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We’ve heard a lot of models. . . and heard suggested that we should take
things out of our models to figure out what’s important. But in some
sense, when I look at the diversity of models that have been presented so
far—each of us leave out things. So maybe in some sense we’ve got a start
towards that approach.

So I can ask this question two ways, but let me ask it this way: What
should we leave in? What’s the bare minimum we should leave in as we
try to understand what’s important about the function of the cochlea?

David C. Mountain
Mechanics of Hearing (Attica, Greece 2014)
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DEVELOPMENT OF A FLEXIBLE MODELING

ENVIRONMENT FOR EVALUATING SUBCORTICAL

AUDITORY SYSTEMS

GRAHAM VOYSEY

ABSTRACT

Cochlear Synaptopathy (CS) is an emerging topic of hearing research that focuses

on peripheral pathologies which leave pure-tone audiometric thresholds (PTA) un-

changed but significantly impair threshold-independent hearing performance. No

noninvasive quantitative measure of CS yet exists in humans. Primary among the pro-

posed mechanisms of CS is selective damage of low spontaneous rate (low SR) fibers

of the auditory nerve (AN), yet quantification of this loss and the implications of this

synaptopathy for the behavior of higher auditory areas remains poorly understood.

Recent work has established a relationship between Auditory Brainstem Response

(ABR) Wave V latencies, which is thought to reflect the relative contribution of low-

SR fibers to the AN, and a psychophysical measure of CS in humans (Mehraei et al.,

2016). However, current biophysical models do not fully account for the observed

results.

To begin to address the discrepancies between these experiments and biophysical

models of hearing, a new comprehensive modeling tool was developed which allows

parametric exploration of modeling space and direct comparison between major mod-

els of the auditory nerve and brainstem. More sophisticated models of the midbrain

and brainstem were incorporated into the new modeling tool. Incorporating recent

anatomical and electrophysiological results, which suggest a varying contribution of

low-SR fibers for different audible frequencies, further addresses modeling efficacy.
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Chapter 1

Introduction

1.1 Motivation

The variability of overall performance between putatively normal hearing listen-

ers, particularly in supra-threshold tasks performed in complex acoustic environ-

ments such as the cocktail party problem, has been recognized in the literature for

many years (Cherry, 1953). Until recently, this variability was largely attributed

to a broadly-defined “Central Processing Disorder” in the absence of clinical Noise-

Induced Hearing Loss (NIHL). The performance of the auditory periphery has been

thought to be sufficiently characterized by pure tone audiometry (PTA), as well as

Distortion-Product Otoacoustic Emissions (DPOAEs) and Auditory Brainstem Re-

sponses (ABR) for more detailed assessment of individual areas of the peripheral

auditory system.

1.2 Implication of the Auditory Periphery in Cochlear Synap-

topathy

Recently, selective deafferentiation of low spontaneous rate (low SR) fibers of the

AN in the auditory periphery that do not affect audiometric thresholds have been

convincingly demonstrated in mouse (Kujawa and Liberman, 2009), gerbil (Furman

et al., 2013), and recently, chinchilla (Liberman, unpublished); a growing body of psy-
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chophysical evidence suggests that a similar pathology occurs in humans (Bharadwaj

et al., 2015). In mice, synaptic damage at the hair cell in the Organ of Corti has been

observed both in response to noise with intensities sufficient to induce a temporary

threshold shift (TTS), which does not permanently affect Compound Action Poten-

tial (CAP) thresholds or hair cell viability, and due to age alone in quiet (Fernandez

et al., 2015; Sergeyenko et al., 2013). This phenomenon has been variously described

as “cochlear synaptopathy” (CS) (Bharadwaj et al., 2014), “auditory neuropathy”,

or “Hidden Hearing Loss” (HHL).

It is now thought that selective low-SR loss may be a hallmark of HHL (Bharadwaj

et al., 2015; Bharadwaj et al., 2014; Furman et al., 2013; Schaette and McAlpine,

2011). Consequently, it has been implicated in performance degradation in cocktail

party scenarios in normal-hearing listeners (Bharadwaj et al., 2015; Bharadwaj et al.,

2014). Unlike NIHL, no objective and noninvasive measure of HHL in humans has

been established. While work is ongoing in cadaveric studies, the relationship between

low-SR damage and HHL in humans has relied on inference from a combination of

ABR, DPOAE, and psychometric measures, and no direct measure has yet been

demonstrated that specifically implicates low-SR fiber loss as a sufficient causative

factor for HHL.

1.3 Human Psychophysical Tests Suggest a Diagnostic Mea-

sure

Towards this goal of defining an objective measure of fiber loss, Mehraei et al. (2016);

Mehraei et al. (2015) have performed a series of experiments that relate psychophys-

ical performance in a tone-in-notched-noise ITD detection task to measured latency

changes in ABR Wave V as a function of signal to noise ratio. They hypothesized
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that the loss of low-SR/high-threshold AN fibers would contribute to a faster recovery

time of the compound action potential of the AN. In a perceptual task, this translates

to higher thresholds, and faster threshold recovery. In a group of 28 normal hearing

threshold (NHT) subjects, comparison of ABR data and psychoacoustic performance

demonstrate a relationship consistent with an impairment in low-SR population re-

sponse (Mehraei et al., 2016).

1.4 Computational Models of the Periphery are not Predic-

tive

While psychophysical experiments have supported the hypothesis of the importance

of low-SR fibers, modeling the response of the auditory periphery, brainstem, and

midbrain to the stimuli used in experiments has so far failed to produce results that

are with experimental results (Mehraei et al., 2016).

Many disparate models of different stages of the subcortical auditory system have been

developed and are in common use. Among these are models of the middle ear, the

auditory nerve, and the auditory processing areas of the brainstem and the midbrain.

Any given computational model of a particular area may be optimized by its authors

for particular objectives that may not be shared by other models of the same area;

further, the inputs required for more than one model of a given area may be dissimilar,

and the outputs may also vary considerably. Numerous projects exist to address

some of these difficulties. Among these projects are EarLab (http://earlab.bu.edu),

the Auditory Modeling Toolbox (http://amtoolbox.sourceforge.net), and the Cochlea

modeling environment (https://github.com/mrkrd/cochlea) (Rudnicki and Hemmert,

2014).

To date, no project fully addresses the modeling concerns that arise during the study

http://earlab.bu.edu
http://amtoolbox.sourceforge.net
https://github.com/mrkrd/cochlea
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of the role of the precortical auditory system in HHL. Further, no project currently

addresses the need to easily compare the performance and behavior of individual

models as they are used to study the same problems.

1.5 An Improved Modeling Approach

This work sought to extend the modeling of the peripheral and central auditory

system performed by Mehraei (2015) by creating a modeling framework that allows

the direct comparison of the relative effects of leading acoustic models, with two novel

modeling features also incorporated.

A framework for the design of arbitrarily complex future modeling experiments that

automatically incorporates permutations of model choice and model parameters was

also developed to provide a modeling comparison tool to the research community.
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Chapter 2

Literature Review

2.1 Chapter Summary

This chapter lays out a review of the relevant literature this thesis relies on. First,

an overview of the clinical significance and relevant neuroanatomy of cochlear synap-

topathy are given. Then, a review of the computational models that will be used for

the body of this thesis is presented.

2.2 Cochlear Synaptopathy

Deafferentiation is the loss of one or more afferent synapses between an Inner Hair

Cell (IHC) and its innervating spiral ganglia. As a result of this synaptopathy, fewer

channels are available to transmit information from the IHC through the AN to the

brain, and the fidelity of the signal is degraded.

Kujawa and Liberman (2009) showed in noise exposed mice that significant deafferen-

tiation can occur with no permanent changes in threshold tuning curves and no hair

cell death. Figure 2·1 shows that deafferentiation was confirmed histologically by

triple-staining cross-sections of the Organ of Corti post noise exposure. This reveals

a synaptic loss.

Sergeyenko et al. (2013) extended this work to demonstrate that this deafferentiation
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Figure 2·1: Deafferentiation of IHCs precedes hair cell death in noise
exposed mice. Figure is reprinted from Furman et al. (2013). Panels
A and B show a triple-stained cross sectional view of an IHC. Synap-
tic ribbons are in red, and glutamate-receptor patches are in green;
deafferentiation is visible when they are not paired (in C).
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may also arise solely as a function of time. In a study of mice aged 4 to 144 weeks

that were never exposed to loud sounds, a similar loss of hair cell projections was

observed.

2.3 Physiology of the Auditory Nerve

The auditory nerve is comprised of tens of thousands of auditory nerve fibers. Each

fiber synapses on a particular IHC, and encodes information about the deflection of

the IHC bundle as a result of motion of the basilar membrane that, in turn, was

evoked by a sound pressure wave.

2.3.1 Spontaneous Rates of Fibers

In the absence of stimulus, individual fibers of the auditory nerve exhibit a wide range

of average firing rates: human AN fibers have spontaneous rates between 0 and 120

spikes/second. Any individual fiber’s spontaneous rate varies slowly over time, but

will fall within a relatively narrow band. The fibers of the auditory nerve are divided

into two, or sometimes three, categories: low-, medium-, and high spontaneous rate

(SR). Different authors assign different maximum firing rates to each category: Tem-

chin et al. (2008) categorizes SRs below 18 spikes/second to be “low/medium”, and

anything above that to be “high”. Others, such as Liberman (1978), define only two

categories.

2.3.2 Low Spontaneous Rate Fibers Suffer Selective Losses

Furman et al. (2013) and others have demonstrated that noise-induced cochlear synap-

topathy is selective for low-SR fibers, particularly at high frequencies. As shown in
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Figure 2·2, examination of fiber loss after acoustic trauma demonstrates a preferential

loss of low-SR fibers, particularly above 4 kHz.

Figure 2·2: Synaptopathy is selective for fibers with low spontaneous
rates, and particularly selective for low-SR fibers at high frequencies.
Figure reprinted from Furman et al. (2013)

2.3.3 Fiber SR Distribution is Not Tonotopically Uniform

Along the length of the basilar membrane, different percentages of low-, medium-,

and high-SR fibers synapse on each IHC. Bourien et al. (2014); Temchin et al. (2008);

Temchin and Ruggero (2014) have demonstrated in chinchilla and mongolian gerbil

that there is a nonlinear distribution of low-SR fibers along the basilar membrane,

with significantly more low-SR fibers per IHC at high frequencies. A distribution of
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fiber rates per CF is given in Figure 2·3.

Figure 2·3: Distribution of Fiber Type. Conventional extracellular
recording electrodes characterized the spontaneous rate of 4184 indi-
vidual AN fibers in 228 chinchilla along the length of the Organ of
Corti. Reprinted from Temchin et al. (2008)

2.4 Relevant Functional Neuroanatomy of the Auditory Mid-

brain

Ascending from the AN, auditory information passes through multiple brainstem and

midbrain areas en route to the thalamus, and then auditory cortex. A simplified

schematic of sub-thalamic connections is given in Figure 2·4.

ABR Waves III and V are thought to reflect, in part, the synchronous contributions
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of the Cochlear Nucleus and Inferior Colliculus. Therefore, it is important to consider

both the effects of CS as well as more local physiology on the overall ABR.

Figure 2·4: A simplified network diagram of the ascending auditory
pathway in mammals. Pathways in white arise from the DCN; pathways
in black from the VCN. Figure reprinted from Covey (2008).

2.4.1 The Cochlear Nucleus

The primary projection from the AN is the Cochlear Nucleus, an inhomogeneous

structure that is the first auditory relay station located in the ipsilateral medulla of

the brainstem.
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2.4.2 The Dorsal Cochlear Nucleus

Ryugo (2008) demonstrated in cat that low-SR fibers have an anatomical projection

bias towards the small cap of the Dorsal Cochlear Nucleus. While low-SR fibers

project to many areas, the small cap receives input from low-SR fibers exclusively,

suggesting a selective role for low-SR projections. Liberman (1993) found similar

results.

Further, while projections are selective as shown in Figure 2·5, the projections have

relatively shallow but broad arbors. This anatomical specificity of projection com-

bined with a breadth of coverage supports a particular role for low-SR fibers, and does

not rule out the possibility of further specificities in higher brainstem and midbrain

areas.

While the VCN is critically important for binaural processing, the specificities of

projection observed in the DCN suggest an interesting role for synaptopathic losses

that may be more monaural. Further, DCN projects directly to IC, whereas a proper

consideration of contributions from the VCN would require a more involved treatment

of pre-collicular regions such as the superior olivary complex (SOC).

2.4.3 The Inferior Colliculus

The IC has long been regarded as the last pre-thalamic obligate waystation for as-

cending auditory information, and a major center of pre-cortical auditory processing

with many diverse functions (Cant and Benson, 2005; Covey, 2008; Moore and Kitzes,

1985).

Recently, Beebe et al. (2016) has reported at least four morphologically different

GABAergic neural types in IC that react in different ways to auditory stimuli. Con-
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Figure 2·5: Low-SR fibers project to the Small Cap area of the DCN.
From Ryugo (2008), this shows a lateral view of a low SR fiber as
it collateralizes (red) in the rostral and lateral SCC (CF=0.45 kHz;
SR=1.2 s/s; Th=34 dB SPL).
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sidering the recent diversity of IC responses that have been observed and will be

discussed in subsection 2.6.2, this is a tantalizing anatomical observation that may

correlate with electrophysiologically observed behavior.

2.5 Models of the Auditory Periphery

2.5.1 The Verhulst Model

A functional model of the auditory periphery was developed by Verhulst et al. (2015).

As outlined in Figure 2·6, the model consists of a middle ear preprocessing model

adapted from Meddis and Lopez-Poveda (2010). Input is passed to a cochlear trans-

mission line model, which estimates BM displacements and velocities for an arbitrary

number of BM sections (default: 1000). Motions of the BM are translated into IHC

bundle deflections and passed through a nonlinearity. Estimates of the Instantaneous

Firing Rate (IFR) are made by a method adapted from Westerman and Smith (1988),

which implements a three-store diffusion model of synaptic vesicle and neurotrans-

mitter release and reuptake. Unlike the Zilany model, the Verhulst model does not

account for per-fiber noise in spontaneous rate.

The version of the model given by Verhulst et al. (2015) also includes a CN and

IC modeling stage from Nelson and Carney (2004), and the final model output are

estimates of ABR Wave I, Wave III, and Wave V.

2.5.2 The Zilany and Bruce Model

Zilany and Bruce (2006) proposed a phenomenological, signals-driven model of the

auditory periphery. Since its creation, it has been regularly refined and updated

to account for an increasing number of phenomena including estimations of speech

intelligibility (Zilany and Bruce, 2007), long-term IHC adaptation with power-law
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Figure 2·6: Major subunits of the Verhulst transmission line model of
the auditory periphery. Figure is reprinted from Verhulst et al. (2015).
Input (stimulus) and outputs (OAEs, Wave I, Wave III, Wave V) are
in red, and located at their physiologically relevant levels.
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dynamics (Zilany et al., 2009), and updates to more closely model human parameters

(Zilany et al., 2014).

The approach is outlined in Figure 2·7 and consists of a phenomenological power-

law model that has filters for each stage of the periphery. Fractional Gaussian noise

is optionally added per-channel to simulate the stochasticity inherent in AN fiber

spontaneous rates.

Figure 2·7: Major components of the Zilany model of the auditory
periphery. Figure reprinted from Zilany et al. (2009)
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2.6 Models of the Auditory Midbrain and Brainstem

2.6.1 The Nelson-Carney Model

Nelson and Carney (2004) proposed a two-stage phenomenological model of the mid-

brain and brainstem. The Cochlear Nucleus and Inferior Colliculus are each rep-

resented by a single Same-Frequency Inhibition Excitation (SFIE) filter, which con-

volves the output of the previous stage with excitatory and inhibitory alpha functions.

As shown in Figure 2·8, these functions’ delays, amplitudes, and onset times can be

adjusted to provide a tuned response for a given unit, compared to electrophysiologi-

cal measurements. In each case, each unit acts as a band-pass filter tuned to a certain

bandwidth.

2.6.2 The Carney Model

Carney et al. (2015) extended the two-stage Nelson and Carney (2004) model by

the incorporation of three categories of IC responses, compared with the single fil-

ter in subsection 2.6.1, to better account for processing of spectrally complex vowel

tones. As shown in Figure 2·9, the IC is divided into three Same-Frequency Inhibition

Excitation stages.

Based on electrophysiological recordings in awake rabbits, Figure 2·10 shows that Car-

ney et al. (2015) represent 50% of the IC as band-pass responses, 25% as low-pass,

and 25% as band reject filters. The weights were assigned based on the frequency of

representation in IC.

This three-stage IC model more fully accounts for the neural diversities that have

been observed anatomically by Beebe et al. (2016), and is robust at high sound level

and at background noise levels.
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Figure 2·8: The Nelson and Carney Brainstem. Figure reprinted
from Nelson and Carney (2004).
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Figure 2·9: The Carney (2015) Midbrain and Brainstem. Figure
reprinted from Carney et al. (2015)
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Figure 2·10: Different Response Types in the Carney Model. Figure
reprinted from Carney et al. (2015)
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2.7 The Auditory Brainstem Response

The Auditory Brainstem Response (ABR) is a powerful tool for noninvasive measure-

ment of the function of different areas of auditory processing, from the auditory nerve

to the auditory areas of the midbrain.

As outlined in Figure 2·11, the ABR is measured externally with scalp electrodes. A

stimulus, often a click-train, is played monaurally. Over many repetitions, a charac-

teristic waveform trace is obtained which represents the evoked potential generated

by the synchronous activity of neural populations that respond to the stimulus.

Figure 2·11: The Auditory Brainstem Response. Figure reprinted
from Durrant (2008)
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2.8 Candidate Objective Measures of Cochlear Synaptopa-

thy in Humans

To date, there is no objective test in humans that would give definitive insight into

whether or not a patient exhibits signs of HHL, or be able to quantify the degree or

location of impairment.

Mehraei (2015), in an attempt to direct the search for such a diagnostic, correlated

performance in a psychophysical task with markers in ABR. In their work, 23 NHT

listeners participated in a series of experiments to establish a relationship between

task performance and putative cochlear synaptopathy. Cochlear mechanics function

was validated with click-evoked OAEs. A behavioral measure of temporal sensitivity

was established with an ITD envelope detection task with transposed tones. Noise-

masked ABRs were measured with increasing noise level. As shown in Figure 2·12,

Wave V latencies in increasing noise correlate with performance on ITD detection.

It is hypothesized that the combination of high sound levels used and broadband noise

maskers for ABRs both preferentially drive low-SR fibers and recruit their resistance

to background noise. Therefore, a synaptopathy-mediated decrease in low-SR fiber

contributions would drive down the latency shifts observed.
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Figure 2·12: Latencies in increasing noise correlate with performance
on ITD detection. Figure reprinted from Mehraei et al. (2016).
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Chapter 3

Aims

This thesis investigates several models of the peripheral and central auditory systems

and the utility of their predictive abilities for cochlear synaptopathy in simulations

of human audition.

Three aims were established. First, to develop a coherent modeling environment

that combines models of the middle ear, auditory nerve, and auditory brainstem and

midbrain from Carney et al. (2015); Nelson and Carney (2004); Verhulst et al. (2015);

Zilany et al. (2014) into one software package where the utility of each model could be

compared head to head. Second, to advance the state of the models of the auditory

periphery by extending them with new capabilities supported by available anatomical

and physiological research. Third, to use the developed tool to explore the proposed

mechanisms underlying psychophysical and large-scale electrophysiological studies of

cochlear synaptopathy with higher fidelity.

3.1 Aim I. Simulate the ABR Response of a Noise-Masking

Task with Variable SR Contributions and Model Param-

eters

A modeling environment was created. It incorporates two peripheral models of the

auditory system: the Zilany model with humanized parameters (Zilany et al., 2014)
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and the Verhulst model (Verhulst et al., 2015).

The Cochlea modeling environment (Rudnicki and Hemmert, 2014) was used to pro-

vide easy incorporation of the Zilany model into the new modeling environment. The

transmission-line model of Verhulst et al. (2015), which has the potential to perform

better in broadband noise due to its accounting for cochlear dispersion, was directly

integrated. At the conclusion of this aim, direct comparisons between the estimates

of ABR Wave I and Wave V by Zilany et al. (2014) and Verhulst et al. (2015) were

performed for a variety of experimental conditions.

3.2 Aim II. Integrate Improved Brainstem Models

We hypothesized that the current approach to IC modeling taken in Mehraei et al.

(2016); Verhulst et al. (2015) does not fully account for the responses to a low-SR

knockout AN model, and consequently under-represents the effects on the ABR Wave

V that have been experimentally measured.

In particular, an extension of the approach currently taken by Verhulst et al. (2015)

was presented by Carney et al. (2015). It provides multiple classes of IC neurons

that were shown to track complex tones (vowel formants) in noise. To guide the

selection of model weights and connectivities, relevant neuroanatomical literature was

consulted. Crucially, studies by Ryugo (2008) and others have shown selectivities in

SR projections to the small cap of the DCN, which will guide our modeling work by

introducing specificities in weighting.

Further, while the latency change trend is preserved between both the models pro-

posed by Zilany et al. (2014) and Verhulst et al. (2015), the magnitude of the effect is

greatly different. This discrepancy may be remedied by introduction of new IC mod-

eling components, which are better incorporated in the Zilany et al. (2014) model.
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3.3 Aim III. Relate Model Responses to Psychophysical Mea-

sures

We will compare subject Wave V latency data from Mehraei (2015) and Mehraei et al.

(2015) as ground truth to the improved model output. Interpreting the relative effects

of different modeling parameters may elucidate which aspects of the auditory periph-

ery are important in the further study of cochlear synaptopathy and its contribution

to hidden hearing loss.
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Chapter 4

The Corti Modeling Framework

4.1 Chapter Summary

This chapter gives a detailed description of Corti, the modeling environment created

for this thesis. First, the configuration of the overall system is detailed. Second, the

configuration and use of two models of the auditory periphery are detailed. Third,

the creation of compound action potentials and population responses of the auditory

nerve are given. A method for the simulation of cochlear synaptopathy is also detailed,

along with a new incorporation of a nonlinear distribution of auditory nerve fiber types

as a function of center frequency. Fourth, the use of these auditory nerve responses

in simulation of the auditory brainstem and midbrain with two models are given,

culminating in the creation of modeled Auditory Brainstem Responses. Finally, the

utility of the system for large-scale simulation is shown.

4.2 Overview of Modeling Framework

The modeling framework created for this thesis has been named Corti (Voysey, 2016).

It is architecturally inspired by the EarLab project developed at Boston University as

well as the Cochlea (Rudnicki and Hemmert, 2014) modeling environment developed

at the Technical University of Munich, from which it incorporates a peripheral model.
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Corti is a command-line tool written in Python. As detailed in Figure 4·1, it is de-

signed to produce estimates of the ABR, auditory nerve fiber, CAP, brainstem and

midbrain responses to an arbitrary stimulus. A set of configuration parameters, spec-

ified by the user, determine which models are used and how they are interconnected,

as well as the spatiotemporal properties of the stimulus.

4.2.1 Software Design

Corti has been designed to be an easy to use and flexible command-line tool that

should be immediately usable to anyone interested in auditory modeling and who is

familiar with basic auditory physiology and engineering. It has a fully documented

user interface, requires no special system configuration to use, and runs on Linux,

Windows, and OSX.

Corti is publicly available and open source. It is licensed under the GNU GPLv3, and

as such is free to distribute, use, and be contributed to by anyone. The file format

used to store large simulation output is the Hierarchal Data Format (HDF5), which

is a database-in-a-file that can be analyzed and accessed by any operating system and

any modern programming language—while Corti is written in Python, analysis of its

output may be done in matlab, R, SPSS or any other modern data analysis tool.

Corti was designed so that its output can be easily audited and examined to know not

only which biophysical parameters were used, but also know comprehensive metadata

about the simulation itself. For example, model output contains which version of each

model was used, the date and time of the computation, a copy of the stimulus used

to stimulate the models, and a comprehensive record of other relevant parameters.

Additionally, the development history of Corti is publicly accessible on the collabora-

tive software repository website GitHub (https://github.com/gvoysey/corti). Every

https://github.com/gvoysey/corti
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change made, and every version released, is available so direct comparisons between

outputs can be made, and software bugs fixed in a central location. A permanent

archive of the version of Corti described in this thesis has been assigned a Doc-

ument Object Identifier (DOI), and is available via Zenodo (https://zenodo.org/

record/57111), which is an EU and CERN funded research data repository. At the

time of this writing, Corti has been used to run simulations by research groups at

Boston University, the Massachusetts General Hospital, the Carl von Ossietzky Uni-

versity of Oldenburg, and the Technical University of Denmark.

4.2.2 Configuration Options Define a Parameter Space

As detailed in Chapter 2, the constituent models of this framework each require many

choices of user-selected parameters, ranging from sampling frequency to the time

constants and relative strength and latency of inhibitory and excitatory contributions

of brainstem areas. Several other parameters are introduced in the framework itself,

as well as the choice of which model to use for each stage. Because these parameter

choices directly modulate the simulation output, it quickly becomes natural to treat

these different options as a high-dimensional parameter space.

Any single run of the framework, using one collection of user-specified options, defines

a particular trajectory though this space.

4.3 Simulation using Corti

As shown in Figure 4·1, a full simulation using Corti involves three primary processing

stages: the Peripheral, Auditory Nerve, and Brainstem / Midbrain. The next sections

of this chapter will treat each stage in detail.

https://zenodo.org/record/57111
https://zenodo.org/record/57111
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Figure 4·1: Overview of the Corti modeling environment. In the Periphery
region (blue), either the Zilany or Verhulst models produce estimates of IFRs for AN
fibers from user-supplied stimuli. In the Auditory Nerve region (green), IFR estimates
for each AN fiber type are combined into the CAP. In the Brainstem/Midbrain region
(yellow), the CAP is convolved with CN and IC models to produce an ABR.
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4.4 Peripheral Models

The Peripheral stage takes a stimulus and produces estimates of the Instantaneous

Firing Rate for three fibers per CF. Two models of the auditory periphery are in-

cluded: the transmission-line model by Verhulst et al. (2015) (henceforth “The Ver-

hulst model”) and the phenomenological model by Zilany et al. (2014) (henceforth

“The Zilany model”). This section corresponds to the first stage of Figure 4·1, high-

lighted in blue.

As detailed in Figure 4·2, both the Verhulst and Zilany models simulate the response

of the peripheral auditory system to a pressure wave, and both produce time-series

estimates of Instantaneous Firing Rates (IFRs) for an arbitrary number of inner hair

cells which are tonotopically distributed along the length of the basilar membrane via

the Greenwood function.

4.4.1 Accounting for Variations in Spontaneous Rates Between Models

While both the Zilany and Verhulst models produce estimates of the instantaneous

firing rate of the auditory nerve, the means by which they do so are different enough

that care must be taken in directly comparing their estimates.

The classification of SR types by mean spontaneous firing rate differs between the

Zilany and Verhulst models. The Zilany model defines a low-SR fiber to have a

spontaneous rate of 0.1 spikes/second, a medium-SR fiber to have a spontaneous rate

of 10 spikes/second, and a high-SR fiber to have a rate of 100 spikes/second. The

Verhulst model defines these values as 1, 10, and 60 spikes/second, respectively. As

discussed in subsection 2.3.2 and subsection 4.5.2, Temchin et al. (2008) combine low-

and medium-SR fibers into one population and define it to have a spontaneous rate

of less than 18 spikes/second. For the purposes of this work, both the Zilany and
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Figure 4·2: The Peripheral stage. All model inputs are shown; inputs
in italics are used in later stages. Three estimates of fiber IFRs are
always produced (black bordered boxes) and are passed to the Auditory
Nerve modeling stage. The Verhulst model may also produce other
output (grey dashed boxes) which can be optionally stored, but is not
used for ABR estimation.
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Verhulst model support this approach.

Therefore, while both the Verhulst and Zilany models support classification of spon-

taneous rates into three categories, for the purposes of weighting fiber types both low-

and medium-SR populations may be treated identically.

4.4.2 Weighting of IHC contributions

To determine which proportion of the total contribution of a given hair cell arises

from fibers of a given spontaneous rate, the Verhulst model applies a scalar weighting

factor to the summed Auditory Nerve Response using an undamaged nerve with 19

total fibers. Three fibers are assigned for low- and medium- SR fibers and 13 for

high-SR fibers per hair cell.

Once each hair cell’s contribution has been computed and summed into the total

response, a scalar weighting factor was empirically chosen such that the modeled and

summed response of IHCs with CFs between 175Hz and 20kHz produces a model

ABR Wave I amplitude of 15 µV. For the Verhulst model, Verhulst et al. (2015)

found the value of this weighting factor to be 0.15µV × 2.7676e−7. This weighting

factor is given as a product to emphasize that it directly fixes the peak Wave I output

at 15µV.

To produce comparable results in this work, the Zilany model was scaled accordingly.

We iteratively converged on a scaling factor that produced an ABR Wave I amplitude

of 15µV±1nV, which was found to be 0.15µV × 7.302 82e−7.

4.4.3 The Verhulst Model

The Verhulst model is particularly well-suited for modeling broadband stimuli. Since

it is a transmission line model which gives estimates for the position and deflection
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of the entire basilar membrane even to a pure tone stimulus, it naturally accounts

for dispersive effects, and produces detailed information about many stages of sound

propagation. Though not used in this work, the Verhulst model is also capable of

modeling Otoacoustic emissions in response to complex stimuli.

Since the development of the Verhulst model is still underway by Verhulst et. al., it

has been programmatically isolated in a separate package. This provides a separation

of concerns between the projects, and allows both Corti the modeling framework, and

the Verhulst model itself to be updated independently of each other as new features

are made available in both.

4.4.4 The Zilany Model

The Zilany model is a very commonly used model of the auditory periphery, and

robustly accounts for many phenomena observed electrophysiologically to complex

stimuli. The model was originally developed based on measurements in cat (Zilany

and Bruce, 2006), and has since been updated to account for spectrally complex

sounds via power-law adaptation (Zilany and Bruce, 2007) and later with humanized

parameters to better reflect psychophysical data (Zilany et al., 2014).

The implementation of the Zilany model here was adapted from Rudnicki and Hem-

mert (2014), who provided a Python and C implementation that has been shown to

produce identical output to the version documented by Zilany et al. (2014).

4.4.5 Peripheral Model Output

The Verhulst model provides estimates of response behavior at many stages of the

of the auditory periphery. For models of motion in the middle ear, estimates are

computed for each basilar membrane section. By default, the BM is divided into



34

1000 section. Each section corresponds to one CF, where the place-frequency map is

obtained via the Greenwood function.

While running the simulation, the following model outputs may be stored to disk for

further analysis:

1. Basilar membrane velocities for each section.

2. Basilar membrane displacements for each section.

3. Inner hair cell receptor potentials.

4. IFR for a high spontaneous rate fiber.

5. IFR for a medium spontaneous rate fiber.

6. IFR for a low spontaneous rate fiber.

7. The Otoacoustic emission.

The Zilany model, as implemented, provides IFR estimates only. Hair cell potentials

could also be modeled, but are omitted.

Both models provide estimates of Instantaneous Firing Rate as a function of post-

stimulus time for each combination of fiber type and best frequency, and these are

passed to the next stage of the Corti environment.

4.5 Auditory Nerve Response Models

This stage of processing converts IFRs of specific fiber populations made by either

the Zilany or Verhulst model into an estimate of the summed activity of the auditory

nerve. It corresponds to the green-shaded region of Figure 4·1, and is outlined in

detail in Figure 4·3. Depending on the parameters chosen, output of either the Zilany

or Verhulst peripheral models are first summed into a population response of the AN



35

by one of two means. Next, degradation of the population response that corresponds

to a model of synaptopathy is applied; finally, the summed population response is

passed to the midbrain and brainstem models.

Figure 4·3: The Auditory Nerve Stage. Single IFR estimates for fiber
types at each CF are weighted to produce an estimate of the total IFR at
each IHC/CF. These are optionally degraded to model synaptopathy,
weighted to produce physiologically appropriate Wave I amplitudes,
and summed into the total population response of the Auditory Nerve.

4.5.1 Modeling the Contributions of Inner Hair Cells

The output of the Zilany and Verhulst peripheral models are IFRs for one stereotypical

AN fiber of each SR type per CF. However, tens of fibers synapse on each IHC along

the length of the cochlea. Consequently, to generate an estimate of IFR per CF or

per BM section, each stereotypical AN fiber must be scaled by some weighting factor

so that its output becomes an estimate of the summed IFRs of its SR category for a

given IHC. Based on anatomical data (Liberman, 1978), the Verhulst model assigns
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19 fibers to each inner hair cell. The Zilany model makes no inherent assumptions

about the number of fibers per IHC. To maintain equivalence with the Verhulst model

and allow like-to-like comparison of model output, IFR estimates from both models

are distributed among 19 fibers.

In Figure 4·1, this process is the first contribution of the AN processing area in green,

and is accomplished by either a constant or nonlinear weight.

4.5.2 Weighting of Fiber Types per IHC

Based on data from Temchin et al. (2008), and as reviewed in Section 2.3, the distri-

bution of SR fiber types per IHC may not be uniform along the length of the basilar

membrane. To account for this, we have extended the linear distribution of fiber

types per hair cell with the option of a logistic distribution as a parameter. As shown

in Figure 4·4, experimental data for SR distribution as a function of CF was fitted

via logistic regression in matlab, and this regression function was used to generate

an empirical estimate of SR type.

The empirical logistic fit equation that estimates p, the percentage of fibers with

spontaneous rates below 18 spikes/sec innervating a given inner hair cell as a function

of best frequency was found to be:

p(cf ) = 21 +
k

1 + e−r·(cf−cf 0)
(4.1)

where k = 22, r = 9e−6 and cf 0 = 2500.
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Figure 4·4: Experimental results (blue circles) reported by Temchin
et al. (2008) were fit to a logistic model (red solid line).
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Fractional Weights

A consequence of the IFR weighting approach taken here is that while the total fiber

count per IHC is fixed at 19 fibers, the percentage of the summed response of that

IHC that arises from a given fiber type is not guaranteed to represent an integer

number of fibers. For example, a CF of 8 kHz has 42.9 percent of its innervating

spiral ganglia with spontaneous rates below 18 spikes/second, or a total of 8.133 low

and medium spontaneous rate fibers.

Therefore, it is appropriate to think of the modeled IFR values as the weighted

contributions of a SR type to the overall IFR originating from a particular CF, rather

than the summed responses of integer numbers of individual fibers. In the context of

producing auditory nerve responses—as are used in this work—this can be thought

of as providing a more accurate representation of summed physiological responses.

Model responses of unitary fibers of different spontaneous rates are saved in the

peripheral output, if desired.

4.5.3 Modeling Synaptopathy

Cochlear synaptopathy is the loss of the synapse between an inner hair cell and

an individual spiral ganglion. At the level of the summed auditory nerve response,

selective degradation is modeled by reducing the contribution of each fiber type per

hair cell by a scaling factor.

Six predetermined severity levels, as given in Figure 4·5 were chosen to model cochlear

synaptopathy, all of which behave similarly. In each case, the portion of the response

from a hair cell of a given center frequency is scaled by a percentage of its magnitude

before being summed into the auditory nerve response.
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lowSR medSR highSR
none 0 0 0
mild 10 10 10

moderate 25 25 25
severe 50 50 50
ls-mild 10 10 0

ls-moderate 25 25 0
ls-severe 50 50 0Sy

na
pt
op
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hy
	T
yp
e

Percentage	Degradation

Figure 4·5: The default types of cochlear synaptopathy that may be
simulated. The percentage by which the IFRs of a given fiber type
are reduced are given in each row. In the case of the Low SR (ls)
synaptopathies ls-mild, ls-moderate, and ls-severe, only the low- and
medium- SR fibers are degraded.
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4.6 Brainstem Models

This section details the two brainstem models in use, given by Nelson and Carney

(2004) and Carney et al. (2015). These correspond to the yellow region of Figure 4·1,

and are detailed in Figure 4·6.

Figure 4·6: The Brainstem and Midbrain stage. The summed Au-
ditory Nerve population response is convolved with Same-Frequency
Inhibition/Excitation models to produce estimates of the Cochlear Nu-
cleus response. Wave I estimates are made from the AN response. The
response of the IC is simulated with one or three SFIE model(s), de-
pending on which brainstem model was chosen. From the CN and IC
responses, estimates of Waves III and V are made.

4.6.1 Choice of Best Modulation Frequency

The included models of the CN and IC are tuned to a best modulation frequency

(BMF)—i.e., the stimulus modulation frequency at which they have a peak response—

of 100 Hz, as this was found by Carney et al. (2015) to be the most relevant modulation
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frequency for speech-like complex sounds such as vowel formants. These responses

thus may be regarded as Modulation Transfer Functions (MTF). It is not clear the

extent to which the CN or IC possess a “MTF filter-bank”, where units are tuned to

multiple BMFs, so this has not been implemented.

4.6.2 The Nelson Carney 2004 Brainstem

In the case of the simpler brainstem and midbrain model of Nelson and Carney (2004),

the CN and IC are both represented as single processing stages where an excitatory

and inhibitory alpha function are convolved with, in the CN, the ANR population

response, and in the IC, the output of the CN stage.

Figure 4·7: Overview of the processing stages of the Nelson-Carney
brainstem model and model output at various stages for an 80dB click
stimulus. Coefficients, which define the excitation and inhibition onset
times and amplitudes for the CN and IC, are given.
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4.6.3 The Carney 2015 Brainstem

In the case of the more complex model proposed by Carney et al. (2015), the IC

processing stage incorporates three types of filters, which better reflect the diversity

of neural responses observed electrophysiologically.

Weights of contribution for each type are as shown in Figure 4·8, and were chosen

to represent the relative magnitudes of effect observed by Carney et al. (2015) in

electrophysiological study. Weighing is uniform across center frequency.

Figure 4·8: Overview of the processing stages of the Carney et al.
(2015) brainstem model for an 80dB click. Coefficients and weights
for the three-stage IC model are shown; other parameters are as in
Figure 4·7
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4.7 Stimulus Generation

Corti supports simulations of stimuli of arbitrary duration and level. Simple stimuli

such as clicks are generated programmatically by specifying a series of parameters

such as onset time and duration.

More complex stimuli can be created and passed in as WAV files. All WAV stimuli

must specify the sound level, in dB SPL re 20µPa, at which they should be presented;

the waveform is then normalized by the peak value (in the case of a click) or the RMS

value (for spectrally complex stimuli) and rescaled to have units of Pascals prior to

simulation.

4.8 Automated Parameter Exploration

Corti may be run in one of two modes. In the first, a single set of parameters defines

a single trajectory and the model is run once. However, while this mode of operation

is convenient for fast simulations whose parameters can be defined a priori, it rapidly

becomes impractical for situations where the relative effects of different parameter

choices are to be compared, and reliable book-keeping of which parameters were used

to generate which results becomes unnecessarily challenging.

Therefore, a second means of use was created, as detailed in Figure 4·9. The core

of this mode is the Python Parameter Exploration Toolkit (Meyer and Obermayer,

2016). It provides the tools to allow a convenient interface to explore the parameter

space generated by the specification of many available models, impairments, and

options in a manner that allows easy post-hoc analysis. Individual trajectories may

be computed in parallel on a single workstation or in a high-performance cluster so

that the relative effects of each model, neuropathic impairment, and other features
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may be directly compared. The results for all combinations of model components are

stored in one Hierarchical Data Format (HDF5) file. Comparisons of the effect of

using different trajectories to the same stimuli (cross parameter differences) can then

be made in a way that guarantees an internally consistent analysis.

Figure 4·9: Automated exploration of model parameters Each
element Pi in the matrix is a representation of one set of multiple
parameter values that specify one trajectory through the parameter
space. A total ofN trajectories, whereN is the Cartesian product of the
specified value ranges that a given parameter may take, are computed
in parallel and stored in a database for further analysis. Three possible
analyses are shown: computation of a model ABR, visualization of
population responses, and cross-parameter differences, or comparisons
between trajectories.

4.8.1 Design of New Experiments

While Chapter 5 focuses on a particular combination of trajectories, designed to repli-

cate and explore the contributions of different modeling considerations to a particular

stimulus, the method presented in Section 4.8 is much more generally applicable. Us-

ing Corti, one can easily design and run many other modeling experiments using these
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techniques for a wide variety of stimuli or parameter values without modification of

the code of the core model functionality.
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Chapter 5

Example Model Usage

5.1 Chapter Summary

This chapter describes the results obtained when using the modeling environment

described in Chapter 4.

5.2 Modeling a Human Noise-Masked ABR

The model ABR in response to a click-train in noise was computed for a variety of

masker ratios. The experiment design tool described in Section 4.8 was used to specify

a range of values for each parameter in Corti to reveal the relative contributions of

each.

5.3 Quantification of Model Changes are Level Sets

Five free parameters—stimulus, peripheral model, brainstem and midbrain models,

synaptopathy, and IHC weighting—were varied over the course of all simulations.

Quantification of single parameter changes can be best accomplished by considering

the effect of a change of the value of an individual parameter while all others are held

constant. In this way, the level set of the parameter space may be considered.
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In all cases, the effects of a parameter change is of interest for the same two objective

measures: Wave I amplitude, and Wave V latency change. Consequently, visualization

of each level set is most intuitive by projecting it onto those axes.

5.3.1 Stimuli

Following the work of Mehraei et al. (2016), six stimuli were programmatically gen-

erated and stored as WAV files with a sampling frequency of 100 kHz. As shown in

Figure 5·1, stimulus onset was delayed by 50 µs of silence, and then consisted of 80

dB SPL clicks with a repetition rate of 100 ms in the presence of Gaussian noise at

different signal to noise ratios.

Importantly, these stimuli are all well above the threshold of audibility; the aim is to

obtain a response of the auditory models as they react robustly to a clearly audible

input.

All other parameters values—choice of peripheral and brainstem model and logisti-

cally weighted fiber distributions—were fully explored.

In total, 240 separate simulations were run in parallel on Boston University’s high-

performance computing cluster over the course of approximately 9 days. Model output

was automatically stored into a HDF5 database approximately 250 GB in size.

5.4 Effect of Cochlear Synaptopathy

The effects of four types of synaptopathy—moderate, severe, low-SR specific mod-

erate, and low-SR specific severe—were simulated, with the synaptic degradation

parameters as given in Figure 4·5.

The effect of fiber loss on Wave V peak latency and Wave I peak amplitude for all
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Figure 5·1: Stimuli used to drive the auditory models. All stimuli
were an 80dB SPL click train with a 100ms spacing between clicks. A
white Gaussian noise masker was added at five different masker levels.
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Figure 5·2: The effects of varying degrees of synaptopathy on model
responses to a stimulus at multiple noise levels. Some traces are present
but not visible as they precisely overlay other results.
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other parameter combinations are given in Figure 5·2.

Consistent with prediction and prior experiment, Wave I amplitudes decrease as a

function of synaptopathy, as well as a function of increasing noise masker level. Se-

lective loss of low SR fibers closely follow their corresponding all-fiber degradation

models, suggesting that low-SR degradation at the simulated severities don’t con-

tribute towards amplitude changes in the presence of high level noise maskers.

Wave V latencies exhibit a consistent increase in latency relative to a pure click train,

consistent with observations by Mehraei et al. (2016), but latency magnitudes are not

significantly affected by modeled synaptopathy.

5.5 Effect of Peripheral Model Choice

Because we observe little difference in the Wave I and Wave V responses as a function

of the types of synaptopathy modeled in Section 5.4, the relative effects of peripheral

and brainstem model types can be explored while holding the type of synaptopathy

fixed. This temporarily removes one dimension of the parameter space.

The effects of peripheral model choice on Wave V peak latency and Wave I peak

amplitudes are given in Figure 5·3. In general, the Verhulst model predicts both larger

Wave V latencies and larger changes as a function of SNR compared to the Zilany

model, which predicts generally small to no change in latencies. This is contrary to

earlier modeling results, which suggest the opposite effect of peripheral models.

Wave I amplitude estimations follow similar shapes for each peripheral model. While

both produce physiologically plausible responses, the Verhulst model predicts ampli-

tudes approximately half the magnitude of the Zilany model.
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Figure 5·3: Effects of Peripheral Models on Wave I peak amplitude
and Wave V peak latency
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5.6 Effect of CF weighting

The effects of logistically weighing the fiber type distribution along the basilar mem-

brane is given in Figure 5·4. Surprisingly, there was very little relative effect with the

Verhulst model to either Wave V latency or Wave I amplitude.

In contrast, the Zilany model showed consistent suppression of Wave V latency and

elevation of Wave I amplitudes relative to non-weighted responses.

5.7 Effect of Brainstem Model Choice

The effects of a more complex brainstem model is given in Figure 5·5. No effects

are observed for Wave I amplitudes, as Wave I originates at the level of the auditory

nerve.

Slight elevations of Wave V latencies are observed with the Zilany periphery.
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Figure 5·4: Effects of CF Weighting on Wave I peak amplitude and
Wave V peak latency
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Figure 5·5: Effects of Brainstem Models on Wave V peak latencies.
Wave 1 amplitudes arise from the compound action potential of the AN
alone, and are unaffected by the brainstem model.
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Chapter 6

Discussion

6.1 Chapter Summary

This chapter compares the results obtained in this thesis with the human results

obtained by Mehraei et al. (2016), and offers justifications and possible explanations

for their similarities and differences.

6.2 Nonlinear Behaviors in the Verhulst Model

During the course of this work, an unexpected phenomenon was observed in the

behavior of the Verhulst model in its response to stimuli of long duration. In response

to a sustained pure tone stimulus, the model predicts a strong response along the

sections of the basilar membrane near the frequency of the pure tone, consistent with

intuition. Further, the model predicts small amplitude BM displacement at higher

frequencies, correctly reflecting dispersion of energies along the BM. However, at

the level of the IHC synapse, the off-frequency firing rate estimates are several times

larger than the on-frequency response, and fall outside physiological boundaries. This

behavior is not consistent with the BM displacement predictions of the previous stage

of the model.

To relate basilar membrane displacement to IHC firing rates, the Verhulst model im-
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plements a three-store synaptic diffusion model adapted from Westerman and Smith

(1988) and extends it to have place-dependent initial values of vesicle state. Follow-

ing Liberman (1978), the saturated firing rate of a hair cell was also adapted to be

place-dependent and used as a reset threshold for the diffusion model parameters.

It is possible that in certain situations, this threshold is never reached and thus the

firing rate estimate grows disproportionately, leading to the observed large-magnitude

response at high frequencies to a low frequency tone.

This behavior would potentially overestimate the off-frequency basal (high frequency)

response to a sustained, more apical (low frequency) stimulus. However, some evi-

dence exists (Kiang and Moxon, 1974; Yates et al., 1990) that basal responses to

low-frequency stimuli can approach threshold in some cases, so an a priori prediction

of supra-threshold firing rate at high frequencies to a low frequency tone may not be

inconsistent with predictions from physiological data.

6.3 Consequences of AN Population Response Modeling

To obtain the total contribution of one inner hair cell, and thus one CF, to the

population response of the AN, the model scales the responses of a low-, mid-, and

high-spontaneous rate modeled fiber by three linear weights, thus reflecting what

proportion of spiral ganglia belong to a given category for that IHC. This approach

makes two interrelated assumptions.

First, it assumes that the spontaneous behavior of a given fiber is sufficiently similar

to that of all others of its spontaneous rate category that it is not necessary to simulate

each fiber individually. In the case of the Verhulst model, this assumption is realistic

since the model considers spontaneous rates to be fixed per fiber type. However,

the Zilany model may be configured so that estimates of spontaneous rate contain
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additive white Gaussian noise with a different random seed for every simulation, so

the firing statistics of a given fiber may differ both from others of its spontaneous

rate class and from itself over sustained periods or repeated simulations.

Second, as a result of the stochasticity of the Zilany model, it would potentially be

informative to investigate the loss of individual fibers in a Monte Carlo simulation to

address the variance in model responses. This would further complicate simulation

and increase the dimensionality of post-hoc analysis.

These assumptions make computation of AN responses practical: only three fibers

per CF are modeled. Using the default parameters that were used in this work, 3,000

fibers were simulated per model iteration. Simulating each fiber individually with

individual stochastic spontaneous rates would incur a tenfold increase in the number

of fibers to simulate, suggesting that a full exploration of the parameter space, as

was done in this work, would take approximately 90 days to compute on the same

computing infrastructure.

At the same time, it would more accurately reflect the consequences of cochlear

synaptopathy. To the extent that the random noise in a fiber’s spontaneous rate is

orthogonal to that of any other fiber of the AN, and to the extent that this noise

has random phase, any individual fiber will contribute a different amount to the

compound action potential of the AN and its loss is not well represented by the

current approach.

6.4 Nonlinear Synaptopathic Models

The unexpectedly small effects of modeled synaptopathy on the overall model output

may in part be due to the uniformity of the synaptopathic impairment that was

simulated. While modeled impairment was specific to fibers of different spontaneous
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rates, it was applied uniformly over all CFs, as the variability of fiber type distribution

per CF would impair some frequency ranges more than others for a given neuropathic

condition.

However, sensorineural hearing loss, particularly age-related hearing loss, is often

specific to high frequencies while leaving low frequency bands largely unchanged.

Noise-induced or ototoxic hearing loss may have a narrower frequency band, leading

to a notched audiogram while leaving other frequencies at normal thresholds, and

models of synaptopathy that reflect these more complex losses may have more complex

effects on simulation output.

Because the ABR arises from the synchronous activity of entire nerves or brainstem

or midbrain areas, a frequency selective perturbation of the output of the AN should

produce an effect of greater magnitude than the synaptopathy modeled in this work.

The minimal changes in Wave I peak amplitude are expected. Liberman et al. (2014)

and others have demonstrated the robustness of audiometric thresholds in animals

with as little as 20% of the original hair cell population intact, so the preservation of

the AN compound action potential is consistent even with very severe synaptopathy.

Wave I peak amplitudes will also vary with the stimulus.
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Chapter 7

Conclusion

7.1 Summary

A model environment that allows the direct differential comparison of two different

models of the auditory periphery, the auditory nerve, and two different models of the

midbrain and brainstem was created and tested. It incorporates new functionality

in the form of a more sophisticated approximation of the population response of the

auditory nerve that is aligned with recent anatomical and physiological work.

Further, a tool to robustly explore the summed parameter space of all of the compo-

nents of the modeling environment was implemented to allow modeling experiments

to be reliably designed and run, and produce results that can be analyzed in any

language and distributed with confidence.

The utility of the modeling environment was shown in the exploration of the con-

tributions of model parameter effects in the simulation of ABRs. In comparison to

human measurements in the same task, the addition of CF-weighted auditory nerve

responses more closely matched the experimental results than prior models.
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7.2 Future Directions

The modeling environment created for this thesis allows a new level of flexibility to

study the effects of complex pathologies and investigate theories of mechanisms of

hearing impairment in the subcortical processing areas of the human nervous system.

Further, it provides a straightforward means by which component models may be

easily updated and improved, and by which new models may be added.

The following areas are those which are mostly likely to be immediately fruitful in

continuing this work.

7.2.1 Modeling of Specific Hearing Loss Types

An important step forward would be the incorporation of more complex synaptopathic

degradations. For example, very severe synaptopathies such as those that result in

audiometric threshold shifts, or cases where losses are specific not only to fiber type

but also to CF could provide new insights into the roles of off-frequency listening in

a degraded auditory periphery.

Another approach for investigating the role of low-SR fiber loss in HHL could involve

the combination of CF weighting of fiber distribution with models of high-frequency

hearing loss. At the stimulus levels simulated in this work, frequency tuning along

the BM is significantly less sharp than it is at threshold. This broadening of tuning

curves has significant implications if fiber loss sufficient to induce HHL occurs pref-

erentially at high frequencies where low-SR fibers are prevalent. In the context of

speech in noise, these areas of the cochlea may be thought to be too high frequency

to significantly affect speech coding, but at supra-threshold levels, this may not the

case. Consequently, if those same areas synapse with a higher percentage of low-SR,

slower-saturating fibers which are preferentially damaged by noise and age, the effects
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on signal detection in real world environments may be significant.

If high frequency losses are shown to produce degraded representations of speech,

this would offer interesting evidence in the possible role of low-SR fibers in nominally

off-frequency listening. At sound levels routinely encountered in daily life, frequency

tuning curves are quite broad. Potentially, this would allow high frequency areas,

which have more low-SR fibers that saturate more slowly, to contribute to AN re-

sponses to speech with most energy at lower frequencies. High frequency hearing loss

that preferentially damaged low-SR fibers would disrupt that hypothetical mecha-

nism. The modeling environment created for this work could drive prediction and

experimental design to probe this question.

7.2.2 Anatomically Inspired IC Weighting

The proportion of band-pass, band-reject, and low-pass units in Carney et al. (2015)

were held fixed throughout this work. However, there is some anatomical evidence to

suggest that selectivity in projections from the CN to IC could isolate ascending CN

inputs to discrete areas of IC, where the distribution of neural response properties

may be nonuniform. This anatomically driven specificity could impose nonuniform

latencies on frequency-specific portions of the AN compound action potential, which

has the potential to substantially affect Wave V delays.

With the increasingly detailed physiological tools now available, were such inhomo-

geneities to be characterized, they could be modeled by adapting the IC input weights

to more accurately reflect the behavior of the IC to ascending input.



References

Beebe, N. L., Young, J. W., Mellott, J. G., and Schofield, B. R. (2016). “Extracel-
lular Molecular Markers and Soma Size of Inhibitory Neurons: Evidence for Four
Subtypes of GABAergic Cells in the Inferior Colliculus.” Journal of Neuroscience,
36(14), pp. 3988–3999. issn: 0270-6474. doi: 10.1523/JNEUROSCI.0217-16.2016
(cited on pp. 11, 16).

Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., and Shinn-Cunningham,
B. G. (2015). “Individual Differences Reveal Correlates of Hidden Hearing Deficits.”
Journal of Neuroscience, 35(5), pp. 2161–2172. issn: 0270-6474. doi: 10 . 1523/
JNEUROSCI.3915-14.2015 (cited on p. 2).

Bharadwaj, H. M., Verhulst, S., Shaheen, L., Liberman, M. C., and Shinn-Cunningham,
B. G. (2014). “Cochlear neuropathy and the coding of supra-threshold sound.”
Frontiers in Systems Neuroscience, 8, p. 26. issn: 1662-5137. doi: 10.3389/fnsys.
2014.00026 (cited on p. 2).

Bourien, J., Tang, Y., Batrel, C., Huet, A., Lenoir, M., Ladrech, S., Desmadryl, G.,
Nouvian, R., Puel, J.-L., and Wang, J. (2014). “Contribution of auditory nerve
fibers to compound action potential of the auditory nerve.” Journal of Neurophys-
iology, 112(5), pp. 1025–1039. issn: 0022-3077. doi: 10.1152/jn.00738.2013 (cited
on p. 8).

Cant, N. B. and Benson, C. G. (2005). “An atlas of the inferior colliculus of the gerbil
in three dimensions.” Hearing Research, 206(1-2), pp. 12–27. issn: 03785955. doi:
10.1016/j.heares.2005.02.014 (cited on p. 11).

Carney, L. H., Li, T., and McDonough, J. M. (2015). “Speech Coding in the Brain:
Representation of Vowel Formants by Midbrain Neurons Tuned to Sound Fluctu-
ations.” eNeuro, 2(4), pp. 1–12. issn: 2373-2822. doi: 10.1523/ENEURO.0004-
15.2015 (cited on pp. 16, 18, 19, 23, 24, 40, 42, 61).

Cherry, E. C. (1953). “Some Experiments on the Recognition of Speech, with One and
with Two Ears.” The Journal of the Acoustical Society of America, 25(5), p. 975.
issn: 00014966. doi: 10.1121/1.1907229 (cited on p. 1).

Cler, M. J., Voysey, G. E., and Stepp, C. E. (2015). “Video game speech rehabilitation
for velopharyngeal dysfunction: Feasibility and pilot testing.” In: 2015 7th Interna-

62

http://dx.doi.org/10.1523/JNEUROSCI.0217-16.2016
http://dx.doi.org/10.1523/JNEUROSCI.3915-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.3915-14.2015
http://dx.doi.org/10.3389/fnsys.2014.00026
http://dx.doi.org/10.3389/fnsys.2014.00026
http://dx.doi.org/10.1152/jn.00738.2013
http://dx.doi.org/10.1016/j.heares.2005.02.014
http://dx.doi.org/10.1523/ENEURO.0004-15.2015
http://dx.doi.org/10.1523/ENEURO.0004-15.2015
http://dx.doi.org/10.1121/1.1907229


63

tional IEEE/EMBS Conference on Neural Engineering (NER). IEEE, pp. 812–815.
doi: 10.1109/NER.2015.7146747 (cited on p. 67).

Covey, E. (2008). “Inputs to the Inferior Colliculus.” In: The Senses: A Comprehen-
sive Reference. 1st ed. San Diego: Academic Press. Chap. 3. doi: 10.1016/B978-
012370880-9.00053-0 (cited on pp. 10, 11).

Durrant, J. D. (2008). “Manifestations of Cochlear Events in the Auditory Brain-
stem Response and Its Clinical Applications.” In: The Senses: A Comprehensive
Reference. 1st ed. San Diego: Academic Press. Chap. 3, pp. 359–364. doi: 10.1016/
B978-012370880-9.00031-1 (cited on p. 20).

Fernandez, K. A., Jeffers, P. W. C., Lall, K., Liberman, M. C., and Kujawa, S. G.
(2015). “Aging after Noise Exposure: Acceleration of Cochlear Synaptopathy in
“Recovered” Ears.” Journal of Neuroscience, 35(19), pp. 7509–7520. issn: 0270-
6474. doi: 10.1523/JNEUROSCI.5138-14.2015 (cited on p. 2).

Furman, A. C., Kujawa, S. G., and Liberman, M. C. (2013). “Noise-induced cochlear
neuropathy is selective for fibers with low spontaneous rates.” Journal of Neuro-
physiology, 110(3), pp. 577–86. issn: 1522-1598. doi: 10.1152/jn.00164.2013 (cited
on pp. 1, 2, 6–8).

Kiang, N. Y. and Moxon, E. C. (1974). “Tails of tuning curves of auditory-nerve
fibers.” The Journal of the Acoustical Society of America, 55(3), pp. 620–30. issn:
0001-4966. doi: 10.5056/jnm15129 (cited on p. 56).

Kujawa, S. G. and Liberman, M. C. (2009). “Adding insult to injury: cochlear nerve
degeneration after “temporary” noise-induced hearing loss.” Journal of Neuro-
science, 29(45), pp. 14077–85. issn: 1529-2401. doi: 10.1523/JNEUROSCI.2845-
09.2009 (cited on pp. 1, 5).

Lee, K., Lv, W., Ter-ovanesyan, E., Barley, M. E., Voysey, G. E., Galea, A. M.,
Hirschman, G. B., Ng, M. E., Leroy, K., Marini, R. P., and Cohen, R. J. (2013).
“Cardiac Ablation Catheter Guidance by Means of a Single Equivalent Moving
Dipole Inverse Algorithm.” Pacing and Clinical Electrophysiology, 00(1), pp. 1–12.
doi: 10.1111/pace.12114 (cited on p. 67).

Liberman, M. C. (1978). “Auditory-nerve response from cats raised in a low-noise
chamber.” The Journal of the Acoustical Society of America, 63(2), pp. 442–55.
issn: 0001-4966 (cited on pp. 7, 35, 56).

Liberman, M. C., Liberman, L. D., and Maison, S. F. (2014). “Efferent Feedback Slows
Cochlear Aging.” Journal of Neuroscience, 34(13), pp. 4599–4607. issn: 0270-6474.
doi: 10.1523/JNEUROSCI.4923-13.2014 (cited on p. 58).

Liberman, M. C. (1993). “Central projections of auditory nerve fibers of differing
spontaneous rate, II: Posteroventral and dorsal cochlear nuclei.” The Journal of

http://dx.doi.org/10.1109/NER.2015.7146747
http://dx.doi.org/10.1016/B978-012370880-9.00053-0
http://dx.doi.org/10.1016/B978-012370880-9.00053-0
http://dx.doi.org/10.1016/B978-012370880-9.00031-1
http://dx.doi.org/10.1016/B978-012370880-9.00031-1
http://dx.doi.org/10.1523/JNEUROSCI.5138-14.2015
http://dx.doi.org/10.1152/jn.00164.2013
http://dx.doi.org/10.5056/jnm15129
http://dx.doi.org/10.1523/JNEUROSCI.2845-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.2845-09.2009
http://dx.doi.org/10.1111/pace.12114
http://dx.doi.org/10.1523/JNEUROSCI.4923-13.2014


64

Comparative Neurology, 327(1), pp. 17–36. issn: 0021-9967. doi: 10 . 1002 / cne .
903270103 (cited on p. 11).

Meddis, R. and Lopez-Poveda, E. A. (2010). Computational Models of the Auditory
System. Vol. 35. Springer Handbook of Auditory Research. Boston, MA: Springer
US, pp. 7–39. doi: 10.1007/978-1-4419-5934-8 (cited on p. 13).

Mehraei, G., Hickox, A. E., Bharadwaj, H. M., Goldberg, H., Verhulst, S., Liberman,
M. C., and Shinn-Cunningham, B. G. (2016). “Auditory Brainstem Response La-
tency in Noise as a Marker of Cochlear Synaptopathy.” Journal of Neuroscience,
36(13), pp. 3755–3764. issn: 0270-6474. doi: 10.1523/JNEUROSCI.4460-15.2016
(cited on pp. vii, 2, 3, 22, 24, 47, 50, 55).

Mehraei, G. (2015). “Auditory brainstem response latency in noise as a marker of
cochlear synaptopathy.” Doctoral dissertation. Massachusetts Institute of Technol-
ogy (cited on pp. 4, 21, 25).

Mehraei, G., Gallardo, A. P., Epp, B., Shinn-Cunningham, B., and Dau, T. (2015).
“Individual differences in auditory brainstem response wave-V latency in forward
masking: A measure of auditory neuropathy?” Journal of the Acoustical Society of
America, 137(4), pp. 2207–2207. issn: 0001-4966. doi: 10.1121/1.4920035 (cited
on pp. 2, 25).

Meyer, R. and Obermayer, K. (2016). pypet: The Python Parameter Exploration
Toolkit (cited on p. 43).

Moore, D. R. and Kitzes, L. M. (1985). “Projections from the cochlear nucleus to the
inferior colliculus in normal and neonatally cochlea-ablated gerbils.” The Journal
of Comparative Neurology, 240(2), pp. 180–195. issn: 0021-9967. doi: 10.1002/cne.
902400208 (cited on p. 11).

Mountain, D., Anderson, D., and Voysey, G. (2013). “The effects of sound in the ma-
rine environment (ESME) workbench: A simulation tool to predict the impact of
anthropogenic sound on marine mammals.” In: Proceedings of Meetings on Acous-
tics. Vol. 19. Montreal, pp. 010051–010051. doi: 10 . 1121 / 1 . 4801015 (cited on
p. 67).

Nelson, P. C. and Carney, L. H. (2004). “A phenomenological model of peripheral
and central neural responses to amplitude-modulated tones.” The Journal of the
Acoustical Society of America, 116(4), p. 2173. issn: 00014966. doi: 10.1121/1.
1784442 (cited on pp. 13, 16, 17, 23, 40, 41).

Rudnicki, M. and Hemmert, W. (2014). Cochlea: inner ear models in Python. München,
Germany (cited on pp. 3, 24, 26, 33).

Ryugo, D. (2008). “Projections of low spontaneous rate, high threshold auditory nerve
fibers to the small cell cap of the cochlear nucleus in cats.” Neuroscience, 154(1),

http://dx.doi.org/10.1002/cne.903270103
http://dx.doi.org/10.1002/cne.903270103
http://dx.doi.org/10.1007/978-1-4419-5934-8
http://dx.doi.org/10.1523/JNEUROSCI.4460-15.2016
http://dx.doi.org/10.1121/1.4920035
http://dx.doi.org/10.1002/cne.902400208
http://dx.doi.org/10.1002/cne.902400208
http://dx.doi.org/10.1121/1.4801015
http://dx.doi.org/10.1121/1.1784442
http://dx.doi.org/10.1121/1.1784442


65

pp. 114–126. issn: 03064522. doi: 10.1016/j.neuroscience.2007.10.052 (cited on
pp. 11, 12, 24).

Schaette, R. and McAlpine, D. (2011). “Tinnitus with a normal audiogram: physio-
logical evidence for hidden hearing loss and computational model.” Journal of Neu-
roscience, 31(38), pp. 13452–7. issn: 1529-2401. doi: 10.1523/JNEUROSCI.2156-
11.2011 (cited on p. 2).

Sergeyenko, Y., Lall, K., Liberman, M. C., and Kujawa, S. G. (2013). “Age-Related
Cochlear Synaptopathy: An Early-Onset Contributor to Auditory Functional De-
cline.” Journal of Neuroscience, 33(34), pp. 13686–13694. issn: 0270-6474. doi:
10.1523/JNEUROSCI.1783-13.2013 (cited on pp. 2, 5).

Temchin, A. N., Rich, N. C., and Ruggero, M. A. (2008). “Threshold Tuning Curves
of Chinchilla Auditory Nerve Fibers. II. Dependence on Spontaneous Activity and
Relation to Cochlear Nonlinearity.” Journal of Neurophysiology, 100(5), pp. 2899–
2906. issn: 0022-3077. doi: 10.1152/jn.90639.2008 (cited on pp. 7–9, 30, 36, 37).

Temchin, A. N. and Ruggero, M. A. (2014). “Spatial Irregularities of Sensitivity along
the Organ of Corti of the Cochlea.” Journal of Neuroscience, 34(34), pp. 11349–54.
issn: 1529-2401. doi: 10.1523/JNEUROSCI.2558-13.2014 (cited on p. 8).

Verhulst, S., Bharadwaj, H. M., Mehraei, G., Shera, C. A., and Shinn-Cunningham,
B. G. (2015). “Functional modeling of the human auditory brainstem response to
broadband stimulations.” The Journal of the Acoustical Society of America, 138(3),
pp. 1637–1659. issn: 0001-4966. doi: 10.1121/1.4928305 (cited on pp. 13, 14, 23,
24, 30, 32).

Voysey, G. E. (2016). Corti, a Flexible Modeling Environment for Evaluating Subcor-
tical Auditory Systems. Boston, MA. doi: 10.5281/zenodo.57111 (cited on p. 26).

Westerman, L. A. and Smith, R. L. (1988). “A diffusion model of the transient re-
sponse of the cochlear inner hair cell synapse.” The Journal of the Acoustical Society
of America, 83(6), pp. 2266–76. issn: 0001-4966 (cited on pp. 13, 56).

Yates, G. K., Winter, I. M., and Robertson, D. (1990). “Basilar membrane non-
linearity determines auditory nerve rate-intensity functions and cochlear dynamic
range.” Hearing Research, 45(3), pp. 203–219. issn: 03785955. doi: 10.1016/0378-
5955(90)90121-5 (cited on p. 56).

Zilany, M. S. A. and Bruce, I. C. (2006). “Modeling auditory-nerve responses for
high sound pressure levels in the normal and impaired auditory periphery.” The
Journal of the Acoustical Society of America, 120(3), p. 1446. issn: 00014966. doi:
10.1121/1.2225512 (cited on pp. 13, 33).

– (2007). “Predictions of Speech Intelligibility with a Model of the Normal and Im-
paired Auditory-periphery.” In: 2007 3rd International IEEE/EMBS Conference

http://dx.doi.org/10.1016/j.neuroscience.2007.10.052
http://dx.doi.org/10.1523/JNEUROSCI.2156-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.2156-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1783-13.2013
http://dx.doi.org/10.1152/jn.90639.2008
http://dx.doi.org/10.1523/JNEUROSCI.2558-13.2014
http://dx.doi.org/10.1121/1.4928305
http://dx.doi.org/10.5281/zenodo.57111
http://dx.doi.org/10.1016/0378-5955(90)90121-5
http://dx.doi.org/10.1016/0378-5955(90)90121-5
http://dx.doi.org/10.1121/1.2225512


66

on Neural Engineering. IEEE, pp. 481–485. doi: 10.1109/CNE.2007.369714 (cited
on pp. 13, 33).

Zilany, M. S. A., Bruce, I. C., and Carney, L. H. (2014). “Updated parameters and
expanded simulation options for a model of the auditory periphery.” The Journal
of the Acoustical Society of America, 135(1), pp. 283–286. issn: 0001-4966. doi:
10.1121/1.4837815 (cited on pp. 15, 23, 24, 30, 33).

Zilany, M. S. A., Bruce, I. C., Nelson, P. C., and Carney, L. H. (2009). “A phenomeno-
logical model of the synapse between the inner hair cell and auditory nerve: Long-
term adaptation with power-law dynamics.” The Journal of the Acoustical Society
of America, 126(5), p. 2390. issn: 00014966. doi: 10 .1121/1.3238250 (cited on
p. 15).

http://dx.doi.org/10.1109/CNE.2007.369714
http://dx.doi.org/10.1121/1.4837815
http://dx.doi.org/10.1121/1.3238250


Curriculum Vitæ

Contact Graham Voysey
44 Cummington Mall, Boston MA 02115
gvoysey@bu.edu
http://people.bu.edu/gvoysey

Education Boston University, B.Sc., Biomedical Engineering, September 2002–
September 2006.
Boston University M.Sc., Biomedical Engineering, January 2013–
September 2016.

1.Publications M. J. Cler et al. (2015). “Video game speech rehabilitation for velopha-
ryngeal dysfunction: Feasibility and pilot testing.” In: 2015 7th In-
ternational IEEE/EMBS Conference on Neural Engineering (NER).
IEEE, pp. 812–815. doi: 10.1109/NER.2015.7146747

2. D. Mountain et al. (2013). “The effects of sound in the marine en-
vironment (ESME) workbench: A simulation tool to predict the im-
pact of anthropogenic sound on marine mammals.” In: Proceedings of
Meetings on Acoustics. Vol. 19. Montreal, pp. 010051–010051. doi:
10.1121/1.4801015

3. K. Lee et al. (2013). “Cardiac Ablation Catheter Guidance by Means
of a Single Equivalent Moving Dipole Inverse Algorithm.” Pacing and
Clinical Electrophysiology, 00(1), pp. 1–12. doi: 10.1111/pace.12114

Employment Boston University, Research Engineer, June 2010–present.
Infoscitex, Staff Engineer, November 2006–February 2010.

67

http://dx.doi.org/10.1109/NER.2015.7146747
http://dx.doi.org/10.1121/1.4801015
http://dx.doi.org/10.1111/pace.12114

