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Neural models of queuing and timing 

Teaser Sentence: Fifty years after Lashley inferred parallel cerebral representations of serial 
plans, and twenty-five years after Grossberg proposed a parallel competitive queuing model, 
confirmatory neurophysiological data arrive -· but other new data cast doubt on network-delay 
models of cerebellar adaptive timing. 

Abstract. Temporal structure in skilled, fluent action exists at several nested levels. At the 
largest scale considered here, short sequences of actions that are planned collectively in 
prefrontal cortex appear to be queued for performance by a cyclic competitive process that 
operates in concert with a parallel analog representation that implicitly specifies the relative 
priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, 
depend on coordinated scaling of the rates at which many muscles shorten or lengthen in paralleL 
To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which 
appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as 
time-to-contact. At a finer scale, within each act, desired rate scaling can be realized only if 
precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that 
muscle length changes do not under- or over-shoot the amounts needed for precise acts. Each 
context of action may require a much different timed muscle activation pattern than similar 
contexts. Because context differences that require different treatment cannot be known in 
advance, a formidable adaptive engine - the cerebellum ·- is needed to amplify differences 
within, and continuously search, a vast parallel signal flow, in order to discover contextual 
"leading indicators" of when to generate distinctive parallel patterns of analog signals. From 
some parts of the cerebellum, such signals control muscles. But a recent model shows how the 
lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of 
quickly accessed long-term sequence memories. Thus different parts of the cerebellum may usc 
the same adaptive engine design to serve the lowest and the highest of the three levels of 
temporal structure treated. If so, no one-to-one mapping exists between levels of temporal 
structure and major parts of the brain. Finally, recent data cast doubt on network-delay models 
of cerebellar adaptive timing. 

Keywords: adaptive timing, competitive queuing, neural network, prehension, motor 
coordination, time-to-contact, cerebellum, prefi·ontal cortex, basal ganglia 



Neural models of queuing and timing 

Introduction: Three levels of temporal structure iu skilled performance. 

Skilled behavior emerges in temporally structured episodes, and different parts of the brain play 
distinct roles in temporal structuring. This review treats computational models of brain bases of 
three nested levels of temporal structuring in skilled behavior. The first is the fluent succession 
of acts that have been planned together as a sequence. This feature is most noticeable during 
breakdowns, e.g., stuttering, in which a highly practiced sequence fails to emerge with the 
expected fluency. The second level is coordination of rates and completion times across parallel 
processes. Consider reach-grasp coordination. To catch a thrown ball, the rate, and thus the 
duration, of an interceptive reach is adjusted to the approach time of the ball. The reach 
dynamics are coordinated with the event dynamics. Moreover, within the reach time, the hand 
flrst opens to an aperture larger than the ball and then closes, just as the reach completes. One 
breakdown of this competence is seen in Parkinson's patients' inability to scale movement rate. 
The third level is timed anticipaiO!Ji responses, such as the ubiquitous braking contractions that 
our muscles generate to pre-empt movement 'overshoots'. Loss of this ability is apparent in the 
severely dysmetric movements generated by patients with damage to the cerebellum. What 
adaptive neural mechanisms enable us to achieve fluent succession of acts, coordination of 
event-act rates and completions, and timed anticipatmy responses? 

Fluent succession of acts via competitive queuing. 

Fifty years ago, in a seminal article for cognitive neuroscience, Lashley' used data on 
Spoonerisms - in which early and late clements of a speech sequence mistakenly exchange 
positions (e.g., "scech spequence" is spoken instead of the planned "speech sequence") ---as one 
basis for inferring that neural representations for all elements of a planned sequence arc 
simultaneously active, and capable of interacting (e.g., exchanging positions), prior to production 
of the sequence. This radical proposal, that sequences arc represented by simultaneous parallel 
activation of representations of their clements, is fundamentally different from many classical 
(e.g., behaviorist) and contemporary proposals. For example, in most recurrent-state network 
modcls2

,3,4, representations of all the clements of a well-learned sequence arc never 
simultaneously active. Instead, the generating system traverses a series of context-states, each of 
which activates a representation of just the current element. This transiently active 
representation both guides that clement's performance and updates the state representation to 
create the distinctive context needed to recall the next element. In such models, both the 
sequence and the sequence representation arc emergent and serial, not parallel as Lashley 
proposed. 

State-dependent emergent sequencing is unavoidable if an adaptive cognitive system is to 
remain responsive to the evolving context, which is rarely predictable for long intervals. But in 
many cases of the type examined by Lashley, e.g., phrase-level speech or cursive letterfonn 
production, the elements of a sequence arc routine and known in advance. In such cases, it is 
possible for the brain to treat the problem of sequencing as a problem of relative timing of the 
onsets and the degree of' overlap between successive elements. Some recurrent neural network 
models take this approach and are compatible with Lashley's 1951 inference. In 1978, 
Grossbcrg5

'
6 constructed the first of this class of neural network models (see Figure 1), which 

I-Ioughton7 later dubbed competitive queuing (CQ) modcls8 

2 
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Figure I: A competitive queuing (CQ) network and associated cellular dynamics. A: All CQ models 
have at least two layers, a parallel planning layer and a competitive choice layer. The parallel planning 
layer contains nodes representing possible sequence elements, such as letters of the alphabet A ... Z. To 
prepare a planned sequence) a desired subset of these nodes is activated in parallel (such as nodes 
representing the letters that spell the Australian greeting "GIDA Y") and the relative degree of activation 
is used to control the relative priority of performance. At the onset of a gating signal, the active 
representations begin to compete for output via the choice layer. If the competition is fair, then the most 
active plan layer node will always win the competition, and thereby generate a corresponding output from 
the choice layer, which initiates the chosen action. A second effect of this output, mediated by a recurrent 
inhibitory pathway hom each output node to its corresponding plan layer node, is deletion of activity at 
whatever plan layer node has just won. For a two item sequence, iteration of this choose-perform-delete 
cycle assures that an clement's initial relative activation level in the planning layer implicitly codes its 
relative priority in the forthcoming sequence, and that after the second choice, the plan layer will be 
empty, and tlms ready for preparation of further sequences. For usc with sequences longer than two, the 
planning layer must be designed so that deletion of any node's activity leaves invariant the rank ordering 
of the remaining node activations. If nothing interrupts the feedback and iterated choice processes, then 
production of a planned sequence can be very fluid. B: A simulation of cellular dynamics in the plan 
layer of a normalized CQ modcl 12 during production of a 5-item sequence, such as "GIDA Y". These 
simulation traces correspond remarkably well with empirical observations made a decade later9

. Each 
simulation trace marks the activation history of one of the sequence clement representations during the 
interval from just before element one's performance to just after production of the entire sequence. 

3 



Neural models of queuing and timing 

Neurophysiological confirmation of the CQ model. 

Until 2002 - almost twenty-five years after Grossberg proposed the first CQ model and fifty 
years after Lashley inferred parallel activation - there was no compelling electrophysiological 
evidence that the brain used both the parallel sequence code and the iterative choice cycle 
postulated by CQ theorists. New cell recordings by Averbeck, Chafee, Crowe and 
Georgopoulos9

•
10 plug that evidential gap. They trained monkeys to respond to presentation of a 

geometric form by using a joystick to draw a copy of the same form. To make their drawings, 
the monkeys were required to use a prescribed stroke sequence that had become routine via 
extensive practice. Thus on each trial, a geometric form, which contained no visible indication 
of sequence, served as a cue for recall of sequence-representing information from long term 
memory. Recordings from prefrontal cortex showed that just before the monkey began the 
stroke sequence, there existed a parallel representation of exactly the type proposed in CQ theory 
(sec Figure !). As the strokes were produced, deletions occurred as expected from this 
representation, with the most active representation being deleted first, and so on, until the final 
stroke was made and the final representation deleted. These data strikingly confirm one of the 
most dramatic and counter-intuitive hypotheses of cognitive neuroscience: that the brain uses 
parallel activation patterns to represent, plan, and control the execution of short routine 
movement sequences. The same results disconfirm the recent conjecture 11 that monkeys might 
be incapable of using such a "collective" planning strategy. 

Averbeck's data support the type of CQ model5
•
12

-
14 in which the total activity allocated 

to plans is approximately normalized and dynamically redistributed to the remaining element 
representations on each iteration of the competition. For example, by the time the last element 
was to be chosen, its activity had grown to a much larger value than it had initially. Such 
normalization (which also figures prominently in the explanatory successes of a recent 
'neuralized' production system modd 5

) implies a simple prediction. When more elements are 
represented in a neural planning layer, the average activation of each representation must be less. 
This neurophysiological prediction has been confirmed in recent experiments that systematically 
varied the number of alternative response options in a deferred choice task 16

•
17

. 

Progress of CQ models in explaining sequencing and timing. 

When he introduced the normalized CQ model, Grossberg5
'
6 stressed that nodes in real 

neural networks arc subject to finite activation level ranges and some inevitable noise. Such 
factors constrain the ability of a neural circuit to use relative activation level to reliably code the 
relative priority of many sequence elements. Brains using this analog basis for prioritization 
should exhibit a small upper bound on the number of elements that can be reliably recalled in 
correct sequential order without use of secondary strategies, such as reloading chunks from long­
term memorl Cowan 18 shows that such a small upper bound has been convincingly 
demonstrated by research on the capacity of working memory as assessed in tasks that require 
immediate recall of novel sequences in correct order. Recently, Page and Norris 19 showed that a 
CQ model with noisy choice predicts additional data fl·om immediate serial recall tasks, such as 
the overwhelming tendency for exchange errors to take the form of transpositions of adjacent 
elements in the planned sequence. 

4 



Neural models of queuing and timing 

In all CQ models, the latency to produce a sequence element is a function of the time 
needed for the activation level of the corresponding plan to win the competition, by being the 
first to exceed the threshold for execution. Because more simultaneously active plans imply a 
lower activation level for each (normalization), the latency to initiate the first element of a 
sequence should increase with sequence length. Such a sequence length eflect on latency was 
reported by Sternberg and colleagues"' and successfully simulated by a CQ model 12 in 1991. 
However, recent datll.22 show that this latency effect does not persist at high levels of practice. 
Some practice-dependent process makes it possible to overcome the latency penalty initially 
associated with preparing sequences. Consistent with new neuroanatomical evidence23 of 
projections from lateral zones of the deep cerebellar nuclei to the premolar and prefrontal areas 
of the cerebral cortex, Brad Rhodes 14

'
24 recently constructed an adaptive neural model to explain 

how cerebellar outputs learned during extensive practice could effect a "parallel analog load" of 
sequence element activations into the plan layer of a frontal working memory that obeys CQ 
principles (Figure I). Rhodes's self-regulating adaptive network model shows how a cortico­
cerebello-cortical circuit can learn and recall long-term (procedural) sequence memories. After 
enough practice, the cerebellar output becomes strong enough to force a pre-commitment to the 
first sequence clement by the choice layer of the CQ system. Thereafter, initiation latency is 
independent of the number of elements in the practiced sequence. 

The past decade has been a rich period for extensions of CQ-compatible sequence 
learning and control models to a wide range of phenomena. These include sequences with 
repeating elements7

'
25

, sequences with overlapping performance of successive elements, as in 
speech coarticulation7 and cursive handwriting26

•
27

, pitch-duration sequences in melody 
I . 2s 20 d . I I d . 10 11 c· h l · earning ' , an grmnn1at1ca anguage pro uctwtr ,. . 1ven t e c ramatlc recent 

I . I . I fi . 9101617 fl CQ d. . . ll f'f· I CQ neurop 1ysro ogrca con mnat10ns ' ' · o · (ey . pre rct10ns, a sustamec Jurst o · urt 1er 
model elaborations can be expected in the next few years. 

Coordination of rates and completion times in voluntary action. 

Many movement models, such as equilibrium point models (Text Box I), treat the 
temporal structure of voluntary actions from a biomcchanical perspective. In contrast, vector 
integration to endpoint (VITE) models (Text Box I) treat timing from a cognitive perspective, 
with a focus on voluntary gating of plan execution and willed modulation of movement rates. 
Since their inception, VITE models have successfully predicted the discharge patterns of a 
diversity of motor cortical cell types33

•
40

, and have been applied to numerous movement timing 
problems 14

•
26

-
28

•
41

, including adapting rate to the size of a !oad40 Recently, VITE--consistent 
models have been applied to explain timing properties of interceptive reaching and reach-grasp 
coordination. In 1994, Peper and colleagues42 noted that if an interceptive reach is to succeed at 
getting the hand to an approaching ball before it passes the plane of the torso, then the global 
scaling of the reaching rate should be coupled to a perceptual variable specifying the ball's 
changing relationship to the actor. This led to the Required Velocity (RV) model42

, in which a 
continuously evolving perceptual variable, the ball's declining time-to-contact (TTC) with the 
catcher, adjusts the reaching rate to that velocity required for a successful interception. Because 
1/TTC is continuously increasing during the reach, it can function in the same way as the 
increasing GO signal of the VITE model33 Comparing predictions of the VITE and RV models 
with interceptive performances revealed a common weakness43

. Whereas both models used the 
evolving relative positions of hand and ball to guide movement, they ignored their relative 
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Neural models of queuing and timing 

velocities. (Anyone who has considered the analogous problem of intercepting one missile with 
another will recognize why both variables are critical!) With the addition of sensitivity to relative 
velocity, and appropriate coupling to TTC, the new velocity integration to endpoint model of 
Dessing and collcagucs43 explains a range of human reaching data that is -literally-- beyond the 
reach of prior models. Neural evidence for the model's assumption ofTTC cells is abundant'13

•
44

, 

and TTC is prominent in other sensory-motor timing models, including VITE-based models of 
. . 45 d l . l . 46 47 b . . ( p· 2) vwpomt movements an egato arttcu atiOn · y pwmsts see 1gure . 

Text Box 1: Equilibrium point models contrasted with vector integration to endpoint models. 
Some neurobiologists once entertained the hypothesis that actions might not require any internal 
trajectory planning, because movements might be treated as mere transitions between postures. If the 
balance of muscles forces needed to hold a goal posture B were abruptly instated, then the body's 
existing posture, A, would suddenly be in a biomechanical disequilibrium created by muscles acting 
as spring-like force generators. Movement would ensue, with the body's configuration attracted 
toward goal posture B as a mechanical equilibriurn point in the space of possible body configurations. 
So emerged equilibrium point (El') models. Simple versions of El' theory fall to logical 
counterexamples. Suppose a quadriped trying to stand abruptly instates the muscle forces used to 
hold standing posture. This fails because standing quadripeds support most of their weight by 
columns of bone - not by active muscle forces. More elaborate EP models have been empirically 
refuted32

, and none are well suited to explain overwhelming evidence for continuous movement 
vector and postural computations in motor cortex. In contrast, such evidence inspired the vector 
integration to endpoint (VITE) circuit model33

, which incorporates a nexus of brain adaptations 
believed to lie at the core of the system for deliberative planning and volition-modulated execution. 
Most acts require parallel contractions by many synergistic muscles, which often contract by 
markedly different lengths during the act. Suppose that all contributing muscles began to contract at 
the same instant and thereafter contracted at the same fixed rate until finishing their contribution. 
Then the muscles that had short-length contractions would complete their transits much earlier than 
those with long contractions. The result would be very jerky - and utterly unlike our fluid skeletal 
movements, in which the rate of a contraction is proportional to its desired size34

. Moreover, when 
we want to slow or speed an act, multiplicatively scaling all these proportionate rates with a single 
volitional GO signal ensures synchronization of contractions, whatever the overall movement 
duration set by the global scaling factor. Even if contraction onsets arc asynchronous, temporal 
equi{lnality (synchronized terminations) of contractions is greatly facilitated if the value of the GO 
signal (volitional rate scaling signal) increases as the act unfolds. Onset and offset of a GO signal 
serve to initiate or halt plan execution·- a basic requirement for voluntary action. Finally, vector 
plans can be cognitively prepared for several alternative effectors -such as the right and the left arm 
- until a deliberative process reaches a decision that selectively gates realization of one alternative. 
One prediction of the VITE model is therefore a brain site that acts as both a gate for execution of 
movements and a modulator of movement speed. Stimulation at such a site should affect movement 
rate while leaving movement direction unaffected. Evidence confirming this prediction35-38 ~ together 
with much additional evidcnce39

, supports the hypothesis that the basal ganglia serve the 
gating/scaling function for locomotion~ reaching and eye movements. An adaptive basal ganglia 
gating model, consistent with both VITE and CQ principles, has recently appeared39

. 

6 
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Figure 2. How do pianists produce legato articulation'! Part A schcmatizcs a dual-process model for 
legato control of key depressions and key releases during performance of isochronous note sequences. 
Successive piano tones fall into two classes: unconnected tones and connected tones. A pianist can use 
finger articulation to produce connected tones, referred to as leg,ato, by waiting to release key n at or after 
the time that key n+l is depressed. The duration of simultaneous depression is called the key overlap 
time or KOT. The KOTs measured during experts' legato articulation vary markedly with tempo. For 
scales performed at inter-note onset intervals (lOis) of 100-1000 mscc., there is an increasing non-linear 
functional dependence of KOT on IOI. Because the non-linearity appears in the long IOI (slow tempo) 
region, it is not attributable to gross biomechanical factors, such as finger inertias. Concert pianist (and 
engineer) Picter Jacobs showed46 that the dependence can arise hom a neural circuit (schematized here in 
part A) in which a prospective central process and a slow sensory feedback process cooperate to control 
articulation. The vector integration to endpoint model was extended to create a neural circuit that exhibits 
volition-controlled oscillation rates and simulates 'mental foot tapping'. It also affords prospective control 
by continuously computing an internal first order estimate of the remaining time-to-contact (TTC) with a 
targeted integration level, reaching of which triggers the oscillator's next half cycle. At fixed successive 
threshold values of the estimate of time remaining in the current half cycle, the performer first launches 
keystroke n+ 1 and then lifts keystroke n. The higher of these thresholds, and the first crossed by the 
declining value of TTC, is Ci_N (LN for "Launch Next") and the lower is Ci<P (RP for "Raise Prior"). As 
tempo slows (see part B), the time required for the internal estimate of TTC to pass between threshold 
crossings elongates, and KOT adapts automatically (increases). If performers used only this mental 
process to control articulation, they would not show the bend seen in the slow tempo region of the KOT 
vs. IOI f[mction46

. The bend emerges if performers lift keystroke n whenever the TTC estimate crosses 
threshold Ciu· or the brain receives tactile feedback from the finger-key contact associated with stroke 
n+ I, whichever comes earlier. Tactile feedback delay times arc consistent with this interpretation. Why 
usc the mental process at all? At high playing speeds, tl1ere is not enough time to wait for the delayed 
feedback! 

7 



Neural models of queuing and timing 

Another recent focus of liming research is reach-grasp coordination. A computational 
model by Hoff & Arbib48 utilized a complex internal timing scheme to ensure that the durations 
of hand opening and closing were adjusted to both the expected duration of the reach and the 
maximum expected hand aperture (the thumb to finger distance). This model assumed that 
component durations are known in advance and that the maximal aperture is solely a flmction of 
object size. Yet reach duration oflen emerges fi·om a dynamic coupling between actor and object 

. 42 43 d . l d . l I I h 49 . b. motwns ··,an maxnnum 1an aperture rs strong y c cpenc ent on reac rate , not just on o ~ect 
size. Thus neither the component durations nor the maximum aperture are known in advance. 
Recent VITE-basedmodels of Ulloa and colleagues50

'
51 show how reach-grasp coordination can 

be achieved without the advance knowledge and internal accounting of durations assumed in the 
I-loff-Arbib model. Key timing data lrends52

•
53 emerge dynamically. Although there is a single 

pre-planned hand aperture goal (equivalent to perceived object size), a cross-coupling between 
the reach and grasp circuits allows the aperture to be transiently incremented during the reach by 
an amount proportional to reach velocity, which in VITE models is unimodal and near its 
maximum midway through the reach's duration. Therefore, the transient increment to hand 
aperture automatically begins to fade just ailer mid-time of the reach. Under this condition, 
synchronous completions of the reach and the hand closure on the object are enabled by the 
temporal equifinalily property of a VITE circuit (Text Box I), provided that a single rate-scaling 
signal coordinates the reach and grasp components. 

Timed anticipatory responses. 

In a successful catch, the ann flicks out and 'stops on a dime' at whatever degree of ann 
extension is needed to allow the hand to catch the ball. Newtonian mechanics implies that an ann 
set in motion by synergistic extensor muscles A, B, C would (disastrously) continue 'past the 
mark' unless braked by precisely timed, anticipatory action of opposing muscles D, E, F. When 
driving a car, stomping the accelerator and hilling the brake are separate voluntary actions. When 
'driving' our bodies, the braking contractions are largely automatic and of sub-cortical origin. 
The timed anticipatory components of the motor cortex signals that shape braking reactions 
disappear if the deep cerebellar nuclei arc cooled 54

. This observation fits with a huge body of 
data that implicates the cerebellum as an engine for the learning and performance of timed, 
anticipatory, context-dependent responses55

-
57 that fit the following formula: In context C 

generate signals in output channel A after waiting interval T. Furthermore, Perrett, Ruiz and 
Mauk58 showed that a restricted cerebellar cortical lesion, which spares the deep cerebellar 
nuclei, produces an animal that makes its anticipatory responses too ear(v. This and subsequent 
experiments have created a consensus that some mechanism in the cerebellar cortex confers the 
ability to learn to withhold an anticipatory response until the optimal time T after onset of the 
conditional stimulus (CS) that indicates the state/context within which the response should be 
generated. The network and cells in the cerebellar cortex are complex, and several models have 
been proposed to explain cerebellar adaptive timing. These models fall into two broad classes: 
network-delay models and synaptic-delay models (see Figure 3). 

8 
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(A) (B) 

Figure 3: Network-delay versus synaptic-delay models of cerebellar adaptive timing. (A) The 
passage of signals from mossy fibers through granule cells to parallel fibers within the cortex of the 
cerebellum. (B) A highly schematic view of the basic cerebellar circuit, including the pons, source of 
mossy fibers, and the inferior olive, source of the climbing fibers whose discharges gate cerebellar 
learning. Two similar cerebellar network-delay models59

,60 were proposed independently in 1994 and 
both borrowed ideas from earlier adaptive timing models61

'
62

, Both postulated that a CS (conditional 
stimulus) carried to the cerebellum by mossy-fibers induces local interactions between Golgi cells and 
large populations of granule cells. This enables any CS to generate a spectrum of transient, time-lagged 
granule cell activations that is specific to that CS. Given such a temporal basis, whichever granule cell 
activation has the appropriate time delay to coincide with a climbing fiber signal can) over the course of 
repeated experiential trials, become able to control cerebellar output, provided that an associative learning 
process operates to change the synaptic weight between that granule cell's parallel fiber and those 
Purkinje (output) cells excited by the climbing fiber signal. Even the latest network-delay models 63

•
64 use 

whole cells and network interactions to create the temporal basis. In contrast, synaptic-delay models65 

postulate that the spectrum of delays needed for adaptive timing emerge in synapse-specific elements, 
namely the tiny spines65

·"" (not shown) that populate the branchlets of Purkinje cells' dendritic trees. It is 
with these spines that parallel fibers actually synapse. 

Relative to synaptic-delay models, network-delay models are very inefficient. They are 
metabolically inefficient because they use a whole cellular network to do what may be done 
within tiny dendritic spines; and they are computationally inefficient because each granule cell 
population dedicated to creating a population of time-lagged responses to one CS cannot readily 
serve other roles attributed to cerebellar cortex. In particular, no network-delay model has 
shown how purported temporal-basis granule cells could simultaneously fulfill the s;zatial 
pattern separation role attributed to the granule cell stage in the Marr-Albus model67

-'
9

. In 
contrast, all variants of the synaptic-delay model introduced by Fiala and colleagues65

•
70

•
4 are 

compatible with granule cell performance of the spatial pattern separation function (see Text Box 
2). 

9 
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Text Box 2: A two-stage cerebellar adaptive engine? If the cerebellum performs both of the major 
functions most commonly attributed to it - spatial pattern separation and adaptive timing ·- then 
cerebellar learning constitutes a parallel search, through masses of potentially predictive recent signal 
sets, for reliable leading indicators that will allow the animal to make timed anticipatory responses. 
According to Marr-Albus theory"·", the first stage of cerebellar processing uses the granule cells 
(Figure 3) to perform spatial pattern separation (also called expansive recoding). In particular, each 
of millions of mossy fibers (MFs) distributes its signal, which constitutes one component of a massive 
state/context vector, across the cerebellar cortex (Figure 3). Billions of cerebellar granule cells each 
use 5 or 6 dendrites to sample a partially distinctive subset of the MF context vector. This design 
allows granule cells to detect highly specific event or state-subset combinations. It is the creation of 
these combination representations, together with inhibitory suppression of granule cells excited by 
only a small fi·action of their potential inputs, that makes the representations of any two contexts more 
dissimilar ('farther apart' whence 'separation') in the very high dimensional space def1ned by granule 
cell outputs than in the much lower dimensional space defined by MF signals. Each granule cell axon 
branches to form a parallel fiber (Figure 3) that sends the current result of its sampling operation (if 
any) to hundreds of Purkinje cells, and each Purkinje cell receives inputs from many thousands of 
parallel fibers. Synaptic-delay models (Figure 3) propose that adaptive timing is achieved after the 
granule stage, by a spectrum of delays within the population of Purkinje dendritic spines contacted by 
each granule cell via its long parallel fiber. This makes it easy for spatial pattern separation and 
adaptive timing to efficiently co-exist and co-operate in the same cerebellar model. In contrast, 
network-delay models (Figure 3) propose that the spectrum of delays emerges in the population of 
granule cells itself. It remains to be shown in a model how the granule stage could perform both 
functions. However that issue resolves, the two operations imply that the cerebellum performs a 
massively parallel real-time search for highly context-dependent leading indicators (event 
combinations) that will allow its control actions to be both optimally apt and precisely timed. 

Although Ji.rrther computational challenges to some network-delay models exist --·- e.g., 
poor signal processing repeatability due to intrinsic oversensitivity to network fluctuations 
recent empirical results cast strong doubt on the sufficiency of any cerebellar network-delay 
model. Three separate laboratories have recently shown that cerebellar adaptive timing occurs 
under conditions where it should be impossible if adaptive timing requires the network-delay 
mechanism. In contrast, the synaptic-delay model correctly predicts that adaptive timing should 
be preserved in all three cases. In the earliest experiment, Shinkman, Swain and Thompson55 

substituted prolonged direct stimulation of parallel fibers (granule cell axons) for CS 
presentation, and demonstrated normal delayed response learning and performance. For this 
protocol, the network-delay model instead predicts a learned response that begins much too early 
and persists until CS offset. The second experiment, by Raymond and Lisbcrger71

, was 
explicitly designed to test between network-delay models and synaptic-delay models. They 
showed that the information needed to control the output had disappeared from the granule cell 
discharges approximately 100 milliseconds before the signal that initiated associative learning. 
Under such conditions, the network-delay model predicts no response learning·-- again, contrary 
to the data. Raymond and Lis berger inferred that there must be a synapse-specific delay of at 
least 100 msec ·-· an inference since confirmed by direct observations on Purkinje cell dendritic 
spines66 In the third experiment, Svensson and lvarssm/2 used decerebrate ferrets to eliminate 
any hippocampal or other cerebral contributions to adaptive timing. They then demonstrated 
successful temporal conditioning using a "trace" protocol, in which there is a gap between CS 
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offset and the time the conditioned response should be generated. For this protocol, the network­
delay model predicts no learning, because there is no stimulus to drive granule cell activations 
once the CS goes off. In contrast, the synaptic delay modd5 predicts robust learning, provided 
that the trace interval is no longer that 1-2 sec. Thus all three experimental results are consistent 
with the synaptic-delay model, but inconsistent with the network-delay model. 

Conclusions. 

Some recurrent-stale network theorists adhere to a nco-behaviorist and reductionist view of 
sequencing, in which all sequence representation is fundamentally sequential. Modern 
competitive queuing theorists follow Lashley's radical cognitivist inference that some sequence 
planning involves "co-temporal" or parallel activation of all sequence elements. Early 
reductionist EP models tried to explain movements as mere biomechanical transitions between 
postures made without any central trajcctoiy generation. Vector integration to endpoint models 
treat central trajectory-related planning and volitional control of timing as signatures of the nexus 
of adaptations that made deliberative action possible. Network-delay models of adaptive timing 
conform to the strict Hebbian doctrine that only cells that fire together -within a few msec --can 
wire together. Synaptic-delay models are more radical. They imply that the brain long ago 
transcended 1-Iebbian co-incidence strictures by adding an efficient way to detect predictive 
relationships between events (and cell firings) separated by any interval from tens of msec. to a 
few seconds. Thus, the trend in real-time adaptive network models of action queuing and timing 
is decidedly cognitive and anti-reductionist. At the same time, new models exemplifying this 
trend have begun to show how subcortical structm-es heretofore associated with simple cases of 
operant conditioning (the basal ganglia) and classical conditioning (the cerebellum) can also 
participate in high level cognitive functions, such as decision making39 and serial plan 
preparation14 If correct, these results imply that no one-to-one mapping exists between levels of 
temporal structure and major parts of the brain. 

An outstanding question: How efficient should a biologically accurate model of adaptive liming be? 
The synaptic-delay model of adaptive timing proposed by Fiala eta!. 65 is much more efficient than the 
network-delay model (Figure 3 and Text Box 2), but at first glance it does not appear to be maximally 
efficient. This was shown in two recent variants4

'
70 of the model, both of which replaced the original 

model's population of dendritic spines (and associated pre-existing spectrum of delays) with a single 
dendritic element that possesses an experience-trained time delay. In both variants, a single granule 
cell output signal can be transformed into a separately learnable time delay within each Purkinjc 
dendritic spine that it contacts. No more efficient model would seem to be possible, if efficiency is 
measured solely in number of synapses. However, in both variants it is less easy to explain the 
learning of multiple, distinctively timed responses to a single conditional stimulus. Although for 
typical cases, this difficulty can be resolved by using the cerebellum's known output-to-input 
recurrence' to iteratively update the cerebellum's state representation as each timed output is 
generated, it is important to remember that confidence in judgments of relative efficiency must await a 
far better understanding of the full range of learning cases and ontogenetic infelicities that a biological 
mechanism has evolved to cope with. In addition to efficiency of representation, the brain needs 
enough redundancy to afford robust mean statistics that are relatively insensitive to noise or cell death. 
And a less efficient representation might be favored (over an optimally efficient one) if it supports a 
faster learning rate. 
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