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ABSTRACT 
 
Animals are motivated to choose environmental options that can best satisfy current needs. To 
explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal 
VAlues Triggers Option Revaluations) neural model. MOTIVATOR describes cognitive-
emotional interactions between higher-order sensory cortices and an evaluative neuraxis 
composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned 
stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected 
current value of the subjective outcome that the CS predicts, constrained by the current state of 
deprivation or satiation. The amygdala relays the expected value information to orbitofrontal 
cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that 
receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective 
values of objects. These values guide behavioral choices. The model basal ganglia detect errors 
in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the 
pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the 
ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra 
pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly 
modulated by dopamine. The model is used to address tasks that examine food-specific satiety, 
Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model 
simulations successfully reproduce discharge dynamics of known cell types, including signals 
that predict saccadic reaction times and CS-dependent changes in systolic blood pressure. 
 
Keywords: amygdala, orbitofrontal cortex, rhinal cortex, lateral hypothalamus, inferotemporal 
cortex, basal ganglia, conditioning, motivation, devaluation, food-specific satiety, dopamine, 
cognitive-emotional interactions, decision-making, discrimination learning  
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1. INTRODUCTION 
Animal behavior is fundamentally opportunistic. Animals choose actions whose consummatory 
responses serve their basic biological needs, such as avoidance of damage, regulation of body 
temperature, and replenishment of energy stores. Many of these needs vary over life cycles, 
seasons, and days, as do the environmental opportunities for making appropriate consummatory 
responses. Choosing options that can best satisfy currently pressing needs often requires 
temporarily ignoring options that, under different subjective conditions, would be evaluated as 
highly attractive. This may require temporarily ignoring some current needs that would be strong 
enough to dominate behavioral choices if the animal were relocated to an environment that 
supported consummatory responses matched to those needs. 

What brain processes allow an animal to use cues to quickly assess the options in its 
environment and estimate their values relative to the animal’s current needs? How are strong 
needs ignored when the environment affords no opportunity for their satisfaction? How are 
normally attractive and highly available options ignored for a time after the needs that they 
consummate have been satisfied? To address such questions, a neural model is proposed and 
simulated to explain laboratory phenomena such as: the conditioning of cues that predict specific 
outcomes in a task setting, the automatic revaluation of conditioned stimuli (conditioned 
reinforcers) following food-specific satiety, and motivational and emotive influences on decision 
processes, reaction time, response vigor, and blood pressure. The phenomenon of automatic 
revaluation has only recently been thoroughly investigated and requires additional explanation 
(Dickinson and Balleine, 2001; Corbit and Balleine, 2005). Revaluation refers to the observation 
that motivational shifts can alter the vigor of conditioned responses. 

Outcome-specific revaluation occurs when shifts in motivation alter conditioned 
responding in a manner that respects the different reward associations of these responses and 
how this motivational shift differentially impacts the consumption value of these outcomes 
(Corbit and Balleine, 2005). Normally, changes in conditioned responding follow the law of 
effect, and the value of a CS only reflects the experienced value of its associated food reward. 
However, for first-order and second-order conditioned stimuli, revaluation automatically occurs 
in an outcome-specific fashion (Corbit and Balleine, 2003, 2005; Hall 2001). The effect is 
automatic in that changes in the value of rewards impact the vigor of conditioned responding 
without new CS-US pairings. In contrast, motivational shifts alter the vigor of higher-order 
conditioned responses in an outcome-specific fashion only after additional training trials have 
taken place during which the reward is experienced in the new motivational state (Balleine et al., 
1995).  

Key aspects of these phenomena are explained within a neural circuit that integrates 
homeostatic, hedonic and emotional information to calculate the current value of conditioned and 
unconditioned cues. The model serves to detail, contrast, and elaborate the roles of dopaminergic 
and non-dopaminergic value systems and mechanisms that are engaged by most evaluative tasks, 
including Pavlovian and operant conditioning (Berridge, 2000). These results were reported in 
preliminary form in Dranias, Bullock and Grossberg (2006, 2007a, 2007b). 
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Figure 1: Overview of MOTIVATOR model: Brain areas in the MOTIVATOR circuit can be divided into four 
regions that process information about conditioned stimuli (CSs) and unconditioned stimuli (USs). (a) Object 
Categories represent visual or gustatory inputs, in anterior inferotemporal (ITA) and rhinal (RHIN) cortices; (b) 
Value Categories represent the value of anticipated outcomes on the basis of hunger and satiety inputs, in amygdala 
(AMYG) and lateral hypothalamus (LH); (c) Object-Value Categories resolve the value of competing perceptual 
stimuli in medial (MORB) and lateral (ORB) orbitofrontal cortex; and (d) the Reward Expectation Filter detects the 
omission or delivery of rewards using a circuit that spans ventral striatum (VS), ventral pallidum (VP), striosomes of 
the striatum, the pedunculopontine nucleus (PPTN) and midbrain dopaminergic neurons of the SNc/VTA (substantia 
nigra pars compacta/ventral tegmental area). The circuit that processes CS-related visual information (ITA, AMYG, 
ORBL) operates in parallel with a circuit that processes US-related visual and gustatory information (RHIN, 
AMYG, ORBM). The model captures systematic changes in processing of the same stimuli at different times, due to 
processes of learned category formation, sensory habituation, satiation or deprivation of particular rewarding 
outcomes, CS-US associative learning, and violations of expectations based on learned regularities. Model outputs 
modulate saccadic choice and reaction time and blood pressure changes. 
 
The “MOTIVATOR” (Matching Objects To Internal VAlues Triggers Option Revaluations) 
model focuses on cognitive-emotional processing wherein sensory and cognitive neocortex 
interacts with an evaluative neuraxis composed of the hypothalamus, amygdala, orbitofrontal 
cortex, and basal ganglia. An overview of the model, which has been specified as a real-time 
dynamical system and simulated in Matlab, is shown in Fig. 1. This model unifies and further 
develops the CogEM model of cognitive-emotional learning and performance (Grossberg, 1971, 
1972a, 1972b, 1984; 2000a; Grossberg and Gutowski, 1987; Grossberg and Levine, 1987; 
Grossberg and Merrill, 1992; Grossberg and Schmajuk, 1987) and the TELOS model of how an 
animal learns to balance reactive vs. planned behaviors through learning based on reward 
expectation and its disconfirmation (Brown, Bullock, and Grossberg, 1999, 2004). The CogEM 
model focused on how affective brain regions, such as the lateral hypothalamus and amygdala, 
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interact with sensory and cognitive areas, such as inferotemporal cortex and orbitofrontal cortex. 
The TELOS model focused on how the basal ganglia regulate attention and reinforcement-based 
learning in thalamocortical systems. The current model proposes how both amygdala and basal-
ganglia processes interact to control reward-based processes. 

In MOTIVATOR, visual inputs activate view-invariant representations of visual objects in 
the anterior inferotemporal cortex (ITA). Gustatory cortex relays the taste properties salty, sweet, 
umami, and fatty to rhinal cortex (RHIN) and to gustatory-responsive lateral hypothalamic cells 
(LH_gus). RHIN cells also receive ITA inputs, and can thereby code gustatory-visual properties 
of food rewards. Endogenous drive and arousal inputs project to lateral hypothalamic input cells 
(LH_in). LH_in cells represent the homeostatic state of the animal by reporting fat, salt, amino 
acid, and sugar levels. LH_gus cells correlate gustatory tastes with corresponding homeostatic 
features and excite lateral hypothalamic output cells (LH_out), which project to amygdala 
(AMYG) cells that categorize LH_out states. The LH-AMYG network computes the net 
subjective outcome associated with a consummatory act. It thereby defines a neural 
representation of US (unconditioned stimulus) reward value. Because the AMYG also receives 
conditionable CS-activated signals from ITA and RHIN, it can mediate CS-US learning. Given a 
CS, the AMYG and LH interact to calculate the expected current value of the subjective outcome 
that the CS predicts, given the current state of deprivation or satiation for that outcome. The 
AMYG relays the expected value information to ITA-recipient orbitofrontal (ORB) and RHIN-
recipient medial orbitofrontal (MORB) cells, whose activations code the relative subjective 
values of objects. These values guide behavioral choices. 

The model basal ganglia (BG) detect errors in CS-specific predictions of the value and 
timing of rewards. Striosomes (SD) of the ventral striatum (VS) prevent predicted rewards from 
generating SNc/VTA responses by inhibiting dopamine cells in the SNc/VTA with adaptively 
timed signals (Fig. 1). Inputs from the LH_gus and the ventral striatum (VS) excite the 
pedunculopontine nucleus (PPTN/LDT) whenever a conditioned (CS) or unconditioned (US) 
rewarding cue occurs. Cells in the PPTN/LDT, in turn, excite dopamine cells in the SNc/VTA. 
When inhibitory signals from the SD and excitatory signals from the PPTN/LDT mismatch, a 
dopamine dip or dopamine burst may occur. A dopamine burst occurs in the SNc/VTA when an 
unexpected rewarding CS or US is presented. When an unexpected rewarding cue is presented, 
SD cells are unable to relay anticipatory inhibitory signals to the SNc/VTA and reward-related 
excitation is relayed from the PPTN/LDT to dopaminergic cells in the SNc/VTA, eliciting a 
dopamine burst. When an expected reward is omitted, a dopamine dip occurs. In this case, a 
rewarding CS is presented and SD cells send an adaptively timed inhibitory input to the 
SNc/VTA at the expected time of reward. When US presentation is omitted, dopaminergic 
SNc/VTA cells never receive a reward-related excitatory signal from the PPTN/LDT and are 
instead transiently suppressed by inhibitory signals from the SD. Model simulations reproduce 
discharge dynamics of known cell types, including signals that predict saccadic reaction times 
and CS-dependent changes in systolic blood pressure.  Learning in cortical and striatal regions is 
strongly modulated by dopamine, whereas learning between the AMYG and LH_out cells is not. 
2. METHODS 
2.1 Task Selection. Three basic tasks are neurally explained and simulated by the model: a ‘free 
reward’ or unconditioned stimulus (US) learning task, a conditioned stimulus (CS) to US 
(hereafter CS-US) associative learning task, and a simultaneous visual discrimination (SVD) task 
that involves dual associative learning (CS1-US1 and CS2-US2). Variants of these three tasks 
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were also simulated to explain data about food-specific satiety (FSS), devaluation, extinction, 
and reversal learning. 

In the US learning task, the model learns to associate stimulus features of a food reward 
with internal representations of the value and outcomes elicited by that food. The model 
simulates the US learning task of Nakamura and Ono (1986) because the literature related to this 
task contains electrophysiological data against which simulated neural dynamics can be 
compared. Three simulations of the US task were performed. The first simulation shows learning 
in the model amygdala of US-specific internal representations that encode specific drives and the 
identity of rewarding food stimuli. The second simulation shows US devaluation and satiety 
curves. The third simulation demonstrates the specificity of the satiation response. In particular, 
when a single food is eaten to satiety, it is known that satiation acts in a food-specific fashion by 
devaluing the consumed food more than other foods. In summary, simulations of the US task 
demonstrate how cells in the AMYG learn to encode a US-specific motivational representation, 
devaluation effects, satiation curves, and food-specific satiety. While achieving these functions, 
the model replicates the dynamics of experimentally observed neurophysiological cell types in 
the AMYG, LH, ORB, PPTN/LDT, SNc/VTA, and VS. 

The CS-US learning task reported by Ono et al. (1986a) was also selected for simulation, 
both because it reported electrophysiological data and because Pavlovian conditioning has been 
the task of choice for laboratories investigating which neural circuits underlie the automatic 
revaluation of conditioned stimuli (Hatfield et al., 1996; Gallagher et al., 1999; Pickens et al., 
2003; Balleine, 2005). The primary computational issues address how conditioned cue 
representations associate with US-specific outcome representations and track the current value of 
prospective outcomes. 

The simultaneous visual discrimination (SVD) task allows an animal to choose the more 
preferred of two simultaneously presented visual conditioned stimuli (CSs). It incorporates 
properties of reinforcement learning and decision-making, and has a lengthy history of study in 
behavioral neuroscience (Easton and Gaffan, 2001; Murray and Mishkin, 1998; Voytko, 1985). 
Simulations of brain processes sufficient to perform the SVD task demonstrate how value is 
assigned and choices made between competing stimuli. This task provides an opportunity to 
study how different valuation mechanisms elicit changes in cue preference. Dopamine-dependent 
conditioned reversals of CS preference were simulated and compared with reversals of CS 
preference that arise from changes in neural representations of organismic needs. 
2.2 Neurobiological Basis of the Model. A neural network involving higher-order sensory 
cortices, the hypothalamus, the amygdala, the basal ganglia, and the orbitofrontal cortex enables 
evaluative and emotional processing of cues that predict appetitive and aversive outcomes. Fig. 
2a summarizes evidence from lesion studies that these brain regions play a critical role in 
evaluation during the US learning, CS-US learning, and SVD tasks. Lesions of the posterior 
inferotemporal (PIT) cortex impair SVD tasks (Voytko, 1986). RHIN lesions impair US tasks 
(Parker and Gaffan, 1998) and SVD tasks (Buffalo et al., 1999). Gustatory insula (INS) lesions 
impair US tasks (Dunn and Everitt, 1988). ITA lesions impair SVD tasks (Voytko, 1986). 
Temporal lobe lesions impair US tasks (Barefoot et al., 2000) and SVD tasks (Voytko, 1986). 
AMYG lesions impair US tasks (Gaffan, 1994), CS tasks (Kantak et al., 2001; Cardinal et al., 
2002), and FSS tasks (Murray et al., 1996; Malkova et al., 1997). LH lesions impair US tasks 
(Nakamura et al., 1987; Bernardis and Bellinger, 1996; Touzani and Sclafani, 2002). 
Orbitofrontal cortex (MORB and ORB) lesions impair US tasks (Baylis and Gaffan, 1991), SVD 
tasks (Easton and Gaffan, 2000) and FSS tasks (Baxter et al., 2000; Cardinal et al., 2002). 



 6 
 

Ventral Striatum lesions impair CS tasks (Cardinal et al., 2002; Schoenbaum et al., 2003). Table 
1 summarizes pathway-tracing studies that verify the existence of significant links between the 
brain regions identified in Figs. 1 and 2a.  

 

 
Figure 2: Brain lesions and neural response timing: Part 2a shows feedforward connections among the major 
brain regions of the model (see Table 1) and 2b shows representative neural response latencies to visual stimuli. In 
2a, brain regions for which there is evidence of a disruption in tasks substantially similar to the US, CS, SVD, or 
FSS-related tasks are marked with a bold ‘X’ together with a task designator. US-related tasks include: Lidocaine 
inactivation during US task, sham-feeding, general feeding, or food preference tests. CS-related tasks include: 
Lidocaine inactivation during CS task, Pavlovian conditioning (either autoshaping or place), and disruptions of 
extinction or reversal in these tasks. SVD-related tasks include: The SVD task and SVD reversal. FSS-related tasks 
include CS-FSS, SVD-FSS tasks, and CS revaluation tasks where the food is poisoned with LiCl. Part 2b shows 
latencies in monkeys for the initial response to a visual conditioned stimulus by neurons in various brain regions. V2 
latencies (Luck et al., 1997); V4/PIT latencies (Ibid.); ITA latencies (Wachsmuth et al., 1994; Liu and Richmond, 
2000); RHIN latencies (Suzuki et al., 1997); AMYG latencies (Wilson and Rolls, 1993); ORB latencies (Rolls, 
2000; Tremblay and Schultz, 2000a); LH latencies (Rolls et al., 1979). 
 
Model inputs and outputs. The neural model in Fig. 1 has four input types: visual, gustatory, 
drive (e.g., specific hungers and other internal states) and arousal. To illustrate the timing of 
visual information flow through the system, Fig. 2b gives typical latencies at which cells in 
different brain regions respond to visual stimuli. Two key outputs of the model are a 
hypothalamic emotional signal that predicts CS-induced changes in systolic (peak of cardiac 
cycle) blood pressure (hereafter BP) and an orbitofrontal signal that predicts reaction times (RTs) 
of voluntary saccadic eye movements. In Fig. 3, experimental results on BP and saccadic RTs are 
presented alongside model simulations of signals that predict these variables. 
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Table 1:  Anatomical Connections of Model Brain Regions 

                                  References  
Anatomical Connection 

 Monkey         Rat 

PIT to ITa Suzuki, et al. (2000) Shi & Cassell (1997) 

ITa to ORB Barbas (1993, 2000) Reep, et al. (1996) 

ORB to ITa Rempel-Clower & Barbas (2000)            - 

ORB to FEF Barbas (1992); Carmichael & Price (1995)            - 

ITa to RHIN Saleem & Tanaka (1996) Burwell & Amaral (1998) 

GUS to RHIN Insausti, Amaral, & Cowan (1987) Burwell & Amaral (1998) 

MORB to RHIN Barbas (1993); Barbas, et al. (1999) Reep et al. (1996) 

RHIN to BL AMYG Rempel-Clower & Barbas (2000) Burwell & Amaral, (1998) 

ITa to BL AMYG Ghashghaei & Barbas (2002) McDonald (1998) 

BLAMYG to MORB Ghashghaei & Barbas (2002) McDonald, (1998) 

BL AMYG to ORB Amaral & Price (1984);  

Ghashghaei & Barbas (2002) 

Reep et al. (1996); Ongur & Price (2000) 

ORB to VS, SD Ferry, et al. (2000) Ongur & Price (2000) 

BL AMYG to VS Friedman, et al. (2002) Swanson (2000) 

GUS to LH Sewards & Sewards (2001) Risold, et al. (1997) 

BLAMYG to LH Barbas, et al. (2003); Price (2003) DeFalco et al. (2001); Petrovich, et al. (2001) 

LH to BLAMYG Russchen (1986); Ghashghaei & Barbas (2002) Peyron et al. (1998); Sah, et al. (2003) 

VS to VP/VP to PPTN Haber, et al. (1993); Spooren, et al. (1996) Semba & Fibiger (1992); Zahm (2000) 

VS to VTA/VP to VTA Haber, et al. (2000) Zahm (2000) 

LH to PPTN Veazey, et al. (1982) Semba & Fibiger (1992) 

PPTN to VTA Lavoie & Parent (1994) Oakman, et al. (1995) 
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Figure 3: Blood pressure and saccade latency: MOTIVATOR reproduces conditioned and unconditioned changes 
in systolic blood pressure using drive signals from LH cells (Nakamura et al., 1992; Braesicke et al., 2005). 
Motivational influences on saccadic reaction time are reproduced using incentive value signals broadcast by 
orbitofrontal cortex (Lauwereyns et al., 2002; Roesch and Olson, 2003). 3a: Simulated blood pressure output (right) 
compared with recorded blood pressure (left) during CS Task performance [Reprinted with permission from 
Nakamura et al. (1992)]. Small increases in blood pressure follow the presentation of conditioned stimuli, 
unconditioned stimuli, or the consumption of unconditioned stimuli, but not neutral stimuli (Braesicke, et al 2005; 
Nakamura et al., 1992). 3b: Simulated saccadic reaction times (right) replicate trends in observed changes in 
saccadic reaction time [Reprinted with permission from Roesch and Olson (2003)]. For simulated reaction times, 
large rewards correspond to high hunger drive inputs and small rewards correspond to low hunger drive levels. For 
experimentally observed reaction times, big and small rewards correspond to the amount of juice given as 
reinforcement. 
 
Modeled cell types. Many neurons have characteristic activation profiles that allow them to be 
classified as exemplars of a functional cell type (Ono et al., 1986b; Nishijo et al., 1988a; 
Tremblay and Schultz, 2000b). The activation profiles of eleven neural cell types were simulated 
by model neurons. Figs. 4 and 5 compare simulated cell activations and electrophysiological 
discharge profiles for cell types, including ITA (anterior inferotemporal cortex), lateral 
orbitofrontal cortex (ORB), medial orbitofrontal cortex (MORB), basolateral amygdala 
(AMYG), lateral hypothalamic output (LH_out) cells, and lateral hypothalamic gustatory-
receptive cells (LH_gus). Cells in the AMYG discriminate between rewarding and aversive 
stimuli and are modulated by hunger and satiety (Muramoto et al., 1993; Yan and Scott, 1996). 
Nishijo, et al (1988a, b) reported that some AMYG cells are multimodal, motivationally-
modulated, and respond in a food-specific fashion.   
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Figure 4: Simulated and observed responses of cortical cells: ITA, ORB, and MORB: 4a shows the 
electrophysiological profile of an ITA cell recorded during the performance of the SVD task (Jagadeesh et al., 
2001), next to the simulated ITA cell activity in the same task (right). Cells in the inferotemporal cortex respond 
selectively to categories of visual stimuli in a view invariant fashion (Richmond and Sato, 1987). ITA cell types do 
not discriminate between appetitive or aversive motivational information, but they are modulated by incentive value 
[Reprinted with permission from Jagadeesh et al.  (2001)]. 4b: Orbitofrontal cells distinguish between appetitive and 
aversive stimuli and respond in proportion to the drive or incentive value of a stimulus (Thorpe et al., 1983; 
Hikosaka and Watanabe, 2000; Schoenbaum et al., 2003; Roesch and Olson, 2004). Here the electrophysiologically 
recorded activity from an orbitofrontal neuron during the performance of the CS task is compared with the activity 
from a simulated ORB neuron performing the same task [Data reprinted with permission from Yonemori et al. 
(2000)]. 4c: Electrophysiological profile of a reward-responsive orbitofrontal cell recorded during a free reward task 
(Tremblay and Schultz, 2000a, b) compared with the response from a simulated MORB cell [Reprinted with 
permission from Tremblay and Schultz (2000a)]. Tremblay and Schultz (Ibid.) report that reward-responsive and 
cue-responsive cells in the orbitofrontal cortex form distinct populations. 
 
Lateral hypothalamic cells (LH) respond to foods and associated cues (Ono et al., 1986a). Karadi 
et al. (1992) and Nakano et al. (1986) report that LH cells tend to respond to the deprivation of a 
given metabolite in the same way they respond to the taste of that metabolite. Ono and associates 
(1986a) show that LH cells respond in similar fashion to food rewards and the conditioned 
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stimuli that predict them. These responses distinguish between appetitive and aversive inputs and 
are modulated by hunger (Ono et al., 1986a; Fukuda et al., 1987). These hunger responses are 
often selective for glucose, specific amino acids, etc. (Torii et al., 1998). Hence an LH cell that 
was excited by a CS trained to predict glucose would also tend to be excited by glucose 
deprivation and the taste of glucose. Ono and associates (Nakamura et al., 1987) identified two 
classes of LH cells whose responses differentiated between appetitive and aversive stimuli: 
opposite cells and specific cells. Opposite cells respond oppositely to rewarding and aversive 
stimuli. Specific cells prefer either appetitive or aversive stimuli and do not respond strongly to 
both. 

  
 

 
 
 
 
 
Figure 5: Simulated and observed 
responses of subcortical cells 
during CS task: 5a: Comparison of 
the electrophysiological profile of a 
basolateral amygdala ‘opposite cell’ 
recorded during the CS task with 
the activity of simulated AMYG 
cell in same task (right) [Reprinted 
with permission from Muramoto et 
al. (1993)]. 5b: Electrophysiological 
response profile recorded from an 
LH ‘opposite cell’ during the 
performance of the CS Task is 
shown adjacent to the simulated 
activity of LH output cells during 
the same task [Reprinted with 
permission from Ono et al. (1986a) 
and Nakamura and Ono (1986)]. 5c: 
An experimental recording from a 
LH ‘specific cell’ during 
performance of the CS is presented 
along side a simulated LH_gus cell 
during the same task [Reprinted 
with permission from Torii et al. 
(1998)]. 
 
 
 
 
 
 

 
Four additional cell types were discussed and modeled previously (Brown et al., 1999): 
pedunculopontine nucleus (PPTN/LDT), substantia nigra (VTA/SNc), matrix medium spiny 
projection neurons of the ventral striatum (VS), and striosomal delay (SD) cells of the VS. Fig. 6 
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presents the current model’s simulations of these four cells types along with neurophysiological 
recordings of these basal ganglia cell types. These cell types include: US and CS responsive 
PPTN/LDT and VS cells, striatal reward-expectant -or SD-cells, and dopaminergic VTA/SNc 
cells. 

 
Figure 6: BG cell types from 
Brown et al. (1999): Left: 
Experimentally recorded 
activation profiles of neurons 
(data). Right: Simulated neural 
activation profiles (model). 
Fig. 6a: Pedunculopontine 
tegmental nucleus cells (PPTN 
cell). 6b: CS and US 
responsive ventral striatal 
neuron and simulated VS cell. 
6c: Reward expectant striatal 
cell responds until the delivery 
of reward (Schultz et al., 
2000). SD cells simulate this 
class of cells. 6d: 
Electrophysiological profile of 
dopamine cell recording 
during reward consumption 
compared with simulated 
dopamine neuron. 6e: 
Electrophysiological profile of 
CS-responsive dopamine 
neurons (Ljungberg et al., 
1992) compared with 
simulated dopamine neuron 
[Reprinted with permission 
from Brown et al. (1999)]. 
 

In addition to the 11 cell types detailed in Figs. 4-6, the model includes two additional cell types: 
rhinal (RHIN) cells and lateral hypothalamic input (LH_in) cells. The LH_in cells register drive 
inputs and have activation profiles similar to LH_gus cells but are separated as a distinct LH 
class on computational grounds that are described below (cf., Grossberg, 2000a). RHIN cells are 
included on the basis of evidence from lesion studies which show that the rhinal cortex plays a 
critical role in the discrimination of food rewards based on flavor or appearance (Parker and 
Gaffan, 1998). RHIN cells have discharges similar to ITA cells (Liu and Richmond, 2000). The 
Appendix mathematically describes the dynamics of model cell types. 
2.3 Model Mechanisms and Processing Stages. The model integrates and extends previous 
modeling work treating conditioning, extinction, reversal learning, and cue valuation. 
MOTIVATOR includes mechanisms that resolve seven issues in succession: (1) the calculation 
of US value, (2) calculation of CS value, (3) automatic and outcome-specific revaluation, (4) 
preferential ordering of multiple, simultaneously presented cues, (5) the detection of reward and 
omission of reward, (6) opponent processing, and (7) segregated pathways for evaluating visual 
cues and the consummatory value of rewards. 
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Figure 7: Stepwise elaboration of an evaluative circuit: See text for details. 

 
2.3.1 Calculation of Value. Fig. 7 illustrates how the model calculates the value of a food reward 
as it is being tasted, determines the incentive value of a CS in a way that is automatically 
revalued in an outcome-specific fashion, and disambiguates multiple competing cues while 
blocking learning of distractors. 

Fig. 7a describes a network that calculates the value of an unconditioned stimulus (US) 
during consumption. Animals form central representations of the drive-related or affective value 
of a US (Cardinal et al., 2002). The model proposes that one such central representation 
computes a drive-weighted sum of taste inputs excited during consumption of a food reward. 
Studies show that humans and animals have specific hungers, henceforth “drives”, that are 
inversely related to blood levels of metabolites such as sugar, salt, protein, and fat (Davidson et 
al., 1997; see Appendix Section 5.4.3). Similarly, the gustatory system has chemical sensitivities 
to complementary tastes such as: sweet, salty, umami, and fatty (Rolls et al., 1999; Kondoh et al., 
2000; see Appendix Section 5.4.2). In general, a food US is complex. It may have several 
component tastes that correspond to several drives. 
 Fig. 7a shows a lower layer of cells that perform pairwise multiplications, each involving 
a taste xi and its corresponding drive level mi. Thus these cells are called “taste-drive cells”. 
Taste-drive cells are located in the lateral hypothalamus (LH). LH neurons such as glucose-
sensitive neurons provide archetypal examples of LH cells that are both chemo- and taste-
sensitive: Glucose-sensitive neurons are excited by low glucose levels, inhibited by high glucose 
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levels, and respond to the taste of glucose with excitation (Shimizu et al., 1984; Karadi et al., 
1992). The activation that results from the pairwise multiplication of taste and drive signals in 
these cells is then projected to a higher cell layer and summed there by a cell that represents the 
current value of the US as a whole. Thus these cells are called US-value cells. Such US-value 
representations can emerge from a competitive learning process that associates distributed 
patterns at the taste-drive cells with compressed representations at the US-value cells that survive 
the competition at their processing level (see Appendix Equations (12-14)). US value cells are 
located in the amygdala (AMYG) and help explain observations of neurons in the amygdala that 
selectively respond to specific foods or associated stimuli in a manner that reflects the expected 
consumption value of the food (e.g. Nishijo et al., 1988a, 1988b). 

Fig. 7b illustrates the hypothesis that learning can create functional pathways by which a 
CS becomes a conditioned reinforcer by learning to activate a US-value representation in the 
AMYG during CS-US pairing protocols (see Appendix Equations (10, 38)). Despite the fact the 
CS generates no gustatory inputs to the taste-drive cells and is not actually consumed, the model 
is able to use this CS-US association to compute the prospective value of the US, given current 
drives, during the period between CS onset and US presentation (actual food delivery). The 
model can do this if the CS-activated US-value representation in the AMYG can, in turn, activate 
the taste-drive cells in the LH that have activated it in the past, when the US was being 
consumed. 

This is accomplished, as noted in Fig. 7c, by adaptive “top-down” pathways from US-
value cells layer in the AMYG to taste-drive cells in the LH. The resultant bidirectional signaling 
between taste-drive cells and integrative US-value cells can help to stabilize learning and to 
prime the taste-value combinations that are expected in response to the conditioned reinforcer CS 
(cf., Carpenter and Grossberg, 1987). The taste-drive cells in the LH multiply the top-down 
inputs from CS-activated US-value cells by current drive levels, and the resultant activities are 
projected by convergent bottom-up pathways to US-value cells, which compute a new sum. 
These interactions introduce nonlinearities of a type that are consistent with Prospect Theory and 
the principle of diminishing returns: the resultant sigmoid function amplifies values of small 
rewards while undervaluing large rewards (Kahneman and Tversky, 1979; Grossberg and 
Gutowski, 1987). 

Fig. 7d shows how the circuit can be extended so that the current value of the expected 
US is used to compute the incentive value of the CS that predicts it. These cells compute object-
value properties: They fire when the object or event that they represent has sufficient 
motivational support (see Appendix Equation (11)). As in the Cog-EM model circuit proposed 
by Grossberg (1972b, 1975; see review in Grossberg et al., 1987), these incentivized CS object-
value representations compete, and project modulatory signals back to the sensory stages of CS 
representation. Such competition and modulatory feedback allow the model to choose among 
multiple competing cues and to reduce sensory activations of, and block learning with non-
predictive CS representations. In addition to sending modulatory feedback that enhances the 
relative salience of the sensory CS representation, the object-value representations of the CS 
send output to motor areas to trigger actions towards valued goal objects. Fig. 8 summarizes an 
anatomical interpretation of these processes in terms of cells in LH, AMYG, ITA, RHIN, and 
ORBL (see Appendix Equations (10-18)). 

Lacking from the Fig. 7d circuit are processes that enable the detection of reward 
omission. Papini (2003) argued that mammals have two systems for detecting nonreward: an 
allocentric mechanism that resets expectations regarding environmental contingencies, and an 
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egocentric mechanism that estimates the motivational, homeostatic and emotional cost of 
nonreward. The model proposes that adaptive timing mechanisms (Grossberg and Merrill, 1992) 
and habituative opponent processing via gated dipole circuits (Grossberg, 1972a, 1972b) fulfill 
the allocentric and egocentric components of reward-omission learning (Dickinson and Balleine, 
2001; Papini, 2003). The adaptive timing and gated dipole models are discussed below. 
2.3.2 Adaptive Timing Mechanisms. Adaptive timing circuits can learn temporal expectations 
that help an animal to balance planned vs. reactive, or consummatory vs. exploratory, behaviors 
(Grossberg and Merrill, 1992; Fiala et al., 1996; Brown et al., 1999). More recently, Cohen et al. 
(2007) have discussed this as the balance between exploitation vs. exploration. The model 
incorporates adaptive timing to detect the unexpected omission or presentation of rewards and 
cues that predict rewards. Brown et al. (1999) described a basal ganglia (BG) model in which an 
unexpected US or CS triggers a dopamine (DA) burst while the omission of an expected US 
elicits a DA dip (Fig. 9; see Appendix Equations (20-33)). The DA burst is a reinforcement 
signal that speeds learning of cue-reward associations (in VS, ITA, ORB AND AMYG) and cue-
response associations (in dorsal striatum), whereas the DA dip speeds the learning of 
associations that mediate extinction. 
 The BG adaptive timing circuit (Figs. 1 and 8) includes a model ventral striatum (VS) in 
which convergent inputs from US-specific value cells and CS-specific ORB cells help condition 
cue-reward associations, the pedunculopontine nucleus (PPTN) which relays CS- and US-related 
excitations to the SNc/VTA, and striosomal delay cells (SD) which compute a CS-cued and 
adaptively-timed inhibition of DA cells in the SNc/VTA. Dips and bursts in dopamine cell 
activity are the result of the balance of phasic inhibitory and excitatory inputs to the SNc/VTA. 
SD cells issue an inhibitory signal only if they have been activated by a cue that reliably predicts 
reward. Unexpected rewards elicit dopamine bursts because the occurrence of reward excites 
PPTN/LDT cells and, in turn, SNc/VTA cells while anticipatory signals from SD cells to the 
SNc/VTA never materialize. Dopamine dips are generated when an expected reward is omitted. 
In this case, a predictive cue is presented and SD cells send an adaptively timed inhibitory input 
to the SNc/VTA at the expected time of reward. However, at the expected time of reward, the 
reward is omitted and dopamine cells in the SNc/VTA receive no excitatory input from the 
PPTN/LDT to offset inhibitory inputs from SD cells. The result is a transient suppression or dip 
in the activity of dopamine cells at the expected time of reward. 
2.3.3. Gated Dipole Opponent Drive Processing. The gated dipole opponent processing model 
was developed to address the interactions of appetitive and aversive motivational processes 
(Grossberg, 1972b, 1975, 2000a; Solomon, 1980). Behavioral studies show that appetitive and 
aversive stimuli are not simply processed in independent parallel circuits, but interact as though 
processed in opponent systems yielding such important phenomena as summation, excitatory and 
inhibitory conditioning, the relief associated with the offset of pain, or frustration following 
omission of reward (Amsel, 1968; Denny, 1970; Dickinson and Dearing, 1979; Weiss et al., 
1996; Dickinson and Balleine, 2001). 
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Figure 8: Model detail with equation variables: Distinct cell types are represented with different labeled 
compartments. Cells may or may not show a selective response to affective information of different valences. Cells 
which selectively respond to appetitively valenced information are indicated by filled circles. Cells which selectively 
respond to aversive affective information are indicated by open circles. Activation is transmitted between cells along 
specific pathways. Pathways are indicated by edges with arrowheads (fixed excitatory connection), semicircles 
(learned excitatory connection), or filled circles (fixed inhibitory connection). Filled arrowheads carry driving 
excitatory inputs. Open arrowheads carry excitatory signals that modulate or multiply driving inputs. Similarly, 
filled semicircles carry adaptively gated driving inputs while open semicircles carry adaptively gated signals that 
modulate driving inputs. Half-filled rectangle: Pathways which show activity driven habituation. Weights (‘W’) 
have a pathway specific superscript. For variable names, subscript and superscript definitions, and other equation 
details see Appendix. 
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Figure 9: Antagonistic rebounds in 
simulated and observed lateral 
hypothalamic cells: Left: 9a and 9c 
electrophysiological recordings from 
lateral hypothalamic “opposite cells” in 
rats during learning and extinction trials. 
Right: Simulated neural activation profiles 
(model). 9a: Response of an excitatory 
lateral hypothalamic opposite cell. During 
rewarded trials the cell responds strongly 
to both CS and US presentation. After 
several extinction trials activation 
dissipates [Reprinted with permission from 
Nakamura and Ono (1986)]. 9b: Simulated 
appetitive LH_out cells show a transient 
suppression following reward omission. 
Trial 0 indicates the last rewarded CS task. 
Trials 1 through 11 indicate successive 
extinction trials. 9c: Inhibitory opposite 
cell recorded from a rat during the CS task. 
The cell is normally inhibited by CS and 
US presentation and shows a strong 
transient excitatory response when reward 
is omitted [Reprinted with permission 
from Ono et al., (1986a)]. 9d: Simulated 
LH_out aversive cells show a transient 
excitation following the omission of 
reward. Spikes are generated from 
appetitive and aversive LH_out cell 
activity during extinction trial simulations 
of the CS task. 
 

The gated dipole model (embedded in the LH of Fig. 8; see Appendix Equations (15-17, 34)) 
describes an opponent mechanism by which the cessation of appetitive or aversive stimuli can 
generate an antagonistic rebound signal of the opposite valence. A feedforward gated dipole 
circuit obeys five constraints: (1) separate ON- and OFF-channels that process appetitive and 
aversive information; (2) input cells that summate two types of excitatory inputs: phasic inputs 
that result from the presentation of appetitive or aversive stimuli, and tonic inputs that affect both 
channels equally, reflecting baseline arousal levels; (3) slowly habituating and recovering 
chemical transmitter levels that gate, or multiply, the phasic-tonic signals emerging from input 
cells; (4) second-stage cells that receive the gated signal from the phasic-tonic cells and relay this 
gated signal with excitatory sign to their own channel but inhibitory sign to the opponent 
channel; and (5) a competitive or opponent, output stage, at which cells in either channel can fire 
only if the excitation they receive from their channel exceeds the inhibition they receive from the 
opponent channel. 

The antagonistic rebound properties of a gated dipole arise from the difference in reaction 
rates between the slowly habituating transmitter gates and fast changes in the phasic or tonic 
inputs. The offset of phasic inputs may generate rebounds (e.g., the offset of a fearful stimulus 
triggers relief; Denny, 1970). The level of tonic arousal inputs provides the energy, and controls 
the sensitivity, of the rebound to cue offset. When tonic arousal suddenly increases (unexpected 
events are arousing) the gated dipole may again generate a rebound. Both sets of rebound 
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disconfirm ongoing affective processing. The model (Fig. 8) assumes that a dip in the activity of 
dopaminergic SNc/VTA cells generates a fast arousal increment (see Appendix Section 5.4.4), 
which generates a rebound activation in the output cells of an OFF channel that were inactive 
before the DA dip. Such a rebound in the OFF channel that opposes an appetitive ON channel 
rapidly and selectively shuts off formerly active channels and activates a negative affective state 
(e.g., rebound from hunger to frustration; Amsel, 1968). 

Both the phasic offset and tonic onset types of antagonistic rebound can speed extinction 
and preserve outcome-specific information, as shown below. Moreover, the antagonistic 
rebounds and opponent properties predicted by gated dipole output cells allow the model to 
explain electrophysiological responses of lateral hypothalamic opposite cells reported by Ono 
and associates (Nakamura and Ono, 1986; Ono et al., 1986a; Nakamura et al., 1987). These cells 
appear to be organized in ON and OFF (appetitive and aversive) channels, such that cells that are 
excited by an appetitive CS and its associated US (such as glucose) are also inhibited by the 
presentation of an aversive stimulus and its associated US  (such as electric shock). Also, these 
cells show rebounds following the omission of reward: appetitive cells are rapidly shut off while 
aversive cells are transiently activated. Figs. 9a and 9c show two such cells as reported by Ono 
and associates (Nakamura and Ono, 1986; Ono et al., 1986a), whereas Figs. 9b and 9d show 
model simulations of these responses. 
2.3.4 Recurrent Dipoles and Rebounds to CS Offsets. The hypothalamic dipole circuits in Fig. 8 
are recurrent, or feedback, networks because they have excitatory connections that carry signals 
from the output cells back to the same channel’s input cells (see Appendix Equations (15, 17)). 
Recurrent dipoles can maintain a motivational baseline in the presence of small distracting 
inputs, prevent learned synaptic weights from saturating, and allow secondary inhibitory 
conditioning (Grossberg and Schmajuk, 1987). In the present model, without recurrence, the 
dipole could generate rebounds to arousal increments or US offsets, but not to CS offsets. With 
recurrence, the habituating transmitter levels in the circuit are capable of adapting to CS-related 
inputs, thereby enabling rebounds to be generated in response to CS offsets. Thus termination of 
an appetitive CS generates an aversive affective reaction which is necessary for secondary 
inhibitory conditioning. 
2.3.5 Parallel cortical incentive processing channels for US and CS. Fig. 8 includes separate 
pathways for processing visual CS (involving learned and unlearned connections between ITA, 
ORB, and AMYG; see Appendix Equations (10-12, 36, 38) and gustatory US information 
(involving learned and unlearned connections between RHIN, MORB, and AMYG; see 
Appendix Equations (12, 18, 19, 39, 41)). Electrophysiological studies suggest that US and CS 
processing in the orbital prefrontal cortex are distinct (Tremblay and Schultz, 2000b). Lesion 
studies also support this analysis, as RHIN lesions disrupt US but not CS processing (Parker and 
Gaffan, 1998). The model explains these observations by segregating the US-processing RHIN-
to-MORB (medial orbitofrontal) stream from the CS-processing ITA-to-ORB (lateral 
orbitofrontal) stream. Separate streams for US and CS processing supports specific feedback 
enhancement by the respective orbitofrontal regions of sensory representations at the stages 
(RHIN vs. IT) that feed them. Such feedback speeds learning that involves highly active 
representations in the affected loop while blocking learning in competing representations. 
2.4 Model Parameters and Task Protocols. The training sequence for the model mirrors the 
training regime for the SVD-FSS (Simultaneous Visual Discrimination – Food Specific Satiety) 
task described by Murray and colleagues (Baxter et al., 2000). The US learning task was 
simulated first, followed by the CS learning task and the SVD task. Training the model in this 
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order allows the AMYG to form a US-specific representation with which visual stimuli in the CS 
or SVD tasks can later be associated. 
2.4.1 System Inputs, Outputs, and Equations. There were four inputs that could be varied during 
any trial: a phasic CS signal, a phasic US signal, a drive input, and an arousal input (see 
Appendix Section A.2). For all neural elements, the model computes time-varying activations, 
two of which (Fig. 3) can be regarded as output signals: a lateral hypothalamic output related to 
blood pressure and a ORB-generated object-value output used to compute the reaction time of a 
saccade (see Appendix Equations (44-46)). In the SVD task, saccades are instrumental, whereas 
in the CS task saccades are not needed to gain reward. 

The differential equations that specify model interactions and dynamics fall into three 
general categories: short term memory (STM) equations that describe changes in neuronal 
activation levels (see Appendix Equations (1-4)), medium term memory (MTM) equations that 
describe experience-dependent but short-term effects such as facilitation, short-term depression, 
and transmitter habituation and recovery (see Appendix Equation (5)), and long term memory 
(LTM) equations that describe experience-dependent changes that can be long-lasting, most 
notably long term potentiation or depression of synaptic efficacy (see Appendix Equations (6-
9)). Parameters, initial values, inputs, and outputs for these equations are discussed in the 
Appendix. 
2.5 Simulations 
2.5.1 US Learning Task. The simulated US task follows the timing of the Ono et al. (1986) 
version of the reward presentation task (Fig. 10a). The US task trains the model to recognize 
drive and GUS representations of two rewarding food stimuli, US1 and US2. 
Satiety Devaluation of US Task. The devaluation task was simulated after the model was fully 
trained to recognize US1 and US2. The satiety devaluation simulation examined the response of 
the system to US1 as GUS and hunger inputs were systematically decreased from high initial 
values across 20 trials. In the first trial of the devaluation sequence, there is no GUS habituation 
and the initial values of the opponent hunger and satiety inputs were set to 4 and 0, respectively; 
by the end of the devaluation sequence, the hunger and satiety inputs had each reached a value of 
2. To isolate the effects of habituation and satiety, LTM values (synaptic weights) were fixed 
across these twenty trials. This simulation demonstrated that the model could register continuous 
changes in US value. 

Food Specific Satiety US Task. The FSS simulation tested the specificity of US1 
devaluation by satiety. This simulation demonstrated an FSS effect; namely, the model’s 
response to US1 was devalued while its response to US2 was spared. GUS habituation and 
hunger drive levels were changed to reflect FSS such that US1-specific tastes were habituated to 
0.4 and US1-specific drives were satiated, from 4 to 2. 
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Figure 10: Timing and input sequence for the US, CS, and SVD tasks: 10a, left: Timing of free reward task 
reported by Ono, et al (1986) [Reprinted with permission from Ono et al. (1986)]; 10a, right: Simulated US task 
utilizes un-cued delivery of gustatory inputs and two endogenous inputs: drive and arousal. 10b, left: CS Learning 
Task as reported by Nakamura et al. (1987) [Reprinted with permission from Nakamura et al. (1987)]; 10b, right: 
Simulated version of CS Task. 10c, left: Simultaneous visual discrimination task (SVD) as reported by Jagadeesh et 
al. (2001). Solid line: Time course of inputs during rewarded trials. Dashed line: Time course of inputs during 
unrewarded trials. During unrewarded trials there was a 2 second time out rather than a juice reward. 10c, right: 
Simulated version of SVD Task. Simulation experiments were based on task reported by Jagadeesh et al. (2001) 
except a fixation cue was omitted. Solid lines: Input sequence during rewarded trials. Dashed lines: Input sequence 
during unrewarded trials. The increase in arousal during unrewarded trials is not provided as an input but is 
contingent on a dopamine dip signal that follows reward expectation learning in the basal ganglia circuit. 
 
2.5.2 CS Learning Task. There were four simulations of the CS task: CS learning, extinction, 
satiety and devaluation, and outcome-specific devaluation. Simulations of the CS task 
demonstrate how sensory cues associate with object-value and drive representations in the ORB 
and AMYG, replicate the devaluation of a CS that occurs when its associated US is specifically 
sated, match reported acceptance and rejection curves, and demonstrate the specificity of the 
automatic devaluation of a CS. These model simulations also replicate the dynamics of 
experimentally observed neurophysiological cell types in the AMYG, LH, ORB, SNc/VTA, VS, 
PPTN, and striosomal striatum (SD). 
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The simulated CS task mimicked the timing of the CS task reported by Nakamura et al. 
(1987) (Fig. 10b). The CS learning task demonstrates that the model can learn two stimulus-
reward associations with distinct outcomes: CS1 was rewarded by a subsequent presentation of 
US1 (CS1+US1) and CS2 was paired with US2 (CS2+US2). The task also allowed the model to 
demonstrate that motivation impacts saccadic latency. The model uses a cumulative spike 
counter and a ‘race to threshold’ rule for generating saccades (see Appendix Equation (46)). 
When a CS activates the corresponding CS-selective ORB cell, ORB cell activity is sent to a CS-
selective FEF cell. The CS-selective FEF cell integrates ORB cell inputs, biased by arousal and 
ITA inputs, across time until the cumulative activity exceeds a fixed threshold of 0.3. After the 
threshold is exceeded, a saccade is made to the stimulus associated with the winning ORB cell. 
Mechanisms detailed by Brown et al. (2004) in the TELOS model explain how saccadic targets 
are selected by the frontal eye fields (FEF). In TELOS, object category-selective FEF cells 
receive ITA inputs and can be modulated by motivational signals from the ORB, thereby biasing 
the selection of saccadic targets and influencing saccadic reaction times. 

CS Extinction Trials. The extinction simulations consisted of 20 conditioning trials 
(rewarded) followed immediately by twenty extinction trials (unrewarded). The details and 
timing of the CS extinction task are as described in Fig. 10b except that, during an extinction 
trial, the US is not presented, and thus the CS is unrewarded (CS-). 
 CS Devaluation Trials. CS devaluation trials demonstrate that the system decreases its 
responses to CS1 and US1 as GUS and hunger inputs are systematically decreased. LTM 
adaptive weight values were fixed across trials. 
 Outcome-Specific CS Devaluation. These simulations demonstrate the specificity of the 
CS devaluation effect. To examine how neuronal responses to CS presentation would differ at 
various stages of satiation, a sequence of twenty trials of CS presentation were simulated, each 
successive trial using a progressively smaller drive input (Fig. 11a-e(1)). In the first trial, the 
opponent hunger and satiety inputs were set to 4 and 0, respectively. By the end of the 
devaluation sequence, the hunger and satiety inputs had each reached values of 2 and 3. To 
isolate the CS effect, no US was presented. Therefore, these trials are extinction trials. To isolate 
the effect of drive satiety alone, GUS habituation and (un)learning were turned off during these 
20 trials. Comparisons of final and initial simulated AMYG, LH, and ORB responses are also 
shown in Fig. 11. These simulations demonstrated that the automatic and outcome-specific 
devaluation of a CS1 that was previously paired with a satiated US1 coexists in the model with a 
maintained strong response to a CS2 that was previously paired with a non-satiated US2. 
2.5.3 SVD Task. Five SVD tasks were simulated: SVD learning, extinction, reversal, alternation, 
and the SVD task with specific food reinforcer devaluation by satiation (SVD-FSS). The first 
simulation demonstrates dopamine-driven changes in cue preference with the learning and 
reversal of a visual discrimination problem, and shows qualitative matches to the behavioral 
curves reported by (Jagadeesh et al., 2001). A second simulation demonstrates that food specific 
satiety (FSS) can also alter cue preference in a fairly dopamine-independent fashion. These 
simulations of the SVD-FSS task show qualitative matches to the behavioral results described in 
the experiments by Murray and colleagues (Malkova et al., 1997). The SVD-FSS simulation 
highlights how the AMYG-LH system influences behavior and preferences. While performing 
the SVD task, model neuron discharges resemble those of cell types experimentally observed in 
the AMYG, ITA, and ORB. 
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Figure 11: Food-specific satiety and CS devaluation during CS task: 11a-11e, left column and 11a(2): Effects of 
20 trials of progressively increasing satiety on neural activities related to CS presentation. No reward was presented 
during these trials. Data points in figures represent the average activation for the indicated neural variable during CS 
presentation (t=1 until t=3 seconds). 11b-11e, right column except (a.2): Plots present an overlay of traces showing 
the activation of simulated variables during automatic revaluation of Pavlovian stimuli following food-specific 
satiety. Solid lines: Response to CS2 presentation, CS2 is paired with the unsated reward US2. Dashed lines: 
Response to CS1 presentation, CS1 is paired to the devalued reward US1. US1-related GUS signals were set to a 
habituation level of 0.35 while US1-related hunger inputs were set to 3 and satiety inputs nonspecifically set to 2. 
LTM values were fixed for all trials. Key: 11a shows inputs during devaluation sequence: (1): Drive inputs, hunger 
and satiety; (2): Consumption-related gustatory habituation. 11b(1): US1-specific ORB response (solid lines) and 
US2-specific ORB response (dashed lines). 11b(2): Differential response of CS1 (dashed) and CS2-specific (solid) 
ORB cells during the automatic revaluation simulation. 11c(1): Response of appetitive (solid lines) and aversive 
(dashed lines) glucose-sensitive LH_out cells. 11c(2): Response of the glucose-sensitive LH_out cell to CS1 when 
US1 is sated (dashed lines) vs. response to CS2 when US2 unsated (solid lines). 11d(1): US1-specific AMYG 
response (solid lines) and US2-specific AMYG response (dashed lines). 11d(2): Differential response of US1-
specific (dashed) and US2-specific (solid) AMYG cells to CS1 or CS2 presentation. 11e(1): CS1-generated blood 
pressure response. 11e(2): Differential blood pressure response when CS1 is presented (dashed lines) vs. when CS2 
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is presented (solid lines). 11f(1): Average dopamine burst in response to CS1 presentation. 11f(2): Differential 
dopamine response to CS1 presentation (dashed) vs. CS2 presentation (solid). 
 
The SVD task trial structure was based on the SVD experiments performed by Jagadeesh et al. 
(2001), as illustrated in Fig. 10c. In the SVD learning task, two stimuli are simultaneously 
presented; saccadic choice of the stimulus designated as the target is rewarded (CS1+), whereas 
saccadic choice of the other stimulus, designated the distractor, is unrewarded (CS2-). Successful 
trials reinforce the CS1+US1 association. As in the CS task, during the SVD task the model 
generates saccadic responses using a cumulative spike counter in the FEF and a ‘race to 
threshold’ rule (see Appendix Equation (46)). Whichever CS-selective FEF cell is first to exceed 
the fixed threshold of 0.3 determines the stimulus selected for a saccade. Inputs from the ORB to 
the FEF ensure that saccadic reaction time is modulated by motivational state.  

SVD Task: Extinction. These simulations demonstrate the extinction of the association 
between CS1 and US1. Trials in the extinction protocol differed from trials in the SVD training 
protocol, shown in Fig. 10c, in only one regard: the US presentation was omitted. When the 
CS1+US1 association is extinguished, discrimination behavior (saccadic preference) drops to 
chance.   

SVD Task: Reversal Learning. For the reversal experiment, one US is used throughout 
the simulation. After a block of trials in which only saccadic choice of CS1 leads to US (reward) 
delivery, the contingency reverses for the next block, and only choice of CS2 leads to reward. 
Within each trial, the input sequence was the same as described in the normal SVD task (Fig. 
10c). The reversal experiment demonstrates how reinforcement learning and dopaminergic value 
systems can change cue preferences in response to contingency reversals. 

SVD Task: Alternation. The alternation task incorporates some elements also found in the 
SVD-FSS task (below). Two associations, CS1+US1 and CS2+US2, were pre-trained prior to 
alternation simulations. Then both CS1 and CS2 were presented simultaneously while the model 
maintained equally high drive for both US1 and US2. In the first block of 15 trials, saccadic 
choice of CS1 was rewarded (CS1+US1) but CS2 was unrewarded (CS2-). Then, to create the 
alternation, for trials 16-30 saccadic choice of CS2 was rewarded (CS2+US2) but CS1 was 
unrewarded (CS1-); e.g., ORB recording in serial alternation example from Thorpe et al. (1983). 
Otherwise, the alternation protocol used the same presentation timings as the SVD task (Fig. 
10c). In the model, the beginning of the alternation engenders a violation of a timed expectation 
of reward. The resultant dopamine dip, which acts directly as a (negative) reinforcement learning 
signal on cortical and striatal sites, also disinhibits a nonspecific source of arousal to the 
hypothalamus, engendering an arousal burst that leads to an antagonistic rebound in the AMYG. 
Together, these signals can bring about quick changes in preference for a cue, despite a 
substantial recent history of reward for that cue. 

SVD-FSS Task. As with the alternation experiment, two visual discriminations were 
trained prior to the SVD-FSS experiments, resulting in the learning of CS1+US1 and CS2+US2 
associations. In the SVD-FSS task, saccadic choice of either stimulus is always rewarded, CS1 
with US1 and CS2 with US2. Hence the visual discrimination is not between a rewarded target 
and an unrewarded distractor, but between two reward-predicting stimuli (CS1+ vs. CS2+) on 
the basis of the animal’s current preference for the expected outcomes, US1 or US2. For the first 
five trials, hunger and GUS inputs were high for both outcomes. For the last five trials, these 
inputs for outcome US1 were set to values indicative of satiety.  But CS-US synaptic connections 
were left unmodified. The input sequence of the SVD-FSS trial was similar to that described for 
SVD trials (Fig. 10c). The SVD-FSS task affords a view of the impact of food-specific satiety on 
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decision-making. The SVD-FSS task tests whether the model’s cue (CS) preference can shift 
solely as a result of selective satiation, without any additional reinforcement learning. 

 

 
 
Figure 12: Performance of the US learning task: 12a-12n: Activity of system variables during US task. US turns 
on at t=1 second. US1 activaties GUS input (12b) corresponding to ‘sweet’ taste. GUS inputs activate RHIN (12m) 
and LH_gus (12i) cells. RHIN cells (12m) categorically recognize each US by taste features and activate AMYG 
cells (12n). LH_gus cells (12i) receive taste inputs that correlate with the specific metabolite or drive processed in 
that LH_gus cell. LH_gus activity projects to LH_in (12g), LH_out (12k), and PPTN (12j) cells. The affective value 
of a US is calculated by AMYG cells (12n) which cluster and recognize US-specific drive features. Affective value 
is calculated by summing the taste-modulated drive inputs from LH_out cells (12k) during US consumption. US 
incentive value is measured by MORB cells (12e) which receive contemporaneous RHIN (12m) and AMYG (12n) 
cell inputs. Dopamine bursts at US onset, and dips at US offset, (12f), are generated by SNc/VTA cells (12h) which 
are excited by PPTN inputs (12j). Key: 12a: Glucose driven hunger input. 12b: GUS input for sweet taste. 12c: 
Nonspecific arousal input. 12d: Blood pressure output of the model. 12e: US1-specific (solid line) and US2-specific 
(dashed line) MORB cells. 12f: Effective cortical dopamine burst or dip (solid line). 12g: Glucose hunger driven 
LH_in cell (solid line); opponent LH_in satiety cell (dashed line). 12h: Phasic output of SNc/VTA cells (solid line); 
time-averaged SNc/VTA output (dashed line). 12i: LH_gus cell sensitive to sweet taste and glucose drive inputs 
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(solid line); dashed lines trace the opponent LH_gus cell. 12j: Phasic output of PPTN cell (solid line); lasting 
hyperpolarization of PPTN (dashed line). 12k: Sweet-taste and glucose-specific LH_out cell (solid line); dashed line 
traces activity in its aversive opponent cell. 12l: VS cell responsive to US1. 12m: US1-specific RHIN cell category 
(solid line); US2-specific RHIN cell (dashed line). 12n: US1-specific AMYG cell. 
 

 
 
Figure 13: Food-specific satiety related devaluation of STM activity: 13a-13e, left column and 13a(2): Effects of 
20 trials of progressive satiation on neural activation related to US consumption. Data points in figures represent the 
average activation for the indicated neural variable during US presentation (t=1 until t=3 seconds). 13b-13e, right 
column except 13a(2): Plots present an overlay of traces showing the activation of simulated variables during the 
consumption of different food rewards. Dashed lines: The sated reward, US1, was presented. Solid lines: An unsated 
reward, US2, was presented. For FSS trials, US1-specific hunger and satiety inputs were set to 2 and 1.5, 
respectively; US1-specific GUS tastes had been habituated to 0.43. Key: 13a(1): Glucose-sensitive hunger inputs 
(upper, solid line) and satiety inputs (lower, dashed line) across the 20 devaluation trials. 13a(2): GUS habituation 
for sweet taste (lower, solid line) and lack of habituation for the unencountered salty taste (upper, dashed line). 
13b(1): The response of US1-specific MORB cells to increasing satiety (solid line) and US2-specific MORB cells 
(dashed line). 13b(2): The differential response of US1 (solid) and US2-specific (dashed) MORB cells during the 
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FSS simulation. 13c(1): The response of appetitive (solid line) and aversive (dashed line) glucose-sensitive LH_out 
cells. 13c(2): The response of the glucose-sensitive LH_out cell when US1 is presented (solid line) vs. when US2 is 
presented (dashed line). 13d(1): The decrease of the US-generated blood pressure response with increasing satiety. 
13d(2): Blood pressure response to US1 (solid line) vs. US2 (dashed line). 13e(1): The average dopamine burst in 
response to US presentation across 20 satiation trials. 13e(2): Differential effective cortical dopamine response to 
US1 vs. US2. 
3. RESULTS 
The results section describes simulation results and how the model performs the normal US, CS, 
and SVD tasks. 
3.1 US Learning Task 
3.1.1 Normal Performance of the US Task. The model’s performance of the US Task can be 
parsed into five phases: (1) Equilibration to drive inputs, (2) US presentation, (3) Calculation of 
US metabolic value, (4) Incentive value and response generation, and (5) Dopamine responses. 
Fig. 12 details these stages and presents the results from the simulation of one US task trial. 
3.1.2 Normal Learning of the US Task. Simulations of the US task demonstrate how outcome-
specific representations of US1 and US2 food rewards form. The model requires approximately 
40-50 trials before the LTM weights become asymptotically stable. Some aspects of US 
processing are learned while others are not. Thus, connections between basal ganglia, 
hypothalamic, and gustatory regions are assumed to have been learned prior to the US task, so 
US presentation elicits a large dopamine, blood pressure, and LH response prior to any training 
(Ono et al., 1986; Nakamura et al., 1993). Connections involving the ITA, RHIN, AMYG, 
ORBM, and ORBL, in contrast, are learned during trial simulations, so training with the US task 
is essential for cortically represented stimuli to gain access to outcome-specific information. 
3.1.3 US Devaluation and Satiety. Fig. 13 shows the results from model simulations in which 
hunger was systematically reduced and GUS input systematically habituated across twenty trials 
(see Appendix Equation (35); for input regime see Methods, Section 2.5.1). The responses of LH 
output (Fig. 13c(1)), MORB (Fig. 13b(1)), and AMYG cells are clearly diminished by increasing 
satiety and the habituation of GUS inputs (Rolls et al., 1986; Nishijo et al., 1988; Yan and Scott, 
1996). While not shown, RHIN cell responses also decrease because of the habituation of GUS 
inputs (see Appendix Equations (18)). In these simulations, the majority of the devaluation of 
cell responses is due to gustatory habituation, but comparison with CS devaluation simulations 
demonstrates that satiety inputs alone are capable of significantly diminishing cell responses. 
Sensory-specific gustatory signal habituation and drive-specific satiation are each integral 
mechanisms of food specific satiety (FSS). Blood pressure and dopamine output are also 
attenuated by increases in satiety level (see Figs. 13d(1), 13e(1)). 
3.1.4 Simulations of Food Specific Satiety. The second column of Fig. 13 shows that the US 
devaluation is food-specific. The results demonstrate that US1 is devalued relative to US2 in the 
response of blood pressure (BP) and dopamine, MORB, and LH cells (Figs. 13e(2), 13d(2), 
13b(2), 13c(2)). The differential valuation of US1 and US2 occurs because they are composed of 
different nutrients (see Appendix, Section A.2.2). Decreasing the hunger drive for US1 leaves 
the hunger drives for US2-associated nutrients elevated. The high drive for US2-associated 
nutrients means the AMYG calculates a high value for US2. The RHIN and other LH cells (not 
shown) are similarly differentially modulated by the food-specific satiation (Rolls et al., 1986).  
3.2 CS Learning Task 
3.2.1 Normal Performance of the CS Task. The model’s performance of the CS Task can be 
parsed into nine phases. Fig. 14 details the responses of simulated neurons during the 
performance of the CS learning task. The first phase of the CS task is the initial equilibration of 
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model variables prior to CS onset at t=1 sec. In the second phase, the VIS input, CS1, is 
presented (Fig. 14a) to the CS1-specific ITA cell (Fig. 14g; see Appendix Equation (10)). The 
ITA cell activates CS1-specific lateral ORB cell (Fig. 14e; see Appendix Equation (11)) and, 
using previously learned connections, activates the US1-specific AMYG cell (Fig. 14m; see 
Appendix Equations (12-14, 38)). In the third phase, the CS expresses its conditioned reinforcer 
properties and is evaluated by AMYG-LH interactions. In particular, the US1-specific AMYG 
cells activate US1-prototypical taste and drive feature LH_out cells (see Appendix Equations 
(17)). LH_out cells (Fig. 14r) multiply the AMYG inputs by the current drive levels and relay 
this information back to the AMYG (Fig. 14m). The AMYG sums this information and generates 
an estimate of the momentary affective value of US1 and, consequently, CS1 (Fig. 14m). AMYG 
cell activity then drives the CS1-specific ORB cell via incentive motivational signals (Fig. 14e), 
which represents the object-value that controls approach to CS1. 

In the fourth phase of the CS task, ORB activity modulates FEF and ITA activity (Fig. 
14g) and thereby helps to control CS1-oriented eye movements and CS1-compatible visual 
attention (see Appendix Equation (46)). In addition the LH elicits a CS1-related blood pressure 
response (Fig. 14d; Appendix Equations (44-45)) which prepares the system for the action and 
its consequences. In the fifth phase, the activity elicited by CS1 in the AMYG, ORB, and LH is 
relayed to the BG where dopamine cells in the SNc/VTA respond to the appetitive value of the 
CS with a burst of activity. CS1-related value information is carried to the SNc/VTA via the 
PPTN/LDT. There are two paths through the BG leading to the PPTN/LDT, one direct the other 
indirect. 

The direct path carries mainly US-related value information from LH_gus cells to the 
PPTN/LDT (Figure 14j; see Appendix Equation (21)). The indirect path issues from the AMYG 
and ORB to the PPTN/LDT via the VS (Figure 14l) and carries the majority of CS-related value 
signals. The path from the ORB to the VS is learned while the path from the AMYG to the VS is 
unlearned (see Appendix Equation (20)). AMYG inputs to the VS reflect the value of specific 
outcomes. The ORB also projects to the SNc/VTA via a second, net inhibitory path. This second 
path relies on CS-related inputs from the ORB to activate SD cells (Figure 14n; see Appendix 
Equation (23)), which issue an adaptively-timed inhibitory input (Figure 14p) to the SNc/VTA 
(Figure 14h; see Appendix Equation (25-28, 44)). 

In the sixth phase of the task, CS1 presentation terminates and the US is presented for 
two seconds. As in the Pavlovian task described by Ono et al. (1986) the CS1 VIS input turns off 
and the US1 GUS input turns on for 2 seconds (Figure 14b). In the seventh phase, the US1 is 
evaluated as described in the US task (Figure 12). US-related dopamine signals are processed 
differently in the eighth phase of the task from that seen in the US task. In the eighth phase of the 
CS task, the inhibitory path from the ORB to the SNc/VTA plays a prominent role. This 
inhibitory path learns to generate an adaptively timed inhibition that suppresses US1-generated 
dopamine responses. The ability of SD cells to suppress US-related dopamine responses reflects 
the number of training trials and the strength of the predictive relationship between CS and US. 
After forty training trials, the model is typically fully trained. Even after ten trials dopamine 
spikes elicited during US presentation are greatly reduced (Figure 14f). 
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Figure 14: CS learning 
task, after ten conditioning 
trials: Key: 14a: The CS1 
visual stimulus. 14b: A 
sweet taste driven by US1-
related GUS input. 14c: A 
glucose-deprivation driven 
hunger input (solid line) and 
a nonspecific arousal input 
(dashed line). 14d: Model 
blood pressure output. 14e: 
The CS1-specific ORB cell 
(solid line) and a CS2-
specific ORB cell (dashed 
line). 14f: Effective cortical 
dopamine burst (solid line) 
and dip (dashed line). 14g: 
CS1-selective ITA cell 
(solid line) and CS2-
selective ITA cell (dashed 
line). 14h: Phasic output of 
SNc/VTA cells (solid line) 
and time-averaged 
SNc/VTA output (dashed 
line). 14i: US1-specific 
MORB cell (solid line) and 
US2-specific MORB cell 
(dashed line). 14j: Solid 
lines trace the phasic output 
of the PPTN cell; dashed 
lines the hyperpolarization 
(suppression) of tonic PPTN 
inputs. 14k: Activation of 
the US1-selective RHIN cell 
(solid line) and US2-
selective RHIN cell (dashed 
line). 14l: VS cell 
responsive to CS1 and US1 
(solid line) and VS cell 
responsive to US2 (dashed 
line). 14m: US1-specific 
AMYG cell (solid line) and 
US2-specific AMYG cell 
(dashed line). 14n: CS1-
related activation of SD cells 
with different decay rates. 
14o: Glucose-deprivation 
driven LH_in cell (solid 
line) and opponent LH_in 
cell (dashed line). 14p: 
Adaptively timed output, 
GYZ, from SD cells to 
SNc/VTA cells. 14q: 
Activity of LH_gus cell 
sensitive to sweet taste and glucose drive inputs (solid line) and opponent LH_gus cell (dashed line). 14r: Sweet-
taste and glucose-specific LH_out cell (solid line) and aversive opponent LH_out cell (dashed line). 
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3.2.2 Normal Learning of the CS Task. The learning of the CS1+US1 association is depicted in 
the first twenty trials of each graph in Fig. 15. Subsequent trials show effects of extinction. If the 
previously model has been trained with the US Task (as here), the model learns most aspects of 
the CS Task within ~20 trials, during which most LTM adaptive weights reach a plateau. US-
related weights change little during the CS Task (Fig. 14d(3), 14g(1)). An additional 20-30 trials 
are required for the plateauing of the adaptively timed weights, Zgj, which gate the inhibitory 
inputs from SD cells to dopamine cells in the SNc/VTA (Equation 43). 

CS1 forms a specific association with US1 using conditioned reinforcer adaptive weights 
from the ITA to AMYG (Fig. 15f(1); see Appendix Equation (38)), with incentive motivational 
adaptive weights from the AMYG to ORB allowing needed rewards to modulate available 
stimuli (Fig. 15e(1); see Appendix Equation (36)), with Now Print adaptive weights from the 
ORB to VS linking motivationally relevant cues to dopamine cells (see Appendix Equation (42)), 
and with adaptively timed weights from the ORB to SD enabling previously attended cues to 
establish timed expectations of reward (see Appendix Equation (43)). The growth of these LTM 
weights boosts STM activity over the course of training, elevating AMYG, ORB, LH_out 
activity, and via connections with the VS and SNc/VTA, dopamine activity (Fig. 15f(2), 15e(2), 
15g(2), 15c). Rises in LH activity boost blood pressure (Fig. 14b). A strong adaptively-timed 
inhibitory signal from the SD to the SNc/VTA assures that a dopamine dip will be generated if a 
reward is omitted (e.g. Fig. 16f). Complete suppression of US-generated dopamine signals 
happens after about thirty trials. Further training, on the other hand, does not suppress CS-
generated dopamine signals (Fig. 15c). Inhibition of US1-generated dopamine responses by SD 
cells, and small decrements in drive and GUS inputs (Fig. 15d) slightly decrease LTM values 
after the plateau value has been reached. 
3.2.3 Extinction of Pavlovian Stimuli. During an extinction trial, the CS is presented but the US 
is omitted. Fig. 15 illustrates the decay of LTM weights. The vertical line in the panels of Fig. 15 
separates learning trials from extinction trials. Learning at incentive motivational (see Appendix 
Equation (36)) and LH to AMYG (see Appendix Equation (37)) LTM weights is gated by 
postsynaptic activity and samples presynaptic activity. Learning in conditioned reinforcer (see 
Appendix Equation (38)), basal ganglia (see Appendix Equations (42, 43)), and AMYG to LH 
(see Appendix Equation (40)) LTM weights is gated by presynaptic activity and samples 
postsynaptic activity. Extinction trials diminish the predictive significance of the CS and lead to 
the decay of learned CS1+US1 associations but not to the decay of associations relating to the 
US itself. LTM weights decrease according to two processes: when the activity they sample 
decreases (see Appendix Equations (6, 7)) or when dopamine dips actively trigger weight decay 
(see Appendix Equations (8, 9)). 
 CS-related LTM weights decay to differing degrees during extinction trials. Conditioned 
reinforcer weights linking the ITA and AMYG extinguish completely (Fig. 15f(1)). Incentive 
motivational weights linking the AMYG and ORB decay incompletely (Fig. 15e(1)). 
Conditioned reinforcer weights extinguish completely because learning along this path is gated 
by ITA activity (Equation 38) and ITA activity remains strong throughout the CS extinction task, 
ensuring dopamine dips can drive weight decay on every extinction trial. The decay of incentive 
motivational LTM weights reaches an asymptote because ORB activity gates learning and ORB 
activity decreases across extinction trials (Figs. 15e(2)). This decrease diminishes LTM weight 
plasticity, sparing incentive motivational weights from complete decay (Fig. 15e(1)). This helps 
explain some savings observed when an extinguished association is relearned (Rescorla, 2001). 
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Figure 15: Trial level changes in learning and extinction of CS task: Simulations involved 20 rewarded trials 
followed by 20 extinction trials. Data points in the plots represent the average activation of model variables either 
during CS presentation (time = 1-3 seconds) or US consumption (time = 3-5 seconds). For LTM weights, data points 
represent average LTM values across the trial (time = 1-6 seconds). During extinction trials, a strong dopamine dip 
(above a threshold D2 =0.2) elicits an arousal burst. 15a: A saccadic response was (“1”) or was not (“0”) elicited by 
CS1 during each trial. 15b: Average blood pressure response to CS1. 15c: Average CS1-generated dopamine 
responses: Dopamine bursts (solid lines) and dips (dashed lines). 15d: Average US1-generated dopamine responses: 
Dopamine bursts (solid lines) and dopamine dips (dashed lines). 15e(1): LTM weights linking the US1-specific 
AMYG cell to the CS1-specific ORB cell (solid line), and (dashed lines) LTM weights linking US1-specific AMYG 
cells with CS2-specific ORB cell. 15e(2): Average CS1-specific ORB response (solid lines), and (dashed lines) the 
response of the CS2-specific ORB cell. 15f(1): LTM weights (solid line) linking the CS1-selective ITA cells to 
US1-specific AMYG cells, and LTM weights (dashed line) from the CS2-selective ITA cell to the US1-specific 
AMYG cell. 15f(2): Average response of US1-specific AMYG cells during CS1 presentation (solid lines), and 
(dashed lines) the response of US2-specific AMYG cells to CS1 presentation. 15f(3): LTM weights (solid line) 
linking the glucose-specific LH output cells with the US1-specific AMYG cells, and LTM weights (dashed line) 
from the sodium-specific LH_out cell to the US1-specific AMYG cell. 15g(1): LTM weights from the US1-specific 
AMYG cells to the glucose-specific LH output cells (solid lines), and (dashed line) LTM weights from the US1-
specific AMYG cell to the sodium-specific LH output cells. 15g(2): Average glucose-specific LH output cell 
response to CS1 (solid line), and opponent LH cell response  to CS1 (dashed line). 
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LTM weights from the RHIN to the AMYG and AMYG to MORB carry US-related information 
and are spared from decay because these synapses are not active during CS extinction trials (see 
Appendix Equations (39, 41)). LTM weights between the AMYG and LH (Fig. 15f(3), 15g(1)) 
do not extinguish because recurrent connections between the LH and AMYG afford a persistent 
low level of activation that sustains the basic pattern of weights. In addition, when an arousal 
burst is unleashed by a dopamine dip in the SNc/VTA, the LH gated dipole circuit is reset, 
terminating activity in the AMYG, thereby preventing weight decay. 
3.2.4 Normal Performance of CS Task Extinction Trial. The normal nine-phase process of CS 
task performance is cut short during the CS extinction task. Normally, the US is presented 
immediately after the CS input is terminated. A trace of the CS remains active in the ITA (Figure 
16g) while the US is presented, allowing CS-selective cells in the ITA to sample US-related 
activity in the AMYG. Omitting the presentation of the US eliminates US-related activity in the 
RHIN, MORB, AMYG, LH_out, and eliminates US-generated blood pressure (BP) changes (Fig. 
16i, 16k, 16m, 16o, 16q, 16r). Hence, during extinction trials, ITA cells have no US-related 
AMYG activity to sample. Furthermore, when the US is omitted, reward-related inhibition from 
SD cells causes SNc/VTA cells to generate a large dopamine dip signal that is broadcast to other 
brain areas (Fig. 15d). When the magnitude of this dopamine dip surpasses a threshold value, it 
triggers an arousal burst in the LH (Fig. 16d; see Appendix Section 5.4.4). The dopamine dip 
accelerates the decay of AMYG, ORB, and ITA connections, while the arousal burst causes an 
antagonistic rebound in the AMYG that resets the activity in the AMYG and LH. The arousal 
burst resets AMYG activity to zero, limiting the decay of weights between the AMYG and LH 
and speeding the decay of conditioned reinforcer weights (Fig. 15f). 
3.2.5 CS Satiety-Dependent Devaluation. Fig. 11 shows model simulations where hunger inputs 
were systematically reduced and GUS input systematically habituated (Figs. 11a and 11b). 
Reducing the hunger drive inputs to LH_in cells lowers the tonic or ‘resting’ activity of these, 
LH_gus, and LH_out cells. As a consequence of feedforward opponent inhibition from LH_gus 
to LH_out cells, an increase in satiety inputs to LH_in cells also suppresses hunger-sensitive 
LH_out cells (Fig. 8; see Appendix Equation (17)). Lower LH_out cell activity means lower 
AMYG cell activity, and ultimately ORB cell activity. Hence, responses of LH_out, ORB, and 
AMYG cells decrease with increasing satiety, showing that CS value is sensitive to satiety (Figs. 
11b(1), 11c(1), 11d(1)). Diminished LH_gus and LH_out cell responses to CS presentation also 
translate into decreased dopamine and blood pressure responses to CS presentation (see 
Appendix Equations (21, 28, 44-45); Figs. 11e(1), 11f(1)). CS-elicited activity in the ITA is little 
changed by satiety or hunger because no competing stimuli are presented as part of the CS task 
and motivation-related inputs from the ORB primarily act to suppress competing visual stimuli 
(see Appendix Equation (10)). 
3.2.6 Simulations of Outcome-Specific Devaluation of CS. The second column of Fig. 11 shows 
simulations of food-specific and outcome-specific CS devaluation experiments. Two 
experiments were simulated: the first experiment (Fig. 11a(2)-f(2)—dashed lines) showed the 
model response to the stimulus pair CS2+US2 after US2 had been specifically devalued by 
changing the hunger and satiety inputs to the LH to responses to the taste-drive properties of 
US2. The second experiment (Fig. 11a(2)-f(2)—solid lines) used these same hunger and satiety 
inputs only this time testing the response of the model to a different stimulus-reward pair, 
CS1+US1, where US1 has one taste drive feature the same and one taste-drive feature different 
from US1 (see Appendix, Section A.2.2). Fig. 11b(2) shows that the ORB response to CS2 was  



 31 
 

 
Figure 16: CS learning task, extinction trial with arousal burst: Model responses during an extinction trial. See 
Fig. 14 for description of variables and graphs. 
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automatically and specifically devalued, while the ORB cell response to CS1 was relatively 
spared by the change in satiety. 

The difference in ORB cell responses reflects the different values of US1 and US2 
predicted by drive-value category cells in the AMYG (Fig. 11d(2)). Drive-value category cells in 
the AMYG are activated whenever a CS is presented and calculate the value of the CS by 
modulating and summing the taste-drive feature inputs from LH_out cells. These cells sum 
LH_out activity whenever the CS or US is presented. The hunger and satiety inputs with which 
the simulations were run result in a reduced response of LH_out cells to taste-drive features 
associated with US2, but not for all of the taste-drive features associated with US1 (Figs. 11c(2)). 
As a result of the different levels of activation of taste-drive feature cells in the LH during CS or 
US presentation, the activation of drive value category cells in the AMYG to either CS1 or US1 
is much greater than the activation of these cells to CS2 or US2 (Fig. 11d(2)). As a result of this, 
MORB cells also respond more to US1 than US2 during reward consumption. Owing to the 
habituation of US2-related GUS taste features, RHIN cells, which respond to GUS inputs, 
respond more strongly to US1 than US2. 
3.3 SVD Task 
3.3.1 Mechanisms in Normal Performance. The model executes the SVD (simultaneous visual 
discrimination) task in 8 stages: (1) Initialization; (2) dual CS presentation; (3) dual CS 
valuation; (4) response generation and attentional modulation; (5) CS-related dopamine 
processing; (6) US presentation; (7) US valuation and response generation; (8) US-related 
dopamine processing. Fig. 17 details these stages and the responses of simulated neurons during 
the performance of the SVD task. 
3.3.2 Normal Learning of SVD Task. Fig. 18 shows the learning and extinction of the SVD task. 
During the first 15 trials, the model learns the CS1+ vs. CS2- discrimination and strengthens the 
LTM weights from ORB to SD that inhibit US-elicited dopamine responses (Figs. 18(a), 18(d)). 
Prior to this simulation, the model was trained to recognize US1 and US2 as part of the US Task. 
After 5 SVD trials, ITA and ORB responses reliably discriminate between a target stimulus 
(CS1+) and a distractor (CS2-) (Fig. 18e(2)). Selection of the target (CS1+) over the distractor 
(CS2-) relies on changes in the values of LTM weights from the ITA to AMYG (see Appendix 
Equation (38)) and AMYG to ORB (Figs. 18e(1), 18f(1); see Appendix Equation (36)). 
CS1+US1 associations are reinforced by reward-related dopamine bursts. With every pairing of 
CS and US, weights elicit stronger responses to CS1+ in the AMYG, ORB, and LH output cells. 
After 4-5 trials, systemic blood pressure responses occur in response to the presentation of CS1+ 
(Fig. 18b). These stimulus-elicited changes in blood pressure are driven by inputs from the LH to 
cardiovascular regions in the medulla. CS1+-elicited dopamine responses occur after 5 trials 
(Fig. 18c). Over many trials, US-dependent dopamine bursts are suppressed by learned inhibitory 
inputs from the SD to SNc/VTA (Fig. 18d). 
3.3.3 Extinction in the SVD Task. SD cells learn a temporal expectation of reward and inhibit the 
SNc/VTA during the usual time of reward. On extinction trials where the reward is omitted, the 
result is a dip in dopamine activity. Fig. 18d shows that the first extinction trial elicits a 
dopamine dip. This dopamine dip gates weight decay resulting in a substantial reduction in the 
strength of LTM weights from the ITA to AMYG and from the AMYG to ORB (Figs. 18e(1), 
18f(1); see Appendix Equation (36, 38)). As with the CS extinction task, the LTM weights from 
LH to AMYG, and AMYG to LH also slightly decay during SVD extinction trials (Figs. 18f(3), 
18g(1); see Appendix Equation (37, 40)). These decreases in LTM weights between the AMYG 
and LH lead to a reduction in reward and CS-related blood pressure signals, dopamine output, 
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and STM activity in the ORB, LH_out, and AMYG cells (Figs. 18b, 18c, 18e(2), 18f(2), 18g(2)). 
As a consequence of reduced ORB activity, the selection of targets for saccades by the FEF 
becomes more variable (Fig. 18a; see Appendix Equation (46)). 
 

 
Figure 17: STM activity 
during the performance of 
the SVD task: During the 
SVD task, two stimuli were 
presented: CS1+ and CS2-. 
CS1+ is the discrimination 
target and the CS1+US1 
association was reinforced. 
Saccades are elicited from the 
FEF using a threshold rule (see 
Equation (47)). At t=0 sec., 
CS1+ and CS2- are 
simultaneously presented as 
VIS inputs (17a) to ITA cells 
(17g). ITA cells then project to 
the AMYG (17m) and ORB 
(17e). ITA representations of 
CS1+ and CS2- activate the 
AMYG via conditioned 
reinforcer weights. A strong 
CS1-US1 association activates 
the US1-specific AMYG cell 
(17m) and AMYG-LH 
interactions (17o, 17q, 17r) 
calculate the expected value of 
US1. This drive value estimate 
is relayed to the ORB (17e). 
Incentive motivational weights 
connecting the AMYG to the 
ORB activate the CS1-specific 
ORB cell (17e). CS1-specific 
ORB cells (17e) modulate the 
salience of ITA (17g) and FEF 
cells. CS1 drives changes in 
blood pressure via LH 
activation (17d). Between 300-
450ms a saccade is elicited and 
CS2- terminates. CS1-related 
AMYG and ORB activity also 
elicits dopamine spikes (17f) 
from the SNc/VTA (17h) via 
the VS (17p) and PPT/LDT 
(17j). CS1-specific ORB cell 
also activates SD cells (17n). 
At t=450ms, US1 is presented 
as a GUS input (17b) for 
500ms. US1 presentation 
overlaps with CS1 (17b, 17c). 
US1-related GUS inputs 
activate LH_gus (17q) and RHIN (17k) cells. The consumption value of US1 is calculated by AMYG-LH 
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interactions (17m, 17o, 17q, 17r) and registered as incentive value by ORB (17e) and MORB (17i) cells. ORB cells 
affix this motivational value to CS1+ (17e). US-generated signals activate blood pressure via the LH (17d). Lastly, 
the AMYG and LH generate a US1-related dopamine burst (17f) from the SNc/VTA (17h) via the VS (17p) and 
PPTN (17j). US-generated dopamine spike (17f) is partially suppressed by inhibitory inputs from SD cells (17n, 
17p). Descriptions of STM activities (17a-17r) are as Fig. 14. 
 
As with CS extinction trials, SVD extinctions spare the LTM weights from RHIN to AMYG and 
AMYG to MORB from decay. These LTM weights are spared from decay because reward-
related GUS signals gate the plasticity of these weights and no US-related signals are presented 
during SVD extinction trials. 
3.3.4 Extinction Trial Mechanisms. As with CS extinction trials, SVD extinction trials rely on 
three mechanisms for the decay of learned associations: (1) a decrease of neural activity in the 
AMYG and LH as a result of reward omission, (2) dopamine dips elicited from the SNc/VTA 
during nonreward and broadcast throughout cortex, speeding extinction by gating the decay of 
weights, and (3) an arousal burst input the LH that resets activity in the AMYG-LH system, 
zeroing out AMYG activity. Arousal burst and dopamine dip signals are triggered by the 
adaptively timed inhibitory inputs from the SD to the SNc/VTA. The net result is the decay of 
dopamine-gated weights during the 500ms period of nonreward. 
3.3.5 Reversal Trials. Fig. 19 shows simulation results from the SVD reversal experiment. Thirty 
trials were simulated. The first ten trials reinforced a CS1+US1 association. As is noted in the 
section on the SVD learning task, LTM weights between the AMYG, ITA, and ORB plateau 
quickly, within 5-10 trials (Figs. 19e(1), 19f(1), 19g(1)). The rate at which dopamine bursts are 
suppressed across training trials reflects the ability of LTM weights between the ORB and SD to 
learn the expected time of reward (Fig. 19d). US-elicited dopamine responses require 5-10 trials 
before they are completely suppressed (Fig. 19d). 

The discrimination problem was between CS1 and CS2. In the last 20 trials of the 
reversal experiment, the CS2+US1 contingency was reinforced. During trials 11, 12, 14, and 19 
the model selects the unrewarded stimulus, CS1-. Thus no reward is given during trials 11, 12, 
14, and 19 and dopamine dips and arousal bursts are evident (Fig. 19d). These dips and bursts 
drive a decrease in the LTM weights from the ITA to AMYG and AMYG to ORB (Figs. 19e(1), 
19f(1)). In tandem, there were decreases in CS-related blood pressure, dopamine and STM 
activity in the ORB, LH_out, and AMYG (Figs. 19b. 19c, 19e(2), 19f(2), 19g(2)). From trial 20 
on, the CS1- vs. CS2+ decision is reliably discriminated and the CS2+US1 association 
reinforced. These trials enhance the representation of CS2 in the AMYG, ORB, and LH_out, and 
enhance CS2-related dopamine activity (Figs. 19c, 19e(2), 19f(2), 19g(2)). A differential 
response to CS2+ over CS1- also emerges in the ITA that is driven by ORB top-down 
modulatory inputs. In contrast, LTM weights related to US1 processing change little after 
reversal (Fig. 19f(3), 19g(1)). 
3.3.6 SVD Task: Alternation. In the alternation experiment, thirty trials were simulated. The first 
fifteen trials reinforced a CS1+US1 association while the last fifteen trials reinforced a CS2+US2 
association. Fourteen of fifteen CS1+ vs. CS2 discrimination trials were correctly performed 
(Fig. 20a). On trial 16, the reward contingencies altered so that CS1 was no longer rewarded and 
CS2 was reinforced by US2. One perseveration error was committed after the change in 
contingency. This perseveration error is accompanied by a dopamine dip, which causes the decay 
of dopamine-gated LTM weights linking the ITA to the AMYG and AMYG to ORB (see 
Appendix Equations (8, 9, 36, 37)). After the decay of these LTM weights, behavior alternated 
and CS2+ was reliably chosen over CS1- (Figs. 20d, 20a). New learning by the LTM weights 
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linking ITA to AMYG and AMYG to ORB (Figs. 20e(1), 20f(1)) enables the model to reliably 
select the target (CS2+) over the distractor (CS1-) These new LTM values drive changes in 
blood pressure, dopamine activity, and STM responses in the AMYG, ORB, and LH output cells 
(Figs. 20b, 20c), 20e(2), 20f(2), 20g(2)). 

 

 
 
Figure 18: Learning and extinction of SVD task: During this SVD simulation, two stimuli were presented for 30 
trials: CS1+ and CS3-. The CS1+US1 association is reinforced for the first 15 trials. After trial 15, no rewards are 
given. Saccades were elicited from the FEF using a threshold rule that measured ORB activity (see Equation (47)). 
With the exception of 18d, data points represent the average activation of model variables during stimulus 
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presentation (time = 0–450 ms). Data points in 18d represent average activity during the reinforcement period (time 
= 450-950 ms). For LTM weights, data points represent average LTM values across the interval from t=0 until 
t=950ms. As with the CS task, an arousal burst can be triggered by a dopamine dip (D2 threshold of 0.2). The model 
could generate a dopamine dip that would elicit an arousal burst within 10-15 trials. After 5 extinction trials the 
CS1+US1 association appears extinguished and discrimination behavior drops to chance. Detailed descriptions of 
traces and variables in graphs (18a-18f) are listed in Fig. 15. 

 

 
Figure 19: Reversal of SVD task: The SVD reversal task involves reversing the learned stimulus-reward 
contingencies of two stimuli, CS1 and CS2.  30 trials are simulated. For the first 10 trials, the CS1+US1 association 
was trained. In the last 20 trials reinforced a CS2+US1 association. This sequence constituted one reversal. For LTM 
weights, data points represent the average value of LTM weights from time = 0–950 ms. For STM activity, data 
points represent the average activity of cells during target CS presentation (time = 0–450 ms) or US consumption 
(time = 450–950 ms). Arousal bursts are triggered by a dopamine dip (D2=0.2). Saccades were elicited from the FEF 
by ORB activity (Equation (46)). See Fig. 15 for a description of the graphs (19a-19g). 
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Figure 20: Alternation of SVD task: In the SVD alternation task, CS1+US1 and CS2+US2 associations were pre-
trained prior to alternation simulations. 30 alternation trials were simulated. The first 15 trials reinforced a CS1+US1 
association while the last 15 trials reinforced a CS2+US2 association. The shift from the CS1+ vs. CS2- to the CS2+ 
vs. CS1- discrimination constituted one alternation. For LTM weights, data points represent the average value from t 
= 0-950 ms; for CS-related STM activity data points represent the average activity of cells activated by the target CS 
from t = 0-450ms; for US-related neural activity data points represent the mean neural activity from t = 450-950ms. 
As in other tasks, an arousal burst can be triggered by a dopamine dip and saccades were elicited from the FEF by 
ORB activity (Equation (46)). See Fig. 15 for a description of the graphs (20a-20g). 
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Figure 21: Satiety-related modulation of CS preference in SVD-FSS task: The SVD-FSS task demonstrates cue 
preference can shift as a result of selective satiation without any additional reinforcement learning. Two visual 
discriminations were trained prior to the SVD-FSS task, resulting in the learning of CS1+US1 and CS2+US2 
associations. Data points represent the average target CS-related STM activity during the interval from t = 0-450ms. 
5 ‘before’ and 5 ‘after’ trials simulated. For the first 5 trials, appropriate rewards were given on each trial and the 
DRIVE and GUS inputs were high (set to 4 and 1, respectively); for the last 5 trials, no rewards were given and the 
model inputs reflected US1-specific satiety (US1-related GUS inputs were set to a habituation level of 0.4 and US1-
related DRIVE inputs were set to 2). LTM weights were held fixed for all ten trials. Except for graphs in parts 21a 
and 21e traces and figures are as in Fig. 16. Traces in the right hand column were sampled from the last 5 trials. 
21a(1): Represents the drive level before satiation. 21a(2): Represents the drive levels after satiation—the sugar and 
protein inputs were sated. 21e(1): Shows the response of the model to the simultaneous presentation of CS1 (solid 
lines) and CS2 (dashed lines). 21e(2): The differential response of CS1-specific (dashed) and CS2-specific (solid) 
ITA cells. 
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3.3.7 SVD-FSS Task: Cue Preference and Revaluation. In the SVD-FSS task, 10 trials were 
simulated. All the trials were run in extinction, in that no rewards were given and all stimuli were 
trained prior to the task. There were 5 ‘before’ and 5 ‘after’ trials simulated. In the before trials, 
drive inputs were unsated. In the after trials, drives were sated. 

For the first 5 ‘before’ trials, there was no initial GUS habituation, and the specific 
hunger drive inputs to drive-sensing LH_in cells were uniformly set to an initial value of 4 while 
satiety drives were set to 0 (Fig. 21a(1)). In response to these initial drive levels, the model 
selected the CS2+US2 stimulus pair (Fig. 21b(1)). These trials demonstrated that the initial 
conditions of the model favored CS2 over CS1. Thus, CS-related dopamine signals and the STM 
response of the LH, AMYG, ORB and ITA were greater to CS2 than CS1 (Figs. 21d(2), 21e(2), 
21f(2), 21c(2), 21b(1)). 

For the last 5 ‘after’ trials, a food-specific satiety was simulated by reducing two hunger 
drives while leaving the other hunger drives elevated. In particular, the hunger drives 
representing protein levels (umami taste) and sugar levels (sweet taste) were reduced to a value 
of 2.2 while the drive inputs representing fat and salt remained high, coded by a value of 4. 
These hunger inputs were typically coded as the input vector [2.2, 4, 4, 2.2] (Fig. 21a(2)). Satiety 
drive inputs were uniformly set to 2.2 during the last 5 ‘after’ trials. The result of this shift in 
drive levels is a shift in model CS preference. 
 The model now prefers CS1 over CS2, as indicated by ORB cell activity in Figs. 21b(1) 
and 21b(2)). The ORB cell responses to each CS reflects the drive value of the rewards 
associated with each of the stimuli. The drive value of these rewards is calculated by drive value 
category cells in the AMYG. Figs. 21d(1) and 21d(2) show the responses of US1 selective drive 
value category cells (dashed lines) and US2 selective drive value category cells (solid lines). The 
activation of drive-value category cells in the AMYG reflects the amount of reward-compatible 
drive-related activity in the LH. Uniform drive inputs favor the selection of the AMYG cell 
selective for US1 (Fig. 21d(1)—first five trials). Substantially reducing drive inputs associated 
with US1 results in less activity in the LH that is compatible with US1 and a stronger activation 
for the AMYG cell selective for US2 (Figs. 21c(1), 21d(1)—last five trials). A smaller activation 
for US1-related drives means a smaller activation for CS1-related dopamine signals and a greater 
STM response to CS2 than CS1 in the ORB and ITA (Figs. 21f(1), 21b(1-2), 21e(1-2)). 
4. DISCUSSION 
This article explicates neural information processing and learning principles and circuits that 
guide the reactive and predictive processing of food and food-related stimuli. It does so by 
showing how the MOTIVATOR model simulates observed changes in blood pressure, saccadic 
reaction times, learning, extinction, reversal, choice behaviors, and electrophysiological 
responses of identified cell types in multiple brain regions that are devoted to cognitive-
emotional processes. The consequences of lesions to model AMYG and ORB components are 
detailed in a companion article (Dranias, Grossberg & Bullock, 2007). 
4.1 Discussion of Results 
4.1.1 Blood Pressure Response. The model successfully reproduced dynamic neural antecedents 
to systolic blood pressure responses (BPRs) during CS and US tasks (Nakamura et al., 1992). 
The model also replicated observations showing that the blood pressure response is conditionable 
(Braesicke et al., 2005). In addition, the model predicts that the magnitude of BPRs tracks 
reward magnitude. The model further predicts that the expression, but not the learning, of BPRs 
should be DA-independent. BPR expression is DA-independent because glutamatergic pathways 
are predicted to be sufficient to carry signals from the ITA or AMYG to the LH and then on to 
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cardiovascular regulatory regions in the medulla (Fig. 8). This makes blood pressure a candidate 
for measuring affect following ventral pallidal (VP) lesions or 6-OHDA lesions (Smith and 
Berridge, 2005). If BPRs persist following VP and DA manipulations, this may serve to verify 
that the DA-independent ‘liking’ system extends into midbrain and amygdala structures. 
4.1.2 Influence of Satiety on Value. The model’s response to devaluation, in the CS-FSS (food-
specific satiety) and US-FSS tasks, replicates reported behavioral patterns and 
electrophysiological neural responses (Rolls et al., 1986; Scott et al., 1995; Critchley and Rolls, 
1996; Rolls et al., 1999). Experiments that assay behavioral responses to increasing satiety reveal 
that animals quickly switch from acceptance to rejection of food rewards such as juice. In 
particular, experiments that assay neuronal responses during trials where juice is consumed with 
increasing satiety have found that neurons have a logistically decreasing response to US or CS 
presentation as satiety increases (Rolls et al., 1986; Critchley and Rolls, 1996). The model 
exhibits the FSS property in that both simulated and electrophysiologically recorded neurons in 
the AMYG, LH, ORB have diminished responses to a sated food, but preserved responses to an 
unsated food (Rolls et al., 1986; Nishijo et al., 1988a). At a behavioral level, animals show 
depressed Pavlovian responding to a CS that has been selectively devalued (Hatfield et al., 
1996). In the model, simulated responses and neural activity also decrease in an outcome-
specific fashion (Fig. 11). 

In the SVD-FSS task, automatic shifts in CS preference are reported in experiments 
(Baxter et al., 2000) and replicated here by simulations (Fig. 21). No data are available on neural 
responses or BPRs during performance of the SVD-FSS task, but the model makes predictions of 
neural activity based on the same parameters that allowed the model to fit neural activity during 
the CS, US, and SVD tasks. In particular, the model predicts different AMYG cells respond to 
stimuli on the basis of the drive value of expected rewards (Fig. 11d), that the selection of a 
saccade target leads to the suppression of competing cell activity in the ITA (Fig. 17g), that the 
degree of suppression in ITA reflects the drive value of the chosen stimulus (Fig. 21e), that 
dopamine burst magnitude will automatically reflect drive value of stimuli and rewards (Fig. 
21f), and that ORB cells will show an automatic, cue-selective, and outcome-specific reduction 
in neural responses following food-specific satiety (Fig. 21b). 
4.1.3 Saccade Latency. Visually selective neurons in the FEF respond to targets for saccades and 
are reliable indicators of a forthcoming saccade (Bichot et al., 2001; Schall and Thompson, 
1999). Saccadic response time (SRT) is correlated with the time it takes a visually-selective FEF 
cell to respond to a target in its receptive field during visual discrimination (Sato et al., 2001). 
Numerous studies have demonstrated that target salience is one of the attributes that can speed 
the discrimination of targets from distractors (Lauwereyns et al., 2002; Roesch and Olson, 2004). 
Incentive motivation also impacts SRT, but the timing of instrumental saccades involves dorsal 
striatal mechanisms (Corbit et al., 2001; Brown et al., 2004). The model predicts that part of the 
difference in reaction time (RT) observed during responses toward stimuli associated with large 
and small rewards is due to stimulus-outcome associations that are established by Pavlovian 
conditioning. Simulations of the SVD-FSS task show how these Pavlovian associations can 
increase the salience of target stimuli, speeding the time to decision for saccade tasks, replicating 
RT data (Fig. 3b). Section 2.5.3 and the Appendix (Section A.6.2) detail how the model 
generates saccades using ORB cell activity, a cumulative spike counter, and a ‘race to threshold’ 
rule. Saccadic reaction times are sensitive to motivational level because ORB cell activity 
reflects motivational value, thereby motivational value directly influences when cumulative ORB 
activity exceeds saccade threshold. 
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4.1.4 Learning and Memory Results. Simulations of the CS task qualitatively replicate the 
exponential growth and decay curves of learning and extinction (Fig. 15). The model matches 
properties of the discrete time Rescorla-Wagner model of conditioning (Wagner et al., 1980); 
e.g., larger rewards speed learning with diminishing returns. In addition, the model accounts for 
features of conditioning that the Rescorla-Wagner model of conditioning cannot, such as the 
ability of more salient cues to overshadow less salient cues and the effects of interstimulus 
interval on conditioning (Grossberg, 1972b). 

In the SVD task, the model qualitatively matches the behavioral results reported by 
Jagadeesh et al. (2001). Both the model and the data show that a discrimination problem is 
learned faster than a reversal (Fig. 19). During the SVD task, both the data by Jagadeesh and the 
model show that ITA responses to the CS- and CS+ become differentiated within the first ten 
learning trials (Fig. 19). During extinction or reversal, the model produces a perseverative pattern 
of errors, similar to the pattern of errors reported during reversal trials by Jagadeesh et al. (2001). 
In particular, the data shows a perseveration of responding for the previously rewarded stimulus 
during the first 5 trials of the reversal task. In the simulation there is a similar initial 
perseveration. Perseverative errors are also observed in reversal studies by Rolls (e.g., Rolls et 
al., 1996). In the MOTIVATOR model, this initial stage of perseveration reflects past learning of 
the CS-US association. The perseveration continues until the LTM weights that support it have 
been eroded by dopamine dip-gated weight decay (Fig. 19f). Once a new behavioral response is 
made, it can be reinforced by dopamine bursts (Fig. 19). 

In addition to replicating SVD learning curves (Jagadeesh et al., 2001), the model can 
replicate data reported by Malkova et al., (1997) where FSS leads to an immediate shift in cue 
preference (Fig. 21). This change in cue preference occurs as a result of devaluation of the US 
and the automatic revaluation of the associated CS. 
4.1.5 Neurophysiological Results. Figs. 3-6 illustrate some of the cell temporal profiles that the 
model simulated. Because published recordings made during the SVD task are sparse, the cell 
profiles generated by the model in the SVD task are predictions (Figs. 17, 21), based on 
parameters set for the US and CS task (Figs. 12, 14). The little data available on RHIN 
electrophysiology, especially for the region identified by Parker and Gaffan (1998), reveal that 
RHIN cells respond much like ITA cells, but are more strongly modulated by reward level 
(Xiang and Brown, 1999; Mogami and Tanaka, 2006). 

A recent study by Padoa-Schioppa and Assad (2006) reported orbitofrontal neuronal 
responses in a task similar to SVD. Despite some differences in the stimuli used, their 
observations support the object-value interpretation of ORB and MORB cell activity profiles. 
They observed responses associated with a CS, and reported that taste-value cells show an 
increasing response to rewards of increasing magnitudes. The increase obeyed a principle of 
diminishing returns similar to that demonstrated by MORB and ORB cells in Figs. 13 and 11. 
4.2 Theoretical and Experimental Comparisons 
4.2.1 Opponent Properties of the LH. Ono et al. (1986) identified two functional classes of 
neurons in the lateral hypothalamus: ‘opposite’ neurons and ‘specific’ neurons. Like model 
LH_out cells, opposite cells appear to be affectively valenced, conditionable, respond similarly 
to both the CS and US, reveal inhibition and excitation patterns characteristic of opponent 
processing when presented with stimuli of the opposite valence, and can show antagonistic 
rebounds during extinction trials (Nakamura et al., 1987). In contrast, Ono and colleagues do not 
provide a systematic analysis of ‘specific cells’, which we predict to correspond to model 
LH_gus and LH_in cells (Figs. 12, 14). In the few data reported, specific cells were shown only 
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to respond to specific metabolites such as sugar or protein, and not to stimuli of the opposite 
valence such as electric shock. This corresponds to drive-sensing LH_in cells which respond 
specifically to either appetitive or aversive drive information. The LH_gus cells similarly 
respond only to either appetitive or aversive information (opponent interactions occur in the 
subsequent stage), from GUS and LH_in cells. Additional research into the response properties 
of LH specific cells during learning and extinction would be desirable to clarify their role in 
reversal. 
4.2.2 Approach and Avoidance Regulation. In addition to opponent coding in the LH, cells in the 
AMYG, ORB and LH are also coded into appetitive and aversive channels (Thorpe et al., 1983; 
Ono et al., 1986a; Muramoto et al., 1993; Paton, et al. 2006). These ON and OFF channels 
appear to link hunger and satiety circuits directly into approach and avoidance behavior circuits. 
This links the opponency of homeostatic regulatory and affective systems with the opponency of 
approach and avoidance behavior as a control mechanism for restoring homeostatic balance. 
4.2.3 Ventral Striatum and Reward Valuation. Appetitive and aversive information is processed 
throughout an evaluative neuraxis including the LH, AMYG, ORB, and VS. Considering the 
constraints reprised above, it now seems unlikely that the VS-VP is the source of affective 
valuation, as Berridge and others have proposed. Although Berridge demonstrated that hedonic 
behavioral responses can be blocked or elicited by manipulations of the ventral pallidum, the 
weight of the evidence makes it more likely that those protocols were altering hedonically 
expressive behaviors rather than affective states. Lesions of the VS or VP result in the 
disinhibition of, or loss of the ability to disinhibit, pontine motor generators that normally trigger 
the fixed action patterns that make up hedonic behaviors such as appetitive lip-smacking, 
aversive head shaking, and grooming behaviors (Zahm, 1999; Pecina and Berridge, 1996). The 
model predicts that blood pressure changes indicative of affective state will prove to be 
dissociable from hedonic behaviors that can be affected by VS/VP lesions. 
4.3 Alternative Models of Satiety and Revaluation. Dayan (2001) addressed Pavlovian 
conditioning and the automatic revaluation of stimuli using a temporal difference (TD) model. 
His model was not used to replicate results from a specific set of tasks. Nor is it a real-time 
model of neural processing. It did, however, address how Pavlovian and habit learning 
mechanisms differentially evaluate stimuli and responses in tasks similar to the US task, US-FSS 
task, the CS task and CS-FSS task. 

Dayan proposed that the AMYG, ORB, SNc/VTA, and ventral striatum compose a TD 
circuit that learns to compute “reward prediction errors”. These reward prediction error signals 
are represented in phasic components of the DA signal (Schultz, 1998) and calculated in the 
SNc/VTA by subtracting the expected value of a reward (signaled in the AMYG/ORB) from the 
actual reward value. In order to address FSS phenomena, Dayan augmented the core circuit with: 
(1) a stimulus representation area where CS and US can form stimulus-stimulus associations; (2) 
a “hard-wired evaluator” (HE) that modulates reward inputs to the SNc/VTA by hunger and 
satiety levels; (3) separate areas to plan Pavlovian and instrumental responses; and (4) a separate 
ventral striatum, which translates dopaminergic error signals into response-altering motivational 
signals. During consumption, a US activates: (1) the HE, allowing US signals to be translated 
into reward signals that are weighted by hunger and satiety, (2) the Pavlovian response planning 
area, allowing the US to elicit a UR, and (3) the AMYG/ORB, to help establish reward 
expectations. During CS presentation, a CS uses learned pathways: (1) to elicit a CR via the 
Pavlovian response planning area, (2) activate a hunger-weighted reward signal via a learned 
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pathway from the sensory representation to the HE; and (3) activate the AMYG/ORB and 
calculate the value of an expected outcome. 

The current model differs in several important ways from Dayan’s model. First, the brain 
areas responsible for Dayan’s hard-wired evaluator were left unspecified. Second, the model is 
based on the TD algorithm, which incorrectly predicts that during learning of a CS-US 
association, DA bursts will slowly migrate through intermediate times as the DA response is 
transferred from the time of primary reward to the time of a predictive CS’s onset. Instead, the 
data show that dopamine bursts occur only at the time of CS onset or primary reward – not at 
intermediate times. This predictive failure of TD models was overcome in the model of Brown et 
al. (1999) for the learning of reward prediction error signals on which MOTIVATOR builds. 
Brown et al. (1999) showed how to realize predictive error calculations without using TD 
operations. Instead, it used spectral timing circuitry that had previously been used to model 
adaptively-timed dynamics in the hippocampus (Grossberg and Merrill, 1992, 1996; Grossberg 
and Schmajuk, 1999) and the cerebellum (Fiala et al., 1996; Grossberg and Merrill, 1996). 

MOTIVATOR incorporates the Brown et al. (1999) model of basal ganglia interactions 
(see lower right circuit in Fig. 1). In it and in the data, the early CS-induced burst grows as 
learning progresses, whereas the later US reward-induced burst shrinks during learning (Schultz, 
2007). Because proponents of the TD model had not noticed the incorrectness of its prediction of 
the appearance of bursts at a full range of intermediate times between CS and US during 
learning, they (Niv et al., 2005) recently used the same TD property to argue that the 
dopaminergic “uncertainty response” reported by Fiorillo et al. (2003) must be an averaging 
artifact. Strong empirical evidence against this TD-based interpretation was recently reported in 
Fiorillo et al. (2005). Tan and Bullock (2007) have recently shown how an extension of the 
Brown et al. (1999) model can explain the DA “uncertainty response” as well as qualitative data 
on DA cell responses reported in Fiorillo et al. (2003, 2005). 

More generally, MOTIVATOR can describe neural activity in real time, is much more 
specific in its anatomical and neurophysiological hypotheses than the model sketched in Dayan 
(2001), and has a significantly broader explanatory range. To exemplify the latter, in the 
augmented TD model of Dayan (2001), CS revaluation only modulates response vigor, not the 
salience of perceptual cues, as seems necessary to explain electrophysiological results akin to 
those reported by Jagadeesh et al. (2000). In addition, the augmented TD model omits any 
treatment of AMYG-LH interactions, and it collapses the AMYG-ORB distinction. Thus it 
cannot explain many key observations. 
4.3.1 Lateral hypothalamic Models of Valuation and Satiety. Conover and Shizgal (Conover and 
Shizgal, 1994; Conover et al., 1994) experimentally and theoretically examined the issues of 
valuation and satiety using sodium and sugar appetite as model drives. They proposed that the 
LH plays a critical role in the calculation of reward value following satiety. They summarized 
their observations into two possible models: a series and a convergence model (Conover and 
Shizgal, 1994). These architectures presume that the LH is divided into separate appetitive and 
aversive channels that process hunger and satiety for sodium and sugar. Their experimental 
results led them to propose that these distinct drive inputs are summed in separate appetitive and 
aversive channels and the net activation is then registered at a central site. Their ultimate 
proposal is similar to Fig. 2a and supports the CogEM prediction that the LH includes a gated 
dipole opponent drive circuit (Grossberg, 1972b; Section 2.3.3). 
4.3.2 Instrumental Models of Satiety. Busemeyer et al. (2002) proposed a dynamical performance 
model that is capable of simultaneously comparing and deciding between different items in a 
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manner compatible with the SVD task. The dynamics of the core model were designed to 
replicate observations about the deliberation time associated with different binary choices. The 
model differs from the MOTIVATOR model in that it does not include synaptic weight learning, 
and it makes decisions solely on the basis of the utilities of response alternatives, which limits its 
applicability to Pavlovian phenomena. In order to perform the decision-making task, the model is 
presented with a set of cues, a set of response options associated with those cues, the current 
needs of the model, and a set of values corresponding to the utility of those options in satisfying 
those needs. 

The utility of response options is presumed to be encoded in the ORB and LH. The need 
state of the model is presumed to be encoded in the LH. When a set of cues is presented for a 
decision, the corresponding option sets are primed and the utility of these response options is 
compared with the current needs of the model. The response options with the largest expected 
gains are forwarded on to the amygdala which then compares this information with attentional 
inputs. The ORB then takes this value information from the amygdala and decides which cue is 
to be the goal of action.  Behavioral output is governed by the VS. The model has a number of 
features similar to MOTIVATOR in terms of its basic outline of the role of different brain 
regions. However, little argument is presented to justify the formal model’s biological 
correspondences, and the model’s nodes’ dynamics are not systematically compared with 
neuronal homologues. 

Frank and Claus (2006) simulated the SVD-FSS task as an application of their decision-
making and instrumental learning model. In their model, motivational information arises from 
the AMYG and projects to the ORB. On the basis of fMRI studies, they suggest the lateral ORB 
favors aversive information and the medial ORB favors appetitive information. In order to 
generate a SVD-FSS effect with their model, they had to introduce an additional training session 
following the food-specific satiation of the US. During this additional training session, the model 
is presented with both the CS and the devalued reward and learns to associate a new value with 
the CS. The need for such an additional training session is contrary to the purpose and protocol 
of devaluation experiments (Malkova et al., 1997) and the need to retrain shows that their model 
makes predictions that are incompatible with the phenomenon of automatic devaluation. In 
addition, their model differs from the MOTIVATOR model in that it does not simulate a real-
time neurophysiological output. 
 There are no other computational models that simulate the FSS task using data from 
neurophysiological cell types. There are models that use neurophysiological cell types to treat 
tasks such as spatial alternation or reversal. There are also numerous models of US, CS, and 
SVD learning. A subset of recent models is reviewed below. 
4.3.3 Neurophysiological Orbitofrontal Models. Deco and Rolls (2005) proposed a performance 
model of the ORB in a serial reward reversal task. In this task an animal is presented with a 
single CS and must decide whether it is associated with reward or punishment. After several 
trials, the contingency reverses. Deco and Rolls hypothesize that once all contingencies have 
been learned, the reversal of this task relies on five functional classes of orbitofrontal cells: 
sensory cells, reward cells, motivationally valenced sensory-intermediate cells, error cells, and 
rule cells.  Sensory cells receive object identity information. Reward cells signal both the 
expectation and presentation of rewards or punishments. Motivationally valenced sensory-
intermediate cells are used to represent all possible stimulus-outcome associations—different 
cells respond to different objects depending on which outcome is expected. These cells 
determine whether an object will elicit approach or avoidance. Error cells are activated whenever 
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an error in the serial reversal task is made. Rule cells compete with one another to indicate 
whether the current trial is expected to be a forward or reversal trial. Each rule cell primes the set 
of sensory-motivational cells that are consistent with whether a given CS is expected to be 
rewarded or punished. The authors propose that when an error is made, an error signal is 
calculated from an extra-orbital source and, in the subsequent trial, the alternate rule cell 
becomes dominant. If no error is made, the dominant rule cells from the previous trial remain 
active. 

A problem with this proposal is that it over-predicts. The model always reverses in one 
trial whereas animals studied by Rolls and others in earlier studies (e.g., Rolls and Baylis, 1994) 
typically take as many as ten trials to reverse their behavior, with more trials required for 
olfactory stimuli (Rolls et al., 1996). In addition, the model’s attribution of reversal learning 
entirely to ORB is at odds with data showing that lesions to the basal ganglia impair reversal, 
often severely (Ferry et al., 1999). 

Deco and Rolls’ proposal also suffers because it does not explain how task-irrelevant 
learning is prevented and task-relevant learning is permitted. The MOTIVATOR model 
incorporates attentional and learning mechanisms that answer these questions: attentional 
feedback suppresses learning to distractors (Fig. 8), adaptable weights allows model responses to 
reflect the predictive strength of stimulus-reward associations (see Appendix Equations (6, 7)), 
and basal ganglia structures regulate learning by generating predictive error and reinforcement 
signals (Fig. 8, see Appendix Equation (20 - 33)). 

In the MOTIVATOR model, reversals are not attributable to “reversal rule” cells. As 
detailed in Fig. 20, the MOTIVATOR model relies on rapid learning of stimulus outcome 
associations. As a result reversals require a period of 10-15 trials to unlearn an association and 
reverse contingency. Both the shape of the learning and reversal curves reported by Jagadeesh et 
al. (2001) and the number of trials required for behavioral reversal suggest that a learning based 
mechanism plays a dominant role in reversal learning, at least for the first few reversals. The 
slow learning of new contingencies many figures from Critchley and Rolls (1996). 
4.4 Predictions and Discussion. The model makes a number of novel electrophysiological, 
physiological, and behavioral predictions. The model reproduces discharge dynamics of known 
cell types in the CS, US, and SVD tasks, including signals that predict saccadic reaction times 
and CS-dependent changes in systolic blood pressure (Figs. 12, 14, 17). The model uses these 
circuits to predict the existence of neural cell types and the response profiles of these neurons in 
a number of brain areas for two important tasks that have not been experimentally treated in the 
primate: the SVD-FSS task and the CS-FSS task. The model also predicts that antagonistic 
rebounds observed in LH opposite cells are caused by a dopamine dip that disinhibits an arousal 
burst to the LH (Figs. 16, 18). The model predicts that when antagonistic rebounds are observed 
in the LH during the CS and SVD extinction trials, they will also be observed in the activity 
profiles of AMYG cells (Fig. 16). The model predicts that dopamine cells from the SNc/VTA are 
important for learning in the cortex and basal ganglia, but not for AMYG-LH learning (Fig. 8). 
The model predicts that interactions between the AMYG, LH and cardiovascular medulla bring 
about conditioned changes in systolic blood pressure and that the magnitude of the BPR will 
reflect the motivational support of the cue, i.e. hunger level (Fig. 11). The model predicts that US 
value, reflected in the AMYG is calculated by the nonlinear sum of taste-drive cells in the 
LH_out (Fig. 7). Another electrophysiological result predicted is that during extinction trials the 
DA dip engendered by omission of reward will release an arousal burst response in both types of 
specific cells of the LH, namely appetitive and aversive cells (Fig. 16). The model also predicts 
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that the specific enhancement seen in the ITA during the SVD and SVD-FSS task is due to 
lateral ORB projections and could be disrupted by suitable ORB lesions (Fig. 8). 

 
APPENDIX: MATHEMATICAL EQUATIONS AND PARAMETERS 
A.1 Modeling Framework. The model is defined by three types of differential equations that 
represent dynamics operating on different time scales: short term memory (STM) equations 
represent the activities of simulated neurons, medium term memory (MTM) equations represent 
habituative transmitter processes, and long term memory (LTM) equations represent long term 
changes in learned adaptive weights. For each trial, task-specific input signals were provided and 
equations were numerically integrated using MATLAB and a fourth-order Runge-Kutta 
algorithm. The time step was 0.00033. 
A.1.1 Short Term Memory Equations. The activity, or short term memory (STM), dynamics of 
simulated neurons was modeled using a single voltage compartment whose membrane potential, 

( )V t , was determined by an equation of the form: 

( ) ( ) ( )( ) ( ) ( ) ( )m leak leak excite excite inhibit inhibit
dV tC V t E g V t E g V t E g

dt
= − − − − − −  .              (1) 

In (1), mC  is the membrane capacitance, conductances exciteg  and inhibitg  represent the excitatory 
and inhibitory inputs to the cell, and terms exciteE  and inhibitE  represent the reversal potentials for 
excitatory ions and inhibitory ions, respectively (Grossberg, 1973; Hodgkin and Huxley, 1953; 
van den Pol and Trombley, 1993; Bertrand and Changeux, 1995). Term leakg  is a constant 
leakage conductance and leakE is the reversal potential of leaked ions. 

In the equations that follow, the explicit reference to time, (t), is dropped and the 
capacitance is represented as the reciprocal of the time constant: 1

τ . Also, letters other than V 

are used for the membrane voltages; e.g. I for the voltage of a model ITA cell. The equations 
were scaled so that the resting, or leakage reversal, potential is 0 and the excitatory reversal 
potential is 1. The inhibitory reversal potential varied in a neuron-specific fashion (Owens and 
Kriegstein, 2002) that calibrates how sensitive to inhibition the baseline firing rate is. Three 
forms of rescaled STM equations were used in simulations: shunting STM equations, additive 
STM equations, and attentive shunting STM equations (Gove et al., 1995; Grossberg, 1973, 
1988). 

Shunting equations are of the form: 
1 (1 ) ( )i i i i i i

d V V V E C V I
dtτ = − + − − + .                     (2) 

Term iV  is the activity of the i-th model neuron or neuron population. In (2), iV−  represents the 
passive decay of neural activity toward the leakage reversal potential of zero, iE  denotes the 
total excitatory input that can drive iV  to its excitatory saturation point of 1, and iI  denotes the 
total inhibitory input that can drive iV  to its inhibitory saturation point –C, where C is chosen as 
0, 0.2, or 1. For all STM equations except ITA and SD cells, τ = 50. For ITA cells, τ = 10, and 
for SD cells it is variable, set according to the parameter βg, defined in (37). 

Additive equations are leaky integrator equations that approximate (2) when iE  and iI  
do not drive iV  too close to 1 or –C: 
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1
i i i i

d V V E I
dtτ = − + − .                 (3) 

Attentive shunting networks link top-down and bottom-up inputs in an excitatory on-center 
projection and an inhibitory off-surround projection. Excitatory on-center projections are 
indexed by i and inhibitory off-surround inputs are indexed by k ≠ i: 

( )( )1 (1 ) 1 ( )i i i i i i k k
k i k i

V V V D M C V D Mτ
≠ ≠

⎛ ⎞
= − + − + − + +⎜ ⎟

⎝ ⎠
∑ ∑&  .            (4) 

The bottom-up inputs iD  in (4) provide driving on-center excitatory inputs iD  (Chance et al., 
2002) and driving off-surround inhibitory inputs k iD ≠ . Top-down signals provide modulatory, 
excitatory on-center inputs iM  that multiplicatively control the gain of driving inputs (Gove et 
al., 1995; Grossberg, 1999, 2003; Salinas and Thier, 2000; Chance et al., 2002), and driving 
inhibitory off-surround inputs kM , k≠i. This type of anatomy has been predicted to embody 
attentional processes, to realize contrast gain control, and to enable cortical learning to proceed 
in a stable manner (Carpenter and Grossberg, 1987, 1991; Grossberg, 1980, 1999, 2003). 
A.1.2 Medium Term Memory Equations. Medium term memory (MTM) equations describe how 
recent use of synapses affects the gain of signals transmitted through these synapses from one 
brain region to another. To capture these habituation (inactivation, depressing) effects, MTM 
equations describe fluctuations in the accumulation and depletion of a chemical transmitter G: 

( ) [ ]1G G G V += − −&
.                      (5) 

In (5), ( )1 G−  is the accumulation rate and [ ]G V + is the activity-dependent habituation rate, 

where [ ]V +  is an output signal from the activity V of the presynaptic cell (Grossberg, 1972b, 
1980). A similar equation can be used to describe the activation and inactivation of postsynaptic 
sites. Variations of this equation were used to model the habituation of appetitive and aversive 
signals. 
A.1.3 Long Term Memory Equations. Long term memory (LTM) is formed by lasting changes in 
the conductive efficacy of synapses (Brown et al., 1990). The model employs two basic LTM 
equations: (1) activity-gated steepest descent learning; and (2) dopamine-gated steepest descent 
learning. Gated steepest descent learning describes how the synaptic strengths change as a 
function of presynaptic and postsynaptic activity levels. The outstar variant of the gated steepest 
descent learning involves a rule wherein presynaptic activity gates learning and LTM weights 
approach postsynaptic cell activations (Grossberg, 1968). These changes in synaptic efficacy are 
associated with the mechanisms of long term potentiation (LTP) and long term depression 
(LTD). In (6), term jkW  is the LTM trace in the pathway from cell j to cell k, term jS is a non-
negative presynaptic gating signal from cell j, and term kT  is a non-negative postsynaptic cell 
signal from cell k to which weight jkW  is attracted by steepest descent when jS >0: 

( )jk j k jkW S T Wε = −&
.
                              (6) 

The weights jkW  change at a rate scaled by ε. 
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The instar equation describes a similar process of gated steepest descent except that 
learning is gated by a postsynaptic signal kT  and LTM weights are attracted to a presynaptic 
signal, jS  (Grossberg, 1976): 

( )jk k j jkW T S Wε = −&
.
                          (7) 

Figs. 1 and 8 indicate that many LTM weights are affected by dopaminergic inputs, iD . 
Learning by these weights is governed by a dopamine-modulated steepest descent rule. For the 
outstar case of dopamine-gated steepest descent, the equation is: 

( )( ) ( )1 2jk k j jk jkW S A D T W B D Wε ⎡ ⎤= + − − +⎣ ⎦
&

.
                      (8) 

The first term, kS  gates learning and decay by presynaptic activity. The term ( )( )1 j jkA D T W+ −  

shows that steepest descent learning is modulated by a dopamine burst 1D  and occurs at a rate A 
in the absence of dopamine. Term ( )2 jkB D W− +  describes weight decay that is modulated by a 
dopamine-dip ( 2D ) and which occurs at a rate B in the absence of dopamine. Dopamine bursts 
and dips signal unexpected rewards or unexpected non-rewards (Brown et al., 1999, 2004; 
Schultz, 2000). 

The dopamine-modulated instar equation describes a process of gated steepest descent 
that is similar to the dopamine-modulated outstar equation: 

( )( ) ( )1 2jk k j jk jkW T A D S W B D Wε ⎡ ⎤= + − − +⎣ ⎦
&

.
                 (9) 

In (9), learning is gated by the postsynaptic signal, kT  and LTM weights are attracted to 
presynaptic signal, jS . 
A.2 Inputs. 
A.2.1 Visual Inputs. Visual (VIS) inputs, jC , provide binary inputs to ITA cells that represent the 
outcome of visual preprocessing (see Equation (10)). Three visual stimuli were used: CS1, CS2, 
and CS3. The default association of CS1 is with US1 and of CS2 with US2. CS3 was used with 
either US. 
A.2.2 Gustatory Inputs. Gustatory (GUS) inputs mG  provide a binary taste input to RHIN and 
LH_gus cells (see Equations (16, 18)). The GUS signals code four basic tastes: fatty, salty, 
sweet, and umami (Scott et al., 1995; Torii et al., 1998). These tastes were presented as food 
reward vectors. There were two food rewards US1: [1, 0, 0, 1] and US2 [1, 1, 0, 0], representing 
a sugar and protein reward and a sugar and salt reward (e.g. milk or sports drink), respectively. 
GUS inputs habituate during food consumption and completely habituate after either 25 or 150 
trials, depending on the type of trial being simulated (for specification of the habituation of GUS 
inputs, see Equation (35)). 
A.2.3 Drive Inputs. Drive or metabolic inputs siM  to LH_in cells determine hunger and satiety 
level (see Equation (16)). Appetitive metabolic signals correspond to sugar, protein, salt, and fat 
(Ono et al., 1986a; Bergen et al., 1996; Davidson et al., 1997; Torii et al., 1998), which were 
selected because behavioral studies show that depriving one these nutrients leads animals to 
search them out at the expense of others (Cabanac and Lafrance, 1992; Davidson et al., 1997; 
Sclafani, 2004). These homeostatic drives correlate with taste inputs so that the taste and drive 
profile of a food reward have similar components. After each trial in which a food reward was 
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consumed, drive inputs decayed in a food-specific and linear manner, so that during devaluation 
trials, satiety occurred after 25 “ingestions” of a given food. For all other trial types, 150 
“ingestions” of a given food were required for satiety to occur. 
A.2.4 Arousal Inputs. Arousal inputs, 1α , to LH_in cells were normally set to 0.5 (see Equation 
(16)). Arousal inputs increase sixteen fold when there is an arousal burst. An arousal burst is 
triggered whenever the cortical dopamine dip (D2) signal falls below a threshold value of 0.2. 
While MOTIVATOR does not incorporate a detailed model of the pathway by which cortical 
dopamine dips elicit arousal bursts in the lateral hypothalamus, evidence suggests the amygdala 
plays a role in this process. The amygdala is involved in extinction, frustration and nonreward 
(Papini, 2003) and transient inactivation of the central nucleus nonspecifically excites lateral 
hypothalamic cells (Nakamura et al., 1987). Hence the burst of hypothalamic activity associated 
with surprising nonreward may be a result of amygdala inactivation by the dopamine dip or the 
disinhibition of other indirect sources of arousal to the LH (e.g. Zahm, 2000). 
A.3 Short Term Memory Equations. 
A.3.1 ITA STM Equations. ITA cell activities, jI , model visually-sensitive, cue-selective cells in 
the anterior inferotemporal cortex. The subscript j indexes the different visual object categories 
coded by cells in ITA. ITA cells are modeled by an attentive shunting network (4) that receives 
bottom-up driving VIS inputs jC  and top-down attentive ORB inputs, L

jiO : 

1
10

,
(1 ) 6 1 2 (0.2 ) 9 17L L

j j j j ji j k ki
i k j k j i

I I I C O I C O
≠ ≠

⎛ ⎞⎛ ⎞⎛ ⎞
= − + − + − + +⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ ∑&  .                 (10)  

By (10), jI  passively decays at rate 1 via term jI− . The excitatory and inhibitory shunting terms 
(1 )jI−  and (0.2 )jI− + , respectively, bound cell activity within the interval [-0.2, 1]. The 

driving excitatory input is 6 jC . The top-down modulatory excitatory ORB inputs are 2 L
ji

i
O∑ . 

The summation over index i enables appetitive and aversive ORB inputs to enhance salience 
equally. The inhibitory driving off-surround terms are 9 k

k j
C

≠
∑  and 17 L

ki
k j i

O
≠
∑∑ . 

A.3.2 ORB STM Equations. ORB cell activities, L
jiO , model object-value orbitofrontal cells that 

respond selectively to motivationally supported visuosensory cells (Hosokawa et al., 2004). 
Subscript i indicates whether the cell is appetitive or aversive and subscript j indicates the ITA 
visual category that the ORB cell prefers. ORB cells are modeled by an attentive shunting 
network that receives bottom-up driving ITA inputs, jI , and top-down attentive modulatory 
AMYG inputs, riA  (Amaral and Price, 1984): 

 
[ ]

[ ] [ ]

1
50 (1 ) 0.1 1 160

( ) 2 0.2 50 .

L L AOL
ji ji j jri riji

r

L AO L
ji kri ri k jl

k j r k j l i

O O I W AO

O W A I O

+ +

++ +

≠ ≠ ≠

⎛ ⎞⎛ ⎞⎡ ⎤− + − += ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
⎛ ⎞

⎡ ⎤− + +⎜ ⎟⎣ ⎦
⎝ ⎠

∑

∑∑ ∑ ∑

&

         (11) 

By (11), L
jiO  passively decays at rate 1 via term L

jiO− . The excitatory and inhibitory shunting 

terms (1 )L
jiO−  and ( )L

jiO− , respectively, bound cell activity within the interval [0, 1]. The 
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bottom-up excitatory driving ITA input is 0.1 jI
+

⎡ ⎤⎣ ⎦ . The output signal function jI
+

⎡ ⎤⎣ ⎦ rectifies jI  
at a zero threshold, passing only non-negative values of jI . The top-down modulatory excitatory 

attentive input is [ ]160 AO
jri ri

r
W A +∑ , where the AO

jriW  are LTM weights that learn to map US-

specific AMYG cells, (r, i), to CS-specific ORB cells, j, where r denotes the r-th AMYG 
category and i whether it is appetitive (i = 1) or aversive (i = 2). The driving inhibitory off-
surround inputs from ITA and AMYG are [ ]0.2 k

k j
I +

≠
∑  and [ ]AO

kri ri
k j r

W A +

≠
∑∑ , respectively. In 

addition, there is opponent inhibition between appetitive and aversive ORB cells, 50 L
jl

l i
O

+

≠

⎡ ⎤⎣ ⎦∑ . 

A.3.3 AMYG STM Equations. AMYG cell activities, riA , model multimodal, US-selective cells 
found in the basolateral amygdala (Nishijo et al., 1988a, 1988b). The subscript r identifies the r-
th US-specific affective category and the subscript i indicates whether the cell is appetitive or 
aversive. AMYG cells are modeled by attentive shunting networks that receive bottom-up 
excitatory driving LH_out cell inputs, O

siH , and top-down attentive modulatory excitatory inputs 
from ITA cells, jI , and RHIN cells, tR : 

( ) [ ] ( )

( ) ( )

1
50 1 0.3 13 13 150

0.2 0.25 250 .

HA O IA RA
ri ri ri sri si jri j tri t ri

s j t

HA O
ri usi si ui

u r s u r

A A A W H W I W R f A

A W H g A

+ + +

+

≠ ≠

⎛ ⎞⎛ ⎞
⎡ ⎤ ⎡ ⎤= − + − + + +⎜ ⎟⎜ ⎟⎣ ⎦⎣ ⎦⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤− + +⎜ ⎟⎣ ⎦⎝ ⎠

∑ ∑ ∑

∑∑ ∑

&

 

(12) 

By (12), riA  passively decays at rate 1 via term riA− . The excitatory and inhibitory shunting 
terms ( )1 riA− and ( )0.2 riA− + , respectively, bound cell activity within the interval [-0.2, 1]. The 

driving excitatory LH_out input is HA O
sri si

s
W H

+
⎡ ⎤⎣ ⎦∑ . The excitatory modulatory inputs are from 

the ITA, 13 IA
jri j

j
W I

+
⎡ ⎤⎣ ⎦∑ , and the RHIN, [ ]13 RA

tri t
t

W R +∑ . The HA
rsiW  are LTM weights that 

associate LH drive features with US-specific AMYG categories. Weights IA
jriW  and RA

triW  are 
LTM weights that map CS-specific ITA cells and US-specific RHIN cells to US-specific AMYG 
cells, respectively. The driving inhibitory off-surround LH_out input is 0.25 HA O

usi si
u r s

W H
+

≠

⎡ ⎤⎣ ⎦∑∑ . 

Equation (12) also includes recurrent excitation [ ]( )150 rif A +  and inhibition [ ]( )250 ui
u r

g A +

≠
∑ . 

The recurrent excitatory signal function, f, ensures strong feedback amplification for small values 
of riA  between [0, 0.025], but progressively less amplification above 0.025: 

( )
( ) ( )

2

2 1000 0.025

0 0
0 0.025( )

0.025.ri

ri

ririri

A
ri ri

Aif
if AAf A

A e if A− −

⎧ ≤
⎪⎪ < ≤= ⎨
⎪

>⎪⎩

                    (13) 
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The recurrent inhibitory signal function, g, is:  

( )
( )2

0 0
0.

ui
ui

uiui

Aif
g A

if AA

⎧ ≤⎪= ⎨ >⎪⎩
                    (14) 

For values of riA  in the interval [0, 0.025], the recurrent signal functions (13) and (14) support 
fast contrast enhancement among competing AMYG cells. As a result, a single winner is chosen. 
Outside this interval, recurrent inhibition [ ]( )uig A +  continues to grow quadratically to maintain 

suppression of the losers, whereas recurrent excitation is negligible. This allows choice without a 
loss of analog sensitivity so that the activity level of the AMYG winner closely tracks the 
amplitude of its non-recurrent inputs. 
A.3.4 LH_in STM Equations. LH cells, taken together, form an array of recurrent gated dipole 
opponent processing circuits wherein metabolic, sensory reinforcer, and amygdala category 
signals converge. LH input cell activities, I

siH , model LH cells that reflect the identity and 
concentrations of specific nutrients (Karadi et al., 1992); see Fig. 8. The subscript s indexes the 
metabolic features processed by the LH_in cell. The subscript i = 1, 2 indicates whether the cell 
is appetitive or aversive. LH_in cells receive metabolic inputs siM

⋅
, arousal inputs 1α , and 

LH_out cell feedback signals, O
siH  (see Equation 17): 

1
150 0.05 0.25 0.35I I O

si si si siH H M Hα
+

⎡ ⎤= − + + + ⎣ ⎦
&

.
           (15) 

Activity I
siH  passively decays at rate 1 via term I

siH− . Additive equations are used and remain 
bounded because the inputs are bounded. 
A.3.5 LH_gus STM Equations. LH_gus cell activities, G

siH , model taste-responsive LH drive-
specific cells (Karadi et al., 1992). Each cell is indexed by homeostatic features, s, and affective 
valence, i. LH_gus cells receive driving inputs from LH_in cells, I

siH , and modulatory GUS 
inputs, mG : 

( )( )1
50 5 1 0.6G G I GH

si si si si msi m mH H Y H W X G
+

⎡ ⎤= − + +⎣ ⎦
& .                     (16) 

Activity G
siH  decays at rate 1 via term C

siH− . The excitatory driving inputs are 4 I
si siY H

+
⎡ ⎤⎣ ⎦ . siY  is 

a habituative transmitter that gates I
siH  input signals; see Equation (34). In the excitatory 

modulatory gustatory inputs 0.6 GH
msi m mW X G , the taste-specific habituative term mX  gates 

gustatory inputs, mG  (see Equation 35). GH
msiW  are fixed weights that map tastes to drive features 

in a one-to-one fashion. 
A.3.6 LH_out STM Equations. LH output cell activities, O

siH , model LH cells that generate 
opponent responses to appetitive and aversive cues and rewards (Ono et al., 1986). Each cell 
activity is indexed by homeostatic features, s and affective valence, i: 

( ) [ ]

( ) [ ]

1
50 1 1.75 1 1.75

1 0.25 0.5 .

O O O G AH
si si si si sri ri

r

O G G AH
si S ui rui ri

u s u s r

H H H H W A

H H H W A

+ +

+ + +

≠ ≠

⎛ ⎞⎛ ⎞⎡ ⎤= − + − +⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤− + + +⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∑

∑ ∑∑

&   
                 (17)
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The excitatory and inhibitory shunting terms ( )1 O
siH−  and ( )1 O

siH− +  in (17) bound cell activity 

within the interval [-1, 1]. LH_gus cells provide bottom-up excitatory driving inputs 1.75 G
siH

+
⎡ ⎤⎣ ⎦ . 

The top-down attentive excitatory modulatory input from AMYG categories is 
[ ]1.75 AH

sri ri
r

W A +∑ . The AH
sriW  are LTM weights that map US-specific AMYG category cell 

outputs to US-related metabolic features in LH_out cells. Summation over r occurs across US-
specific AMYG category cells. Inhibitory driving off-surround terms are from AMYG categories 

[ ]0.5 AH
rui ri

u s r
W A +

≠
∑∑ and from LH_gus cells 0.25 G

ui
u s

H
+

≠

⎡ ⎤⎣ ⎦∑ . These inhibitory inputs suppress 

LH_out cells at which there is a poor match between top-down attentive signals from AMYG 
and bottom-up driving input signals from LH_gus cells. LH_gus cells provide an additional 
driving inhibitory input G

SH  that introduces opponent inhibition between an opponent pair, O
siH  

and O
SH , of drive channels. In all, the two types of inhibition link the various LH opponent 

circuits into a gated dipole field (Grossberg 1972b, 1984; Olson and Grossberg, 1994). 
A.3.7 RHIN STM Equations. RHIN cells activities, tR , model reward-selective, multimodal 
neurons that are proposed to exist in the rhinal cortex (Parker and Gaffan, 1998). Subscript t 
indexes the multimodal US category favored by the t-th RHIN cell. RHIN cells are modeled 
using attentive shunting networks and receive bottom-up excitatory driving inputs from ITA cell 
activities, jI  and GUS cell activities, mG . Top-down modulatory excitatory inputs arise from 

MORB inputs, M
tiO : 

( )

( )

1
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⎛ ⎞

⎡ ⎤⎡ ⎤− + + +⎜ ⎟⎣ ⎦ ⎣ ⎦
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&
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            (18) 

The excitatory and inhibitory shunting terms ( )1 tR−  and (0.2 )tR− + , respectively, bound cell 

activity within the interval [-0.2, 1]. The driving excitatory inputs are 0.5 IR
jt j

j
W I

+
⎡ ⎤⎣ ⎦∑ and 

5 GR
mu m m

u t m
W X G

≠
∑∑ . The terms IR

jtW  and GR
mtW  are weights that allow RHIN cells to respond 

selectively to gustatory and visual features of particular unconditioned stimuli. Learning of the 
IR
jtW  and GR

mtW  LTM weights is not treated in this paper, but could be done, for example, using 
mechanisms in Carpenter and Grossberg (1991). The modulatory MORB excitatory input is 
2 M

ti
i

O
+

⎡ ⎤⎣ ⎦∑ . Summation over the subscript, i, indicates that both appetitive and aversive inputs 

from the MORB enhance salience. The driving inhibitory GUS, ITA, and MORB off-surround 

inputs are 5 GR
mu m m

u t m
W X G

≠
∑∑ , 3 IR

ju j
u t j

W I
+

≠

⎡ ⎤⎣ ⎦∑∑ , and 6 M
ui

u t i
O

+

≠

⎡ ⎤⎣ ⎦∑∑ , respectively. 

A.3.8 MORB STM Equations. MORB cell activities, M
tiO , model reward-selective, 

motivationally-sensitive neurons in the orbitofrontal cortex (Tremblay and Schultz, 2000a, 
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2000b). As a consequence of their anatomical connections, ORB cells represent the approach or 
avoidance value of visual stimuli while MORB cells represent the consumption value of rewards 
(Small et al., 2007); see Fig. 1. Subscript t labels the US category in the RHIN to which the 
MORB cell responds and the subscript i labels whether the cell is appetitive or aversive. MORB 
cells are modeled using attentive shunting networks that receive bottom-up driving excitatory 
RHIN signals, tR  and attentive top-down modulatory excitatory AMYG inputs, riA (Amaral and 
Price, 1984):

 
[ ] [ ]

( ) [ ] [ ]

1
50

(1 ) 0.02 1 200

6 0.2 15 .

M M AMM
ti ti t tri riti

r

M AM M
ti rui ri u tj

u t r u t j i

O O R W AO

O W A R O

+ +

+ +

≠ ≠ ≠

⎛ ⎞⎛ ⎞
− + − += ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

− + +⎜ ⎟
⎝ ⎠

∑

∑∑ ∑ ∑

&

             (19) 

The excitatory and inhibitory shunting terms (1 )M
tiO− and ( )M

tiO− , respectively, bound cell 

activity within the interval [0, 1]. The bottom-up excitatory driving RHIN input is [ ]0.02 tR + . 

The top-down attentive excitatory modulatory AMYG input is [ ]200 AM
tri ri

r
W A +∑ . The AM

triW  are 

LTM weights that map US-specific AMYG categories to US-specific MORB cells which code 
reward value. The driving inhibitory off-surround RHIN and AMYG inputs are [ ]0.2 u

u t
R +

≠
∑  and 

[ ]4 AM
rui ri

u t r
W A +

≠
∑∑ , respectively. Inhibitory inputs include a recurrent inhibition between 

appetitive and aversive ORB cells, 15 M
tj

j i
O

≠
∑ . 

A.3.9 BG STM Equations. Brown et al. (1999) modeled four brain regions that cooperate to 
generate dopaminergic bursts and dips in response to unexpected rewards and nonreward: ventral 
striatal matrix cells (VS), ventral striatal striosomal cells (SD), pedunculopontine cells 
(PPT/LDT), and dopaminergic cells (SNc/VTA); see Fig. 1. When unexpected rewards or 
conditioned stimuli are presented, SNc/VTA Cells show a transient burst of activity. Cells in the 
PPTN/LDT drive this bursting response. Conditioned stimuli excite the PPTN/LDT via VS cells 
while food rewards drive PPTN/LDT cells via both LH_gus and VS inputs. CS-related inputs 
from the ORB activate SD cells. An adaptively-timed inhibitory pathway from SD cells to the 
SNc/VTA suppresses dopamine bursts at the expected time of reward. If an expected reward is 
omitted, this adaptively timed signal from SD cells to the SNc/VTA inhibits the dopamine cells, 
resulting in a transient dip in dopamine. Together, excitatory and inhibitory conditioning 
pathways through the basal ganglia act to ensure dopamine bursts and dips signal reward 
prediction errors. 

VS STM Equations. Ventral striatal matrix cell activities are represented by activities, riV . 
VS cells are sensitive to US-specific value category inputs from the AMYG and learn to respond 
to object-value inputs from the ORB. Subscript r indicates that the r-th VS cell favors the r-th 
US-specific AMYG category; subscript i indicates affective valence. VS cells receive excitatory 
driving inputs from the AMYG, riA  and ORB, L

jiO : 
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( ) [ ]1
50 1 20 0.1OV L

ri ri ri rji ji ri
j

V V V W O A
+ +⎛ ⎞⎛ ⎞

⎡ ⎤= − + − + −⎜ ⎟⎜ ⎟⎣ ⎦⎜ ⎟⎝ ⎠⎝ ⎠
∑ .                   (20) 

The excitatory shunting term (1 )riV−  limits the activity of the cell to the interval [0, 1]. ORB 

inputs 20 OV L
rji ji

j
W O

+
⎡ ⎤⎣ ⎦∑  and AMYG inputs 20[ ]0.1riA +−  are the excitatory driving ORB and 

AMYG inputs, respectively. The OV
rjiW  are LTM weights that map CS-specific ORB cells to US-

specific VS cells, while preserving affective valence, i. 
LDT/PPTN STM Equations. PPTN/LDT activities model the pedunculopontine and 

laterodorsal tegmental brainstem nuclei (Kobayashi et al., 2002). PPTN/LDT activity is 
described using a pair of variables, 1P  and 2P , with coupled equations. PPTN/LDT cells receive 
opponent, bottom-up, driving inputs from LH_gus cells, G

siH  and driving inputs from VS cells 
(Fig. 8). The effect of VS activity riV  on PPTN/LDT is modeled as a net excitatory driving input 
because the VS inhibits the ventral pallidum and thus disinhibits the PPTN/LDT: 

( ) [ ]1
1 1 1 1 2 1 250 (1 ) 2.5 40 1500(1 )G G

s s ri
s i r

P P P H H V P P
+

+⎛ ⎞⎡ ⎤
= − + − − + + − +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∑ ∑∑&               (21) 

and 

[ ]2 2 2 1(1 )P P P P += − + −&
.                       (22) 

In (21), excitatory and inhibitory shunting terms 1(1 )P−  and 1(1 )P+ , respectively, bound 

PPTN/LDT activity within the interval [-1, 1]. The excitatory driving input ( )1 22.5 G G
s s

s
H H

+
⎡ ⎤

−⎢ ⎥
⎣ ⎦
∑  

gives the net appetitive signal from LH_gus cells to the PPTN/LDT. Excitatory driving inputs 
ri

i r
V∑∑  sum VS cell activity, enabling stimuli represented in the ORB to excite the PPTN/LDT. 

An arousal input set to 40 biases PPTN cell activity. Term [ ]21500 P +  is a driving, inhibitory off-
surround input. Term 2P  approximates the strength of a slow after-hyperpolarization process. 

In (22), the after-hyperpolarization process, 2P , is driven by the “input” [ ]2 1(1 )P P +− , 
where 2(1 )P−  bounds 2P  activation to the interval [0, 1] and 1P  represents excitatory 
PPTN/LDT output. The strong driving inhibition arising from the afterhyperpolarizing signal 2P  
is responsible for generating the phasic profile of PPTN/LDT signals 1P  (see Fig. 12). 

SD STM Equations. Striosomal cells (SD) carry out an adaptive timing function that 
suppresses dopaminergic bursts to expected rewards. SD cells can fire at an adaptively timed 
delay after the onset of a CS, thereby inhibiting dopamine cells in the SNc/VTA. This delayed 
burst of inhibitory firing is the result of a Ca2+-dependent second-messenger process governed by 
metabotropic glutamate receptors (mGluR) (Fiala et al., 1996; Brown et al., 1999). Activation of 
mGluRs causes a spike in Ca2+ currents that can lead to the depolarization of SD cells after a 
timed delay.  

SD cell activity, jgB , is driven by excitatory signals, L
jiO , from the ORB. Dendritic spines 

that receive their driving excitatory inputs from the j-th ORB cell are indexed with the subscript, 
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j. The subscript g indicates the g-th SD cell responds to ORB inputs at a rate characterized by the 
g-th rate parameter, gβ . Note that the subscripts j and g do not necessarily index single neurons, 
but pools of synapses across one or many neurons (Brown et, al., 1999): 

( )1
1 (1 ) 2.5 0.03 ,L

jg jg jg j
g

B B B O
+⎛ ⎞

⎡ ⎤= − + − −⎜ ⎟ ⎣ ⎦⎜ ⎟β⎝ ⎠
&

    
            (23) 

{ }10Where , 1, ,60 .
30 23g g

g
β = =

−
K             (24) 

In (23), the excitatory shunting term (1 )jgB−  bounds activity within the interval [0, 1]. ORB 

inputs 12.5 0.03L
jO

+
⎡ ⎤−⎣ ⎦  provide the excitatory driving inputs. The rate parameters, gβ , span the 

range of values specified in Equation (24), providing the basis for a range of delayed cell 
activations and Ca2+ spikes. 

Equations (25)-(27) describe how the activation of mGluR channels on SD cells gives 
rise to a rapid spike in cytosolic Ca2+, jg jgG Y , driving adaptively timed SD-to-SNc/VTA 
inhibitory responses. Equation (25) describes how SD cell activity, jgB  alters the conductance of 
Ca2+ current, jgG : 

( )( )1
5 4 (5 )jg jg jg jgG G G h B= − + −&

.
,                             (25) 

where ( ) 1 if 0.2 0
0 if 0.2 0

jg
jg

jg

B
h B

B
− >⎧

= ⎨ − ≤⎩
.           (26) 

The rate at which Ca2+ passes to the cytosol from endoplasmic stores is bound by the term 
(5 )jgG−

 to the interval [0, 5]. The function h, defined in Equation (26), is a step function that 
indicates SD cell activity must exceed a threshold of 0.2 in order to trigger the rapid buildup of 
cytosolic Ca2+, jg jgG Y . As the Ca2+ concentration builds to maximal level, the available Ca2+ in 
both endoplasmic and local cytosolic stores, jgY , rapidly depletes. Equation (27) describes how 
the level of available Ca2+, jgY , is decreased by a Ca2+ spike, jg jgG Y :  

1
1 (1 ) 40 0.2jg jg jg jgY Y G Y

+
⎡ ⎤= − − −⎣ ⎦

&
.
                    (27) 

Available Ca2+ passively accumulates at a rate given by the term (1 )jgY− . Term 

40 0.2jg jgG Y
+

⎡ ⎤− −⎣ ⎦  describes the depletion of intracellular Ca2+ as a consequence of the calcium 
spike. Once depleted, endoplasmic and other available Ca2+ stores remain low for as long as the 
SD cell continues to receive a tonic input. Subsequent calcium spikes occur only after a recovery 
period has passed. 

SD cells are capable of generating Ca2+ spikes, jg jgG Y , at a spectrum of delays after CS 

onset. During the peak phase of a Ca2+ spike, 0.2jg jgG Y
+

⎡ ⎤−⎣ ⎦ , inhibitory transmission from SD 

cells to the SNc/VTA is boosted. LTM weights, jgZ , (see Equation (46)) strengthen the 
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influence of these delayed spikes on neural transmission, allowing SD cells to generate an 
adaptively timed output, 0.2gj jg jgZ G Y

+
⎡ ⎤−⎣ ⎦ . 

SNc/VTA output STM Equations.  Activities of model neurons in the dopaminergic 
midbrain are represented by 1S . Neurons in the SNc/VTA receive excitatory driving inputs, 1P , 
from PPTN/LDT cells and an adaptively timed, inhibitory input from SD cells, 

0.2gj jg jgZ G Y
+

⎡ ⎤−⎣ ⎦ :   

[ ]( )1
1 1 1 1 2 150 (1 ) 10 0.03 (0.1 ) 0.2jg jg jg

g j
S S S P S Z G Y

++ ⎛ ⎞
⎡ ⎤= − + − − +α − + −⎜ ⎟⎣ ⎦

⎝ ⎠
∑∑& .          (28) 

The excitatory and inhibitory shunting terms 1(1 )S−  and 1(0.1 )S+ , respectively, bound cell 

activity within the interval [-0.1, 1]. Term [ ]110 0.03P +−  describes the driving excitatory input 
from the PPTN. Term 2α  is a tonic arousal input that ensures baseline dopamine activity is non-
zero, providing some dynamic range for dopamine dips. The arousal parameter, 2α , is set equal 

to 0.28. The driving, inhibitory term 0.2gj gj gj
g j

Z G Y
+

⎡ ⎤−⎣ ⎦∑∑  represents the sum of adaptively 

timed signals from SD cells across all spectral delays, g and cue preferences, j. This term enables 
dopamine signals to be sensitive to the learned expectations of SD cells regarding the predicted 
occurrence of rewards and their expected time of delivery. 
 Dopamine reinforcement signals. The effective dopamine signal is determined using 
transient deviations of dopamine signals from a tonic or baseline dopamine level, 2S : 
1

2 1 25 S S S= −&
 .                            (29)  

Equation (29) has a much slower rate constant than that used in Equation (28). This allows 2S  to 
compute a time-average of momentary dopamine cell activity, 1S . 

Transient deviations from the baseline signal 2S  constitute phasic dopamine 
reinforcement signals (Wickens et al., 1996). Equations (30)-(33) describe these phasic 
dopamine signals. Equations (30) and (31) define the effective dopamine burst, 1N , and 
dopamine dip, 2N , signals in the striatum:  

[ ]1 1 2 0.02N S S +
= − −                      (30) 

and 

[ ]2 2 1 0.02N S S += − − .                    (31) 

Dopamine cell activity, 1S , elicits a dopamine burst or dip ( 1N  or 2N ) when it exceeds baseline 
dopamine activity, 2S , by an amount in excess of the threshold parameter, 0.0175. This threshold 
helps prevent minor fluctuations in DRIVE and GUS inputs from controlling learning. 

Equations (32) and (33) define the effective dopamine burst, 1D , and dopamine dip, 2D , 
signals in the AMYG and ORB where dopamine clearance is slower than in the striatum (Garris 
and Rebec, 2002):  
1

1 1 13 20D D N= − +&                      (32) 
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and 
1

2 2 23 20D D N= − +&  .                (33) 
Terms 120N  and 220N  are dopamine burst and dip inputs. 
A.4 Medium Term Memory Equations. 
A.4.1 LH_in to LH_gus Drive Habituation. The habituating transmitter term siY  gates signals 
from LH_in cells to LH_gus cells:  

( )1
1 1 1.2 I

si si si siY Y Y H
+

⎡ ⎤= − − ⎣ ⎦ .
                   (34) 

The habituative process depends on a recovery process, ( )1 siY− , and an activity-dependent 

depletion process, 1.2 I
si siY H

+
⎡ ⎤− ⎣ ⎦ . Activity-dependent depletion is driven by LH_in cell activity, 

I
siH . The rate constant of Equation (34) has a value of 1, hence habituative MTM processes 

adapt to inputs much more slowly than do STM processes. The habituating transmitter term, siY , 
plays an important role generating rebound responses in the LH and gated dipole circuit 
(Grossberg, 1972b; see Section 2.3.3). During the first phase of every task, habituating 
transmitter levels, siY , adapt to the tonic arousal inputs that drive the early activity of LH_in 
cells. When transient, stimulus-related signals activate different LH_in cells, the habituated 
transmitter gates of the LH_in cells become imbalanced. When an arousal burst occurs or if these 
transient signals are removed, the imbalanced habituative transmitter gates can persist, during 
which time rebound responses can result from opponent processing in the LH circuit. 
A.4.2 GUS to LH_gus Taste Habituation. GUS inputs to RHIN cells, tR , and LH_gus cells, G

siH  
are gated by a habituating transmitter, mX : 

( ) ( )200 0.01 1m m m mX X G X= − −& .                   (35) 

The habituation involves a slow recovery process, 0.01 ( )1 mX−  and a faster depletion process, 

( )m mG X− . Depletion occurs in a consumption dependent fashion and is driven by GUS inputs, 

mG . The taste-specific habituation of GUS inputs, mX , is a second mechanism of food specific 
satiety (FSS) that complements the model’s “drive reduction” mechanism. This second 
mechanism of FSS can explain the observation that the kind of FSS that is assessed by actual 
consumption rather than by CS preference remains intact even after ORB and AMYG lesions 
(Hatfield et al., 1996; Dunn and Everitt, 1988). 
A.5 Long Term Memory Equations. 
A.5.1 AMYG to ORB LTM Weights. Connections from AMYG cells to ORB cells have LTM 
weights, AO

rjiW , that obey a dopamine-modulated instar learning rule (see Equation (9)). LTM 

weights AO
rjiW  assign incentive motivation to object-value cells in the ORB: 

( ) [ ]( ) ( )1
1 25 0.01 2AO L AO AO

rji ji ri rji rjiW O D A W D W
+ +⎡ ⎤⎡ ⎤= + − −⎣ ⎦ ⎢ ⎥⎣ ⎦

&
.
                   (36) 

Postsynaptic ORB activity, L
jiO

+
⎡ ⎤⎣ ⎦  gates the learning and decay of LTM weights. Term 

( ) [ ]( )1 0.01 AO
ri rjiD A W+

+ −  describes how dopamine spikes, 1D , modulate the learning of 
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presynaptic values, riA
+

⎡ ⎤⎣ ⎦ , by the LTM weights, AO
rjiW . In the absence of dopamine, this learning 

process occurs a base rate of 0.01. Term ( )2 2 AO
rjiD W−  indicates that LTM weights, AO

rjiW , decay 
when a dopamine dip occurs, 2D . 
A.5.2 LH_out to AMYG LTM Weights. Connections from LH_out cells to AMYG cells have 
LTM weights, HA

rsiW , that obey an activity-gated, steepest descent instar learning rule (see 
Equation (7)). These weights gate the convergence of LH_out homeostatic signals onto US-
specific drive value category cells in the AMYG:  

[ ] ( )8 0.027HA O HA
rsi ri si rsiW A H W

++ ⎡ ⎤= − −⎣ ⎦
&

.             (37) 

Term [ ]0.027riA +−  provides a postsynaptic gate on learning while the term ( )O HA
si rsiH W

+
⎡ ⎤ −⎣ ⎦  

describes the process by which LTM weights learn to reflect the activity of LH_out cells. Term 
[ ]0.027riA +−  specifies that AMYG cell activity must exceed a threshold of 0.027 before 
learning can take place. This threshold was selected to ensure learning takes when the AMYG is 
activated by cortical inputs, and not simply by feedback from of the positive recurrent signal 
function, g(A). 
A.5.3 ITA to AMYG LTM Weights. Connections from ITA cells to AMYG cells have LTM 
weights, IA

jriW , that follow a dopamine-modulated outstar learning rule (see Equation (8)). LTM 

weights IA
jriW  enable object categories represented in the ITA to acquire conditioned reinforcer 

properties: 

( ) [ ]( ) ( )1
1 25 0.01 2IA IA IA

jri j ri jri jriW I D A W D W
+ +⎡ ⎤⎡ ⎤= + − −⎣ ⎦ ⎢ ⎥⎣ ⎦

& .              (38) 

Presynaptic ITA activity, jI
+

⎡ ⎤⎣ ⎦ , gates the learning and decay of LTM weights. Term 

( ) [ ]( )1 0.01 IA
ri jriD A W+

+ −  describes how dopamine spikes, 1D , modulate the learning of 

postsynaptic activation, riA
+

⎡ ⎤⎣ ⎦ . In the absence of dopamine, the learning process occurs at a base 

rate of 0.01. Term ( )2 2 IA
jriD W−  indicates that LTM weights decay when a dopamine dip occurs, 

2D . 
A.5.4 RHIN to AMYG LTM Weights. Connections from RHIN cells to AMYG cells have LTM 
weights, RA

triW  , that are governed by dopamine-modulated, outstar learning (Equation (8)). LTM 
weights RA

triW  enable multimodal food reward categories cells in RHIN to acquire reinforcer 
properties: 

[ ] ( ) [ ]( ) ( )1
1 25 0.01 2RA RA RA

tri t ri tri triW R D A W D W+ +⎡ ⎤= + − −⎢ ⎥⎣ ⎦
& .                   (39) 

Pre-synaptic RHIN cell activity [ ]tR +  gates learning and decay processes for the LTM weights, 
RA

triW . Term ( ) [ ]( )1 0.01 RA
ri triD A W++ −  describes the dopamine-modulated process by which 

weights, RA
triW , come to reflect postsynaptic AMYG activity, riA

+
⎡ ⎤⎣ ⎦ . In the absence of dopamine, 
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this process takes place at a rate of 0.01. Term ( )2 2 RA
triD W−  indicates dopamine dips induce the 

decay of LTM weights. 
A.5.5 AMYG to LH_out LTM Equations. Connections from AMYG cells to LH_out cells have 
LTM weights, AH

sriW , that obey an activity-gated, steepest-descent outstar learning law (see 
Equation (6)). LTM weights AH

sriW  enable US-specific drive value categories in the AMYG to 
excite drive cells in the LH activated by the consumption of specific food rewards: 

[ ] ( )8 0.027AH O AH
sri ri si sriW A H W

++ ⎡ ⎤= − −⎣ ⎦
&

.
                (40) 

Term [ ]0.027riA +−  provides a presynaptic gate on learning. Term ( )O AH
si sriH W

+
⎡ ⎤ −⎣ ⎦  describes the 

process by which LTM weights learn to reflect LH_out cell activity, O
siH . Term [ ]0.027riA +−  

specifies that AMYG cell activity must exceed a threshold of 0.027 before learning can take 
place. This process allows LTM weights AH

sriW  to learn to encode a prototype of the metabolic 
activations in the LH associated with US consumption. 
A.5.6 AMYG to MORB LTM Equations Connections from AMYG cells to MORB cells have 
LTM weights, AM

rtiW , that obey a dopamine-modulated instar learning rule (Equation (9)). LTM 
weights AM

rtiW  assign incentive motivational value to food rewards represented in the MORB: 

( ) [ ]( ) ( )1
1 25 0.01 2AM M AM AM

rti ti ri rti rtiW O D A W D W
+ +⎡ ⎤⎡ ⎤= + − −⎣ ⎦ ⎢ ⎥⎣ ⎦

&
.
             (41) 

Postsynaptic MORB activity, M
tiO

+
⎡ ⎤⎣ ⎦ , gates learning and decay. Term ( ) [ ]( )1 0.01 AM

ri rtiD A W+
+ −  

indicates dopamine bursts modulate the learning of presynaptic activity, riA
+

⎡ ⎤⎣ ⎦ , by LTM 

weights, AM
rtiW . The term ( )2 2 AM

rtiD W−  indicates that LTM weights decay when a dopamine dip 
occurs, 2D . 
A.5.7 ORB to VS LTM Equations. Connections from ORB cells to VS cells have LTM weights, 

OV
jriW , that obey a dopamine-gated instar rule (Brown et al., 2004; Equation (9)). LTM weights 
OV
jriW  allow conditioned stimuli to strongly activate dopaminergic responses: 

1
1 210 (2.5 ) 0.2OV L OV OV

jri ri ji jri jriW V N O W N W⎡ ⎤= − −⎣ ⎦ .          (42) 

Post-synaptic VS activity, riV , gates learning and decay. Term 1(2.5 )L OV
ji jriN O W−  indicates that 

dopamine bursts, 1N , doubly gate steepest descent learning. LTM weights OV
jriW  learn to reflect 

the value of postsynaptic ORB cells, 2.5 L
jiO . Term 20.2 OV

jriN W−  indicates that dopamine dips, 

2N , gate weight decay. 
A.5.8 Adaptive Timing LTM Equations. Adaptive LTM weights jgZ  determine the strength of 
timed inhibitory outputs from SD cells to the SNc/VTA. These LTM weights, jgZ , adapt 
according to an equation similar to dopamine-gated steepest descent: 

( )1
1 2300 0.2jg jg jg jgZ G Y N Z N

+
⎡ ⎤= − −⎣ ⎦

&  .                (43) 
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Term 0.2jg jgG Y
+

⎡ ⎤−⎣ ⎦  gates learning, ensuring learning occurs only during the peak phase of a 

Ca2+ spike in an SD cell. Term ( )1 2jgN Z N−  describes the process by which weights, jgZ  grow 
when dopamine spikes are present and decay when dopamine dips are present. The growth and 
decay of LTM weights, jgZ , tracks reward history, inhibiting dopamine responses to predictable 
rewards. This ensures dopamine signals generated by the SNc/VTA reflect a reward prediction 
error. 
A.6 Outputs. 
A.6.1 Blood Pressure Output. The blood pressure response, BPR, is influenced by appetitive and 
aversive stimuli (Braesicke, et al. 2005). This influence is relayed from the hypothalamus to 
cardiovascular regulatory neurons in the medulla (Smith et al., 1990; Nakamura et al., 1992; 
Zhang et al., 2005, 2006). The component of the blood pressure variable attributable to appetitive 
or aversive stimuli, B, is calculated as follows: 

4
1
4

1
15 ,O O

si si
i s

B B H H
+

=

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑ ∑&                    (44)

 
Where

 
120BPR B= + .              (45) 

The term 
4

1
4

1
15 O O

si si
i s

H H
+

=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑ ∑  relays excitatory information from LH_out cells regarding 

stimuli and rewards. The blood pressure response, BPR, reflects the integral of the LH input 
added to a baseline blood pressure level of 120. 
A.6.2 Saccadic Output. Saccadic responses are generated by object category-selective cells in the 
FEF. In vivo, the FEF receives projections from both the ORB and ITA (Barbas, 1992; Bullier et 
al., 1996). Correspondingly, in the model, FEF cells integrate inputs from the ORB and ITA 
along with arousal inputs. When an FEF cell activity jF  exceeds a threshold of 0.3, a saccade 
was elicited in response to the corresponding cue. Only one saccade could be elicited per trial: 

1 310 4 .j j j j jF F O I α ε
+ +

⎡ ⎤ ⎡ ⎤= − + + + +⎣ ⎦ ⎣ ⎦
&             (46) 

Activity jF  passively decays at rate 1 via term jF− . Additive excitatory terms 14 jO
+

⎡ ⎤⎣ ⎦  and 

jI
+

⎡ ⎤⎣ ⎦  describe inputs that arise from the ORB and ITA. Terms α3 and εj are constants that take 
on non-zero values during stimulus presentation. 

Term α3 is an arousal input that activates the FEF depending on whether or not an 
instrumental response is required to gain reward. For the SVD Task where the CS was presented 
for 450 ms before a saccade was made, α3 = 6.5. For the Pavlovian CS Task for which the CS 
was presented for 2 seconds, α3 = 0. This arousal term helps to realize the different response and 
timing requirements of the CS and SVD tasks. In the CS task, 3α =0 because responses are 
incidental to the acquisition of reward and may be generated anytime across the 2 second CS 
presentation time, or not at all. For the SVD task, a response must be made within 400 ms in 
order to gain reward. The choice of 3α = 6.5 ensures that a decision is made within this time 
frame. 

The noise terms εj are constants that break symmetry during decision-making. Values for 
εj are randomly selected at the start of each trial from a uniform distribution over the interval [0, 
1]. The noise terms acknowledge that signals from unknown sources can influence behavior and 
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decision-making, generating behavioral variation or breaking the symmetry between closely 
matched options. In tasks such as the SVD reversal task, where stimulus and response 
contingencies change, the response variability introduced by the term, jε , can drastically speed 
the learning of new associations.  

In essence, model FEF cells function as cumulative spike counters, integrating ORB and 
ITA activity along with some noise and arousal inputs to elicit saccades using a “race to 
threshold” rule (Schall and Thompson, 1999). For a more detailed representation of the FEF, see 
Brown et al. (2004). Parameter values were selected to ensure reaction times during the SVD 
task fall between 300ms and 450ms and that no responses are made in the CS task prior to 
learning taking place. ITA inputs play a critical role in driving saccadic behavior when ORB 
inputs are silent or after ORB has been lesioned. Such behaviors are simulated in Grossberg et al. 
(2007). 
A.7 Initialization of Variables. 
STM equations for cells that process drive and arousal inputs and are persistently active (LH cell 
Equations (15-17), PPTN and SNc/VTA Equations (21-22, 28)) were initialized to the 
equilibrium level expected from the previous trial or from their initial inputs. All other STM 
equations were set to an initial value of zero at the start of each trial. 

MTM equations describing gustatory habituation, Xm (Equation (35)), were initialized to 
an initial value of 1, the equilibrium level that would be reached after a long period of disuse. 
The MTM equations describing habituative gates associated with LH_in cell hunger and satiety 
channels, Ysi (Equation (34)), were set to initial values of 0.5 for hunger-related and 1 for satiety-
related gates. 

With the exception of LTM weights ( HA
rsiW , AH

sriW ; Equations (37, 40)) linking AMYGD 
and LH output cells, all LTM weights were initialized to zero at the start of training. On 
subsequent trials and tasks, all LTM weights were assigned the final value of the LTM weights 
reached in the previous trial as an initial value. At the start of training, LTM weights linking the 
AMYG and LH values were set to an initial value of 0.22 with noise added from a uniform 
random distribution over the interval [-0.05 0.05]. The noise served to break the initial symmetry 
across the AMYG and LH cell connections. Nonzero initial LTM weight values ensure that 
AMYG drive value category cells are sensitive to LH inputs prior to learning (see Equation 
(12)). The magnitude of the initial values for the LTM weights was also selected to ensure that 
there is a large degree of mismatch between the patterns of LH activation that are recognized by 
well trained AMYG drive value category cells and novel patterns of LH input.
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