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Abstract 

We present a neural network that learns to control approach and avoidance behaviors in 
a mobile robot using the mechanisms of classical and operant conditioning. Learning, 
which requires no supervision, takes place as the robot moves around an environment 
cluttered with obstacles and light sources. The neural network requires no knowledge of 
the geometry of the robot or of the quality, numbet~ or configuration of the robot's sensors. 
In this article we provide a detailed presentation of the model, and show our results with 
the Khepera and Pioneer 1 mobile robots. 
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1 Introduction 

When an animal has to survive in a complex, unknown environment, it must somehow 
learn to recognize informative cues in the environment, and to predict the consequences 
of its own actions. Biological organisms are a clear example that this sort of learning is 
possible in spite of what, from an engineering standpoint, seem to be insurmountable 
difficulties: noisy sensors, unknown kinematics and dynamics, nonstationary statistics, 
and so on. 

We are interested in understanding how animals are able to solve complex problems 
such as learning to navigate in an unknown environment, so that we may apply what 
is learned from biology to the control of robots. In particular, in this article we describe 
a neural network model of classical and operant conditioning that learns to control the 
avoidance and approach behaviors of a wheeled mobile robot. 

The neural network that we describe here is based on a theoretical model of classical 
and operant conditioning first proposed by Grossberg in 1971 (Grossberg, 1971, 1982). 
The model shows how an organism, in this case a robot, can learn without supervision 
to recognize simple stimuli in its environment and to associate them with different ac­
tions. In particulm~ our model is trained by letting a robot move around in an environ­
ment containing some objects that lead to punishment (obstacles with which the robot 
collides) and some other objects that lead to reward (lights). Briefly stated, whenever the 
robot receives punishment because of a collision, an inhibitory association is learned be­
tween the activity of neurons representing the range sensors and neurons representing 
the robot's movements. After training, a given pattern of sensor activations will tend to 
suppress movements that would yield punishment. Similarly, an excitatory association 
can be learned when the robot receives a reward (e.g., sufficiently high light intensity), so 
that the robot will tend to promote movements toward light sources. 

Avoiding obstacles and approaching light sources is not a new achievement, nor is the 
application of learning theories to these problems. We believe that our approach contains 
several novel aspects, and that it is useful and powerful for several reasons. First, our 
model can learn approach and avoidance behaviors simultaneously and quite rapidly. 
Second, it is based on an egocentric frame of reference, so that learning in one environ­
ment generalizes to any environment. But the most important feature of our model, we 
believe, is that it requires no implicit or explicit knowledge about the shape of the robot, 
the quality and sensitivity of the sensors, or the configuration of the sensors on the robot. 
Hence, our model minimizes the need for calibration, and it can be of great use in ap­
plications were multiple robot platforms may be used, or where the characteristics of the 
sensors are unknown or variable. To demonstrate this point we have used exactly the 
same network to learn approach and avoidance behavior in two very different mobile 
robot platforms: the Khepera, and the Pioneer 1. 

Preliminary partial results of our work have been presented in condensed form at 
recent meetings (Gaudiano et al., 1996a; Chang & Gaudiano, 1997; Gaudiano & Chang, 
1997). In this article we present a complete, detailed description of the model and of the 
results obtained with real robots. We begin the presentation with a brief introduction 
to two forms of animal learning known as classical and operant conditioning, and with 
a general description of the theory on which our model is based. Following a detailed 
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description of our model we then present our results with the two different types of robot. 
We close the article with discussion and conclusion sections. 

2 Classical and Operant Conditioning 

Psychologists have identified classical and operant conditioning as two primary forms of 
learning that enable animals to acquire the causal structure of their environment. In the 
classical conditioning paradigm, learning occurs by repeated association of a conditioned 
stimulus (CS), which normally has no particular significance for an animal, with an uncon­
ditioned stimulus (UCS), which has significance for an animal and always gives rise to an 
unconditioned response (UCR). For example, a rat that is repeatedly shocked (UCS) shortly 
after a red light is turned on (CS) will associate the red light with fear (UCR), meaning 
that eventually, presentation of the red light alone elicits a conditioned response (CR) re­
sembling the fear response elicited by the shock itself. Hence, classical conditioning is the 
putative mechanism for learning to recognize informative stimuli in the environment. 

In the case of operant conditioning, an animal learns the consequences of its own actions. 
More specifically, the animal learns to exhibit more frequently a behavior that has led to 
reward in the past, and to exhibit less frequently a behavior that has led to punishment. 
For example, a pigeon can be trained to peck at an illuminated key in order to receive 
a small food reward, while a human being might learn to stop at a red light in order to 
avoid getting in an accident. 

In the field of neural networks research, it is often suggested that neural networks 
based on associative learning laws can model the mechanisms of classical conditioning, 
while neural networks based on reinforcement learning laws can model the mechanisms 
of operant conditioning. However, both of these classes of models are too simple to func­
tion in realistic, unstructured environments. This is not to say that associative learning 
and reinforcement learning do not exist in some form or another in biological organisms. 
Instead, the problem seems to lie in the use of rather simple, "monolithic" networks de­
signed around each particular neural network law. At least two fundamental problems 
arise from these sorts of neural networks: first, the majority of neural networks function 
only as long as the inputs and outputs are controlled and timed carefully with respect 
to each other; second, most neural networks have no means of learning to discriminate 
"good" inputs from "bad" inputs on the basis of an internal value system. 

The first of these problems has been aptly dubbed the synchronization problenz by (Gross­
berg, 1971, 1982): how can learning between a CS and a UCS occur reliably even though 
they are presented at different times on different trials? The problem of discriminating 
"good" from "bad" can be discussed in the context of motivation, the internal force that 
produces actions on the basis of the momentary balance between our needs and the de­
mands of our environment (Dorman & Gaudiano, 1994): somehow humans and animals 
are able to estimate the affective value of different stimuli, and learning is constrained to 
those cues and events that are affectively meaningful to them. 

The ability to identify and discriminate what is good from what is bad is essential for 
an organism to survive in an unstructured environment. In practice, neural networks are 
rarely left to fend for themselves in the real world, learning to recognize which things 
are good and which are bad. Our work demonstrates that this sort of autonomy can be 

4 



achieved, at least in part, with neural models that are rooted in behavioral and physio­
logical studies. 

3 Controlling a mobile robot through operant conditioning 

In 1971, Grossberg proposed a detailed neural network theory of classical and operant 
conditioning which was designed to account for a variety of behavioral data on learning 
in vertebrates. The model was refined in several subsequent publications. (Grossberg & 
Levine, 1987), and (Grossberg & Schmajuk, 1987) report on detailed computer simulations 
of different components of the conditioning circuit. 

Before providing details of the model and our own implementation of it, we provide 
an intuitive description of the main elements of the model. Fig. 1 is a schematic of the 
overall structure of Grossberg's theory. In the figure, populations of neurons are repre­
sented by boxes, while the interconnections between populations are represented by lines. 
We use the term "population" to refer to a collection of simulated neurons performing a 
given function; this is comparable to the term "layer" used in other contexts. 

The essential departure from a typical associative memory model is in the use of mo­
tivational signals to modulate learning. At the core of the model are several assumptions, 
which (Grossberg, 1982) describes in terms of psychological postulates. The first design 
consideration of the model is that those stimuli that are initially not significant to the 
organism (i.e., CSs) are unable to generate emotional or behavioral responses, whereas 
a few stimuli that are innately significant to the organism (i.e., UCSs) always lead to an 
emotional and behavioral response (UCR). This is represented in Fig. 1 by the modifi­
able connections (semi-circles) between the CS population and the Reward/Punishment 
population, and by modifiable connections between the gated CS population and the 
Behavior Generation population. In contrast, the UCS operates through fixed, strong 
connections to these populations, which are represented by thick arrows in the figure. 
The gated CS nodes require joint activation of the sensory (i.e., CS) and emotional (i.e., 
Reward/Punishment) input in order to be activated. Hence, as long as the connections 
emanating from the CS are weak, the gated CS nodes cannot be activated by a CS alone, 
and behaviors cannot be generated by the CS. 

Another psychological postulate states that a CS can learn to generate emotional and 
behavioral responses on its own by repeated pairing with a UCS. To satisfy this criterion, 
each UCS activates two populations: the Reward/Punishment population and the Behav­
ior Generation population. The Reward/Punishment population, which Grossberg refers 
to as drive nodes, carry the emotional valence of the UCS. For instance, shock is a UCS that 
elicits fem~ while food is a UCS that elicits pleasure. In a similar fashion, different UCS 
stimuli can generate different behaviors: shock generates an avoidance behavi01~ while 
food generates an approach behavior. 

Through repeated pairing with a UCS, a CS can acquire the ability to generate emo­
tional and behavioral responses that resemble those of the US with which it is paired. 
So, for instance, a bell that is repeatedly paired with shock will eventually elicit fear and 
avoidance behavior when presented alone, while a light repeatedly paired with the arrival 
of food will eventually elicit pleasure and approach behavior (as Pavlov's dogs learned 
to salivate in response to the ticking sound of a metronome). 
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Figure 1: Schematic Conditioning model 

In summary, the Reward/Punishment (or drive) nodes restrict learning to stimuli that 
are paired with emotionally significant events. This is an important departure from tradi­
tional connectionist approaches where every input-output pair presented to the network 
is learned. 

Fig. 2 illustrates our detailed implementation of the circuit schematized in Fig. 1. Each 
block in the diagram is replaced by a more detailed representation of the corresponding 
neural population. The resulting neural network is able to control a mobile robot in order 
to exhibit the obstacle avoidance behavior. 

In this model the sensory cues (i.e., CSs) are stored in Short Term Memory (STM) within 
the population labeled S. This population includes competitive interactions to ensure that 
the most salient cues are contrast enhanced and stored in STM while less salient cues are 
suppressed. In the present model the CS nodes correspond to activation from the robot's 
range sensors. 

The drive node D corresponds to the Reward/Punishment component of Fig. 1. Learn­
ing can only occur when the drive node is active. The cells in population P correspond 
to the Gated Conditioned Stimuli, and are represented as triangular nodes to denote that 
they are polyvalent cells. Polyvalent cells require the convergence of two types of input in 
order to become active. As described in the schematic model, these inputs come from the 
CS population and from the Reward/Punishment (i.e., drive) node. 

According to Grossberg's theory, the drive node is also polyvalent: it needs the joint 
activation of a stimulus, and an internal homeostatic signal in order to become active. An 
example of a homeostatic signal is hunge1~ which indicates the body's internal need for 
food when the body detects a low concentration of sugar in the bloodstream. In this case, 
an animal will not eat even in the presence of food unless it is hungry. A different situation 
arises in the case of aversive stimuli: an animal should always perform an avoidance 
behavior in the presence of an aversive stimulus. One way to interpret this is that there is 
a homeostatic signal corresponding to a sort of "survival instinct," which is active at all 
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Figure 2: Conditioning model for obstacle avoidance. The robot's range sensor activities 
represent the CSs. A collision detector activates the UCS. Motor learning occurs at a 
population coding the robot's target angular velocity. After conditioning, the pattern of 
activity across the range sensors can predict a collision and modify the robot's angular 
velocity to avoid obstacles. 

times. In our model, the UCS corresponds to the robot colliding with an obstacle, which 
can be detected through a bump sensor, or when any one of the range sensors indicates 
that an obstacle is at the sensor's minimum range, or when the robot's wheels fail to move. 
Assuming that the survival instinct signal is always on, the drive node associated with 
aversive stimuli (and thus with avoidance behaviors) only requires a relevant sensory 
input in order to become active. 

Finally, the neurons at the far right of Fig. 2 represent the network's responses (con­
ditioned or unconditioned), and are thus connected to the motor system. In a normal 
organism there may be many such networks, some giving rise to emotional responses 
(e.g., changes in skin conductance) and others generating actual motor behaviors. In our 
model the responses are generated as a range of angular velocities that drive the robot's 
movements. Each node in the motor population encodes a particular angular velocity. 
For instance, the leftmost node corresponds to turning left at the maximum rate, the cen­
tral node corresponds to straight line movements, and so on. A more detailed description 
of this population is given below. 

4 Model Details 

In this section we provide a detailed description of the proposed model for the obstacle 
avoidance and light approach behaviors. After describing how learning of a single be­
havior is achieved, we discuss how an extended neural network is able to learn to exhibit 
multiple behaviors. 
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4.1 Single Drive Network 

The motivation behind Fig. 2 is that whenever the robot collides with an obstacle, learning 
in the circuit will modify the connections between the pattern of sensor activity and the 
angular velocity of the robot when the collision took place. After learning, sensor activity 
will lead to inhibition of those angular velocities that previously caused collision under 
similar sensor pattern activation. In other words, because collisions correspond to pun­
ishment, the network learns to decrease the occurrence of actions that lead to punishment, 
as with the typical operant conditioning paradigm. 

While it moves, the robot takes measurements from its range sensors. Contrast-enhan­
cement enables sensors detecting closer objects to activate more strongly their corre­
sponding nodes at populationS. 

Originally, the S population was modeled by Grossberg as a recurrent competitive field, 
which removes noise while contrast enhancing the input pattern. (Grossberg, 1971, 1982). 
In our implementation, we have simplified the competition of activations xli. of popula­
tion S, given by: 

I; ( t) 
:EJ;(t) = Ljij(i:) (1) 

Here I; represents a sensor value which codes proximal objects with large values, and 
distal objects with small values. For instance, I; corresponds to "raw" measurements 
of infrared sensors, while it corresponds to the complement of the raw measurements 
(i.e., maximum range minus the actual measurement) when ultrasound sensors are used. 
This is because infrared returns are larger for closer objects, while ultrasound returns are 
smaller for closer objects. 

Notice that this is the only consideration we have to make for the network to work 
with different types of sensors. The network requires no knowledge of the geometry of 
the robot or the quality, number, or distribution of sensors over the robot's body. 

Initially, the drive node D is only activated by the UCS, namely, when a collision is 
detected. However, after learning, sufficiently large patterns of sensor activity can also 
elicit activity y at the drive node D since the sensory nodes (CSs) have learned to predict 
impending collisions (UCS). Activation y of the drive node D is given by: 

(2) 

where UCS(t) represents the collision status at timet (UCS = 1 if a collision just occurred, 
and UCS = 0 otherwise), z1; is the adaptive weight connecting the sensory node :1: 11 to 
the drive node, and ~1 is a threshold that controls how easily the drive node is activated. 

The activation :c2; of the polyvalent cells at population P (or gated CSs), is given by: 

where f(y(t)) is defined as: 

f(y(t)) = { 
1 ify(t) > 0 
0 otherwise 
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Figure 3: Angular velocity map. Each node represents an angular velocity w developed 
by the robot. A sigmoidal transformation function leads to a higher density of nodes for 
velocity values close to zero. 

Notice that equation 3 codes the need for joint activation from the sensory nodes (CS) 
and the drive node (Punishment/Reward), in order for the gated CSs to become active, 
as explained in section 3. 

Activation of the drive node allows two different kinds of learning to take place: the 
learning that couples sensory nodes with the drive node, and the learning that inhibits 
the movements performed just before the robot collided. 

The first type of learning follows an associative learning law with decay. This learning 
enables the most active sensory nodes to accrue strength in their connections z11. to the 
drive node (on the left side of Fig. 2), so that eventually the sensory nodes will be able 
to activate the drive signal on their own, and thus to activate the polyvalent cells P, and 
ultimately a motor response. The primary purpose of this learning scheme is to ensure 
that learning occurs only for those CS nodes that were active within some time window 
prior to the collision (UCS). The associative learning law is given by: 

ZJ;(t) = Lz1;(t;- 1) + Pxli(t;)f(y(t)) (5) 

where L is the weight decay, and P is the learning rate. 
The second type of learning, which is also of an associative type but inhibitory in 

nature, is used to map the sensor activations to the angular velocity map. Fig. 3 illustrates 
the scheme we used to represent angular velocities. In this figure, the leftmost node 
represents an angular velocity of -wm '~d, and the rightmost node represents an angular 
velocity of w, r:;rl, where w,11 is the maximum angular velocity developed by the robot. 
The central node corresponds to a straight line movement (angular velocity equals zero). 
The map includes a sigmoidal transformation, whereby angular velocities close to zero 
are represented by a greater number of nodes for finer control. 
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By using an inhibitory learning law, the polyvalent cells corresponding to the sensory 
nodes acquire negative connection weights that learn to generate a pattern of inhibition 
that matches the sensor activity profile active at the time of collision. For instance, if 
the robot was turning right and collided with an obstacle, the range sensor neuron most 
active shortly before the collision will learn to generate an inhibitory Gaussian centered 
upon the right-turn node in the angular velocity population. This learning law leads to 
the development of negative weights, as given by: 

(7) 

where zmi,.i represents the adaptive weight from the polyvalent cell i to the node j of the 
angular velocity map. M is the learning rate, and gJ:.i is a Gaussian function centered on 
the desired movement direction, as described by: 

(8) 

G(t;) is the index of the node in the angular velocity map for which g:r.i is maximal, and CJ 

is the standard deviation of the Gaussian. 
Once learning has occurred, the activation of the angular velocity map is given by 

two components (Fig. 4). An excitatory component, which is generated directly by the 
sensory system, reflects the angular velocity required to reach a given target in the ab­
sence of obstacles. We have shown previously how this signal can be derived from the 
sensors (Gaudiano et al., 1996b); for simplicity here we assume that the angular velocity 
is proportional to the angle between the robot's current heading and the target. A sec­
ond, inhibitory component, generated by the conditioning model in response to sensed 
obstacles, moves the robot away from the obstacles as a result of the activation of sensory 
signals in the conditioning circuit. The equation that describes this behavior is: 

(9) 

The node in the angular velocity map that has maximal activation after the summation 
of the excitatory and inhibitory Gaussians determines the angular velocity that the robot 
will perform in its next movement. The angular velocity coded by the winning node is 
computed as follows: 

w(t) ~ 1 
Wm[J(t)-N/2] if J(t) > N/2 N(aw+0.5wm) Wm [J(t) N/2] 

(10) 
Wm [.l(t)-N /2) otherwise .N ( aw +0.5wm)+wm [J( t) ·N/2] 

where J(i;) is the index of the node with maximal activation. 
In principle, eq. 10 is the inverse function of eq. 6. Together, these two equations 

account for the transformation from angular velocities to nodes in the angular velocity 
map, and vice versa. 

Notice that after learning, the desired (i.e., a) and resulting (i.e., w) angular velocities 
might differ. In the presence of obstacles, the learned inhibitory Gaussian causes the peak 
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in the angular velocity map to shift, moving the robot away from obstacles, and also away 
from its instantaneous desired direction. 

The output of the angular velocity population is then decomposed algorithmically 
into left and right wheel angular velocities. In an alternative approach by (Gaudiano 
eta!., 1996b), the transformation from the angular velocity population to actual wheel 
velocities can be done adaptively with another neural network. 

The technique we have just described for obstacle avoidance (i.e., using a difference 
of Gaussians) is related to the technique widely known as potential fields (Khatib, 1986; 
Latombe, 1991), though the methods differ in various details. For instance, we only utilize 
a one-dimensional map of neurons representing instantaneous desired angular velocities, 
rather than actually building a potential function based on sensor activities. Nonetheless, 
the approach used here is similar to potential fields and other methods that "weigh" the 
presence of obstacles sensed around the robot. In fact, this part of the circuit should be 
easy to replace with an alternative, but comparable method. The present method has the 
desirable features of being computationally expedient, easy to implement, and robust to 
parameter manipulation. We also chose this particular technique because of our prior ex­
perience with it (Gaudiano eta!., 1996b; ?; Zalama, Gaudiano, & Lopez-Coronado, 1995). 

The neural network model described above has been used to develop an obstacle 
avoidance behavior in our robots. Learning of the inhibitory Gaussian distribution in 
order to produce a peak shift in the activation of the angular velocity map lead to the 
desired avoidance behavior. 

In another experiment, we used the same neural network design of Fig. 2 in order 
to develop an approach behavior in the robot. Notice that this behavior is completely 
opposite to the obstacle avoidance behavior since it requires the robot to move towards 
the location of the source of sensory stimulation (instead of away). 

In this case, detection of an increase in the level of light present in the environment 
corresponds to the UCS. For the CSs, we used the light intensity measurements of the 
Khepera's infrared sensors. Light is regarded as a reward, e.g., food, which activates a 
"pleasure" drive, and elicits the approach behavior. 

To generate the approach behavim~ the learning associative law of eq. 7 was modified 
in order to build excitatory Gaussian distributions that would move the robot towards 
the location of sensory stimulation, as depicted in Fig. 5. The new learning law is given 
by: 

zrn;,;(l;) = zrn.;,;(l;- 1) + M:r2;(t) L + (~1~(~(!;)) 2 - z1nu(t; --1)] (11) 

Equation 11 allows the network to develop positive weights in the connections from 
the polyvalent cells to the angular velocity map. Recall that previously, collision elicited 
punishment signals that lead to inhibition, and thus, to the obstacle avoidance behavior. 
With eq. 11, instead of being punished, the robot is rewarded each time there is a certain 
increase in the sensors' activation. 
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Figure 5: Peak shift for the approach behavior. The learned excitatory Gaussian distribu­
tion shifts the peak of the angular velocity map activation toward the source of sensory 
stimulation, leading to an approach behavior. 

4.2 Multi-Drive Network 

So far we have described an implementation of the conditioning circuit that can learn 
to either avoid obstacles or approach the source of sensory stimulation. As presented, 
the model is unable to learn both behaviors simultaneously. In order to be able to learn 
multiple behaviors, the original network of Fig. 2 was expanded as shown in Fig. 6. 

The expanded model consists of sensory nodes for both kinds of cues (i.e., proximity 
of objects, and intensity of light). For simplicity, the figure shows only the connections of 
one node of each type. Note that in principle, there is no difference between the two types 
of nodes other than the kind of sensory information they are concerned with. To be able 
to elicit two opposite behaviors, the network contains two drive nodes, i.e., fear and plea­
sure. "Survival" is the internal homeostatic signal associated with fear and the avoidance 
behavim~ while "hunger" is the signal associated with pleasure and the approach behav­
ior. Each drive releases incentive motivation to a specific population of polyvalent cells. In 
the figure, Population P- is associated with the fear drive and avoidance behavior, and 
population P+ is associated with the pleasure drive and approach behavior. 

In the expanded conditioning circuit, the two drives compete in a sensory-drive heter­
archy (Grossberg, 1971). That is to say, the combination of sensory activation and drive 
activation determines which drive will release incentive motivation, thus allowing an 
appropriate motor response to take place. For simplicity, we have assumed that both in­
ternal homeostatic signals (i.e., survival and hunger) are always active. This reduces the 
problem of drive competition to a matter of sensory activity: after learning, the strongest 
cues will win the competition leading to the release of the associated behavior. In a later 
section we also describe a modification of the appetitive (pleasure) drive to mimick a 
hunger signaL 

The population of polyvalent cells that receives incentive motivation from the winning 
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Figure 6: Expanded Neural Network. The neural network consists of two drives. The fear 
drive is associated with the avoidance behavior, whereas the hunger drive is associated 
with the approach behavior. 

drive node elicits the motor response to which it is associated. Hence, at each time only 
one motor response is released, i.e., either the avoidance or the approach behavior. 

Note that when a drive node wins the competition, it releases incentive motivation to 
all the polyvalent cell populations. That is, it releases incentive motivation to the polyva­
lent cells connected with the proximity sensory nodes and also to the cells connected with 
the light detection sensory nodes. This happens because initially the CSs have no special 
meaning; they cannot predict the occurrence of a particular UCS. It is only through learn­
ing that the network starts to discover the causal structure of the environment. When a 
collision occurs or food is sighted, all sensory nodes are allowed to learn. Howeve1~ after 
repeated associations, only sensory nodes constantly active during learning would actu­
ally have their connections strengthened. Similarly, only the polyvalent cells with strong 
connections to the motor units will have strong influence on the motor response produced 
by the system. Activation of the fear drive allows learning of the avoidance behavior by 
the development of negative weights that describe an inhibitory Gaussian, as described 
earlier. At the same time activation of the pleasure drive permits learning of the approach 
behavior towards the source of food (e.g., light), described by an excitatory Gaussian. 

The two forms of learning take place simultaneously while the robot is moving through 
the environment. The dynamics of the network determine which nodes learn in which 
conditions. In general, as long as lights and obstacles are not all overlapping, there is no 
problem with simultaneous learning of both types of behaviors. Likewise, after learning, 
the expanded neural network is capable of exhibiting multiple behaviors depending on 
the events that take place in the environment. 

Before showing our experimental results on real mobile robots with single and multi­
drive networks, we describe briefly an extension of the model to take into account a more 
complex form of homeostatic signal. 
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Figure 7: The gated dipole consists of two channels with mutually inhibitory connections. 
A sustained habituating response and a transient antagonistic rebound are elicited by a 
stimulus onset and offset, respectively. 

4.3 Drive Activation Cycle 

Although a survival instinct might be always present in organisms, it seems unrealistic 
to assume that hunger is always active. For this reason, we modified the proposed net­
work in order to account for a more natural homeostatic signal activation. We wanted 
the hunger homeostatic signal to become inactive after food intake, and to activate again 
after a variable period of time, which depends on the size of the last food intake. 

To this end, we employed gated dipoles, a neural circuit proposed by Grossberg in 1972 
to model some aspects of classical and operant conditioning in vertebrates. In brief, the 
gated dipole is a microcircuit consisting of two channels organized in a mutually in­
hibitory, or opponent fashion (Fig. 7). The first channel, called the on-channel, generates 
a sustained yet habituative response (e.g., fear) to the onset of a stimulus (e.g., shock). In 
contrast, the off-channel produces a transient response (e.g., relief) to the offset of the same 
cue. The activation of the off-channel due to the stimulus offset is known as antagonistic 
rebound. 

Depending on the dipole's internal laws, sustained activation of the stimulus produces 
diverse responses in the circuit. Dipoles that use linear laws have sustained on-responses 
due to the stimulus onset. On the other hand, some nonlinear laws can cause a transient 
on-response followed by activation of the off-channel, even before the stimulus offset. A 
detailed description of the gated dipoles can be found elsewhere (Grossberg, 1972, 1982). 

To implement the "hunger" homeostatic signal, two coupled gated dipoles were used 
(Fig. 8). A nonlinear dipole describes the amount of "food" (e.g., light) that the robot has 
consumed. Positive activation represents the time the robot is eating while non-positive 
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Figure 8: Two coupled gated dipoles were integrated into the extended conditioning 
model in order to describe the dynamics of the "hunger" homeostatic signal. 

values indicates the time the robot is not eating. This information is used by a second, 
linear dipole to control the onset/ offset of the hunger homeostatic signal. A period of 
time without eating (i.e., when the activation of the first dipole activation is close to zero) 
triggers the hunger signal, which remains on until food has been consumed (at whicb 
time the first dipole on-channel activation changes from positive to negative). At tbat 
moment, the hunger signal switches off, and a "fullness" sensation occurs (i.e., negative 
activation of the on-channel of the second dipole). This fullness sensation decreases with 
time, eventually leading to reactivation of the hunger signal. 

Coactivation of the hunger homeostatic signal and conditioned stimuli that predict the 
arrival of food triggers the onset of the appetitive, or hunger drive. This drive competes 
with the fear drive in the sensory-drive heterarchy. If the hunger drive wins the competi­
tion, it releases incentive motivation, leading to an approach behavior in the presence of 
food. If the drive is not strong enough, no approaching behavior is released even in the 
presence of food. 

Notice that the amount of time that the robot is not hungry depends on the amount 
of food it was able to take. In Fig. 9, at times near t=100 and t=1050 the robot was able 
to eat enough food to last about 250 time units without being hungry again. However, 
small food intakes near t=550 and t=850 lead to shorter fullness periods, of about 150 time 
units. 

We should point out that the proposed mechanism is not meant to be an accurate 
simulation of the typical hunger-satiety cycles seen in humans and animals. However, 
the point is to show how the model can be extended to include more realistic and useful 
situations in which drives and sensory stimuli interact in a more complex fashion. For 
instance, we envision replacing the lights with charging stations (which of course would 
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Figure 9: The hunger homeostatic signal activation cycle. Positive values of the "hunger" 
curve indicate that the hunger signal is active. Positive values of the "Eat/Fast" curve 
indicate food intake. Food is consumed only when the hunger signal is active. Hunger 
deactivates after food intake. The time elapsed before reactivation of the hunger signal 
depends on the size of the last food intake. 

have to be distinguishable by the sensors), in which case the hunger drive would be di­
rectly correlated to the charge level of the battery, and after learning the robot would 
ignore charging stations until the battery level became sufficiently low. 

5 Experimental Results 

We have implemented the model just described on two real mobile robots. The Pio­
neer 1 (Real World Interface, Jaffrey, NH), shown in Fig. 10(a), is a small (14" wide, 18" 
long, 9" tall), two-wheel differential-drive robot with five forward-facing and two side­
facing sonar range finders. The Khepera (K-team SA, Preverenges, Switzerland), shown 
in Fig. 10(b ), is a miniature (2.2" diameter) differential-drive robot with eight infrared 
proximity sensors, six of which cover the frontal 180°, and two sensors facing back­
wards. In our experiments we have ignored the two rear-facing infrareds, using only 
the six frontal sensors. We have previously reported our results using simulators (Gau­
diano et al., 1996a; Chang & Gaudiano, 1997). We focus here on the results using real 
robots. 

It is worthwhile to note that the implemented model requires essentially no modifi­
cations in order to run on these two robots, the only difference being that the infrared 
sensors on the Khepera return larger values for closer objects, while the sonars on the 
Pioneer 1 return smaller values for closer objects (of course, there is also a difference in 
the number of CS nodes). 

In our model, the range sensors initially do not propagate activity to the motor popu­
lation because the initial weights are small or zero. The robot is trained by allowing it to 
make random movements in a cluttered environment. The goal of the training phase is to 
give each CS node the opportunity to sample several movements that lead to collisions. 
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Figure 10: Two robotics platforms. (a) The Pioneer 1 robot; (b) the Khepera robot. 

In practice we found that it is sufficient for each CS node to be active during only a hand­
ful of collisions, when using 11 nodes in the angular velocity map. In order to generate a 
wide range of movements, during the training phase we turn on each node in the angular 
map for a brief time until a collision is registered, then switch to a new angular map node 
and repeat the process. We can achieve good avoidance behavior in this way with only 
a few collisions for each node. Fig. 11 illustrates the learning process. We obtained this 
curve in the following way: starting with all the weights in the network set to zero, we 
turn on one node in the angular map and let the robot collide with an obstacle, generating 
a small amount of learning, then turn on another node, and so on. At regular intervals 
during the training phase we temporarily disable learning and allow the robot to move 
from a new starting position for a total of 500 steps through the algorithm, and measure 
for how many of the 500 steps the robot detected a collision. On the first trial, before any 
learning has taken place, as soon as the robot collides it remains stuck against the obsta­
cle, so the number of collisions is very close to 500. By the time we have trained through 
50 collisions (total: meaning that each of the six sensors, on average, has sampled fewer 
than ten collisions) the robot is able to navigate with virtually no collisions. 

The inhibitory weights developed by the neural network are depicted in Fig. 12. The 
adaptive connections between the sensory nodes and the angular velocity map develop 
in such a way that angular velocities that make the robot turn to the right (nodes close 
to 10) are inhibited when the sensors located at the right side of the robot are active (sen­
sory nodes 4 and 5). Similar yet opposite inhibitory weights develop for left turns when 
obstacles are sensed at the left side. In the middle of the figure (nearly straight-forward 
movements with obstacles located straight ahead), a Gaussian-like inhibitory curve ac­
counts for the fact that in such cases, turns to either the left or the right are needed to 
avoid collisions. 

After sufficient training, the robot is able to wander in a cluttered and constantly 
changing environment while avoiding collisions with obstacles. Fig. 13 is a digital image 
captured using a frame grabber board that receives signals from a camcorder mounted 
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Figure 11: Learning in the Khepera robot, measured as the number of collisions in 500 
steps as a function of the total number of collisions experienced during training. Min and 
Max refer to the best and worst learning curves out of a set of five training trials. 
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Figure 12: Adaptive connections between the sensors and the angular velocity map de­
veloped by the Khepera robot for the obstacle avoidance behavior. 
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Figure 13: Obstacle avoidance performed by the Khepera robot. An overhead camcorder 
and a tracking algorithm were used to capture the robot's movements. The robot commu­
nicates with a computer through a serial cable (tether). (a) Experimental setup. (b) The 
tracking algorithm localizes the robot and surrounds it with a moving square window. A 
trace of the robot's trajectory is drawn as the robot moves. 

above the Khepera's environment. A tracking algorithm traces the trajectory described 
by the robot (black dots). The robot makes wide and fast turns when it gets very close to 
the obstacle due to the short range of activation of the infrared sensors (the range of the 
Khepera's IR sensors can vary, but in our environment it is limited to no more than 3cm). 
Nonetheless, the resulting movements succeed in preventing collisions. 

The robot is also capable of reactive target reaching. Without having a map of the 
environment, in most cases the robot is able to reach arbitrary target positions, when the 
angle and the distance between the current position and the goal are specified. Appro­
priate nodes of the angular velocity map activate depending on the angle between the 
robot's heading direction and the target. As it travels, the robot updates its position and 
direction by relying on its odometry. The inhibitory learned Gaussian forces the robot to 
deviate from its desired trajectory when the proximity of objects is sensed. 

The same kinds of results were obtained when we trained the Pioneer 1 robot to de­
velop the obstacle avoidance behavior. About 60 collisions where required during the 
training phase to fully learn to avoid obstacles. Fig. 14 shows some images of the Pioneer 
1 moving in our Lab while avoiding obstacles. A main difference between the two robots 
is that the Pioneer 1 robot developed more gradual avoidance movements than the Khep­
era. This happened because its ultrasound sensors are accurate in the range of several 
feet, whereas the Khepera' s infrared sensors can only detect objects in the range of 1 inch. 

In the obstacle avoidance behavim~ through punishment signals the neural network 
learned to build inhibitory Gaussians centered in the direction of the obstacle. For the 
light approaching behavior, the Khepera' s infrared sensors are used to detect and ap­
proach a source of light. Instead of being punished, the robot was rewarded each time 
an increase in the detected amount of light exceeded a given threshold. l-Ienee, the net­
work learned to enhance excitatory connections that would move the robot towards the 
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Figure 14: Obstacle avoidance behavior of the Pioneer 1 robot.(a) An obstacles is located in 
the robot's current direction of movement. (b) The robot makes a turn to the left to avoid 
a collision with the obstacle. (c) The robot surrounds the obstacle without colliding. 

Light 
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Figure 15: The Khepera robot follows a moving flashlight directed by the experimenter. 

location of light (Fig. 5), by using the approach of Gaussian summation described in sec­
tion 4.1. As in the previous case, after enough training the robot successfully learned to 
turn towards the source of light. If the light moves, the approaching behavior enables the 
robot follow the trajectory of the light, as shown in Fig. 15. 

Simultanouns learning of the avoidance and approach behaviors in the extended con­
ditioning model developed quite nicely. With the use of the gates dipoles for the hunger 
homeostatic signal, the robot approaches the source of light only when it is hungry. When 
the robot is not hungry or no source of light is detected, the robot keeps moving and ex­
hibiting the obstacle avoidance behavior. Even when approaching a source of light, the 
robot avoids obstacles found in its path. 

6 Discussion 

The neural network model we have proposed for avoidance and approach behaviors in 
real mobile robots has been inspired by Grossberg's work on classical and operant con-
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ditioning. Without the need of supervision, the model is able to learn rapidly to avoid 
obstacles and to approach sources of light. Furthermore, since the model is largely in­
dependent of the nature and configuration of sensors, it can be implemented on very 
different robotics platforms, as demonstrated by our experimental results. 

The ability to work in the real world, with real sensors, in different robotics plat­
forms, demonstrates the model's success and robustness. In our opinion, this success 
is due primarily to our use of models of neural and behavioral aspects of animal learning. 
However, we are not the first to foresee the potential use of models of animal learning 
in robotics, nor is ours the only implementation of Grossberg's models in real robots. 
Very impressive results have been reported by (Baloch & Waxman, 1991), using the robot 
MAVIN. They utilized a variant of Grossberg's conditioning circuit as a part of the over­
all control scheme. The model they used is complex as it focuses on MAVIN's visual 
navigation, attacking a variety of problems with specific solutions. The main difference is 
perhaps in our approach, since we are more interested in achieving rapid adaptive control 
that is independent of the platform on which the model is being used. 

Closely related to our work is the implementation of the Schmajuk and DiCarlo model 
reported by (Btihlmeier & Manteuffel, 1997). The basic network of Grossberg's condition­
ing circuit is also used for an obstacle avoidance task. However, this model differs from 
ours in several aspects. First, there is only one kind of learning, namely, the prediction 
of the UCS by the CS (classical conditioning). All the robot responses are pre wired in 
the network, therefore all responses are regarded as reflexes in which no learning takes 
place. Second, as a consequence of this prewiring, knowledge of the robot's geometry is 
required, since the reflexes make the right wheel turn back if collision is detected in the 
left front side of the robot, and so on. In contrast, our model requires neither knowledge 
of the robot configuration nor design of reflex behaviors. Instead, the obstacle avoidance 
and light approach behaviors arise due to learning. 

From a different approach, (Pfeifer & Verschure, 1992) also achieve obstacle avoidance 
by means of a form of associative learning that is modulated by appetitive and aver­
sive stimuli. As with the model of Btihlmeier and Manteuffel, built-in avoidance reflexes 
require knowledge about the sensor location on the robot's body. Similarly, the model 
does not learn to generate new behaviors, but simply to generate built-in behaviors at 
the right time. Another major difference between the model of Pfeifer and Versuche's 
and our model is that they specifically design the network in such a way that the obsta­
cle avoidance behavior directly inhibits the approach behavior. Therefore, there is also a 
pre-built preference for the avoidance reflex over the approach reflex. In our case, no pre­
wiring is required, since competition between the combination of drives and active cues 
determines which behavior will be released. Therefore, our network could eventually be 
expanded to include more than two competing behaviors, all this without the need for 
further design considerations. 

Given the common points between our work and the models just summarized, a com­
bined approach might be possible in order to extend further the learning capabilities of 
our neural network. For instance, we could combine basic reflexes of the type used by 
other authors in order to try to learn more complex behaviors, such as recognizing stim­
uli that cannot be represented by a single sensor. 
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7 Conclusions 

We have described a model that learns to generate avoidance and approach behaviors for 
a wheeled mobile robot by using a form of "self-supervised" learning. In section 4.1 we 
provided a detailed explanation of our implementation of the conditioning model. The 
robot progressively learned to avoid obstacles without the need for external supervision, 
but simply through "punishment" signals produced by the collision of the robot during 
random exploratory motion. One of the main properties of the model is that it is nec­
essary to know neither the robot's geometry nor the configuration of the range sensors 
on the robot's surface, because the robot learns from past experiences to avoid directions 
of movement that lead to collisions. In our experiments with two different robotics plat­
forms, i.e., Khepera and Pioneer 1, the same neural network learned to avoid obstacles, 
thanks to the model's platform-independence. Moreove1~ learning in one environment 
generalized to any environment since it is based on the robot's egocentric frame of refer­
ence. Experimental results with the Khepera robot showed that the neural network is also 
capable of learning to generate an approach behavior. Instead of "punishment" signals, 
"reward" signals were used to learn approach a source of light. 

In section 4.2 we extended the model of conditioning to account for multiple behav­
iors. Training for the avoidance and approach behaviors can be done simultaneously, 
even though these behaviors are quite opposite. With the addition of the hunger activa­
tion cycle we showed how drives and sensory stimuli can interact in complex situations. 
Although the coupled gated dipoles described in section 4.3 are not meant to be an ac­
curate model of animal feeding dynamics, they allowed us to show how the robot can 
choose among different behaviors depending on the moment-by-moment combination of 
sensorial information and internal needs. 

Using the extended model, we plan to utilize the visual system of the Pioneer 1 robot 
to learn to approach interesting objects found in the environment. This behavior would be 
equivalent to the light approaching behavior we have achieved using the Khepera robot. 
The use of visual information instead of infrared measurements would show further the 
platform-independence of our model. 

We also want to combine our model with a neural network for low-level control de­
veloped by (Gaudiano eta!., 1996b), which allows the robot to learn in an unsupervised 
manner its inverse and forward kinematics using sensory feedback. The network con· 
stantly adapts to miscalibrations produced by wheel slippage, changes in the wheel sizes, 
and changes in the distance between the wheels. As is well known (Borenstein et a!., 
1996), odometry leads to accumulation of errors in the computation of the robot's posi­
tion. Although odometry sufficed for our target reaching experiments, complementary 
methods for navigation would be needed to maintain or improve positioning accuracy. 

Finally, though versatile, purely reactive navigation is not enough for the target reach­
ing task since the robot can get stuck in local minima paths. For this reason, we want 
to develop higher-level navigation schemes. Planning strategies combined with "frustra­
tion" when the performed plans fail should endow the robot with more powerful navi­
gation skills. 
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