Consciousness and Complexity or Consciousness and Resonance?

Grossberg, Stephen

Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems

http://hdl.handle.net/2144/2222

Boston University
Consciousness and complexity
or
Consciousness and resonance?

Stephen Grossberg and Rajeev D. S. Raizada

January 1999

Technical Report CAS/CNS-99-004
CONSCIOUSNESS AND COMPLEXITY

OR

CONSCIOUSNESS AND RESONANCE?

by

Stephen Grossberg* and Rajeev D.S. Raizada**
Department of Cognitive and Neural Systems
Boston University
677 Beacon Street
Boston, MA 02215
Phone: 617-353-7858 or-7857
Fax: 617-353-7755
Email: steve@cns.bu.edu, rajeev@cns.bu.edu

A Letter on:

January 18, 1999

Word count: 304

Technical Report CAS/CNS TR-99-004

*Supported in part by the Defense Advanced Research Projects Agency and the Office of Naval Research (ONR N00014-95-1-0409), the National Science Foundation (NSF IRI 97-20333) and the Office of Naval Research (ONR N00014-95-1-0657).

**Supported in part by the Defense Advanced Research Projects Agency and the Office of Naval Research (ONR N00014-95-1-0409), the National Science Foundation (NSF IRI 94-01659) and the Office of Naval Research (ONR N00014-92-J-1309 and ONR N00014-95-1-0657).
Tononi and Edelman (1) suggest that “conscious experience is integrated ... and at the same time it is highly differentiated”, that “integration [occurs] ... through reentrant interactions”, and that “attention may increase ... conscious salience”. They also note that “cortical regions ... for controlling action ... may not contribute significantly to conscious experience”.

An alternative theory unifies these several hypotheses into a single hypothesis: “All conscious states are resonant states” (2), and suggests how resonant states enable brains to learn about a changing world throughout life (3). Resonance arises when bottom-up and top-down, or “reentrant”, processes reach an attentive consensus between what is expected and what is in the world. Because resonance dynamically regulates learning of sensory and cognitive representations, this theory is called adaptive resonance theory, or ART.

ART implies all the properties noted by Tononi and Edelman, but also clarifies their critical link to learning, and explains why only a certain type of excitatory top-down matching can stabilize learning (4): When top-down attentional signals match bottom-up sensory input, their mutual excitation strengthens and maintains existing neural activity long enough for synaptic changes to occur. Thus, attentionally relevant stimuli are learned, while irrelevant stimuli are suppressed and hence prevented from destabilizing existing memories. Recent experiments support these predictions during vision (5), audition (6), and learning (7).

Why dorsal cortical circuits that control action do not support consciousness now follows easily: Such circuits use inhibitory matching. For example, after moving your arm to an expected position, movement stops (viz., is inhibited) because “where you want to move” matches “where you are” (8). Inhibitory matches do not resonate, hence are not conscious.

A detailed model of how the laminar circuits of neocortex use resonance to control cortical development, learning, attention, and grouping of information has recently been proposed (9), and suggests new experiments to test the predicted linkages between learning, attention, and consciousness.
References