
Boston University

OpenBU http://open.bu.edu

Computer Science CAS: Computer Science: Technical Reports

2000-04-04

GreedyDual* Web Caching Algorithm:

Exploiting the Two Sources of Temporal

Locality in Web Request Streams

Jin, Shudong; Bestavros, Azer. "GreedyDual* Web Caching Algorithm: Exploiting the Two

Sources of Temporal Locality in Web Request Streams", Technical Report BUCS-2000-011,

Computer Science Department, Boston University, April 4, 2000. [Available from: http://hdl.handle.net/2144/1805]

https://hdl.handle.net/2144/1805

Downloaded from DSpace Repository, DSpace Institution's institutional repository

GreedyDual* Web Caching Algorithm

Exploiting the Two Sources of Temporal Locality in Web Request Streams�

Shudong Jin and Azer Bestavros

Computer Science Department
Boston University
Boston, MA 02215

fjins,bestg@cs.bu.edu

Abstract

The relative importance of long-term popularity and short-term
temporal correlation of references for Web cache replacement
policies has not been studied thoroughly. This is partially due
to the lack of accurate characterization of temporal locality that
enables the identi�cation of the relative strengths of these two
sources of temporal locality in a reference stream. In [21], we
have proposed such a metric and have shown that Web refer-
ence streams di�er signi�cantly in the the prevelance of these
two sources of temporal locality. These �ndings underscore
the importance of a Web caching strategy that can adapt in
a dynamic fashion to the prevelance of these two sources of
temporal locality. In this paper, we propose a novel cache re-
placement algorithm, GreedyDual*, which is a generalization
of GreedyDual-Size. GreedyDual* uses the metrics proposed in
[21] to adjust the relative worth of long-term popularity ver-
sus short-term temporal correlation of references. Our trace-
driven simulation experiments show the superior performance
of GreedyDual* when compared to other Web cache replace-
ment policies proposed in the literature.

1 Introduction

Web caching aims to reduce network traÆc, server load,
and user-perceived retrieval delay by replicating \popu-
lar" content on proxy caches [2, 19] that are strategically
placed within the network|at organizational boundaries
or at major AS exchanges, for example.

One might argue that the ever decreasing prices of
RAM and disks renders the optimization or �ne tuning of
cache replacement policies a \moot point". Such a conclu-
sion is ill-guided for several reasons. First, recent studies
have shown that Web cache hit ratio (HR) and byte hit ra-
tio (BHR) grow in a log-like fashion as a function of cache
size [3, 10, 14, 11]. Thus, a better algorithm that increases
hit ratios by only several percentage points would be equiv-
alent to a several-fold increase in cache size. Second, the
growth rate of Web content is much higher than the rate
with which memory sizes for Web caches are likely to grow.
The only way to bridge this widening gap is through ef-

�This work was partially supported by a NSF research grant CCR-
9706685 and by a NSF ANIR grant.

�cient cache management. Finally, the bene�t of even a
slight improvement in cache performance may have an ap-
preciable e�ect on network traÆc, especially when such
gains are compounded through a hierarchy of caches.

One diÆculty of Web caching is that there are many
factors a�ecting the performance of a given cache replace-
ment policy. Among others, these factors include object
size, miss penalty, temporary locality, and long-term
access frequency.

(1) Unlike traditional caching in memory systems, Web
caches manage objects of variable sizes. Caching
smaller objects usually results in higher hit ratios, es-
pecially given the preference for small objects [14]|
though this preference seems to be weakening [6].

(2) The miss penalty (i.e. retrieval cost of missed objects
from server to proxy) varies signi�cantly. Thus, giving
a preference to objects with a high retrieval latency can
achieve high latency saving [31].

(3) Web traÆc patterns were found to exhibit temporal
locality [3, 11, 24], i.e., recently accessed objects are
more likely to be accessed again in the near future. This
has led to the use of LRU cache replacement policy and
generalizations thereof [11].

(4) The popularity of Web objects was found to be highly
variable (i.e. bursty) over short times scales, but much
smoother over long time scales [5, 17], suggesting the
signi�cance of long-term measurements of access fre-
quency in cache replacement algorithms.

Exploiting Temporal Locality Properties: Locality
of reference properties have been exploited in a number
of Web caching, replication, and prefetching protocols and
systems. Generally speaking, such protocols can be clas-
si�ed as: (1) Server-based (i.e. at the server or a proxy
thereof) [7, 8, 13], (2) Client-based (i.e. at the client or
a proxy thereof) [1, 9], or (3) Network-based (i.e. in the
network, transparent to both the server and the client)
[18, 11, 27]. An important reason for this classi�cation is
that Web reference characteristics are likely to be di�er-
ent in each of the above categories. To understand this,
it suÆces to note that at each of the above categories,
the request streams being multiplexed through a cache (or
replica) are signi�cantly di�erent. For client-based caches,
the request streams are from a limited and possibly homo-
geneous community of users (e.g. students in a University,

1

or subscribers to a local ISP, etc.). For server-based caches
(or replicas), the request streams are to the limited set of
objects o�ered by the server. For network-based caches,
neither of these constraints could be assumed. Further-
more, misses in client-based caches are hits in network-
based caches, and misses in those are hits in server-based
caches (or replicas).

If the underlying determinant of temporal locality is
di�erent for each of the above categories, it follows that
an e�ective cache replacement strategy must be able to
delineate between the di�erent causes of temporal locality
and to quantify their relative signi�cance (in order to ef-
fectively capitalize thereon). In the Section 3 of this paper,
we present a metric that enables such a capability. Then
we sketch and evaluate a cache replacement strategy that
e�ectively uses this metric.

2 Related Work

Table 1 classi�es sixteen replacement policies according to
whether they exploit access recency and access frequency,
and whether they are sensitive to the variable cost=size of
objects, which is one of the salient aspects of Web caching
(namely, unlike traditional memory systems, object sizes
and miss penalties are highly variable).

Recency-Based Policies: Cache replacement algorithms
in traditional memory systems deal with uniform cost=size
objects. LRU is the most widely used cache replacement
algorithm, as it captures recency and is superior to other
policies, e.g. FIFO and Random. Since Web traÆc also
exhibits locality, LRU is adopted widely in Web servers,
client applications, and proxy servers. An example is the
the variance implemented in the Squid Internet object
cache [28].

A disadvantage of LRU is that it does not consider
variable-size or variable-cost objects. The GreedyDual-
Size or GDS algorithm [11] enables the incorporation this
variability through the use of a cost=size weighting. GDS
is a generalization of the GreedyDual or GD algorithm [32],
which deals with uniform-size variable-cost objects. It was
shown to be online optimal in terms of its competitive ratio
and superior to LFF, which evicts the largest �le and does
not capture recency. A common drawback of LRU and
GreedyDual-Size is that they do not take into account the
frequency of resource use.

Frequency-Based Policies: The basic frequency-aware
replacement algorithm is LFU. It always evicts the object
with the lowest reference count. LFU is online-optimal un-
der a purely independent reference model. There are two
subtle problems with LFU. First, there are di�erent ver-
sions of LFU algorithm, e.g., Perfect LFU and In-Cache
LFU, according to whether the reference count is also dis-
carded when an object is evicted. Second, in an LFU
replacement algorithm, when two objects have the same
reference count, a tiebreaker is necessary.

A straightforward generalization of LFU for dealing
with variable cost=size objects is the normalized-cost LFU,

which uses frequency�cost
size as the key. The Hybrid policy

in [31] is a variant of this version of LFU. It estimates the

load delay as the cost function. Experiments indicate that
this Hybrid policy outperforms the simpler Latency policy,
which evicts the objects with minimum load delay but does
not take into account frequency and size factor.

Recency/Frequency-based Policies: Several studies
have considered both recency and frequency information
under a �xed cost/�xed size assumption. The LRU-K [26]
algorithm maintains the last K reference times to each ob-
ject to compute the average reference rate. The LFU-DA
algorithm [4] is a frequency-based algorithm with dynamic
aging. On a fetch or a hit, the object value is set to the
reference count plus the minimum reference count in the
cache. Simulations with large traces indicate LFU-DA ob-
tains the highest byte-hit-ratio. Another work [23] gen-
eralizes LRU and LFU to a hybrid policy LRFU, which
subsumes a range of algorithms, depending on the di�er-
ent weights given to recency and frequency.

To deal with variable cost=size, generalizations of the
above techniques have also been proposed. In [29], the
LNC-W3 algorithm is proposed as a generalization of LRU-
K to deal with variable-cost and variable-size Web objects.
It computes the average reference rate and uses that to
estimate the pro�t of caching an object. Simulations in-
dicated that LNC-W3 obtains higher delay saving ratios
than those achived through LRU and LRU-K. In another
direction, several studies [4, 22] proposed generalizations of
the GreedyDual-Size algorithm to incorporate frequency.
These algorithms include GDSF [4] and GD-LFU [22]. In
[20], we proposed the GDSP algorithm, which incorporates
frequency into GDS and maintains an accurate popularity
pro�le. Finally, another important work is the LRV algo-
rithm [24]. LRV uses the cost, size, and last reference time
of an object in calculating its utility. The calculation is
based on extensive empirical analysis of trace data. Their
work indicates that exploiting the regularities in Web traf-
�c can enhance caching performance.

3 Temporal Locality

Denning and Schwartz [15] established the fundamental
properties that characterize the phenomenon of locality.
Such properties are the catalyst for well-established prac-
tices in the design of caching systems in hierarchical mem-
ory structures [30]. In order to apply these practices to
the design of Web caching and prefetching systems, it's
important to characterize the degree of locality present in
typical Web request streams.

Early characterizations of Web access patterns sug-
gested the presence of temporal locality of reference [3, 5,
11, 17, 24]. However, more recent studies have concluded
that this temporal locality is weakening [6]. One reason
for this trend was attributed to e�ective client caching. To
understand this, it suÆces to note that the request stream
generated by a client using an eÆcient caching policy is
precisely the set of requests that missed in the client cache.
Such a request stream is likely to exhibit weak temporal
locality of reference|in particular, a recently accessed ob-
ject is unlikely to be accessed again in the future. 1

1Assuming very eÆcient client caching, it follows that repeated

2

Aspect of Temporal Locality Being Exploited
Cost/Size None Recency-based Frequency-based Both

Fixed FIFO,Random LRU LFU LRU-K,LFU-DA,LRFU
Variable LFF,Latency GD,GDS Hybrid LNC-W3,GDSF,GDSP,LRV

Table 1: Taxonomy of existing Web cache replacement policies

Using an independent reference model [12], Breslau et
al [10] showed that the Zipf-like popularity distribution of
objects in Web request streams can asymptotically explain
other properties (namely, cache eÆciency and temporal lo-
cality). In particular, they showed that the probability of
referencing an object t units of time after it has been last
referenced is roughly proportional to 1=t. Thus, the prob-
ability distribution of reference interarrival times (or inter-
request time) could be used to model temporal locality. In
this paper, we call this the reference interarrival model.

However, the skewed popularity pro�le of objects in
Web request streams is not the only source of tempo-
ral locality. To explain this point, consider the follow-
ing two request streams: ``XAXBXCXDXEXF...'' and
``GGHHIIJJKKLL...''. Obviously, both streams exhibit
temporal locality properties. In the �rst stream, the local-
ity is due to the popularity of X, whereas in the second
stream it is due to the correlation in time of the 1st and
2nd requests for G, H, I, J, K, and L. Temporal locality
due to popularity is preserved under reordering. Thus, in
a random permutation of the �rst stream, reference in-
terarrival time is still proportional to the probability of
access. Temporal locality due to correlation in time is not
preserved under reordering.

Given the above two dimensions of temporal local-
ity, an important question is whether the characterization
of temporal locality using the reference interarrival model
(used in many studies including [10, 11]) is capable of quan-
tifying the e�ects of popularity and temporal correlation,
independently. In [21], we have shown that this is not the
case. In particular, we have shown that the distribution
of reference inter-arrivals is predominantly a�ected by the
popularity pro�le of objects in the Web request streams.
The relationship between these two aspects is formalized
in the following Theorem, which is reproduced from [21].

Theorem 1 If the distribution of document popularity in
a request stream asymptotically follows a power law with
parameter �, where 0:5 � � � 1, then the distribution
of reference interarrivals in a random permutation of that
request stream can be characterized asymptotically using a
power law with parameter (2� 1

�). Proof: See [21].

This strong relationship between popularity and tem-
poral locality often disguises another important aspect of
temporal locality, namely the temporal correlation of re-
peated references to the same objects. This has lead to (for
example) the inadequate conclusion in [10] that a Zipf-like

requests to an object at a caching proxy are likely to be from multiple
clients, and thus are reective of popularity and not of temporal
correlation of references. This was termed geographical locality of
reference in [8]. This observation is supported by our �ndings in
[21] regarding the relative contributions of popularity and temporal
correlation to locality properties.

popularity distribution, together with an independent ref-
erence model, is enough to explain temporal locality.

To characterize the level of temporal correlation in a
request stream, we must \equalize" the e�ect of popular-
ity. Thus, we consider the probability distribution of ref-
erence interarrivals for equally popular objects. For such a
distribution, we expect the e�ect of popularity to be elim-
inated. In [21], we have shown that such a distribution is
a good estimator of the degree of temporal correlation in
the request stream. Also, we have shown that the degree
of temporal correlation can be quanti�ed by �, the slope
of log-log scaled distribution of reference interarrivals for
equally popular objects. For the objects of same popu-
larity, the probability that the reference interarrival time
equals t is roughly proportional to t�� in short term. Ta-
ble 2 gives the ranges of � for the traces in our study
(described in section 5). It indicates that the value of � is
rather stable for di�erent values of k's, but that it varies
signi�cantly across traces.2

Traces DEC RTP SD UC

k = 1 0.61 0.51 0.39 0.50
k = 2 0.63 0.49 0.41 0.50
k = 4 0.63 0.47 0.40 0.46
k = 8 0.65 0.46 0.41 0.43

Table 2: The values of � identify the degree of short-term
temporal correlation in the request streams. � is estimated
with a least-square �t from the plots in [21] for the various
traces considered.

4 GreadyDual* Replacement

Let p be a document. Let s(p) be the size of p, and c(p)
be the cost to fetch it. Each document has a relative fre-
quency value, denoted by f(p). Let the utility value of u(p)
represent the normalized value of p. The replacement algo-
rithm tries to maximize the cost saving brought by caching
under the restriction of total cache size. In addition, let �
be the parameter of the power law T � t�� characterizing
reference correlation. Recall that reference correlation is
measured by the distribution of reference interarrivals for
equally-popular objects as explained in Section 3.

2Recall from our earlier discussion that proxy cache traces repre-
sent di�erent client and server populations and thus is expected to
exhibit di�erent temporal locality characteristics.

3

4.1 From GDS to GD*

In the absence of any reference correlations, a greedy algo-
rithm can compute u(p) and sort the objects in decreasing
order, then keeps as many objects as possible in this or-
der. With reference correlation, the GDS algorithm [11]
takes c(p)=s(p) as u(p), and uses an ination value L to
age the objects. On retrieval or on a hit, the key of a
document H(p) is set to L + u(p); on each eviction, L is
set to the value H(p) of the evicted document p. Greedy-
Dual* (GD*) rede�nes the utility value u(p) and the dy-
namic aging mechanism to reect the strength or weakness
of locality due to temporal correlation versus that due to
popularity.

Utility Value: In GD*, the utility value u(p) reects
the normalized expected cost saving if the document stays
in the cache. Obviously u(p) is proportional to c(p)=s(p).
Moreover, it is also proportional to the long-term frequency
if the reference pattern is stable. Since the past refer-
ence count is a good approximation of the frequency, u(p)

should be roughly proportional to f(p)�c(p)
s(p) , where f(p) is

approximated by the reference count so far.

Dynamic Aging: Since Web traÆc exhibits reference cor-
relation GD* uses a dynamic aging mechanism similar to
that used in GDS. Namely, each document p has an H(p)
value, meanwhile the algorithm keeps an ination value L
to age the objects in the cache. When the L value catches
up withH(p), then p will be the candidate for eviction. On
each hit or when fetching from the server, the algorithm
resets the H value of a document to its base value plus L.

Now the only remaining problem is setting the base
value. The base value for a document must reect both
the document utility and the degree of reference correla-
tion. Since reference interarrivals for equally popular ob-
jects follow T � t�� , the maximal length of time for p to
stay in the cache should be proportional to u(p)1=� . We
assume the cache is in a steady state, when L increases
steadily, and the time for a document to stay in the cache is
roughly proportional to its base value. Therefore, in GD*,
the base value is set to u(p)1=� . We illustrate how it works
through an example. Assume � = 0:5. Assume u(p1) is
twice u(p2) due to di�erences in p1 and p2's retrieval costs,
their sizes, or their relative frequencies. Given the power
law T � t�� , it follows that document p1 at time 4t after
the last reference to it is as competitive as document p2
at time t after the last reference to it. Thus, GD* obtains
equal marginal cost saving from caching either.

4.2 GreedyDual* Algorithm

Our GreedyDual* (GD*) algorithm captures both popular-
ity and temporal correlation. The frequency in the base
value formula captures long-term popularity, while � con-
trols the rate of aging. A smaller � means weaker reference
correlation, therefore a larger base value, which means ob-
jects are aged more slowly. The complete GD* algorithm
is described in Figure 1.

GreedyDual* subsumes a family of algorithms, each
with a di�erent level of dependency on long-term docu-

Algorithm GreedyDual*

L 0.0
for each request for document p do

if p is in cache

then H(p) L+ (f(p)�c(p)
s(p)

)1=�

else fetch p
while there is not enough free cache for p

do L minfH(q)jq is in cacheg
Evict the minimum q

H(p) L+ (f(p)�c(p)s(p))1=�

Figure 1: The GreedyDual* Algorithm

ment popularity and short-term reference correlations. We
discuss some of these cases below.

� = 1: When � is close to unity, then the special algo-
rithm GD1 approximates a simple generalization of
the GreedyDual-Size algorithm with frequency. Such
an algorithm is called GDSF in Table 1. LFU-DA is
a special case of GDSF. Its cost=size is a constant,
which means it maximizes byte hit ratio. GD* does
not exclude the possibility of the � values being larger
than unity. However, our analysis of typical work-
loads suggest that such a possibility is not likely. As
discussed earlier, we found that typical values of � are
between 0.3 and 0.7.

� = 0: When � is close to 0, GD0 degenarates to a vari-
ance of the LFU algorithm, i.e., a normalized cost LFU

which uses f(p)�c(p)
s(p) as the key to sort the objects and

evict the document with minimum index (in this case,
the dynamic aging should not be used). More speci�-
cally, when the cost is a constant, GD0(1) is a simple
frequency-aware size-based algorithm. These special
cases fall in column 3 of row 2 in Table 1. They are
good choices when correlation does not exist or when
it is very weak. Since Web traÆc still exhibits ref-
erence correlations, these algorithms are not the best
choices for Web proxy caches.

Constant cost=size: Another member of the GD* fam-
ily of algorithm is one for which the ratio cost=size
is a constant. Such an algorithm would fall between
columns 3 and 4 in Table 1. Such an algorithm would
be the algorithm of choice for memory systems with a
�xed block size and �xed miss penalty.

4.3 Implementation Details

Our implementation of GreedyDual* maintains a priority
queue with key H(p). Handling either a hit or a replace-
ment requires O(logn) time. Thus, it has the same over-
head as GreedyDual-Size.

In our implementation, the constant � is estimated in
an online fashion. This is done by keeping the number of
references at di�erent intervals for equally popular objects

4

and computing � using a least-square �t. The value of �
for a given proxy cache was found to be stable over time.
For example, the � value for the DEC traces is close to
2/3, and for the NLANR traces it is less than 0.5.

All frequency-aware replacement policies face a com-
mon problem. They must keep track of reference counts,
in order to guarantee the accuracy. Obviously, it is unreal-
istic for an algorithm to keep all the reference counters of
evicted objects. However, it is possible to only keep a sub-
set of the the reference counters. In our simulation, the
space for reference counters was subject to the following
constraints: (1) less than 1% of the cache keeps the refer-
ence counters of evicted objects, and (2) the total number
of counters is less than 512K. Counter replacement can be
done in O(1) if the lowest counters are linked together and
the victims are choosen in a LRU fashion.

5 Performance Evaluation

We used trace-driven simulations to evaluate GD* against
a number of cache replacement strategies.

5.1 Traces Used in our Experiments

In this paper we use traces from DEC [16] and NLANR
[25]. Some of the characteristics of these traces are shown
in Table 3. HR1 and BHR1 are the hit ratios when
cache size is in�nite. The temporal correlation parameter
� values are di�erent, as shown in Table 2.

Preprocessing of DEC Traces: Our preprocessing of
the DEC traces follows the same procedures described in
[10, 11]. In particular, we have excluded non-cache-able
requests, including cgi-bin requests and queries. In addi-
tion, in our experiments, we count a request as a hit if the
last modi�cation times of the cached object and the actual
reply to users are the same when both are known, or if
the object size has not changed when both last modi�ca-
tion times are unknown. In this paper we only present the
results we obtained from the �rst week of the DEC trace
(results from the other weeks are similar).

Preprocessing of NLANR Traces: Our preprocessing
of the NLANR traces is more elaborate. The NLANR
traces include many IMS (If-Modi�ed-Since) and RE-
FRESH requests with a reply code of \304" (Not Modi-
�ed). In order to include such requests in the workload,
we have to �rst �nd the sizes of the objects of such requests.
We do so through a 2-pass scanning of the entire trace.3 In
addition to this preprocessing, we have also excluded non-
cache-able requests, including cgi-bin requests and queries.
In this paper we only present the results we obtained from
the three two-week NLANR traces from sites RTP, SD,
and UC (hereafter called the RTP, SD, and UC traces).

3This process is 96%-successful in identifying cache-able requests.
The remaining 4% are IMS and Refresh requests for which we were
unable to identify the document sizes.

5.2 Experimental Setup and Metrics

We compare GD* with LRU, GDS, and LFU-DA (LFU
with dynamic aging) examined in [4]). Other policies such
as LFF, Hybrid [31], and LRV [24] are not considered since
they have been shown to under-perform GDS [11].

Both GDS and GD* describe a family of algorithms.
To complete the speci�cation of a member of this fam-
ily, we need to de�ne what constitutes the cost of a miss
(i.e. miss penalty). To that end, we adopt two models.
Under the constant cost model, we assume that objects
have the same retrieval cost. The resulting algorithms are
termed GDS(1) and GD*(1). Under the packet cost model,
we assume that document retrieval costs are proportional
to document size.4 The resulting algorithms are termed
GDS(packets) and GD*(packets).

In our experiments, we consider two main performance
metrics|Hit Rate (HR) and Byte Hit Rate (BHR). The
constant cost model aims at optimizing HR, whereas the
packet cost model aims at optimizing BHR. The use of the
constant cost model is appropriate if the purpose of caching
is to improve the performance as perceived by the clients of
the cache. This would be the case if the cache is deployed
close to a client population (e.g. an organizational caching
proxy) to reduce response times. The use of the packet
cost model is appropriate if the purpose of caching is to
improve the utility of the cache or to reduce the overall
traÆc between the cache and Web servers. This would be
the case if the cache is deployed by an ISP to optimize the
performance of its networks.

In our experiments, we varied the cache size from a
size of less than 1% to a size of about 20% of the total
number of unique bytes in the trace.

5.3 Performance Under Constant Cost

Figure 2 shows HR and BHR for the di�erent traces. In
each plot, the x-axis (in logarithmic scale) represents the
cache size and the y-axis represents the HR (left plots) or
BHR (right plots). To establish how each of the algorithms
approaches the upper bounds for HR and BHR, the range
of the y-axis is set to [0-HR1] or [0-BHR1].

The results in Figure 2 show that LRU and LFU-DA
perform signi�cantly worse than GDS(1) and GD*(1). The
poor performance of LRU and LFU-DA can be explained
by noting that these policies do not consider size as a fac-
tor in evaluating the utility of a document. The results in
Figure 2 also indicate that the performance of GD*(1) is
consistently better than that of GDS(1), especially when
the cache size is small. This suggests that accurately cap-
turing both long-term popularity and short-term temporal
correlation is more crucial for small caches.

In terms of BHR, the performance of GDS(1) is always
the worst. This is not surprising since GDS(1) favors small
objects and sacri�ces BHR [6]. Interestingly, even though
the main objective of GD*(1) is the optimization of HR,
the BHR of GD*(1) remains competitive with those of LFU
and LFU-DA. This can be explained by noting that the

4Namely, the number of packets transferred = 2 + size
536

.

5

Trace All requests Unique requests HR1 BHR1

DEC: 29/8-4/9, 1996 3,543,968(44.9G) 1,354,996(21.9G) 48.7% 35.8%
NLANR site RTP: 4/6-17/6, 1999 9,113,027(91.4G) 3,249,549(45.2G) 64.3% 50.7%
NLANR site SD: 4/6-17/6, 1999 9,082,461(129.7G) 3,549,609(61.5G) 60.9% 52.6%
NLANR site UC: 4/6-17/6, 1999 8,983,585(113.1G) 2,459,366(47.3G) 72.6% 58.2%

Table 3: Traces used in this paper

incorporation of reference frequency into GD* allows it to
retain frequently referenced objects, including large ones.

There are two conclusions. First, frequency-based
policies consistently outperform recency-based policies,
e.g., LFU-DA outperforms LRU and GD*(1) outperforms
GDS(1). Second, when HR is the main objective, GD*(1)
obtains higher HR than GDS(1), without signi�cantly
compromising BHR.

5.4 Performance Under Packets Cost

Figure 3 shows the hit ratios of LRU, LFU-DA,
GDS(packets), and GD*(packets) for the di�erent traces.

The results in Figure 3 indicate that the hit ratios
achieved by GDS(packets) and LRU are very close. This
can be explained by noting that when the cost is propor-
tional to document size, GDS(packets) is nearly equivalent
to LRU. The slight advantage of GDS(packets) is due to its
sensitivity to document size. Figure 3 also shows that for
both HR and BHR, LFU-DA outperforms GDS(packets)
and LRU. This is consistent with other studies, which
con�rmed the advantage of frequency-based policies over
recency-based policies [4, 10, 24, 31].

The results in Figure 3 indicate that GD*(packets)
consistently outperforms all other policies with respect
to both HR and BHR. Table 4 illustrates an instance of
the improvements and savings achieved through the use of
GD* under the UC trace when cache size is 1GB.5

5.5 Sensitivity to Temporal Correlations

To evaluate the e�ect of � on the eÆciency of GD*, we
varied the value of � used in GD*(packets) from 0.125 to
2. Figure 4 shows the resulting hit ratios. Both HR and
BHR are maximized when � is close to 0.5, which is very
close to the actual value of � (between 0.46 and 0.51) for
the RTP traces as shown in Table 2. This con�rms that
u(p)1=� is an appropriate quanti�cation of the base value
for a document. The incorporation of both frequency and
the degree of reference correlation achieves the maximum
performance gain.

There are two more observations in Figure 4. (1)
When cache is small, the e�ect of � is more obvious. When
cache is large, the hit ratios are close to the upper bound,
so the e�ect of � is less obvious. This might suggest that
capturing short-term correlations are more crucial for small

5For the UC trace, 1 GB of cache represents approximately 2.5%
of the total size of the unique objects.

ccahes. (2) A small � harms hit ratios less than a large �,
suggesting that correlation is not important.

To gauge the relative importance of request popularity
and temporal correlation, we examined the performance
gain of incorporating only the degree of correlation but

not the frequency into GDS, i.e., the base value is (c(p)s(p))
1=� .

Figure 5 shows the changes of hit ratios with di�erent value
settings of �. The decrease of � results in an increase in
hit ratios, but not byte hit ratios. Moreover, in both cases,
the ratios are below those achieved through GD*(packets).

6 Summary

In this paper, we have established the importance of tem-
poral temporal locality of references for Web proxy cache
replacement algorithms. We proposed a novel cache re-
placement strategy, GreedyDual*, which capitalizes on and
adapts to the relative strengths of both long-term pop-
ularity and short-term temporal correlation. Simulation
results show the superiority of this approach and are in
line with our characterization of temporal locality in these
traces [21]. For example, we found Web proxy cache re-
placment policies should capture access frequency, consis-
tent with the predominance of long-term popularity in Web
request streams, and replacement policies should capture
access recency when cache size is small, consistent with the
existence of weak temporal correlations in short term.

Vitae

Azer Bestavros: Dr. Azer Bestavros received his S.M. and
Ph.D. degrees in Computer Science from Harvard University
in 1988 and 1991, respectively. Since 1991, he has been on
the Faculty of the Computer Science Department at Boston
University, where he is currently an Associate Professor. Dr.
Bestavros' research interests are in the areas of scalable Web
server architectures, (Inter)networking services, and real-time
embedded computation and communication.

Dr. Bestavros has an extensive list of publications, in-
cluding three edited books, dozens of book chapters, and over
90 technical papers in refereed, archived journals and confer-
ence proceedings. He has delivered over 40 presentations and
speeches at universities, industrial laboratories, panels, and na-
tional standards committees. His research is supported through
substantial grants from government agencies and industrial
labs, including the National Science Foundation, the US Army
Research OÆce, GTE and Microsoft.

Dr. Bestavros has extensive consulting and professional
experience. He is the co-founder and Principal Technical Of-
�cer of Commonwealth Network Technology, Inc. a startup

6

Performance Improvement Achieved through GD*
HR (Gain%) BHR (Gain%) Packets (Gain%)

LRU ! GD* 33.3% ! 50.1% (50.4%) 31.1% ! 37.6% (20.9%) 68.8M ! 86.1M (25.1%)
GDS ! GD* 36.5% ! 50.1% (37.3%) 31.4% ! 37.6% (19.9%) 71.1M ! 86.1M (19.7%)

LFU-DA ! GD* 39.0% ! 50.1% (28.4%) 33.7% ! 37.6% (11.6%) 79.0M ! 86.1M (8.9%)

Table 4: Example of performance gains achieved through the use of GD* under packet cost assumption.

company based on one of Dr. Bestavros' three patent-pending
technologies. CNT was acquired in October 1999 by WebMan-
age Technologies Inc. Dr. Bestavros consulting experience in-
cludes engagements with a number of major organizations, in-
cluding Bull, Ericsson, and the World Health Organization, as
well as with a number of startup technology comapny, including
Allaire, Bowne Internet Solutions, WebManage Technologies,
Quarry Technologies, and Adero.

Shudong Jin: Shudong Jin is a PhD candidate in Com-
puter Science at Boston University, where he conducts research
in Web traÆc characterization, caching and replication algo-
rithms, Internet measurement and modeling. Mr. Jin obtained
his BS and MS degrees in Computer Science in 1991 and 1994
(respectively), from the Department of Computer Science and
Engineering, Huazhong University of Science and Technology,
China.

References

[1] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla,
Stephen Williams, and Edward A. Fox. Caching proxies:
Limitations and potentials. In Proceedings of WWW
Conferences, December 1995.

[2] Akamai Technologies. Freeow content delivery system.
Available at http://www.akamai.com.

[3] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana
de Oliveira. Characterizing reference locality in the WWW. In
Proceedings of 1996 International Conference on Parallel and
Distributed Information Systems (PDIS'96), December 1996.

[4] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich
Friedrich, and Tai Jin. Evaluating content management
techniques for Web proxy caches. In Proceedings of the 2nd
Workshop on Internet Server Performance, May 1999.

[5] Martin Arlitt and Carey Williamson. Web server workload
characteristics: The search for invariants. In Proceedings of
ACM SIGMETRICS'96, May 1996.

[6] Paul Barford, Azer Bestavros, Adam Bradley, and Mark
Crovella. Changes in Web client access patterns:
Characteristics and caching implications. World Wide Web,
2(1): 15-28, 1999.

[7] Azer Bestavros. WWW traÆc reduction and load balancing
through server-based caching. IEEE Concurreny: Special Issue
on Parallel and Distributed Technology, 5(1):56{67, Jan-Mar
1997. IEEE Press.

[8] Azer Bestavros and Carlos Cunha. Server-initated document
dissemination for the WWW. IEEE Data Engineering
Bulletin, 19(3): 3-11, September 1996.

[9] Azer Bestavros, Robert Carter, Mark Crovella, Carlos Cunha,
Abdelsalam Heddaya, and Sulaiman Mirdad. Application level
document caching in the Internet. In IEEE SDNE'96: The
Second International Workshop on Services in Distributed and
Networked Environments, Whistler, British Columbia, June
1995.

[10] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and Zipf-like distributions: Evidence
and implications. In Proceedings of Infocom'99, April 1999.

[11] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching
algorithms. In Proceedings of the 1997 USENIX Symposium
on Internet Technology and Systems, December 1997.

[12] E. G. Co�man and P. J. Denning. Operating systems theory.
Prentice-Hall, 1973.

[13] Edith Cohen, Balachander Krishnamurthy, and Jennifer
Rexford. Evaluating server-assisted cache replacement in the
Web. In Proceedings of ESA'98, 1998.

[14] Carlos Cunha, Azer Bestavros, and Mark Crovella.
Characteristics of WWW client-based traces. Technical Report
BUCS95-010, April 1995.

[15] P. Denning and S. Schwartz. Properties of the working set
model. Communications of the ACM, 15(3):191{198, 1972.

[16] Digital Equipment Corporation.
ftp://ftp.digital.com/pub/DEC/traces/proxy/.

[17] Steven D. Gribble and Eric A. Brewer. System design issues
for Internet middleware services: Deductions from a large
client trace In Proceedings of the 1997 USENIX Symposium
on Internet Technology and Systems, December 1997.

[18] A. Heddaya and S. Mirdad. WebWave: Globally load balanced
fully distributed caching of hot published Documents. In Proc.
17th IEEE Intl. Conference on Distributed Computing
Systems, Baltimore, Maryland, USA, May 1997.

[19] Infolibria Inc. Dynacache and mediamall caching solutions.
Available at http://www.infolibria.com

[20] Shudong Jin and Azer Bestavros. Popularity-aware
GreedyDual-Size algorithm for Web access. In Proceedings of
IEEE ICDCS'00, April, 2000. Computer Science Technical
Report BUCS1999-009, Boston University.

[21] Shudong Jin and Azer Bestavros. Temporal locality in Web
request streams. To appear as a short paper in ACM
Sigmetrics'00, June, 2000. Computer Science Technical Report
BUCS1999-014, Boston University.

[22] Balachander Krishnamurthy and Craig E. Wills. Proxy cache
coherency and replacement{towards a more complete picture.
In Proceedings of the 19th IEEE ICDCS'99, June 1999.

[23] Donghee Lee, Jongmoo Choi, Sam H. Noh, Sang Lyul Min,
Yookun Cho, and Chong Sang Kim. On the existence of a
spectrum of policies that subsumes the LRU and LFU policies
In Proceeding of the 1999 ACM SIGMETRICS Conference,
May 1999.

[24] P. Lorenzetti, L. Rizzo and L. Vicisano. Replacement policies
for a proxy cache. Technical Report LR-960731, Univ. di Pisa.

[25] National Laboratory for Applied Network Research.
ftp://ircache.nlanr.net/Traces/.

[26] Elizabeth J. O'Neil, Patrick E. O'Neil, Gerhard Weikum. The
LRU-K page replacement algorithm for database disk
bu�ering. In Proceedings of ACM SIGMOD, 1993.

[27] Venkata N. Padmanabhan and Je�rey C. Mogul. Using
predicative prefetching to improve World Wide Web latency.
In Proceedings of ACM SIGCOMM, 1996.

[28] Squid Internet Object Cache. http://squid.nlanr.net/Squid.

[29] Peter Scheuermann, Junho Shim, and Radek Vingralek. A case
for delay-conscious caching of Web Documents. In Proceedings
of WWW Conference, 1997.

[30] Alan Jay Smith. Cache memories. Computing Surveys,
14(3):473{530, September 1982.

[31] R. Wooster and M. Abrams. Proxy caching that estimates
page load delays. In Proceedings of the 6th International
WWW Conference, 1997.

[32] Neal E. Young. On-line caching as cache size varies. In
Proceedings of Symposium on Discrete Algorithms, 1991.

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10

H
it

R
at

io

DEC

LRU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10

H
it

R
at

io

DEC

LRU
LFU-DA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10

H
it

R
at

io

DEC

LRU
LFU-DA
GDS(1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10

H
it

R
at

io

DEC

LRU
LFU-DA
GDS(1)
GD*(1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

B
yt

e
H

it
R

at
io

DEC

LRU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

B
yt

e
H

it
R

at
io

DEC

LRU
LFU-DA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

B
yt

e
H

it
R

at
io

DEC

LRU
LFU-DA
GDS(1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

B
yt

e
H

it
R

at
io

DEC

LRU
LFU-DA
GDS(1)
GD*(1)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

RTP Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

RTP Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

RTP Trace

LRU
LFU-DA
GDS(1)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

RTP Trace

LRU
LFU-DA
GDS(1)
GD*(1)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

RTP Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

RTP Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

RTP Trace

LRU
LFU-DA
GDS(1)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

RTP Trace

LRU
LFU-DA
GDS(1)
GD*(1)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

SD Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

SD Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

SD Trace

LRU
LFU-DA
GDS(1)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

SD Trace

LRU
LFU-DA
GDS(1)
GD*(1)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

SD Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

SD Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

SD Trace

LRU
LFU-DA
GDS(1)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

SD Trace

LRU
LFU-DA
GDS(1)
GD*(1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10

H
it

R
at

io

UC Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10

H
it

R
at

io

UC Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10

H
it

R
at

io

UC Trace

LRU
LFU-DA
GDS(1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10

H
it

R
at

io

UC Trace

LRU
LFU-DA
GDS(1)
GD*(1)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

UC Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

UC Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

UC Trace

LRU
LFU-DA
GDS(1)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

UC Trace

LRU
LFU-DA
GDS(1)
GD*(1)

Cache Size (% of total unique �le size) Cache Size (% of total unique �le size)

Figure 2: Hit ratios when cost of document retrieval is �xed

8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10

H
it

R
at

io

DEC

LRU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10

H
it

R
at

io

DEC

LRU
LFU-DA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10

H
it

R
at

io

DEC

LRU
LFU-DA

GDS(packets)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10

H
it

R
at

io

DEC

LRU
LFU-DA

GDS(packets)
GD*(packets)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

B
yt

e
H

it
R

at
io

DEC

LRU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

B
yt

e
H

it
R

at
io

DEC

LRU
LFU-DA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

B
yt

e
H

it
R

at
io

DEC

LRU
LFU-DA

GDS(packets)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

B
yt

e
H

it
R

at
io

DEC

LRU
LFU-DA

GDS(packets)
GD*(packets)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

RTP Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

RTP Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

RTP Trace

LRU
LFU-DA

GDS(packets)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

RTP Trace

LRU
LFU-DA

GDS(packets)
GD*(packets)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

RTP Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

RTP Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

RTP Trace

LRU
LFU-DA

GDS(packets)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

RTP Trace

LRU
LFU-DA

GDS(packets)
GD*(packets)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

SD Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

SD Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

SD Trace

LRU
LFU-DA

GDS(packets)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10

H
it

R
at

io

SD Trace

LRU
LFU-DA

GDS(packets)
GD*(packets)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

SD Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

SD Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

SD Trace

LRU
LFU-DA

GDS(packets)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

SD Trace

LRU
LFU-DA

GDS(packets)
GD*(packets)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10

H
it

R
at

io

UC Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10

H
it

R
at

io

UC Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10

H
it

R
at

io

UC Trace

LRU
LFU-DA

GDS(packets)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10

H
it

R
at

io

UC Trace

LRU
LFU-DA

GDS(packets)
GD*(packets)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

UC Trace

LRU

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

UC Trace

LRU
LFU-DA

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

UC Trace

LRU
LFU-DA

GDS(packets)

0

0.1

0.2

0.3

0.4

0.5

1 10

B
yt

e
H

it
R

at
io

UC Trace

LRU
LFU-DA

GDS(packets)
GD*(packets)

Cache Size (% of total unique �le size) Cache Size (% of total unique �le size)

Figure 3: Hit ratios when cost of document retrieval is equal to the number of packets transferred

9

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.0625 0.125 0.25 0.5 1 2 4

H
it

R
at

io

RTP Trace

1GB cache

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.0625 0.125 0.25 0.5 1 2 4

H
it

R
at

io

RTP Trace

1GB cache
2GB cache

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.0625 0.125 0.25 0.5 1 2 4

H
it

R
at

io

RTP Trace

1GB cache
2GB cache
4GB cache

0.2

0.25

0.3

0.35

0.4

0.45

0.0625 0.125 0.25 0.5 1 2 4

B
yt

e
H

it
R

at
io

RTP Trace

1GB cache

0.2

0.25

0.3

0.35

0.4

0.45

0.0625 0.125 0.25 0.5 1 2 4

B
yt

e
H

it
R

at
io

RTP Trace

1GB cache
2GB cache

0.2

0.25

0.3

0.35

0.4

0.45

0.0625 0.125 0.25 0.5 1 2 4

B
yt

e
H

it
R

at
io

RTP Trace

1GB cache
2GB cache
4GB cache

� �

Figure 4: Hit ratios of GD*(packets) with di�erent settings of �

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.0625 0.125 0.25 0.5 1 2 4

H
it

R
a
tio

RTP Trace

1GB cache

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.0625 0.125 0.25 0.5 1 2 4

H
it

R
a
tio

RTP Trace

1GB cache
2GB cache

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.0625 0.125 0.25 0.5 1 2 4

H
it

R
a
tio

RTP Trace

1GB cache
2GB cache
4GB cache

0.15

0.2

0.25

0.3

0.35

0.4

0.0625 0.125 0.25 0.5 1 2 4

B
yt

e
 H

it
R

a
tio

RTP Trace

1GB cache

0.15

0.2

0.25

0.3

0.35

0.4

0.0625 0.125 0.25 0.5 1 2 4

B
yt

e
 H

it
R

a
tio

RTP Trace

1GB cache
2GB cache

0.15

0.2

0.25

0.3

0.35

0.4

0.0625 0.125 0.25 0.5 1 2 4

B
yt

e
 H

it
R

a
tio

RTP Trace

1GB cache
2GB cache
4GB cache

� �

Figure 5: The e�ects of solely incorporating � into GDS(packets)

10

