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ABSTRACT

In this thesis the problem of automatic human action recognition and localization

in videos is studied. In this problem, our goal is to recognize the category of the

human action that is happening in the video, and also to localize the action in space

and/or time. This problem is challenging due to the complexity of the human ac-

tions, the large intra-class variations and the distraction of backgrounds. Human

actions are inherently structured patterns of body movements. However, past works

are inadequate in learning the space-time structures in human actions and exploring

them for better recognition and localization. In this thesis new methods are pro-

posed that exploit such space-time structures for effective human action recognition

and localization in videos, including sports videos, YouTube videos, TV programs

and movies. A new local space-time video representation, the hierarchical Space-

Time Segments, is first proposed. Using this new video representation, ensembles of

hierarchical spatio-temporal trees, discovered directly from the training videos, are

constructed to model the hierarchical, spatial and temporal structures of human ac-

tions. This proposed approach achieves promising performances in action recognition

and localization on challenging benchmark datasets. Moreover, the discovered trees

show good cross-dataset generalizability: trees learned on one dataset can be used to

v



recognize and localize similar actions in another dataset. To handle large scale data,

a deep model is explored that learns temporal progression of the actions using Long

Short Term Memory (LSTM), which is a type of Recurrent Neural Network (RNN).

Two novel ranking losses are proposed to train the model to better capture the tem-

poral structures of actions for accurate action recognition and temporal localization.

This model achieves state-of-art performance on a large scale video dataset. A deep

model usually employs a Convolutional Neural Network (CNN) to learn visual fea-

tures from video frames. The problem of utilizing web action images for training

a Convolutional Neural Network (CNN) is also studied: training CNN typically re-

quires a large number of training videos, but the findings of this study show that

web action images can be utilized as additional training data to significantly reduce

the burden of video training data collection.
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Chapter 1

Introduction

Human action recognition is an important topic of interest, due to its wide ranging

application in automatic video analysis, video retrieval and more. In this thesis we

study the problem of action recognition and localization in realistic video clips. In our

experiments we consider video clips collected from sports videos [65], TV programs

[59], movies [26] or YouTube [44, 28]. In each video clip, multiple instances of the

action that we want to recognize may exist and these actions could be interactions

among multiple persons. Irrelevant actions could also be present in the video clip. In

the following sections, we first define the problems that we study in this thesis and

point out the existing challenges. Subsequently, we describe our proposed approaches

to these problems, which are the contributions of this thesis. Finally we give a

roadmap of this thesis and list the related publications this thesis is based on.

1.1 Problem Definitions

Two major problems are studied in this thesis: 1) action recognition and spatial lo-

calization in temporally trimmed video clips, and 2) action recognition and temporal

localization in untrimmed videos.

In the first problem, we assume that the starting and ending frames of a video

clip correspond to the start and end of an action respectively. This is a conventional
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Figure 1.1: Action recognition in temporally trimmed video clips. The starting
and ending frames of a video clip are the starting and ending points of the action
respectively (Squat in this example). We want to classify the action as one of a
predefined list of action classes, and also spatially localize the action (e.g. the red
bounding boxes in this example).

setting in past works, for instance in [50, 77, 79, 41]. In training we assume that

only the action class labels of the training video clips are available. In testing we

predict both the action label as one of a predefined list of action classes, as well as

the spatial location of the action performer(s). Fig. 1.1 illustrates an example of this

problem.

In the second problem, we no longer assume that the videos are temporally

trimmed. We want to both recognize the class of the action and its temporal du-

ration. We consider two possible scenarios in this problem: 1) the action is fully

contained in the video sequence and we observe the complete action, and 2) the ac-

tion is still ongoing, and we observe the action from its start until some intermediate

time point. In testing, in the first scenario, we want to predict the action class and

the starting and ending time point of the action in the video, which we refer to as

action detection in this thesis. In the second scenario, we want to predict the action

class of the ongoing action and its starting time point, which we refer to as action
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Figure 1.2: We study two problems: activity detection and early detection. For
activity detection, we detect the category of the activity and its start and end point.
For early detection, we need to detect the category and the start point of an activity
after observing only a fraction of the activity. This example sequence contains the
activity using ATM.

early detection. Early detection is useful in many applications, e.g. in human-robot

interaction it is desirable to detect the action as early as possible [29, 67] to make the

interaction more natural, such as deploying a robot to help an elderly patient stand

up before he/she is upright and is risking a fall. Fig 1.2 illustrates both problems.

In training, we only need the action labels and starting and ending time points of

the actions in each training video.

1.2 Existing Challenges

Action recognition in temporally trimmed videos is an extensively studied problem

[50, 68, 57, 54, 94, 54, 100, 77, 79, 41]. However, it remains a challenging problem

largely due to the complexity of the human actions and the large intra-class variations
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from different action executions and video capturing processes. When the video is

not trimmed, recognizing the action and temporally localizing the action becomes

even more challenging, especially for relatively long and complex actions.

We highlight four challenges. First, the widely used local space-time represen-

tations space-time interest points (STIPs) [50] and dense trajectories [76] focus on

non-static parts of the video and discard static parts, but non-static and relevant

static parts in the video are also important for action recognition and localization.

Second, human actions are inherently structured patterns of body movements and

the space-time structures in human actions are crucial for recognizing the action,

but past works are inadequate in exploring such structures for action recognition.

Third, when the action is long and complex, it is difficult to model the temporal

structure of the action for accurate action detection / early detection in untrimmed

videos. Fourth, Convolutional Neural Network (CNN) models are shown to be very

effective [69, 22, 21, 8] in learning visual features from videos for action recognition

and detection, but the supervised training of a deep CNN requires huge amount of

annotated training videos, which are expensive to collect, annotate and process. In

the following text we elaborate on these challenges and point out our solutions.

1.2.1 Extracting Local Space-Time Representation of Video

One successful major approach for action recognition and localization builds action

models on local space-time representations that are extracted from videos [50, 100,

77, 79, 41]. Among the proposed local space-time representations, space-time in-

terest points (STIPs) [50] and dense trajectories [76] are perhaps the most widely

used. However, both STIPs and dense trajectories focus on non-static parts of the

video, while the static parts are largely discarded. We argue that both non-static



5

and relevant static parts in the video are important for action recognition and local-

ization. Firstly, some static parts of the space-time video volume may contain pose

information that can be helpful in recognizing human actions. Secondly, extracting

both static and non-static body parts is necessary for accurate localization of the

whole visible body of the action performer.

To solve such problems, we propose a new local space-time representation that

preserves both static and non-static relevant parts of the video for better action

recognition and localization. This new representation is organized in a two-level

hierarchy. The first level comprises local space-time video segments that may contain

the whole human body. The second level comprises local space-time video segments

that contain parts of the root. The algorithm we propose to extract this local space-

time representation from a video is unsupervised: it does not need any pre-trained

body or body part detectors that may be constrained by strong priors of common

poses present in the related training set. The representation of parts is multi-grained

in that the parts are allowed to overlap: some parts are actually parts of larger parts,

e.g. lower leg and whole leg.

1.2.2 Modeling Space-Time Structures of Actions

We argue that as human actions are inherently structured patterns of body move-

ments, the space-time structures in human actions are crucial for recognizing the

action. Past works are inadequate in exploring such space-time structures for ac-

tion recognition, by either discarding structural information [50, 77, 79], encoding

only weak structural information [50, 68, 57, 54, 94] or using manually pre-defined

structures [62, 87, 32, 85, 86, 63, 64, 82].

In this thesis, we study an approach that learns such space-time structures from
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trimmed videos and leverage them for effective action recognition. Intuitively, hu-

man actions can be modeled as spatio-temporal graphs, where the graph vertices

encode movements of whole body or body parts, and the graph edges encode spatio-

temporal relationships between pairs of movement elements, for instance temporal

progression, e.g., one movement followed by another movement, spatial composition,

e.g., movement of upper body coupled with movement of lower extremities, or even

hierarchical relationships of elements, e.g., movement of the body as a whole can de-

compose into local movements of the limbs. Fig. 1.3 illustrates the example spatial,

temporal and hierarchical structures in the action squat. A single spatio-temporal

structure, however, is unlikely to be sufficient to represent a class of action in all but

the simplest scenarios. First, the execution of the action may differ from subject to

subject, involving different body parts or different space-time progressions of body

part movements. Second, the video capture process introduces intra-class variations

due to occlusions or variations in camera viewpoint. Thus, the resulting space-time

and appearance variations necessitate using a collection of spatio-temporal structures

that can best represent the action at large. We propose an approach that automat-

ically discovers a set of space-time tree structures of human actions and builds an

ensemble using these trees for action classification and spatial localization.

1.2.3 Modeling Action Progression in Untrimmed Videos

When the video is not trimmed, recognizing the action and temporally localizing the

action becomes even more challenging, especially for relatively long and complex ac-

tions 1. For example, the action “making pasta” typically entails cutting vegetables,

setting a pot on the fire, making boiling water, boiling pasta noodles, cooking pasta

1Some works refer such long and complex actions as activities, e.g. as in [28]. We do not make
such distinctions here.



7

Figure 1.3: Example spatial, temporal and hierarchical structures in the action squat.

sauce, and combining pasta with sauce. To better detect, i.e., recognize and tempo-

rally localize such activities, we argue that it is critically important for the learned

detector to model the activities’ temporal progression. Recurrent Neural Network

(RNN) models can be quite useful in this situation: at each time instant, the predic-

tion is based on both the current observations and the previous model hidden states

that provide temporal context for the progression of the action. More specifically, in

the Long Short Term Memory (LSTM) [31], a type of RNN, memory is used to cap-

ture useful patterns of previous observations, and is used in addition to the previous

hidden states to provide longer-range context (e.g., as compared to HMMs) for the

current prediction. This has been explored in previous work for action detection,

e.g. in [98] , and is shown to achieve promising results.

However, While RNN models are powerful, using only classification loss in train-

ing such models typically fails to properly penalize incorrect predictions. i.e.The

prediction error is penalized the same no matter how much context the model has

already processed. For example, given a video of the action making pasta, to out-

put the action class label preparing coffee after the detector sees the action up to

combining pasta with sauce should be penalized more than the same error when the
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detector only sees up to making boiling water. This defect in training RNN models is

especially critical for action detection. Unlike conventional applications of RNNs in

machine translation and speech recognition, in which specific output such as words

or phonemes continue for a relatively short time, human activities such as making

pasta may continue for a relatively long period, e.g., several minutes or thousands

of video frames. It is thus very important for the model to learn the progression

patterns of the activities in training. We propose two novel ranking losses that con-

sider temporal progression of actions, and, when used together with classification

loss, significantly improve the action detection and early detection performance.

1.2.4 Training Deep CNN With Limited Video Training Data

For building a good model for action recognition, it is crucial that the input to the

model, i.e.the features extracted from the video, are representative and discrimi-

native for the actions contained in the videos. Recent works [69, 22, 21, 8] show

that deep Convolutional Neural Network models can learn good features from train-

ing videos for action recognition and detection. Our LSTM model, mentioned in

Sec. 1.2.3, is also built on top of a deep CNN. However, CNN models typically

have millions of parameters [7, 47, 70], and usually large amounts of training data

are needed to avoid overfitting. For this purpose, work is underway to construct

datasets consisting of millions of videos [42]. However, the collection, pre-processing,

and annotation of such datasets can require a lot of human effort. Moreover, storing

and training on such large amounts of data can consume substantial computational

resources.

In contrast, collecting and processing images from the Web is much easier. An-

notating the actions in an image is much simpler than annotating actions in a whole
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video sequence. Moreover, videos often contain many redundant and uninformative

frames, e.g., standing postures, whereas action images tend to focus on discrimi-

native portions of the action (Fig. 6.1). In this thesis, we collect large web action

image datasets and study the utilization of such images in training CNN models for

action recognition in videos. By extensive experimental evaluation, we show that

web action images can be used to significantly reduce the burden of collecting and

annotating video training data.

1.3 Contributions

In this thesis, we propose novel approaches that are designed to address each of

the challenges described above. The main contributions of this thesis include the

following:

• Hierarchical Space-Time Segments. We propose a new representation,

hierarchical space-time segments, for both action recognition and localization

that incorporates multi-grained representation of the parts and the whole body

in a hierarchical way. An algorithm is designed to extract the proposed hierar-

chical space-time segments that preserves both static and non-static relevant

space time segments as well as their hierarchical and temporal relationships.

Such relationships serve for better recognition and localization.

• Ensemble of Space-Time Trees. We propose an approach that enables

discovery of high-level tree structures that capture space, time and hierarchi-

cal relationships among the hierarchical space-time segments. We then further

propose a discriminative action model that utilizes both small structures (i.e.,

words and pairs) and richer, tree structures. This unified formulation achieves
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state-of-the-art performance in recognizing and spatially localizing human ac-

tions and interactions in realistic benchmark video datasets. We also show

generalization of the learned trees by cross-dataset validation: trees learned on

one dataset can be used to recognize and localize similar actions of another

dataset.

• Novel ranking losses for training LSTM. We propose formulations for

ranking loss on the detection score and on the discriminative margin of a deep

LSTM model to better learn the temporal structures of human actions. Our

LSTM model shows significant improvement over LSTM models trained only

with classification loss in the tasks of action detection and early detection.

• Utilizing web action images in training deep CNN. We study the utility

of web action images for video-based action recognition using CNNs. Our

findings show that web action images are complementary to video training

data. This complementarity is insensitive to the depth of CNNs and is evident

in many kinds of actions. Moreover, using web action images can boost the

efficiency of CNN training and reduce the burden of collecting video training

data. We also collect new web action image datasets which are made publicly

available for the research community.

1.4 Roadmap of Thesis

We organize the rest of the thesis as follows:

Chapter 2: Related Work

This chapter reviews related works in action recognition, action spatial localiza-

tion, action detection and utilization of web action images for action recognition
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in videos.

Chapter 3: Hierarchical Space-Time Segments

This chapter describes the novel video representation, hierarchical space-time

segments, for action recognition and localization. For an input video, we first

apply hierarchical segmentation on each video frame to get a set of segment

trees, each of which is considered as a candidate segment tree of the human

body. In the second step, we prune the candidates by exploring several cues

such as shape, motion, articulated objects’ structure and global foreground

color. Finally, we track each segment of the remaining segment trees in time

both forward and backward. This process yields the final hierarchical space-

time segments. These space-time segments are subsequently grouped into

tracks according to their space-time overlap. We build simple Bag-of-Words

models on the HSTSs, and show promising action localization and recognition

results on two benchmark datasets.

Chapter 4: Ensemble of Space-Time Tree

we explore the hierarchical, spatial and temporal relationships among the

space-time segments (STSs). This transforms a video into a graph. We dis-

cover a compact set of frequent and discriminative tree structures from graphs

of training videos and learn discriminative weights for the tree nodes and edges.

Finally, we construct action classifiers given the detection responses of these

trees. We evaluate our model on three benchmark datasets and also show

promising cross-dataset generalizability of the learned trees.

Chapter 5: Learning Action Progression in LSTMs
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We introduce two explicit constraints in LSTM training to better capture action

progression. The first is a ranking loss on the detection score of the correct

category, which constrains the detection score of the correct category to be

monotonically non-decreasing as the action progress. The second is a ranking

loss on the detection score margin between the correct action category and all

other categories, which constrains that this discriminative margin is monotoni-

cally non-decreasing. We show state-of-art action detection and early detection

performances by our model on a large scale benchmark dataset.

Chapter 6: Utilizing Web Images for Training CNN Models

We start by collecting large web action image datasets. With these datasets,

we train CNN models of different depths and analyze the effect of adding web

action images to the training set of video frames for different action classes.

We also train and evaluate models with varying numbers of action images to

explore marginal gain as a function of the web image set size. We find that

by combining web action images with video frames in training, a spatial CNN

can achieve significant improvement in action recognition accuracy. We also

replace videos by images to demonstrate that our performance gains are due to

images providing complementary information to that available in videos, and

not solely due to additional training data.

Chapter 7: Conclusions and Future Work

This chapter summarizes and discusses the key contributions of the thesis.

Some open problems related to human action recognition and localization in

videos are also discussed.
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Chapter 2

Related Work

In this section, we review the related literature on action recognition, spatial action

localization and action detection which localize action in time. We also review previ-

ous methods that explore web action images for training models that are to be used

for action recognition in videos.

2.1 Action Recognition

Action recognition is an important research topic for which a large number of meth-

ods have been proposed [88]. Among the previous methods, Bag-of-Words (BoW)

representation of videos is a widely used effective technique on which action classifi-

cation models can be built. In these approaches, local space-time features are often

computed from space-time interest point operators [50, 100] or point trajectories

[77, 79, 41] . Usually a large codebook, with thousands of words, is built by cluster-

ing these local features. The videos are then represented by (normalized) histogram

counts of local space-time features over the codebook, on which action classifiers,

e.g. SVMs, are trained. Advanced feature encoding methods such as Fisher Vector

encoding [60] can be used to further improve the performance [78] of these methods.

While effective in practice, these representations lack the spatio-temporal structure

necessary to model progression or structure of an action.
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One way to encode spatio-temporal structures is to impose a fixed spatio-temporal

grid over the video and construct a BoW representation by concatenating the BoW

representations from each grid cell [50, 68, 57]. While this encodes spatio-temporal

structure, the fixed spatio-temporal grid only offers very coarse structural informa-

tion and typically does not align well with the spatial location or temporal progression

of the action. Other works have tried to encode simple structures more explicitly

[54, 94]. In [54], quantized local features are augmented with relative space-time re-

lationships between pairs of features; in [94] a visual location vocabulary is computed

to incorporate spatio-temporal information.

Richer structures have also been explored. Generative models such as HMMs

have been used, e.g., [62, 87, 32]; however, the independence assumptions of HMMs

are often not held in practice. Discriminative models, e.g., HCRF, are also widely

used [85, 86], [63], [64]. In each of these works a single manually defined structure is

used to model human action as a constellation or temporal chain of action parts. In

contrast, we model an action as an ensemble of tree structures. More importantly, we

discover the structures from data as opposed to defining them by hand. [82] learns

mixture models of body parts and spatio-temporal tree structures using annotated

human joints on video frames. Our method only requires action labels of the videos.

Subgraph mining has also been used for action recognition [2]. However, sub-

graph mining techniques only consider exact matching of subgraphs and discover

graphs that are frequent, not necessarily discriminative. We use subgraph mining

only to produce a large set of candidate subtrees, from which, using the proposed

clustering and ranking methods, we discover a compact subset of discriminative and

non-redundant subtrees.

Other approaches transform videos into graphs and classify actions based on these
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graphs. In contrast to these methods, which attempt to learn a single holistic graph

per action class [5, 73] or a graph kernel that measures compatibility between whole

graphs [83, 19, 90], we focus on identifying frequent and discriminative subtrees.

This allows for a more versatile and compact representation that we also observe is

often semantically meaningful.

CNN models learn discriminative visual features at different granularities, directly

from data, which may be advantageous in large-scale problems. Such models may

implicitly capture higher-level structural patterns in the features learned at the last

layers of the CNN model. Ji et al. [38] use 3D convolution filters within a CNN model

to learn space-time features. [42] train a deep CNN on a dataset of millions of sports

videos and study multiple approaches for extending the connectivity of a CNN in the

time domain. [69] propose using two separate CNNs to learn spatial and temporal

features respectively and train action classifiers on the combined CNN features. [22]

utilizes Region-CNN (RCNN) [21] to capture both the action performer and the

relevant contextual features to recognize and localize the action. [8] propose a pose-

based CNN for action recognition. Recurrent Neural Network (RNN) models, which

are capable of capturing temporal dynamics in the video sequence, have also explored

for the action recognition task. For example, the Long Short Term Memory (LSTM),

a specific type of RNN, is used in [55, 92] for recognizing human actions. While

these deep models are effective and produce state-of-art performance on benchmark

datasets, typically the models have millions of parameters and the training of such

models requires a large amount of training data.
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2.2 Action Spatial Localization

Action recognition methods that use holistic representations of the human figure

have the potential to localize the action performer, such as motion history images

[4], space-time shape models [24] and human silhouettes [84]. But these approaches

may not be robust enough to handle occlusions and cluttered backgrounds in realistic

videos.

Works that use pre-trained human body or body part detectors also can localize

the performer, such as [34, 93, 95]. However, their detectors may be constrained

by the human body appearance priors implicitly contained in the training set and

may not be flexible enough to deal with varying occlusions and poses in various

actions. In [49] the bag of STIP approach was extended beyond action recognition

to localization using latent SVM. In this paper, we show that by detecting the learned

tree structures of human actions, we can effectively recover the spatial locations of

the actions in videos.

Some recent works employ deep Convolutional Neural Network (CNN) models for

both action recognition and localization. [23] detect human actions within regions of

interest on each frame using a spatial CNN and a motion CNN, and subsequently link

the detections in time to construct action tubes for localizing the action. Similarly,

[89] use spatial and motion CNNs to score foreground proposals at the frame-level

and then track high-scoring proposals for localizing an action in space and time.

[22] explore context information by adapting the R-CNN [21] to use more than one

region for detection while, at the same time, maintaining the ability to localize the

action. These deep model based methods show promising results but training the

effective CNN models require large amount of training data. None of these CNN

approaches directly model the temporal dynamics and structure of an entire ac-
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tion action through time which may lead to temporal inconsistency for localization,

e.g. missing localization on certain frames. Moreover, human bounding box annota-

tions on video frames are required in training in [23, 89, 22]. Note that our method

shows promising action localization performance without requiring human bounding

box annotations.

2.3 Action Detection

Human action detection aims at recognize as well as temporally localize actions in

video sequences. In [43], simple actions are represented as space-time shapes that are

matched against over-segmented space-time video volumes. In [99], action detection

entailed searching for 3D subvolumes of space-time invariant points. In [49, 72],

human actions are modeled as space-time structures, using deformable part models

[15]. In [56, 66] discriminative hand-centric features are explored for fine grained

action detection in cooking, i.e., relatively short sub-activities such as chop and fill.

In [23], the detector is trained on CNN features extracted from the action tubes

in space-time; however, evaluation is on relatively short video clips (i.e., several

hundred frames) of relatively short actions. In [98] an LSTM is trained that takes

CNN features of multiple neighboring frames as input to detect actions at every

frame; while their model is similar to ours, they focus on detecting simple actions

such as stand up that last only for a few video frames, and the training loss accounts

only for classification errors. In this work, we focus on accurately localizing activities

that are long and complex by learning and enforcing action progression as part of

LSTM learning objective.

Early recognition of human action or activities, i.e., recognizing human actions

or activities given partial observations, has also been studied in previous works, e.g.,
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by using dynamic bag-of-words of space-time features [67], by modeling actions as a

sparse sequence of key-frames [64], or by using compositional kernels to hierarchically

capture relationships between partial observations [45]. In [29] a structured output

SVM is used for recognizing and also temporally localizing events given partial ob-

servations. Compared to [29], which is evaluated on lab collected videos of simple

human actions, we use deep learning techniques to solve this problem on large scale

realistic video dataset of human activities which are often long and complex.

2.4 Utilization of Web Action Images for Action Recogni-

tion in Videos

Web action images have been used for training non-CNN models for action recogni-

tion [9, 35] and event recognition [12, 81] in videos. Ikizler-Cinbis et al. [35] use web

action images to train linear regression classifiers for small-scale action classification

tasks (5 or 8 action classes). Chen et al. [9] use static action images to generate syn-

thetic samples for training SVM action classifiers and evaluate on a small test set of

78 videos comprising 5 action classes. In [12], Duan et al. use SVMs trained on SIFT

features of web action images in their video event recognition system and evaluate

on datasets with 5∼6 different events. Wang et al. [81] exploit semantic groupings

of Web images for video event recognition and evaluate on the same datasets as [12].

Sun et al. [71] localize actions temporally using a domain transfer from web images.

In contrast, our work gives the first thorough study on combining web action images

with videos for training CNN models for large-scale action recognition.
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Hierarchical Space-Time Segments

Many local space-time representations have been proposed for use in the action

recognition task. Among them, space-time interest points (STIPs) [50] and dense

trajectories [76] are perhaps the most widely used. One major issue for both STIPs

and dense trajectories is that they focus on non-static parts of the video, while the

static parts are largely discarded. We argue that both non-static and relevant static

parts in the video are important for action recognition and localization. There are

at least two reasons:

• Some static parts of the space-time video volume can be helpful in recognizing

human actions. For example, for the golf swing action, instead of just relying

on the regions that cover the hands and arms, which have significant motion,

the overall body pose can also indicate important information that may be

exploited to better discriminate this action from others.

• In many applications, estimating the location of the action performer is also

desired in addition to recognizing the action. Extracting only the non-static

body parts may not lead to accurate localization of the whole body. Therefore,

accounting for both static and non-static parts may help.

In this Chapter, we propose a representation that we call hierarchical space-time

segments (HSTS) for both action recognition and localization. In this representation,
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Figure 3.1: Extracted segments from example video frames of the UCF Sports
dataset. Yellow boxes outline the segments. Boxes within a box indicate child-parent
relationships.

the space-time segments of videos are organized in a two-level hierarchy. The first

level comprises the root space-time segments that may contain the whole human

body. The second level comprises space-time segments that contain parts of the

root.

We present an algorithm to extract hierarchical space-time segments from videos.

This algorithm is unsupervised, such that it does not need any pre-trained body or

body part detectors that may be constrained by strong priors of common poses

present in the related training set. Fig. 3.1 shows some example video frames and

extracted hierarchical segments in the UCF-Sports video dataset [65] and more ex-

amples are shown in Fig. 3.7. The representation of parts is multi-grained in that the

parts are allowed to overlap: some parts are actually parts of larger parts, e.g. lower

leg and whole leg. These segments are then tracked in time to produce space-time

segments as shown in Fig. 3.2.

Our algorithm comprises three major steps. We first apply hierarchical segmen-
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Figure 3.2: Hierarchical space-time segments extracted from a diving action in the
UCF Sports dataset. Each blue box shows a space-time segment. Red boxes show
a segment tree on a frame, and the space-time segments are produced by tracking
these segments.

tation on each video frame to get a set of segment trees, each of which is considered

as a candidate segment tree of the human body. In the second step, we prune the

candidates by exploring several cues such as shape, motion, articulated objects’ struc-

ture and global foreground color. Finally, we track each segment of the remaining

segment trees in time both forward and backward. This process yields the final hier-

archical space-time segments. These space-time segments are subsequently grouped

into tracks according to their space-time overlap.

We then utilize these space-time segments in computing a bag-of-words represen-

tation. Bag-of-words representations have shown promising results for action recog-

nition [50, 76]. Those representations, however, mostly lack the spatial and tempo-

ral relationships between regions of interest, whereas there are attempts to include

these relationships later via higher order statistics [91, 46, 20, 63, 18]. Our hierarchi-

cal segmentation-based representation preserves hierarchical relationships naturally

during extraction and, by following the temporal continuity of these space-time seg-

ments, the temporal relationships are also preserved. We show in experiments that

by using both parts and root space-time segments together, better recognition is

achieved. Leveraging temporal relationships among root space-time segments, we
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can also localize the whole track of the action by identifying a sparse set of space-

time segments.

Contributions: We make the following contributions in this chapter:

1. A new hierarchical space-time segments representation designed for both action

recognition and localization that incorporates multi-grained representation of

the parts and the whole body in a hierarchical way.

2. An algorithm to extract the proposed hierarchical space-time segments that

preserves both static and non-static relevant space time segments as well as

their hierarchical and temporal relationships. Such relationships serve for bet-

ter recognition and localization.

We evaluated the proposed formulation on challenging benchmark datasets UCF-

Sports: [65] and HighFive [59]. These datasets are representative of two major cate-

gories of realistic actions, namely sports and daily interactions. Using just a simple

linear SVM on the bag of hiearchical space-time segments representation, promising

action recognition performance is achieved without using human bounding box anno-

tations. At the same time, as the results demonstrate, our proposed representation

produces good action localization results.

Roadmap for this Chapter

We first describe our algorithm for hierarchical video frame segmentation in Sec. 3.1,

which takes both motion and color into account and produce a set of candidate

segment trees. We then prune the candidate trees of each frame, using shape, motion

and color cues which are discussed in detail in Sec. 3.2. This pruning procedure

removes most of the irrelevant / background segments so that we subsequently track

the remaining segments in time to extract the HSTSs. This requires an efficient



24

Figure 3.3: The pipeline for foreground video frame segments extraction.

tracking method, because we need to finish tracking all remaining segments of all

frames in reasonable time. It also requires the tracking method to be robust, because

our the tracking targets, which are mostly regions on human body, may undergo

significant non-rigid deformation in time. For both ends, we propose an efficient

non-rigid region tracking method in Sec. 3.3 and use it to effectively and efficiently

extract HSTSs. In Sec. 3.4 we discuss our method for training Bag-of-Words model

using HSTSs for action recognition and localization, and the evaluation experiments

of this model is presented in Sec. 3.5.

3.1 Video Frame Hierarchical Segmentation

For human action recognition, segments in a video frame that contain motion are

useful as they may belong to moving body parts. However, some static segments may

belong to the static body parts, and thus may be useful for the pose information

they contain. Moreover, for localizing the action performer, both static and non-

static segments of the human body are needed. Based on this observation, we design

our video frame segmentation method to preserve segments of the whole body and

the body parts while suppressing the background. The idea is to use both color
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and motion information to reduce boundaries within the background and strengthen

internal motion boundaries of human body resulting from different motions of body

parts.

In practice, on each video frame, we compute the boundary map by the method

in [51] using three color channels and five motion channels including optical flow,

unit normalized optical flow and the optical flow magnitude. The boundary map is

then used to compute an Ultrametic Contour Map (UCM) by the method in [3].

The UCM represents a hierarchical segmentation of a video frame [3], in which

the root is the whole video frame. We traverse this segment tree to remove redundant

segments as well as segments that are too large or too small and unlikely to be a

human body or body parts.

We then remove the root of the segment tree and get a set of segment trees Tt (t

is index of the frame). Each T tj ∈ Tt is considered as a candidate segment tree of a

human body and we denote T tj = {stij} where each stij is a segment and st0j is the root

segment. Two example candidate segment trees, which remain after the subsequent

pruning process, are shown in the rightmost images in Fig. 3.3.

3.2 Pruning Candidate Segment Trees

To localize the whole body of action performer, we want to extract both static and

non-static relevant segments, so the pruning should preserve segments that are static

but relevant. We achieve this by exploring the hierarchical relationships among the

segments: we prune segment trees instead of individual segment. Specifically, a

candidate segment tree is either removed altogether or kept with all its segments.

In this way, we may extract the whole human body even if only a small body part

has motion. We explore multiple action related cues to prune the candidate segment
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trees, as described below, in the order of our pipeline as shown in Fig. 3.3.

3.2.1 Tree Pruning with Shape Cue

Background objects (e.g. buildings) with straight boundaries are common in man-

made scenes, but human body boundaries contain fewer points of zero curvature.

With this observation, for each candidate T tj ∈ Tt, we compute the curvature at all

boundary points of its root segment st0j. If the ratio of points that have approximately

zero curvature is large ( > 0.6 in our system), we remove T tj . The curvature κa at a

boundary point (xa, ya) is computed as follows:

κa =

∣∣∣∣xa − xa+δya − ya+δ
− xa−δ − xa
ya−δ − ya

∣∣∣∣ (3.1)

where (xa−δ, ya−δ) and (xa+δ, ya+δ) are two nearby points of (xa, ya) on the segment

boundary.

3.2.2 Tree Pruning with Motion Cue

For each segment stij ∈ T tj , we compute the average motion magnitude of all pixels

within stij. To compute the actual motion magnitude, we compute an affine transfor-

mation matrix between the current frame and the consecutive frame to approximate

camera motion and calibrate the flow fields accordingly. If at least one segment has

average motion magnitude higher than some threshold, T tj will be kept, otherwise it

will be pruned. The threshold is set as the median value of the motion magnitudes

of pixels that are not contained in any of T tj ∈ Tt since these pixels are likely to

belong to the background.
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3.2.3 Tree Pruning with Color Cue

We explore two general assumptions to estimate foreground maps for further pruning

of the candidates. First, as an articulated object, the region of a non-static human

body usually contains many internal motion boundaries resulting from different mo-

tions of body parts. Thus, the segment tree of the human body usually has a deeper

structure with more nodes compared to that of the rigid objects. Second, segments

of the foreground human body are more consistently present than segments caused

by artificial edges and erroneous segmentation. Based on these two assumptions, we

construct the foreground maps using color information as follows:

Denote T̃t as the set of remaining candidate trees after pruning with shape and

motion cues, and let S represent the set of all remaining segments on all frames, i.e.

S = {stij|∀ stij ∈ T tj , ∀ T tj ∈ T̃t, ∀ t}. To avoid cluttered notation, in the following

we simply denote S = {sk}. We compute the L∞ normalized color histogram hk for

every sk ∈ S (128 bins in our system). Then the foreground color histogram h is

voted by all segments:

h =
∑
hk∈h

2dk · hk (3.2)

where dk is the depth of segment sk in its segment tree. For root segment st0j we

define its depth dt0j to be 1 and for a non-root segment stij its depth dtij is set to the

number of edges on the path from the root to it plus one. The color histogram h is

then L1 normalized. As we can see from Eq. 3.2, colors of more frequently appearing

segments and segments with greater depths will receive more votes.

Let F t denote the foreground map of frame t. Its value at i-th pixel is set as

F ti = h(hti), where hti is the color of i-th pixel of frame t. For each segment stij in a

candidate segment tree T tj ∈ T̃t on frame t, we compute its foreground probability
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Prediction by color

Prediction by optical flow
T T+1

Quantize & 
Thresholding

Figure 3.4: Overview of our non-rigid segment tracking method. Both color and
motion information are explored to efficiently locate the target in the small search
region on the next video frame. This method can deal with non-rigid deformation of
the target segment, which is crucial for tracking segments of non-static human body
parts.

as the average values covered by stij in F t. If all segments of T tj have low foreground

probability, T tj is pruned, otherwise it will be kept. One can see in Fig. 3.3 that by

using the foreground map, we can effectively prune the background segments in the

example frames.

3.3 Extracting Hierarchical Space-Time Segments

After candidate segment tree pruning, we extract a set T̂t that contains remaining

candidate segment trees. To capture temporal dynamics of the human body or body

parts, for each T tj ∈ T̂t we track every segment stij ∈ T tj to construct a space-time

segment. This is a challenging task: first, we need to track segments of any shape,

not simply rectangular bounding boxes; second, the segments mostly correspond to

human body parts which may undergo significant non-rigid deformation over time;

third, the tracking method need to be fast so that to allow efficient tracking of

all the segments. Here we propose a segment tracking (Fig. 3.4) method that is
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computationally efficient and can deal with non-rigid deformation of the target. We

describe the details in Sec. 3.3.1. We then apply post-processing to reduce the

depth of the HSTSs for robustness and group overlapping HSTSs into tracks to get

temporally longer representations of the video, described in Sec. 3.3.2.

3.3.1 Non-rigid Region Tracking

Let R denote the tracked segment on the current frame. Let a = (xa, ya) denote

the coordinates of a point in R and let (∆xa, ∆ya) denote its corresponding flow

vector from median filtered optical flow fields. The predicted segment at the next

frame by flow is then R′ = {(x′a, y′a)} = {(xa + ∆xa, ya + ∆ya)}. Let B′ denote the

bounding box of R′ whose edges are parallel to horizontal and vertical axes and let

B̂′ represent the tight bounding rectangle of R′ whose longer edge is parallel with

R′’s axis of least inertia. Let h represent the color histogram of the original segment

being tracked. We then compute a flow prediction map Mf and color prediction

map Mh over B′. Suppose a point b′ ∈ B′ on the next frame has color hb′ , then we

set Mh(b
′) = h(hb′) and set Mf (b

′) as:

Mf (b
′) =


2 b′ ∈ R′

1 b′ ∈ B̂′ ∧ b′ /∈ R′

0 otherwise

(3.3)

We combine the two maps,M(b′) =Mf (b
′) ·Mh(b

′). In practice, when we compute

Mf we use a grid over B̂′ so that points in the same cell will be set to the maximum

value in that cell. This is to reduce holes caused by noise in the optical flow field.

The mapM is scaled and quantized to contain integer values in the range [0, 20].

By applying a set of thresholds δm of integer values from 1 to 20, we get 20 binary
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maps. The size of every connected component in these binary maps is computed and

the one with most similar size to R is selected as the candidate. Note that multiple

thresholds are necessary. This is because the color distribution of the template may

be either peaked, if the template has uniform color, or relatively flat, if the template

contains many colors. Thus the range of values in M(b′) may vary in different

situations and a fixed threshold will not work well. The number of thresholds is

experimentally chosen for the trade-off between performance and speed.

If the ratio of size between the selected candidate and R being tracked is within

a reasonable range (we use [0.7, 1.3]), we set the candidate as the tracked segment,

otherwise the target is considered as being lost. Since all the computations are

performed locally in B′ and implemented as matrix operations utilizing efficient

linear algebra software packages, this tracking method is very fast. We track each

segment at most 7 frames backward, where backward optical flow is used, and 7

frames forward. Thus a space-time segments has a maximum temporal length of 15

in our experiments.

3.3.2 Post-processing

Although segment tree T tj may have deep structures with height larger than 2, these

structures may not persistently occur in other video frames due to the change in

human motion and the errors in segmentation. For robustness and simplicity, we

have only two levels in the resultant hierarchical structure of space-time segments:

the root level is the space-time segment by tracking the root segment st0j of T tj , and

the part level are the space-time segments by tracking non-root segments stij, ∀i 6= 0.

Since space-time segments are constructed using segment trees of every video

frame, many of them may temporally overlap and contain the same object, e.g.space-
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time segments produced by tracking the segments that contain the same human body

but are from two consecutive frames. This provides a temporally dense representa-

tion of the video. We explore this dense representation to construct longer tracks of

objects despite the short temporal extent of individual space-time segment. Specifi-

cally, two root space-time segments that have significant spatial overlap on any frame

are grouped into the same track. The spatial overlap is measured by the ratio of the

intersection over the area of the smaller segment and we empirically set the overlap

threshold to be 0.7. The part space-time segments are subsequently grouped into

the same track as their roots. Note that now we have temporal relationships among

root space-time segments of the same track.

For each track, we then compute bounding boxes on all frame it spans. As

described before, many root space-time segments of a track may temporally overlap

on some frames. On each of those frames, every overlapping root space-time segment

will provide a candidate bounding box. We choose the bounding box that has the

largest average foreground probability using the foreground map described in section

3.2. As we assume the foreground human body is relatively consistently present in

the video, we further prune irrelevant space-time segments by removing tracks of

short temporal extent. We set the temporal length threshold to be one fourth of

the video length but keep the longest track if no track has length greater than the

threshold.

3.4 Action Recognition and Localization

To better illustrate the effectiveness of HSTSs, we train simple Bag-of-Words model

for action recognition and localization using HSTSs.

For each space-time segment, we divide its axis parallel bounding boxes using a
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space-time grid, compute features within each space-time cell and concatenate the

features from all cells to make the final feature vector. Here we want to mention that

we do not limit the space-time segments to have the same length as the method in

[76] did for dense trajectories. This is to deal with the variations of action speeds of

different performers. We do not use space-time segments that are too short (length

< 6) as they may not be discriminative enough. We also split long space-time

segments (length > 12) into two to produce shorter ones while keeping the original

one. This is to get a denser representation of the action.

We build separate codebooks for root and part space-time segments using k-

means clustering. Subsequently each test video is encoded in the BoW (bag of words)

representation using max pooling over the similarity values between its space-time

segments and the code words, where the similarity is measured by histogram inter-

section. We train one-vs-all linear SVMs on the training videos’ BoW representation

for multiclass action classification, and the action label of a test video is given by:

y = argmax
y∈Y

(
wr
y

wp
y

)
(xr xp) + by (3.4)

where xr and xp are the BoW representations of root and part space-time segments of

the test video respectively, wr
y and wp

y are entries of the trained separation hyperplane

for roots and parts respectively, by is the bias term and Y is the set of action class

labels under consideration.

For action localization, in a test video we find space-time segments that have

positive contribution to the classification of the video and output the tracks that

contain them. Specifically, given a testing video as a set of root space-time segments

Sr = {sra} and a set of part space-time segments Sp = {spb}, denote Cr = {crk} and

Cp = {cpk} as the set of code words that correspond to positive entries of wr
y and wp

y



33

respectively. We compute the set U as

U =

{
ŝr : ŝr = argmax

sra∈Sr

h(sra, crk), ∀crk ∈ Cr

}

∪

{
ŝp : ŝp = argmax

spb∈Sp

h(spb , cpk), ∀c
p
k ∈ C

p

}
(3.5)

where function h measures the similarity of two space-time segments, for which we

use histogram intersection of their feature vectors. We then output all the tracks

that have at least one space-time segment in the set U as action localization results.

In this way, although space-time segments in U may only cover a sparse set of frames,

our algorithm is able to output denser localization results. Essentially these results

benefit from the temporal relationships (before, after) among the root space-time

segments in the same track.

3.5 Experiments

We conducted experiments on the UCF-Sports [65] and High Five [59] datasets to

evaluate the proposed hierarchical space-time segments representation. These two

datasets are challenging and representative of two different major types of actions:

sports and daily interactions.

3.5.1 Experimental Setup

We implemented our formulation in Matlab.1 The parameters for extracting hier-

archical space-time segments are empirically chosen without extensive tuning and

mostly kept the same for both datasets.

UCF-Sports Dataset: The UCF-Sports dataset [65] contains 150 videos of 10

1Code at http://www.cs.bu.edu/groups/ivc/software/STSegments/.
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different classes of actions. We use the training/testing split of [49]. For each root

space-time segment, we use a 3×3×3 space-time grid and compute HoG (histogram of

oriented gradients), HoF (histogram of optical flow) and MBH (histogram of motion

boundary) features in each space-time cell. The number of orientation bins used

is 9. For part space-time segments, we use a 2 × 2 × 2 space-time grid and the

other settings are the same. We build a codebook of 2000 words for root space-time

segments and 4000 words for parts. This dataset contains bounding box annotations

on each video frame. While the compared methods use these annotations in their

training, we do not use them in ours. These annotations are only used for evaluation

of action localization in our experiments.

HighFive TV-interactions: The HighFive dataset [59] contains 300 videos from

TV programs. 200 of them contain 4 different classes of daily interactions, and the

other 100 are labeled as negative. We follow the training/testing split of [59]. We

use the same space-time grid setting as in UCF-Sports, but to fairly compare with

previous results in [18], we compute only MBH features in each space-time cell. We

build a codebook of 1800 words for root space-time segments and 3600 words for

parts. Again, we do not use the body bounding box annotations in our training.

JHMDB contains 928 videos of 21 actions. This is a subset of the HMDB dataset

[48] that comes with more detailed annotations such as foreground pixel masks,

body joint positions, etc. [37]. In this chapter we only use the JHMDB dataset

for evaluating the quality of space-time segments, taking advantage of its pixel level

foreground annotation.



35

Figure 3.5: Detection rate of the ground truth foreground bounding boxes / regions
by extracted space-time segments under different IOU thresholds.

3.5.2 Quality of Space-Time Segments

We first evaluate the quality of the extracted hierarchical space-time segments. Our

method for extracting space-time segments can be thought of as generating proposals

of action performer regions in space-time from videos. Following the protocols used

for evaluating algorithms for object proposal in images, e.g., as in [101], we measure

the detection rate (recall) of the foreground bounding boxes or region masks under

different thresholds of the Intersection-Over-Union (IOU). The results of this eval-

uation are reported in Fig. 3.5. Note that extracting space-time segments involves

no training, so we evaluate over whole datasets. Also note that the ground truth

annotations available in UCF-Sports and High5 are human bounding boxes, whereas

the annotations for JHMDB are foreground masks.

From Fig. 3.5 we can see that, when using both root and part space-time seg-

ments, more than 80% of all foreground bounding boxes or regions are detected at

IOU threshold 0.2 on all three datasets. When we increase the IOU threshold to

0.4, still around 50% of the foreground is covered. Further, we can see that the
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Figure 3.6: Distribution of the total number of space-time segments extracted from
each video in UCF-Sports, HighFive and JHMDB. For most videos our algorithm
extracts no more than 20 space-time segments per frame. Compare this with [77]
which on average extracts 205 trajectories per frame.

root space-time segments are better in covering the foreground annotation, i.e. ac-

tion performer(s), than part space-time segments. This illustrates the benefit of

our algorithm, which not only extracts regions with motion (mostly part space-time

segments) but also extracts relevant static regions that are contained in the root

space-time segments. A combination of both the root and the part space-time seg-

ments provides a denser representation of the video, and a better covering of the

foreground than using only root or part space-time segments alone.

The distributions for the total number of space-time segments extracted per video

are shown in Fig. 3.6 for these three datasets. On all three datasets, for most videos,

our algorithm extracts fewer than 20 space-time segments per frame. For UCF-Sports

and JHMDB, in more than half of the videos, only around 10 space-time segments

are extracted per frame. This shows that, while providing good coverage of the fore-

ground (Fig. 3.5) and good action classification performance (Sec. 4.6.4), hierarchical
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Method Supervision Accuracy
Ours (Root + Part) label 81.7%
Ours (Part only) label 71.3%

Raptis et al. [63] label + box 79.4%
Lan et al. [49] label + box 73.1%

Table 3.1: Mean per-class classification accuracies on the UCF-Sports dataset. The
training/testing split follows [49]. Unlike [49, 63], we do not require bounding box
annotation for training.

Method mAP
Ours (Root + Part) 53.3 %
Ours (Part only) 46.3 %

Gaidon et al. [18] 55.6%
Wang et al. [76] 53.4%
Laptev et al. [50] 36.9%
Patron-Perez et al. [59] 32.8 %

Table 3.2: Mean average precision (mAP) on the HighFive dataset.

space-time segments provide a significantly more compact video representation than

the widely used dense trajectory algorithm [77], which reports extracting 205 tra-

jectories per frame on average on the videos of Hollywood2 [53] which are of similar

resolution with UCF-Sports and HighFive (higher resolution than JHMDB).

3.5.3 Action Recognition and Localization Results

Action recognition: The action recognition results are shown in Table 3.1 and

Table 3.2 for the UCF-Sports and HighFive datasets respectively.

On the UCF-Sports dataset, our method is compared with two state-of-the-art

methods [63, 49]. The method in [63] learns an action model as a Markov ran-

dom field over a fixed number of dense trajectory clusters. The method in [49] uses a

figure-centric visual word representation in a latent SVM formulation for both action
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subset of frames all frames
[74] [75] [49] Ours [74] [75] [49] Ours

dive 16.4 36.5 43.4 46.7 22.6 37.0 - 44.3
golf - - 37.1 51.3 - - - 50.5
kick - - 36.8 50.6 - - - 48.3
lift - - 68.8 55.0 - - - 51.4
ride 62.2 68.1 21.9 29.5 63.1 64.0 - 30.6
run 50.2 61.4 20.1 34.3 48.1 61.9 - 33.1
skate - - 13.0 40.0 - - - 38.5
swing-b - - 32.7 54.8 - - - 54.3
swing-s - - 16.4 19.3 - - - 20.6
walk - - 28.3 39.5 - - - 39.0
Avg. - - 31.8 42.1 - - - 41.0

Table 3.3: Action localization results measured as average IOU (in %) on the UCF
Sports dataset. ’-’ means result is not available. Note that, [74] and [75] need
bounding boxes in training and their models are only for binary action detection, so
their results are not directly comparable to ours.

Class hand shake high five hug kiss Avg.
IOU 26.9 32.9 34.2 29.2 30.8
Recall 79.4 88.8 82.6 80.8 82.3

Table 3.4: Action localization performance measured as average IOU (in %) and
recall (in %) on the High Five dataset.
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localization and recognition. Both compared methods used more complex classifiers

than the simple linear SVM used in ours. More importantly, both of them require

expensive frame-wise human bounding box annotations, while ours does not. How-

ever, our method performs slightly better (by 2.3%) than [63] and significantly better

(by 8.6%) than [49]. Although [63] achieves comparable classification performance

with ours, it cannot provide meaningful action localization results. The method in

[49] can output localization results, but its localization performance is significantly

lower than ours (see Table 3.3), as will be discussed in detail later.

On the High Five dataset, our method is compared to four methods [50, 59, 76,

18]. The method in [18] uses non-linear SVM on a cluster tree of dense trajectories

and produces state-of-the-art results. The results for [76] and [50] are produced by

using SVM with the histogram intersection kernel on bag of dense trajectories and

STIPs respectively. The method in [59] uses structured SVM. Despite its implicity,

our method achieves comparable performance with [18] and [76] and significantly

better performance than [50] and [59]. None of the compared methods perform

action localization as our method does.

To assess the benefit of extracting the relevant static space-time regions that are

contained in the root space-time segments, we compare with a baseline that only uses

space-time segments of parts. The results show that there is a significant performance

drop (10.4% on UCF-Sports and 7.0% on High Five) if space-time segments of roots

are not used. This supports our hypothesis that pose information captured by root

space-time segments is useful for action recognition.

Action localization: Table 3.3 and Table 3.4 show the action localization results

on the UCF-Sports and HighFive datasets. Fig. 3.8 visualizes localization results on

some example frames of both datasets. The localization score is computed as the
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average IOU (intersection-over-union) over tested frames.

On the UCF-Sports dataset, the method of [49] can only produce localization

results on a subset of frames, so we include comparisons on this subset. On this

subset of frames, our method performs better than [49] on 9 out of 10 classes and

the average performance is higher by 10.3%. We also provide our performances on

all frames, which are similar to those on subset of frames. The methods of [74] and

[75] only report action localization results on 3 classes (running, diving and horse

riding) of UCF Sports. Our performance is higher than [74, 75] in one class (diving)

but lower in the other two. All compared methods use expensive human bounding

box annotations and their learning are much more complex than ours.

On the HighFive dataset, the IOU is measured over the frames that are annotated

as containing the interactions. We achieve an IOU of 30.8%, which is still reasonably

good but lower than our results on UCF Sports. We suspect this may be partly due

to the low quality of human bounding box annotations used for evaluation, as most

of them are too small, covering only the head area of the actors (see Fig. 3.8). To

verify this, we also compute the recall, which is measured as the ratio of the area of

intersection over the annotated action area. The high recall values reported in Table

3.4 confirm that the annotated action areas are mostly identified by our method.

[74] and [75] have reported action localization results only on the kiss class, which

are 18.5% and 39.5% respectively. Again, these results are not directly comparable,

since our method requires much less supervision (only labels) compared to [74] and

[75] which require human bounding boxes.
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Figure 3.7: Extracted segments for example video frames from the UCF Sports and
HighFive dataset. Each example frame is from a different video. The yellow boxes
outlines the extracted segments. The inclusion of one box in another indicates the
parent-children relationships

Figure 3.8: Example of our action localization results. The area covered by green
mask is the ground truth from annotation, and the area covered by red mask is our
action localization output. First five rows are from UCF-Sports, and last two rows
are from HighFive.
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3.6 Summary

In this Chapter, we propose hierarchical space-time segments for action recognition

that can be utilized to effectively answer what and where an action happened in

realistic videos as demonstrated in our experiments. Compared to previous methods

such as STIPs and dense trajectories, this representation preserves both relevant

static and non-static space-time segments as well as their hierarchical relationships,

which helped us in both action recognition and localization. One direction for future

work is to make the method more robust to low video quality, as it may fail to extract

good space-time segments when there is significant blur or jerky camera motion.



Chapter 4

Ensemble of Space-Time Tree

Human actions, or interactions, are inherently defined by structured patterns of

the human movement. As such, human actions can be modeled as spatio-temporal

graphs, where the graph vertices encode movements of whole body or body parts,

and the graph edges encode spatio-temporal relationships between pairs of move-

ment elements, for instance temporal progression, e.g., one movement followed by

another movement, spatial composition, e.g., movement of upper body coupled with

movement of lower extremities, or even hierarchical relationships of elements, e.g.,

movement of the body as a whole can be decomposed into local movements of the

limbs.

A single spatio-temporal structure, however, is unlikely to be sufficient to repre-

sent a class of action in all but the simplest scenarios. First, the execution of the

action may differ from subject to subject, involving different body parts or different

space-time progressions of body part movements. Second, the video capture process

introduces intra-class variations due to occlusions or variations in camera viewpoint.

Thus, the resulting space-time and appearance variations necessitate using a collec-

tion of spatio-temporal structures that can best represent the action at large.

In this Chapter, we propose a formulation that discovers a collection of hier-

archical space-time trees from video training data, and then learns a discrimina-
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Figure 4.1: One example tree structure discovered by our approach for the lifting
action and its best match in a testing video. In the tree, one node (red) indexes to
a root action word and is matched to an STS of the upward movement of the whole
body; three nodes (blue) index to part action words and are matched to STSs of the
upward movement of the upper-body and two temporally consecutive movements of
the left arm and lower left arm respectively.

tive action model that builds on these discovered trees to classify actions in videos.

Fig. 4.1 illustrates one simple discovered tree and its best match in a testing video

and Fig. 4.5 shows more examples. Fig. 4.3 contrasts our method, i.e. ensemble of

space-time trees, with major previous approaches: our method captures the space-

time structures of human actions that are discovered from the training data and, for

supervision, only requires action labels of the training videos.

Chapter 3 describe the new video representation hierarchical space-time segments

which captures both static and non-static foreground space-time sub-volumes of the
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videos. We explore the hierarchical, spatial and temporal relationships among the

space-time segments (STSs): this transforms a video into a graph. We discover a

compact set of frequent and discriminative tree structures from graphs of training

videos and learn discriminative weights for the tree nodes and edges. Finally, we

construct action classifiers given the detection responses of these trees.

We use trees instead of graphs for multiple reasons: first, any graph can be

approximated by a set of spanning trees; second, inference with trees is both efficient

and exact; third, trees provide a compact representation as it is easy to account for

multiple structures using a single tree by allowing partial matching during inference.

Partial matching of trees during inference allows us to effectively deal with variations

in action performance and segmentation errors.

We note that, as the size of the tree structures increases the trees get more specific,

thereby capturing more structural information that can provide greater discrimina-

tive power in classification. On the other end of the spectrum, smaller structures,

particularly singletons and pairs, tend to appear more frequently in their exact forms

than larger tree structures. Thus, smaller structures can be helpful when the action

is simple but the occlusions or video segmentation errors are significant. Therefore,

for robust action classification, the best strategy is to exploit both the large and

small structures in a unified model.

Contributions: We make the following contributions in this chapter:

• We propose an approach that enables discovery of high-level tree structures that

capture space, time and hierarchical relationships among the action words.

• We propose a discriminative action model that utilizes both small structures

(i.e., words and pairs) and richer, tree structures. This unified formulation

achieves state-of-the-art performance in recognizing and spatially localizing
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Figure 4.2: Overview of our approach for learning an ensemble of space-time trees.

human actions and interactions in realistic benchmark video datasets.

• We show generalization of the learned trees by cross-dataset validation: we

achieve promising action recognition results on the Hollywood3D dataset using

trees learned on the HighFive dataset, and action recognition and localization

on the JHMDB dataset using trees learned on the UCF-Sports dataset.

Fig. 4.2 shows an overview of our approach for learning the ensemble of space-

time trees. Given training videos, we first extract space-time segments from each

video. Subsequently we build an action word vocabulary and construct video graphs

from the training videos. From the training video graphs, we discover tree structures,

and finally learn the ensemble of space-time trees. Given the learned ensemble of

space-time trees, efficient inference can be done for recognizing the human actions

in testing videos.

Roadmap for this chapter

We describe the core elements of our formulation: the space-time graph model in

Sec. 4.1, inference with our model in Sec. 4.2, and how to discover various space-time

graph structures using our model in Sec. 4.3. Action word vocabulary construction,

based on STSs, and ensemble learning are then described in Sec. 4.4 and Sec. 4.5,

respectively. The results of experimental evaluation are reported in Sec. 4.6.
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Figure 4.3: A comparison of approaches for automatic human action recognition in
videos. From the top row to the bottom row in the table, the approach(es) better
capture and explore the space-time structural information of human actions.

4.1 Model Formulation

To capture both the appearance of local space-time segments (STSs) (Chapter 3)

and the hierarchical, spatial and temporal structures among them, we transform a

video into a graph where the nodes are STSs and the edges are labeled with the

hierarchical, spatial and temporal relationships among the STSs. The graph nodes

are subsequently given labels that are indices to a compact but discriminative action

word vocabulary. Thus, in training, the training video set is converted to a set of

labeled graphs, from which we discover a collection of discriminative tree structures

for each action.

Formally, a video is represented as a graph G = {V, At, As, Ah, F}. V is the

set of vertices that are the STSs. At, As and Ah are the time, space and hierarchical

adjacency matrices containing edge labels (details in Sec. 4.3). The rows of matrix

F = [f1, f2, ..., f|V |] ∈ R|V |×d are visual features (e.g. HoG features) extracted from

the STSs. For each action class a, a collection of trees is then used in constructing
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an ensemble classifier:

Ma(G, T ) = wT · Φ(G, T ) =
∑

m∈{1,...,|T |}

wmφm(G, Tm), (4.1)

where G denotes a test input video, T is the set of learned tree structures for class

a and Tm is one of such trees in this set, and w = {wm;m ∈ {1, ..., |T |}} is the

learned weight vector. Each φm is a scoring function that measures compatibility (or

degree of presence) of Tm in video G. 1 In the multi-class classification setting, the

predicted action class a∗ of G is computed by a∗ = arg maxa Ma(G, T ).

We formalize a tree as Tm = {N, Et, Es, Eh, β} where N , {Et, Es, Eh} are the

nodes and adjacency matrices respectively. β are discriminative weights associated

with the nodes and edges. Each node ni ∈ N is an index into a learned discrimi-

native action word vocabulary Wa for class a (described in Sec. 4.4); each edge Ek
ij

(k ∈ {t, s, h}) is associated with a corresponding temporal, spatial or hierarchical

relationship between nodes i and j, similar to the relations defined for Ak in graph

G. The matching score of a tree to a graph is computed as follows:

φm(G, Tm) = ψ ({ β · ϕ(G, Tm, z) | z ∈ Z(G, Tm)}) , (4.2)

where z is latent variable that represents a match of a tree Tm to the video G: z is

realized as z = (z1, ..., z|N |) where zi is the index of the vertex in G that is matched

to the i-th node in Tm. ψ is a pooling function over the matching scores of the set

of all possible (partial) matches Z(G, Tm). The matching score of a specific match z

1To avoid notation clutter, we omit the action class label a for T , w, Φ, φ and ϕ.
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to Tm is:

β · ϕ(G, Tm, z) =
∑
ni∈N

βi pn(zi, ni) (4.3)

+
∑

k∈{t,s,h}

∑
Ek

ij∈Ek

Ek
ij 6=0

βkij pk(A
k
zizj

, Ek
ij).

where βi and βkij (k ∈ {t, s, h}) are the tree node weights and edge weights respec-

tively. The function pn scores compatibility of the tree nodes with graph vertices; pt,

ps and ph score compatibility of the temporal, spatial and hierarchical graph edges

with tree edges. Partial matching is possible by adding a null vertex v∅ to V as the

0-th vertex and also adding a 0-th row and column of zeros to As, At and Ah. Any

node in Tm not matched to a vertex in G is assigned to match the 0-th vertex.

Our focus is on discovering the tree structures T . These structures, their param-

eters β, as well as parameters of the ensemble w are learned directly from the data.

Given a tree structure, parameters can be learned in a variety of ways, e.g., using

latent SVM [86]. However, discovering the tree structures themselves is the key chal-

lenge as: (1) the space of tree structures is exponential in the number of tree nodes

and types of relationships allowed among the tree nodes; (2) partial presence of the

trees needs to be considered; (3) without annotation of body parts, the tree nodes

themselves are to be discovered. Also note that our model unifies small structures,

e.g. singletons in the extreme case, with rich tree structures: when the trees are

singletons, the model essentially reduces to the BoW model.
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4.2 Inference

Given a set of discovered tree structures T , learned parameter vectors w,β and a

test video represented by a graph G, the score Sa(G, T ) of G containing an action a

can be computed as a weighted sum of independently matched tree scores φm(G, Tm).

If we use average pooling in Eq. 4.2, then

φm(G, Tm) =

∑
z∈Z(G,Tm) β · ϕ(G, Tm, z)

|Z(G, Tm)|
, (4.4)

which requires looping through the whole possible set of latent values Z(G, Tm),

which is expensive for trees with three or more nodes. Max pooling is more appro-

priate for larger trees:

φm(G, Tm) = max
z∈Z(G,Tm)

β · ϕ(G, Tm, z). (4.5)

This can be efficiently computed by dynamic programming (DP), which we describe

next.

Recall that every tree node ni is an index into Wa and every zi is an index into

video graph vertices that are associated with features, we define the potentials in

Eq. 4.3 as:

pn(zi, ni) =


ecni (fzi ), cni

(fzi) ≥ δ

0, otherwise

(4.6)

pk(A
k
zizj

, Ek
ij) =


1, Akzizj = Ek

ij

0, otherwise

(4.7)

where k ∈ {t, s, h}. The set of classifiers cni
(fzi) ∈ R score the mapping of the zi-th



51

Figure 4.4: Tree structures of human actions are discovered from training video
graphs via three steps: tree mining, tree clustering and tree ranking.

graph vertex (associated with feature fzi) to the action word which tree node ni

indexes to. The reader is referred to [16] for the details of DP on a tree, but note

when matching ni, the set of possible choices for graph vertices can be pruned for

efficiency to those for which cni
(fzi) ≥ δ; further, nodes that cannot be matched are

assigned to v∅ to allow partial tree matches.

The DP procedure may match a graph vertex (STS) to multiple tree nodes if

those tree nodes index to the same action word. It is possible to alleviate this,

e.g., as in [63], but this would in general introduce high-order potentials requiring

more expensive or approximate inference. We find that assigning multiple nodes is

not problematic and can be beneficial in practice to account for video segmentation

errors.

4.3 Discovering Structures

In Sec. 4.1 we describe how a video is represented as a graph of STSs. STSs are

space-time sub-volumes of the video and can be produced by video segmentation

methods. Given a video, we extract two types of STSs that can include both static

and non-static body parts: root STSs often cover the whole human body and part

STSs often cover the body parts. Note no person detector nor human bounding box

annotations are required for this procedure. Chapter 3 describes the details of this
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Figure 4.5: Examples of discovered trees. For each tree, we show inference results on
two testing videos. See the legend of Fig 4.1 for the meaning of the figure components.
The space-time segment enclosed by dotted box is matched to multiple tree nodes.

procedure.

We use a small discrete set for edge labels: At ∈ {0,←,→, ./}|V |×|V |,←,→ and ./

denote after, before and temporal overlap; similarly As ∈ {0, ↑, ↓, ./}|V |×|V |, where ↑,

↓ and ./ denote above, below and spatial overlap; Ah ∈ {0, r → r, r → p, p→ r, p→

p}|V |×|V | denotes heirarchical root (r) - part (p) relationships. Using coarse discrete

labels helps make the representation more robust to variations in action execution

and STS segmentation errors.

Specifically, for a pair of the i-th and j-th STS in a video: (1) Ahij is set according

to the part / root identity of i and j; (2) Atij and Asij are set as:

Atij =


./, |ti − tj| ≤ δt

←, ti − tj > δt

→, tj − ti > δt

(4.8)
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Asij =


./, |yi − yj| ≤ δs

↑, yj − yi > δs

↓, yi − yj > δs

(4.9)

where ti and tj are the starting frame indices of i and j, yi and yj are the mean

vertical center positions of i and j over the frames in which i and j co-exist; δt and

δs are constants fixed to 3 (frames) and 20 (pixels) in all our experiments. If the

temporal spans of i and j are disjoint, we let Asij = 0.

Instead of constructing a complete graph, which can lead to high computational

cost in the subsequent tree mining procedure, we construct a sparse graph. We group

the STSs into tracks (Sec. 3.3), and only add edges for: 1) each pair of root STSs;

2) each pair of root STS and part STS in the same track; 3) each pair of part STSs

in the same track that have significant temporal overlap.

4.3.1 Discovering Tree Structures

We want to find frequent and discriminative tree structures for action classification

(Fig. 4.5). Enumerating the set of all possible trees is infeasible due to its exponential

size. Furthermore, in practice, it is hard to find exact presence of complex trees due

to noise in the STS extraction and variation of action execution, so we must account

for partial matches when counting frequencies. We propose a three step approach

(Fig. 4.4): first, we mine a large and redundant set of trees using a tree mining

technique that only counts exact presence; second, we discover a compact set of trees

by clustering the mined trees using a form of cosine distance on their discriminative

parameter vectors β and pick one representative tree prototype per cluster; finally,

we rank the prototype trees using a metric activation entropy (described in the
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following) and pick the top ranked ones.

4.3.1.1 Tree Mining

We use the subgraph mining algorithm GASTON [1] to mine frequent trees with at

most six vertices. The number of mined trees is controlled by the minimum support

threshold parameter for each class so that 5×103 ∼ 1×104 trees are mined per action

class. For each action class, we mine trees from both positive videos and negative

videos and remove the trees that appear in both.

We then train discriminative parameters β for each mined tree. Given a mined

tree Tm, we initialize β by setting all node weights to 1 and edge weights to 0.5.

We find the best matches of the tree in the graphs constructed from training videos,

using the inference procedure in Sec. 4.2. β is then refined by training a linear SVM

on the set of best matches. This procedure is similar to performing one iteration of

latent SVM, except much faster.

4.3.1.2 Tree Clustering

The trees we mine using GASTON tend to be highly redundant, especially if one

considers partial matching. To avoid the redundancy and discover a set of trees

that effectively cover intra-class variations, we cluster the mined trees and select the

best tree from each cluster. To compute similarity between two trees, Tm and T̂m,

we utilize the inference procedure in Sec. 4.2 by treating one of the trees (e.g., T̂m)

as a weighted graph with weights on the nodes and edges corresponding to learned
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parameters β̂. The potentials in φm(Tm̂, Tm) for Eq. 4.3 are then altered as follows:

pn(zi, ni) =


β̂zi , n̂zi = ni

0, n̂zi 6= ni or zi = v∅

(4.10)

pk(Êzizj , Eij) =


β̂kzizj , Êk

zizj
= Ek

ij

0, otherwise

(4.11)

where n̂zi is the zi-th tree node of Tm̂ and k ∈ {t, s, h}. Note that this procedure

will give us essentially the edit cosine distance (cosine distance since when structures

are the same, φt(Tm̂, Tm) = β · β̂). This similarity measure between trees takes into

account both similarity in structure and similarity in discriminative parameters β.

After computing the similarities between each pair of trees, we run affinity propaga-

tion [17] to cluster the trees and pick the tree that has the highest cross validation

accuracy in each cluster as the non-redundant prototype.

4.3.1.3 Tree Ranking

The above procedure still tends to find a relatively large number of trees (≈ 150

per class or more). Our hypothesis, which we validate in experiments, is that only a

subset is needed for classification. To pick the best candidates we need some measure

of quality among the candidates. We find cross-validation to be unstable here, and

instead propose ranking based on entropy. We compute an activation entropy for

each selected tree Tm:

Entropy(Tm,G) = −
∑
c

Pc(Tm,G) log(Pc(Tm,G)), (4.12)
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where G is the training set and L(G) is class label of G. Pc(Tm,G) is computed as:

Pc(Tm,G) =
|{G | ∀ G ∈ G, φm(G, Tm) ≥ 0, L(G) = c}|

|{G | ∀ G ∈ G, φm(G, Tm) ≥ 0}|
, (4.13)

The numerator encodes the number of videos in class c that are classified as positive

using Tm and denominator the number of videos classified as positive over the training

set. Intuitively, trees with smaller activation entropies have more consistent patterns

in classification errors, and are more likely to be stable structures in human actions.

Despite the large set of trees that we mine, in the experiments we illustrate that

by using only a compact set of trees attained through the above process (20 trees per

action in UCF-Sports and Hollywood3D, and 50 per action in HighFive) promising

recognition performance is achieved.

4.3.2 Discovering Pairwise Structures

When occlusion or video segmentation errors are significant, it is easier to find exact

matches for smaller structures than larger ones. Pairs in particular are shown to be

effective for classification e.g. as in [54]. Our tree discovering approach described in

the previous section can find useful pairwise structures, but is by no means exhaus-

tive. Meanwhile, our formulation of a video as a graph enables a simple exhaustive

search for a set of compact and yet discriminative pairwise structures.

Specifically, denote P as the space of pairs for action class a, then |P| = (|Wa| −

1)|Wa||E|/2, where E denotes the space of edge labels and in our case |E| = 3×3×4 =

36. In our experiments |Wa| is 50 ∼ 150 , so |P| ≤ 4 × 105. We construct a mean

histogram H ∈ R|P| over the training graphs of all positive training videos. The p-th

bin, Hp = 1
n

∑n
j=1 κ

j
p/(
∑

i∈{1,...,|P|} κ
j
i ), where κjp denotes appearance counts of the

p-th pair in the video graph of the jth positive training video, and n is the number
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hand 
shake

hug

kick

swing 
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Root Action Words (one word per row) Part Action Words (one word per row)

Figure 4.6: Representative root and part action words for the hand shake, hug,
kick, and swing side actions. For each action word, we show five space-time segments
(illustrated by one temporal slice) that are in the cluster corresponding to that action
word.

of positive training videos. Recall that we are after frequent and discriminative

structures. Since our action words are discriminatively trained, our main criterion

for selecting a pair is the average frequency Hp. As allowing partial matching for pairs

may reduce to matching action words, we require exact matching in inference and

set the node weights β1 = β2 = 1/2, the edge weights βk12 = 0 and pk(A
k
z1z2

, Ek
12) = 1

for k ∈ {t, s, h}.

4.4 Building the Action Word Vocabulary

In BoW approaches, large vocabularies with several thousands of words are typically

used. We argue that if the words are discriminative enough, a small vocabulary can

perform at least equally well as larger ones. Here we propose a method to construct

a compact and yet discriminative action word vocabulary. Furthermore, such small

vocabularies help greatly reduce the complexity of tree discovery, as the space of

trees of length m is exponential in the size of this vocabulary, i.e., O(|W|m). Fig. 4.6

shows some representative action words. We see that the STS clusters for these
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Figure 4.7: Building the action word vocabulary. Initial clusters are constructed
via affinity propagation [17] on the space-time segments from the training videos
of an action. This provides initialization of the samples’ cluster memberships in
the subsequent discriminative clustering of both positive and negative samples (i.e.,
space-time segments from training videos of other actions) by the discriminative
sub-categorization algorithm [30].

action words tend to be coherent and semantically meaningful.

Specifically, we learn the set of action words by discriminative clustering of the

STSs. Recall there are two types of STSs extracted: root STSs and part STSs.

Clustering is done separately for roots and parts; as a result, we get clusters Wr
i

and Wp
i for the roots and the parts respectively and Wi = Wr

i ∪ W
p
i . We use

discriminative sub-categorization (DSC) [30] to perform the clustering in each action

class i, where the negative samples are the STSs extracted from videos of other action

categories. DSC treats the cluster memberships of samples as latent variables and

jointly learns one linear classifier per cluster using latent SVM. As we believe the

vocabulary should be data-driven and adapt to the complexity of the dataset and

action class, we perform an initial clustering using the affinity propagation algorithm

[17] to decide the number of clusters and the initial cluster membership for each
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sample. This procedure is illustrated in Fig. 4.7.

4.5 Learning the Ensemble

The main focus of our work is on discovery of larger space-time tree structures

(Sec. 4.3.1). We also consider pairwise structures (Sec. 4.3.2) and trivial structures

of action words (Sec. 4.4) as special cases that can be discovered through exhaustive

search or clustering. We observe that larger structures (i.e., trees) tend to be more

discriminative than smaller ones (i.e., action words and pairs), but appear in their

exact form less frequently (thus, inexact matching is crucial). In practice, we have

found that a combination of simpler and more complex structures tends to offer more

robustness. Given the set of trees, and their responses on the training set obtained

by inference on the training set of videos, we train parameters w using linear SVM

jointly (using multi-class SVM [10]). When combining words, pairs and trees, we

experiment with both early fusion and late fusion. In early fusion, the inference

responses of different types of structures are concatenated and the ensemble weights

are learned using SVM. In late fusion, one SVM is trained per structure type and we

then train a separate SVM to combine their outputs.

4.6 Experiments

In this section, we report experimental evaluation of our formulation. We analyze the

contributions of various components within our proposed formulation for improved

action recognition and localization, along with comparisons with competing state-of-

the-art methods. We also evaluate dataset model transfer, where tree structures and

action vocabularies learned on one dataset are used in recognition and localization
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of similar actions in a completely different dataset.

4.6.1 Datasets

We test our methods on four benchmark datasets: UCF-Sports [65], HighFive [59],

Hollywood3D [26] and JHMDB [37]. These datasets encompass two major types of

realistic videos: amateur videos that mainly depict sports and daily activities (UCF-

Sports and JHMDB), and professional videos such as TV programs (HighFive) and

movies (Hollywood3D).

Bounding box annotations are available for the action performers in UCF-Sports

and HighFive. Image region masks are available for action performers in JHMDB.

However, please note that we do not use these annotations in training our approach.

We only use the bounding box and region annotations in evaluating localization

performance in testing. In training, only action class labels of the training videos

are used.

UCF-Sports contains 150 videos of 10 different sports actions. We use the train/test

split provided by [49], in which 47 videos are used for testing and the rest for training.

HighFive contains 300 videos from TV programs. 200 of the videos contain four

different interactions, including Kiss, Hug, Hand Shake and High Five, and the other

100 videos are labeled as not containing any of these four interactions. We use the

train/test split that is provided with this dataset.

Hollywood3D contains 666 3D movie clips compiled from 14 films. For each video

clip, the right view, the left view and the depth images are available. 588 of these

video clips cover 13 actions and interactions, such as Kick, Punch and Hug. The

other 78 videos are labeled as NoAction. We follow the train/test split provided

with the dataset. It is important to note that we use Hollywood3D as a monocular
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video dataset, without use of stereo video or depth: in our experiments we only use

the left view of each clip.

JHMDB contains 928 videos of 21 actions. This is a subset of the HMDB dataset

[48] that comes with more detailed annotations such as foreground pixel masks, body

joint positions, etc. [37]. Among these annotations, we use the foreground mask for

pixel-level evaluation of action localization performance. We use the JHMDB dataset

for cross-dataset validation of the learned trees.

Figure 4.8: Action recognition performance vs. the number of trees. The performance
improves quickly when more than one tree is used, but the performance gains tend
to level off after approximately the first 20 trees.

4.6.2 Experiment Setup

From each space-time segment, three kinds of features are extracted: Histogram of

Oriented Gradients (HOG), Histogram of Optical Flow (HOF), and Motion Bound-

ary Histogram (MBH). For fair comparison with previous methods, for the HighFive

dataset only MBH features are extracted from the space-time segments. We empir-

ically found that max pooling works better for action words and trees, and average

pooling is better for pairs. Thus, when combining them (Table 4.4), we use max

pooling for words and trees and average pooling for pairs. We learn the ensemble
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parameters by using the LIBLINEAR library [14].

4.6.3 Quality of Tree Discovery

Our goal is to discover a compact set of frequent and discriminative structures that

can be used to attain good action recognition performance. Therefore, one critical

question is how many structures should be selected from our discovered and ranked

list of trees (ranked by Entropy(Tm,G)) and pairs (ranked by Hp). Fig. 4.8 illustrates

the performance as a function of the number of selected trees. We note that with

a single tree, already reasonably good performance is achieved. When adding more

trees, the performance improves quickly: this indicates the need for an ensemble and

also validates our ranking method. After the first ∼ 20 trees, the performance gains

are smaller. For pairs, the trend is similar but significantly more pairs are needed

than trees to achieve the same level of performance. Based on these observations,

we choose to use 50 trees and 100 pairs per class for HighFive, 20 trees and 40 pairs

per class for UCF-Sports, 20 trees and 50 pairs for Hollywood3D.

4.6.4 Action Recognition

Comparison of our full model vs. state-of-the-art methods is given in Tables 4.1, 4.2

and 4.3. Since we use the same space-time segments and low-level features as the

Bag-of-Words model in Chapter 3, the gains of the hierarchical, spatial and temporal

structures we discover are best illustrated in the comparison with their bag-of-words

approach: we outperform by more than 8% on both HighFive and UCF-Sports.

We also compare with methods that use different video features on HighFive and

UCF-Sports. In contrast to our simple linear model, the method in [19] and the

method in [83] rely on complex graph kernels. The methods in [72], [63], [49] model
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Figure 4.9: Action classification performance with varying numbers of trees for each
evaluated tree size on the UCF-Sports dataset. Larger trees tend to outperform
smaller ones.

human actions with space-time structures, but the number of nodes in the structures

and their inter-connections are pre-determined; moreover, in training they require

human bounding box annotations on video frames. Note that our method automat-

ically discovers the structures and only needs action labels for the training videos.

Nonetheless, our approach consistently achieves better performance, improving on

the state-of-the-art. On HighFive our result is only slightly lower than the recent

method reported by [78], which requires extracting much denser features (Sec. 3.5.2)

as well as sophisticated motion stabilization and feature encoding.

On Hollywood3D, using only trees, we already achieve promising performance.

When combining trees with words and pairs, the performance is further improved and

is better than the methods in [26] and [36]. Although our method is outperformed by

[27], we emphasize here that all the methods we compared with in Table 4.3 utilize

multi-view and depth information, while we only use a single view for each video.
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Method mAP
Ensemble Model (Early Fusion w+t+p) 62.7
Ensemble Model (Late Fusion w+t+p) 64.4

[78] 67.3
[19] 62.4
BoW on HSTs, Sec. 3.5 53.3
[50] 36.9
[58] 42.4

Table 4.1: Mean average precision (mAP) on the HighFive dataset. We outperform
all but [78], which extracts 10 times more features (Sec. 3.5.2) than our method.

Method Accuracy
Ensemble Model (Early Fusion w+t+p) 89.4
Ensemble Model (Late Fusion w+t+p) 86.9

[83] 85.2
BoW on HSTs, Sec. 3.5 81.7
[63] 79.4
[72] 75.2
[49] 73.1

Table 4.2: Mean per-class accuracy on UCF Sports dataset.

Method mAP
Ensemble Model (Early Fusion w+t+p) 31.3
Ensemble Model (Trees only) 28.9

[27] 36.9
[36] 30.8
[26] 14.1

Table 4.3: Mean average precision (mAP) on the Hollywood3D dataset. Our method
only uses the left view of each video sequence, whereas the other methods exploit
both (left,right) camera views and depth information. Using only a single view, our
method can attain competitive mAP.
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Figure 4.10: Action localization on UCF-Sports. Trees may miss some body parts,
resulting in lower recall and IOU, but they localize the action performer(s) with
much greater precision.

4.6.4.1 Impact of Action Words, Pairs and Trees

We decompose our full model and analyze the performance impact of each repre-

sentational component: action words, pairs and trees. The results of this analysis

are reported in Table 4.4 for UCF-Sports and HighFive. Some observations can be

made. First, using only trees, pairs or action words, we attain performance that is

comparable to state-of-the-art. Second, in all cases, combination works better than

using a single type, especially when combining pair and tree structures with action

words. This shows that the words, pairs and trees are complementary. We posit that

larger structures are more discriminative but less frequently appear in their exact

forms than smaller ones, leading to the complementarity observed.

4.6.4.2 Impact of Tree Size

We analyze the impact of tree size on the action classification performance for UCF-

Sports in Fig 4.9, where the tree size is measured as the number of tree nodes. For
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Figure 4.11: Action localization on HighFive. Trees can localize the action performer
more precisely but may miss some body parts, leading to lower recall and IOU.

w p t w+p w+t p+t w+p+t
High5 53.5 48.9 52.4 60.1 57.7 57.6 62.7
UCF 78.8 73.4 75.5 85.2 83.6 80.2 89.4

Table 4.4: Action recognition performance using only words, pairs or trees, as well
as their combinations. To be consistent with experiments in the literature, we report
mean average precision (mAP) for HighFive and mean per-class accuracy for UCF-
Sports. Early fusion is used for combining the different types of structures.

trees of a given size, we order the trees by their activation entropy (Eq. 4.12) and

measure the action classification performance when varying the number of trees used.

When using only one tree, larger trees tend to outperform smaller trees. When more

trees are used, larger trees produce better performance than smaller trees for most

of the cases. These results show the increased discriminative power as we capture

more complex hierarchical, spatial and temporal structures in the human actions.

However, we also argue that smaller tree structures are complementary to larger tree

structures. For instance, for videos of simple actions but with significant occlusion

or video segmentation errors, smaller trees can be helpful when used in combination

with larger tree structures; the combination attains state-of-the-art performance as
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dive golf kick lift ride horse run skate swing-b swing-s walk
Ensemble Model 58.6 54.9 47.8 50.8 25.2 35.5 38.9 51.5 25.0 43.0
BoW (Sec. 3.5) 44.3 50.5 48.3 51.4 30.6 33.1 38.5 54.3 20.6 39.0

Table 4.5: Action localization performance on the UCF-Sports dataset using the full
model (i.e., T + W + P). The localization performance is measured by intersection
over union (IOU). We compare with the Bag-of-Words model in Chapter 3. The
proposed method in this Chapter improves the performance by exploring the space-
time structures of human actions.

hand shake high five hug kiss
Ensemble Model 27.1 31.0 34.8 30.0
BoW (Sec. 3.5) 26.9 32.9 34.2 29.2

Table 4.6: Action localization performance on the HighFive dataset using the full
model (i.e., T + W + P), measured by IOU. We compare with the Bag-of-Words
model in Chapter 3. The proposed method in this Chapter improves the performance
in three out of the four interaction classes.

shown in Table 4.4.

4.6.5 Action Localization

Our method can predict the spatial location of the action performer(s) by computing

the regions of the STSs that have positive contribution in classification. Localization

results using the full model, i.e., ensemble of trees, pairs and action words, on UCF-

Sports and HighFive are shown in Table 4.5 and Table 4.6, respectively. Localiza-

tion accuracy is measured by Intersection Over Union (IOU) with the ground-truth

bounding boxes provided with these datasets. We compare with the Bag-of-Words

model in Chapter 3, which employs the same bag-of-words model built upon the

hierarchical space-time segments, but without using space-time structures of human

actions. Even though the localization to the foreground is largely determined by

how well the space-time segments align with the action performer, as analyzed in

Sec. 3.5.2, exploring space-time structures of human actions offers a boost in local-
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ization performance on both datasets.

We further analyze the action localization performance by different components

of our model. For in-depth and complete analysis, we evaluate two more metrics

besides the IOU: precision, which is the percentage of the predicted area that is

within annotated bounding box, andrecall, which is the percentage of the annotated

bounding box areas that are predicted. We report the results for the UCF and

HighFive datasets in Fig. 4.10 and Fig. 4.11, respectively. Interestingly, using only

trees, the precision is consistently higher than using only words or pairs on both

datasets, especially on the UCF-Sports dataset, but the recall is lower. Because

the trees are learned in a discriminative approach, they may sometimes ignore body

parts that are not discriminative; nevertheless, trees can more precisely localize the

human(s) engaged in the action.

4.6.6 Cross-Dataset Validation

Our approach discoveres trees that capture discriminative hierarchical and spatiotem-

poral structures in human actions. These learned representations are generic, and

could potentially be effective for recognizing actions in a dataset different from the

training dataset.

To test this idea, we use the action word vocabulary and trees learned for Kiss

and Hug on the HighFive dataset, and train action classifiers as ensembles of trees

for the same actions on Hollywood3D. Similarly, we use the action word vocabulary

and trees learned for Golf Swing, Kick, Run Side and Walk Front on the UCF-Sports

dataset, and train action classifiers as ensembles of trees on JHMDB for the actions

Golf, Kick Ball, Run and Walk. Thus, we consider cross-dataset evaluation for actions

that appear in both datasets for each dataset pairing: (HighFive, Hollywood3D) and
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Method Kiss Hug Avg
Ours (trees from HighFive) 20.8 27.4 24.1
[26] 10.2 12.1 11.15
[27] 31.3 32.4 31.9

Table 4.7: Trees learned on one benchmark dataset are used to recognize actions
in another: 50 trees learned for the Kiss and Hug actions in HighFive are used for
recognizing these actions in Hollywood3D. The table reports the average precision
(AP) for these classes. Note that our method only uses the left camera view, without
using any multi-view or depth information exploited in [26], [27]. Moreover, the
models for [26], [27] are trained for Hollywood3D.

(UCF-Sports, JHMDB). Only the ensemble weights (wm in Eq. 4.1) are re-trained

on Hollywood3D and JHMDB. As before, for the Hollywood3D dataset, we only use

the left view of the RGB sequences (no multiview or depth information is used).

Action recognition results on Hollywood3D are shown in Table 4.7. Note that

[26] and [27] use the depth information provided with Hollywood3D. Due to the dif-

ferences between the HighFive and Hollywood3D datasets and the lack of multi-view

and depth information, we do not expect to outperform state-of-the-art methods, but

still we significantly outperform [26], doubling the performance in terms of average

precision.

HighFive and Hollywood3D differ in many ways. Most importantly, the action

categories differ significantly: while the trees are trained on HighFive to best discrim-

inate Hug or Kiss from High Five and Hand Shake, on Hollywood3D they achieve

promising performance in discriminating Hug or Kiss from 11 other actions such as

Eat and Use Phone that the original tree discovery had no knowledge about. These

results provide evidence for the generalization and discriminative power of the trees

we discover, and show potential for re-use of the learned trees across datasets.

The action recognition results on JHMDB are shown in Table 4.8. As foreground

mask annotations are available for the JHMDB dataset, we also compute action lo-
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Golf Kick Ball Run Walk
AP 29.7 16.8 23.4 42.5

Table 4.8: Trees learned on the UCF-Sports dataset are used to recognize actions
in the JHMDB dataset. Average precision (AP) of action recognition performance
(averaged over three splits) is reported for the action categories that are included in
both JHMDB and UCF-Sports.

Golf Kick Ball Run Walk
IOU 18.3 21.7 12.0 18.4
Recall 78.1 61.1 65.7 80.5
Precision 22.1 28.8 16.3 19.9

Table 4.9: Action localization on JHMDB using trees learned on UCF-Sports. Per-
formance (averaged over three splits) is reported for the action categories that appear
in both JHMDB and UCF-Sports.

calization performance and report the results in Table 4.9. Note that the localization

performance is evaluated at the pixel level: we compare the foreground regions pre-

dicted by our method against the ground truth foreground masks, using the IOU

measure.

Comparing to JHMDB, the UCF-Sports dataset is significantly smaller. The

number of videos in UCF-Sports is only approximately one sixth of the number of

videos in JHMDB, and UCF-Sports has only half the number of actions in JHMDB.

Furthermore, the corresponding action classes are not exactly the same. Compar-

ing the classes of UCF-Sports vs. JHMDB: Golf Swing vs. Golf, Kick vs. Kick Ball,

Run Side vs. Run, and Walk Front vs. Walk. These differences in the action cate-

gories lead to differences in the training and testing videos between the two datasets.

Nonetheless, with trees learned on UCF-Sports, we still achieve promising action

recognition and localization results.
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4.7 Summary

Our approach in this Chapter discovers a compact set of hierarchical space-time tree

structures of human actions from training videos. Using an ensemble of the discov-

ered trees, or in combination with simpler action words and pairwise structures, we

build action classifiers that achieve promising results on three challenging datasets:

HighFive, UCF-Sports and Hollywood3D. We also show cross-dataset generalization

of the trees learned on HighFive on the Hollywood3D dataset, as well as of the trees

learned on UCF-Sports on the JHMDB dataset.



Chapter 5

Learning Action Progression in LSTMs

Besides spatially localizing an action in a video (Chapter 3, Chapter 4), which an-

swers where the action is, in many situations we also want be able to tell when an

action happened in a video sequence, i.e. determining its starting and ending time

point. In this chapter, we study human action detection and early detection in videos

(Fig. 1.2). For action detection, we detect segments of human actions in a video se-

quence, recognizing the actions’ categories and detecting their start and end points.

For early detection, we detect the action segment after observing only a fraction of

the action.

Automatic detection of human actions, in videos, has many potential applica-

tions, such as video understanding and retrieval, automatic video surveillance, and

human-computer interaction. Further, for many applications, such as human-robot

interaction it is desirable to detect the action as early as possible [29, 67], to make

the interaction more natural, e.g., deploying a robot to help an elderly patient stand

up before he/she is upright and is risking a fall.

action detection in realistic settings is quite challenging. There is high variability

in the viewpoint from which the action is observed, the actors and their appearance,

as well as the execution and overall duration of the actions (see Fig. 5.5). This is

particularly true for relatively long and complex actions 1. For example, the action

1Some works such as [28] refer to long and complex actions as activities. We do not make such
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“making pasta” typically entails cutting vegetables, setting a pot on the fire, making

boiling water, boiling pasta noodles, cooking pasta sauce, and combining pasta with

sauce. To better detect, i.e., recognize and temporally localize such actions, we argue

that it is critically important for the learned detector to model the actions’ temporal

progression.

Recurrent Neural Network (RNN) models are particularly helpful in this context:

the prediction at each time instant is based not only on the observations at that time

instant, but also on the previous model hidden states that provide temporal context

for the progression of the action. More specifically, in the Long Short Term Memory

(LSTM), a type of RNN, memory is used to capture useful patterns of previous

observations, and is used in addition to the previous hidden states to provide longer-

range context (e.g., as compared to HMMs) for the current prediction.

While RNN models are powerful, using only classification loss in training such

models typically fails to properly penalize incorrect predictions, i.e., the prediction

error is penalized the same no matter how much context the model has already

processed. For example, given a video of the action making pasta, to output the

action class label preparing coffee after the detector sees the action up to combining

pasta with sauce should be penalized more than the same error when the detector

only sees up to making boiling water.

The above mentioned defect in training RNN models is especially critical for

action detection. Unlike conventional applications of RNNs in machine translation

and speech recognition, in which specific output such as words or phonemes continue

for a relatively short time, human actions such as making pasta may continue for a

relatively long period, e.g., several minutes or thousands of video frames. It is thus

distinctions in this thesis
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very important for the model to learn the progresssion patterns of the actions in

training.

In this Chapter, we introduce novel ranking losses within the RNN learning objec-

tive so that the trained model better captures progression of actions. These ranking

losses are computed for the prediction at each time point, while also taking into

consideration the past predictions starting from the very beginning of the action.

The intuition for our formulation is shown in Fig. 5.1. As the detector sees more

of an action, it should: (1) become more confident of the correct action category, i.e.,

output a higher detection score for the correct category as the action progresses, and

(2) become more confident of the absence of incorrect categories, i.e., the detection

score margin between the correct and incorrect categories should be non-decreasing

as the action progresses.

Thus, we introduce two explicit constraints in RNN training. The first is a

ranking loss on the detection score of the correct category, which constrains the

detection score of the correct categorty to be monotonically non-decreasing as the

action progress. The second is a ranking loss on the detection score margin be-

tween the correct action category and all other categories, which constrains that this

discriminative margin is monotonically non-decreasing.

Contributions: We make the following contributions in this chapter:

• We propose formulations for ranking loss on the detection score and on the

discriminative margin to better learn models for human action progression.

• We implement our proposed ranking losses in training LSTM models, and show

significant improvements over LSTM model trained only with classification loss

in the tasks of action detection and early detection.

• We achieve start-of-the-art performance for action detection and early detection
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Figure 5.1: As the detector sees more of the action, it should become more confident
of the presence of the correct category and absence of incorrect categories. This
example sequence contains a high jump. The blue curve is the detection score of the
correct category, which is encouraged to be non-decreasing. The green curve is the
detection score of an incorrect category running, whose margin with respect to the
correct category (shaded light blue area) is encouraged to be non-decreasing.

on a large-scale video dataset: ActivityNet [28].

Roadmap for this chapter

We first present an overview of our model in Sec. 5.1. Subsequently, in Sec. 5.2

we describe our two novel ranking losses: these losses are designed to be used in

training of the model to better learn temporal progression of the human actions in

videos. We then discuss training of the model in Sec. 5.2.3. Finally, in Sec. 5.3

we present extensive experimental evaluation and analysis of our model and the

proposed ranking losses on a large scale video dataset ActivityNet [28].

5.1 Model Overview

Fig. 5.2 illustrates our model for action detection. It contains two major components:

a CNN that computes visual features from each video frame, and an LSTM with a

linear layer that computes action detection scores based on the CNN features of the



76

Figure 5.2: Model overview. At each video frame, the model first computes CNN
features (illustrated as fc7) and then the features are fed into the LSTM to compute
detection scores of actions and non-action (BG in the figure).

current frame and the hidden states and memory of the LSTM from the previous

time step. We adopt the CNN architecture VGG19 [70], whose output of the second

fully connected layer (fc7) is fed into the LSTM. We use the LSTM described in [61]

that applies dropout on non-recurrent connections. A similar model has been used

in [98] for detecting relatively short actions. Our key contributions are in exploring

the rank losses, during training, that encourage monotinicity in detection score and

margin produced by the model as a training action progresses.

5.2 Learning action Progression

To accurately detect the complete duration of human actions, especially for relatively

long and complex ones, it is important for the model to capture the progression
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patterns of actions during training. An RNN only implicitly considers progression

via the context that is passed along time in the form of the previous hidden state and,

in LSTM, memory as well. We introduce ranking loss into the learning objective,

to explicitly capture action progression globally from the action start to the current

time:

Lt = Ltc + λrLtr, (5.1)

where Ltc and Ltr are the classification loss and the ranking loss, respectively, at the

current time t, and λr is a positive scalar constant.

Usually, for training deep models, the cross entropy loss is used to formulate Ltc:

Ltc = − log pytt , (5.2)

where yt is the ground truth action category of the training video sequence at the

tth video frame, and pytt is the detection score of the ground truth label yt for the

tth frame, i.e., the softmax output of the model.

We explore two formulations of the ranking loss, Ltr. The first constrains the

model to output a non-decreasing detection score for the correct category through-

out the duration of the action. Our second ranking loss constrains the output of

the model to have non-decreasing discriminative margin: at any point in the action,

the margin between the detection score of the correct category and the maximum

detection score among all other categories should be non-decreasing. Detailed for-

mulations of these two ranking losses are given below. For easier reading, we use

Lts and Ltm to denote ranking loss on the detection score and margin, respectively.

While these two ranking losses are different, they are related. Note that the output

of softmax layer of the LSTM sums to 1, so Lts considers the margin between pytt and



78

∑
y′ 6=yt p

y′

t , whereas Ltm considers the margin between pytt and maxy′ 6=yt p
y′

t . We will

discuss this more at the end of Section 5.3.6.

5.2.1 Ranking Loss on Detection Score

Ideally we want the action detector to produce monotonically non-decreasing detec-

tion scores for the correct action category as the detector sees more of the action

(Fig. 5.1). To this end, we introduce the ranking loss Lts into the learning objective

at time step t as:

Lts = max(0, −δt · (pyt−1

t − p∗t )), (5.3)

where δt is set to 1 if yt−1 = yt, i.e., when there is no action transition from t − 1

to t according to ground truth labeling (e.g. δt = 1 for ta, tb and t in Fig. 5.3);

otherwise, δt is set to −1.

In Eq. (5.3) p∗t is computed as:

p∗t =


p∗ytt , if δt = 1,

0, otherwise,

(5.4)

where

p∗ytt = max
t′∈[ts, t−1]

pytt′ . (5.5)

ts = min{t′ | yt′ = yt, ∀t′ ∈ [ts, t]}, (5.6)

where ts is the starting point of the current action yt, and p∗ytt is the highest previous

detection score in [ts, t− 1] (illustrated by the dashed horizontal line in Fig. 5.3).

In other words, if there is no action transition at time t, i.e.yt = yt−1, then we

want the current detection score to be no less than any previous detection score for
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Figure 5.3: Detection score pyt (blue curve) of an action yt spanning [ts, t]. p
yt
tb

and pytt
are smaller than pytta (which is also p∗ytt in this example), violating the monotonicity
of the detection score, so Ltbs and Lts are non-zero.

the same action, computing the ranking loss as:

Lts = max(0, p∗ytt − p
yt
t ). (5.7)

On the other hand, if an action transition happens at time t, i.e.yt 6= yt−1, we want

the detection score of the previous action to drop to zero at t and compute the

ranking loss as:

Lts = p
yt−1

t . (5.8)

Fig. 5.3 shows the detection scores pyt (the blue curve) of an action yt spanning

[ts, t]. In [ta + 1, t], the detection scores are smaller than pytta , violating the mono-

tonicity of the detection score, so the ranking losses in this period are non-zero,

e.g.Ltbs and Lts as shown in the figure.

One may be tempted to simply require pytt to be no less than pytt−1 when there is

no action transition, replacing Eq. 5.7 with:

Lts = max(0, pytt−1 − p
yt
t ). (5.9)
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Figure 5.4: Discriminative marginmyt (red curve) of an action yt spanning [ts, t]. The
margin myt is computed as the difference between the ground truth action detection
scores pyt (blue curve) and the maximum detection scores maxy′ 6=yt p

y′ (dashed blue
curve) of all incorrect action categories at each time point in [ts, t]. m

yt
tb

and myt
t are

smaller than myt
ta (which is also m∗ytt ), violating the monotonicity of the margin, so

Ltbm and Ltm are non-zero.

However, as shown in Fig. 5.3, in this situation, the ranking loss will be zero in

[tb + 1, tc] even though the monotonicity of detection score is also violated.

5.2.2 Ranking Loss on Discriminative Margin

When more of an action is observed, the detector should become more confident in

discriminating between the correct category vs. the incorrect categories. We guide

the training of our model to acquire such behavior by implementing the following

ranking loss:

Ltm = max(0, −δt · (myt−1

t −m∗t )). (5.10)

where my
t is the discriminative margin of an action label y at time step t (the blue

point on the red curve at time t in Fig. 5.4), computed as:

my
t = pyt −max{py

′

t | ∀y′ ∈ Y , y′ 6= y}, (5.11)
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where Y is the set of all action category labels. The m∗t in Eq. 5.10 is computed as:

m∗t =


m∗ytt , if δt = 1,

0, otherwise.

(5.12)

where m∗ytt is computed as:

m∗ytt = max
t′∈[ts, t−1]

myt
t′ , (5.13)

i.e.the largest previous discriminative margin of the current action yt that started at

ts (illustrated by the dashed horizontal line in Fig. 5.4).

In other words, when there is no action transition at t, we want the current

discriminative margin to be no less than any previous margin in the same action,

computing the ranking loss as:

Ltm = max(0, m∗ytt −m
yt
t ). (5.14)

If an action transition happens at time t, we want the discriminative margin of the

previous action to drop and compute the ranking loss as:

Ltm = m
yt−1

t . (5.15)

Fig. 5.4 illustrates the discriminative margins (red curve) myt of the current

action yt spanning [ts, t] . The margin myt is equal to the difference between the

detection scores pyt of the correct category yt (blue curve) and the maximum of the

detection scores maxy′ 6=yt p
y′ for the incorrect categories (dashed blue curve). Note

that within the time interval [ta + 1, t], the margins are smaller than myt
ta , violating
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the monotonicity; consequently, the ranking losses are non-zero within the interval

[ta + 1, t]. Also note that simply requiring the current margin to be less then that of

the previous timestep is insufficient, which will result in zero ranking loss in interval

[tb + 1, t] in Fig. 5.4.

5.2.3 Training

In training, we compute the gradient of the ranking loss with respect to the softmax

output at each time step:

∂Lt

∂pyt
=
∂Ltc
∂pyt

+ λr
∂Ltr
∂pyt

(5.16)

which is then back propagated through time to compute the gradients with respect

to the model parameters. Also note that we fix the ranking loss of non-action frames

to be 0. Although Lts and Ltm are also functions of pyt′ for t′ < t, i.e., the softmax

output of previous time steps, to simplify computation, we do not compute and back

propagate the gradients of the ranking loss with respect to these variables.

5.3 Experiments

We evaluate our formulation on a large-scale, realistic action dataset: ActivityNet

[28]. Using our proposed ranking losses in training significantly improves performance

in both the action detection and early action detection tasks.

5.3.1 Dataset

The ActivityNet [28] dataset comprises 28K videos of 203 action categories collected

from YouTube. Fig. 5.5 shows sample frames from video sequences of this dataset.
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Checking 
Tire

Using 
ATM

Sailing

Preparing 
Pasta

Figure 5.5: Each row contains sample frames of one example video sequence in
ActivityNet. Frames with green borders contain the actions labeled on the left.
Note the significant viewpoint and foreground object changes within the actions
Using ATM, Sailing and Preparing Pasta.

The lengths of the videos range from several minutes to half an hour. The total length

of the whole dataset is 849 hours. A single video may contain multiple actions and

often also contains periods with none of the annotated actions. On average, 1.4

actions are annotated per video. The action category, along with the start and end

point of each action are annotated by crowd-workers, leading to some annotation

noise. Many of the videos are shot by amateurs in uncontrolled environments, and

variances within the same action category are often large. More importantly, many

actions are relatively long and complex, and the viewpoint and foreground objects
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may change significantly within the same action, e.g., Using ATM and Preparing

pasta shown in Fig. 5.5. Given these challenges, it is important that the model

learns the progression of actions for accurate action detection and early detection.

The authors of ActivityNet use one fourth of the dataset as a validation set, but

have not released the test set used in their paper.2 In our experiments, we use the

validation set as our test set, and we split the remaining videos into one fifth for

validation and four fifths for training. To reduce computational cost, we temporally

down-sample the videos to 6 frames per second for all our experiments.

5.3.2 Model Training

For the CNN component (see Fig. 5.2), we first use training video frames of Activi-

tyNet to fine-tune a VGG19 model [70] that is pre-trained on ImageNet. The output

dimension of the softmax layer is 204, which corresponds to the 203 actions plus one

additional class corresponding to non-action. We set the learning batch size to 32.

The learning rate starts at 10−4 and is divided by 10 after every 40K iterations. The

fine-tuning stops at 120K iterations.

For LSTM training, the output of the second fully connected layer (fc7) of the

fine-tuned VGG19 model is used as input to the LSTM. We use learning batches of

64 sequences, where each sequence comprises 100 frames. Back propagation through

time is performed for 20 time steps. The momentum and weight decay are set to 0.9

and 0.0005 respectively. The learning rate starts at 0.01 and is divided by 10 after

every 20K iterations. Training stops after 50K iterations. In this training phase,

the CNN fc7 layer is also further trained together with the LSTM but with a lower

starting learning rate of 10−4.

2According to communication with the authors of [28], this test split is kept confidential for use
in a future challenge.
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Table 5.1: Action detection performance measured in mAP at different IOU thresh-
olds α. Note that the results of Heilbron et al.[28] are produced on their own test
split that is unavailable to us, so their results are not directly comparable to ours.

Model α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8
Heilbron et al.[28] 12.5% 11.9% 11.1% 10.4% 9.7% - - -

CNN 30.1% 26.9% 23.4% 21.2% 18.9% 17.5% 16.5% 15.8%
LSTM 48.1% 44.3% 40.6% 35.6% 31.3% 28.3% 26.0% 24.6%

LSTM-m 52.6% 48.9% 45.1% 40.1% 35.1% 31.8% 29.1% 27.2%
LSTM-s 54.0% 50.1% 46.3% 41.2% 36.4% 33.0% 30.4% 28.7%

5.3.3 Experimental Setup

In testing, we run the model across the whole input sequence and output action

detection scores at each input frame. We reset the LSTM memory whenever the

model predicts non-action, which we find slightly improves performance. For both

action detection and early detection, we detect video segments of actions from an

input video sequence. To achieve this, we first classify each video frame to the action

category for which the detection score is the highest at this frame. Note that non-

action is treated simply as a special category. We then find continuous video frame

segments that are classified to belong to the same action category; this produces the

initial detection spans. Finally, we iteratively merge the detection spans that are

temporally close (less than 20 frames apart in our experiments). The score of each

detection is then computed as the mean of the detection scores of all its video frames.

Following [28], we use the mAP (mean average precision) in evaluating perfor-

mance. A detection is a true positive if: 1) its IOU (intersection-over-union) of

temporal duration with a ground truth action is above the IOU threshold, and 2) its

action label is equal to the ground truth action label. If multiple detections overlap

with the same ground truth action, only the one with the longest duration is treated

as a true positive. All the other detections are false positives. For evaluating perfor-

mance on early detection, we split each input test sequence into multiple sequences
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so that each new sequence contains the non-action segment (if there is any) before a

test action, and a portion of the test action.

We evaluate the performance of four models: i) the fine-tuned VGG19 CNN

model; ii) the LSTM model shown in Fig. 5.2 trained with the classification loss

only (Eq. 5.2); iii) the LSTM-s model trained with both the classification loss and

ranking loss on the detection score (Eq. 5.3); iv) the LSTM-m model trained with

classification loss and ranking loss on the discriminative margin (Eq. 5.10). In LSTM-

s and LSTM-m, the weight for ranking loss (λr in Eq. 5.1) is empirically set to 6,

according to performance on our validation set. We find that using a combination of

both ranking losses in training offers no further improvement over using just one so

we do not include results for this in the paper.

5.3.4 Action Detection

Table 5.1 shows the action detection performance of the evaluated models under

different IOU thresholds, α. The results of Heilbron et al.[28] are produced on

their test set, which is not publicly available; therefore, their results are not directly

comparable to ours. Heilbron et al.[28] use a sliding window approach to detect

actions in the video sequences, where the temporal lengths of the sliding windows

are empirically selected and fixed. In our approach the length of each detection is

automatically determined as described in Section 5.3.3.

The LSTM models greatly outperform the CNN model. This demonstrates the

benefit of using a recurrent neural network model in action detection. Both of the pro-

posed ranking losses are beneficial in training a better LSTM model for action detec-

tion: significant improvements are achieved over the LSTM model trained only using

classification loss. For LSTM-s the improvements are consistently around 4.1∼5.9%
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Figure 5.6: Top 20 action categories for which the detection performance improved
the most by using either the ranking loss on the detection score (LSTM-s) or dis-
criminative margin (LSTM-m) in training.

at all IOU thresholds. Note that the relative improvement of LSTM-m and LSTM-s

over LSTM increases when requiring the detection to more accurately overlap with

ground truth, e.g., growing from 12.3% when α = 0.1 to 16.7% when α = 0.8 with

LSTM-s. This shows that the proposed ranking-losses are even more useful in appli-

cations where accurate temporal localization is required.

Fig. 5.6 shows the top 20 actions for which the detection performance are im-

proved the most by using ranking loss (LSTM-s or LSTM-m) in training (IOU thresh-

old α = 0.5). It is interesting to note that using the proposed ranking losses, detection

performance improves both for relatively simple actions such as playing saxophone

and for relatively complex actions such as high jump. This shows that the proposed

ranking losses may improve the detection of various types of actions.
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Figure 5.7: Action early detection performance plotted as a function of the observed
fraction of each test action. LSTM models greatly outperform the CNN model
irrespective of the fraction of the action observed. Using the proposed ranking losses
in training, LSTM-s and LSTM-m, outperform LSTM and the performance gaps
increase as more of the action is observed. Also note the performance gap between
LSTM-s and LSTM at the start of the curves (when we only observe one tenth of
each action).

Table 5.2: Action early detection performance at different IOU thresholds (α), when
only 3/10 of each action is observed.

Model α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8
CNN 27.0% 23.4% 20.4% 17.2% 14.6% 12.3% 11.0% 10.3%

LSTM 49.5% 44.7% 38.8% 33.9% 29.6% 25.6% 23.5% 22.4%
LSTM-m 52.6% 47.9% 41.5% 36.2% 31.4% 27.1% 24.8% 23.5%
LSTM-s 55.1% 50.3% 44.0% 38.9% 34.1% 29.8% 27.4% 26.1%
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Figure 5.8: Top 20 action categories for which the early detection performance im-
proved the most by using either the ranking loss on the detection score (LSTM-s) or
discriminative margin (LSTM-m) in training. Only the first 3/10 of each test action
is observed. The IOU threshold α = 0.5.

5.3.5 Action Early Detection

In this experiment, the goal is to recognize and also temporally localize partially

observed actions. Table 5.2 shows the detection performances when we only observe

3/10, i.e., approximately the first third, of each testing action. The LSTM models

greatly outperform the CNN model on the early detection task. Moreover, the LSTM

models trained with the proposed ranking losses (LSTM-s or LSTM-m) clearly out-

perform the LSTM model trained only with classification loss. For instance, with

LSTM-s, the absolute improvements are consistently around 5.6∼3.7% at all IOU

thresholds α, with relative improvement increasing from 11.3% at α = 0.1 to 16.5%
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Figure 5.9: Mean curves of (a) the detection score and (b) the discriminative margin,
as function of time over all test sequences for CNN, LSTM, LSTM-m and LSTM-s.
The mean curves of the detection score for the worst negative category, i.e.negative
action category with the highest detection score, are also shown as the dashed curves.

at α = 0.8.

Fig. 5.7 shows the performance of early detection when the observed fraction of

each test action increases from 0.1 to 1 when the IOU threshold is fixed at 0.4 or 0.5.

All LSTM models greatly outperform the CNN, no matter how much of each action

is observed. Both ranking losses, LSTM-m and LSTM-s (red and green curves) out-

perform LSTM (blue curve). Although the increase in detection performance slows

down after observing approximately half of each action, the performance gap be-

tween LSTM-s (LSTM-m) and LSTM increases as more of each action is observed.

More interestingly, LSTM-s significantly outperforms LSTM even when we only ob-

serve a small faction of each action, e.g., one tenth. This could be quite useful for

applications that require detecting actions as early as possible.

Fig. 5.8 lists the top 20 action categories for which the early detection performance

improves the most when using either of the proposed ranking losses in training. Only

the first 3/10 of each action is observed. The IOU threshold α = 0.5. Interestingly,

among these actions, some may have relatively little visual content change across the
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Figure 5.10: Mean curves of the detection score and the discriminative margin as
function of time over all test action sequences produced by snapshots of the LSTM-m
and LSTM-s models trained after 10K, 20K, 30K, 40K and 50K iterations.

whole duration of the action, such as Playing lacrosse, whereas others may undergo

significant visual content change, such as Layup drill in basketball. This suggests

that the benefits of the proposed ranking losses are applicable to various types of

actions in the task of early detection.

5.3.6 Effects of the Ranking Losses

We now analyze what effects the proposed ranking losses introduce over the evolving

time scale of model training. We first analyze how the detection score of the correct

action category and the discriminative margin (Eq. 5.11) change as we train LSTM-

m and LSTM-s. We compute the detection scores and the discriminative margins at

every frame in each test sequence using snapshots of the LSTM models trained after

10K, 20K, 30K, 40K and 50K iterations. This produces for each action sequence a

curve of the detection score (or discriminative margin) as a function of time. We

normalize the curves so that each has a length of 20 points, and finally compute

the mean curve over the whole test set. Fig. 5.10 shows the mean curves. For both

models, the mean curves are approximately non-decreasing, and such monotonicity

becomes more apparent as we train for more iterations. The absolute values of the
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detection scores and discriminative margins increase as we train for more iterations,

but converge after roughly 40K training iterations.

Fig. 5.9 compares the mean curves of the detection score and discriminative

margin produced by LSTM-s, LSTM-m and LSTM trained after 50K iterations,

as well as the CNN model. The mean curves of LSTM-s and LSTM-m (solid green

curves and solid red curves) for both the detection score and discriminative margin

are significantly higher than those of LSTM (blue curves). The LSTM-s and LSTM-

m curves also show a more apparent monotone increasing trend compared to LSTM,

which tends to be flat after approximately the first half of the action. We also show

the mean detection score curves for the worst negative category, i.e., the negative

action category with the highest detection score for LSTM, LSTM-s and LSTM-m

using the dashed curves. The curves of LSTM-m and LSTM-s for the worst negative

category are lower than that of LSTM.

It is interesting to note that each of the proposed ranking losses has useful impacts

on both the detection score and the discriminative margin, despite the fact that they

are either computed based on detection scores only or discriminative margins only.

This conforms to our intuition that encouraging a non-decreasing detection score

may help in producing a non-decreasing discriminative margin and vice versa. Also

note that LSTM-s produces higher detection scores for the correct category than

LSTM-m, while LSTM-m pushes the detection scores of the worst negative category

significantly lower, as shown Fig. 5.9 (a). In practice one can use either of these

ranking loss formulations, depending on the application, e.g.selecting the best one

via cross-validation.
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5.4 Summary

In this Chapter we explore deep LSTM model for action detection and early detec-

tion. We introduce and exploit two novel formulations for ranking loss in LSTM

training, designed to encourage consistent scoring and margin for detecting the cor-

rect action as more of the action sequence is observed. We show significant perfor-

mance improvements in action detection and early detection on ActivityNet by using

the proposed ranking losses in training. In future work, we plan to conduct further

in-depth study of the relative advantages of the two ranking losses.



Chapter 6

Utilizing Web Images for Training CNN

Models

The model in Chapter 5 utilizes deep Convolutional Neural Network (CNN) for

learning visual features from video frames. Recent works [42, 69] also show that deep

CNN models are promising for action recognition in videos. However, CNN models

typically have millions of parameters [7, 47, 70], and usually large amounts of training

data are needed to avoid overfitting. For this purpose, work is underway to construct

datasets consisting of millions of videos [42]. However, the collection, pre-processing,

and annotation of such datasets can require a lot of human effort. Moreover, storing

and training on such large amounts of data can consume substantial computational

resources.

In contrast, collecting and processing images from the Web is much easier. For

example, one may need to look through all, or most, video frames to annotate the

action, but often a single glance is enough to decide on the action in an image. Videos

and web images also have complementary characteristics. A video of 100 frames may

convey a complete temporal progression of an action. In contrast, 100 web action

images may not capture the temporal progression, but do tend to provide more

variations in terms of camera viewpoint, background, body part visibility, clothing,

etc. Moreover, videos often contain many redundant and uninformative frames, e.g.,
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standing postures, whereas action images tend to focus on discriminative portions

of the action (Fig. 6.1). This property can further focus the learning, making action

images inherently more valuable.

Figure 6.1: Sample action images from our dataset, BU101. Action images on the
Web often capture well-framed descriminative poses of the actions they represent.
Left to right: Hammer Throw, Body Weight Squats, Jumping Jack, Basketball, Tai
Chi, Cricket Shot, Lunges, Still Rings. Utilizing web action images in training CNNs,
for all these action classes, results in more than 10% absolute increase in recognition
accuracy in videos compared to CNNs trained only on video frames (see Fig. 6.3).

In summary, two intuitions emerge about why web action images may be useful

in training CNNs for action classification of videos:

• Complementarity: Action images may complement training videos when video

data is scarce, particularly since images may be easier to collect and process.

• Efficiency: Web action images usually contain discriminative poses of the ac-

tions, making them intrinsically higher-quality training data compared to video

frames, which may be redundant or contain less relevant poses.

However, it is not enough to stop at these seemingly natural intuitions: scientific

verification is necessary. In this work, we analyze and empirically evaluate these

intuitions. To our best knowledge, we are the first to perform an in-depth analysis

of this problem by extensive and large-scale empirical evaluation.

We start by collecting large web action image datasets. The first dataset, BU101,

contains 23.8K images of 101 action classes. It is more than double the size of the

largest previous action image dataset [97], both in the number of images and the

number of actions. And, to the best of our knowledge, this is the first action image
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dataset that has one-to-one correspondence in action classes with the large-scale

action recognition video benchmark dataset, UCF101 [44]. Images of the dataset

are carefully labeled and curated by human annotators; we refer to them as filtered

images. Two other, even larger, web image datasets are also collected: BU101-

unfiltered and BU203-unfiltered, which are crawled automatically by querying action

class names on multiple image search engines, e.g. Google Image Search. The BU101-

unfiltered dataset contains ∼0.2M images crawled by querying the 101 action class

names of UCF101, and BU203-unfiltered contains ∼0.4M images crawled by querying

the 203 activity names of ActivityNet [6]. All these datasets will be made publicly

available to the research community 1.

We train CNN models of different depths and analyze the effect of adding web

action images of BU101 to the training set of video frames. We also train and

evaluate models with varying numbers of action images to explore the marginal gain

as a function of the web image set size. We find that by combining web action

images with video frames in training, a spatial CNN can achieve an accuracy of

83.5% on UCF101, which is more than a 10% absolute improvement over a spatial

CNN trained only on videos [69]. When combining with motion features, we can

achieve 91.1% accuracy, which is the highest result reported to-date on UCF101. We

also replace videos by images to demonstrate that our performance gains are due

to images providing complementary information to that available in videos, and not

solely due to additional training data.

We further investigate at a larger scale, i.e. use many more web action images as

additional training data, where these action images are simply automatically crawled

and without further annotation. We compare the performance of using BU101 and

1http://www.cs.bu.edu/groups/ivc/BU-action/
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BU101-unfiltered images on UCF101. Using BU101-unfiltered we obtain similar

performance to that obtained using BU101, even though collecting BU101-unfiltered

requires much less human labor. We also obtain comparable performance when

replacing half the training videos in ActivityNet (which correspond to 16.2M frames)

by ∼ 400K images of BU203-unfiltered.

We then delve deeper and examine one major mechanism which may deliver the

benefits of web action images in training the CNN models. We bring to light an

artifact of finetuning a pre-trained CNN: zombie filters – CNN filters that undergo

small changes during fine-tuning and make little, if any, contribution to the target

task. These zombie filters reduce the number of effective parameters in the CNN

model and are potentially harmful to the modeling capacity of the CNN. We illustrate

that, by using web action images as additional training data, the number of zombie

filters is greatly reduced, e.g. by an order of magnitude. This enables re-targeting

more filters of the pre-trained CNN to visual patterns of the new task, i.e. action

recognition.

Contributions: We make the following contributions in this chapter:

• We collect three large web action image datasets: BU101, BU101-unfiltered

and BU203-unfiltered. These dataset are in one-to-one correspondence with

the actions in the UCF101 or ActivityNet benchmark datasets.

• By extensive experimental evaluation, we verify the intuition that web action

images are complementary to video training data. This complementarity ap-

pears to be insensitive to the CNN depth and is evident in many kinds of

actions. Benefits are observed even when only a few filtered images are used

in training and the benefits grow with number of web images.
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• We illustrate that both filtered and unfiltered web action images are comple-

mentary to video training data. This points to an approach that requires little

human annotation labor and is especially useful for large-scale problems.

• We show that using web action images can boost the efficiency of CNN training.

With the same number of training samples, the trained model can achieve sig-

nificantly higher recognition performance if half of the samples are web images.

Moreover, to achieve the same recognition performance, we can greatly reduce

the number of training videos and use unfiltered web action images instead.

• We provide insight into an artifact of finetuning a pre-trained CNN model for a

new task: zombie filters. We show that, in our action recognition task, by using

web action images as additional training data, the number of zombie filters can

be significantly reduced. This reveals an underlying mechanism that brings in

the benefits of web action images in the CNN model finetuning.

Roadmap for this chapter

We first present the new web action image datasets we collected in Sec. 6.1. Based on

these datasets, in Sec. 6.2 we explore the utilization of web action images for training

deep CNN models for action recognition in videos. We also analyse the zombie filters

in Sec. 6.3 , a defect of finetuning pre-trained CNN models using video frames and

web action images. In Sec. 6.4 we present extensive experiment evaluations of the

proposed approaches on two large scale video dataset, UCF101 [44] and ActivityNet

[28].
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6.1 Web Action Image Dataset

To study the usefulness of web action images for learning better CNN models for

action recognition, we collect action images that correspond with the 101 action

classes in the UCF101 video dataset and the 203 activities in the ActivityNet dataset.

This leads to 3 large image datasets: BU101, BU101-unfiltered and BU203-unfiltered.

All three datasets will be made publicly available for research.

We collect images by crawling the web using the action class names of UCF101 or

ActivityNet as queries on image search engines (Google Image Search, Flickr, etc.).

Some queries are augmented by the words exercise, train and play when appropriate,

e.g., juggling balls to play juggling balls. BU101-unfiltered and BU203-unfiltered,

containing 204K images and 387K images respectively, are simply compiled by this

crawling procedure using action (activity) names of UCF101 (ActivityNet), without

any further human annotation.

In the following text, we focus our discussion on the dataset BU101. For BU101,

we inspect each crawled image and remove images that do not contain the action or

are cartoons or drawings. We also include 2769 images of relevant actions from the

Standford40 dataset [97]. The resulting dataset comprises 23.8K images. Because the

images are automatically collected, and then filtered for irrelevant ones, the number

of images per category varies. Each class has at least 100 images and most classes

have 150-300 images. We will make our dataset publicly available for research.

Table 6.1 compares existing action image datasets with our new dataset, BU101.

Both in the number of images and the number of actions, our dataset exceeds double

the scale of existing datasets. More importantly, to the best of our knowledge, this is

the first action image dataset that has one-to-one action class correspondence with a

large-scale action recognition benchmark video dataset. We believe that our dataset
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Table 6.1: Comparison of BU101 with existing action image datasets. Visibility
varies? refers to variance in the partial visibility of the human bodies.

Dataset # Actions # Images Clutter? Poses vary? Visibility varies?
Gupta [25] 6 300 Small Small No
Ikizler [33] 5 1727 Yes Yes Yes

VOC2012 [13] 11 4588 Yes Yes Yes
PPMI [96] 24 4800 Yes Yes No

Standford40 [97] 40 9532 Yes Yes Yes
Ours 101 23800 Yes Yes Yes

will enable further study of the relationship between action recognition in videos and

in still images.

UCF101 action classes are divided into five types: Human-Object Interaction,

Body-Motion Only, Human-Human Interaction, Playing Musical Instruments, and

Sports [44]. Fig. 6.2 shows sample images in our dataset for five action classes, one

in each of the five action types.

These action images collected from the Web are originally produced in a vari-

ety of settings, such as amateur vs. professional photos, artistic vs. educational vs.

commercial photos, etc. For images collected in each action category, wide variation

can exist in viewpoint, lighting, human pose, body part visibility, and background

clutter. For example, commercial photos may have clear backgrounds while back-

grounds of amateur photos may contain much more clutter. Such variance also differs

for different types of actions. For example, for Sports, there is significant variance in

body pose among images that capture different phases of the actions, whereas body

pose variance is minimal in images of Playing Musical Instruments.

Many of the collected action images significantly differ from video frames in cam-

era viewpoint, lighting, human pose, and background. One interesting thing to notice

is that action images often capture defining poses of an action that are highly dis-

criminative, e.g. standing with both hands over head and legs spread in jumping jack
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Figure 6.2: Sample images from BU101. Each row shows images of one action.
Top to bottom: Hula Hoop, Jumping Jack, Salsa Spin, Drumming, Frisbee Catch.
Variations in background, camera viewpoint and body part visibility are common in
web images of the same action.

(Fig. 6.2, row 2). In contrast, videos may have many frames containing poses that

are common to many actions, e.g. in jumping jack the upright standing pose with

hands down. Also, n images will have more unique content than n video frames, for

example more clothing variation. Clearly there exists a compromise between tem-

poral information available in videos and discriminative poses and variety of unique

content in images.
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Figure 6.3: The 25 action classes with the largest accuracy improvement in the three
CNN architectures as well as on average over the three architectures. The blue bars
show the accuracy of CNN models trained only on videos. The green bars show the
absolute increase in accuracy of CNN models trained using both web action images
of BU101 and training videos.

6.2 Training CNNs with Web Action Images

Spatial CNNs trained on single video frames for action recognition are explored in

[69]. Karpathy et al. [42] observe that spatio-temporal networks show similar per-

formance compared to spatial models. A spatial CNN effectively classifies actions

in individual video frames, and action classification for a video is accomplished via

fusion of the spatial CNN’s outputs over multiple frames, e.g. via voting or SVM.

Because the spatial CNN is trained on single video frames, its parameters can be

learned by fine-tuning of a CNN that was trained for a different task, e.g., using a

CNN that is pre-trained on ImageNet [11]. The fine-tuning approach is especially

beneficial in training a CNN model for action classification in videos, since we of-

ten only have limited training samples; given the large number of parameters in a

CNN, initializing the parameters to random values leads to overfitting and inferior
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performance as shown in [69]. In this work, we study improving the spatial CNN for

action recognition using web action images as training data in fine-tuning. This is

then combined with motion features via state-of-the-art techniques.

In our experiments and analysis, we explore the following key questions:

• Is it beneficial to train CNNs with web action images in addition to video

frames and, if so, which action classes benefit most?

• How do different CNN architectures, in particular ones with different depths,

perform when web action images are used as additional training data?

• How do the performance gains change when more web action images are used

in training the CNN?

• Are performance gains solely due to additional training data or also due to a

single image being more informative than a randomly sampled video frame?

• Can we make the procedure of leveraging web images scalable by using crawled

(unfiltered) web images rather than manually filtered ones?

We experiment on three CNN architectures: M2048 [7], VGG16, and VGG19

[70]. To avoid cluttering the discussion, implementation details are provided later in

Sec. 6.4.

Is adding web images beneficial? Significant performance gains are achieved

when we train spatial CNNs using our web action image dataset as auxiliary training

data (see Table 6.2). For example, with the VGG19 CNN architecture, 5.7% absolute

improvement in mean accuracy is achieved.

Most encouragingly, such improvements are easy to implement, without the need
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Table 6.2: Accuracy on UCF101 split1 using three different CNN architectures.

Model # Layers
# Parameters

(in Millions)

Accuracy
video only

Accuracy
video + images

M2048 7 91 66.1% 75.2%
VGG16 16 138 77.8% 83.5%
VGG19 19 144 78.8% 83.5%

to introduce additional complexity to the CNN architecture and/or requiring signif-

icantly longer training time.

We further analyze which classes improve the most. Fig. 6.3 shows the 25 action

classes for which the largest improvement in accuracy is achieved with the three

different CNN architectures on UCF101 split1. The 25 action classes of top average

accuracy improvement over all three tested architectures are also shown (rightmost

column), all of which have no less than 10% absolute increase in accuracy and 10

classes have more than 20% absolute improvement. Some action classes are consis-

tently improved irrespective of the CNN architecture used, such as push ups, YoYo,

handstand walking, brushing teeth, jumping jack, etc. This suggests that utilizing

web action images in CNN training is widely applicable.

While classification accuracy improvements in actions that are relatively station-

ary such as Playing Daf and Brushing Teeth are somewhat expected, it is interesting

to see that improvements for actions of fast body motion such as Jumping Jack and

Body Weight Squats are also significant.

Are images benefitial irrespective of CNN depth? While there are numerous

ways that CNN architectures may differ from each other, here we focus on one of

the most important factors. We evaluate the performance changes for CNNs of

different depths when web action images of BU101 are used in addition to video

frames in training. We train spatial CNNs of three depths: 7 layers (M2048), 16
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layers (VGG16) and 19 layers (VGG19). These are the prototypical choices of CNN

depths in recent works [7, 47, 52, 69, 70].

Table 6.2 shows the mean accuracy of the three CNN models trained with and

without web action images of BU101 on UCF101 split1. Using web action images

in training leads to a consistent 5% ∼ 9% absolute improvement for all three ar-

chitectures of different depths. This shows the usefulness of web action images and

suggests a wide applicability of this approach. Furthermore, our results in action

recognition confirm [70]’s observation that deeper CNNs of 16-19 layers significantly

outperform the shallower 7-layer architecture. However, the margin of performance

gain diminishes when we increase the depth from 16 to 19.

Does adding more web images improve accuracy? We further explore how,

for the same CNN architecture, the number of web action images used as additional

training data can influence the classification accuracy of the resulting CNN model.

We sample 1/10, 1/5, 1/3 and 2/3 of the images of each action in our dataset, and

for each sampled set we train the spatial CNN by fine-tuning VGG16 using both

the training videos and sampled action images. For each sample size, we repeat the

experiment three times, each with a different randomly sampled set of web action

images. The evaluation is performed on UCF101 split1.

Fig. 6.4 summarizes the results of this experiment. The increase in classification

accuracy is most significant at the beginning of the curve, i.e. when a few thousand

web action images are used in training. This increase continues as more web action

images are used, even though the increase becomes slower. Firstly, this indicates that

using web action images in training can make a significant difference in performance

by providing additional supervision to that provided by video frames. Secondly, it

indicates that it is good practice to collect a moderate number of web action images
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Figure 6.4: Performance of the spatial CNNs (VGG16) trained on UCF101 split1
using different numbers of web action images of BU101 as additional training data.

for each action as a cost-effective way to boost model performance (e.g., 100 ∼ 300

images per action for a dataset of the same scale as UCF101).

Do web images complement video frames? Although augmenting with images

is more efficient than augmenting with videos, we further investigate whether the

achieved performance gains are solely due to additional training data or whether a

web image provides more information to the learning algorithm than a video frame.

This is done by replacing video frames by web images, keeping the total number

of training samples constant. For each sample size, we repeat the experiment three

times, each with a different randomly sampled set of web action images. The evalu-

ation is performed on UCF101 split1 and a VGG16 model.

Fig. 6.5 summarizes the results of this experiment. A consistent improvement

in performance is achieved when half the video frames are replaced by web images.

The number of training samples (images and video frames) required to obtain the

maximum accuracy presented in Fig. 6.4 is much less (50K vs. 230K). This suggests

that images are augmenting the information learnt by the classifier. We posit that

discriminative poses in action images may provide implicit supervision, in training,

to help learn better discriminative models for classification.
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Figure 6.5: Performance of the spatial CNNs (VGG16) trained on UCF101 split1
using video frames only and replacing 50% of the video frames by web images of
BU101.

Can this be made scalable? While we have demonstrated the ability to collect a

filtered dataset for our desired classes, this is not scalable. Given a different dataset

having the same order of magnitude as UCF101 we would have to manually label

a dataset for its classes. Given an even larger dataset with more classes and more

samples per class, this becomes very cumbersome although still better than collecting

videos. We now investigate the possibility of using crawled (unfiltered) web images

for the same purpose, utilizing BU101-unfiltered.

Table 6.3 summarizes the results of this experiment. The performance of using

unfiltered images approaches that of manually filtered images, but the number of

web images utilized is much larger. We further investigate whether all the crawled

unfiltered images are required to obtain such performance. We do this by randomly

selecting one quarter (65.5K) of the 207K unfiltered web images. We select 3 random

samples and report the average result in Table 6.3. Three quarters of the images

only contribute with an additional accuracy of 1%; this is consistent with Fig. 6.4

observations.



108

Table 6.3: Accuracy on UCF101 split1 using spatial CNN (VGG16) of manually
filtered and unfiltered web images.
* means average of three random sample sets.

Image Type # Images Accuracy (%)
Manually filtered 23.8K 83.5
Unfiltered (all) 207K 83.1
Unfiltered (rand select) 65.5K 82.1*

Having demonstrated the feasibility of using crawled web images, we now apply

this to a larger-scale dataset: ActivityNet [28] using BU203-unfiltered. ActivityNet

contains more classes (203) and more samples per class than UCF101. ActivityNet

classes are more diverse; they belong to the categories: Personal Care, Eating and

Drinking, Household, Caring and Helping, Working, Socializing and Leisure, and

Sports and Exercises. “ActivityNet provides samples from 203 activity classes with

an average of 137 untrimmed videos per class and 1.41 activity instances per video,

for a total of 849 video hours.” [28] Mostly, videos have a duration between 5 and

10 minutes and have a 30 FPS frame rate. About 50% of the videos are in HD

resolution. Results on ActivityNet are reported in Section 5.

6.3 Caution: “Zombies” Around

For tasks that have limited training data, training a deep CNN by fine-tuning from

a CNN pre-trained on a large-scale dataset (but for a different task) is an important

and popular technique [21, 69]. In such an approach, most parameters (usually all

but the last layer) of the target model are initialized to the parameter values of the

pre-trained model. This initialization usually works significantly better than random

parameter initialization. In this work we train the spatial CNNs for action recognition

by fine-tuning models originally trained on ImageNet for object recognition. Despite
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the benefits of the fine-tuning technique, we dive deeper and provide insight to its

downside–what we call zombie filters: the filters whose parameters do not change

during fine-tuning and do not contribute to the new task. These zombie filters reduce

the effective number of parameters in the CNN and may be harmful to the CNN’s

modelling capacity.

In typical deep CNNs [47, 70], the ReLU (Rectified-Linear Unit) layer follows the

convolutional layers or fully connect layers and introduces nonlinearity to the model.

Denote wk
n as the kth convolution filter in the nth convolutional layer. Its ith output

can be simply written as a dot product xk,in = wk
n ·xin−1 where xin−1 is the part of the

input to the nth layer that participates in the ith convolution. Now suppose there is

a ReLU layer following this layer, and its ith output on the kth input channel can be

denoted as rk,in = max(0, xk,in ). During training, in back propagation, the gradients

of training loss with respect to wk
n are

∂L

∂wk
n

=
∑
i

∂L

∂xk,in

∂xk,in
∂wk

n

=
∑
i

∂L

∂rk,in

∂rk,in

∂xk,in
· xin−1. (6.1)

Notice that ∂rk,in /∂x
k,i
n = 0 when xk,in < 0 and otherwise equal to 1, so Eq. 6.1 can

be written as

∂L

∂wk
n

=
∑

i: xk,in ≥0

∂L

∂rk,in
· xin−1. (6.2)

Thus ∂L/∂wk
n is determined by the non-negative convolution outputs, i.e. the set

Xk,+
n = {xk,in |xk,in ≥ 0, 1 ≤ i ≤ N} (N: the total number of convolutions by wk

n in

the nth layer). In training a CNN, typically the following weight update is used in

backpropagation in the tth iteration:

vkn,t = µ · vkn,t−1 − δ · ε ·wk
n,t−1 − ε ·

〈 ∂L

∂wk
n

〉
Dt

, (6.3)
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wk
n,t = wk

n,t−1 + vkn,t. (6.4)

where vkn,t is the momentum variable, µ is the momentum coefficient, δ is the weight

decay coefficient and ε is the learning rate. Typical choices for µ and δ are 0.9 and

0.0005 respectively. The learning rate ε is usually small for fine-tuning, e.g. initialized

to 10−3 and further reduced during training in our experiments.
〈

∂L
∂wk

n

〉
Dt

represents

the average gradient over the training batch Dt. If wk
n produces negative outputs for

most samples in Dt,
〈

∂L
∂wk

n

〉
Dt

is very likely to be very small, so the update to wk
n

will be mainly due to weight decay, which is usually small for the small weight decay

coefficient and learning rate. In the situation of fine-tuning a pre-trained model, let

wk
n represent the parameter values of the filter in the pre-trained model and ŵk

n the

parameter values after fine-tuning. If Xk,+
n is empty or small most of the time in

training, the difference of ŵk
n with wk

n is likely to be small too, i.e. ŵk
n ≈ wk

n.

This situation is possible, especially when the training data of target task (target

data) differs significantly from the data used for pre-training (source data). Some

filters in the pre-trained model may have learned some visual patterns in the source

data that rarely appear in the target data, so that in fine-tuning their outputs may

tend to be negative most of the time in the forward passes and receive very small

updates in the backward passes, which can make them stale in the training, i.e.

becoming zombies. Clearly, these zombies will make small, if any, contributions to

the target task. Also, note that each unit of a fully connected layer can be seen as

a filter with the size equal to its whole input, so the discussion above also holds for

the fully-connected layers.

We investigate zombie filters in the VGG16 model that is fine-tuned using only

video frames of the training videos of UCF101 split1. For the investigation, we
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Figure 6.6: Top activations for 8 example zombie filters. Each row shows top 10
activations of one zombie in the last convolutional layer (conv5-3) of the VGG16
model that is fine-tuned using only video frames of the training videos in UCF101
split1.

compile an image pool containing 50K images from ImageNet and 55K video frames

(i.e. 0.5K video frames per action class). All images are re-sized to 224× 224, which

is the input size of the CNNs we fine-tuned. For a filter ŵk
n in the fine-tuned CNN, we

find its maximum activation for each image in the pool. For example, for a filter in the

13th convolutional layer (conv5-3 ), its receptive field is 211× 211, so for each image

in the pool we find an image patch of 211 × 211 that causes maximum activation.

For the kth filter in the nth layer, we sort the images in descending order of their

maximum activation value for this filter, and then compute the percentage of the



112

images among the top 100 that are video frames (denoted as αkn). We also compare

the filter’s parameter change against the original pre-trained model, measured by

∆k
n = ‖ŵk

n − wk
n‖. We then look for zombie filters that have both small α and ∆,

i.e. filters that stay almost the same during fine-tuning and whose top activations are

mostly ImageNet images. In Fig. 6.6 we depict the top 10 activations of the 8filters

from conv5-3 that result from the intersection of the 30 filters of the least α and

the 30 filters of the least ∆. Even though our image pool has almost equal numbers

of images from ImageNet and UCF101 video frames, all these top activations come

from ImageNet and correspond to dogs, objects, architecture etc., which are indeed

rare in UCF101.

We believe that zombie filters essentially take up parameters in the CNN that

otherwise could have been used for learning visual patterns in the target task. Fine-

tuning from a pre-trained model provides good initial values for some of the param-

eters, but may set some parameters to bad local minima with respect to the target

task. However, this situation can be significantly improved by utilizing web action

images as additional training data. We compare the number of zombie filters in the

conv5-2, conv5-3 and fc6 layers in the VGG16 model fine-tuned only with training

video frames of UCF101 split1 and the VGG16 model fine-tuned with both these

training video frames and the web action images in BU101. Table 6.4 shows this

comparison: for each model and layer, we list the number of filters whose α < 0.1,

i.e. less than 10% of the top 100 activation images in our image pool are video frames,

and whose ∆ is small, e.g. less than 0.05. We can observe a significant reduction

of the number of zombie filters when fine-tuning using both video frames and web

action images. For example, for layer conv5-2, the number of filters with α < 0.1

and ∆ < 0.06 is reduced from 87 to 8 when web action images are used as additional
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Table 6.4: Using web action images can significantly reduce the number of zombie
filters. For the VGG16 model finetuned with only training video frames of UCF101
split1 (noted as video only in the table) and the VGG16 model finetuned with both
video frames and images of BU101 (noted as video + image), we compute the number
of filters which satisfy: 1) α < 0.1, i.e. only less than 10% of top 100 activation
images in our image pool are video frames; 2) ∆ is less than a small value (given in
the table), i.e. doesn’t change much during finetuning. Notice the large reduction
in the numbers of such filters when using web action images as additional training
data.

∆ < 0.02 ∆ < 0.03 ∆ < 0.04 ∆ < 0.05 ∆ < 0.06
conv5-2 video only 0 2 10 30 87

video + image 0 0 0 2 8
conv5-3 video only 0 13 33 82 123

video + image 0 1 4 20 38
fc6 video only 12 84 212 399 636

video + image 1 24 63 121 185

training data, which is more than an order-of-magnitude reduction. Recall that the

action classification accuracy of the VGG16 model finetuned only with video frames

is 77.8%, and the VGG16 model finetuned with both video frames and web images

of BU101 is 83.5% (Table 6.2): the absolute improvement after using web action

images is 5.7%. We posit that the reduction of zombie filters may be an important

reason for this performance improvement: web action images may help reduce the

number of zombie filters so that their parameters could be re-used in learning visual

patterns for the new task, i.e. action recognition in videos.

6.4 Experiments

Using insights from the experiments performed on UCF101 split1 in Section 4, we

now perform experiments following the standard evaluation protocol [40] and report

the average accuracy over the three provided splits.

We also perform experiments on ActivityNet. Following [28], we evaluate clas-
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sification performance on both trimmed and untrimmed videos. Trimmed videos

contain exactly one activity. Untrimmed videos contain one or more activities. We

use the mAP (mean average precision) in evaluating performance. Results reported

on ActivityNet are produced using the validation data, as the authors are reserving

the test data for a potential future challenge.

6.4.1 Implementation

6.4.1.1 Experimental Setup for UCF101

Fine-tuning: We use the Caffe [39] software for fine-tuning CNNs. We use models

VGG16, VGG19 [70], and M2048 [7] that are pre-trained on ImageNet by the corre-

sponding authors. We only test M2048 on the first split for analysis, as it is shown to

be significantly inferior to the other two architectures (Table 6.2). Due to hardware

limitations, we use a small batch size: 20 for M2048 and 8 for VGG16 and VGG19.

Accordingly, we use a smaller learning rate than those used in [7, 70]. For M2048,

the initial learning rate 10−3 is changed to 10−4 after 40K iterations; training stops

at 80K iterations. For both VGG16 and VGG19, the initial learning rate 10−4 is

changed to 10−5 after 40K iterations, and is further lowered to 2 × 10−6 after 80K

iterations. Training stops at 100K iterations. Momentum and weight decay coeffi-

cients are always set to 0.9 and 5 × 10−4. In each model, all layers are fine-tuned

except the last fully connected layer which has to be changed to produce output of

101 dimensions with initial parameter values sampled from a zero-mean Gaussian

distribution with σ = 0.01.

We resize video frames to 256×256, and random crops to 224×224 with random

horizontal flipping for training. For web action images, since their aspect ratios

vary significantly, we first resize the short dimension to 256 while keeping the aspect
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ratio, and subsequently crop six 256×256 patches along the longer dimension in equal

spacing. Random cropping of 224×224 with random horizontal flipping is further

applied to these image patches in training. Equal numbers of web images and video

frames are sampled in each training batch.

Video Classification: A video is classified by fusing over the CNN outputs for

the individual video frames. For a test video, we select 20 frames of equal temporal

spacing. From each of the frames, 10 samples are generated following [47]: four

corners and the center (each is 224×224) are first cropped from the 256×256 frame,

making 5 samples; horizontal flipping of these samples makes another 5. Their

classification scores are averaged to produce the frame’s scores. We classify each

frame to the class of the highest score, and the class of the video is then determined

by voting of the frames’ classes.

We also test SVM fusion, concatenating the CNN outputs for the 20 frames

(averaged over the 10 cropped and flipped samples) from the second fully-connected

layer (fc7), i.e. the 15th layer in VGG16 and 18th layer in VGG19. This produces a

vector of 81,920 (4096 × 20) dimensions, which is then L2 normalized. One-vs-rest

linear SVMs are then trained on these features for video classification. The SVM

parameter C = 1 in all experiments.

Combining with Motion Features: The output of spatial CNNs can be combined

with motion features to achieve significantly better performance, as shown in [69].

We present an alternative by combining the output of the spatial CNNs with the

conventional expert-designed features, namely the improved dense trajectories with

Fisher encoding (IDT-FV) [80]. We follow the same settings in [80] to compute the

IDT-FV for each video except that we do not use a space-time pyramid. The IDT-

FV of each video is then combined with the concatenated fc7 outputs of 20 frames to



116

Table 6.5: Mean accuracy of spatial CNNs (averaged over three splits) on UCF101.

Model Accuracy (%)
slow fusion CNN [42] 65.4

spatial CNN [69] 73.0

VGG16, voting 77.9
VGG16 + Images, voting 82.5

VGG16 + Images, SVM fusion on fc7 83.5

VGG19, voting 77.8
VGG19 + Images, voting 83.3

VGG19 + Images, SVM fusion on fc7 83.4

Table 6.6: Mean accuracy (averaged over three splits) when combining spatial CNNs
with motion features for UCF101.

Model Accuracy (%)
IDT-FV [80] 85.9

Two-stream CNN [69] 88.0
RCNN using LSTM [55] 88.6

VGG16 + Images + IDT-FV 91.1
VGG19 + Images + IDT-FV 90.8

form the final feature vector for a video. One-vs-rest linear SVMs are then trained

on these features for video classification. The SVM parameter C = 1.

6.4.1.2 Experimental Setup for ActivityNet

We use the Caffe [39] software for fine-tuning CNNs. We use a VGG19 model [70]

that is pre-trained on ImageNet by the authors. Due to hardware limitations, we use

a small batch size of 8. Accordingly, we use a smaller learning rate than [70]. The

initial learning rate 10−4 is changed to 10−5 after 80K iterations. Training stops at

160K iterations. Momentum and weight decay coefficients are set to 0.9 and 5×10−4.

All layers are fine-tuned except the last fully connected layer which has to be changed

to produce output of 203 dimensions with initial parameter values sampled from a

zero-mean Gaussian distribution with σ = 0.01.
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Table 6.7: Although ActivityNet is large-scale, using unfiltered web images still
helps in both trimmed and untrimmed classification (results are averaged over three
random sample sets.).

Model # Images
Untrimmed
mAP (%)

Trimmed
mAP (%)

fc8 [28] none 25.3 38.1
DF [28] none 28.9 43.7

Ours (video frames only) none 52.3 47.7
Ours (unfiltered: all) 393K 53.8 49.5

Ours (unfiltered: rand select) 103K 53.3* 49.3*

Resizing and cropping of images and frames are performed in the same way as

previously described for UCF101. Samples in each training batch are randomly

selected from web action images and video frames with equal probability.

6.4.2 Results

6.4.2.1 Experimental Results for UCF101

Here we report the performance of our spatial CNNs averaged over three splits of

UCF101 (Table 6.5), as well as the performance of our models when motion features

are also used (Table 6.6).

As seen in Table 6.5, all our spatial CNNs trained using both videos and images

improved ∼10% (absolute) in accuracy over the spatial CNN of [69], which is a

7-layer model. We believe this improvement is due to two main factors: using a

deeper model and using web action images in training. Comparing the performance

of the spatial CNN of [69] to the deeper models trained only on videos (rows 3 and

6 in Table 6.5), we find that the improvements solely due to differences of CNN

architectures are 4.9% and 4.8% for VGG16 and VGG19 respectively. When web

action images are used in addition to videos in training (rows 4 and 7 in Table 6.5),

these improvements are doubled: 9.5% and 10.3% respectively.
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Results reported in Table 6.5 show that, in the models we tested, the simple

approach of using web action images in training contributes at least equally with

introducing significant complexities to the CNN model, i.e., adding at least 9 more

layers. It is also interesting to note that, without using optical flow data, our spatial

CNNs already approach performance attained using state-of-the-art expert designed

features that use optical flow, i.e. IDT-FV [80] in Table 6.6. Performance gains

obtained by our approach are especially encouraging compared to deepening the

model or incorporating motion features, as leveraging web images during training

will not add any additional computational or memory burden during test time.

The slow fusion CNN [42] is not a spatial CNN as it is trained on multiple

video frames instead of single video frames. We list it here as it presents a different

approach; collecting millions of web videos for training. However, despite the fact

that 1M web videos are used as pre-training data, its performance is far lower than

our models.

We further test the features learned by our spatial CNNs when combined with

motion features, i.e. Fisher encoding on improved dense trajectories. Table 6.6

compares our results with state-of-the-art methods that also use motion features.

Our method (VGG16 + Images + IDT-FV) outperforms all, improving by 2.5% over

[55] that trains recurrent CNNs with long short-term memory cells; by 3.1% over

[69], which combines two separate CNNs trained on video frames and optical flow

respectively; and by 5.2% over [80] that uses Fisher encoding on improved dense

trajectories.
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Table 6.8: Comparable performance is achieved when half the training videos of
ActivityNet are replaced by 393K images (row 4 vs. row; results are averaged over
three random sample sets.

Experiment # Frames # Images mAP (%)
All vids 32.3M none 47.7
1/2 vids 16.2M none 40.9*
1/4 vids 8.1M none 33.4*

1/2 vids + imgs 16.2M 387K 46.3*
1/4 vids + imgs 8.1M 387K 41.7*

6.4.2.2 Experimental Results for ActivityNet

Here we report the performance of our spatial CNNs on ActivityNet for the task of

action classification in trimmed and untrimmed videos with and without auxiliary

web images of BU203-unfiltered (Table 6.7). We then further investigate the use of

web images as a substitute for many training videos (Table 6.8).

In Table 6.7 we observe that utilizing web images still helps ∼1.5% even with a

very large scale dataset like ActivityNet. Using a random sample of approximately

one quarter of the crawled web images gives nearly the same results, suggesting that

performance gains diminish as the number of web action images greatly increase.

This result is consistent with results on UCF101 (Figure 6.4).

In Table 6.8 we observe that comparable performance is achieved when half the

training videos, are replaced by web images (rows 1 and 4 in Table 6.8). A similar

pattern is observed when repeating the experiment at a smaller scale. This suggests

that using a relatively small number of web images can help us reduce the effort of

curating and storing millions of video frames for training.
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6.5 Summary

In this chapter we study the benefits of web images that are in one-to-one action

category correspondence with training videos. We collect three datasets of web action

images: the BU101 filtered dataset and two unfiltered datasets, BU101-unfiltered and

BU203-unfiltered. We show that utilizing web action images in training CNN models

for action recognition is an effective and low-cost approach to improve performance.

While videos contain a lot of useful temporal information to describe an action,

and while it is more beneficial to use videos only than to use web images only, web

images can provide complementary information to a finite set of videos allowing for

a significant reduction in the video data required for training. We observe that this

complementarity is insensitive to different CNN architectures and is evident in many

kinds of actions. Both filtered and unfiltered web action images are complementary

to video training data. However, human filtering of the web action images is still

useful: considerably fewer filtered images are required to achieve similar performance

improvements.

Using web action images can also boost the efficiency of CNN training. We show

that when using the same number of training samples, the trained model can achieve

significantly higher recognition performance if half of the samples are web images.

We also show that, to achieve the same recognition performance, we can greatly

reduce the number of training videos and use unfiltered web action images instead.

For CNN finetuning, using web action images as training data in addition to

training video frames can greatly reduce the number of zombie filters, i.e. CNN filters

that undergo minimal changes and have low activation on video frames. Such zombie

filters reduce the effective number of parameters in the CNN model and thus may

be harmful for its modeling capacity. We speculate that one underlying mechanism
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that delivers the benefits of web action images, as shown in our experiments, is that

the reduction of zombie filters enables re-use of those parameters for modeling visual

patterns of the new task, which is action recognition in our application.



Chapter 7

Conclusions and Future Work

In this last chapter, we first summarize the key contributions of this thesis: a new

video representation, the Hierarchical Space-Time Segments, designed for effective

action recognition and localization; a new action model, the Ensemble of Space-Time

Trees, which models spatial, temporal and hierarchical structures in human actions

for improved action recognition and localization performance; two novel ranking

losses designed for training deep LSTM models that better learns the temporal pro-

gression of actions for action detection and early detection; and, finally interesting

findings of the utilization of web action images in training CNN models for action

recognition in videos. We then describe the major strengths and limitations of our

work. Finally, we point out some interesting directions for future research.

7.1 Main Contributions

In this thesis we focus on the problem of action recognition and localization in videos.

Specifically, when the video is temporally trimmed so that the starting and ending

frames are the starting and ending points of an action, we want to recognize the

action class and also estimate the spatial location of the action performer(s) in each

video frame. When the video is not temporally trimmed, we want to recognize the

action and also estimate its starting and ending time points in the video. We argue
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that human actions are by nature structured patterns. Thus, for both problems,

we propose methods that explore such structures for better action recognition and

localization.

For the first problem, we first propose a novel space-time representation of video,

the Hierarchical Space-Time Segments, that preserves the hierarchical relationships

of extracted local space-time segments of videos. Unlike previous local space-time

representations of videos such as STIP [50] and dense trajectories [77] that mainly

focus on non-static parts of video, HSTSs cover both non-static and relevant static

foregrounds of a video. Consequently, HSTSs better capture pose information for

recognizing actions and can be used to more accurately localize the whole visible part

of action performer(s). One significant benefit of this new representation is that, for

the action spatial localization task, we do not need human bounding box annotations

in training but only need action labels of the training videos.

Based on the HSTSs, we further learn space, time and hierarchical structures

of human actions by an action model, the Ensemble of Space-Time Trees. After

extracting the HSTSs from a video, we consider the spatial, temporal and hierarchical

relationships among the HSTSs, by converting each video to a graph. From the

graphs of training videos, we discover discriminative tree structures of actions and

construct action classifiers as linear ensembles of the discovered trees. Subsequently,

recognizing and localizing actions in a test video is converted to matching the trees

of the ensemble to the graph representation of the testing video. We show strong

experimental results of our approach on three challenging benchmark datasets. We

also show cross-dataset generalizability by using the trees discovered in one dataset

to successfully recognize and localize similar actions in another dataset.

For the second problem, we use a deep model that learns temporal structures of
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actions for better recognizing and temporally localizing the actions. This deep model

can be used to handle large scale datasets. Specially, the model learns temporal

dynamics captured by a LSTM model and visual features of video frames discovered

by a CNN model. We propose two novel ranking losses that are used in model

training to improve the LSTM model’s ability of learning the temporal structure of

actions. One of the ranking losses enforces that the model outputs a non-decreasing

detection score as the current training action continues. The other ranking loss

enforces that, during the current training action sequence, the model’s outputs should

have a non-decreasing discriminative margin between the correct and incorrect action

class. Intuitively, these ranking losses encourage the model to be more confident of

predicting the correct action class and denying the incorrect action class as the

model sees more of the action. Our model, trained with the proposed ranking losses,

achieves state-of-the-art action detection and early detection performance on a large

scale video dataset.

We also note that our deep model, as well as many deep models proposed by other

researchers for action recognition, uses a deep CNN model for learning visual features

from video frames. Deep CNN architecture typically has millions of parameters and

requires a large number of training videos to train a good model. We study the utility

of web action images for training CNNs for action recognition. Our main findings

can be summarized as follows:

• Web action images are complementary to video training data. This comple-

mentarity is insensitive to the depth of CNNs and is evident in many kinds of

actions. Benefits are observed even when only a few filtered images are used

and grow with number of web images.

• Both filtered and unfiltered web action images are complementary to video
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training data. However, human filtering of the web action images is still use-

ful: much fewer filtered images are required to achieve similar performance

improvements.

• Using web action images can boost the efficiency of CNN training: 1.) with the

same number of training samples, the trained model can achieve significantly

higher recognition performance if half of the samples are web images; 2.) to

achieve the same recognition performance, we can greatly reduce the number

of training videos and use unfiltered web action images instead.

7.2 Strength and Limitations

As a local space-time representation of video, the HSTS representation capture both

static and non-static relevant foreground of the video, which serves for better action

recognition and spatial localization. It also preserves the hierarchical relationships of

the space-time segments, which facilitates learning hierarchical structures of human

actions. The major limitation is that this approach requires computing dense optical

flow and hierarchical image segmentation on each video frame, which is computa-

tionally demanding, so it falls short in handling long videos and large-scale datasets.

Our novel action model, the ensemble of space-time trees, explicitly models the

hierarchical, spatial and temporal structures of human actions, while the tree struc-

tures are all discovered from the training data. Using this model, action recognition

and localization is done by simply matching the tree structures to a graph represen-

tation of a video and, in training, human bounding box annotations are not needed.

The drawback of this approach is that our tree discovery procedure requires multiple

steps and does not guarantee discovery of the most discriminative tree structures.

For action detection and early detection in large scale datasets, our LSTM model
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trained with novel ranking losses effectively learns the temporal progression of ac-

tions and performs well on a large benchmark dataset. The proposed ranking losses

are simple to implement, introduce small additional computation in training and no

extra computation in testing. Our model can handle long videos containing multiple

actions, and can detect an action even when only one tenth of the action is seen.

When running on a model GPU with scientific computation ability, action detection

can be done in real time using this model. The main defect of this model is that it

does not have a explicit mechanism to model actions of significantly different tem-

poral granularities, e.g. while preparing pasta may last more than several minutes,

clean and jerk may finish in a few seconds.

Our findings concerning utilization of web action images for improving CNN

training for action recognition in videos illuminate a simple way to significantly re-

duce the burden of collection video training data. However, our approach of utilizing

these web action images is quite naive: simply using them as additional training

data. Lacking a more innovative way of using these web action images is a limitation

of this study.

7.3 Interesting Directions for Future Research

As described in Sec. 7.2, there are limitations of the works in this thesis. These open

interesting research directions for future research.

One interesting direction is to explore a more efficient approach to extract the

HSTSs from videos so that they can be used to handle longer videos and larger

datasets. Note that we use dense optical flow only for producing motion maps for

segmentation, and we do hierarchical segmentation of the whole frame only to extract

the foreground segments. Thus, in a future study, we may want to figure out how
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to avoid exact computation of dense optical flows and hierarchical segmentation and

only compute the information we really need.

A more principled way of space-time tree discovery from graphs of training videos

is worthwhile for future study. It will be highly desirable if the pipeline of the

tree discovery can be simplified when we acquire a deeper understanding of the

tree structure discovery problem. Such a shortened procedure may be easier to

analyze for the tree discovery performance, and we may be able to provide some

kind of guarantee of the optimality of the tree discovery for the action recognition

and localization problem.

Deep LSTM formulations with the ability to better model multiple temporal

granularities of human actions worth exploring in future study. Such a formulation

would be useful for at least two reasons: first, different actions may have significantly

different temporal durations such as preparing pasta and clean and jerk; second, a

long action may contain multiple relatively short sub-actions, e.g. cutting vegetable

in preparing pasta, and in certain applications it may be useful to also detect such

sub-actions;

It would also be interesting to study innovative way to use web action images

for training CNNs. One potential direction is to investigate domain adaptation

methods for deep models: the web action images and video frames are images of

different domains, and they have many differences such as composition, lighting and

etc. It will be useful to explore ways to train a CNN with both web action images

and video frames so that the training model learns the common semantic concepts,

i.e. human actions, in these images but ignores their domain differences.

Note that our deep LSTM model can perform action detection in untrimmed

videos; however, it only localizes actions in time but not in space. An interesting
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topic for future study would be to extend the approaches in this thesis to solve the

combined task of spatial and temporal action localization in untrimmed videos. First,

if we improve the HSTS formulation as mentioned above so that it can be used to

handle longer videos, then we may extend our ensemble of space-time trees for both

spatial and temporal localization in untrimmed videos. In principle, there is no limi-

tation in our ensemble of space-time tree formulation to handle temporal localization

and the major practical barrier is in the computation of HSTSs in untrimmed videos

which may be long. Second, our deep LSTM model may be extended to handle

action localization in both space and time for untrimmed videos. One potential idea

is that, at every frame, besides the CNN feature, the spatial location information

of the feature may also be used as input to the LSTM model, so that the model

has information to detect the spatial location of the actions. For example, one can

use an R-CNN [21] model to replace the current CNN model to detect candidate

regions of humans and compute their CNN features. The LSTM model can then

take as input the CNN features of these candidate regions and their spatial locations

to learn space-time dynamics of the actions.
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