously the condition (7.53) is implied by condition (7.10).

Proof of Lemma 7.4.2. The proof is similar to that of Lemma 7.4.1. We thus outline the
key steps of the proof omitting the details.

As in the proof of Lemma 7.4.1, in view of the Riesz-Thorin theorem one can assume
that

a() € IP(R), b() € LI(R), ]29 + ; _o. (7.57)

Let p and ¢ be as in (7.57). Define the number p* to satisfy the following equations:

1 1 1 1 1
p p p p q

Observe that by the equality in (7.57), one has

1 1 1 1 1
=4 -—1=2-1=1
p p p p g
Then using Holder’s inequality and Young’s inequality for convolution (see (7.14)), we

can write (note the difference between (7.44) and (7.58))

1R7][72 Ry
<t [ dvides [ deol « pon — al(es — )l )~ 2al(ez 2
[0,7]2 R
/ dvldv2<(|a| b)) - \a|) (01 — v) (7.58)

= [ (=2 () 0 o< [ (Gt Jol) ) av
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< al =) - lallf < [lal* [pllZ-llal; < lalllblZ. (7.59)

Young Hélder Young

Similarly, we get

1577282y < llall 10115 (7.60)

Then the assertion (a) of the lemma follows from (7.60), Fubini’s theorem and dominated
convergence theorem.

To prove assertions (b) and (c), we set

ap () = a(x)1 -, ()

and

bar(z) = b(@) 1 _pa (),
and consider the functions

M _i ! ! —v)a u—aa v — xr)auav
RT<x>—ﬁ/O/ObM<u Janr (s — 2)an (v — )dudy,

and

T
SM () = \/1T/0 dy(v —x)dv,  where dy(z) = ((aM *byy) - aM) (x).

Then using the arguments of the proof of Lemma 7.4.1 but now with 1 = x9 = «, it can

be shown that

lim i Ry = Rrl2m =0
pm limsup |[Rz = Rr72@) =0,

lim li SM — R, 5 =0
Mgbgﬂ?HT 7 2@ = 0,

lim li SM _ Spl? 5y = 0.
Mﬁb%ﬂ?HT 7l72m)

Lemma 7.4.2 is proved.
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Proof of Theorem 7.2.1. By (7.31) and Lemma 7.3.2 one can write

Qr(t) = Ar(t) + Br(t),

where

"1 Tt Tt
Ap(t) = /R2 \/T/o /0 b(u —v)a(u — z1)a(v — z2)dudv (dz1)E(dze),

and

s Tt (Tt - B - o
BT(t)_/R ﬁ/o ; b(u —v)a(u — z)a(v — x)dudv £ (dz).

Choosing cps(x1, z2) as in Lemma 7.4.1 and setting

/ Tt
AM () = /R2 \/1T/0 eyv(u —xp,u — xo)du &(dry)€(dxs),

one has by (7.27) and relation (7.40) of Lemma 7.4.1 that

im limsupE|A7(t) — A¥ ()] =0, Vt>0.

1
M—=oo 7400

Choosing dj/(x) as in Lemma 7.4.2 and setting
M 1 Tt )
B t:// dy (v — x)du €7 (dx),
= [ 2= [ dutu—a)du e (a
one has by (7.27) and relation (7.56) of Lemma 7.4.2 that

lim limsup E|Br(t) — BM () =0, Vt>0.

M—00 T oo

(7.61)

(7.62)

(7.63)

(7.64)

(7.65)

To complete the proof of the theorem, in view of (7.63) and (7.65), it is enough to show

that as T" — oo,

QM (1) == A¥ (1) + BM(t) "% o0 B(1)

(7.66)
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with oy > 0 satisfying

lim 0%, = lim Var[Ar(1) + Br(1)] = o°. (7.67)

M—o0 T—oo

To this end, observe first that by the stochastic Fubini Lemma 7.3.2, one has

1 Tt

@{‘M):ﬁ i Y (uw)du,

where

Y (u) = // eyv(u—xy,u — x9)E(dx)é(dre) + /RdM(u — ) 552)(d:n),

RQ

and §£2)(-) is the Teugel martingale defined in (7.32). Note that Yjs(u) is independent
of the o-field generated by {&(s) : s < u—2M, s > u+ 2M} since cpr(+,-) vanishes
outside [—2M,2M]? and dp(-) vanishes outside [—2M,2M], implying that Yjs(u) is a
stationary 4M-dependent process. Then the convergence in (7.66) can be deduced from a
classical central limit theorem for M-dependent processes by combining the discretization
argument in the proof of Theorem 18.7.1 of Ibragimov and Linnik [1971] and Theorem 5.2
of Billingsley [1956].

To show (7.67), it is enough to note that by the arguments before (7.35), the random
variables Ar(1) and Br(1) are uncorrelated. Hence by (7.27) and (7.38) with k = 2, we

have

Var[Ar(1)] — Q/RKA(u)du,

and by (7.27), (7.54) and (7.33) we obtain

Var[BT(l)] — ﬁ4/RKB(u)du.

This completes the proof of Theorem 7.2.1. O

Proof of Corollary 7.2.7. In view of Theorem 7.2.1, it is enough to verify that the condi-
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tions (7.9) and (7.10) are satisfied. First, noting that by assumptions 0 < «, 5 < 1 and

a+ < 1/2, we can choose 1 < p,q < 2 to satisfy
2 1
pla/2-1)< -1, ¢(f—1) < -1 <= 5<2—a,6<1—ﬁ, (7.68)

implying that

2 1
Z4Z<3-a-5 (7.69)
P q

Next, since a + 8 < 1/2, we have 3 —a — 3 > %, and hence in view of (7.69) the numbers
p and ¢ can be chosen to satisfy 2/p +1/¢ > 5/2. Thus (7.10) is satisfied.

It is easy to see that with the p, ¢ chosen above, in view of (7.17), we have
a(-) € LP(R) N L*(R), b() € LY(R),
and thus (7.9) is satisfied. O

7.5 Proof of the non-central limit theorems

In this section we prove the non-central limit theorems stated in Section 6.2 (Theorems
7.2.8-7.2.14).

We first state and prove some preliminary lemmas. The following lemma, which is a
continuous analog of Propositions 14.3.2 and 14.3.3 of Giraitis et al. [2012], plays a key role
in our proofs. It provides conditions for Lévy-Ito multiple stochastic integrals to converge

in distribution to Wiener-Itd6 multiple stochastic integrals.

Lemma 7.5.1. For T >0 and fjr(-) € L>(RK), j=1,...,J, we set

hjj(wl, ce ,xkj) = Tk/ij’T(Txl, ce ,Tl’kj), (770)
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and assume that there exist f; € L*(R*) such that as T — oo
hsir = Fillpagisy = 00 3= Lok (771)

Then for any Lévy process £(+) with EE(1) = 0 and E€2(1) = 1, we have the following joint

convergence in distribution:

(15, () o I (o)) 2 (BB () TE (1)) (7.72)

Proof. For simplicity, we prove the result in the case where J = 1 and we will drop the
index j. In this case the proof is similar to that of Proposition 14.3.2 of Giraitis et al.
[2012]. The general case J > 1, which corresponds to Proposition 14.3.3 of Giraitis et al.
[2012], can be obtained by similar arguments using the Cramér-Wold Device.

Let Sy (RF), M € Zy, be the class of functions that are piecewise constant on the
1/M-grid of [~M, M]* (each piece of the grid has linear length 1/M), and vanishing on
the diagonals. Set Sy = U3S_, Sy (RF), and observe that Sy is a dense subset of L?(R¥).

Then in view of (7.26), for any € > 0, there exists f. € Sy such that

EIIE(f) = IE(fOP <R = fellfagem < e (7.73)
Define
fer(@y, ... xp) =T %2 f(xy T, ..., 2)T), (7.74)
and note that
lhr — fe||%2(Rk) < 2||hr — fH%Z(Rk) +2[f - fe||%2(Rk)- (7.75)

By (7.71) we have limr—,o0 [|hr — f[| 12(rr) = 0. Hence in view of (7.26), (7.75) and a change

of variable, we can write

limsup E|L{(fr) — I{(fe ) < Klimsup | fr = frlfaes) =
—00

T—o0
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ktlimsup | hr — fell72@r) < 2kMlimsup | f — fel| 22 e < 2. (7.76)
T—o0

T—o00

To complete the proof of the lemma, in view of formulas (7.73) and (7.76), and Theorem

8.6.2 of Resnick [1999], it remains to show that as T — oo:
d
Ii(fer) S TP (f). (7.77)

Since fc(-) € Sk, we have

/

fe(xla‘-'axk'): Z C(Z‘lw"7ik)1Ai1X...XAik(x17"'7:6]{!)7
1<y, ,ig <N

where N > 0, c(i1,...,ix) € R, A;’s are disjoint intervals so that U;A; = [—M, M], and
the prime ’ indicates that the sum does not include the diagonals i, = i, for p # g. Then

we have
Ilg(fe,T)

R¥ 1<y, i <N

:Tk/Z/k ST vy ik)lay xexay, @1/Ts . x/T) E(day) . €(day,)

= > clinye e iner(Ay) . Er(Ay), (7.78)

1<i1, oy ig <N

where
1

VT Jra,

Combining the discretization argument in the proof of Theorem 18.7.1 of Ibragimov and

&r(A)) &(dx).

Linnik [1971] and Theorem 5.2 of Billingsley [1956], it can be shown that the random

variables {p(A;) satisfy central limit theorem. Hence for any N > 1, we have as T' — oo

(gT(AI),...,fT(AN)> LA (B(Al),...,B(AN)),
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where B(-) is a Gaussian random measure appearing in the Wiener-Ito6 integral (7.28).

Hence applying continuous mapping theorem, from (7.78) we obtain

/
E(fer) % Y v, it)B(AL) ... B(Ay) = IP(fo),
1<i1 e in <N

implying (7.77). Lemma 7.5.1 is proved. O

From Proposition 7.3.1 and Lemma 7.5.1, we easily infer the following result which is

the spectral version of Lemma 7.5.1.

Corollary 7.5.2. Let j/‘;-j be the L?-Fourier transform of fjr. Set
ﬁj7T(x1, ey Ty ) i= T*kj/ZJ?j’T(xl/T, oz, /T), (7.79)
and assume that there exist j/; € L2(R¥) such that as T — oo,
[hjr = Fill oy = 00 G =1, (7.80)

Then for any Lévy process £(-) with EE(1) = 0 and E€2(1) = 1, we have the joint conver-

gence in distribution:

(15, r)o o I, (o)) S (@m0 2alY (foa®s) o o200 (Fra%e),
(7.81)

with any A(-) satisfying the conditions of Proposition 7.3.1.

The following lemma establishes a change of integration order in situations where the

Fubini’s theorem is not directly applicable.

Lemma 7.5.3. Let a(-), b(-), a(-) and B() be as in Assumptions 1-4 in Section 7.2.2. Set

T T
gr(z1,22) = /0 /0 b(u —v)a(u — x1)a(v — x2)dudv.
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Then gr(-) € L2(R?) and for the L?-Fourier transform gr of gr, we have

gr(wy,we) : = /2 ei(w1x1+w2x2)g(aﬁ1,atg)d:clda:g
R
eiT(wl-‘,-w) -1 eiT(w1—w) —1 ~

! b(w)dw

= %a(_wl)a(_WQ)/

r i(w; +w) i(w; —w)

for a.e. (wi,ws) € R,

Proof. First, by the Cauchy-Schwartz inequality and Assumption 4, one has

T T 2
HgT||%2(R2) < /2 dxidzy </ / |b(u — v)a(u — x1)a(v — x2)|dudv>
R o Jo

T T 2
SHaH%Q(R) </0 /0 |b(u—v)|dudv> < 00. (7.82)

Let ap(z) = a(z)1l_p (), and let gr s be the L2-Fourier transform of g7 given by

T T
gr M (21, T2) = / / b(u — v)ay(u — z1)ay (v — x9)dudv.
o Jo

Since, as M — 00, ap(x) and d@ps(w) converge in L? to a(z) and @(w), respectively, one
can find a subsequence M,, 1 oo, so that apz, (z) and @y, (w) converge a.e. to their limits.

So by (7.82) and the dominated convergence theorem, one has as n — oo

9701, — 97| L2(R2) = /2 dxydxg x

R
Tt [Tt 2
(/ / b(u —v) [an, (u — x1)an, (v — x2) — alu — z1)a(v — z2)] dudv) — 0.
0o Jo

Therefore, one can choose a subsequence of M, still denoted by M,,, so that g7 v, (21, z2)
converges to gr(x1, 2) a.e. (1, r2) € R? as well as in L2-norm, and g1, (w1, wa) converges

to gr (w1, ws) a.e. (w1, ws) € R? as well as in L?-norm.

Since b(-) is an even function and b(-) € L!(R), one has

1 PN 1 PN
b(x) = o /]R e "h(w)dw = 2 ) e""h(w)dw.
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Next, taking into account that ayy, (-) has a finite support, and hence is in L!(R), one can

write

/ ans, (u — z)e™ dr = em“/ au, (u— z)e T2 gg = UGy (—w).
R R

Then by Fubini’s theorem, one can change the integration order to obtain

g7, M, (w1, w2)

Tt ,Tt
:/ e W11+ w222) g g / / b(u — v)ap, (uw — x1)ap, (v — z2)dudv
R2 0 0

1 Tt Tt ) . ) )
=5 Rdw/o /0 dudv e “Ih(w) e ay (—wy) €2 any, (—ws)
1 eiTt(lerw) -1 eiTt(wgfw) 1~

:aMn(—wl)aMn(—wg)/ b(w)dw.

27 r i(w +w) i(wg — w)

Finally, as n — oo, we have a.e. convergence of gr s, to gr and the a.e. convergence of

ayr, to a with M, chosen above, and the result follows. The proof is then complete. [

Lemma 7.5.4. Let o and 8* be as in Assumption 4. Then

6*71|u3 o U4‘B*71”LL1 o x’a*/271

/ duldu2du;3dU4/ dx(|u1 — Uy
[0,1)4 R

x |ug — 2|2 g — 2@ /2y — x\a*/Q—l) <o (7.83)

Proof. Setting g = a*/2 -1 € (—1,-1/2) and 5y = f* — 1 € (—1,0), and noting that by

the assumption o* 4+ §* > 1, we have
2a + By > —2. (7.84)

By the change of variables v; = w1 — u9, vo = u3 —u4,v3 = U1,v4 = U] — T, V5 = Uz — T, and

by enlarging the integration region if necessary, we can use the equality [ [v|*|z—v|*dv =



191

|2a0+1

Cap|T with some constant c,, > 0, to bound the integral in (7.83) as follows:

c/ dvydvadus ]v1|ﬁ0]vg|5o/ || vy —v1|“°dv4/ |vs |0 |vs — vo|*Odus
[~1,1)3 R R

:c/ dviduvadus |vp |20 Pt g, 2aothotl (7.85)
[_171]3

The last integral in (7.85) is finite because by (7.84) we have 29 + 5o + 1 > —1. O

The following lemma, which is a consequence of Corollary 1.1 (b) from Terrin and

Taqqu [1991b], will be used in the proof of Theorem 7.2.12.

Lemma 7.5.5. Let ay,...,am,, m > 2 be real numbers satisfying
m
a > =1 Y aitm> 1, (7.86)
i=1
then

/ |z1 — 22| ™ zy — 23| .| X1 — T | X, — 21| dy L dTy, < 00
[0,1]™

The next lemma, which provides a bound for slowly varying functions, called Potter’s
bound (see Giraitis et al. [2012], formula (2.3.6)), will be used in the proof of the main

result.

Lemma 7.5.6. Let L(-) : (0,00) = R be a function slowly varying at w = 0 and bounded
on intervals [c,00) for any ¢ > 0. Then for any € > 0, there exists a constant C > 0, so

that if T is large enough, then for any u € (0, 00)

< (|l + |ul 7). (7.87)

We now are ready to prove the non-central limit theorems stated in Section 6.2 (The-

orems 7.2.8-7.2.14).
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Proof of Theorem 7.2.8. As in the proof of Theorem 7.2.1, one can write

Qr(t) = Ar(t) + Br(t), (7.88)

where now

/ Tt Tt
Ap(t) = /]R2 Ta+5L1(1/1T)L2(1/T) /0 /0 b(u—v)a(u —x1)a(v — xe)dudv {(dx1)E(dxs),
(7.89)

and

Tt (Tt
BT(t):/R Ta+f3L1(1/1T)L2(1/T)/(; /0 b(u—v)a(u—z)a(v—z)dudv €2 (dz). (7.90)

In view of (7.88)-(7.90), to prove the theorem, it is enough to show that Ar(t) converges in
finite-dimensional distributions to the limit Z, g(t) given by (7.20), and limy_,o, EB2(t) =
0.

We first prove that

Ar(t) TS Zo 5(t)  as T — oo (7.91)

The relation (7.91) we deduce from Corollary 7.5.2. To this end, we write Ap(t) =
Ig(fT7t), where

1

Tt [Tt
Jre= To 8L, (1/T) La(1/T) /0 /0 b(u —v)a(u — x1)a(v — x9)dudv.

Denoting by fnt the L2-Fourier transform of fr,t, and using Lemma 7.5.3, we have

1
2nTotBLy(1)T)Lo(1/T)
iTt(wi+w) _ 1 LiTt(wi—w) _ 1 __
/ € le ‘ ! b(w)dw.

r (w +w) i(w1 — w)

]?T,t(wla w3) a(—wi)a(—ws)
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By changing the variables w1, wy and w by z1, x2 and u/T, respectively, one has

- o 1 aw/T)  a(—ws/T)
Py, w2) =T fralan /T a2/ T) = 2w T2y (1)T) V2 Tal2 Ly (1/T)\/?

/ eit(zitu) _ 1 git(zi—u) _ 1 Z(u/T)
R i(z1tu) iz —u) TPLy(1/T)

du.

Next, by the Assumptions 1 and 2 and the property of slowly varying functions:
limp oo Li(z/T)L;(1/T) = 1, one has

~ -~ 1 —a
hri(x1,22) = fi(x1, 72) 1=§H(w1)H($2)\$1x2\ /2

/ eit(:rl+u) -1 eit(:pgfu) _
R

! u| P du
i(r1 +u)  i(ze—u) ul™"d (7.92)

for a.e. (w1,22) € R?, where H(z) = Agif z > 0 and H(z) = A if z < 0, with Ay as in
Assumption 1.

By (7.87), when T is large enough, with some constant C' > 0 one has

(w1, 22)| < B (21, 22) := Clarwa| =2 (21| + |21]7¢) (Jw2]¢ + [22] 7€)

.

By Lemma 3.9 of Bai et al. [2015], for small enough ¢, the bounding function hj(xy,z2) in

eit(a:1+u) -1 eit(xg—u) _

1
ot iy Tl (7.93)

(7.93) belongs to L?(IR?).
Therefore, by the dominated convergence theorem, we have
Azt — fellL2m2) = 0.

lim
T—o00

Now we can apply Corollary 7.5.2 to obtain (7.91). Note that the function H(z) in (7.92)
can be omitted since it plays the role of the function A(-) in Proposition 7.3.1. The proof

of (7.91) is complete.
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Next we prove that

lim EBA(t) = 0. (7.94)
T—o00

For simplicity we consider the case t = 1 and set
T T
Dr(x) = / / b(u —v)a(u — z)a(v — z)dudv. (7.95)
o Jo
Then by Assumption 4 and the change of variables u; — Tu; and v; — Tv;, we get
IDr |13 ) < CT* 271 D(a", 87), (7.96)

where

D(a*, ) = / a*j2-1

duldu2dvld1}2/ dz|u; — vl|ﬁ*_1\u1 - x\a*/2_1|vl -z
0,1]4 R

X ug — va|® Hug — |2 oy — 2| /2L (7.97)

By Lemma 7.5.4, the last integral is finite. Since L; and Lo in (7.90) are slowly varying,

for any € > 0 and for large enough 7" we have (see Bingham et al. [1989], Proposition 1.3.6)
Li(1/T) > T~*,  Ly(1/T) > T~%. (7.98)
Therefore, in view of (7.90) and (7.95)-(7.98), we can write
EB%(t) < CTQ(oc*-‘rB*—Oé—B)-i-E—l’

where 2(a* + * — a — ) + € — 1 < 0 by Assumption 4 if € is chosen small enough. This

completes the proof of (7.94). Theorem 7.2.8 is proved. O

Proof of Theorem 7.2.12. To prove assertion (a), we start with the corresponding “time
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domain” kernel in (7.22), namely,

fulay, ) / / fu— o]F (= 20) 7 (0 — 22)3* dudo,
and observe that f; € L?(R?). Indeed, using the equality
/R(u - m)i/Q_l(v — x)iﬂ_ldx = Cplu — v !
with 0 < a < 1 and some C, > 0, and Lemma 7.5.5 with  + 8 > 1/2, one has

/2 fi(w1, x2)2dx ds
R

:C’O%/[ . lup — U1|’B_1|U1 — uz|a_1|u2 — U2|’8_1|’U1 — U2|O‘_1du1dv1du2dvg < 00.
0t

To determine the Fourier transform ﬁ of f;, we truncate f; as follows:

2-1 2-1
fi (w1, 22) / / lu—v|P L (u — a1 )a (v —:L'z)i/ Lu—ay <Ap—as<Aydudy.

Then by the dominated convergence theorem, one has as A — oo
f (@1, 22) = fi(z1,22) in L*(R?).

Thus by Parseval-Plancherel isometry, as A — oo, for the Fourier transforms, we have

~

fA(@1,20) = fi(wy, @) in L*(R?).

Hence we can let A — oo through a suitable subsequence to get

~

Ft(wi,wa) = fi(wy, ws)  ace, (7.99)
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Next, we determine ﬁ explicitly. We apply Fubini’s theorem to obtain

~

A (wr, ws) ::/ei(wlzler?”)ftA(:cl,xg)daﬁldm

t ot
:/ / u — v| Attt w2Y) gy gy,
0 Jo

A A
></0 eilwlyly?m*ldyl ></0 eﬂw?yng/zfldyg. (7.100)

We first deal with the first integral on the right-hand side of (7.100), which we rewrite in

a convenient form. To this end, observe that by formula 3.761.9 of Jeffrey and Zwillinger

[2007]
B . .
lim lw| P e dw = / Jw| P et dw
B—oo _B R
:2/ wP cos(zw)dw = 2|z|*~1T(1 — B) sin(Br/2).
0
Set

B
Mg = sup ]/ lw|Pedw| < oo,
B>0 J-B

and make a change of variable v’ = (u — v)w to obtain
B .
/ lw| =P du < Mglu — v|*~L.
-B

Note also that since 8 > 0, we have

t pt
/ / dudv|u — v|°~ < 0.
0 JO

Hence using the dominated convergence theorem, we can write

t ot
/ / dudv|u — v|5716i(w1“+w2”)
0 JO

1 t t B ‘ ‘
— d 1 —B ’L’UJ(’I.L—’U)d z(w1u+w2v)
2I(1 - B) Sin(ﬁﬂ/Q)/O /0 dudv lim [ Jw|™"e w e
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1 B git(wi+w) _ q git(wa—w) _ 1
= : lim . : |w‘7ﬁdw
2I'(1 — B) sin(B7/2) B=oo J_p i(wy +w)  i(wg — w)
1 00 it(witw) _ q eit(we—w) _ q
- - 101
20(1 = B) sin(Br/2) /_oo ot w) (w—w) T (7.101)

because in view of (7.93) and the fact that h}(xq,z2) € L?(R?), the last integral converges

absolutely.

Next, we focus on the last two integrals in (7.100). By formulas 3.761.4 and 3.761.9 of

Jeffrey and Zwillinger [2007], we have

A 00 00
lim e_myy?f_/%ldy = / e WYy 2= gy — / [cos(wy) — i sin(wy)]y®/*>dy
0 0

A—oo Jo
= |w|"**T(a/2) [cos(am/4) — isign(w) sin(am/4)]

= |w|~**T (a/2) exp [—isign(w)am /4] . (7.102)
Combining (7.99)-(7.102), one gets

1
lw| =P dw

R B F(a/2)2 0 eit(uq-i—w) -1 eit(wz—w) .
fiwn, ws) T 2I(1 — B) sin(Br/2) /_oo i(wy +w)  i(ws —w)

X exp [—i(sign(wq) + sign(wsq))an /4] ]w1w2|_a/2.

The proof of assertion (a) can be concluded using Proposition 7.3.1, and noting that the

factor
exp [—i(sign(w1) + sign(wz))am /4]
in the last formula can be omitted as it plays the role as A®2(w,ws) in Proposition 7.3.1.
To prove assertion (b), we set

eztxfl

T[o,zt](if):/R1[0,,5}(w)ei“”"’dw: —,

(24
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and use the property of Fourier transform for convolutions to obtain

ettl@itu) _ 1 eit(xz—u) -1
/ - - du
r i(xy+u) iz —u)

= /R T (21 + u)ljg g (w2 — w)du = (T[O,t} * T[o,t]> (21 + 22)

o eit(xl-i-IQ) -1

=(Ljo.q - Lo.g) (21 + 22) = Ljg (21 + 22) = (a1 T 72)

So in view of (7.20), the process Z, o can be written as follows:

x +J:
/ a2 G YW (i)
i(r1 + z2) ’

which is the well-known spectral-domain representation of the Rosenblatt process (see
Taqqu [1979]). Thus, the time-domain representation stated in (7.23) follows from Theorem
1.1 of Pipiras and Taqqu [2010].

To prove assertion (c), we set

fil@r, m2) = Ljg o (@1, ) |21 — 22|77,

where > 0, and observe that by (7.101),

~ 1 0 eit(’lerw) -1 eit(u@*w) -1 _’Bd
Jewn, w2) = o5y (B 2) / v w) i)

which, in view of Proposition 7.3.1, implies (7.20) . This completes the proof of Theorem
7.2.12. O

Proof of Theorem 7.2.14. As in the proof of Theorem 7.2.8, we can write

1
TetP0y(T)eo(T)

(Qr — EQr) = Ar(t) + Br(t),

where Ar(t) and Br(t) are given in (7.89) and (7.90), respectively, with L;(1/T") replaced
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by £;(T), j =1,2.
Since (7.21) implies Assumption 4 of Theorem 7.2.8, as in the proof of Theorem 7.2.8,
we get limp_,oo EBZ(t) = 0, implying that the term Br(t) is negligible.

Next, setting

Tt Tt
Jer(x1, x2) _T‘Hﬁﬁl(lT)éQ(T) /0 /0 b(u —v)a(u — x1)a(v — x9)dudv,

we have Ap(t) = Ig(ftyT). Then in view of Lemma 7.5.1, we can write

her(z1,22) :=T foo(Tx1, To)

1 Tt Tt
TotB=1¢, (T)es(T / / b(u — v)a(u — Tr1)a(v — Txa)dudv

//|u—v|ﬂ (=) (0 = 20)§*

(T (u = 1)) ((T(v = x9)) Lo(T'(u — v))
() () 0(T) dudv, (7.103)

where we have applied the change of variables v — u71 and v — vT. Let

t ot
fi(z1,22) = / / lu— v~ (u — xl)ip—l(v - )a/ Ydudo. (7.104)
0 Jo

To complete the proof of the theorem, in view of Lemma 7.5.1, it is enough to show that
for every t > 0,

hir(z1,29) = fi(w1,22) in L*(R?) as T — oo. (7.105)
By the property of slowly varying functions, we have as T' — oo

O(T(u—a1) G(T@w—=2)) Lo(T(u—v))
6@ T a@m T (D)

for u > x1, v > x93 and u # v (recall that ¢o(-) is an even function). Next, by Potter’s
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bound in Lemma 7.5.6, for any € > 0, one has

1 G(T (= 21) 6T = 22)) (T — v))
{u>z1,0>x2} 51 (T) 51 (T) 52 (T)

< CR6(3:17 €2, U, U)a
where
Re(x1, 22, u,v) = [(u — 1) + (v — 21) 1 [(v — 22)G + (v — 22) L [|[u — v|* + |[u —v| 7]
Thus the function hy (21, z2) in (7.103) is bounded by
Lt 2-1 2-1
fre(w1,22) = C/ / lu — v~ (u — xl)i/ (v — ajg)i/ " Re(x1, 2, u, v)dudv.
0o Jo

By choosing € > 0 small enough, as in the proof of Theorem 7.2.12 (a), we can use Lemma
7.5.4 to show that fi.(z1,72) € L*(R?). Then the dominated convergence theorem can be

applied to obtain (7.105). Theorem 7.2.14 is proved. O



Chapter 8

Behavior of the generalized Rosenblatt process

at extreme critical exponent values

8.1 Introduction

Maejima and Tudor [2012] considered recently the following process defined through a

second-order Wiener-Ito integral:

Ty malt) = A /R UO (5 — 21)7 (5 — 22)ds | B(de1)B(das), (8.1)

where A # 0 is a constant, B(-) is a Brownian random measure, the prime ' indicates the
exclusion of the diagonals x1 = x2 in the double stochastic integral, and the exponents

71,72 live in the following open triangular region (see Figure 8.1):
A={(r,72): —1<m<=1/2, —1<y2<-1/2, 1+ > -3/2}. (8.2)

This ensures that the integrand in (8.1) is in L?*(R?), and hence the process Z,, ,(t) is
well-defined (see Theorem 3.5 and Remark 3.1 of Bai and Taqqu [2014a]).
We shall call Z,, -,(t) a generalized Rosenblatt process. The Rosenblatt process Z.(t)

(Tagqu [1975]) becomes the special case
Zy(t) = Z, (1), —3/4<y<—1/2. (8.3)

Recent studies on the Rosenblatt process Z,(t) include Tudor and Viens [2009], Bardet



202

(-1,-3) e (=3,—3)

€1

Figure 8.1: Region A defined in (8.2).
The three edges of the triangle are named ej, e; and d (diagonal), while the middle line segment
(symmetric axis) is named m.

and Tudor [2010], Arras [2013], Maejima and Tudor [2013], Veillette and Taqqu [2013]
and Bojdecki et al. [2013]. The Rosenblatt and the generalized Rosenblatt processes are of
interest because they are the simplest extension to the non-Gaussian world of the Gaussian
fractional Brownian motion.

Fractional Brownian motion By (t), 1/2 < H < 1 is defined through a single Wiener-It6

(or Wiener) integral:

Bu(t) = C/R [/Ot(s - x)fg/zds} B(dx),

and has covariance
C/
EBp(s)Bu(t) = -5 (s + [ = [s = ¢*7) (84)

where C' and C’ are two related constants. Fractional Brownian motion reduces to Brow-
nian motion if one sets H = 1/2 in (8.4). Fractional Brownian motion has stationary
increments and, for any 1/2 < H < 1, these increments have a covariance which de-
creases slowly as the lag increases. This slow decay is often referred to as long memory or

long-range dependence. Fractional Brownian motion is also self-similar with self-similarity
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parameter (Hurst index) H, that is, By (At) has the same finite-dimensional distributions as
M By (t) for any A > 0. It follows from Bai and Taqqu [2014a] that the generalized Rosen-
blatt process Z,, ~,(t) is also self-similar with stationary increments with self-similarity
parameter

H=v+4+v+2¢€(1/2,1). (8.5)

We get 1/2 < H < 1 because 71,72 < —1/2 imply H < 1 and v + 72 > —3/2 implies
H>1/2.

Fractional Brownian motion and the generalized Rosenblatt process Z,, ,,(t) belong
to a broad class of self-similar processes with stationary increments defined on a Wiener
chaos called generalized Hermite processes. The generalized Hermite processes appear
as limits in various types of non-central limit theorems involving Volterra-type nonlinear
process. In particular, the generalized Rosenblatt process Z, ,,(t) can arise as limit when
considering a quadratic form involving two long-memory linear processes with different
memory parameters. See Bai and Taqqu [2014a, 2015b,c] for details.

It will be convenient to express the generalized Rosenblatt process as follows,

Zooa® =5 [ | [l =000 = aa s = )P 07| Bl Bl
(8.6)
where we replaced the kernel A fg (s — 1)} (s — x2)}?ds by its symmetrized version. The
process Z,, ~,(t) remains invariant under such a modification.

The goal of this chapter is to study the distributional behavior of the standardized
Z+, ~o(t) (where A in (8.6) is chosen so that Var[Z,, ,,(1)] = 1), as (71, 72) approaches the
boundaries of the region A defined in (8.2).

We show that on the diagonal boundary d, the limit is Brownian motion. On each of
the two symmetric boundaries e; and es of A, the limit is non-Gaussian: it is a fractional

Brownian motion times an independent Gaussian random variable. We give two different

proofs of this convergence, one based on the method of moments, and one which provides
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more intuitive insight. We also give the rate of convergence to the marginal distribution
in the preceding two cases.

The situation at the corners is particularly delicate. At the corner (v1,72) = (—%,—3),
the limit process is a linear combination of two independent degenerate chi-square pro-
cesses. At the other two corners, the limit is a linear combination of two processes: a
Brownian motion and the product of another Brownian motion times an independent Gaus-
sian random variable. These linear combinations, which depend on the direction at which
the critical exponents approach the corners, will be given explicitly.

We also show that the convergences mentioned cannot be strengthened from weak
convergence to L%(£)) convergence, nor even to convergence in probability.

The chapter is organized as follows. In Section 8.2, we state the main results with
proofs in Section 8.3. In the following three sections, we provide some additional results:
showing that L?(Q) convergence cannot hold, establishing the rate of marginal convergence
on the boundaries d, e; and es, and giving an alternate proof of the convergence on the

boundaries e; and es.

8.2 Main results

In the following theorems, we let = denote weak convergence in the space C|0,1] with
uniform metric. The multiplicative factor A in (8.6) is chosen so that Var[Z,, ,,(1)] = 1.
See (8.21) below for an explicit expression.

We focus first on results concerning the behavior of Z,, ., (t) as (v1,72) approaches the
boundary of A in (8.2), excluding the corners. Theorem 8.2.1 involves convergence to the

diagonal edge d of A, where the limit is Brownian motion. See Figure 8.2.

Theorem 8.2.1. Let Z,, 1,(t), (71,72) € A, be defined in (8.6) with A = A(y1,72) in

(8.21). When v1 + 2 — —3/2 with v1,7v2 > —1 + € for arbitrarily fived € > 0, we have

Zoyi e (8) = B(1), (8.7)
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Figure 8.2: Illustration of limit taking in Theorem 8.2.1

where B(t) is a standard Brownian motion.

One has 1 + 72 = —3/2 all through the diagonal d. The corners of the triangle are
excluded by the requirement 71,72 > —1 + €. Convergence to Brownian motion in (8.7)
is expected heuristically since the self-similarity parameter H = v + 72 + 2 — 1/2 (see
(8.5)), and 1/2 is the self-similarity parameter of Brownian motion.

The next Theorem 8.2.2 involves convergence to either one of the two sides e; and es
of A. The vertical side e; and the horizontal side ey are parameterized respectively by

(=1/2,v) and (y,—1/2) where —1 <y < —1/2. See Figure 8.3.

Theorem 8.2.2. Let Z,, 1,(t), (71,7%2) € A, be defined in (8.6) with A = A(y1,72) in
(8.21). When (y1,72) — (=1/2,7) or (v1,72) — (v,—1/2), where =1 < v < —1/2 , we
have

Zoy () = WB,5(t), (8.8)

where Bv+3/2(t) is a standard fractional Brownian motion with self-similarity parameter

v +3/2, and W is a standard normal random variable which is independent of B 3/5(t).

Remark 8.2.3. The convergence (8.8) is more involved since W B, 3/5(t) is a self-similar
process with stationary increments having self-similarity parameter H = v+3/2 € (1/2,1),
and hence displays long-range dependence. This convergence may be understood heuristi-

cally as follows: Z,, ,,(t) in (8.1) can be regarded as an integrated process of a long-range
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Figure 8.3: Illustration of limit taking in Theorem 8.2.2

dependent bilinear moving average of white noise. This bilinear moving average involves
a double summation. As the exponent 41 — —1/2, the corresponding summation yields a
term which is extremely persistent, so that it behaves like a frozen Gaussian variable which

is independent of the fractional noise defined through the other summation.

Remark 8.2.4. Although intuitively the generalized Rosenblatt processes Z,, ~,(t) in (8.1)
form a richer class than the Rosenblatt process Z,(t) in (8.3), they are both self-similar with
stationary increments, and hence have the same covariance (8.4) when 2y = v; + 2. To
show that they are different processes, one can compare the higher moments, as was done
in Bai and Taqqu [2014b]. The convergence (8.8) provides another evidence that there are
values of (v1,72) for which Z,, -, (t) is different from Z,(t). Indeed the limit W B, 3/,(t)
has a symmetric marginal distribution (the so-called product-normal distribution), while
the marginal distribution of the Rosenblatt process Z,(t) is skewed with a nonzero third
cumulant (see (10) and (12) of Veillette and Taqqu [2013], or set v1 = 2 = ~ in (8.20)
below).

Note that in Theorem 8.2.1 and 8.2.2, we exclude the three corners (y1,72) = (—3,—3),
(—=1,-1/2) and (—1/2, —1). It turns out that the limit behavior of Z,, ., (t) at these corners
depends on the direction these corners are approached. Due to the symmetry of Z,, -, ()

in (v1,72), it is sufficient to focus on the case 1 > 72, that is, we focus on the subregion
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of A in (8.2) delimited by line segments e1,d and m in Figure 8.4.
Consider first the corner (y1,7v2) = (—1/2,—1). We will approach it through the line

1
V2 p_1('71+ /2) =1,

which can also be expressed as
Mm+r2+3/2
Y2+ 1

The line passes through the corner (—1/2,—1) and has a negative slope of 1/(p — 1),
0 < p < 1. See Figure 8.4. When p = 0, the line coincides with the diagonal edge d of the
triangle A, which has slope —1. When p = 1, the line coincides with the vertical side e

of A, which has slope —oo0.

(-1,-3%) e (—3:—3)
3-b :
Y2 4
Ly
2!
(—=3.-1)

Figure 8.4: Illustration of limit taking in Theorem 8.2.5

Theorem 8.2.5 (The corner (v1,72) = (—1/2,—1)).
Let Zy, 4, (t), (71,72) € A, be defined in (8.6) with A = A(vy1,72) in (8.21). Suppose that
v > v2. If (1,72) = (=1/2,—1) in such a way that

71+72+3/2:1 Y +1/2

— p€|0,1], 8.9
T+l w1 Pl 59

then

Zoi s () = X,(t) = p'PWB(t) + (1 - p)'*B'(t), (8.10)
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(—1,-3%) e (=3:—3)
/
e1
Y2 d
L 7
(—=3.-1)

Figure 8.5: Illustration of limit taking in Theorem 8.2.7

where W is a standard normal random variable, B(t) and B'(t) are standard Brownian

motions, and W, B(t) and B'(t) are independent.

Remark 8.2.6. In Theorem 8.2.5, the limit X,(¢) is an independent linear combination of
the two limits obtained in Theorem 8.2.2 and 8.2.1 (edges e; and d), after setting v = —1
in Theorem 8.2.2. Note that since v + 3/2 = —1 4+ 3/2 = 1/2, the fractional Brownian

motion B, 3/5(t) in Theorem 8.2.2 becomes Brownian motion B(t).

Consider now the corner (v1,72) = (—1/2,—1/2). We will approach it through the line

1
Y2 = ;(% +1/2) - 1/2,

which passes through it and has a positive slope of 1/p, 0 < p < 1. See Figure 8.5. When
p = 0, the line coincides with the vertical side e; of A, which has slope +00. When p =1,

the line coincides with the middle line m, which has slope 1.

Theorem 8.2.7 (The corner (v1,72) = (—1/2,—1/2)).
Let Zy, +,(t), (71,72) € A, be defined in (8.6) with A = A(vy1,72) in (8.21). Suppose that

m = v2. If (1,72) = (=1/2,—1/2) in such a way that

1 +1/2

i el (8.11)
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then

Zyi (1) = Y(2)

R V) N U et /) S

Ve T VR e

: (8.12)

where X1 and X9 two independent standardized chi-squared random wvariables with one
degree of freedom (with mean O and variance 1). The case p = 0 is understood as the limit

as p — 0.

Remark 8.2.8. Since by (8.5), the self-similarity parameter H equals v; + 72 + 2, we
get that H tends to 1 as (y1,72) — (—1/2,—1/2). It is known (see e.g., Theorem 3.1.1
of Embrechts and Maejima [2002]) that the only self-similar finite-variance processes with
stationary increments having H = 1 are degenerate processes. We see this in Theorem

8.2.7, where the limit is a random variable multiplied by t.

Remark 8.2.9. In Theorem 8.2.7, if p = 1, Y, (¢) reduces to tX;, where X, is a standard-
ized chi-squared random variable with one degree of freedom. Consider now the standard-
ized Rosenblatt process Z,(t) in (8.3). In this case, y1 = 72 = 7 and thus p = 1, which
corresponds to the middle line m in Figure 8.5. From Theorem 8.2.7, we conclude that if
v — —1/2, then the limit is tX;. This is consistent with a previous result of Veillette and

Taqqu [2013], that the limit is a standardized chi-squared random variable when ¢ = 1.

Remark 8.2.10. If p = 0, Y,(t) = X1 — X3), which has the same distribution as

¢
L
t (WB), where W and B are two independent standard normal random variables (see
(8.31) below). This is consistent with Theorem 8.2.2, where on the edge e; the limit is
W B, 3/2. This tends, as v — —1/2, to W - Bi(t) = W - B -t = t(WB), where B is a

standard Gaussian random variable.
Remark 8.2.11. Theorems 8.2.1 to 8.2.7 are consistent with Theorem 3.1 of Nourdin and

Poly [2012], stating that the limit of a double Wiener-It6 integral can only be a linear

combination of a normal and an independent double Wiener-It6 integral.
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Remark 8.2.12. Theorem 8.2.5 and 8.2.7 concern the limit behavior of Z,, -, (t) as (y1, 72)
approaches the corners along some straight-line direction. What happens if one does not
approach the corners following a straight-line direction? Then, there will be no convergence.

To see this, consider the case of Theorem 8.2.5 (a similar argument can be made for

Theorem 8.2.7). Let
"+ 72 +3/2

oo e U

P(’Ylv’YZ) =

parameterize the straight-line direction. Suppose that p(+1,72) does not converge as (1, v2)
approaches the corner (—%, —1). Then there are two subsequences of (1,72), such that
p(71,72) of the first subsequence converges to p; and p(+1,72) of the second subsequence
converges to p2, with p; # pa. By Theorem 8.2.5, the corresponding processes Z,, ~,(t)

converge to two different limits. Therefore, the original process Z,, ,,(t) does not converge

if (y1,72) does not follow a straight-line direction.

8.3 Proof of the main theorems

Since we will use a method of moments, we state first a cumulant formula for a linear
combination of Z,, ., (t) at finite time points. We let k,,(-) denote the m-th cumulant. In

the following proposition, the constant A in (8.6) is arbitrary.

Proposition 8.3.1. The m-th cumulant (m > 2) of > | ¢iZ~, 4, (ti), ¢i € R, t; € [0,00),
equals

" 1
Km (Z ciZ,yl,w(ti)> = g(m — DA™ Cpi (1,725 t, €), (8.13)
=1

where

tiy Lip,
Con(11,72:t,¢) = > Z ..cim/ dsl.../ dsm
0 0

O'E{]. 2}m 7417 ﬂm—l

Yo ; +m, T

+(sjo1 — 85)4 B(Yo, +1,~%; = Yo1_, 1)], (8.14)

'Yo +’Y / +1
|: — Sj— 1 + B(’YU‘;_I +1, ~Yo; — Vo

Jj—1

_]_)
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where
1 00
B(z,y) = / w11 —w)Y du = / w14 w) " Ydw, x,y >0, (8.15)
0 0
is the beta function, the sum runs over o = (01,...,0m) with o; = 1 or 2, and o' is the
complement of o, namely, o, =1 ifo; =2 and o} =2 if o, =1, i = 1,...,m. Moreover
oy =00, and So = Sy, 1 =1,...,m.

Proposition 8.3.1 is an extension of Theorem 2.1 of Bai and Taqqu [2014b]. We shall
use the following cumulant formula for a double Wiener-It6 integral (see, e.g., (8.4.3) of

Nourdin and Peccati [2012]):

Lemma 8.3.2. If f is a symmetric function in L*(R?), then the m-th cumulant of the
double Wiener-It6 integral X = f[éz fly1,y2)B(dyr)B(dys2) is given by the following circular

integral:

Fim(X) = 27 (m — 1) - F1,y2) F W2, 53) -+ F Wme1s Ym) f Yms 1) A1 - Ay

Proof of Proposition 8.3.1. Set

A
g(z,y) = 5(33113/12 + 2Pyl

Let

t
B y) = / o(s —, 5 — y)ds,
0

and observe that h; is symmetric. So using the linearity of the Wiener-Ito integral and

Lemma 8.3.2, we have

Km (Z ciZ’h,’Yz (tl)>

=1
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=Km, 'y cihe,(z1,x2) B(dz1)B(dx2)

(L2 )
i=1

=2m"(m — 1)! X 1

=21 1)!/Rmd 31;[1

n

)]
moog
=2""(m — 1) Z Ci Ci dXH ’ (s; —xj,8; — xjy1)ds;
: i1 v+ Cim ) g\S; 3> 5] J+1)455,
j=1

. - R™
B1yeenyim=1

n
> cihu (@), 2541
=1

and hence

n 1 . n
Km <Z CiZ’Yl,’YQ(ti)> = E(m - 1A Z Ciy « - Cip, X

i=1

tild timd " N N PN ) 2(ss — xa )M d
0 S1... 0 Sm Rm H[(Sg z) 1 (s5 = wjp1) ¥ + (85— 25) P (85 — wj) dx ),
(8.16)

where we view the index j as modulo m, e.g., T,;ymy1 = 1.

Then using the notation in the statement of Proposition 8.3.1, one has

I:= /m H (s — )1 (55 — 2j) P + (55 — ) P (55 — 2j41) ] dx
j=1

n Yo ; ’YO'I.
= 2 [ T o) )i

oe{1,2}m

m ' 70/‘1
— . . J . J—
= 3 [ Tty = )Y (s =)
oef1,2ym IR j=1

and thus

m
Yo +Ver 1
r= > ]I {(Sj —si-)r 7 B 1% — Yo
oe{1,2}m j=1

L b

’Yoj +'Yg;__l+1

+ (8521 — 85)4 B, + 1=, =1, , — 1), (8.17)
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where we have used the following relation valid for a,b € (—1,—1/2):

/(sl—u)i(sru)gdu = (s2—51) 7" B(a+1, —a—b—1)+(s1—52) T B(b+1, —a—b-1).
R

(8.18)
(See Lemma 3.2 of Bai and Taqqu [2014b].) Substituting (8.17) into (8.16), equation (8.13)

is obtained. O

Note that EZ,, ,(1) = 0 by the property of Wiener-It6 integral, and hence the second
and the third moments coincide with the second and the third cumulants. As two special
cases of Proposition 8.3.1, one has the following explicit formulas for the second and the
third moment of the generalized Rosenblatt distribution (Bai and Taqqu [2014b], Theorem
2.1):

The second moment of Z,, ,(1) is

A2
Y1+ 72 +2) (207 +72) +3)

p2(71572) =
X Bl +1,-m =7 = DB +1,-71 =12~ 1)

+ By +1, -2y — 1)B(y2 +1,~ 272 — 1)], (8.19)

The third moment of Z,, ,,(1) is

2A3
Y1+ 72 +2)(3(v +72) +5)

p3(v1,7v2) =

X { Z B(701 + 17 Yo — f)/cré - 1)3(70’1 + 17 _70'1 — Yoo — 1)
oe{1,2}3

X B(’Yaé +1, 770& — Yos — 1)3(70’1 + Yoo + 2a’70’2 + Yos3 + 2) . (820)

To standardize Z,, 4, (t), we set pa(y1,72) = 1. By (8.19), this determines the constant
A as:

1/2
A(y1,72) =[(n + 72 +2) 201 +72) +3)]
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X |Bmi+1,—y1 =7 —1)B(yp+1,-—y —7—1)

—-1/2
+BMm+1,-2n-1)BM+1,-29-1) . (8.21)

8.3.1 Proof of Theorem 8.2.1

We will use a result for bounding integral of powers of linear functions in Euclidean space.
First some notation. Let Li(s) = (w1,s),..., Li,(s) = (W, s) be linear functions on R”,

where (-, -) denotes the Euclidean inner product. Let
m
P(s) = [T ILs(s)1%
j=1
Set T'= {w1,..., Wy, }. For any nonempty W C T, define
S(W) =T nspan{W}, (8.22)
where span{W} denotes linear subspace spanned by W, and define the quantity

dP,W)=W|+ 3«
j:WjES(W)

where |W| is the cardinality of the set W. Then we have the following so-called power

counting lemma:

Lemma 8.3.3 (Theorem 3.1 of Fox and Taqqu [1987] ). Suppose that

d(P,W) > 0. (8.23)
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for any W C T which consists of linearly independent w; st Then

/ P(s)ds < 0.
[0,1]"

Lemma 8.3.4. The function

Fat, . am) = / (51— 5| [s2 — 5117 .5 — s [®mds (8.24)
0.1

s finite and continuous on the domain

m
D:{(al,...,am): o; > —1, Zai+m>1}. (8.25)

=1

Proof. We first show that f(ai,...,a;) < co on D using Lemma 8.3.3. Following the
notation introduced for the lemma, we have Li(s) = $1 — Sm, La(s) = s2 — S1,...,
Lin(s) = $m — Sm—1, and hence wi = (1,0,...,0,—1), wo = (—1,1,0,...,0), ..., Wy, =
(0,...,0,—-1,1) and T = {wy,..., Wy }.

It is easy to see that a subset W C T consists of linearly independent w;’s if and only
if W] <m — 1. When |W| < m — 2, the set S(W) defined in (8.22) is equal to W. The

condition (8.23) is satisfied in this case because each a; > —1 and hence

DP,W) =W+ >  a; > [W[+ Y (=1)=[W[-[W[=0.
Jjw,;eS(W) jiw;eW

When |W| = m — 1, one has span(W) = T, and hence S(W) = T. Thus the condition

(8.23) in this case becomes

D(P,W)=m—1+) a; >0,
=1

'Theorem 3.1 of Fox and Taqqu [1987] states that it is enough to consider W C T consisting of linearly
independent w;’s with negative exponent c;’s. This is because the non-negative exponents a;; cannot make

the integral f[o 1 P(s)ds blow up.
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which is satisfied in view of (8.25). Hence the integral f(aq,...,q;,) in (8.24) is finite by

Lemma 8.3.3.
To verify the continuity of f(«i,...,y,), suppose that as n — o0, o, — a :=
(a1,...,m). Then for large n, o, > ¢ := (a1 — €,...,Q;, — €), where the small € is

chosen such that a.. € D. Denote the integrand in (8.24) by I(s; ), and recall that I(s; cx)
is decreasing in every component of a. Hence when n is large, I(s; ) < I(s; o). Since
I(s; ) is integrable, we can apply the Dominated Convergence Theorem to obtain the

convergence f(a,) — f(a) as n — oo, proving the continuity. O

In the following corollary, the exponents are supposed to be away from the boundary

of the set D defined in (8.25).

Corollary 8.3.5. Let C1,Cy be two fized constants such that C1 > —1 and Cy > 1. Then

the function f(ai,..., o) defined in (8.24) is bounded on the domain
D(Cy,C2) = {(al,---,&m) Doy > O, Zai +m > C'z} :
i=1

Proof. Let M be a large positive constant. Define

D (Chr, C2) = D(C1,Ca) N (—o0, M|™

:{(al,...,am): Ci<a; <M, Zai+m202}.

=1

Since Djys(C1,C9) is a compact subset of D in (8.25), and f(aq,...,q,) is continuous on
D by Lemma 8.3.4, we deduce that f is bounded on Dj;(C1,C3). The boundedness on

D(C4, Cs) follows since f decreases when any «; increases. O

Lemma 8.3.6. Let A(y1,72) be as in (8.21), where (y1,72) € A which is defined in (8.2).

Then there exits a constant C > 0 independent of y1 and v such that

|A(71,72)| < C12(71 + 2) + 3]V/2.
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Proof. This is immediate by noting that the beta function IB(x,y) defined in (8.15) is
decreasing in x and in y. Since in addition A is a bounded region, the beta functions in
(8.21) are bounded from below, and hence the factor with negative power —1/2 in (8.21)

is bounded from above. O

The following hypercontractivity inequality for multiple Wiener-It6 integral (see, e.g.,

Corollary 5.6 of Major [2014] or Theorem 2.7.2 of Nourdin and Peccati [2012]) is useful:

Lemma 8.3.7. For any m € Z, there exists a constant Cp, > 0, such that
ElL(f)P™ < Co (BIIL(F))™,  for all f € L*(R).

Tightness of standardized Z, ,,(t) in C|0, 1] will follow from the following lemma:

Lemma 8.3.8. Let Z,, ,(t) be as in (8.6) with A as in (8.21) and (y1,72) in the region
A defined in (8.2). Then there exists a constant C > 0 which does not depend on 1,72,

such that for all 0 < s <t <1,
E‘ZWL’YZ (t) - Z'y1,72(3)’4 < C(t — 5)2,

which implies that the law of {Z,, 5, (t) : (71,72) € A} is tight in C0, 1].

Proof. Using Lemma 8.3.7, self-similarity and stationary-increment property of Z., ., (%),

one has

2
E|Z'71,72 (t) — Zo o (S)’4 <Gy (E|Z’71772 (t) — Z'ylﬁz(s)|2)

= Cy(t — s)M < Oy(t — 5)?,

where H :=y1+v% +2>1/2and 0 <t—s <1. So Z,, ,,(t) by Kolmogorov’s criterion

admits a continuous version. Tightness follows from, e.g., Prokhorov [1956] Lemma 2.2. [J

We now prove Theorem 8.2.1. By Lemma 8.3.8, tightness in C|0, 1] holds. We are left
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T . S .d.d.
to show convergence of finite-dimensional distributions (fH ). From here on, we let C' and

¢ denote constants whose values can change from line to line.

d.d. o . . .
Proof of f—) Theorem 8.2.1. Due to self-similarity and stationary increments, the covari-

ance of the standardized Z,, ,,(t) is

EZ

1
e (,5;)Z,717ﬂ{2 (t) = 3 (8271+272+4 + 224 s — t|271+272+4) . t,s>0,

which converges to the Brownian motion covariance EB(s)B(t) = s At = S(s+t— [s —t|)

as y1 + 72 — —3/2. By using the method of moments, it is sufficient to show that

Fom (Z CiZn1 o (ti)) -0, m>3. (8.26)
=1

As y1 +7v2 — —3/2, the factor A(y1,72) in (8.21) converges to zero by Lemma 8.3.6. It
is therefore sufficient to show that for m > 3, and 1,72 > —1+e¢, the factor Cy, (71, 72; t, €)
n (8.14) is bounded.

Under the constraints 71 + v2 > —3/2 and 71,72 > —1 + € (or equivalently 1,72 <
—1/2 — €), the factors B(’yg;_l +1, =%, — Vol — 1) and B(vs; + 1, =7s; — Vol — 1) are
bounded by a constant C' > 0 for any o and j. This is because the beta function B(x,y)
defined in (8.15) is bounded if both z and y stay away from a neighborhood of 0. Choosing

T > max(t1,...,t,), one then has

’Ya+'Y/ +1
Conl1, 723, €)| <C Z/ dsHys]ﬂ] N

ce{l,2}m

'Ya +'YO. +1
<C Z /01] dsH]s]—s] 1 ,

ce{l1,2}m

where the last constant C depends on 7', m and e.

We now want to apply Corollary 8.3.5 to establish the boundedness of each of the term
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in the preceding sum. Using the notation in Lemma 8.3.4, we set
O = Yo; Yo, + 1.

Recall that Vo, and 7y, | are either ~1 or v and Yo; + Yo, =71 + 2. Now since y1 + 792 >
J— J
—3/2 and v; > —1 + ¢, we have

27 + 12> =1+ 2e, if o

j—1 = 035

Qj
Mt+y+1>-3/2+1=-1/2, if 02-_1 # 0j;
We get aj > Cp := —142e > —1.
On the other hand, when m > 3,

>(Cy:==>1.

m 3
2 2

m
Zozi +m=m(y1 +72) +2m >m(-3/2) +2m =
i=1

So Corollary 8.3.5 can be applied to deduce the boundedness of |Cy,(71,72;t,c)| when

1,72 > —1 + €, and the proof is thus concluded. 0

Remark 8.3.9. Theorem 8.2.1 involves convergence to a Gaussian process. In this case,
according to the results of Nualart and Peccati [2005] and Peccati and Tudor [2005], it
suffices to show that (8.26) holds for m = 4 and n = 1. Focusing on the fourth cumulant,
the covariance structure, and the one-dimensional distribution, however, does not simplify

significantly the proof as can be seen by examining the proof of Theorem 8.2.1.

8.3.2 Proof of Theorem 8.2.2

Lemma 8.3.10. Suppose that o > —1, then for any t1,t2 € R,

t1 to 1
x1 — 2o|%dridry = —————————— ([t1 |2 + [t2|F2 — |t — to]*T?) .
L] e = maptdandes = e (0172 4 a2 — s 1)
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Proof. Suppose 0 < t1 < to. The other cases are similar. Then

t1 to
/ / ]a;l — xg\adazldxg
0 0
t1 t1 t1 to
= / / ]a:l — xg\ada:ldxg +/ / (332 — xl)adxgdxl
0 0 0 t1
2 1

" @iD@inl TarnErgte 4T - tmwT
CE 1)1(a Ty A7 BT~ (2 0)

O

Below the notation A ~ B means asymptotic equivalence, namely, the ratio A/B
converges to 1. We include first a fact about the asymptotics of the beta function B(-,-)

when one of the exponents approaches the boundary.

Lemma 8.3.11. Let 0 < by < by < 0o. Then as a — 0, we have
aB(a, ) =1

uniformly in 5 € [by, b1]. Since the beta functions is symmetric, we also have aB(f, ) — 1

as o — 0 uniformly in 5 € [bg, b1].

Proof. Assume without loss of generality that by < 1 < b;. Fix any small € > 0. Then

B(a, B) = /06 xo‘_l(l —x)ﬂ_ldac—i—/l :L‘O‘_l(l —x)ﬁ_ldac =: I1(«a, B;€)+ Iz (v, B;€). (8.27)

€

For I (a, B;€), we have

€
a e (1 - e)bl_l = / 2 (1 — e)bl_l <
0

Ii(a, Bre) < / 2 tr(1l — e)bol = a7 le¥(1 — €)o7 L,
0
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This yields that

(1-—eP < liminf oli(a,B,€) < limsup ali(a, B,e) < (1 —e)07 L (8.28)

a—0,8€[bo,b1] a—0,8€[bg,b1]

For Iy(a, B;€), it is uniformly bounded with respect to e < 1 and f as follows:
1
I(a, Bse) < eo‘_l/ (1 —2)PYde = 718711 — €)? < e oy (1 — €)'e. (8.29)
Combining (8.27), (8.28) and (8.29), we get

(1-e) 1< liminf «aB(a,f) < limsup aolB(a,f) < (1—e) L,
a—0,4€[bo,b1] a—0,B8€[bo,bi]

Since € is arbitrary, we get that aB(a, ) — 1 as a — 0. O

The limit alB(«, 8) — 1 as a — 0 will be used extensively, mostly in the form
B(a,B) ~a™t = co.

Lemma 8.3.12. Let WB,3/5(t) be the process given as Theorem 8.2.2. We also include
the case v = —1 where B,y+3/2(t) = Bl/Q(t) 18 Brownian motion. Then the m-th cumulant

of the linear combination of W B, 3/5(t) at different time points is given by

Km (Z CiWBry+3/2(ti)> =
=1
m/2

n
Ci, C;
(m =D D0 =0 (a7 + 74— [, — 5, [277) (8.30)

i1,i9=1
if m is even, and 0 if m s odd.

Proof.

Z ciWB,3/2(ti) =W Z ciByy3)o(ti) = oW Z,
i1 i=1
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where Z is a standard normal random variable which is independent of W, and

n 1/2 n 12
o= (Var > ciByigp(t) > = |E > cicinByispalti)Bygasa(tiy)
i=1 i1,i2=1
1/2
GG 27+3 2743 2v+3
= Z % (|ti1| i =+ ‘ti2| T — |ti1 _ti2| i ) ’
i1,i2=1
using the covariance of fractional Brownian motion. Then note that
L (WH+2\> (W-2\°
wz=1 (*) - <) , (8:31)
2 V2 V2
2 2
where Z? = [W\;%Z ] and 73 = [W\/}Z } are two independent x? (chi-squared random

variables with one degree of freedom). The independence is due to the fact that Z + W
and Z — W are uncorrelated. Since the m-th cumulant of a x? variable is 2"~ (m — 1)!,
and using the scaling property and the additive property of cumulant under independence,

we have

ki (W Z) = ()" Ihm(ZD) + (~1)" k(23]

— (%)m 27 (m — D)+ (—=1)™2™ L (m — 1)),

which is equal to 0 if m is odd, and equal to o™ (m — 1)! if m is even, proving (8.30). [

Remark 8.3.13. Starting with the x? characteristic function ¢(t) = (1 — 2it)~1/2, it is
easy to derive using (8.31) that the characteristic function of the standard product-normal

distribution WZ is ¢(t) = (1 + )~ /2.

In view of Lemma 8.3.8, we are left to prove the convergence of the finite-dimensional

distributions (fd—d>) in Theorem 8.2.2.

Proof of f'd—'df in Theorem 8.2.2. By the Cramér-Wold device, we need to show as y; —
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—1/2 and v — v € (—1/2,—1) that

n
d

D eiZya(ti) =D W B, ga(t:).
=1 =1

Since Y 7" | ¢;W B, 3/2(t;) has an analytic characteristic function (Remark 8.3.13), its dis-
tribution is moment-determinate. And hence we can apply a method of moments here.
In fact, by Theorem 3.4 of Nourdin and Poly [2012], only a finite number of moments are
required to prove convergence in distribution.

The cumulant formula of >~ | ¢;Z,, ~,(t;) is given in Proposition 8.3.1, which involves
the factors A(v1,72) in (8.21) (recall that Z,, ,, is standardized) and Cp,(v1,72;t,¢) in
(8.14). Assume m > 2 below.

Examining A(v1,72), by Lemma 8.3.11, one can see that as 71 — —1/2 and v2 — 7,

A 2)™ ~ [y +3/2)(2y + 2] [B(1/2,—y = 1/2)B(y + 1, =y — 1/2)

+ B(1/2,~2y — )B(y + 1, -2y — 1)] ™2,

The first two and the fourth beta functions are bounded but the third blows up since
B(1/2,-2y1 = 1) ~ (=271 - 1)~

as y1 — —1/2 by Lemma 8.3.11. Hence as 73 — —1/2,

Alyr, )™ ~ [(y +3/2)(2y + 212 [B(1/2,—2n — DB(y +1,-2y — 1)] "/

~ (=271 = )™y + )™ (y + D)™ EB(y + 1,2y - 1)7™/2, (8.32)

which converges to zero.
On the other hand, in the expression of Cp,(y1,72;t,c) in (8.14), the only factors
diverging to oo as y1 — —1/2 and 5 — ~ are IB('yJ;_il 1LY, = Yo, — 1) and B(v,; +

L =0, ol T 1) and only when o; = 9,1 =1, because —7,, Yo, — 1=-2v-1-0
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and hence the beta functions each diverge like (—2y; — 1)~! by Lemma 8.3.11. To get the

highest order of divergence to co, one chooses o € {1,2}" such that o; = O';-_l = 1 happens

as many times as possible.

In the case m is odd,

max #{j:oj=0; 1 =1,j=1,...,m}=(m—1)/2,

cef{1,2}m
because if 0; = ;_1 =1, then a} = 2, and we therefore cannot have 041 = U;. =1. So
Cin(11, 7238, €) ~ eB(1/2, =271 = )" V2 v o2y — 1)~ "D, (8:33)

which diverges to co as 71 — —1/2. By (8.32) and (8.33), when m is odd,

- 1
Fom (Z cizvm(ti)> = 5(m=1)!A(71,72)" Cm (1,725, €) ~ e(=2m —1)/2 5 0. (8.34)
=1

When m is even, the sequences o for which one has the greatest number of j’s such

that o; = 1= 1is

argmax #{j : o :0;-_1 =1,7=1,....m}=(1,2,1,2,...,1,2) or (2,1,2,1,...,2,1),
oce{1,2}m

(8.35)

and one gets maximally m/2 number of j’s where 0; = ¢,_; = 1. The product of the
m/2 contributing beta factors diverge like (—2y; — 1)™/2. But since the case m even will
yield a nonzero limit, we need to keep track of the multiplicative constants. Because o =
(1,2,1,2...,1,2) and 0 = (2,1,2,1,...,2,1) yield the same term, one has as y; — —1/2

and o — v that

n

Con(y1:723t,€) ~2(=291 = 1)7™2 | Y ey e, By +1,-2y — 1)™/?

il:---vinzl
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tiy tim
X / / ’51 —82|27+1|83 —54’2W+1...|8m71 —Sm|27+1dS
0 0

=2(=2m — )72y +3) "2 (y + )TPB(y + 1, -2y = )"
n m/2

X Z % (‘tzj ’27—"_3 + ’ti2‘2’y+3 - ‘tld - ti2|2’y+3) ’ (8'36)

i1,d0=1

where the asymptotic equivalence ~ in the first line can be justified by the Dominated
Convergence Theorem, and the last equality is due to Lemma 8.3.10.

Combining (8.13), (8.32) and (8.36), one gets as v — —1/2 and v2 — v that for m

even,
n
Km (Z CiZ’Yh’Yz (tl)> -
i=1
" m/2
Ciy Ci
(m - 1)! Z % (‘ti1|2fy+3 + |ti2‘2’Y+3 - ’ti1 - ti2‘2’Y+3) . (8‘37)
i,i2=1
The proof is concluded by comparing (8.34) and (8.37) with Lemma 8.3.12. O

We state a byproduct of the preceding proof which will be used in Section 8.5.

Corollary 8.3.14. Under the condition and the notation of Theorem 8.2.2, when m > 4

is even, we have

tim (Zy172(1)) = (m =1+ 0 (=1 — 1/2).

Proof. We are focusing here on the marginal distribution and hencet =1,c=1and n =1
in (8.14). To get the rate of convergence O(—~; — 1/2), we need to expand C,(y1,72;1,1)
to a higher order than (8.36). Following the preceding proof of Theorem 8.2.2, we need
to consider the o’s with the second most occurrences of ‘7;—1 = 0j = 1. These o’s have
0j_1 = 0; = 1 occurring m/2 — 1 times instead of m/2 times as in (8.35). Adding this type

of o’s into (8.36), we have

Crn (71,72 1, 1) = eym(=m = 1/2) 7?4+ 0 <(_'Yl — 1/2)””/2“) :
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where ¢, is the constant given by (8.36) with ¢ =1, ¢ = 1 and n = 1. By Proposition
8.3.1,

1
Km (Zyy 42 (1)) = g(m — )A(v1,72) " Crn (1,725 1, 1),

So the conclusion follows in view of the expression A(7y1,72)™ in (8.32). O

8.3.3 Proof of Theorem 8.2.5

Lemma 8.3.15. Letty,...,t,m > 0, and m > 4 be an even integer. Consider the function:

t1 tm
Flabit) = / / 21 — 2| — 1w — wo|ms — wslt ... (8.38)
0 0

X |Tm—1 — Tm—2|*|Tm — xm_l\bdx,
where —1 < a,b < 0. Then as (a,b) — (0,—1), we have that

flabit) ~ (b+1)"™2 [ tit+tia—Iti—tial).
1=24,..m
Proof. First, assume without loss of generality that ¢1,...¢,; < 1. Otherwise one can scale
them by a change of variables.
We first derive a lower bound for f(a,b;t). Since each |x; — x;—1|* > 1, one has by

Lemma &8.3.10 that

t; rti—a
fla,b;t) > f(0,b;t) = H / / |z — x5 1| daide; o
—24,.m70 JO

% )

=0+1)20+22 ] (t?+2—|—t§’ff—|ti—ti,1|b+2>

i=24,..m

~O+1)2 T it —lti—tial) asb— -1 (8.39)

i=2.4,..m

To get an upper bound for f(a,b;t), we apply the Cauchy-Schwarz inequality to break

the cyclic structure. In particular in (8.38), view |z1 — 2, |*|z3 — 22|* as the integrand, and



227

treat the other factors as the density of measure. We have

f(a,b;t) < \/fi(a,b;t) fa(a, bst), (8.40)
where
t1 tm
fila,b;t) = / dxy .. / dxm|r1 — xm\za\@ — xllb]:m — acg\b|x5 — x4 ..
0 0
X|xm—1 - xm—2’a‘$m - xm—l‘by
and
t1 tm
fa(a,byt) = / dxy .. / dxy|rs — x2|2“\:v2 — x1|b|x4 — a:3|b|335 — x4 ..
0 0
X |xm71 - $m72|a|xm - xm71|b-
Set

|z|* =1+ ho(z).
Then the integrand in f; can be rewritten as
[1+ hoa(21 — 2m)] |22 — 21[0] 24 — 23|°[L + ha(z5 — 24)] - . . [1+ ha(@me1 — Tm—2)]|Tm — Zm—-1]°.

Observe that the product of terms involving neither h, nor hg, equals f(0,b;t). Hence one

can write
fi(a,b;t) = f(0,b;t) + R(a,b;t),

where the remainder R(a,b;t) is a sum of terms each involving at least one h, or ha,. We
claim that |R(a,b;t)] = o ((b+ 1)_m/2). Indeed, let Ri(a,b;t) be the term of R(a,b;t)

involving only one hg, and no other h,. Using the fact that when f is a non-negative
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function and 0 < x1, 22 < t, we have

/Otf(a?g —x1)dxy = /twl f(x)dz < /11 f(2)dz.

—x1

Therefore,

‘Rl(a7b;t)’
" o b b b
:/ da:l.../ Az hog(x1 — om)|z2 — 1 |"|24 — 23]7 . - - |T1y — Ti—1]
0 0
t1 t3 tm 1 b b b
§/ dx; dxs ... Az, hoq(x1 — xm)/ |zo|’dxe |24 — x3|” ... |Tm — Tim—1
0 0 0 —1

t3 tm 1
<2(b+ 1)1/ dxs .. / d:cm/ hoa(z1)dzy |24 — 23|17 . |20 — T |”
0 0 -1

i3 tm 1
§2(b+1)_1/ dxg.../ dxm/ (|z1** — Ddzy |zg — 23)°. . . |20 — Zi_1|”
0 0 -1
t3 tm
=4[2a+ 1) = 1](b + 1)_1/ dzxs .. / Az |zg — x3)°)26 — 25]° . . . |Tm — T
0 0

<. <CO[(2a+1)"P=1)(b+1)""2 = 0(1)(b+ 1)/ (8.41)

Similar estimates apply to the other terms of R(a, b;t), which may involve a greater number

of h, or hog, and end up converging faster to zero as a — 0. Hence

fi(a,b;t) < f(0,058) + 0 ((b+ 1>7m/2> ~O+1)2 T it =t —tial)

i=24,..m

using (8.39). The same estimate holds for fs(a,b;t). Hence by (8.40),

Fla,bit) < £(0,bst) + o ((b + 1)*’”/2) ~ D)2 T (it tio — [t — tial)-
i=2,4,..m

(8.42)
Combining (8.39) and (8.42) concludes the proof. O
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Lemma 8.3.16. Let X,(t) be the limit process in (8.10). For m > 3,

Rm (Z CiXp(ti)>
=1

m/2 ) ]
P2 (m — 1) [Z?J:l cicj % (|t +1t5] — [t — tj\)] if m is even;

0 if m is odd.

Proof. Then because Bj(t), Ba(t) and W are independent,

Km (i cZ-Xp(ti)) = Km <p1/2 iciWB(ti)> + Km, ((1 — p)l/2 iciB’(ti)> )
i=1 i=1 i=1

Now note that the second term is Gaussian and thus the cumulants of order higher than
2 is always zero. Applying Lemma 8.3.12 (with v = —1) to the first term concludes the

proof. O

Now we proceed to the proof of Theorem 8.2.5. Again by Lemma 8.3.8, tightness always

holds. We only need to show the convergence of the finite-dimensional distributions.

Proof of 194 in Theorem 8.2.5. The distribution of Yo ¢iX,(t;) is moment-determinate
since it is a second-order polynomial in normal random variables (see, e.g., Slud [1993]).
One can therefore use a method of moments.

We analyze the asymptotics of the cumulants in (8.13) with m > 3 and A(y1,72) as

given in (8.21) as (y1,72) — (—1/2,—1). First, by Lemma 8.3.11,

Ay, 72)™

~ (472 +3/2)"2[B(1/2,1/2) B(y2 +1,1/2) + B(1/2, 271 — 1)B(ys + 1,1)] ™/
~ (71 472+ 3/2)™2[B(1/2, —2v1 — 1) B(ys +1,1)] ™

~ (472 +3/2) (=271 — )P (e + D)™, (8.43)

which converges to 0.
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Now we analyze the asymptotics of the terms of Cp,(71,72;t,¢) in (8.14) as ¢ varies in

{1,2}™. When m is even, consider first the two main terms where
c=(1,2,1,2,...,1,2) and 0 = (2,1,2,1,...,2,1),

which correspond to #{j : o; = J;-il = 1} = m/2. As in the proof of Theorem 8.2.2,
the corresponding term when o = (1,2,1,2,...,1,2) in (8.14) (it is the same for o =

(2,1,2,1,...,2,1)) is

n
Z Ciy - CimB(71 +1,—2v; — l)m/QB(’yQ + 1, =27 — 1)m/2><

i1 eim=1

til t;
/ dsy .. / m dSm’81 o Sm‘271+1‘82 - 81‘2’)’2+1 o ’3m—1 _ Sm_2|2'y1+1|sm _ Sm_1‘272+1
0 0

m/2
n
_ _ 1
~ (27 =) TP e+ )T Y e g (tal+ 15l =t =D (8.44)

ij=1

where the last line is due to Lemma 8.3.11 and Lemma 8.3.15.
Any other o term in (8.14) is negligible because it is of order O((—2y1—1)""(124+1)"™),
where

r=#{j: oj=0; =1} =#{j: g5 =0} =2} <m/2. (8.45)

Indeed, let us suppose (8.45) and examine a corresponding o term in the expansion of the

product []7"; in (8.14). Call this term Pp,. In Py, there are r factors of

By + 1,27 — 1)|s; — sj_1 27, (8.46)
and there are r factors of

B(ya + 1,2y, — 1)]s; — 5,122 (8.47)

Since (8.45) implies that #{j : o; # 0371} = m — 2r, there are also m — 2r factors in P,
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which are either

)’Y1+72+1B(

(sj —sj-1)7 )71+72+1B(

M+1 =y =2 — 1)+ (sj-1 — s5)1 Yo+ 1, =71 =2 —1),

or

(55— s ) B+ L -1 =y — 1)+ (551 — ) T B+ 1, -7 — 72— 1).
These last two expressions are both bounded by
[sj = sj [T By +1,—-n -2 - 1)+ Bn+1, - -7 —1)] (8.48)

In view of Lemma 8.3.11, the beta functions in (8.46), (8.47) and (8.48) behave like (—2v; —
1)~ (72 + 1)~ and (72 + 1)~ ! respectively. Therefore, the beta functions contribute an

order
(=271 = )7 (2 + 1) (2 + 1)) = (<291 = 1) (2 + 1)

The integrand involving |s;_1 —s;|?72%! contribute an order (y2+1)~". So the total order is
(=271 —1)7"(y2 +1)7™. These arguments can be rigorously justified by first applying the
Cauchy-Schwartz as in (8.40) to break the cyclic integrand, and then bound as in (8.41).
Therefore in view of (8.44), and after also including the case ¢ = (2,1,2,1,...,2,1), we
conclude that
n m/2
Ol 1238,) ~ 2(=27 = 1) 2+ 17 | 3 iy 5 (il + 51—~ 1) |
o (8.49)

if m is even.

When m is odd, there are at most (m —1)/2 times of 0 =03 ; =1 oro; =0 | = 2.
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It can be shown similarly that C,,(v1,72;t,c) is of the order
(=271 — 1)~ m=D/2(yy 4 1)7™, (8.50)

which is dominated by the order of convergence to 0 of A(y1,72)™ in (8.43). Now combining
this fact with (8.9), (8.13), (8.43) and (8.49), we have when m is even,

Fom (Z CiZo 7o (tz‘)>

i=1
P " m/2
T+ v2 4+ 3/2\" 1
~ | — - ici = (|t ti| — |t — t; 8.51
( 72 +1 (m—1) igz_jlclcj 2(’z|‘|‘|3| Iti —t5]) (8.51)
" m/2
1
= ™2 m =D | Y g 5 (il + 1t = [ti = 451) :
ij=1
and when m is odd,
n
Rm (Z CZ'Z71772 (tﬂ) — 0.
i=1
Now use Lemma 8.3.16 to identify the limit process. O

8.3.4 Proof of Theorem 8.2.7

We state first a combinatorial result.

Lemma 8.3.17. Let 0 = (01,...,0m) € {1,2}™. Let o' = (0},...,0),) be the complement
of o, namely, o} =1 ifo;, =2 and o}, =2 ifo;, =1, i =1,...,m. Let oy be understood as
om and let oy be understood as ol,. Then for a fized integer 0 < r < m/2,

#{0’ ce{l,2}": #{j: oj=0; =1} = T} = 2<;7;) (8.52)

Proof. If 0j_1 # 0, we say that there is an alternation at j. There are (’E) ways to
place k alternations. The positions of the alternations determine the whole o up to the

replacement of 1’s into 2’s and vice-versa. Hence there are 2(?) possible ¢’s. To relate k
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to 7, note that the relation o; = o

%1 holds if and only if o1 # 0;. Since

r=4#{j: ajzaé;lzl}:#{j: Uj:a}71:2},

we have

k=#{j: oj#0j1} =#{J: JJ—O' =1+ #{: (7]—0 =2} =2r.

Lemma 8.3.18. Let Y,(t) be the limit process in (8.12). For m > 3,

[(p+1)72+ (4p) 71"

=1

Km<20z ) [+ D+ @™ + [(p+ D™ = 2yp) 7"

Proof. Let

IR R /) I (8 R CV/)
V20 D)2+ T 20+ )+ (2p) )

Because X and X are two independent standardized X% random variables, we have

Rm (Z Cti(tZ‘)>

= Km (Z citi(a, X1 + pr2)> = (Z citl) [Em(apX1) + Em(bpX2)]

i=1 i=1

=<icm) (a,ryn‘i‘bzl)ﬁ( 1) = 2m/2a —I—bm (ZCM) 71)
i=1

The factor 2m/2(a’p” + b})') can be rewritten as the first factor in (8.53). O

Note that a + b~ A+ B for a,b,A,B > 0,if a ~ A, b~ B and a/b ~ A\, where X is a

fixed number from 0 to co (can be c0), as will always be the case under our assumptions.
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We now prove Theorem 8.2.7. In view of Lemma 8.3.8, we only need to show the

convergence of the finite-dimensional distributions.

Proof of f'd—'d>' in Theorem 8.2.7. We can use a method of moments again because the limit
Yo, ¢iYp(t;) is a second-order polynomial in normal random variables. We analyze the
asymptotics of the cumulants in (8.13) with m > 3 and A(y1,72) in (8.21) as (y1,72) —
(—=1/2,—1/2). Lemma 8.3.11 yields

Al )™ ~ [(=1 =72 = D72+ (—2m = )7 (=22 — )71 T, (8.54)

and Cy, in (8.14) satisfies

mel,w;t,cw(Zc@-ti) > 1w =9, -7 (8.55)
=1

oe{1,2}m j=1

where we get the term (3, ¢it;)™ from 30 _ ¢y ...cip, fotil dsy ... fgim dSm,.
Let r=+4{j: oj=0j_; =1} =#{j: o; = 0)_; = 2}. Then using Lemma 8.3.17, we

can write

_ 2<m> (=271 = 1) (=290 = 1) (= — 2 — )2 (8.56)

Hence by (8.13), (8.54), (8.55) and (8.56), one has

Km (Z CiZyy o (tz)> ~ (m—1)! (Z cm) Z (;n) U(y1,7v2;m, 7). (8.57)
=1 =1

r
0<r<m/2

where

(*2’71 - 1)_7(—2')/2 — 1)_7”(7,)/1 — gy — 1)—(m—27") |
(=71 =72 = )72 + (=291 — 1)~} (=29 — 1)1

U(’Yh Y25 MM, T) =
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As (m1,72) = (=1/2,-1/2) and (1 +1/2)/(v2+1/2) — p € [0,1], in the case p > 0, some

elementary calculation shows

[1/2y/p)])* [1/(p+ 1))
[(p+1)72 + (4p) 1)

Uy, v2sm, 1) — (8.58)

and in the case p = 0,

1 if r =m/2 (m must be even in this case);
U(Vl?ﬁ/?;ma T) — (859)

0 ifr<m/2

This expression (8.59) also coincides with the limit in (8.58) as p — 0. In the argument
below we omit the case p = 0, which can be either treated separately, or obtained by taking
the limit as p — 0.

Set a = 1/(2y/p) and b = 1/(p + 1). Using the identity (a + b)™ + (a — b)™ =

>_0<r<m/2 2(51)a* b™ 2" one can write following (8.57) and (8.58) that

n a+b)™— (a—b)" [ < mm_l!
. (Z Cz'Zmﬂz(ti)> —>( (ag+b2()m/2 ) (Zciti> (2)7

i=1 =1

which is (8.53). Now use Lemma 8.3.18 to identify the limit process, concluding the

proof. O

Additional results

We deal now with the following additional three points:

1. We show that the weak convergence proved in the previous theorems cannot be

strengthened to convergence in L%(£2) nor even in probability;

2. We apply the results of Nourdin and Peccati [2013] and Eichelsbacher and Thile

[2014] to determine the rate of convergence on the boundaries d and e; (or ez);
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3. We include an alternate proof of Theorem 8.2.2 in the spirit of Remark 8.2.3 which

provides further insight on the convergence.

8.4 No convergence in L?(Q)

The generalized Rosenblatt process Z,, ,(t) was defined in (8.1) (see also (8.6)). We
have shown weak convergence (convergence in distribution) for the generalized Rosenblatt
process Z., ,,(t) in previous theorems. Is it possible that some of these convergences are

actually in a stronger mode, say, in probability? We provide a negative answer here.

Theorem 8.4.1. In Theorem 8.2.1, 8.2.2, 8.2.5 and 8.2.7, the weak convergence cannot

be extended to convergence in L*(Q), nor even to convergence in probability.

Remark 8.4.2. In fact, it suffices to show that the convergence cannot be extended to
convergence in L?(Q2). This is because, on a fixed order Wiener chaos, convergence in
L?(2) and convergence in probability are equivalent. See Schreiber [1969]. Alternatively,
to verify the equivalence, suppose that X, is a sequence on a fixed order Wiener chaos,
and X, converges in probability to X. The sequence is therefore tight. Then by, e.g,
Lemma 2.1(ii) of Nourdin and Rosinski [2014], sup,, E|X,|P < oo for any p > 0, which

entails uniform integrability and hence convergence in L?(Q).

To prove Theorem 8.4.1, it suffices to show that any sequence of

Lo = Ly (1)

as (71,72) approach the boundaries is not a Cauchy sequence in L?(€2). Let (aj,az) and

(71,72) be in the region A in (8.2). Then since Z,, 5, is standardized, we have
2
E (Zal,az - Z’Y1,72) =2-2EZ01,00Z - (8.60)

If (aq,2) and (71,72) converge to the same point on the boundary, we may expect that

EZqy, a2y, v, — 1 and hence E (Zy, a, — Z%w)2 — 0, which would prove Cauchy conver-
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gence. We will show, however, that

lim inf EZ ey 0%y < 1. (8.61)

(a1,22),(71,72)— boundary point

In other words, we will show that there is no L?(£2) continuity at the boundary.

First we compute the covariance in (8.60).

Lemma 8.4.3.

EZay 002942 =A(ar, a2) A(y,72) (01 + a2 + 1+ 72 +3) o +aa+ i+ 72 +4) 7
X [B(ozl +1,—ag—7y1—1)B(ag+1,—ag — vy — 1)
+B(m+1,—ar =7 —1)B(yz2+1,—a2 =72 - 1)
+B(as+1,—as —v1 — 1)B(a; +1,—a3 —y2 — 1)

+B(n+1,—az —m —1)B(y2+1,—a1 — 72 — 1)]. (8.62)
Proof. We shall use the representation (8.6) of Z,, ,,(t) in order to apply the formula

EL(f)1I2(9) = 2(f, 9) 12 (r2)

for symmetric functions f and g (see (7.3.39) of Peccati and Taqqu [2011]). Using (8.18),

we get

CVI; 042 A('Yla 72) 1EZO¢1 a2Z’Yl,’Y2
/ ds/2 dx (s1 — @) (51— 22) P + (51 — 1) P2 (51 — $2)il]
0, 1 R

X [(s2 — 1) (s2 — @2) 2 + (52 — 1) P (s2 — w2) )]
_2/ ds [(82 - 81)i1+a2+71+y2+2B(051 + 1, -1 — 71— 1)B(052 + 1, g — Yo — 1)
[0,1]2
+ (51— s) PRI By 41, —ay — v — D)B(2 + 1, —az — 92 — 1)

+ (82 — 81)3‘_1+a2+71+72+2B(a2 + 1, —Qo — Y1 — I)B(Oél + 1, -] — Y2 — 1)
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(1 — )RR 1y~ )B4 1 —az — 7 — 1)
Since a + ag > —3/2 and vy, + 2 > —3/2, we have a3 + s + 91 + 72 +2 > —1. Since

/ (51— s2)ds = / (s9—s1)%ds=(u+1)"Hu+2)""
[0,1]2

[0,1]2

for u > —1, we get (8.62). O

Proof of Theorem 8.4.1.

Case of Theorem 8.2.1. By (8.7), an element of the second chaos converges in distri-
bution to a Gaussian. That this cannot be extended to convergence in L?(2) follows from
the fact that {Io(f) : f € L?(R?)} is a closed subspace in L?(€2). Hence the L?(2) limit of
a double Wiener-It6 integral must still be a double Wiener-Ito6 integral, which means that

it cannot be Gaussian.

Case of Theorem 8.2.2. Let (a1,a2) — (—1/2,v) and (y1,72) — (—1/2,7), where
v € (—=1,—1/2). Assume in addition that the convergence speeds are comparable, that is,
(1 +1/2)/(71 +1/2) ~ r € (0,1). Then using (8.32) with m = 1, Lemma 8.3.11, and
(8.62), one has

EZal,OQZ'YlKYz N(—2a1 - 1)1/2(_271 - 1)1/2(27 + 3)('7 =+ 1)13('7 +1,-2v - 1)_1

X (24+29)7 B3+ 29) T 2By +1, -2y — 1)(~a1 —m — 1)7]

_ _1\1/2(_ _1)\1/2
- 2‘“( Y (72711) D7 on2yae) <1
E——

Case of Theorem 8.2.5. When p < 1, the limit in (8.10) involves a Gaussian component,
which by the same reason as in “Case of Theorem 8.2.1” implies that L?(2) convergence

cannot hold. We only need to consider the case p = 1.
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We therefore suppose that (a1, as) = (—1/2,—1) and (y1,72) — (—1/2,—1) and that
p =1, that is by (8.9), that (a; +1/2)/(aa+1) — 0 and (y1 +1/2)/(y2+ 1) — 0. Assume
in addition that (a1 +1/2)/(71 +1/2) ~ (g +1)/(72+ 1) ~r € (0,1). By (8.43) with
m = 1, Lemma 8.3.11, and (8.62), we have

EZOCI ;02 Z"/l sV2
~(o1 + g +3/2) (=201 — )P (g + 1)V (31 + 72+ 3/2) 2 (=29 = 1)V (2 + 1)

(g +as+y+72+3) (—a1—m— D) e+ 1)+ (2 + 1)

« —207 — 1)1/2 o 1)1/2
e +(10)é§ ~|-21 :— 721)—1— 1)((7i;_112(712111) 2 [z + 1)+ (12 + 1)

~2rt 2/ (r 1) < 1.

Case of Theorem 8.2.7. Suppose (a1, a2) = (—1/2,—1/2) and (y1,72) — (—1/2,—-1/2)
and that (ag +1/2)/(ag +1/2) ~ (1 +1/2)/(72 + 1/2) ~ p, where p € [0,1]. Assume in
addition that (o +1/2)/(m1 +1/2) ~ (e +1/2)/(y2+1/2) ~r € (0,1). We apply (8.54)
with m = 1, (8.62) and Lemma 8.3.11. In this case, all beta functions in (8.62) blow up
and we get

EZas00 Zons ~ [(—01 — a2 —1)72 4 (=201 — 1) (=205 — 1)71]7/?

L1
(== D7+ (2 - D72 - )7 T xS

X [2(—ar—m =1 H—ag =2 = 1) +2(—a2 = — 1) (—er =2 — 1) 7]

o ((T+p)(1+rp)+(r+1)2p> (1+p)?
(r+1)2 (14 p)2+4p (r+p)(1+7rp)’

which is close to zero if r is small. Thus (8.61) holds. O

8.5 Convergence rate of marginal distribution on the boundaries

Rates of convergence of the marginal distribution of multiple Wiener-Ito integrals are

available when the limit is Gaussian or is a product of independent Gaussians. We can
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thus apply these rates when converging to the boundaries of the triangle, with some corners
excluded.

First we consider the convergence rate of the marginal distribution in the case of Theo-
rem 8.2.1 and 8.2.5 and the limit being Gaussian. We use the notation A < B, where A and
B are two nonnegative quantities, to denote that there exist constants ¢ < C independent
of A and B such that cB < A < CB. Let dry(X,Y) denote the total variation distance

between the distributions of random variables X and Y, namely

drv(X.Y) = sup |P(X € §)— P(Y €5)|,
SEB(R)

where B(R) denotes the Borel sets on R.

In Nourdin and Peccati [2013] Theorem 1.2, the following result was established:

Lemma 8.5.1. Let {F,: v € G C R*} be a family of random variables defined on a fized-
order Wiener chaos satisfying EF72 =1, where G is an open set of indices. Suppose that
the third cumulant k3(Fy) and the fourth cumulant k4(F,) converge uniformly to zero as
v € G approaches a set E C G (as the distance between the point v and the set E converges
to zero). Then there exits a neighborhood N'(E) of E in R¥, such that when v € N(E)NG,
we have

drv(Fy,N) =< M(Fy), (8.63)

where N is a standard normal random variable and
M(F,) = max (|[EF?|, [EF; — 3|) = max (|rs(F,)|, |ka(F))]) . (8.64)

Remark 8.5.2. Though the theorem was originally stated in Nourdin and Peccati [2013]
for a sequence {F,,} with a discrete parameter n, examining the proof there one sees that
for (8.63) to hold, one only needs k3(F,) and k4(Fy) to converge uniformly to zero, which

is implied by our statement of the theorem.

Remark 8.5.3. Earlier in Biermé et al. [2012], the same result (8.63) was established for
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the following distributional distance dp(-,):

dp(X,Y) = Zgg{lEh(X) —En(Y)l}, (8.65)

where U is the class of functions that are twice differentiable with continuous derivatives

satisfying [|h" |0 < 0.

Figure 8.6: Illustration of the neighborhood N(D) of D, in Theorem 8.5.4

In the case of Theorem 8.2.1, we considered convergence to the boundary d through
the neighborhood N (D,) N A illustrated in Figure 8.6. Applying Lemma 8.5.1, we get the

following:

Theorem 8.5.4. Let Z

e = Zyi e (1), and let N be a standard normal random variable.

Then under the assumptions of Theorem 8.2.1, there exists a neighborhood N (D.) of the
diagonal line segment D. :== {y + v +3/2 = 0 : v, > —1 + €}, such that when
(71,72) € N(D) N A, we? have

d1v(Zoy g, N) < (11 + 72 + 3/2)%2 (8.66)

Proof. Since N is Gaussian, we can apply Lemma 8.5.1. To do so, we need to compute the

cumulants k3 and k4 which are given in Proposition 8.3.1. We examine the relation (8.13)

2Since A is an open set, N(D¢) N A does not contain the segment D..
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of Proposition 8.3.1 with A = A(v1,72) given in (8.21), m = 1, ¢t = 1, and ¢ = 1. The
factor Cy,(v1,72,1,1) in (8.14) is a positive continuous function with respect to (v1,72).
This can be shown by the Dominated Convergence Theorem as in Lemma 8.3.4. Under the
assumption of Theorem 8.2.1, the parameter (71,72) is restricted away from boundary. So
Cin(71, 72, 1,1) is bounded below away from zero and bounded above away from infinity, and
so are the factors in (8.21) except [2(71 +72) +3]*/2, which goes to zero as y; +7v2 — —3/2.
We get

Fm(Zoyy ) < A(11,72)™ < (M +72+3/2)"™2, m>3. (8.67)

The maximum in (8.64) is then x3(F’,). Combining this with (8.63), we get (8.66). O

From (8.67) and (8.63), it is the third cumulant that determines the rate of convergence
in the case of Theorem 8.2.1. When (1, 72) is allowed to be close to the corner (—1/2,—1),
that is, in the case of Theorem 8.2.5 when p = 0, we will show that the fourth cumulant

may come into play in the rate of convergence.

Theorem 8.5.5. Let Z, v, = Z+, ~,(1), and let N be a standard normal random variable.

Then under the assumptions of Theorem 8.2.5 when p = 0, that is when
= 1/2 ~ g+ 1, (8.68)
there exits a neighborhood N of (—1/2,—1), such that when (y1,72) € NN A, we have?
A1y (Zy, 5 N) = (1147924 3/2)°2 (32 + 1) 7 (1 + Lm, 1), (8.69)

as (y1,72) — (—=1/2,—1), where

Ly, v2) = V(1 —1/2) 1= (2 + 1)1 =0 ((—71 - 1/2)*1/2> or o ((72 n 1)71/2> '
(8.70)

3 As before, since A is an open set, N'N A does not contain the limit point (—1/2, —1).
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Proof. First in view of (8.9) with p = 0, we have
V(r,72) = (n +92+3/22 (2 + 1)1 = 0, as (11,72) = (=1/2,-1).
By (8.13), (8.43), (8.50) with m = 3, and (8.68), we get for the third cumulant
K3(Ze) = (= = 1/2)2 (1 472+ 3/2)* (0 + 1) 72 ~ Vi, ). (8.71)

By (8.51) with m = 4 and also (8.68), we have for the fourth cumulant
M+ 72 +3/2)°
ka(Zy y2) = <72+1

M+ 2 +3/2
(=11 —1/2)(2 +1

1/2
~V(1,7) ( )) V(a2 L1, 7). (8.72)

Since max(z,y) < z +y for z,y > 0, we get

max [k3(71,72), £4(71,72)] < V(71,72) [1 + L(71,72)] -

We thus apply Lemma 8.5.1 to get (8.69). At last, note that (8.68) entails that

L(v,72) = (—n — 1/2)_1/2\/W =o0 ((—71 - 1/2)_1/2) or o <(72 + 1)_1/2> .

O]

Remark 8.5.6. In view of Remark 8.5.3, Theorem 8.5.4 and 8.5.5 also hold if the distance
dry(-,-) is replaced by the distance dg(-,-) defined by (8.65).

Remark 8.5.7. The rate of convergence to zero in (8.69) is always slower than that of
(8.66), which is expected since the corner (—1/2,—1) also belongs to the non-Gaussian

boundary.
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Remark 8.5.8. From (8.71) and (8.72), one has

Kka(Z.
i) S =B T (T 1T = Ly, ),
53(271772

which is the term (8.70) appearing in (8.69). Note that (—y; — 1/2)7! > (72 + 1)~! when
(71,72) € A. Therefore in the case of Theorem 8.2.5, the fourth cumulant plays a role
in determining the rate of convergence as follows: if the fourth cumulant converges much
slower compared with the third cumulant, that is, if L(y1,72) — oo, then this will slow the
rate of convergence in (8.69); if L(v1,72) is asymptotically bounded, then both the third

and fourth cumulants behave like V(y1,72).

Now we consider the marginal convergence rate in the case of Theorem 8.2.2 (see Figure
8.3). This theorem involves a non-Gaussian limit. For two random variables X and Y we

define the Wasserstein distance between their distributions to be

where L is the class of 1-Lipschitz functions (h € L if |h(z) —h(y)| < |z—y]|). The following

result follows from Eichelsbacher and Théle [2014].

Lemma 8.5.9. Let Y = Z1Zy where Z;’s are two independent standard normal variables
and let F = Iy(f) be an element on the second-order Wiener chaos with EF? = 1. Then
there exists a constant C > 0 such that

1/2
dw(F.Y)<C (1 + éfg?,(F)? _ ém(F) + 1;0&6(F)> | (8.73)

Proof. By Proposition 1.2(iii) of Gaunt [2014], the distribution of Z;Z, is the symmetric
Variance-Gamma VG(1,0,1,0), that is, VG(2r,0,1/X,0) with r = 1/2 and A = 1. Inserting
these values of r and A in Theorem 5.10(b) of Eichelsbacher and Théle [2014] gives (8.73).

O
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Using the preceding result, we get the following bound for the convergence rate as

(71,72) approaches the boundary e;.

Theorem 8.5.10. Let Z., ., = Zy, ~,(1), and let Y = Z1Z5 be as in Lemma 8.5.9. As

(71,72) = (—1/2,7), —-1<~vy<-1/2,
we have
dw (Zy 70, Y) = O ((—71 - 1/2)1/2) : (8.74)

Proof. Following the proof of Theorem 8.2.2, one has by (8.34) that as (y1,72) = (—1/2,7),

Fo(Zoyn) = O (=1 = 1/2)1?) . (8.75)

On the other hand by (8.37), we have the convergence kp,(Z,, 1,) = (m — 1)! for m even.

So k4(Zy, ;) — 6 and Ke(Zy, 5,) — 120, and hence

1 1 1
1+ 6”3(2“11,72)2 - §H4(ZV1,’Y2) + m’%ﬁ(z’hﬁz) —-14+0-2+1=0.

We thus need to study the rate of convergence of the even-order cumulants x4 and kg. It

follows from Corollary 8.3.14 that
ka(Zoyyyn) =64+ 0 (=11 —1/2), K6(Zy, 4,) =120+ O (—y1 — 1/2). (8.76)

The proof is concluded by plugging (8.75) and (8.76) in (8.73). O

Recently Arras et al. [2016] obtained the rate of convergence when the limit is Y 7_; a; X;
where X;’s are standardized chi-square random variables with one degree of freedom. Ap-
pying this result (Theorem 3.1 of Arras et al. [2016]) to the convergence of (71,72) € A

to the corner (—1/2,—1/2) in the context of Theorem 8.2.7, they obtained as y; — —1/2
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that

dW(Zvl,w’Yp(l)) =O0((-m - 1/2)1/2)7

where Y, (1) is as in Theorem 8.2.7. See Example 3.2 of Arras et al. [2016].

8.6 A constructive proof of Theorem 8.2.2

The method-of-moments proof of Theorem 8.2.2 gives little intuitive insight of the conver-
gence. Motivated by the observation made in Remark 8.2.3, we give an alternate proof
of Theorem 8.2.2. The proof is based on discretization which removes the singularities
at s = x; and s = o of the integrand in (8.1), so that one is able to interchange the
integration orders between [g, -B(dz1)B(dzs) and fg -ds. Then one uses the triangular
approximation described at the end of the proof.

The proof is based on several lemmas. We use below the notation (s, z)} to denote:

S| — X v
(&m}::CNJ ky]+1)]ﬂNﬂ>{NﬂL <0, (8.77)

Define also

[s—z|]; =(—a+2/N){s>a+1/N} < (s,x); < (s—a)" I{s >z} =(s—x)l.
(8.78)

Let Z, 4, (t) be as in (8.1), and let

1ot
Z’]V\i,w(t) = An(71,72) /]1{2/0 (s,21) § (8, 22) N dsB(dz1) B(dzs), (8.79)

where the Brownian measure B(-) is the same as the one defining Z,, -,(t), and where

AN(7y1,72) is chosen such that EZ‘]Y\lfm(l)z =1.

Lemma 8.6.1. For anyt > 0, we have

2
lim  limsup E|Z,, () —ZY __ (t)] =0. (8.80)
Mmmmemw‘VHZ )
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Proof. We take for simplicity that ¢ = 1, while the other cases can be proved similarly.

Note that
2
E|Zy (1) = 2, ()| =2-2EZ,, ,,(1) 2] ,(1).
So we need to show that
lim liminf ~ EZy, ,,(1)Z) (1) > 1. (8.81)

N—00 (y1,72)—=(—1/2,7)

Indeed, using the symmetrized kernel in (8.6), we have

1 1 1 1
EZy, 0 (D) ZY (1) :§A(71,72)§AN(71,72)2! /RQ dxldxg/o /0 ds1dss
x [(s1 = x1)} (51— 22)77 + (81 — 1) P (51 — 22) ]

X [(8271'1)7\} (SanQ)K? + (527x1)ﬁ(827x2>’]€]' (8'82)

By definition,

1o
AN (71,72) 2 22/0 /0 dsidss /]R2 dridzo[(s1,21)} (81, 22) ¥ + (51, 21) ¥ (51, 22) V]

X [(SQ, xl)’]y\} (3271;2)7\? + (52’331)17\12(5% 1‘2)7\}]

Applying the second inequality of (8.78) to (8.82), and using the normalization Ax (71, 72),

we have
1 _ A(11,72)
N 2 )
EZ, 1, (1) 25 ,,(1) > 514(717’72)AN(71,’Y2)2AN(71>72) = A7)’
So (8.81) follows from the next lemma. O

Lemma 8.6.2. Let the normalizations A(vy1,7v2) and An(y1,72) be as in (8.21) and (8.79).

Then

A
lim lim (1,72)

— =1, 8.83
N—00 (v1,72)—(~1/2,7) An(71,72) (8.83)
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where —1 < y1,72 < —1/2.

Proof. By the second inequality of (8.78), we have

An(v1,72) 72 < Ay, y2) 2 (8.84)

By the first inequality of (8.78), we have

Lo
An(71,72) 2 Z/ / d81d82/ d$1d902<[81 — )N [s1 — 2] ¥ + [s1 — 2] § [s1 — 902]7&)
2.J)o Jo R2

x ([s2 = 1]} ls2 — 2ol + [s2 — @1 ¥ls2 — 2]} )

=Pn(71,72) + Qn(71,72)s (8.85)

where

Py (v1,72) = 2/

d81d82 / [81 — xﬂ}(}[sz — xl]']y\}dxl / [81 — :UQUVZ[SQ — wz]yvzdxg,
0<s1<s2<1 R

R

and

Qn(71,72) = 2/ dsidsy / [s1 — x1] N [s2 — z1] N day / [s1 — @2} [s2 — @2]j da.
0<s1<s2<1 R R

In the integrals over R, the exponents of () alternate where as those of Py are the same.

Note that for a;, 8 € (—1,—1/2) and 0 < 51 < s2 < 1, we have

[lsr = alilse o
R
s1—1/N
:/ (51— 2 +2/N)*(s2 — & +2/N) da

_ /Oo(u +3/N) (52 — 51+ u+3/N)Pdu (8.86)
0

oo
= / u(u+ sy — s1)du = (s3 — 51)* P Bla+1,—a— g - 1),
0
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after setting u = s1 — 2 — 1/N. Thus the term @y from (8.85) satisfies

QN (V1,72) <2(291 + 272 +3) 1 (21 + 292 +4) 7!

X B(yi+1,—1—7—1)B(e+1,-71—7—1)=0(1). (8.87)
as (71,72) — (—1/2,7). The other term Py in view of (8.78) and (8.86) becomes

Py (71,72) :2/

0<s1<82<1

d81d82/ (u+3/N)"(sg —s1+u+3/N)"du
0
« / (4 3/NY" (53 — 51+ u + 3/N)?du.
0

Now in the second integral, use (u + 3/N)" > (s3 — s1 + u + 3/N)?2, and in the third

integral, replace u by u(s2 — s1) and then factor s; — s1. One gets

o
Pn(71,72) Z2/ d51d52/ (s9—s1+u+3/N)*du
0<s1<s2<1 0

2yl [ 3 i 3 72
X (89 — 51)°7? U+ — l+u+ ——— du
( ? 1) /O < N(32_31)> < N(SQ—Sl))

Since [;°(s2 — s1 4+ u+ 3/N)*du = (—2y1 — 1)~ (s2 — s1 + 3/N)?" 1 one has

Prn(71,72) 22(=2m1 — 1)_1/ dsydsy(sy — 514 3/N)*1H (59 — 51)72 %!
0<s1<s2<1
0o 3 V2 3 72
0 S S— du =: R .
></0 (U+N(52—51)> (U+N(52—51)+ ) U N (71, 72)
(8.88)

As (v1,72) = (—1/2,7), we have

(—2’71 — 1)RN(’71,’}/2) —)2/ d81d82(52 — 51)274_1

0<s1<89<1
o) 3 Y 3 Y
X U+ ——m— U+ —--+1 du.
/0 < N(52—81)> ( N(s2 —s1) >

As N — oo, by the Monotone Convergence Theorem, the right-hand side of the preceding
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line converges to

[ee]
2/ dsidsa(sg — 81)2'7“/ u(u+1)"du
0<s1<52<1 0

=27 +3) "My + 1) ' B(y+1,-2y - 1).
On the other hand, from (8.32) with m = 2 we have
A(y1,72)? ~ (=20 = D2y +3) (v + DBy + 1, -2y - 1)L (8.89)
Hence

Ii li A(v1,72)%R ’ _1 <00
Ngnoo(“ﬂ,w)—l}(n—l/zy) (71,72)" B (71,72) ( )

Combining (8.85), (8.87), (8.88) and (8.90) yields

2
liminf  liminf ALW)Q > 1,
N—oo (y1,72)—(—1/27) AN(71,72)
This with (8.84) yields (8.83). O

We will now interchange the integrals fot -ds and fﬂég -dx1dxo, and write

/

t
Zﬁ,w(t)zAN(%,vz)/ [/0 (5,xl)}y\}(s,:vg)']\?B(d:Ul)B(dxg)ds}

RZ

t /
= AN(yl,vg)/O [/Rz(s,ajl);y\} (S,$2)ﬁB(d$1)B(dl‘2)j| ds, a.s., (8.91)

by the stochastic Fubini theorem (see Pipiras and Taqqu [2010] Theorem 2.1). It applies

since

t
/ /2 [(s,21) (s,mz)?\ﬂQd:Bld:I:gds < 0. (8.92)
0o Jr

Relation (8.92) follows from the following lemma.
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Lemma 8.6.3. For any v € (—1,—1/2),t >0 and N € Z,, we have

sup /(s,x)?\?daﬁ < 0.
s€[0,t] /R

Proof. In view of (8.77),

/R(s,xﬁydx _ ;/R (WS] _][VN”“’] * 1>2VI{[N3] > [Na]} d(Nz)

=N"1 Y ([Ns]—i+ D)7 =N B < oo

—00<i<[Ns] k=2

since v < —1/2, where we set k = [Ns| — i + 1. Since the last expression does not depend

on s, the conclusion of the lemma holds. ]

By the product formula of Wiener-1t6 integrals (see, e.g., Nourdin and Peccati [2012]

Theorem 2.7.10), the process Z,JY\L72 () in (8.91) can be rewritten as follows:

t
Zﬁm(t) = AN(%,’Yz)/O dsx

[/R(s,x1)7\}B(dx1)A(s,m)ﬁB(dm) E/R(s,:cl)"]\}B(da:l)/R(s,xg)]\?B(dxz)}

Note that by the scaling property of Brownian motion, for j =1, 2,

X)) = [ s Blan) = |

[Ns] — [Nz] + 1
A

Vi
~ > I{[Ns] > [Nz]} B(dz)

fdd- nr—y;—1/2 Z ([Ns] —i+1)Ve,
—00<i<[Ns]

.. ) f.d.d. ) .
where ¢;’s are i.i.d. standard normal random variables, and “=" means equal in finite-

dimensional distributions. Hence (recall that the Hurst index H = v1 + 72 + 2),

25 ()75 An(, ) /0 (XN ()XY (5) - EXN (5) XY (5)] ds
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[NY]
= AN(71,792) N Y (Y5, (n)Y5, (n) = BY;, (n)Y5, (n)] + Ra(t,71,72) - (8.93)
n=1

where
V)= > (n—i)leg=> il (8.94)
—oo<i<n—1 =2

is a linear stationary sequence and

Ry (t,m1,72) =An(11,72) N~ (Nt — [Nt))

x (Yo (INE] + Y3 (V1) + 1) = BY:, (N8 + DY ([N +1)). - (8.95)

We first show that this preceding remainder term is negligible:

Lemma 8.6.4.

lim limsup  ERn(t,71,72)* =0 (8.96)
N=20 (31 2) = (~1/2,7)

Proof. Since Nt — [Nt] <1 and Y, (n) is stationary, we can write

ERx(h71,92)2 € N7 Ay (31,7327 [EY:, (0275, (07 = (EY, (0)Y5,(0))%]

We have
o oo
EY’Yl (O)Y’Y2 (0) = Zi71+727 EY’Y]' <0)2 = ZZ’2’”7 .] = 17 2 (897)
=2 =2

By the diagram formula (see, e.g., Janson [1997] Theorem 1.36), we have for jointly cen-
tered Gaussian variables (Y7, Y2) that EY2Y = 2 (EY;Y3)? + EY2EY. Expressing this as
EY?2YS — (EY1Y2)? = (EV1Y2)? + EY2EYZ, one gets

o 2 oo (o.9]
ERN(t,71,72)? < N2 Ay (v, 72)? (Z i71+72> + (Z i2”’1> <Z i272> . (8.98)
i=2 i=2

=2

The first and last sums remain bounded as (v1,7v2) — (—1/2,7), but this is not the case
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for the second sum. Since the function 27! is decreasing, we have for any integer k > 0,

(=21 — 1) Mk +2)H = / (z+ k) de < / (z+ k)2 dx
2 2
00 00 00
<> (i k)i <y P < / edy = (—2y; —1)7 L (8.99)
i=2 i=2 1

In particular, > o0, i?7 explodes like (—2v; — 1)~! as 93 — —1/2. This, however, will be
compensated by Ay (v1,72)?, since by (8.83) and (8.89), we have Ay (y1,72) ~ A(71,72) =<

(=271 —1) as (y1,72) = (—1/2,7). Hence (8.98) implies

limsup  N*ERy(t,71,72)* < o0,
(v1,72)—=(=1/2,7)

which entails (8.96). O
The following lemma is key:

Lemma 8.6.5. Let Y, (n) be as in (8.94). As (y1,72) = (=1/2,7), one has the following

joint convergence in distribution:

(A2 (), Vo) (00, 05m)

n=1

for any N € Z, where W is a standard normal random variable which is independent of
Y,(n), and

oy =2y +3) (v + )P By + 1, -2y - 1), (8.100)

N
Proof. Since (A(’yl, ¥2)Y,, (n), Yy, (n)) . is always a centered and jointly Gaussian vector,
n—=

we only need to show that its covariance structure converges to that of (O',YI/V, Y,y(n)>

Let us first compute the covariance of A(v1,72)Y,,. By (8.89) and (8.99), we have for

m > n (similarly for m < n)

E[A(71,72) Y5, (n) A(y1,72) Y5, (m)]
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=A(71,72) E [Y2, (n) Yy, (m)]

o
~2y4+3)(y+ 1) B(y+1, -2y — 1)1 (=29, — 1) Z (i +m—mn)"n
1=2

~27+3)(v+ DBy +1,-2y—1)"" =02,

Since the limit is independent of n, the limit process is indeed a fixed Gaussian random
variable, say o, W.
We now focus on the cross-covariance between A(vy1,y2)Y, and Y,,. We have for m > n

(similarly for m < n) that

E[A(71,72) Y5, (n) Y5, (m)]

~(27+3)(y + DBy 4 1, =2y — 1) (=27, — 1)]V/2 i(i +m —n)"i7 =0, (8.101)

because Y 7, i~1/2t7 < 0. Thus we have asymptotic independence. Finally as 2 — 7,
the covariance structure of the second term Y,, converges to that of Y. The proof is then

complete. 0

The following convergence of normalized sum of long-memory linear process to frac-
tional Brownian motion can be found in Giraitis et al. [2012] Corollary 4.4.1, which was

originally due to Davydov [1970].

Lemma 8.6.6. Let Y, (n) be as in (8.94). Then as N — oo
N/ . Ar—v—2/3 f.d.d.
2y (t) =N ZYW( 03 ' By 13)5(t)

where o, is as in (8.100) and B 3/5(t) is a standard fractional Brownian motion with

Hurst index v + 3/2.

We are now ready to combine the last few lemmas into an alternate proof of Theorem

8.2.2.
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Proof of Theorem 8.2.2. Tightness still follows from Lemma 8.3.8. To prove the conver-

gence of the finite-dimensional distributions, namely, to prove that

f.d.d.
Z’Yl,’YZ(t) — WB'7+3/2 as (71772) - (_1/277)7

it is sufficient to show that the following triangular approximation relations hold (see, e.g.,

Lemma 4.2.1 of Giraitis et al. [2012]):

. . A(’Vb ’72) 2
lim limsup E|Z, 1,(t) — m[zﬁw (t) — Rn(t,71,72)]| =0, (8.102)

N=00 (y; y0)—(—1/2,7)

A(,72) (N f.d.d. N
—Z — — Z —1/2 1
AN(’YI, ,72) [ V1,72 (t) RN(t’ 71, 72)] UWW o (t) as (717 72) — ( / 77)5 (8 03)

o, WZN (1) LS WB, 5 5(1), as N = oo, (8.104)

The convergence (8.102) follows from Lemma 8.6.1, Lemma 8.6.2 and Lemma 8.6.4. For

the convergence (8.103), we have by (8.93), Lemma 8.6.5 and (8.101) that

A(VI? 72) N
m[z"/h’m (t) — Ry (ta 7, 72)]
[N1]
=N [A(11,72) Yy, (0) Vs, (n) — BA(y1,72) Y5, ()Y, (0)]
n=1
fdd [Nt]
N3N o, WY, (n) — 0] = o, WZ (1)
n=1

Finally, (8.104) follows from Lemma 8.6.6. O



Chapter 9

A unified approach to self-normalized block

sampling

The inference procedure for the mean of a stationary time series is usually quite different
under various model assumptions because the partial sum process behaves differently de-
pending on whether the time series is short or long-range dependent, or whether it has a
light or heavy-tailed marginal distribution. In the current chapter, we develop an asymp-
totic theory for the self-normalized block sampling, and prove that the corresponding block
sampling method can provide a unified inference approach for the aforementioned different
sttuations in the sense that it does not require the a priori estimation of auziliary param-
eters. Monte Carlo simulations are presented to illustrate its finite-sample performance.

The R function implementing the method is available from the authors.

9.1 Introduction

Given samples X1, ..., X,, from a stationary process {X;}iez with mean p = E(Xp), the
sample average X,, = n~! >, X; serves as a natural estimator for the population mean .
To conduct statistical inference on the mean pu such as hypothesis testing or the construction
of confidence intervals, one needs an asymptotic theory on the sample average for dependent
data. The development of such a theory has been an active area of research. Consider

first the classical case, where by assuming certain short-range dependence conditions, one
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obtains the usual central limit theorem, that is,
n(Xp — 1) 5 N(0,0?), (9.1)

where % denotes the convergence in distribution, and o2 is the long-run variance which
typically is the sum of autocovariances of all orders. The short-range dependence conditions
mentioned above include, but are not limited to, the m-dependence condition of Hoeffding
and Robbins [1948], the strong mixing condition of Rosenblatt [1956] and its variants,
and the p-stability condition based on functional dependence measures of Wu [2005]; see
also Ibragimov and Linnik [1971], Peligrad [1996], Maxwell and Woodroofe [2000], Bradley
[2007], Wu [2011] and references therein. Once one has (9.1), an asymptotic 100(1 — a)%

confidence interval of u can be constructed as

[Xn — n71/20-(,h7a/27 Xn + nfl/zmhfa/z] (9.2)

where q;_q/2 is the (1 — a/2)-th quantile of the standard normal distribution. However,
the implementation of (9.2) requires the estimation of a nuisance parameter o, which
can itself be a challenging problem and often relies on techniques including tapering and
thresholding to achieve consistency; see for example Whitney and Kenneth [1987], Flegal
and Jones [2010], Politis [2011] and Zhang and Wu [2012] among others.

If the process (X;)iez is heavy-tailed (distributional tail behaving like 7 with a €

(1,2)) so that the variance is infinite, one typically has
n V()Y (X — ) S Salo, 8,0), (9.3)

where £(n) is a slowly varying function satisfying lim,, o ¢(an)/¢(n) = 1 for any a > 0,
and S, (0, 3,0) is the centered a-stable random variable with scale parameter ¢ > 0 and
skewness parameter § € [—1,1]. We refer the reader to the monographs by Samorodnitsky

and Taqqu [1994], Nolan [2015] and Resnick [2007] for an introduction. See also Adler
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et al. [1998] for examples of heavy tails from finance, signal processing, networks, etc. Here
the use of (9.3) for constructing confidence interval as in (9.2) becomes more difficult due
to additional unknown parameters o, o and 3, as well as the unknown ¢(n).

There has been a considerable amount of research focusing on the situation where the
short-range dependence condition fails, and processes with long-range dependence (also
called “long memory” or “strong dependence”) has attracted a lot of attention in various
fields including econometrics, finance, hydrology and telecommunication among others; see
for example Mandelbrot and Wallis [1968], Ding et al. [1993], Leland et al. [1994] and Baillie
[1996]. We also refer the reader to the monographs by Doukhan et al. [2003], Giraitis et al.
[2012] and Beran et al. [2013] for an introduction. For long-range dependent processes, it
may be established that

o) YK, — ) S Y, (9.4)

where H € (1/2,1) is the Hurst index (or the long memory index), ¢(n) is a slowly varying
function, and Y is typically a random variable which can be expressed by a multiple Wiener-
It6 integral and is not necessarily Gaussian. The large sample theory of the form (9.4) has
been studied by Davydov [1970], Taqqu [1975], Dobrushin and Major [1979], Avram and
Taqqu [1987], Ho and Hsing [1997], Wu [2006] and Bai and Taqqu [2014a] among others.
Therefore, the asymptotic behavior of the sample average and thus the inference procedure
can become very different for long-range dependent processes, and the convergence rate in
(9.4) depends critically on the Hurst index H which characterizes the dependence strength.
Hence, in order to apply (9.4) for inference, unlike the case with short-range dependence
and light tail, one needs to estimate in addition the Hurst index H and possibly the slowly
varying function ¢(n), which can be quite nontrivial. Furthermore, the distribution of a
non-Gaussian Y (which also depends on H) has not been numerically evaluated in general.
For the special case of the Rosenblatt distribution where it is evaluated, see Veillette and
Taqqu [2013].

There has recently been a surge of attention in using some random normalizers to avoid,
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or reduce the number of nuisance parameters that need to be estimated for statistical
inference. For example, McElroy and Politis [2002] considered using the sample standard
deviation as the normalizer for inference on the mean of heavy-tailed linear processes that
satisfy the strong mixing condition; see also Romano and Wolf [1999] for the use of a similar
normalizer for independent observations. Lobato [2001], Shao [2010], Zhou and Shao [2013]

and Huang et al. [2015] used a normalization of the type

D 1y kX an21/2

for finite-variance short-range dependent time series. Fan [2010] used the normalizer D,, for
long-range dependent time series with finite variances. Results have also been obtained by
McElroy and Politis [2013] using a lag-window normalizer instead of D,, in (9.5). McElroy
and Politis [2007], moreover, considered the following non-centered stochastic volatility
model X; = pu+ 0;Z;, i > 1, where {0;} and {Z;} are independent, {o;} is i.i.d. heavy-
tailed and {Z;} is a Gaussian process. They proposed to use a random normalizer involving
two terms that account for heavy-tailedness and long memory respectively. The term
in their normalizer which accounts for long memory requires the choice of an additional
tuning parameter. Therefore, it seems that the specific form of the normalization depends
critically on the particular time series that is being considered, and different normalizers
have been used in the literature to account for the heavy-tail and/or long-range dependent
characteristics of the time series.

The current chapter aims to provide a unified inference procedure by adopting the nor-
malizer D,, in (9.5) and developing an asymptotic theory using self-normalized block sums.
As observed by Shao [2011], self-normalization itself is not able to fully avoid the problem
of estimating the nuisance parameters, as the asymptotic distribution at least depends on
the unknown Hurst index H for long-range dependent processes. In order to provide a uni-

fied approach that does not rely on the estimation of any nuisance parameter to determine
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the strength of dependence or heavy-tailedness, certain nonparametric techniques such as
the block sampling® must be utilized to obtain the asymptotic quantiles. However, this
requires developing an asymptotic theory on the self-normalized block sums for a general
class of processes. This task may be nontrivial if we want it to include processes with
long-range dependence and/or heavy-tails. Block sampling has been mainly studied in the
literature in the non-self-normalized setting, where the normalizer converges in probability
to a nonzero constant, thus simplifying the proof; see for example Hall et al. [1998] for non-
linear transforms of Gaussian processes, Nordman and Lahiri [2005] for linear processes,
and Zhang et al. [2013] for nonlinear transforms of linear processes. Jach et al. [2012]
applied block sampling to the model X; = u + 0;Z;, ¢+ > 1, considered by McElroy and
Politis [2007] but with Z; replaced by g(Z;) where g is a possibly nonlinear function with
Hermite rank one. For more information on block sampling, see Sherman and Carlstein
[1996] and Lahiri [2003]. Betken and Wendler [2015] recently obtained interesting results
in the context of long-range dependence. They are briefly discussed in Section 9.3.2 (see
(9.58) below).

The current chapter considers self-normalized block sums using D, in (9.5) as normal-
izer. As observed by Fan [2010], the development of an asymptotic theory in this case can
be very nontrivial even for Gaussian processes. Developing a rigorous proof is stated as an
open problem. The goal of this chapter is to develop such a proof for nonlinear functions of
Gaussian processes with either short or long-range dependence, and including heavy-tails.

The remaining of the chapter is organized as follows. Section 9.2 introduces the self-
normalized block sampling (SNBS) method, whose asymptotic theory is established in
Section 9.3. Section 9.4 contains examples. Monte Carlo simulations are carried out in

Section 9.5 to examine the finite-sample performance of the method.

!The following terms are used interchangeably in the literature: block sampling, subsampling, sampling
window method.
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9.2 Self-Normalized Block Sampling

Let X1,..., X, be observations from a stationary process (X;);cz with mean u = E (X)),
and denote by S = Zf:j X;,j <k, its partial sums from j to k. Of particular interest is

Sin =>4 Xi. We propose using the self-normalized quantity

n D, (9.6)

for making statistical inference on the mean u, where D,,, defined in (9.5), can now be

n L)
D, — {nl 3 (Sm - nSL") } . (9.7)
k=1

In order to make inference on p, we need to know the distribution P(Ty < x).

written

A first idea is to use the asymptotic distribution of (9.6). This would require knowing

the weak limit of the normalized partial sum process, namely,
{no(n) N (S —np), 0<t <1} ={Y(t), 0<t <1}, (9.8)

where ¢ € [0,1], [nt] denotes the largest integer not exceeding nt, and = denotes weak
convergence in Skorokhod space with suitable topology. By Lamperti [1962], if (9.8) holds,
then the process Y (t) is self-similar with stationary increments, with Hurst index? 0 <
H < 1(H-sssi), and with 4(-) a slowly varying function. Recall that a process Y (¢) is said
to be self-similar with Hurst index H if {Y(ct), t > 0} has the same finite-dimensional
distributions as {c?Y (t), t > 0}, for any ¢ > 0.

The most important example of (9.8) is when (X;);cz is short-range dependent and

admits finite variance, in which case one expects

(02 (S| —np), 0<t <1} = {oB(t), 0 <t <1}, (9.9)

2We exclude the degenerate case H = 1.
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where B(-) is the standard Brownian motion, and ¢ > 0 is the long-run variance; see for
example, the invariance principle of Herrndorf [1984] under strong mixing, and also the
strong invariance principle of Wu [2007]. When {X;} is short-range dependent but has
infinite variance with distributional tail regularly varying of order —a where « € (1,2),

one has typically
(V) T (Spue) — ), 0<t <1} = {Lagp(t), 0<t <1}, (9.10)

where L 5 5(t) is a centered a-stable Lévy process with scale parameter o > 0 and skew-
ness parameter § € [—1,1]. See, for example, Skorokhod [1957], Avram and Taqqu [1992],
Tyran-Kaminska [2010a], Tyran-Kaminska [2010b] and Basrak et al. [2012] for the specifi-
cation of the corresponding Skorohod topology.

Under long-range dependence, the limit in (9.8) can be quite complicated. A typical

class of convergence in this case is
{ne(n) " (S| — ), 0<t <1} = {cZmu(t), 0 <t <1}, (9.11)

where 1/2 < H <1, Zy, g(-) is the m-th order Hermite process which can be expressed by
a multiple Wiener-It6 integral (see, e.g., Dobrushin and Major [1979] and Taqqu [1979]),
and c is a constant depending on H, m and ¢(n). A Hermite process Z, g(-) with m > 2
is non-Gaussian, and when m = 1 it is the Gaussian process called fractional Brownian
motion, also denoted by Bp(-). One can also consider the anti-persistent case H < 1/2,
where the limit can be more complicated than Z,, g (-) (see Major [1981]).

Applying the same normalization n~¢(n)~! to both the numerator and denominator
of T in (9.6), one can establish as in Lobato [2001], via (9.8) and the Continuous Mapping

Theorem that as n — oo,

nH0(n) " (S1,0 — np) a4 g YD) (9.12)

1
T =
D) {n U (S — ESy02) b
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with
1/2

1
D= [/ Y(s) - sY(1))2ds| (9.13)
0
Note that D > 0 almost surely. Indeed, if P(D = 0) > 0, then with positive probability
Y (s) = sY (1), which has locally bounded variation. This cannot happen by Theorem 3.3
of Vervaat [1985], since we assume H < 1.

In particular, in the short-range dependent case (9.9), one gets

T 4 B{)
[f01{3<s) — sB(1)}2ds

12’

where the limit does not depend on any nuisance parameter. However, this nice property
no longer holds in the other cases (9.10) and (9.11), since Y (¢) in either case involves
additional parameters. Therefore, except for short-range dependent light-tailed processes,
self-normalization itself is usually not able to fully avoid the problem of estimating the nui-
sance parameters, and we shall follow here Hall et al. [1998] and consider a block sampling

approach. See also Chapter 5 of Politis et al. [1999]. Let

Siitbn—1 — bnpt . Siitbn—1 — bnpt

- , (9.14)
Un _ ) — - ) D
V0t S Sk — bt (k= i+ 1) 40, 0)? .

1 <i < n—b,+1, which is the block version of 7} in (9.6) for the subsample X, ..., X;1p, 1,
where b,, denotes the block size. Observe that there is a considerable overlap between suc-
cessive blocks, since as ¢ increases to ¢ + 1, the subsample becomes X;1,..., X;4p,, and
thus includes many of the same observations.

We consider using the empirical distribution function

.y 1 n—bn+1 .
Frop, (@) = P Zz; (T, <), (9.15)

where I(-) is the indicator function, to approximate the distribution P(T; < x) of T;' in

(9.6). In practice, the mean g in (9.14) is unknown and we shall replace it by the average
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X, of the whole sample, which turns (9.14) into

Si,z'—l—bn—l - ann

Tiv, = : , (9.16)
VOt S (S — b — i+ 1S, 1)?
whose empirical distribution function is given by
R 1 n—bn+1
F =— T;p, <x). 9.17
nba (T) = —— T ; (Tip, <) (9.17)

The asterisk in T:bn indicates that the centering involves the unknown population mean
i, in contrast to T;p,, where the centering involves instead the sample average X,. We
call the above inference procedure involving using ﬁn,bn () in (9.17) to approximate the
distribution of T in (9.6), the self-normalized block sampling (SNBS) method. One can
then construct confidence intervals or test hypotheses for the unknown population mean
w. For instance, to construct a one-sided 100(1 — «)% confidence interval for p, one gets
first the a-th quantile g, of the empirical distribution ﬁn,bn (z) in (9.17). Since

Sl,n —np

l—a;::P(T;fzqa):P< D,

> qOé) = P(M < Xn _QQDn/n)7
where D), is defined in (9.7), then the 100(1 — a)% confidence interval is constructed as
(—oo . Xp — ann/n] . (9.18)

The idea of using block sampling to approximate distributions of self-normalized quan-
tities is not new, and it has been applied by Fan [2010] and McElroy and Politis [2013] to
long-range dependent processes with finite variances. However, the aforementioned papers
did not provide a full theoretical justification for their inference procedure based on block
sampling, and as commented by Fan [2010] such a task can be very nontrivial even for
Gaussian processes and has been stated as an open problem. In addition, the aforemen-

tioned papers only considered the situation with finite variances, and therefore it has not
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been known whether one could unify the inference procedure for processes with long-range
dependence and/or heavy-tails.

Recently, Jach et al. [2012] considered this problem in the setting of stochastic volatility
models where the error term can be nicely decomposed into two independent factors, with
one being a function of long-range dependent Gaussian processes while the other being
i.i.d. heavy-tailed®. But in their paper, the nonlinear function is restricted to have Hermite
rank one and the choice of slowly varying functions is also greatly limited as neither logn
nor log log n are allowed. In addition, their random normalizer is specifically tailored to the
aforementioned stochastic volatility model, and involves two different terms to account for
the long-range dependent and heavy-tailed characteristics of the time series. Furthermore,
the term in their normalizer that accounts for long-range dependence also requires the
choice of an additional tuning parameter as in the estimation of the long-run variance for
short-range dependent processes. We also mention that the proof of Jach et al. [2012], which
relies on the 6-weak dependence, does not seem to be applicable in the current setting, since
using our random normalizer D,, in the denominator makes the self-normalized quantity a
non-Lipschitz function of the data.

The current chapter proposes to consider the use of (9.17) to provide a unified inference
procedure without the estimation of a nuisance parameter for a wide class of processes,
where the limit of the partial sum process can be a Brownian motion, an a-stable Lévy
process, a Hermite process or other processes. In Section 9.3, we develop an asymptotic
theory for the self-normalized block sums and establish the theoretical consistency of the

aforementioned method, namely,
[Fop (2) = P(T; < 2)] =0 (9.19)

in probability as n — oo.

3 As noted in Section 9.4 below, we can recover the consistency result of Jach et al. [2012] by replacing
our normalization D,, by the one found in that paper.
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9.3 Asymptotic Theory

We establish the asymptotic consistency of self-normalized block sampling for the following
two classes of stationary processes: (a) nonlinear transforms of Gaussian stationary pro-
cesses (called Gaussian subordination), and (b) those satisfying strong mixing conditions.
The first allows for long-range dependence and non-central limits, while the second involves
short-range dependent processes. Both classes allow for heavy-tails with infinite variance.

Let D[0, 1] be the space of cadlag (right continuous with left limits) functions defined on
[0, 1], endowed with Skorokhod’s My topology. The My topology is weaker than the other
topologies proposed by Skorokhod [1956], in particular, weaker than the most commonly
used J; topology. A sequence of function z,(t) € D|0,1] converges to x(t) € DJ0,1]
in My topology as n — oo, if and only if lim, sup;, <;<;, Tn(t) = sups, <;<q, 2(t) and
limy, infy, <¢<¢, Tn(t) = infy, <1<4, (¢) for any t1,t2 at continuity points of x(t) (see state-
ment 2.2.10 of Skorokhod [1956]).

We consider the M, topology instead of J; since there are known examples in the
heavy tailed case where convergence fails under .J; but holds under Mj (see Avram and
Taqqu [1992], Tyran-Kamiriska [2010b] and Basrak et al. [2012]). To apply the continuous

mapping argument, we need the following lemma.

Lemma 9.3.1. Integration on [0,1] is a continuous functional for D[0,1] under the Mo

topology.

Proof. Suppose that z,(t) — z(t) in the My topology. For any partition 7 = {0 = ¢y <
tp < ... < tpo1 < b = 1}, define my, = infy,_ <i<p, w(t), Min = supy, | <1<y, Tn(t),

m; = infy, | <<y, 2(t) and M; = supy, | <;<4, #(t), i = 1,..., k. Note that

k 1 k
Zmi,n(ti —ti—1) S/ xp(t)dt < ZMi,n(ti —ti—1),
i=1 0 i

k 1 k
Zmi(ti - ti—l) §/ x(t)dt < ZMz(tz — ti—1)~ (9.20)
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The function x(¢) is Riemann integrable since, as an element in D|0, 1], it is a.e. continuous
and bounded on [0, 1]. Riemann integrability implies that for any € > 0, one can choose a

partition 7 so that

k

k
0< ZMZ(Q — ti—l) — Zmz(tz — ti—l) < €. (9.21)
=1

=1

Modify the partition, if necessary, so that all the t;’s are at continuity points of z(t),
without changing (9.21). This is possible since x(¢) has at most countable discontinuity

points and is bounded. By the characterization of convergence in D]0, 1] with M topology,

we have
k k
h};ﬂz Min(ti — i) = Y mai(ti — ti1),
i=1 i=1
k k
llglz Mi,n(ti — tifl) = Z Ml(tl — tifl)- (922)
i=1 i=1

Combining (9.20), (9.21) and (9.22) concludes that lim sup,, | fol xn(t)dt—fol x(t)dt| <e. O

9.3.1 Results in the Gaussian subordination case

Let
{Zz = (Zz',la ceey ZZ‘”]), 1€ Z} (923)

be an R/-valued Gaussian stationary process satisfying EZ; ; = 0 for any 1, j. Define
7! = (Zyp,...,Z,). (9.24)

We shall view Z] as a vector of dimension J x (¢g—p+1) involving observations from time p to

time g. The covariance matrix of Z7" will be written for convenience as a four-dimensional
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array involving i1, 2, jo, Jo:

Em = (7j1,j2 (ig — il) = EZi1,j1 Zig,jg) (925)

1<i1,ia<m,1<j1,j2<J
We assume throughout that 3, is non-singular for every m € Z.. The cross-block covari-

+m

ance matrix between Z7* and Z’lz 11 s

Shom = (fyjm (is+k —iy) == BZ;, ,, Zi2+k,j2) (9.26)

1<in iz <m1<j1,j2<J

Let p(-, -) denote the canonical correlation (maximum correlation coefficient) between L?(2)
random vectors U = (Uy,...,U,) and V = (V1,...,V,). Let (-,-) denote the inner product

in an Euclidean space of a suitable dimension. Then

p(U7 V) = sup
x€RP yeRY

Corr((x, U), (y, V)) ‘ . (9.27)
Let pg m be the between-block canonical correlation:

Phm = P ( ™, ZZI}") : (9.28)

We now introduce the assumptions for the self-normalized block sampling procedure.

{X;} is the stationary process (time series) we observe.

Al. X; = G(Z;,...,Z;—;) = G(Z!_;) with mean pu = EX;, where {Z;} is a vector-valued

stationary Gaussian process as in (9.23), and [ is a fixed non-negative integer.

A2. We have weak convergence in D]0, 1] endowed with the Ms topology for the partial
sum:

{nHz(n)(SLntJ —np), 0<t< 1} ={Y(t), 0<t <1},

for some nonzero H-sssi process Y (t), where 0 < H < 1 and #(-) is a slowly varying

function.
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A3. As n — oo, the block size b, — o0, b, = o(n), and satisfies
Z Pr,i+b, = 0(n), (9.29)
k=0

where py, , is the between-block canonical correlation defined in (9.28).

Remark 9.3.1. The data-generating specification in A1 allows us to get a variety of limits
in A2, covering short-range dependence, long-range dependence, and heavy tails. When
the covariance function of X (n) is absolutely summable (short-range dependence), one
typically gets in A2 convergence to Brownian motion (see, e.g., Breuer and Major [1983],
Ho and Sun [1987] and Chambers and Slud [1989]). When the covariance of X (n) is
regularly varying of order between —1 and 0 (long-range dependence), one may get in A2
convergence to the Hermite-type processes (see, e.g., Taqqu [1975], Dobrushin and Major
[1979], Taqqu [1979] and Arcones [1994]).

Moreover, as shown in Sly and Heyde [2008] in the case J = 1, when G(+) is chosen such
that X (n) is short-range dependent and heavy-tailed, so that X (n) has infinite variance but
finite mean, one can obtain in A2, convergence to an infinite-variance a-stable Lévy process;
if X(n) is long-range dependent and heavy-tailed, then the limit may be a finite-variance
Hermite process, even though X (n) may have infinite variance. All these situations are
allowed under Assumptions A1-A3.

For sufficient conditions for Assumption A3 to hold, see Proposition 9.3.1 and Section

9.3.2.

Since the denominators in (9.12) are nonzero almost surely, Assumption A2, Lemma
9.3.1 and the Continuous Mapping Theorem imply the following (see Kallenberg [2006],
Corollary 4.5):

Lemma 9.3.2. T}, in (9.14) converges in distribution to 7" in (9.12).

The following result allows us to relate the correlation of nonlinear functions to the

correlation of linear functions.
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Lemma 9.3.3. Let (Z;);cz be a centered R”-valued Gaussian stationary process as in (9.23),
and let Z$ be defined as in (9.24). Let F,, be the set of all functions F' on R’™ satisfying

EF(Z7)? < co. Then for k > m, one has

sup )corr(F(zT),G(z’,gjgn))] - p( T,z’,;fl“) = Dom. (9.30)
FvGE-FJm

Proof. The equality is the well-known Gaussian maximal correlation equality. See, e.g.,

Theorem 1 of Kolmogorov and Rozanov [1960] or Theorem 10.11 of Janson [1997]. O

~

Our goal is to show that (9.19) holds, namely, F, 5, is a consistent estimator of P(7}; <

x). This will be a consequence of the following theorem.

Theorem 9.3.1. Assume that Assumptions A1-A3 hold. Let F'(z) be the CDF (cumulative

distribution function) of 7" in (9.12), and let ﬁn,bn () be as in (9.17). As n — oo, we have

~

Fpp,(x) 5 F(z), ze€C(F), (9.31)

where C(F') denotes the set of continuity points of F'(x). If F(x) is continuous, then (9.31)

can be strengthened to

~

sup | Fpp, () — F(z)| = 0 in probability. (9.32)

Proof.

Step 1. Let ﬁ; p, (z) be as in (9.15). To prove (9.31), we first show that
Fpy (2) B F(2), zeC(F), (9.33)

where we have replaced ﬁn,bn (z) by ﬁ;,bn (). A bias-variance decomposition yields:

([, @) - F0)] )

= [EE},, ()] = BR2F(2)Fry, (2)] + F(2)? + B[Fyy, (2)%] = [EE}, (2))?
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= [EFy, (@ )—F(g;)r+ [E[Fy, (2)%] - [BE,, (2)]

= [P(T}, <) — P(T < 2)]> + Var[F, (2)].

2y

By Lemma 9.3.2, the squared bias [P(T}, < z)— P(T" < 7)]? converges to zero for
x € C(F) as b, — co. We thus need to show that Var[ﬁ;: p, (T)] = 0. By the stationarity

of {X;}, which implies the stationarity of {ﬂfbn} viewed as a process indexed by ¢, one has

n—bnp+1
~ 1 y
Var[F., (2)] = Var P | ; KT, <}
1 n—bp+1
= 1P 2, o [T, <1, <]
2
= n—by,+1 kzo |Cov [{T7y, <}, YTy, <}, (9.34)

since for any covariance function «(-) of a stationary sequence, we have

Y=< (- [k)h(k |<2p2|7

1,j=1 |k|<p

In view of Assumption Al, X; depends on Z;,...,Z; ;. By (9.14), T Zb is a function of
Xy, Xiqp,—1. Hence Tl*,bn depends not only on Zq,...,Zy,, but also on Z;_y,...,Zy,
and Tl:+1,bn depends on Zy11_y, ..., Zgyp,. We shall now apply Lemma 9.3.3 with the same

k and m =1+ b,. Then when k > [+ b,,, one has

1
|Cov[{Ty,, <a}, T}, <a}]| <= |Corr[{Ty, <}, H{TI},,, < a}]| < 1 Plebntl

(9.35)

NH
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where we have used the following fact?: if 0 < X < 1, then Var[X] < 1/4. We have

- 1
* < - )
VarlFly, ()] < 5o kzopk bt (9.36)

which converges to zero because of Assumption A3. Hence ﬁ; b, (T) L F(z) for z € C(F).

Step 1 of the proof is now complete.

Step 2. We now show that

~

Fop, () 2 F(2) for z € C(F),

that is, we go from (9.33) to (9.31). To do so, we follow the proof of Theorem 11.3.1 of
Politis et al. [1999], and express (9.17) as

R 1 n—bn+1 . B

where D;;,, is as in (9.14). The goal is to show that b, (X, — 1)/ D;p, is negligible. For

€ > 0, define
1 n—bp+1
= b, (X, — u)/D;y < )
R = iy 2 W=/ D <0 (939
n—bn+1
ST ) Digy > € ba(X — ) (010(b)) Y.
nbr1 2 be Z n

Since R, (€) is an average of indicators, we have R,(¢) < 1. Our goal is to show that

Rn(€) B 1. Note that as n — oo,

1/2

Dz’ by - i+b,—1 . )
bEE(bn) bHé (b Z (S’ Fe byt (k- 1)Si,i+bn—1> >

converges in distribution to D in (9.13) by Assumption A2 and continuous mapping. More-

If 0 < X <1, then p = EX € [0,1], EX? < p and Var[X] < p — p? is maximized at p = 1/2, so that
Var[X] < 1/4 (for more general results, see Dharmadhikari and Joag-Dev [1989], Lemma 2.2).
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over, since b, = o(n), H < 1 and n(X,, — u)n~74(n)~! converges in distribution to Y (1)

by Assumption A2, we have

_y nf7l(n) o

b = )05/ 0n) ™" = (o = g™ )™ g

Hence for any ¢ > 0, with probability tending to 1 as n — oo, one has

1 " H -1 -1
12 Ra(0) 2 = z; {(b 0(bn) " Dy, > 67!} (9.39)
Since as T;bn in Step 1, D;;, is also a function of X;,..., X1, 1, we can follow a same

argument as in Step 1, replacing 77, by (bH¢(b,,)) 71Dy, to obtain a similar result as in
(9.33), namely that the empirical distribution of (bZ4(b,))~1D;, converges in probability

to that of D at all points of continuity of the distribution of D. Therefore

n—bn+1
1 H —1 -1y P —1
. > = > .
n b+ 1 ,;1 I{(by, £(bn)) D;y,, > de } P(D > e ") (9.40)

for de~! at continuity point of the CDF of D. Since P(D > 0) = 1, we can choose ¢ small
enough to make P(D > de¢~1) as close to 1 as desired. In view of (9.39) and (9.40), we
conclude that as n — oo,

Ru(e) B 1 (9.41)
for any € > 0. Now notice that each summand in the sum (9.37) satisfies
I{Tiﬂjbn <z+ bn(Xn - N)/Di,bn}

= [T, <@+ (X — 1)/ D} [Hba(Zn = 1)/ Di, < €} + Hbu(Kn = 1)/ Dy, > ¢}

<UT},, < @+ €+ bu(Xn — 1)/ Dig, > ¢}, (9.42)



274

so that by plugging these inequalities in (9.37) and using (9.38), we get
Fop(2) < Fp, (24 €) +1 = Rae).

But by (9.41), R,,(¢) 5 1. So for any v > 0, one has

~

Fop, () < Ery (x+€) +7

with probability tending to 1 as n — oco. We can now use (9.33) to replace ﬁ; b, (T + €)
by F(z + €), so that for arbitrary 4’ > ~, and for any x + € € C(F), one has ﬁn,bn (x) <
F(z4¢€)+~' with probability tending to 1 as n — oco. Now letting € | 0 through x+¢ € C(F)

and using the continuity of F'(-) at x, one gets with probability tending to 1 that

~

Fop,(z) < F(z)+4", ze€C(F), (9.43)

for any 7" > +'.

A similar argument, which replaces (9.42) by
I{szbn <z}> I{Tan <r—ef— I{bn(Xn - N)/Di,bn < —e},
will show that for any 7" > 0, with probability tending to 1,
Fop,(z) > F(z) —+", e C(F). (9.44)
Combining (9.43) and (9.44), one gets

P(|Fyp, (@) = F(z)| <7") = 1

as n — oo, and thus (9.31) holds.

Step 3. We now show (9.32). If F(x) is continuous, then by the already established
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(9.31), we have ﬁn,bn (z) — F(z) in probability for any x € R. Let n; be an arbitrary
subsequence, one can then choose a further subsequence of n;, still denoted as n;, so that
ﬁni () — F(z) almost surely for all rational x by a diagonal subsequence argument. Then

by Lemma A9.2 (ii) of Gut [2006], sup,cr |1/7\m () — F(z)| — 0 almost surely, and therefore

SUP,cRr |F(z) — F(2)| = 0 in probability. Hence (9.32) is proved. O

Consistency (9.19) is a simple corollary of Theorem 9.3.1.

Corollary 9.3.1. Assume that Assumptions A1-A3 hold. Then as n — oo,
|Flup, (z) — P(TF < z)| = 0 in probability. (9.45)

for x € C(F). If F(z) is continuous, then the preceding convergence can be strengthened
to

sup ]ﬁn,bn () — P(T;, <x)| - 0 in probability. (9.46)
z€eR

Proof. The first result (9.45) follows directly from the triangle inequality
[P, (2) = P(T;; < )| < [Fup, (2) = F(z)| + |P(T} < 2) = Fla)],

where z € C(F) and F(z) = P(T < z), by combining Theorem 9.3.2 or 9.3.1 with (9.12).
For the second result (9.46), one uses also the fact that (9.12) implies sup,cp |P(T; <
x) — F(z)] — 0 as n — oo if F(x) is continuous (see again Lemma A9.2 (ii) of Gut

2006]). 0

Bai and Taqqu [2015e] recently proved the following proposition, showing that the
bound (9.29) holds for a large class of models with long-range dependence. Thus, for
these models, one has the freedom to choose any b,, = o(n), irrespective of the long-range

dependence parameter H.

Proposition 9.3.1 (Bai and Taqqu [2015¢]|, Theorem 2.2 and 2.3). Consider the case J = 1.
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Suppose that the spectral density of the underlying Gaussian {Z;} is given by

JA) = fa(N) fo(N),

where fr()\) = |1 —e?|72H+1 1/2 < H < 1, and fo()\) is a spectral density which corre-
sponds to a covariance function (or Fourier coefficient) yo(n) = [™_ fo(A)e™*d\. Assume

that the following hold:

(a) There exists ¢op > 0 such that fo(A) > ¢ for all A € (==, 7;
(b) >o0Z o Y0(n)] < 00

(c) Yo(n) = o(n™1).

Then the condition (9.29) in Assumption A3 holds if b, = o(n). The result extends to the

case where the underlying Gaussian {Z;} is J-dimensional with independent components.

In Proposition 9.3.1, fi()\) is the spectral density of a FARIMA(0, d, 0) sequence with
d=H —1/2,and fy()) is the spectral density of a sequence with short-range dependence.

Under the assumptions in Proposition 9.3.1, the spectral density f(\) cannot have a
slowly varying factor which diverges to infinity or converges to zero at A = 0, because fy(\)
is bounded away from infinity and zero. For H € (1/2,1), the FARIMA (p, d, ¢) model with
d = H—1/2 and the fractional Gaussian noise model satisfy the assumptions of Proposition
9.3.1. See Examples 2.1 and 2.2 of Bai and Taqqu [2015¢].

We thus have the following result which we formulate for simplicity in the univariate

case J = 1.

Corollary 9.3.2. Assume that Assumptions A1-A2 hold with J = 1, and the underlying
Gaussian {Z;} satisfies the assumptions in Proposition 9.3.1. If b,, — oo and b, = o(n),

then the conclusions of Theorem 9.3.1 and Corollary 9.3.1 hold.
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9.3.2 Further analysis of Assumption A3

In this section, we discuss the critical Assumption A3, which involves the covariance struc-
ture of the underlying Gaussian {Z;}. In particular, we shall give the general bound (9.49)
below for the canonical correlation py ,, in (9.28), and discuss how it relates to Assumption
A3. As noted in Proposition 9.3.1, however, this bound, in the long memory case, can be
improved substantially so as to provide more flexibility on the choice of the block size b,.

To state this general bound, define

M, (k) = 1 4
T8 =, i a0l (947

and

Am = the minimum eigenvalue of ¥,,. (9.48)

Note that A, > 0 since X, is assumed to be positive definite.

Lemma 9.3.4. Let py ., be as in (9.28), M, (k) be as in (9.47) and A, be as in (9.48). We

have the bound

Mk —
Pk.m gmin{Jm(m),l}. (9.49)

) >\m
Proof. Let x and y be (column) vectors in R’™. Note that each Z7* = (Z1,- - , Zy,) and
Z],jfl” = (Zi+1, -, Zp+m) are Jm-dimensional Gaussian vectors translated by k units in

the time index. Therefore by (9.27),

B|(x, 20y, ZETT)]

_ m gk+m) _
prm = (B Z) = sp (varlox, ) (vl 2

XTEk,my

= sup (9.50)

x,yERJm \/XTEmX\/yTEmy’

where ¥, is as in (9.25), X, is as in (9.26). By relations 6.58(a) and 6.62(a) in Seber
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[2008], one has

T T
> DY 1 |x'X 1
Pm = SUD eny] gy LSy L g
x,yeRI™ \/XTZmX\/yTZmy x,y€RJm Am HXHHYH Am

where A, is the smallest eigenvalue of ¥,,, and oy, is the maximum singular value® of
Yk,m- By Seber [2008] 4.66(b) and 4.67(b), oy, is bounded by the linear size of the matrix
Yk,m times the maximum absolute value of all the elements of the matrix. Since the matrix
Yk,m has linear size Jm, we have
< o (ig +k—1i
Ok,m = Jm 1§21’?2X§m 1§§'?3;{§J ’7]17]2 (12 + Zl)|

<J ()| = JmM(k — m).
< Jm max | max [ (n)] = JmMy(k —m)

The bound (9.49) is then obtained by noting that pj ,,, < 1 in view of (9.30). O

Example 9.3.2. Consider the important scalar case J = 1, where Z; = Z;. Denote the
covariance function of {Z;} by «(n) and its spectral density by f(w). In this case, it is
known that ¥,, is non-singular for any m if lim, - y(n) = 0 (see Proposition 5.1.1 of
Brockwell and Davis [1991]), and that the minimum eigenvalue A, satisfies

Am > 2w essinf, f(w), and  lim A, = 27 essinf, f(w), (9.52)

m— 00

where “essinf” denotes the essential infimum with respect to Lebesgue measure on [—, )

(see Grenander and Szeg6 [1958], Chapter 5.2). If J =1, M, (k) also reduces to

M., (k) = max |y(n)|. (9.53)
n>k
Remark 9.3.3. Consider the vector case but suppose that {Z;1},...,...,{Z; s} are mu-

®Note that X, is not a symmetric matrix. The square of its singular values are the eigenvalues of
Eg’mEk,m, which is symmetric and non-negative definite.
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tually independent, i.e., v, j,(n) = ¥}, j» (n)I{j1 = ja}. Let

Lmj= (7j7j(i1 - iQ))1511,¢2§m-

In this case, we have a block-diagonal ¥, = diag(I'y, 1,...,T, 7). Let

We also have a block-diagonal Xy, , = diag(I'km1,- -, Tkm,7)- Let pgm ; be the between-

block canonical correlation p(Z7"

150 Z’,;:”j) in component j, j =1,...,J. The block-diagonal

structure implies that

Prem = max{prmj, j=1,...,J}.

Proposition 9.3.2. Assumption A3 holds if b, = o(n) and

min
Xy

bn M, (k), 1} = o(n). (9.54)
bp+1

Proof. In view of Lemma 9.3.4, we have

- " Mk —b, —1
Zpk,bn+l§(bn+l)+ Z min{an(), 1}:0(n)

k=0 k=bn+1 byt
since b, = o(n). Hence Assumption A3 holds. O

Implications of Proposition 9.3.2.

We discuss here the implications of Condition (9.54) in various specific situations. This
discussion is restricted to the case J = 1 which is of most interest. This discussion can
be easily extended to the case of independent components via the observation made in
Remark 4.6.15. Let ¢, C' > 0 be generic constants whose value can change from expression
to expression. The notation a =< b means cb < a < Cb for some 0 < ¢ < C. Assume

throughout that the covariance y(n) — 0 and b, = o(n) as n — oco. We distinguish two
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cases: essinf, f(w) > 0 and essinf,, f(w) = 0.

1. Assume first essinf,, f(w) > 0. ‘

In view of (9.52), the minimum eigenvalue A, is bounded below away from zero, and

hence Condition (9.54) holds if
b Y M, (k) = o(n), (9.55)

where M, (k) is expressed as (9.53). Consider the case Y po o M, (k) < oo, which implies
the typical short-range dependence condition: > 7, |y(k)| < >p2o M, (k) < oo. Then

(9.55) reduces to b, = o(n). We get in particular:

Corollary 9.3.3. Suppose that essinf,, f(w) > 0, and |y(n)| < d,, where d,, is non-increasing
and summable (typically, d,, = en™? for some constant ¢ > 0 and 8 > 1). If b, = o(n),

then Assumption A3 holds.
Proof. |y(k)| < dj, implies M (k) < d, and hence > ;2 M, (k) < co. O

Consider now the situation relevant to long-range dependence:
v(k) = k*2L(k), 1/2<H<1, (9.56)

where L(k) is a slowly varying function at infinity. By Theorem 1.5.3 of Bingham et al.
[1989], Condition (9.56) implies that M, (k) ~ k*7~2L(k), which entails that "}_ M (k) <
en®1=11(n). Thus (9.55) holds if

bp = o(n®~ 2 L(n)™h). (9.57)

So, the larger H, the smaller the block size b,,.

Corollary 9.3.4. Suppose that essinf, f(w) > 0, and |y(n)| < n?7=2L(n), where 1/2 <

H < 1 and L is slowly varying. If b, = o(n?>=2# L(n)~!), then Assumption A3 holds.
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The case |y(k)| < k*=2L(k) also encompasses the seasonal long memory situations
(see, e.g., Haye and Viano [2003]), where (k) oscillates within a power-law envelope.

In the long-range dependent case, Betken and Wendler [2015] obtained recently a bound
for pgm in (9.28) using a result of Adenstedt [1974] under some additional assumptions.

Their bound allows (9.29) to hold under the block size condition
by, = o(n?/?~H=¢) (9.58)

with arbitrarily small e > 0. The condition (9.58) is better than (9.57) for each H, and
b, = O(n'/?) is always allowed.
We have also seen that if the model satisfies the assumptions of Proposition 9.3.1, one

can choose

irrespective of the value of H € (1/2,1).

2. Assume now essinf, f(w) = 0. ‘

As mentioned in (9.52), the smallest covariance eigenvalue \,, — essinf, f(w) = 0 as
m — oo. The rate of convergence has been investigated by a number of authors. See,
e.g., Kac et al. [1953], Pourahmadi [1988], Serra [1998], Tilli [2003] and Novosel'tsev and
Simonenko [2005]. It involves the order of the zeros of f(w). We say f(w) has a zero of
order v > 0 at w = wp if f(w) < |w — wp|”. Roughly speaking, the rate at which A,
converges to zero follows the highest order of the zeros of f(w), and the rate of convergence

to zero cannot be faster than exponential:

A > €~ (9.59)

for some ¢ > 0 (see Pourahmadi [1988] and Tilli [2003]). Let us focus on the situation
where f(w) has a finite number of zeros of polynomial orders. Specifically, suppose that

f(w) has zeros of order vy, ...,v, at p distinct points wy,...,w,, and f(w) stays positive
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outside arbitrary neighborhoods of wi,...,wpy. Then by Theorem 2.2 of Novosel’tsev and
Simonenko [2005], one has \,;, < m™" where
v =max(vy,...,1p).

Therefore,

Ab, 41 =< (bn + l)iu =b "

n

and since M, (k) is non-increasing, we have

n

n bn Pn
> " min {)\Mv(kr), 1} <) 14O DT My(k) < C (pn + nby™ M, (py)) -
k=0 b+l k=0 k=pn+1

(9.60)
To satisfy (9.54), we need the last expression in (9.60) to be of order o(n). This will be so

if as n — oo, p, = o(n), and
b = o (1M (p)] /() (9.61)

To get the weakest restriction on by, let in addition p,, grow fast enough so that n/p, =

o(n®) for any 6 > 0 (e.g., choose n/p, < logn). We have the following two typical cases:

o M, (k) = O(e™*) decays exponentially. In this case, [M,, (p,)]~/(F) = O(ePn/0+0))
so the condition (9.61) is certainly satisfied when b, = o(n). Hence Assumption A3

holds with b,, = o(n);

e M, (k)= O(k™"), 3> 0. In this case, (9.54) holds when
by, = o(nf/(1+1)=) (9.62)

for arbitrarily small € > 0. So the worst case is when 3 is close to 0 and v is large.

A nice example involving both v an 8 is when Z(n) is anti-persistent (also called

negative memory), e.g., the fractional Gaussian noise (the increments of fractional
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Brownian motion) with H < 1/2, and FARIMA(p,d, q) with d = H — 1/2 so that
—1/2 < d < 0. In this case, we have § =2 —2H and v = 1—2H in (9.62), and hence
(9.54) holds with b, = o(n'~¢). Therefore:

Corollary 9.3.5. Suppose that {Z,} is fractional Gaussian noise with H < 1/2 or
FARIMA(p, d,q) with —1/2 < d < 0. If b, = o(n'~¢) for € > 0 arbitrarily small, then
Assumption A3 holds.

Remark 9.3.4. We also mention that in Zhang et al. [2013] which studies non-self-
normalized block sampling for sample mean, the condition b, = o(n'~¢) for arbitrarily
small € > 0 is shown to suffice for consistency. The framework in their paper assumes {X;}
to be a univariate nonlinear transform of linear non-Gaussian processes. But it is not clear

how to adapt their proof to a setting involving the self-normalization considered here.

9.3.3 Strong mixing case

Given a stationary process {X;}, let .7-'3 be the o-field generated by X, ..., X, where

—00 < a < b < +oo. Recall that the strong mixing (or a-mixing) coefficient is defined as
a(k) = sup {|P(A)P(B) — P(ANB)|, Ac F° B e F°}. (9.63)
Note that 0 < a(k) < 1. The process {X;} is said to be strong mizing if

lim a(k)=0.

k—+o0

We refer the reader to Bradley [2007] for more details. We shall use the following inequality
which can be found in Lemma A.0.2 of Politis et al. [1999].

Lemma 9.3.5. f U € F°_ and V € F°, and 0 < U,V < 1 almost surely, then
|Cov(U, V)| < a(k) <1

We shall assume:
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B1. {X;} is a strong mixing stationary process with mean u = EXj.

B2. We have the weak convergence in D[0,1] endowed with M topology of the partial
sum:
1
for some nonzero H-sssi process Y (t), where 0 < H < 1 and £(-) is a slowly varying

function.

B3. The block size b, — oo and b, = o(n) as n — 0.

The following theorem establishes the consistency of the self-normalized block sampling
under the strong mixing framework.
Theorem 9.3.2. The conclusions of Theorem 9.3.1 and of Corollary 9.3.1 hold under As-

sumptions B1-B3.

Proof. The structure of the proof and many details are similar to those of Theorem 9.3.1.
We only highlight the key differences. See also Politis et al. [1999] or Sherman and Carlstein
[1996].

In Step 1, we again need to show (9.33). The term [P(T}, <) — P(T < 7)]? = 0 as
before. We need to establish Var[ﬁ;;bn (x)] — 0. We still have the bound (9.34).

In view of Lemma 9.3.5, one has that,

i} i} 1 if & < by,
|Cov[I{T7,,, < o}, {Tip, < z}]| <

alk — by + 1), if k> by;

where «(-) is the mixing coefficient in (9.63). Hence from (9.34), we have

b1

. 9 u

Var[F,, (z)] < b 1 (Z |Cov [I{T7,, <}, {T} 1, < =}
" k=0

n
+ > |Cov[|{TYy, <2}, Ty, <o
k=b
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n

2
<—— by, k—b,+1
S R Y + > o +1)

k:bn
n—bp+1

2by, 2

= E k 9.64
(n—bn+1)+(n—bn+1) 2 Oé( )7 ( )

which converges to zero as n — oo, because b, = o(n) by Assumption B3 , and a(k) — 0 as
k — oo by Assumption Bl and by applying a Cesaro summation. Hence (9.33) is proved.

Step 2 and 3 proceed exactly as the proof of Theorem 9.3.1. The argument in the
proof of Corollary 9.3.1 shows that the conclusion of that corollary continues to hold under

Assumptions B1-B3. O

Remark 9.3.5. In view of Shao [2010], the self-normalized block sampling method con-
sidered in this chapter may be extended to more general statistics beyond the sample
mean. There are two aspects to consider, self-normalization and block sampling. For the
self-normalization aspect to work, the general statistics needs to be approximately linear,
namely, it admits a functional Taylor expansion in the sense of (2) in Shao [2010]. In this
case, Assumption A2 or B2 needs to be replaced by a modified version of Assumption 1
of Shao [2010]. Furthermore, the remainder term in the aforementioned functional Tay-
lor expansion has to satisfy a negligibility condition (see Assumption 2 of Shao [2010] or
Assumption IT of Shao [2015]). Validating these conditions for particular statistics (e.g.,
sample quantiles) and particular models (e.g., the Gaussian subordination model in As-
sumption A1) may be considered in future work. The block sampling aspect is likely to
continue to be valid, since as shown in the proofs of Theorem 9.3.1 and 9.3.2, the key
is to have a bound on the between-block correlation, as the one in Proposition 9.3.1 in
the long-memory Gaussian subordination framework, or as in Lemma 9.3.5 in the strong

mixing framework.
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9.4 Examples

The first two examples of models concern Assumptions A1-A3. They both involve a phase

transition.

Example 9.4.1. Suppose that
X =G(Z) =72,

where {Z;} is a standardized stationary Gaussian process with covariance y(n) = n??~1L(n),
with d € (0,1/2), and L(n) is a positive slowly varying function. Then Assumption Al is
satisfied. Moreover, by Taqqu [1975] in the case d < 1/4 and Breuer and Major [1983] and
Chambers and Slud [1989] in the case d > 1/4, Assumption A2 holds with the following
dichotomy:

H=1/2 ¢n)=1, Y(t) =0B(t) if d <1/4;

H=2d, {(n)=L(n), Y(t) = cuZoy(t)  ifd>1/4,

where 02 = Y~ Cov[X(n), X(0)], cy is a positive constant, B(t) is the standard Brownian
motion and Zj g is the standard Rosenblatt process (second-order Hermite process). As-
sume in addition that the assumptions for {Z;} in Proposition 9.3.1 hold. Then one can
choose a block size b, = o(n) to satisfy Assumption A3. Hence Theorem 9.3.1 and Corol-
lary 9.3.1 hold. Without the additional assumptions in Proposition 9.3.1, Assumption A3

is guaranteed at least by the choice b, = o(n'=2¢L(n)™!) in view of (9.57).

Example 9.4.2. Let F, be the cdf of ¢, distribution with 1 < « < 2, so that it has finite

mean but infinite variance. Let ® be the cdf of a standard normal. Suppose that

where {Z;} is a standardized stationary Gaussian process with covariance y(n) = n??~1L(n),
d € (0,1/2), and L(n) is a positive slowly varying function. The marginal distribution of

{X;} is a to. Then Assumption Al is satisfied. By Sly and Heyde (2008), Assumption A2
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holds with the following dichotomy (for 0 < d < 1/2, 1 < o < 2):

H=1/a, (n) =1, Y(t) = c1La(t) ifd+1/2 <1/a;

H=d+1/2, {(n)=L(n), Y(t) = csBy(t)  ifd+1/2>1/a,

where ¢ and co are positive constants, L, (t) is a symmetric a-stable Lévy process, and
By (t) is a standard fractional Brownian motion. Assume in addition that the assumptions
for {Z;} in Proposition 9.3.1 hold. This will be the case if {Z;} is fractional Gaussian noise
or FARIMA(p,d,q). Then b, = o(n) implies (9.29). Hence Theorem 9.3.1 and Corollary
9.3.1 hold. Without the additional assumptions in Proposition 9.3.1, Assumption A3 is

guaranteed at least by the choice b, = o(n'=2?L(n)~!) in view of (9.57).

Example 9.4.3. Consider the following long-memory stochastic duration (LMSD) model

(for modeling inter-trade duration, see Deo et al. [2010]):
Xi = & exp(Zi),

where {¢;} are i.i.d. positive random variables satisfying P(§; > x) ~ Az™%as ¢ — o0, A >
0, « € (1,2), Z; is a Gaussian linear process Z; = Y52 | j4~1(j)e;—j with d € (0,1/2),1(j) a
positive and slowly varying function, {¢;} i.i.d. centered Gaussian, and {¢;} is independent
of {&}. Note that p = EX; > 0. The model has the interesting feature that although

EX? = oo, it has the following finite covariance for h # 0, namely,
Cov[X;, Xitn] = Covexp(Zy), exp(Zh)]ug ~ ch?=12(h),

as h — oo, where pe = E&;, and we have used the fact that the exponential function has
Hermite rank 1 (see Taqqu [1975]). To satisfy Assumption A1, one can rewrite the model

as
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where {Z/} are i.i.d. standard Gaussian with g chosen such that g(Z}) is equal in distribu-
tion to &. This makes the model satisfy Assumption Al with J =2,1=0, Z;, = (Z], Z;)
and G(z1,x2) = g(x1) exp(z2). By (4.100) and (4.101) of Beran et al. [2013], Assumption

A2 holds with the following dichotomy:

H=1/a, {(n) =1, Y(t) = caLlai1,1(t) ifd+1/2<1/a;

H=d+1/2, {(n)=1%(n), Y(t) = cqBg(t) ifd+1/2>1/a,

where c,, cq are positive constants, Lq1,1(t) is an a-stable Lévy process with skewness
B =1 (see (9.10)), and Bg(t) is the standard fractional Brownian motion. If in addition,
the assumptions for {Z;} in Proposition 9.3.1 hold, then Assumption A3 is satisfied if b,, =
o(n). Hence Theorem 9.3.1 and Corollary 9.3.1 hold. Without the additional assumptions
in Proposition 9.3.1, Assumption A3 is at least satisfied if b, = o(n'=2%(n)~2) (see (9.57)

and Remark 4.6.15).

Remark 9.4.4. Consider the non-centered stochastic volatility model X; = 0;9(Z;) + p
in Jach et al. [2012], where o; and g(Z;) are independent, o; is i.i.d. with heavy tails
and {Z;} is Gaussian with long-range dependence and g has Hermite rank one. This
model can be similarly embedded into Assumption Al. However, as far as we know,
the functional convergence® needed in Assumption A2 has not been established (only the
marginal convergence was established in Jach et al. [2012]). Assumption A2 for this model
is, nevertheless, expected to hold in view of its similarity” to the model treated in Kulik
and Soulier [2012], Theorem 4.1 (see also Theorem 4.19 of Beran et al. [2013]). Checking
Assumption A2 in details is outside the scope of the current chapter. Assumption A3 is

dealt with as in Example 9.4.3.

5The weak convergence assumed in Assumption A2 allowed us to take advantage of Lemma 9.3.1 in
order to establish Lemma 9.3.2.

"Both Jach et al. [2012] and Kulik and Soulier [2012] treated stochastic volatility models of the form
X; = L;H; (for limit theorems it does not matter whether a level is added or not), where L; has finite
variance and is long-range dependent, while H; has infinite variance and is i.i.d.. The difference between
the two papers is that in Jach et al. [2012] L; is centered and H; is not, while in Kulik and Soulier [2012]
H; is centered and Lj; is not.
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Nevertheless, the consistency of the self-normalized block sampling in Jach et al. [2012]
can be shown to hold under our Al and A3 framework. This is done by adopting the
normalization of Jach et al. [2012], with A2 replaced by marginal convergence involving

8

partial sums and sample covariances®, and to ensure A3, by assuming b, = o(n) and that

{Z;} is a long-range dependent sequence satisfying the assumptions of Proposition 9.3.1.

We now give two examples with strong mizing. The first involves a nonlinear time series

and the second involves heavy tails.

Example 9.4.5. Suppose that

Xi=plXiz1l+e, 0<p<l, (9.65)

where ¢;’s are i.i.d. standard Gaussian. Thus {X;} follows a threshold autoregressive model
(Tong [1990]). The Markov process { X;} is strong mixing because it is ergodic?® (see Petruc-
celli and Woolford [1984], Theorem 2.1, or Doukhan [1994] p.103), and hence Condition B1
holds. The conditions of Theorem 3(ii) of Wu [2005] are satisfied!? and therefore Condition
B2 holds with H = 1/2, {(n) = 1 and Y () = 0 B(t), where 0% = " ~(n) > 0 and B(t) is
standard Brownian motion. Condition B3 holds for any block size b, = o(n). Therefore,

Theorem 9.3.2 holds.
In the following example, both Assumptions A1-A3 and B1-B3 hold.

Example 9.4.6. Consider the MA(1) model

X =€ +ag_q,

where a > 0 and {¢;} are i.i.d.. Assume that Ee; = 0, Ee7 = oo, and ¢; is in the domain

of attraction of a stable distribution with an index o € (1,2). Let b, = o(n). By choosing

8More precisely, convergence in distribution of a 3-dimensional vector specified in Theorem 3 of Jach
et al. [2012].

that is, the Markov chain is irreducible aperiodic and positive recurrent (see Tweedie [1975]).

9Tn the terminology of Wu [2005], R(z,¢) = p|z| + ¢, Le = p, 6,(n) = O(n") for some 0 < r < 1, so that
> o2 s ndp(n) < oo, implying Theorem 3(ii).
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appropriate transforms, we can express ¢; as function of Gaussian. Therefore Assumption
A1 holds. Assumption B1 holds because {X;} is 2-dependent. By Theorem 2’ of Avram
and Taqqu [1992], Assumptions A2 and B2 hold with H = 1/«, some slowly varying
function ¢(n), and Y (¢) is an a-stable Lévy process. Also A3 holds with any b, = o(n)
since pgm = 0 when & > m + 2. Therefore, both assumptions A1-A3 and B1-B3 hold in

this case.

9.5 Monte Carlo Simulations

We shall carry out here Monte Carlo simulations to examine the finite-sample performance
of the self-normalized block sampling (SNBS) method and make a comparison with the
recent result of Zhang et al. [2013]. Instead of resorting to self-normalization, the method
of Zhang et al. [2013] exploits the regularly varying property of the asymptotic variance to
avoid the problem of estimating the nuisance Hurst index. We first consider the case with

Gaussian subordination. For this, let
[e.@]
Xi=K(Z), Zi=) ajej, i=1,...,n, (9.66)
§=0

where K(-) is a possibly nonlinear transformation and {e¢;} are i.i.d. standard normal

random variables'!. We consider the following configurations for (9.66):
(a) K(z) =z and aj = (1 +5)4°L, j > 0;
(b) K(z) = 2% and a; = (1+ )1, j > 0;
() K(x) = 07 [@n{(30a2)2a}] and a; = (1+ ), j > 0,

where ®5 is the CDF of the standard normal and ®; is the CDF of the Student’s ¢-
distribution with degree of freedom 1.5, whose tail probability decays like |z|~3/? as |z| —

oo so that it has infinite variance but finite mean.

. . 3/2)_1 . . .
1To generate the process, we use the approximation Z; ~ Z,LZO | aj€i—; in our simulation, and the

J
fast Fourier transform (FFT) as mentioned in Wu et al. [2011] is implemented to facilitate the computation.
Note that the cutoff n®/2 is much greater than the sample size n.
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Case (a) represents the Gaussian linear process which has been extensively used in the
literature for modeling time series data. It has long-range dependence if 0 < d < 1/2. We
let d € {0.25, —1}. The choice d = 0.25 corresponds to long-range dependence (LRD) and
the choice d = —1 corresponds to short-range dependence (SRD).

Case (b) involves an additional nonlinear transformation and now {X;} is LRD if 0.25 <
d < 0.5. Weletde {04,0.2,—-1}. When d = 0.4, both {Z;} and {X;} have LRD (the
limit for {X;} is the Rosenblatt process); when d = 0.2, {Z;} has LRD and {X;} has SRD
(the limit for {X;} is Brownian motion); when d = —1, both {Z;} and {X;} have SRD (the
limit for {X;} is Brownian motion). See for example Wu [2006] and Zhang et al. [2013].

Case (c) corresponds to a process {X;} with marginal distribution ¢ with 1.5 degrees
of freedom and hence with infinite variance. We let d € {0.4,0.2,—1}. When d = 0.4 and
d = 0.2, both {Z;} and {X;} have LRD (the limit for {X;} is the fractional Brownian
motion); when d = —1, both {Z;} and {X;} have SRD (the limit for {X;} is symmetric
(3/2)-stable Lévy motion). See Sly and Heyde [2008] for the boundary between SRD
and LRD in the heavy tail case. We also consider the situation with a non-constant
slowly varying function, where we let a; = (1 + j)? 1log(1 + j), 7 > 0, and denote the
corresponding cases by (a*), (b*) and (c*), respectively.

We consider the problem of constructing the lower and upper one-sided confidence
interval where the nominal level is taken as 90%; see also Nordman and Lahiri [2005]
and Zhang et al. [2013] for similar performance assessment of this type. Following Zhang
et al. [2013], we use throughout the block sizes b, = |cn’?®|, ¢ € {0.5,1,2}. This does
not necessarily represent the optimal choice of b,, but provides us with a spectrum of
reasonable block sizes in our finite-sample simulations. For each realization we compute
the self-normalized block sums and its empirical distribution function Fn,bn as in (9.17).
Examples of realized Fj,3, can be found in Figure 9.1 for models (a)-(c) with different

choices of d. Let g, (a=10%) be the 10%-quantile of Fn,bn, then the lower 90% one-sided
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confidence interval can be constructed as

n

1/2
_ k
_ 1 -1 E o 2 .
oo, Xn n {n (Sl,k nSLn) } do | 3

k=1

Similarly, if g1 (1 — @=90%) denotes the 90%-quantile of Fn,bn, then the corresponding

uppper 90% one-sided confidence interval is

n 1/2
- k
S | -1 v 2
Xn—n {n kgl(sl,k nsl,n) } Q- , +00

See (9.18) for details.

In Tables 9.1 and 9.2, we report the empirical coverage probabilities of the constructed
confidence intervals based on 5000 realizations for each scenario'?. For example, Table 9.1
displays the following results of simulation. If d = 0.25, ¢ = 0.5 and n = 100, then the
self-normalized block sampling (SNBS) simulation yielded the following: the lower 90%
confidence interval included the unknown mean pu, 88.3% of the times and the upper 90%
confidence interval included the unknown mean g, 91.1% of the times. We also report the
results of the subsampling method of Zhang et al. [2013] for a comparison in the column
ZHWW2013. Note that the method of Zhang et al. [2013] does not take advantage of the
technique of self-normalization and therefore it requires an additional bandwidth to utilize
the regularly varying property of the asymptotic variance.'3.

It can be seen from Tables 9.1 and 9.2 that the method proposed in this chapter
performs reasonably well, as most of the empirical coverage probabilities are reasonably
close to their nominal level of 90%, except for situations with heavy tails where deviations

under small sample sizes are expected. However, the results seem to improve as the sample

size increases from n = 100 to n = 500 and the performance is comparable to the method

12When evaluating the empirical coverage probability of the constructed confidence interval, we use the
averaged mean of 1000 realizations as an approximation to the true mean.

13In Tables 9.1 and 9.2, we let the second bandwidth be 1, = [n°°] when using the method of Zhang
et al. [2013]. Many other choices are possible. We also used I, = [0.5n°? | and obtained similar results.
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Model (a) Model (b) Model (c)

Empirical CDF
Empirical CDF
Empirical CDF

-60 40 -20 0 20 40 60 -40 -20 0 20

Self-normalized block sums Self-normalized block sums Self-normalized block sums

Figure 9.1: Examples of realized F},;, for models (a)—(c) with n = 500, ¢ = 1 and differ-
ent choices of d. The z-axis represents the self-normalized block sums, which have been
appropriately centered and scaled.

of Zhang et al. [2013]!4. Note that the choice of sample size n = 100 is considered to
be challengingly small for inference of long-range dependent processes. Because of self-
normalization, our method has the advantage over the one by Zhang et al. [2013] in not
requiring the choice of a second bandwidth.

Finally, consider the strong mixing Example 9.4.5, where X; = p|X;_1| + ¢;, following
the threshold autoregressive model [Tong, 1990]. The ¢;’s are i.i.d. Gaussian. The results
for p = 0.5 are summarized in Table 9.3. Observe that the method works quite well in this

case as well.

4The theoretical assumptions in Zhang et al. [2013] do not allow for infinite variance.
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n = 100 n = 500
d c SNBS ZHWW2013 SNBS ZHWW2013
Model (a)
025 0.5 (88.3,91.1) (86.8, 90.3) (92.2,92.0)  (92.0, 91.5)
1 (86.1,86.6) (85.7, 85.3) (89.6,91.2)  (89.3, 91.3)
2 (82.3,83.7) (810, 82.2) (87.5, 87.5)  (87.4, 87.2)
105 (93.5,94.2)  (93.0,92.9) (93.2,93.1)  (92.9, 93.0)
1 (89.5,90.7)  (89.0, 90.2) (91.4,92.1)  (91.1, 91.7)
2 (87.1,86.3) (86.9, 85.6) (90.0, 89.0)  (89.9, 89.5)
Model (b)
04 05 (90.3,95.7) (89.2, 95.2) (93.2,96.2)  (92.9, 95.6)
1 (84.7,93.6) (83.8,92.7) (88.2, 94.8)  (88.4, 94.9)
2 (75.9,91.8) (75.3, 91.4) (84.3,92.8)  (84.0, 92.9)
02 0.5 (94.6,95.8)  (94.0, 94.8) (95.7, 96.0)  (95.8, 95.6)
1 (88.8,93.6) (88.2, 93.3) (93.8, 93.6)  (93.7, 93.9)
2 (81.4,915) (80.3, 90.8) (89.4, 92.0)  (89.3, 91.9)
105 (97.6,86.3) (97.5, 85.5) (97.0, 86.0)  (97.0, 86.1)
1 (94.1,84.2) (93.5, 83.3) (94.5, 86.5)  (94.3, 86.5)
2 (87.2,84.0) (86.7, 83.6) (91.3, 86.6)  (91.2, 86.7)
Model (c)
04 05 (74.8,84.4) (72.5,82.9) (82.2, 78.0)  (81.8, 77.1)
1 (78.0,76.9) (76.5, 75.8) (77.7,79.3)  (76.9, 78.9)
2 (75.5,73.4) (T4.8, 72.2) (74.6, 78.6)  (73.8, 78.4)
0.2 05 (788,81.4) (76.7, 79.0) (80.8, 79.9)  (80.0, 79.6)
1 (77.0,80.6) (75.9, 79.6) (79.1, 80.8)  (78.7, 80.0)
2 (77.9,74.8) (76.6, 74.1) (81.1, 77.3)  (80.9, 76.3)
105 (82.3,83.7)  (80.9, 82.2) (83.6, 85.3)  (83.3, 84.2)
1 (84.1,80.0) (83.2,79.4) (81.6, 86.0)  (80.6, 85.5)
2 (874,71.2) (86.2, 70.3) (82.0,82.9)  (81.7, 82.8)

Table 9.1: Empirical coverage probabilities of lower and upper (paired in parentheses) one-sided 90%
confidence intervals with different combinations of the index d, sample size n and block size b, = |cn®?|
when a; = (1+4)%1, 5> 0.
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n = 100 n = 500
d c SNBS ZHWW2013 SNBS ZHWW2013
Model (a*)
025 0.5 (87.8,87.9) (86.4, 86.5) (91.9, 91.6)  (92.0, 91.6)
1 (84.0,84.2) (82.7, 83.0) (90.4, 89.4)  (90.1, 88.9)
2 (78.0,79.2) (76.8, 78.6) (84.7,85.1)  (84.4, 84.8)
105 (93.7,93.6) (93.1,92.5) (94.0, 94.4)  (93.6, 94.4)
1 (90.9,89.8) (90.1, 88.6) (93.2, 91.9)  (92.8, 92.0)
2 (864, 86.4) (85.9, 85.4) (90.6, 90.3)  (90.2, 90.1)
Model (b*)
04 05 (84.7,951) (83.3,94.3) (90.3, 98.0)  (90.4, 97.7)
1 (80.4,92.3) (794, 91.8) (86.2, 96.0)  (86.4, 96.0)
2 (71.7,90.2)  (70.5, 89.6) (79.5, 93.6)  (79.6, 93.9)
0.2 05 (89.3,96.8) (88.7, 96.3) (94.3,97.7)  (94.4, 97.5)
1 (83.6,93.9) (83.0,93.3) (90.8, 96.7)  (91.1, 96.7)
2 (77.7,91.2) (76.8, 90.4) (85.1, 95.6)  (85.1, 95.2)
105 (98.3,86.3) (97.9, 85.6) (97.1, 87.0)  (97.1, 87.1)
1 (93.1,85.2) (92.8, 84.6) (95.1, 85.6)  (94.7, 85.7)
2 (88.6,84.1) (87.9, 83.5) (92.2,85.9)  (92.1, 85.5)
Model (c¢*)
04 0.5 (86.3,85.8) (84.6,83.7) (92.6, 88.0)  (92.3, 88.0)
1 (83.4,77.7) (823, 76.1) (87.3,83.3)  (87.7, 83.5)
2 (74.9,75.2)  (73.2, 74.0) (81.1,81.7)  (81.1, 8L.1)
02 0.5 (83.0,852) (80.4, 83.3) (86.6, 84.6)  (86.8, 84.9)
1 (80.4,80.5) (79.5, 78.7) (84.4, 81.7)  (84.5, 80.7)
2 (77.9,735) (76.9, 72.9) (80.4, 78.8)  (80.9, 78.3)
1 05 (83.9,83.1) (823, 8L7) (88.5, 84.0)  (87.5, 83.0)
1 (80.6,83.1) (80.0, 81.7) (86.8, 83.4)  (85.9, 82.8)
2 (83.2,76.7) (82.2, 75.8) (85.8, 82.3)  (85.4, 81.5)

Table 9.2: Empirical coverage probabilities of lower and upper (paired in parentheses) one-sided 90%
confidence intervals with different combinations of the index d, sample size n and block size b, = |cn®? |
when a; = (1+5)% 'log(1 +j), 7 > 0.

n = 100 n = 500
c SNBS ZHWW2013 SNBS ZHWW2013
05 (92.1,94.3) (917, 93.7) (93.2,89.6)  (93.0, 89.4)
1 (90.0,889) (88.8, 88.8) (91.0, 88.0)  (91.3, 88.5)
2 (86.9,84.7) (86.1, 84.0) (89.9,87.2)  (90.1, 87.3)

Table 9.3: Empirical coverage probabilities of lower and upper (paired in parentheses) one-sided 90%
confidence intervals with the TAR model (9.65) for different combinations of sample size n and block size
b, = [en®?].
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