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Multi-agent systems have been a major area of research for the last fifteen years. This

interest has been motivated by tasks that can be executed more rapidly in a collaborative manner,

or that are nearly impossible to carry out otherwise. In order to be effective, the agents need

to have the notion of a common goal shared by the entire network (for instance, a desired

formation), and individual control laws to realize it. The common goal is typically centralized,

in the sense that involves the state of all the agents at the same time. On the other hand, it is

often desirable to have individual control laws that are distributed, in the sense that the desired

action depends only on the measurements and states available at the node and at a small number

of neighbors. This is an attractive quality because it implies an overall system which is modular

and intrinsically more robust to communication delays and node failures.

Regarding the measurements available at each agent, a popular choice is to use simple

inexpensive sensors such as Inertial Measurements Units (IMUs) and cameras. This applies

not only in distributed control and estimation applications (which are of central interest in this

article and for which the relevant literature is reviewed below), but also in other domains,
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such as Simultaneous Localization and Mapping and control of Micro Aerial Vehicles (see,

for instance, [25], [48] and references within). This common combination of sensors is rich

enough to gather interesting and useful information, but it comes with a set of peculiarities that

need to be taken into account during the design of the distributed algorithms. For instance, IMU

measurements provide reasonably accurate information on instantaneous rotational velocities and

linear accelerations, but the integration of these into longer-term absolute positions is prone to

the accumulation of errors. On the other hand, cameras can provide accurate direction (bearing)

information, but the estimation of distances is typically noisier and it is not possible without a

known structure in the environment.

This article considers two central problems in multi-agent systems: mutual localization

(estimating the pose of each static agent with respect to a common reference frame) and formation

control (maneuvering the agents to achieve a specified set of relative positions or directions).

Both problems involve two aspects: a geometric one given by the geometry of the poses (rotation

and/or translation) of the agents, and a graph-theoretic one where vertices in a graph represent

agents and edges are associated to measurements or other pairwise quantities. The present work

focuses on vision-based settings where bearing measurements (i.e., measures of relative direction

without distance) have special importance. Commonalities, differences, and synergies between

the estimation and control problems are highlighted.

After giving a general overview of the state-of-the-art from the literature, this work

concentrates on a particular set of theoretical and practical tools that can be applied to both the

mutual localization and formation control problems. In particular, the treatment below shows:

1) How the notions of shape decomposition and rigidity characterize the well-posedness of
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the problems.

2) How to encode the desired solutions (localization and formation configuration) into the

global minimizers of network-wide objective functions, and how these are related to the

notion of rigidity.

3) How to obtain algorithms to minimize the network-wide costs that are distributed, in the

sense that each node only requires communication in a local neighborhood.

4) How to obtain estimates of the convergence basin of the algorithms that, in some cases,

lead to global convergence results (under the assumption of ideal measurements). This can

be achieved despite the fact that the costs might be non-convex.

5) How the measurements can be obtained on aerial vehicles from vision and IMU sensors.

This requires strategies for identifying and tracking neighboring agents in the images

obtained from the onboard camera.

These theoretical and practical tools are validated through simulations and experimental

results. In this regard, the results cover both the location estimation and formation control

problems, but with a heavier emphasis on the latter.

Overall, the goal of this article is to introduce the reader to a set of theoretical and

practical ideas that can be used to build and understand state-of-the-art, vision-based, distributed

localization and formation control systems. The authors hope that these ideas will inspire other

researchers to tackle the many problems that remain open in these areas.
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CHALLENGES IN MUTUAL LOCALIZATION AND FORMATION

CONTROL

Three main challenges are common to both the mutual localization and formation control

problems. The first one is that, in its most general forms, these problems involve optimization or

control over rotations. These belong to a manifold (see side panel “The geometry of rotations”)

which is non-linear and has a compact topology. This makes the design and analysis of algorithms

operating on this space significantly more challenging. For instance, the compact topology of

the manifold implies that the only globally convex continuous functions in this space are trivial

constant functions. As such, any optimization-based approach then cannot rely on convexity to

exclude the presence of local minimizers and show global convergence.

The second challenge is that, as in all distributed algorithms, each node has only local

information about the state of the entire network (corresponding to itself and its neighboring

nodes). In spite of this, the algorithms need to achieve a common global objective (such as

reaching a predefined formation). This requires mechanisms to coordinate distant agents that

cannot interact directly, and that avoid sub-optimal solutions due to the myopic knowledge of

the agents. For instance, for optimization-based approaches, collaboration between distant agents

is enforced by the presence of a common cost function, but this cost must be free of local minima

in order to avoid sub-optimal solutions.

The third and final challenge is given by the use of vision-based sensors. In general, these

sensors give projective measurements that do not contain distance information. As a consequence,

it is possible to obtain only bearing (that is, direction) information between two agents. In some
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cases, these measurements can be augmented with distance information, for instance by using

an additional depth sensor, or visible structures with known dimensions. However, the noise in

such distance measurements is typically higher than in the corresponding bearings, and can have

a very different distribution. Mutual localization and formation control algorithms need to be

able to deal with these peculiarities, allowing the optional incorporation of distance information

with different weights.

These challenges are addressed by the methods illustrated below, leading to distributed

algorithms for mutual localization and formation control with guarantees of convergence to a

globally optimal solution either without or with distance measurements.

REVIEW OF THE STATE OF THE ART

This section provides a concise review of existing work in mutual localization and

formation control. These problems have been of interest for a long time in various communities

such as sensor networks, control systems, robotics, and computer vision. As such, the scope of

the literature on the various instances that can be formulated for these problems is extensive.

The review below gives only a brief glance to the main ideas that have emerged, and focuses

more on the papers that consider these problems in a distributed setting and with vision-based,

bearing-only measurements.
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Mutual localization

The term mutual localization refers to the problem where each node needs to find its

own (static) position in a reference frame common to the entire network (this is equivalent to

finding relative poses between neighboring agents that are globally consistent [67]). This is a

different problem than the one of collaboratively localizing a (possibly moving) target using an

already mutually localized network (see [56] for an example). The mutual localization problem

is considered by each community under a different light with different tools and priorities.

In the automatic control and sensor network communities, the problem has been

considered in different settings (planar versus tridimensional, centralized versus distributed), with

different types of measurements (distances, angles of arrival, bearing measurements, coordinate

transformations; see [45, 61] and references therein), with presence of anchors (that is, nodes

with a known position, [2], [45]) or markers [4], or with other special assumptions (such as

moving objects [30]) and in the presence of noise [60]. The common theme here is to find

solutions that are computationally light-weight, that can be implemented in embedded devices,

and that are (in some cases) robust to noise and communication loss.

Among these, for the case of vision-based measurements, Devarajan and Radke [19]

propose a method for combining relative poses between cameras (obtained from images), using

Belief Propagation to obtain a distributed algorithm. However, this work does not fully consider

the non-Euclidean structure of the space of poses, which imposes constraints on measurements

along a cycle in the graph. These constraints are instead at the basis of the work of [58], which,

however, only considers the rotation part for the pose of each agent and provides an algorithm
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which is only partially distributed (the nodes need to communicate through entire cycles, as

opposed to only their neighbors).

In computer vision, a traditional problem related to mutual localization is Structure-

from-Motion (SfM) [39]. Given a set of images, the goal of traditional SfM is to estimate not

only the poses of the cameras corresponding to images (as considered in this article) but also

a 3-D point cloud reconstruction of the scene. The joint estimation of the two leads to an

optimization procedure commonly known as Bundle Adjustment (BA). This procedure requires a

careful initialization in order to avoid undesired local minima. A way to do this is to first solve

the mutual localization problem, that is, to remove the estimation of the 3-D structure from the

problem and consider constraints on the poses alone. In the computer vision community, the

focus for this subproblem is to obtain solutions that are centralized and that can scale well with

the number of images. A subset of works is based on the idea of finding a globally optimal

solution after approximating the group structure of the space of rotations. For instance, Govindu

[34], Martinec and Pajdla [51], Arie-Nachimson et al. [1], Fredriksson and Olsson [28] propose

linear and quadratic relaxations, while Crandall et al. [16] use a discretized version of the

problem. Alternative solutions respect the structure of the space of rotations, but only consider

local optimization updates, as done by Govindu [35] and Hartley et al. [40]. In all cases, these

algorithms either consider only a centralized setting or do not provide any guarantee that the

solution found is globally optimal.

In the robotics community, a traditional problem related to both mutual localization and

SfM is Simultaneous Localization And Mapping (SLAM). Similarly to SfM, the goal here is to

estimate both the motion of a robot and the 3-D structure of the environment. However, in this
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case, it is usually assumed that the robot can acquire inertial measurements (from an Inertial

Measurement Unit, or IMU) in addition to the images. Again, the joint optimization of motion

and structure is prone to converge to sub-optimal solutions. This has led to the graph-based

SLAM, which drops the estimation of the map and focuses on the poses alone. This approach

was originated by Lu and Milios [49], and it has seen numerous contributions, with [47, 42, 36]

being the most popular solutions. Other works build on these by considering on-line updates

[38, 20], multi-scale solvers [37, 29], large problem sizes [46], or robustness [57, 10]. As in

the computer vision community, the main theme in these works is to use local optimization

techniques while exploiting the specific structure of the problem to speed-up computations.

Again, these works only provide centralized solutions and do not consider the scale ambiguities

intrinsic to pure-vision measurements.

With respect to the work illustrated above, the approach presented later in this article

gives a completely distributed algorithm, provides guarantees of convergence to a globally

optimal solution under ideal conditions, and explicitly considers the challenges of vision-based

measurements. As such, this approach follows the same priorities of the automatic control and

sensor network communities. In principle, the same algorithms could be also used for SfM

and SLAM applications, but other centralized solutions are likely to be more efficient for these

settings.

Formation control

The study of the formation control problem has a long history, starting from early papers

such as those from Wang [73], Chen and Luh [11], Balch and Arkin [3], Desai et al. [17].
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Existing approaches can be broadly classified by:

• The model used for the agents: single integrators, as done in the majority of works, or more

general linear and non-linear models [65], such as those derived from mechanical systems

[64, 13]. Single integrators lead to simpler control laws and analysis, while other models

can be more realistic but pose additional challenges.

• The technique used for obtaining convergence results: Lyapunov’s method, as done in the

majority of works, or methods based on passivity [41, 12], contraction theory [13], and

Hamiltonian bond-graphs [64]. In passivity-based methods, the basic principle is to design

local controllers that are passive (intuitively, that do not produce a power gain from the

inputs to the outputs); their interconnection can then been shown to be stable under mild

conditions on the network topology (for instance, the graph must be symmetric or balanced).

Contraction theory methods are instead based on the idea of showing that any two trajectories

of the overall system asymptotically converge to each other; this leads to a convergence

analysis based on eigenvalues of matrices that combine the local dynamics with the structure

of the network (represented by the graph Laplacian). The main advantage is that this analysis

can be used to show exponential stability, with the eigenvalues of the matrices providing

bounds on the convergence speed. Finally, Hamiltonian bond-graphs characterize each node

in terms of potential and kinetic energies, and consider their interconnection in terms of

how these energies are transfered. This formalism is naturally suited to interconnections of

electromechanical systems, and local asymptotic convergence guarantees can be obtained

by showing that the total energy of the system (potential plus kinetic) decreases along the

trajectories of the system.

• The strength of the theoretical results: asymptotic stability, as shown in most of the methods
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based on a Lyapunov analysis, in contrast to exponential stability and robustness to external

disturbances (as in methods based on contraction theory).

• The type of information on the agents’ translations required to compute the control law.

This can be the full state with respect to an absolute reference frame, the full relative state

between pairs of agents, or only a partial relative state knowledge (such as distance or

bearing-only measurements). See the review from Oh et al. [55] for more details on this

aspect.

• The use of the relative rotations between agents in the control law (or equivalently,

the rotation of each agent with respect to a common reference frame). In general, this

information is needed to compare actual measurements with the desired ones that specify

the formation. The majority of existing works assume (either implicitly or explicitly) that

this information is known. Other works, such as those by Franchi et al. [27], Montijano

et al. [52], Oh and Ahn [54] explicitly incorporate the estimation of the relative rotations

with the formation control task (and analyze the convergence jointly), or do not require this

information at all, as in those by Bishop et al. [6], Zhao et al. [79].

In general, methods based on a Lyapunov analysis tend to be more ad-hoc and oriented toward

agents with simple dynamics (simple integrators) and simple interconnections; on the other hand,

methods based on other techniques (such as passivity, contraction theory and bond-graphs) can

obtain relatively stronger results (agents with higher-order dynamics, directed and time-varying

interconnections), but they are harder to adapt to situations where the relative state of the agents

is not fully known (which is the case when only bearing or distances are available). By harder,

here it is meant that these techniques require the use of additional estimators or other related

sub-systems.
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Since this article focuses on vision-based applications, the most interesting approaches

are those that use relative bearings to specify the desired formation. Focusing on this category

alone, the first distinction that can be made is in how the bearing information is actually used

in the control law. Approaches such as those by Bishop et al. [5, 7, 8] and Zhao and Zelazo

[77] require, during the control operations, also the distances between agents in addition to the

relative directions (that is equivalent to say that they require the full relative positions, thus

imposing restrictions on their application). Other approaches, such as those by Zhao and Zelazo

[78], Franchi et al. [27, 26], and Stacey and Mahony [63] require only one or no distance

measurements. This is achieved by either directly specifying a control law that does not require

them (as in [78]), or by substituting the unknown distances with quantities estimated from triplets

of nodes [27], distributed estimators [26], or on-line local estimators plus information on the

agents’ velocity [63]. Yet another approach is to use only the internal angles between pairs of

bearings measured at the same agent (which are compared to the internal angles expected at the

desired formation). This has the advantage that the agents do not need to know their relative

orientations (as mentioned above). However, current existing works from Bishop et al. [6] and

Zhao et al. [79] are limited to either triangular or 2-D formations with graphs containing a single

cycle, respectively.

A different way to classify bearing-based approaches is by considering whether they

allow or require leader agents (these are agents that are independently controlled and that do

not follow the same formation control law as the others). Intuitively speaking, from the point of

view of analysis, the presence of leaders facilitates the derivation of convergence results, because

they fix some of the translation and scale ambiguities intrinsic in the formation control problem.

Most of the existing works do not consider the presence of leaders, and the behavior of such
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algorithms in their presence is not known. The approaches from Franchi et al. [27, 26] instead

require the presence of two agents leaders. The only work explicitly considering leaders without

requiring them is [77]. When proving stability in the presence of leaders, all published works

assume them to be stationary.

Regarding the model for the agents, almost all the existing works on bearing-only

formation control use simple first-order 2-D or 3-D integrators, possibly augmented with

a 2-D rotation (for those approaches jointly considering rotation localization and formation

control). The only exception is [63] which, by using the bond-graph approach, uses second-

order mechanical systems.

Regarding the convergence guarantees provided, most of the works mentioned above show

global asymptotic convergence (since the overall system is time-invariant, this implies global

uniform asymptotic stability). The only exceptions are the work from Stacey and Mahony [63],

which only provides local convergence guarantees, and the works from Zhao et al. [77, 78, 79],

which instead show exponential convergence.

In all of the articles above, the measurements are all assumed to be ideal (without noise

and without range or field-of-view restrictions), and the measurement graph is assumed to be

fixed. Regarding the measurement graph, only the works from Franchi and Giordano [26], Zhao

et al. [79], Bishop et al. [6] make specific assumptions on the graph topology. All the other

works allow any arbitrary graph, subject to the constraint that the problem must be well posed

(that is, the desired bearings and distances must be sufficient to specify the desired formation,

as captured by the notion of rigidity reviewed later in this article).

12



With respect to the literature above, the approach to formation control considered in the

present work uses the same assumptions as most of the existing solutions (simple integrator model

for the agents, known rotation localization, ideal measurements), while providing more flexibility.

The approach can be applied to bearing-only measurements, without the use of additional

estimators, but it allows the incorporation of any number of optional range measurements; it can

handle leaderless or leader-based formations and, in both cases, it uses a Lyapunov approach

to show global asymptotic convergence guarantees without restrictions on the graph topology

(again, with the caveat that the problem must be rigid in order to be well-posed). This framework

is also fairly general (it can be applied to various instances of localization problems in addition

to formation control problems), it does not require additional estimators to complement bearing-

only measurements (as required by bond-graph approaches) and can be applied in situations

not covered by other techniques (it does not require differential stability, as in contraction-

based approaches, and it does not explicitly restrict the local controllers to be passive). On the

downside, the considered framework is not directly applicable to higher-order models for the

agents or time-varying graphs (at least not in its current form).

In addition to simulations, the presented approach is validated with experiments on three

aerial robots equipped with onboard processing for the vision-based feedback. Note that most

existing works test the respective proposed algorithms only through simulations.
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NOTATION AND MEASUREMENT MODEL

General Notation

As customary, SO(d) and SE(d) denote the space of rotations and rigid body motions in

a d-dimensional space (see also side panel “The geometry of rotations”). In practical situations,

either d = 2 or d = 3. The notation f ′ is used for the derivative of a function f : R → R

with respect to its only argument. Given a function ϕ : Rd → R, its gradient with respect to

the variable x is denoted as gradx ϕ. The gradient can be defined as a vector which, given any

smooth curve x(t), satisfies

dϕ
(
x(t)

)
dt

= gradx ϕ
(
x(t)

)T
ẋ(t), (1)

where ẋ(t) is the tangent to the curve. This definition is valid also for functions on non-Euclidean

spaces (see side panel “The geometry of rotations”), and it reduces to the simpler one as a vector

of derivatives for functions on Rd. A critical point of a function ϕ is a point where gradϕ = 0

or where the gradient does not exist (because ϕ has a discontinuous derivative).

The graphical model

Throughout the text, the team of agents is modeled as a graph G = (V,E), where the

set of vertices V = {1, . . . , N} represents the N agents and the edges E ⊆ V ×V represent the

pairs of agents (i, j) ∈ E that share measurements and that can communicate with each other.

For simplicity, the graph is assumed to be symmetric (that is, if (i, j) ∈ E then also (j, i) ∈ E).

As a convention, non-bold letters with subscript i or ij refer to quantities referring to a node or
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an edge (for instance, xi), and the same letters in bold without subscript refer to the collection of

the same quantities across all the nodes or edges (for instance, x = {xi}i∈V ). As a consequence,

in all the expressions below, one could substitute each bold letter with the corresponding set of

quantities without any change in meaning.

The measurement model

It is assumed that each node i is associated to a pair gi = (Ri, Ti), where Ri ∈ SO(d)

represents the rotation from a common absolute reference frame to the local reference, and

Ti ∈ Rd represents the location of the local reference frame in the absolute reference frame.

In other words, given the coordinates Xa of a point in the absolute reference frame, the local

coordinates of the same point are given by Xb,i = Ri(Xa − Ti). The local reference frames at

nodes i and j can be related through the relative rotations Rij ,

Rij = RiR
T
j , (2)

the relative bearings (translation direction expressed in the reference frame of node i) tij ,

tij =
Ri(Tj − Ti)
‖Tj − Ti‖

, (3)

and the relative distances λij

λij = ‖Tj − Ti‖. (4)

In general, in the estimation and control applications considered later, it is assumed that

the nodes can always measure their relative rotations Rij and bearings using vision and IMU

sensors (see also the section LOCAL PROCESSING AND EXPERIMENTAL TESTBED). The

case where some or all of the distances λij can be measured is also considered.
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From a control systems point of view, the set of poses x = {(Ri, Ti)}i∈V can be

considered the state of the system, while the relative quantities z = {(Rij, tij)}(i,j)∈E or

z = {(Rij, tij, λij)}(i,j)∈E correspond to the output of the same system. A pair of a graph

and a configuration for the nodes (G,x) is called a framework.

MUTUAL LOCALIZATION, FORMATION CONTROL, AND RIGIDITY

This section introduces more formally the mutual localization and formation control

problems, and highlights their mutual relation. Then, it introduces the notion of rigidity, which

characterizes when these problems are well-posed, and what ambiguities are present.

Relation Between the Estimation and Control Problems

In the mutual localization problem, the nodes are static and acquire the input measure-

ments z̃ = {(R̃ij, t̃ij)}(i,j)∈E or z̃ = {(R̃ij, t̃ij, λ̃ij)}(i,j)∈E . The nodes maintain an estimate of

the state x, and can compute from it the corresponding set of expected measurements z. The

goal is then to find the estimated state x such that z matches the given measurements z̃ as close

as possible. In general, the designer of the system is free to choose different ways in which

x can be updated to achieve the task, subject to the constraint that x must always respect the

geometry of the problem (e.g., rotations must remain rotations).

In the formation control problem, the state x represents the physical state of the agents,

and is generally unknown to the agents themselves. The measurements z̃ correspond to the

observation taken from a desired formation, and the measurements z correspond to actual
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Symbol Description

d Ambient dimension (d = 2 or d = 3)

f ′ Derivative of a univariate function

gradx ϕ Gradient of the function ϕ with respect to x

N Number of agents

G = (V,E) Graph with vertices V representing the agents and the edges E

representing pairs of agents that can exchange relative measurements

Ri Rotation from from an absolute reference frame to the local reference

frame of agent i

Ti Location of the center of the local reference frame of agent i in the

absolute reference frame

Rij, R̃ij

tij, t̃ij

λij, λ̃ij

Relative rotations, bearings, and distances between nodes i and j

that are either estimated (no tilde, mutual localization), desired (no

tilde, formation control) or actually measured (with tilde)

g, s,σ, α Decomposition of the state into a common rigid transformation, shape,

normalized shape, and scale (see Figure 1)

x Aggregate state for estimation/control tasks (rotations alone, transla-

tions alone, or translations and distances)

z, z̃ Aggregate measurements for estimation/control tasks (rotations alone,

bearings alone, or bearings with distances)

ϕ Global cost function used for estimation/control

ϕij Pairwise cost function used for estimation/control

fR, fT , fC , fD Reshaping functions used in the pairwise cost for estimation/control

TABLE I

LIST OF SYMBOLS USED IN THE ARTICLE
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observations taken from the onboard sensors. Similar to before, the goal is then to drive the

states x such that z matches z̃ as close as possible. However, the updates of x must satisfy the

local dynamics of the agents.

As summarized in Table II, the two problems are almost identical from a modeling point

of view. The practical implication of this is that one can use similar tools to study and solve the

two problems, as discussed in the next few sections.

State decomposition and rigidity

In both the estimation and control problems, the agents need to rely exclusively on the

information contained in the relative measurements. As such, if different states x lead to the

same measurements, then it is impossible to distinguish them: this fact is captured by the notion

of rigidity. Before giving a rigorous characterization of this concept, it is necessary to consider

a decomposition of the state x into different pose, shape and scale elements. Ideas for this kind

of decomposition were pioneered by Kendalll [44] and Bookstein [9], and were first used in the

formation control context by [18]. While it is not used in this work, it is worth mentioning that

it is possible to explicitly parametrize the result of this decomposition using Jacobi coordinates

(see, for instance, [75]). The decomposition starts by dividing x into a pair (s, g), where the

shape s represents the relative location of the agents up to some global rigid transformation

g = (R, T ) ∈ SE(d), which acts in parallel on each pose gi in x. To be precise, the shape

represents the equivalence class obtained by applying all the possible rigid transformations to

a representative configuration x expressed in the global reference frame. The decomposition

x = (s, g) can then be seen as first selecting a class s and then picking a specific member of
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Mutual Localization Formation Control

x
Estimate of the states,

maintained at each node

Physical state of the agents,

unknown to the nodes

z
Measurements computed

from the states

Measurements from the

sensors

z̃
Measurements from the

sensors

Measurements at the desired

formation

Goal Drive x so that z = z̃ Drive x so that z = z̃

Restrictions on

updates of x

None (except respecting the

geometry of the problem)
Local agents’ dynamics

TABLE II

RELATION BETWEEN LOCALIZATION AND FORMATION CONTROL. THE TABLE CONTAINS

THE MEANING OF THE STATES x AND OF THE MEASUREMENTS z, z̃ IN EACH PROBLEM,

TOGETHER WITH GOALS AND RESTRICTIONS. WHILE THERE ARE SIGNIFICANT

DIFFERENCES, THE GOALS ARE SIMILAR.
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this class with g. Furthermore, the shape s can be decomposed into a pair (σ, α) where σ is

the normalized shape and α ∈ R, α > 0 is a scale. Again, σ represents the equivalence class

of all possible scalings of a given representative shape s. This decomposition is summarized in

Figure 1.

With this decomposition, two configurations x, x′ are said to be:

• Equivalent if they produce the same measurements; that is, z(x) = z(x′).

• Identical if they have the same configuration, x = x′.

• Congruent if they have the same shape s (that is, both σ and α agree).

• Similar if they have the same normalized shape σ.

The relation between equivalent, identical, congruent and similar states is very important

and not trivial, as illustrated by the Venn diagram in Figure 2. Congruent states are always

equivalent (with or without distance measurements) and similar states are always equivalent if z

does not contain distances. This means that, given the measurements z alone, it is not possible

to recover either the global rotation or the global translation of the agents (the g component of

the decomposition). On the other hand, equivalent states are not always similar or congruent due

Configuration x

Rigid transformation g

Rotation R Translation t

Shape s

Normalized shape σ Scale α

Figure 1. Decomposition of the state x.
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to the possible ambiguities that are intrinsic to the problem. If z does not include any distance

estimate λij , a framework is said to be rigid if all frameworks equivalent to it are also similar.

This means that it is possible to reconstruct (more formally, observe) only the normalized shape

σ (and not the scale α) from the measurements alone. If z contain at least one distance estimate

λij , a framework is said to be rigid if all frameworks equivalent to it are also congruent. This

means that it is possible to observe the shape s (which includes the scale α).

In practice, one can check whether a formation is rigid by checking the rank of the

rigidity matrix (see [5, 59] for a definition and details). For generic states x, one can also give

combinatorial conditions which depend only on the graph G (see [67, 21, 22]).

Note that the notion of rigidity considered in this context is only affected by the

translations of the nodes. This is because of the assumption that the graph G is connected,

and that the relative rotations {Rij}(i,j)∈E are included in z. Hence, once the global rotation R

is fixed, all the local rotations Ri can be fixed too. If z did not include the relative rotations,

then the notion of rigidity would have to be extended beyond congruency and similarity. Some

work in this direction has appeared in [58, 74], but a full characterization of rigidity in the 3-

dimensional case is still an open problem. Finally, it is worth mentioning that if the framework

is not rigid, one can either identify a partitioning into rigid sub-frameworks and decompose the

problem or add additional measurements (that is, edges) to make the problem rigid (see [71] for

details).
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All possible state configurations

Similar

Equivalent

Congruent

Identical

Rotations, translations

Scalings, no distance measurements

Scalings, distance measurements

Other deformations, non-rigid framework

Figure 2. Venn diagram illustrating the relation between identical, congruent, similar and

equivalent states. Among all possible state configurations, some can be equivalent, and some

can be similar. Congruent configurations are both similar and equivalent. Identical configurations

reduce to a single point. The arrows give details on what kind of configurations lie in the various

set differences: configurations that are similar but not equivalent arise when the measurements

contain at least one distance and the configuration is scaled; configurations that are equivalent but

not similar are given in a non-rigid framework by deformations that are not rotations, translations

or scaling but maintain the same measurements; configurations that are similar and equivalent

but not congruent arise when the measurements contain no distances and the configuration is

scaled.
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A DISTRIBUTED GRADIENT-DESCENT APPROACH

This section considers an approach for formulating actual distributed algorithms for

solving the localization and formation control problems. This approach is based on the

minimization of a Lyapunov function defined on the graph G. The treatment starts with a general

formulation based on gradient descent, leaving specializations to different problems for the next

section. In order to help the reader grasp the general framework, the discussion is complemented

by referring to a simple concrete problem: finding the location (that is, translations) {Ti}i∈V of

the agents with respect to a common reference frame given measurements of their relative

bearings (without the relative distances) {t̃ij}i∈V and assuming that their rotational reference

frames {Ri}i∈V are fixed and known. This example is considered again in more detail in the

next section. Additional details that are beyond the scope of the present work can be found in

[67].

Let xi ∈ Rn be a state associated with node i ∈ V , and yij an optional state associated

with edge (i, j) ∈ E. In the localization example, xi = Ti denotes the unknown translation of

agent i, and yij = λij denotes the unknown distance between agents i and j (again, the rotations

Ri are assumed to be fixed and known). For ease of understanding, the treatment below considers

states in an Euclidean space, but the treatment can be extended to variables lying on differential

manifolds, such as rotations. The notation x = {xi}i∈V and y = {yij}(i,j)∈E refer to the aggregate

states of the entire network.

For the sake of analysis and as in all the existing work in the area, it is assumed that

measurements taken by the nodes are without noise. However, as shown in the experimental
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validation, the same framework can be applied in the presence of noise and unmodeled

disturbances.

Global cost, global minima, and rigidity

Consider a Lyapunov candidate ϕ defined as follows:

ϕ(x,y) =
∑

(i,j)∈E

ϕij(xi, xj, yij), (5)

where the pairwise functions ϕij , (i, j) ∈ E encode the measurements and their relations with

the states. The following assumptions are used:

1) The pairwise terms are non-negative, that is, ϕij ≥ 0.

2) It holds that ϕ(x0,y0) = 0 for some (x0,y0) if and only if x0 is equivalent to the desired

localization or formation.

Intuitively, the functions {ϕij}(i,j)∈E represent the discrepancy between the current states and

those expected or desired from the measurements. For instance, in the running localization

example, one can choose

ϕij(Ti, Tj, λij) = ‖Tj − Ti − λijRT
i t̃ij‖2. (6)

The two assumptions above imply that ϕ(x0,y0) = 0 if and only if ϕij(x0i, x0j, y0ij) = 0

for all (i, j) ∈ E. In turn, this means that the measurements are assumed to be without noise

(as already stated), and that the global minimizers (that is, points where ϕ = 0) represent only

and all the equivalent configurations that are consistent with such measurements. Hence, the

cost function ϕ has multiple global minimizers, and the minimization procedure could find, in
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general, any one of them. However, if the problem is rigid, the set of global minimizers (that is,

the set of equivalent configurations, which is also the set where ϕ = 0) is in exact correspondence

with the set of states that are either similar or congruent to the desired ones. As a consequence,

given the pairwise costs for a rigid problem, solving the task at hand (in the running example,

finding the locations {Ti}i∈V that agree with all the measurements {t̃ij}(i,j)∈E) is equivalent to

driving the states to a global minimizer of the cost ϕ.

Regarding the specific choice of the pairwise functions {ϕij}(i,j)∈E , it is usually

straightforward to come up with a basic form for each one of them, given the specific application

(some notion of discrepancy or error between actual and desired measurements is sufficient).

At the same time, there is some freedom in the specific form that can be used. For instance, in

(6), one could have taken any monotonically increasing function of the norm, instead of just the

square. This freedom can be used to obtain better convergence properties (as discussed later)

or to make the approach more robust to noise and spurious measurements by using robust cost

functions [76].

For ease of treatment, in the present work it is assumed that the functions ϕij are twice

differentiable on their domain of interest. However, similar results can be obtained when the

terms ϕij are only continuous, provided that the discontinuities in the derivatives correspond to

local maxima [67] or are isolated points [68].

Gradient descent and distributed control law

Let x(0),y(0) contain the initial states of the agents (in the localization example and

without any prior knowledge, these could be completely random). This section considers the
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problem of how to update the states in order to obtain a trajectory x(t),y(t) which converges

toward a (at least local) minimizer of ϕ. The easiest choice is to set the time-derivative of the

states to be equal to the negative gradient of (5). This choice leads to

ẋi = −k
∑

j:(i,j)∈E

(
gradxi

ϕij(xi, xj, yij) + gradxi
ϕji(xj, xi, yji)

)
, (7)

ẏij = −k gradyij
ϕij(xi, xj, yij), (8)

where k > 0 is a scalar gain common to all the nodes. Note that the gradient in (7) contains two

terms because xi appears, for each edge (i, j) ∈ E, as an argument for both ϕij and ϕji. On the

other hand, (8) contains only one term because yij appears only once in ϕij; as a consequence yij

and yji could potentially converge to different values if the terms ϕij and ϕji are not consistent

with each other (due to noise).

The updates given by (7)–(8) are naturally distributed in the sense that, in order to update

its state, node i only needs to communicate and obtain the states of its neighbors j : (i, j) ∈ E

in the graph G, and updating the state for each edge (i, j) only needs the states at the two

endpoints. Moreover, one can also include local constraints by using local projections of the

updates (passing from simple gradient descent to projected gradient descent). In the localization

example, this projection can be used to enforce the constraint that all the estimated distances

y = {λij}(i,j)∈E must be strictly positive (see the next section for details).

Convergence basin

In general, the gradient updates (7)–(8) drive the states to a critical point of the function

ϕ. This section shows how a few conditions on the terms ϕij are sufficient to ensure that all the
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critical points of ϕ are also global minimizers.

The analysis is based on radial lines of the form x̃i(s) = x0i+svi and ỹij(s) = y0ij +svij

(and their corresponding aggregate versions x̃(s), ỹ(s)), where s ≥ 0 is the line parameter,

(x0,y0) represents an arbitrary global minimizer of ϕ and (vi, vij) 6= 0 are arbitrary, non-

zero directions. The pairwise and total costs evaluated along these radial lines are defined as

ϕ̃ij = ϕij

(
x̃i, x̃j, ỹij

)
, ϕ̃ = ϕ

(
x̃, ỹ

)
=
∑

(i,j)∈E ϕ̃ij .

The following is the main global convergence result of the theoretical framework.

Theorem 1. Assume that the functions {ϕij}(i,j)∈E are differentiable everywhere, and that

dϕ̃ij

ds
≥ 0 for all s ≥ 0, (i, j) ∈ E, (9)

with equality if and only if (x̃i(s), x̃ij(s), ỹij(s)) is a global minimizer of ϕij . Then the trajectories

defined by (7)–(8) converge to the set of global minimizers of ϕ from any initial condition.

Proof. The main idea is to use (9) to show that the only critical points of ϕ (that is, points

where gradx,y ϕ = 0) are global minimizers. If this can be shown, then standard arguments

from optimization theory show that gradient descent converges to this set of global minimizers

(that is, points where ϕ = 0).

Given arbitrary directions vi, vij , the definition of gradient can be used to “probe” if any

point along the radial lines x̃(s) and ỹ(s) is a critical point:

dϕ̃

ds
= gradx ϕ

Tdx̃

ds
+ grady ϕ

Tdỹ

ds
. (10)

Since the tangents dx̃
ds

, dỹ
ds

are nothing but the line directions, and since, by assumption, they are
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non-zero, it holds that

dϕ̃

ds
6= 0 =⇒ gradx,y ϕ 6= 0. (11)

At the same time, the fact that the operator d
ds

is linear implies that

dϕ̃

ds
=
∑

(i,j)∈E

dϕ̃ij

ds
≥ 0, (12)

with equality if and only if ϕ̃ is identically zero (that is, the radial lines traverse only global

minimizers). Now, by considering all the possible line directions ({vi}i∈V , {vij}(i,j)∈E), it is

possible to sweep the entire state space (x,y). Combining (11) with (12), it follows that a

particular point (x1,y1) is a critical point if and only if ϕ(x1,y1) = 0, that is, (x1,y1) is also

a global minimizer. This concludes the proof.

Similar proofs can be found, for instance, in [70, Theorem 5] and [66, Theorem 3.2.5].

A schematic illustration of the main idea of the theorem is presented in Figure 3.

Intuitively, the significance of this result is that if the functions {ϕij}(i,j)∈E can be chosen

(using the freedom mentioned in the previous section) such that condition (9) is satisfied, then this

pairwise condition is enough to show that, globally, the function ϕ has only global minimizers

and no other critical point. The result can be alternatively visualized by noticing that (9) implies

that the level sets of ϕ are star-shaped around any of the global minimizers. Hence, ϕ does not

necessarily need to be convex or quasi-convex (that is, have convex level sets).

Notice that the claim in Theorem 1 holds for any topology of the graph. In fact, this

result is true even when the problem is non-rigid (that is, it is not well-posed). As mentioned

before, the notion of rigidity is instead necessary to show the exact correspondence between the

sets of global minimizers of ϕ and of valid solutions for the problem (when the measurements
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Figure 3. A schematic illustration of the proof of Theorem 1. Left: a network with three agents

moving from their desired position {x1, x2, x3} towards three arbitrary directions v1, v2, v3 (the

variables y are not used). Right: the functions ϕ12, ϕ23, ϕ13 corresponding to the three edges are

monotonically increasing (for simplicity, the corresponding terms ϕ21, ϕ32, and ϕ31 are omitted

from the picture). Hence, also its sum ϕ is monotonically increasing. This implies that the

gradient along any point on the curve x + tv in the state space, except the origin, cannot be

zero.

are without noise).

Generally speaking, finding functions {ϕij}(i,j)∈E satisfying the monotonicity assumption

(9) is the most difficult step in applying this framework to a new problem. However, as shown

in the next section, for the case of mutual localization and formation control, the resulting

restrictions are mild.

It is possible to adapt the analysis above to derive local convergence results by restricting

the radial lines to a subset X of the state space. However, in this case, one needs also to show

that the trajectories do not leave the set X .
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DISTRIBUTED ALGORITHMS FOR ESTIMATION AND CONTROL

This section is devoted to show how the general framework from the previous section

can be used in concrete estimation and control problems.

Rotation Estimation

Consider the problem of estimating the absolute rotations {Ri}i∈V of the nodes using the

relative rotations {Rij}(i,j)∈E . As mentioned in the review of prior work, the knowledge of Ri

at each node i ∈ V is a prerequisite in many of the state-of-the-art formation control methods

(including the one presented later).

In the general framework from the previous section, each state xi corresponds to the

rotation Ri, while the states y are not used. Based on the relation between states and outputs in

(2), the pairwise terms are defined as

ϕij(Ri, Rj) = fR
(
dSO(3)(RiR

T
j , R̃ij)

)
, (13)

where dSO(3) is the Riemannian distance in the space of rotations (see “The geometry of

rotations”) and fR : R → R is a reshaping function which is monotonically increasing and

quadratic near zero. The gradient can be computed by using the chain rule and the logarithm map;

note that the continuous gradient updates (7) can be discretized in a practical implementation

using the exponential map (see again “The geometry of rotations” and [67]).

In general, the cost (13) is not differentiable everywhere due to its non-trivial topology

(the logarithm in the gradient might not be defined). Also, it is not convex (not even locally),

due to the curvature of the space. However, assuming ideal measurements, one can show that
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Figure 4. A plot of the function fR with b = 2.

(13) satisfies the monotonicity condition (9) (for any choice of monotonically increasing fR)

when the rotations {Ri}i∈V are restricted to the set

X =
{
{Ri}i∈V ∈ SO(d)N : dSO(3)(RiR

T
j , R̃ij) <

π

2

}
. (14)

Thus, one can perform the analysis detailed in the previous section and show that the set X

contains only global minimizers. With some additional work [69], one can also show that by

choosing

fR(x) = 1− (1 + bx) exp(−bx), (15)

with the parameter b sufficiently high, all the critical points of ϕ outside of X are either

saddle points or local maxima (this particular result requires additional theoretical tools, and the

interested reader is referred to [69] and [67] for details). In either case, these points are unstable

for the gradient descent updates defined in (7). Hence, the estimation strategy considered here

has almost global convergence guarantees, at least in the ideal case.

It is interesting to notice that the shape of the function fR (shown in Figure 4) weights

relatively less measurements that have large deviations (which are also referred to as outliers).

Hence, this choice not only gives global convergence guarantees, but it also gives more robust

estimations.
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Bearing-Based Estimation

For this section, it is assumed that the rotations {Ri}i∈V are known (or have been obtained

by using the previous algorithm). The goal is then to find the absolute translations {Ti}i∈V

from the measured relative bearings {t̃ij}(i,j)∈E . It is assumed that the distances {λij}(i,j)∈E are

not measured, but estimated together with the translation. A detailed treatment of the material

covered in this section can be found in [67] and [66], with the caveat that the convention used for

expressing the translations of the nodes has been changed for ease of exposition. The resulting

algorithms, however, are equivalent.

For the problem just stated, the states xi and yij in the general formulation correspond

to Ti, i ∈ V and λij , (i, j) ∈ E, respectively. Based on the definition of relative bearings in (3),

the pairwise terms are defined as

ϕij(Ti, Tj, λij) = fT
(
‖Tj − Ti − λijRT

i t̃ij‖
)
, (16)

where fT : R → R is another reshaping function which is monotonically increasing and quadratic

near zero. As before, one can check that, with ideal measurements, the pairwise cost (16) satisfies

the monotonicity condition (9) for any choice of monotonically increasing fT .

The fact that the distances {λij}(i,j)∈E (and, in fact, the global scale α in the decomposi-

tion mentioned before) are included in the estimation introduces a problem. The trivial solution

with Ti = 0, i ∈ V , and λij = 0, (i, j) ∈ E is always a global minimizer of ϕ. In order to avoid

this, the global scale α is canonically fixed by introducing the constraints

λij ≥ 1 for all (i, j) ∈ E. (17)

Note that, with these constraints, the estimated global scale does not generally correspond to
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the true one (which is unobservable). However, all the relative scales between different pairs of

edges are correct. The constraints (17) can be taken into account by projecting the gradient on

them: it can be shown that this is equivalent to setting λ̇ij = 0 whenever λij = 1, (i, j) ∈ E.

Using the analysis from the general formulation, in the ideal case of noiseless mea-

surements, and with the correct rotations {Ri}i∈V , it is possible to show that this algorithm

converges to the global minimizer from any initial condition. In other words, the algorithm has

almost global asymptotic convergence [67, 66]. This is remarkable because, for a general choice

of a monotonically increasing function fT , the cost ϕ is non-convex.

Bearing-Based Control

As in the previous section, it is assumed that the rotations {Ri}i∈V are known. However,

in this case, the goal is to drive the absolute translations {Ti}i∈V so that the measured directions

{t̃ij}(i,j)∈E are the same as the desired ones {tij}(i,j)∈E . A complete treatment of the material

covered in this section can be found in [68]. A simple first-order integrator model is assumed for

the agents, so that their position can be directly controlled through Ṫi. Contrarily to what was

done in the previous section, the unknown distances {λij}(i,j)∈E are not included for estimation.

Hence, in the general formulation, xi = Ti, while the states y are not used. The pairwise cost

is defined as

ϕij(Ti, Tj) = λijfC(cij), (18)

cij = cos
(
∠(tij, t̃ij)

)
(19)

where fC : [−1, 1] → R is a monotonically decreasing reshaping function (recall that

cos
(
∠(tij, t̃ij)

)
= 1 when tij and t̃ij coincide). Notably, the cost (18) depends on the unknown
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distances λij . However, the gradient becomes

gradTi
ϕij(Ti, Tj) = −fC(cij)t̃ij − f ′C(cij)(I − t̃ij t̃Tij)tij, (20)

which only depends on the available measurements (because λij cancels out).

If the function fC satisfies

fC(cij) + (1− cij)f ′C(cij) ≤ 0, (21)

and the measurements are without noise, then (18) satisfies the monotonicity condition (9) (see

[68] for a proof). Using the analysis from the general formulation, one can then deduce that, for

rigid formations, the gradient-based control law given in (7) asymptotically drives the states to a

configuration similar to the desired one from any initial condition (again, the scale α cannot be

observed, and so it cannot be controlled). An example of a function satisfying (21) is f(c) = 1−c.

Bearing and Distance Estimation and Control

Assume that some of the nodes are able to measure some of the distances {λij}(i,j)∈E′ for

some edges E ′ ⊂ E. Then, the cost functions from the previous two sections can be “upgraded”

by adding terms taking into account these measurements. For the localization problem, one can

perform the substitution

ϕij(Ti, Tj, λij)← ϕij(Ti, Tj, λij) + fD(λij − λ̃ij), (22)

and remove the constraints on λij . For the formation control problem, one can instead set

ϕij(Ti, Tj, λij)← ϕij(Ti, Tj, λij) + fD(λijcij − λ̃ij). (23)

In both cases, in order to satisfy the monotonicity condition (9), fD : R → R must be

a differentiable reshaping function such that sign
(
f ′D(x)

)
= sign(x) (such as fD(x) = x2).
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The expressions for the gradients need to be modified accordingly. Note that the function fD

can be chosen to change the relative weights of the bearing and distance measurements, thus

accomodating the different noise characteristics of the two that appear in practical settings (as

mentioned in the section CHALLENGES IN MUTUAL LOCALIZATION AND FORMATION

CONTROL).

Using the analysis from the general formulation, one can show that, in both cases, the

monotonicity condition (9) and the global convergence properties are maintained.

Discussion

The pairwise costs for the estimation and control problems above are summarized in

Table III. As the reader might have already noticed, although there are similarities between

the estimation and control problems, the cost functions used are significantly different. The

estimation problem relies on the estimation of the unknown distances λij , while the formation

control does not. In principle, one could use either formulation for both problems. However, one

needs to consider that an incorrect initialization of the estimates of the scales might create large

transitory effects on the other states, which is not desirable in a formation control setting, where

the trajectories of the system correspond to real physical movements of the agents.

Another consideration is that all of the convergence results given above are valid only

for ideal noiseless measurements. For the noisy case, one can still expect to have a large basin

of attraction for the global minimizers, but a rigorous characterization is still an open problem.
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Application Pairwise cost ϕij

Convergence

(noiseless

measurements)

Remarks

Rotation

estimation
fR
(
dSO(3)(RiR

T
j , R̃ij)

) Local in general,

almost global

with (15)

States are

non-Euclidean

Bearing-only

localization
fT
(
‖Tj − Ti − λijRT

i tij‖
)

Global Constraints λij ≥ 1

Bearing-only

formation
λijfC

(
cos
(
∠(tij, t̃ij)

))
Global

No scale estimates,

fC decreasing

Bearing+distance

localization
ϕij + fD(λij − λ̃ij) Global sign

(
f ′D(x)

)
= sign(x)

Bearing+distance

formation
ϕij + fD(λijcij − λ̃ij) Global sign

(
f ′D(x)

)
= sign(x)

TABLE III

SUMMARY OF THE COST FUNCTIONS FOR EACH APPLICATION. ALTHOUGH THERE ARE

SIMILARITIES BETWEEN BEARING-ONLY ESTIMATION AND CONTROL PROBLEMS, THE COST

FUNCTIONS USED CAN BE SIGNIFICANTLY DIFFERENT. IN PARTICULAR, IT IS POSSIBLE TO

ESTIMATE ALL UNKNOWN DISTANCES (UP TO A SCALE), AS IN THE MUTUAL LOCALIZATION

PROBLEM, OR COMPLETELY ELIMINATE THEM, AS IN THE FORMATION CONTROL PROBLEM.

IN BOTH CASES, WHEN DISTANCES ARE AVAILABLE AS MEASUREMENTS, ONE CAN ADD

TERMS TO THE COST AND OBTAIN SIMILAR DISTRIBUTED ALGORITHMS.
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LOCAL PROCESSING AND EXPERIMENTAL TESTBED

This section explains the processing that is required onboard the agents to obtain the input

measurements for the methods above. This section also includes a description of the experimental

setup for the formation control experiments.

Additional notation

Let P = [XC YC ZC 1]T and p = [u v 1]T be the homogeneous coordinates of a 3-D

point in the camera’s frame and its projection on the camera’s image plane, respectively. The

two can be related by the pinhole camera model [50]:

µp = KΠP, (24)

where µ is the depth of the point in the camera’s frame, K is an invertible matrix that transforms

metric coordinates into pixel coordinates (and is commonly known in the computer vision

literature as the calibration matrix), Π = [I 0] ∈ R3×4 is the standard projector matrix and

I ∈ R3×3 is the identity matrix. Using appropriate calibration techniques, the matrix K can be

assumed to be known. Therefore, without loss of generality, it is assumed that K = I in the

following (if this is not the case, it is sufficient to apply K−1 to each image point p).

Rotation and Bearing Estimation Through Image Features

One way to compute the relative rotation Rij and bearing tij from neighboring agents i

and j, (i, j) ∈ E, is to use feature points extracted from the images. Specifically, it is assumed

that each agent can extract from an image of the environment Ni feature points {p(ki)i }, where
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ki ∈ {1, . . . , Ni} indicates the index of the point in the image.

It is also assumed that, for each edge (i, j) ∈ E, one can establish the correspondences

between image points p(ki)i and p
(kj)
j in images i and j. Then, using (24) and the rigid body

transformation between the two cameras, these points can be related by

µ
(ki)
i p

(ki)
i = µ

(kj)
j Rijp

(kj)
j + Tij. (25)

Multiplying this relation on the left by p(ki)i

T
T̂ij (where v̂ denotes the matrix representation

of the cross product such that v̂w = v × w for all v, w ∈ R) leads to the epipolar constraint:

p
(ki)
i

T
T̂ijRijp

(kj)
j = 0. (26)

Given five or more point correspondences, equation (26) can be used to estimate the

essential matrix Eij = T̂ijRij from which, in turn, one can extract Rij and tij = Tij/‖Tij‖ [50].

It is custom to use RANSAC (see Side Panel on RANSAC) to robustly fit the essential matrix

Eij in the presence of wrong correspondences between the points in the two images.

Bearing Estimation Through Direct Observation

While estimating bearings using image features is possible, it is also appealing to estimate

the bearings directly through observation of the other vehicles. For instance, this approach would

be necessary if there are not enough features in the surroundings (as in a textureless hallway).

To give the reader an idea of how this can be done in practice and to support the experiments

presented later, this section describes an approach where a colored circular target is mounted on

each agent, and the relative bearings are obtained by extracting and measuring this target in the

images of other agents.
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Figure 5. Ellipse detections observed from one of the vehicles.

Each vehicle is configured to visually detect the colored circular identifiers on the other

two robots as shown in Fig. 5. First, a color image is thresholded for each color of interest. Then,

an ellipse is fitted to the contour points in the image plane by solving a constrained minimum least

squares optimization problem [24]. The bearing and scale measurements can then be obtained

using the fitted model (see Side Panel: “Projective geometry of circular targets”). For outlier

rejection, one can employ an adaptive 5-point RANSAC algorithm [23] since the minimum

number of samples to determine the ellipse’s parameters is five. A point pi1:2 is chosen to be an

inlier based on its corresponding fitting residual.

The procedure is stopped when the number of inliers is above a predefined threshold. In
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particular, the number of iterations N is chosen in an adaptive way and recomputed each time

a new set of inliers is found according to (35) (see Side Panel on RANSAC). The number of

points per sample (that is, the number of points needed to estimate the parameters of an ellipse)

is n = 5. The requested probability of success is set as p = 0.99, and ε is recomputed after each

iteration as the average between the number of inliers and the total number of points detected as

ellipse contour after thresholding. To accomodate the real-time control constraints, each ellipse

is detected using a separate thread [15] in order to exploit different processor cores. As shown

in the next section, the Inertial Measurement Unit (IMU) on each robot is used to rotate the

bearings to frames with common z-axes, which are then used in the formation control strategy

discussed previously.

Rotation Estimation from Bearings and IMU

Given the bearing measurements obtained with the direct method explained above, one

can use this information together with IMU measurements to establish a common rotational

reference frame. This is a necessary precondition for the specific formation control approach

considered in this article.

The rotation localization in this setting follows two steps. First, the gravity vector estimate

from the IMU is used to reduce the task to a 2-D rotation (yaw) problem. Then, the relation

between bearings at neighboring agents is used to find the relative (yaw) rotations, between the

agents, from which a localization can be obtained.
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IMU Attitude Compensation

Ideally, one could estimate the rotation between the local and world frames at each agent

using feedback from the Inertial Measurement Unit (IMU).

However, the robot’s estimate of its yaw, the rotation about [0 0 1]T in the world frame,

cannot be trusted since it depends on the orientation of the robot at initialization and is not

directly observable using an IMU (without a magnetometer), rendering the estimate susceptible

to the accumulation of errors. Conversely, the estimate of the other two degrees of freedom

(pitch and roll) can be assumed to be reliable, thanks to observations of the gravity direction.

Thus, the local bearing measurements can be transformed into a plane-leveled frame where the

third axis is parallel with the gravity vector. Using this procedure, it is now only necessary to

obtain the relation between the yaw angles at each node.

Rotation (Yaw) Localization

The estimates for the relative yaw between the neighboring nodes can be determined

directly from the bearing measurements by using communication. This is illustrated in the sketch

in Figure 6. The only requirement is that, for each pair of robots for which the relative yaw is

desired, the robots must see each other and cannot be placed directly above each other. In the

context of the formation control problem, it is sufficient that this condition is satisfied for all

the edges in a spanning tree of the formation control graph G.

Once the relative yaws are determined, the complete pairwise rotation measurements can

be combined into a full rotation localization estimate. In the setup used for real experiments,
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Robot 1

Robot 2

✓12

✓21

✓12✓21

Superposition

Figure 6. Two robots determine their relative yaw based on corresponding bearings. Once the

bearings are mapped to a frame similar to the inertial frame, the projection onto the level plane

can be used to determine the robots’ relative yaw. In the case pictured here, the rotation of

Robot 2 can be determined in the frame of Robot 1 to be ψ21 = θ12 + π − θ21.

there are only three robots. Hence, one can select a leader node, canonically fix its reference

frame to the identity, and then propagate the relative yaw measurements to the two neighbors. For

larger formations, it is preferable to implement the full distributed rotation localization algorithm

explained in the previous section.

Scale Consensus for Formation Control

From the notion of rigidity, it is known that in order to control the scale of a formation, it is

necessary to obtain distance measurements. Unfortunately, the ellipse detection illustrated in the

Bearing Estimation Through Direct Observation subsection might provide inaccurate estimates,

thus introducing outliers. In the specific case of the experiments presented later in this work,

there are three robots in a fully connected graph, which provides two bearing and two range

measurements per robot. In the experiments, this implicit redundancy is used to filter out the
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outliers at a central base station, which uses a consensus algorithm to determine reliable estimates

for the scale of the formation.

One robot is designated as a leader node. Each robot can compute the interior angle

formed by observation of the other two robots, which defines the formation’s three interior

angles. Then, only one side length is required to determine the scale, but the robots have six

different measurements of various side lengths. Each robot can share the observed scale and

bearing measurements of the other robots (since each vehicle has a unique color marker). One

side length (called the “base”) is chosen for comparison and the non-base lengths are used with

the bearings to determine the length of the base side. Finally, a RANSAC algorithm [23] (see

side panel) is used to estimate the base side length, which establishes the scale for the entire

formation.

This approach is ad-hoc for the experiments below. For larger networks, it is preferable to

leverage the tools presented in previous sections to exploit the redundancy in the measurements

in a distributed manner.

Robots and Ground Station Configuration

The experiments in the next section use a team of three Ascending Technologies

Hummingbird quadrotors [32], each equipped with an ODROID-XU computer [53] and a

forward-facing color camera [33] with a 125◦ field of view as displayed in Figure 7. The image

is processed onboard the robot, and the bearings and range are computed accordingly. A ground

station is used for the yaw rotation estimation, scale consensus, and to provide an interface

for the user. For real-life scenarios, the estimation could be distributed, running on each of the
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Figure 7. A quadrotor equipped for formation flight. The robot has a computer, camera, and a

uniquely colored marker onboard. All vision processing occurs on the onboard computer.

robots, while the ground station would only be used to communicate high-level commands (such

as a change in the desired formation) from an external user. A block diagram of the entire system

is presented in Figure 8.

Simulation and Experimental Results

This section presents the simulations and experimental results for the mutual localization

and formation control approaches considered in this work.
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Figure 8. A block diagram of the experimental setup. Each robot computes a desired velocity

from the control law, and a desired yaw rate from a simple proportional controller that keeps

neighbors in the field of view. A velocity controller computes a desired force, Fdes ∈ R3, and

a desired orientation, R, which encodes the yaw. Then, the attitude controller computes a net

force, f ∈ R, and desired moments about the body frame primary axes, τ ∈ R3.

Mutual Localization

The first experiment presents an application of the mutual localization algorithm on real

images, using a dataset of 14 images of a building on the Johns Hopkins University campus

(Figure 9). Since, in this case, the ground-truth poses are not available, the experiment uses a

state-of-the-art Structure from Motion system (Bundler [62]) to estimate the pose of the camera

for each picture. This system extracts features from the images (yellow crosses in Figure 9)

corresponding to 3-D points in the scene that can be reliably matched among different images.

Then, it finds both the position of these 3-D points and the poses of the cameras that are the most

consistent with the image coordinates of the features. This approach is essentially centralized in

the sense that all the data is available and updated at a central location. Moreover, if the same
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3-D point is visible in more than just two images, this induces constraints on more than two

poses. The same system is used on every possible pair of images in order to obtain estimates

of the relative pose between cameras that have significantly overlapping fields of view. This

provides the input to the distributed algorithm. Note that this is the only input: the algorithm

does not use 3-D points, image coordinates of the features, or constraints among more than two

cameras. For this experiment, the optimization is performed first over the rotations alone, then

over the translations and scales with the rotations fixed, and, finally, over all the variables by

running the distributed gradient descent algorithm over the sum of the two costs ((13) plus (16)).

Figure 10 visually compares the results of the described distributed algorithm with the

ground-truth obtained from the centralized algorithm (see [67] for additional, quantitative results).

Considering that the distributed algorithm uses significantly less information, the two localization

estimates are reasonably similar. This is especially evident in the estimate of the rotations, which

have only a few degrees of error with respect to the ground truth (all errors are less than eight

degrees, with a median error of around three degrees). Visually, this can be seen by comparing

the poses of the pyramids for each green-red pair in Figure 10.

However, there are a few inaccuracies in the estimation of the translations (see the

relatively long orange lines in Figure 10). This is due to the fact that the set of estimated

relative bearings included a significant number of outliers (for instance, one translation was

estimated with almost 180 degrees error). These outliers could not be rejected, despite the fact

that a robust cost function was used.
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Figure 9. Images used for the localization experiments. The yellow crosses denote the location

of the features used by Bundler to compute the relative poses (which are used as input to the

distributed algorithm) as well as the absolute poses (which are used as ground truth).

Formation Control

This section presents simulations and experiments on formation control. The simulator is

used to demonstrate the effectiveness and scalability of the control law considered in this article,

while the experiments are used to demonstrate feasibility under realistic conditions with noisy

measurements and a moving leader.

The results span three different simulations, each becoming increasingly more complex.

The first one demonstrates a 2-D bearing-only formation, the second a 2-D bearing+distance

formation, and the third a 3-D bearing+distance formation. In the bearing+distance formations,

only one range measurement is used, and is represented as a thicker line in the plots.

Each agent is modeled as a single integrator that can observe either 2 or 3 neighbors

in the 2-D cases, and between 3 and 6 neighbors in the 3-D case. In all examples, the agents’

initial positions are assigned to be random, and the centroid is translated so that it is at the same

location of the centroid of the desired formation, allowing for easier comparison.
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Figure 10. Localization results with the centralized and distributed algorithms. Black dots: 3-D

points from Bundler. Green (bright) pyramids: camera poses from Bundler. Red (dark) pyramids:

camera poses from the distributed algorithm. Blue dashed lines: vision graph (with an offset to

aide visualization). Orange lines between pyramids: ground-truth to estimation correspondence.

In Figure 11a, a formation of seven agents is achieved despite a random initialization of

the agents. In this case, the agents are simulated in a 2-D environment, and they use only bearing

measurements. In Figure 11b, the agents are additionally provided with one range measurement

for all the agents, and in Figure 11c, a 3-D case is presented where 11 agents have some

bearing measurements each and one range measurement for the entire formation. In all cases,

the bearing angle errors decrease, and, in the cases with a range measurement, the distance errors

also decrease. This happens for both 2-D and 3-D formations, as expected from the theoretical

analysis. Interestingly, the plots show that the distance errors remain bounded, and the rate of
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convergence appears to be exponential; these facts have not yet been rigorously proved in the

current theoretical framework, but they suggest promising future research directions.

The experimental validation of the control law is presented next. These results are based

on the setup described in the LOCAL PROCESSING AND EXPERIMENTAL TESTBED section

and shown in Figure 12. The experiments cover three tasks:

• Switch to geometrically similar formation of a different scale

• Change the shape of the formation

• Gross 3D motion of the formation

In order to specify the formation’s global position and orientation, it is necessary to directly

control one robot, designated as the leader. This robot is identified by the pink circular pattern

in Figure 12. It is position-controlled using an external motion capture system [72] for the first

two experiments and velocity controlled in the last experiment.

The other robots in the formation are controlled using vision and rely on an external

motion capture system only for velocity feedback in the body frame. The vision algorithm

(executed at 15 Hz), the velocity controller, and the position controller run onboard each of the

vehicles (see the block diagram in Figure 8).

In the first experiment, the robots initially form an equilateral triangle parallel to the

ground. During the trial, the scale of the desired formation is changed to have side lengths 0.2

meters greater than the initial configuration (see the left column of Figure 13).

The second experiment uses the same initial configuration as the first one, but it consists

in changing the formation to an isosceles triangle with the leader at the connection of the equal-
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Figure 11. Simulation results with a leaderless formation and random initialization. Top:

Cartesian view of the simulation (blue dashed lines and squares: desired formation; red crosses:

initial configuration; red lines and circles: final formation; gray lines: agent trajectories). Middle:

angular error between measured and desired bearings (log scale). Bottom: absolute difference

between actual and desired distances (these correspond to all the edges in E, and thus are not

all used in the control law).
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Figure 12. A photograph of the formation of three quadrotors during one of the experiments. A

lead robot (top left) is velocity controlled and the other robots maintain the formation as the lead

robot moves in the workspace. In a field scenario, the lead robot could run state estimation for the

entire formation, which would allow the other robots to free up some payload and computation

in order to carry and use other sensors.

length sides (see center column of Figure 13).

The final experiment also begins with an equilateral triangle, and this formation is

maintained throughout the duration of the trial. In this case, the leader is velocity controlled

to move in both the horizontal and vertical directions, and the other two robots maintain the

formation (see right column of Figure 13).

In all three experiments, the robots are able to achieve and maintain the 3-D formation.
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In the first and second experiments, the formation recovers from step inputs, and in the third,

the formation follows the leader’s motion. In the last row of Figure 13, one can see that the

bearing errors that can actually be observed by the robots have a quickly decreasing trend,

which then plateaus to around five degrees. This shows that the onboard controller is effective

in minimizing these errors, as designed. The five-degrees plateau can be likely attributed to

two causes. The first one is noise, whose origin is attributable to two sources: the ellipse fitting

procedure in the measurement of the bearings, and the aerodynamic disturbances in the actuation

of the control law. The other likely cause for the plateau is due to a miscalibration of one of

the onboard cameras (compensating the radial distortion for wide-angle lenses can be a delicate

process in practice). This miscalibration produces a non-zero offset between the measured and

actual bearing information expressed in metric coordinates. Since the formation was specified in

metric coordinates (as opposed to image coordinates), this offset makes the specified formation

inconsistent (that is, physically unrealizable), and the controller, intuitively, tries to compensate

for this inconsistency. This explanation is also consistent with the plots of the second and third

rows of Figure 13, where the errors for some edges are smaller than the others.

Overall, the steady state errors are reasonable, given that they are in the range of 4% of

the robots’ field of view (5◦ error over 125◦ field of view).

These experiments demonstrate the feasibility of the framework for realistic conditions

by leveraging onboard sensors, processing, and wireless communication, and its robustness with

respect to non-ideal conditions (such as inconsistencies in the formation given to the controller).
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(c) Motion

Figure 13. Results for the three experiments in the testbed with three quadrotors. (a) experiment

where the desired scale of an equilateral triangle was increased; (b) change of shape from an

equilateral to an isosceles triangle; (c) group motion initiated by the leader robot. Desired bearing

and distances were specified for all the three edges. First row: Projection of the motion onto the

xy plane (solid circle, that is, the right-most agent: leader of the formation; thick blue lines and

circles: desired formation; red crosses: initial position of the agents; thick red lines and circles:

final formation; thin colored lines: agent trajectories). Coordinates are in meters. Second row:

angular error between realized and desired bearings. Third row: absolute difference between

realized and desired distances. Last row: angular error between measured and realized bearings.
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Conclusions and Future Directions

This article presented the vision-based mutual localization and formation control problems

for a team of robotic vehicles. The treatment included a summary of the state-of-the-art, a general

approach for finding distributed solutions to such problems, notes on practical implementation

aspects, and a validation of the approach with simulations and experiments.

Going forward, there are many open problems and research opportunities in bearing-

based distributed localization and formation control. This is because these subjects have received

relatively less attention with respect to other multi-agent problems considered in the community,

such as consensus. For instance, in almost all existing works, the problems are assumed to be

time invariant (the topology of the graph, the measurements for the localization problem, and

the desired configuration for the formation problem are all fixed). It would be interesting to see

if it would be possible to adapt existing results from, for instance, the consensus literature, to

this problem. In a similar vein, it would be interesting to investigate whether the ideas from

[13] could be used to show exponential convergence for the approach described in this article.

Exponential convergence could then be used to show other properties, such as input-to-state

stability (ISS).

Other interesting extensions would involve:

• Taking into account field of view constraints in the formation control problem. This is not

a trivial matter, as, at the moment, it is not clear if it is even possible to obtain global

convergence results or if there are topological obstructions.

• A collision avoidance mechanism (both among the agents and with external objects). A few
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existing works address the issue (for instance, [31]), but they all require full relative pose

(that is, distance) measurements.

• Unknown/uncertain agent identities, where the identity of the neighbors seen by each agent

is not exactly known. This would involve a probabilistic approach for assigning identities,

together with the modification of the estimation or control strategy to take into account this

uncertainty. This problem has already been solved in a centralized setting by Cognetti et al.

[14]; however, a distributed solution and its application to formation control are still open

problems.

• Other detection techniques and design for the agents in practical implementations. For

instance, instead of relying on color thresholding, one could attempt to directly detect and

track the robot in the camera images by using more advanced computer vision techniques.

One could also design body enclosures for the quadrotors (for example, a sphere) in order

to facilitate detection.

• Higher-order models for the agents with bearing-only measurements in the formation control

problem, without requiring the knowledge or the estimation of the relative distances or

velocities.

Overall, the authors believe that there is still a large gap between the existing (mostly

theoretical) and ideal solutions that are robust enough to be quickly deployable in real

applications. The authors hope that this tutorial will inspire existing and new researchers to

fill in this gap.
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Side Panel: “The geometry of rotations and rigid body motions”

This side panel contains a concise presentation of the geometry of rotations and rigid

body motions. The space of d-dimensional rotations is defined as SO(d) = {R ∈ Rd×d : RTR =

I, det(R) = 1}, while the space of d-dimensional poses is defined as SE(d) = {(R, T ) : R ∈

SO(d), T ∈ Rd}. Given any trajectory R(t) ∈ SO(d), the tangent Ṙ(t) lives in the tangent

space of SO(d) at R, defined as TRSO(d) = {RV : V ∈ so(d)}, where so(d) is the space of

d×d skew symmetric matrices (see Figure 14). The tangent space is a vector space, so the usual

operations of addition and multiplication by scalar between tangent vectors (such as tangents to

curves) are well defined. It can also be endowed with an inner product (the Riemannian metric)

and the corresponding norm, which is given by

‖RV ‖ =
1

2
trV TV . (27)

The gradient of a function on SO(d) is also a tangent vector defined as by (1) (with the

Riemannian metric used instead of the standard inner product).

Using Riemannian geometry, one can define the notion of geodesics in SO(d), which

are the generalization of straight lines to non-Euclidean spaces. Using this notion, one can

define a distance dSO(d)(R1, R2) which is the minimum angle or the rotation mapping R1 to R2.

Computationally, this is given by

dSO(d)(R1, R2) = arccos

(
tr(RT

1R2)− 1

2

)
, (28)

Geodesics can also be used to define the exponential map, which maps a tangent vector R1V ∈

TR1SO(d) to a rotation R2 obtained by following the geodesic with tangent R1V for a length
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θ = ‖R1V ‖ = dSO(3)(R1, R2). In practice, for SO(3), this map can be implemented using

Rodrigues’ formula:

R2 = R1

(
I +

sin(θ)

θ
V +

1− cos(θ)

θ2
V 2

)
. (29)

The logarithm map logR1
R2 is the inverse of the exponential map, and it transforms a

rotation R2 to the vector in the tangent space at R1 which is tangent to the shortest geodesic

connecting R1 to R2 and with length equal to dSO(3)(R1, R2). In SO(3), this can be computed

by

logR1
(R2) =

θ

2 sin(θ)
R1(R−RT), (30)

where again θ = dSO(3)(R1, R2) and R = RT
1R2. Note that this map is not well defined when

θ = π.

From the definition of the logarithm map, one can show that the gradient of the distance

is given by the negative of the normalized logarithm, that is

gradR1
dSO(3)(R1, R2) = −

logR1
(R2)

‖logR1
(R2)‖

. (31)

Side Panel: “Projective geometry of circular targets”

A circle can be seen as an intersection of a sphere with a plane. In particular, a point p

in normalized coordinates belonging to the ellipse that appears on the image plane must satisfy
u

v

1



T 
α1 α3 α4

α3 α2 α5

α4 α5 α6




u

v

1

 = pTQp (32)
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SO(d)

R1
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logR1
(R2)
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Figure 14. A pictorial representation of the space of rotations and related concepts. The tangent

to a curve in the non-Euclidean space SO(d) lies in the tangent space TRSO(d). Two rotations

R1, R2 can be connected with a minimum length geodesic, which can then be used to map R2

to a tangent vector in TR1SO(d) using the logarithm map logR1
(R1).

where Q is called a conic [43] and

α1 =a2u/‖a‖2 + a2v/‖b‖2,

α2 =a2u/‖b‖2 + a2v/‖a‖2,

α3 =auav/‖a‖2 − auav/‖b‖2,

α4 =− cuα1 − cvα3,

α5 =− cuα3 − cvα2,

α6 =α1cu + α2cv + 2α2cucv − 1

are the conic parameters expressed in terms of the ellipse center c = (cu, cv) as well as the major

a = (au, av) and minor b = (bu, bv) axes of the ellipse. The conic Q for a non-degenerate ellipse

has always two eigenvalues that are positive while the remaining one is negative [43]. Without
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loss of generality, let the Q matrix eigenvalues and eigenvectors be λ0, λ1, λ2 and q0,q1,q2,

respectively with λ2 ≤ 0 ≤ λ0 ≤ λ1. The normal vector n to the circular target can be calculated

as [43]

n =

√
λ1 − λ0
λ1 − λ2

q0 +

√
λ0 − λ2
λ1 − λ2

q2. (33)

The computation of the vector n can be ambiguous if λ1 6= λ2. This issue can be solved

considering that n must point towards the camera. Once it is computed, the position of the

circle t with respect to the camera can be obtained as

t = ± r0√
−λ1λ2

(
λ2

√
λ1 − λ0
λ1 − λ2

q0 + λ1

√
λ0 − λ2
λ1 − λ2

q2

)
(34)

where r0 is the radius of the circular pattern. The sign of the translation can be determined from

the fact that the circle must appear in the field of view of the camera.

Side Panel on RANSAC

RANdom SAMple Consensus (RANSAC) is an iterative method, introduced in [23] to

estimate parameters of a mathematical model from a set of data which may contain outliers. It

is essentially composed of two steps that are iteratively repeated:

• A sample subset containing a minimal number of datapoints (that is, the minimum number

of points necessary to determine the model parameters) is randomly selected from the input

dataset. The model is then estimated from this sample subset.

• The algorithm checks which elements of the entire dataset are consistent with the model

obtained in the previous step. A data element is considered an outlier if it does not fit

the model within some error threshold. This threshold defines the maximum deviation
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attributable to the effect of noise.

The set of inliers obtained for the fitting model is called a consensus set. The RANSAC algorithm

repeats the above two steps until the desired number of iterations is reached. The consensus set

with highest number of inliers is then used to produce the final estimate of the model. RANSAC

is a non-deterministic algorithm producing reasonable results only with a certain probability.

This probability increases with the number of iterations used in the algorithm. In particular, the

number of necessary iterations N is given by:

N =
log (1− p)

log (1− (1− ε)n)
(35)

where p represents the probability of success, ε the percentage of outliers and n is the number

of samples used to estimate the model.

The advantages of RANSAC are its ability to robustly estimate the model parameters in

the presence of outliers, and in its applicability to a wide variety of problems. A disadvantage

of RANSAC is that the number of iterations necessary to obtain reliable results could be very

high. If the number of iterations is limited, the solution obtained may be suboptimal or not even

fit the data in an acceptable way. This leads to a trade-off between the number of iterations of

the algorithm and the probability that the model obtained is sufficiently close to reality.
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