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Abstract

Increasingly, commercial content providers (CPs) offer streaming solutions
using peer-to-peer (P2P) architectures, which promises significant scalabil-
ity by leveraging clients’ upstream capacity. A major limitation of P2P live
streaming is that playout rates are constrained by clients’ upstream capac-
ities – typically much lower than downstream capacities – which limit the
quality of the delivered stream. To leverage P2P architectures without sacri-
ficing quality, CPs must commit additional resources to complement clients’
resources. In this work, we propose a cloud-based service AngelCast that
enables CPs to complement P2P streaming. By subscribing to AngelCast,
a CP is able to deploy extra resources (angel), on-demand from the cloud,
to maintain a desirable stream quality. Angels do not download the whole
stream, nor are they in possession of it. Rather, angels only relay the minimal
fraction of the stream necessary to achieve the desired quality. We provide
a lower bound on the minimum angel capacity needed to maintain a desired
client bit-rate, and develop a fluid model construction to achieve it. Realizing
the limitations of the fluid model construction, we design a practical multi-
tree construction that captures the spirit of the optimal construction, and
avoids its limitations. We present a prototype implementation of AngelCast,
along with experimental results confirming the feasibility of our service.
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1. Introduction

Streaming high-quality (HQ) video content over the Internet is becom-
ing a standard expectation of clients, posing significantly different challenges
for today’s content providers (CPs) such as Netflix, Hulu, or IPTV, com-
pared to the challenges associated with the best-effort delivery of low-quality
streaming through CPs such as YouTube and Facebook. For example, Net-
flix reported last year that it is delivering streams at rates between 1.7 Mbps
and 3.8 Mbps [20].

To be able to deliver streams with a high bit-rate, content providers re-
sort to Content Delivery Networks (CDNs) to deliver their content. Those
CDNs, in turn, started to tap into client upload bandwidth through the
use of P2P architectures to alleviate some of their own costs. Examples of
peer-assisted content distribution systems include Akamai’s Netsession [2],
Octoshape Infinite Edge [22], and BitTorrent DNA [3]. The problem with
pure P2P architectures is that the current offerings by ISPs provide signifi-
cantly higher download rate than upload rate. The persistent gap between
the average downlink and the average uplink capacity of peers creates a gap
between the clients expectation in terms of download rate and what the up-
link capacities of their peers allows. This gap can be overlooked in typical
P2P file sharing or VoD when some peers linger in the swarm after finish-
ing downloading, thus allowing other clients to utilize them as seeders. In
the case of live streaming, due to its real-time continuing nature, clients at
any point in time will have significantly higher average download bandwidth
than their average uplink capacity. To deal with this, proposed peer-assisted
streaming systems rely on dedicated provider servers (or “seeders” in P2P
jargon), which must download the live stream first before uploading it to
clients.
In this paper we propose a cloud-based “live stream-acceleration” service,
AngelCast. By subscribing to AngelCast, a CP is assured that its clients
would be able to download the stream at the desired rate without interrup-
tions, while maximally leveraging the benefits from P2P delivery. AngelCast
achieves this by (1) enlisting special servers from the cloud, called angels,1

1We introduced the notion of angels in [33], where angels were used for a different
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which can supplement the gap between the average client uplink capacity
and the desirable stream bit-rate. Angels are more efficient than seeders
as they do not download the whole stream, but rather they download only
the minimum fraction of the stream that enables them to fully utilize their
upload bandwidth. In our architecture, the capacity that otherwise would
have been wasted in downloading the full live stream to the servers can be
channelled to help the clients directly. (2) Choreographing the connectivity
between nodes (clients and angels) to form optimized end-system multi-trees
for peers to exchange stream content, and (3) handling clients dynamic ar-
rival and departure.

We present theoretical results that establish the minimum amount of
angel capacity needed to allow all clients to download at a desirable rate,
as a function of their downlink/uplink capacities. We show that this lower
bound is tight by choreographing the connectivity of nodes in such a way
that the optimal bound is achieved under a fluid model.

A good live streaming system would also minimize the start-up delay
needed to assure continued service. We prove that the start-up delay is zero
under the theoretical fluid model, but that in practical settings, the optimal
construction leads to a start-up delay that is linear in the number of clients
when relaxing the fluid model assumption. Moreover, an optimal construc-
tion may require building a full mesh between clients (with no bound on node
degrees). These reasons lead us to develop a more practical approach that
utilizes almost the minimal amount of angel capacity (predicted under the
fluid model), while also ensuring that the start-up delay is logarithmic in the
number of clients. Our practical approach relies on dividing the stream into
substreams, each of which is disseminated along a separate tree. To down-
load the stream, each client subscribes to all the substreams, whereas angels
subscribe only to one substream, allowing them to upload at full capacity
to clients while not wasting too much bandwidth in downloading the whole
live stream. The idea of splitting the stream into substreams was proposed
in prior work, most notably in SplitStream [4] and [17]. In the related work
section, we discuss what we learned from those proposed techniques, and how
we avoided some of their shortcomings.

Another limitation of the fluid (optimal) choreography is that it does not
consider issues of churn due to node arrival and departures. We address

objective – namely to minimize the bulk download time for a fixed group of clients.
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this limitation by incorporating membership management capabilities that
ensure uninterrupted service with minimum startup delay. We achieve this
by ensuring that the trees used in our construction are well balanced, and
by avoiding degenerate cases. Our cloud-based service provides a registrar
that collects information about clients, making fast membership management
decisions that ensure smooth streaming.

We discuss the architecture of our proposed AngelCast system, and evalu-
ate a prototype implementation against SopCast [30] – a commonly use P2P
streaming client. The experimental results carried out on Emulab and Plan-
etLab show the utility of angels and the effectiveness of our choreographed
live stream distribution.

The remainder of this paper is organized as follows: In Section 2, we
present the theoretical model that bounds the minimum amount of angel
upload bandwidth needed to deliver the stream to all clients with the re-
quired bit-rate. We also present an optimal fluid construction that achieves
that bound and compute the start-up delay associated with it. We conclude
that section by highlighting the effectiveness of using angels over using seed-
ers for live streaming. In Section 3, we present our practical construction
that avoids the impracticalities of the optimal construction by relaxing the
fluid assumption and bounding the node degree. In Section 4, we present
our AngelCast service architecture including the membership management
techniques and the design of our protocol. In Section 5, we experimentally
evaluate our AngelCast prototype against SopCast in Emulab and Planet-
Lab. In section 6, we review the related work. We conclude in Section 7 with
a summary of results and directions for future research.

2. Theoretical Bounds

We adopt the Uplink Sharing Model (USM) presented by Mundinger in
[19], wherein each client is defined solely by its upstream and downstream
capacities. The client is free to divide its upstream/downstream capacity
arbitrarily among the other nodes as long as the aggregate upload/download
rates do not exceed the upstream/downstream capacity. The client uploads
to all other nodes in a unicast fasion. Hereafter, we use the term fluid model
to refer to the use of the Uplink Sharing Model along with the ability to
infinitesimally divide link capacities. The provider P is the originator of the
live stream, it has an upstream capacity of u(P ). The set of clients subscribed
to the live stream is C of size c = |C|. Each client ci ∈ C has an upstream
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capacity of u(ci) and downstream capacity of d(ci). We denote the clients
aggregate upstream capacity by u(C) =

∑
ci∈C u(ci). The aggregate angels’

upstream capacity is u(A), where A is a set of angels. We assume that the
stream playout rate r is constant.2

Each client j should be able to download fresh live content with a rate
xj =

∑
i∈C

⋃
A
⋃
P xij greater than the playout rate r, where xij is the rate

between nodes i and j. By definition the provider’s upload bandwidth is not
less than the playout rate u(P ) ≥ r, otherwise the provider cannot upload
the live stream. Also, it is fair to assume that the downstream capacity of all
clients is greater than the playout rate d(ci) ≥ r ∀ci ∈ C, otherwise these
clients will not be able to play the live stream at the desirable playout rate.

2.1. Optimal Angel Allocation

In this subsection, we derive the minimum amount of angel upstream ca-
pacity needed in order for all clients to receive the live stream with rate r.
First, we provide a lower bound on the angel upstream capacity, then find
an optimal fluid allocation scheme achieving this bound.

Theorem 1. The minimum angel upstream capacity needed for all clients to
receive the stream at a prescribed playout rate r is:

u(A) ≥ c2

c−1 ∗ (r − u(P )+u(C)
c

)

Proof. For a client to receive the stream live, its download rate should equal
the playout rate. Thus, the slowest client should receive content with rate
not less than r; minj∈C{xj} ≥ r. Because the average is always greater
than the minimum, the average download rate should exceed r as well; if

minj∈C{xj} ≥ r then
∑

j∈C xj

c
≥ r.

First, let us consider the case of no angels. The uplink sharing model
dictates that the aggregate downstream capacity cannot exceed the aggregate
upstream capacity in the swarm: u(P ) + u(C) ≥

∑
∀i∈C xi. To optimally

utilize u(A) of the upstream capacity of the angels, an angel must download

2It is recommended to use CBR for live streaming. But in the case of variable bit-
rate encoding (VBR), we can use the optimal smoothing technique to achieve a constant
bit-rate (CBR) [29].
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fresh data with a rate of at least u(A)/c then upload it to all c clients. Thus,
in case of using angels, we have:

u(P ) + u(C) + u(A) ≥
∑
∀i∈C

xi +
u(A)

c

u(P ) + u(C) + u(A)

c
− u(A)

c2
≥

∑
∀i∈C xi

c
≥ r

Rearranging this inequality allows us to derive the angel upstream capac-
ity needed to achieve the prescribed playout rate r.

u(A) ≥ (
c2

c− 1
) ∗ (r − u(P ) + u(C)

c
)

Not surprisingly, the bound in Theorem 1 suggests that the capacity of
needed angels grows linearly with the number of clients and with the deficit
between the playout rate and the client share of the provider and clients
upstream capacities.

Theorem 2. All clients can achieve the playout rate r when:

u(A) = c2

c−1 ∗ (r − u(P )+u(C)
c

)

Proof. We prove that the lower bound on the minimum angel upstream ca-
pacity is achievable by construction. Using a fluid model, we choreograph
the transfer rates between nodes so as to achieve a download rate that equals
the playout rate for all clients. The set of Equations 1 has these rates. The
provider sends data to client ci with rate xPi. The client ci in turn forwards
this data to other clients j ∈ C with rate xij. The provider sends data to the
angel with rate xPA, the angel relays this data to the c clients immediately.

xPi = u(ci)
c−1 + δ ∀ci ∈ C

xPA = u(A)
c

xij = u(ci)
c−1 ∀ci ∈ C, i 6= j

where δ = u(P )−r
c−1 ≥ 0 (1)
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These rates guarantee that each client receives data at rate r without violat-
ing the upstream capacity constraint of any node. The aggregate download
rate for client j (from all sources) will be

xj = xPj + xAj +
∑

i∈C,i6=j xij

=
u(cj)

c−1 + δ + u(A)
c

+
∑

i∈C,i6=j
u(ci)
c−1

= u(C)
c−1 + u(P )−r

c−1 + 1
c
∗ c2

c−1 ∗ (r − u(P )+u(C)
c

)

= u(C)
c−1 + u(P )−r

c−1 + c
c−1 ∗ (r − u(P )+u(C)

c
)

= r (2)

The upload rate of each client, i, will not exceed its upstream capacity as
(c − 1) ∗ u(ci)/(c − 1) = u(ci). The same can be said about the angels:
c ∗ u(A)/c = u(A). Also, the aggregate upload rate from the provider will
not exceed its capacity:

xPA +
∑

j∈C xPj

=
∑

j∈C(
u(cj)

c−1 + δ) + 1
c
∗ c2

c−1 ∗ (r − u(P )+u(C)
c

)

= u(C)
c−1 + c ∗ (u(P )−r

c−1 ) + c
c−1 ∗ (r − u(P )+u(C)

c
)

= u(P ) (3)

To ensure that each client receives non-duplicate data, the provider sends
unique data to the angels. As for the clients, each client receives unique data
with rate u(ci)/(c− 1) and the same data with rate δ to all clients.

Figure 1 illustrates two examples of the optimal construction. The left
side of Figure 1 is an example with three clients whose upstream capacities
are sufficient to achieve a playout rate of r, thus there is no need for angels.
Each client splits its upstream capacity between the other two clients. The
provider sends data to clients with a rate that equals half their upstream
capacity plus δ. The δ part of the upload rate is identical, in terms of its
content, to all clients, while the other part is unique, ensuring the uniqueness
of data disseminated. On the right side of Figure 1 is an example where the
upstream capacity of the provider and the two clients is not enough to secure
a playout rate r. Thus, an angel is needed. Here, the angel downloads from
the provider and uploads to the clients. Each client downloads from the
provider and uploads some of what it receives from the provider to the other
clients (and angels do not download from clients).
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Figure 1: Illustrative examples of the optimal construction: 3 clients not in need of any
angels (left) and 2 clients in need of one angel (right).

2.2. Implications on the Role of Angels

The premise behind this work is that there is a significant gap between the
clients’ upstream and downstream capacities offered by ISPs. The promised
higher downstream capacity encourages content providers to stream at an
ever-increasing rate. Pure P2P technology helps alleviate the cost on con-
tent providers by utilizing the clients upstream capacity. To bridge this
gap, many peer-assisted file-based streaming constructions were proposed.
Ours is the first to realize that it is more efficient for the added resources
to download a fraction of the live stream instead of its entirety. Figure 2
illustrates the ecosystem of our angel-based content acceleration architec-
ture. In this ecosystem, the aggregate downloaded data equals the aggregate
uploaded data. The client upstream capacity cannot match the download
rate of many streams. Thus, we need to add agents to this ecosystem that
produce more than they consume. Angels provide that by downloading a
fraction of the stream instead of consuming the already scarce resource of
upstream capacity by downloading unnecessary content.

In live streaming, content providers do not have the luxury of uploading
the content to many servers beforehand. Thus, those servers will compete
over the upstream capacity with clients. In a peer-assisted streaming mecha-
nism, like the one presented in [17], the system relies on more server capacity
to stream at a higher stream rate not supported by the clients upstream
capacity. Figure 3 shows a numerical analysis of the performance of angels
against servers in a hypothetical setting. It compares the number of angels,
each with upstream capacity ten, versus the number of servers, each with up-
stream capacity ten too, (on the y-axis) needed to achieve a streaming rate
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Figure 2: Our proposed ecosystem; clients download more than they can upload, and
angels download as little as possible.

(on the x-axis). The results are shown for a family of curves with varying
clients’ ratios of upstream-to-playout rates – ranging from 3:10 to 9:10. The
streaming rate (x-axis) varies between 1 and 9. There are 100 subscribed
clients and the number of clients an angel can connect with concurrently is
40. The formula to compute how many servers we need is

c ∗ r
u(a)− r

∗ (1− ratio)

and the formula for the number of angels is

c ∗ r ∗ k
u(a)(k − 1)

∗ (1− ratio)

The growth in the number of angels is linear with the stream rate. However,
if we use servers, the growth is super-linear. For example, when the stream-
ing rate is 9 and the server upstream capacity is 10, nine-tenth of a server
capacity is wasted in uploading the stream to another server (90% overhead).
The graphs compare different values for the ratio between the upstream ca-
pacity to the playout rate. The greater the gap, the more angels/servers the
system will need. Clearly, angels are significantly more efficient than servers,
especially when the stream playout rate is large.
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Figure 3: The number of angels versus
the number of servers needed to achieve
a desired playout rate for 100 clients.

Figure 4: The number of clients that can
be supported by a fixed number of angels
or servers.

Figure 4 shows the maximum number of clients that can download at a
desired rate given the number of available angels/servers. We fix the ratio
between the upstream rate and stream playout rate to 1:2. At low stream
rates, a few high-capacity angels/servers can support many clients. As the
stream rate increases, the number of clients satisfied by the service decreases.
Again, the angels are more efficient as they are able to serve more clients
consuming the same amount or resources.

2.3. Startup Delay

In this section, we study the effect of packetization on startup delay. As-
sume that the unit of transfer is of size ψ. In the fluid model, ψ approaches
zero. In a practical setting, each node cannot forward a packet to another
node before it finishes receiving it.

Theorem 3. Using the optimal construction in Theorem 2, the startup delay,
D, is:

D = ψ
r

+ ψ∗(c−1)
minci∈C u(ci)

Proof. The proof is by construction. The delay until all clients receive a
certain packet consists of two parts; the first is the delay until a client receives
this packet from the provider ψ/r and the second is the delay until it forwards
the packet to all the other c − 1 clients. The client that is forwarding the
packet to all the other clients can be the one with the smallest upstream
capacity, thus we divide the amount of data needed to be sent, ψ ∗ (c − 1),
by the minimum upstream capacity minci∈C u(ci).
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Therefore, if the goal of the system is for all clients to enjoy an uninter-
rupted service, each client should fill a buffer of size B before starting the
playout, where:

B = r ∗D = ψ + r ∗ ψ ∗ (c− 1)

minci∈C u(ci)

This result suggests that the startup delay grows linearly with the packet
size ψ and with the number of clients c. Under the fluid model assumption,
this is not consequential because ψ = 0, resulting in a startup delay of zero
as, limψ→0D = 0. In practical settings however, ψ 6= 0 – e.g., it could
be the MTU of a TCP packet ' 1, 400 Bytes. In such cases, the optimal
construction may result in significant startup delays for large number of
clients. In the following section, we propose a dissemination strategy that
achieves the desired download rate using minimum angels capacity while
keeping the startup delay under a reasonable (logarithmic) bound.

3. A Practical Construction

The optimal construction in Theorem 2 requires each client to connect to
all other clients. This leads to operational challenges and a start-up delay
that grows linearly with the number of clients. To mitigate these problems we
developed a new dissemination mechanism that constrains the node degree
of each client to k, i.e., each clients can communicate with at most k clients
at any point in time. We call this construction AngelCast.

3.1. Bounding the Angel Upstream Capacity

The limit on the node degree influences angel effectiveness inversely. Ide-
ally, an angel would download a small fraction of the stream and would
upload it to all clients. Under a bounded-degree assumption, it is intuitive
that we would need more angel capacity. Theorem 4 provides a minimum
lower bound on angel capacity needed.

Theorem 4. The minimum angel upstream capacity needed for all the clients
to download at the playout rate, when each node is constrained to connect to
only k other nodes, is:

u(A) ≥ k∗c
k−1 ∗ (r − u(P )+u(C)

c
)
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Proof. Similar to the proof of Theorem 1, in order to optimally utilize u(A)
of angel upstream capacity, an angel must download data at a rate of at least
u(A)
k

then upload it to a maximum of k clients, given that k ≤ c. On the one
hand, forwarding the same data to more than k clients simultaneously would
violate the out-degree constraint, and on the other hand, forwarding the same
data to more than k clients on stages would result in the reception of stale
and out of stream data to some clients. Also, tearing down connections and
building new ones frequently and systematically would result in performance
degradation due to the nature of the transport protocols.
To ensure that the aggregate upstream capacity is more than the aggregate
download rate:

u(P ) + u(C) + u(A) ≥
∑
∀i∈C

xi +
u(A)

k

u(P ) + u(C) + u(A)

c
− u(A)

k ∗ c
≥

∑
∀i∈C xi

c
≥ r

Thus : u(A) ≥ (
k ∗ c
k − 1

) ∗ (r − u(P ) + u(C)

c
)

For small swarms, when c ≤ k, the bounded-degree constraint is never
reached, thus the bound on the angels upstream capacity – to other clients
– does not change. Even when c > k and k is relatively large, we would not
need significantly larger angel capacity as c/(c − 1) ' k/(k − 1) ' 1. For
example if k = 100 the overhead due to constraining the out-degree is around
1% even when the number of clients is extremely large.

3.2. Construction Under a Bounded-Degree Assumption

The optimal construction used in Theorem 2 assumes the ability of each
client to connect to all other clients simultaneously. In the remainder of this
section, we develop a practical construction under the constraint of limited
node degree, k, where each node can communicate with only k other nodes
at any point in time.

Our construction divides the stream into m substreams. We disseminate
each substream using a multicast tree and each client subscribes to all the
m trees. The rate of dissemination of all the substreams, rt is equal, such
that the sum of the substreams equals the playout rate, i.e., rt = r/m. This
construction is similar to what is done in Splitstream [4] and CoopNet [24].
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The number of trees, m, depends on the allowed degree of any node,
k. For d-ary trees, each node is connected to at most d + 1 other nodes
(one parent and d children). Thus, the number of trees is bounded by:
m ≤ bk/(d + 1)c. Choosing the arity of the trees is not trivial. On the one
hand, choosing a small arity allows for a greater number of trees, each with
a small substream rate. This will minimize the unassigned client capacities∑

i∈C(u(ci) mod rt) and utilizes angels more efficiently. As the theoretical
results showed, angels are best utilized when they download the smallest
substream which allows them to upload with their maximum bandwidth.
On the other hand, choosing a larger arity would result in a smaller start-up
delay, as we prove in Section 3.3. Also, choosing a large arity enables the
utilization of the client with high upstream capacity in full because when a
client subscribes to all trees as a parent of d children, it can forward data
with maximum rate d ∗ rt ∗m = d ∗ r. Thus, any client upstream capacity
above d ∗ r will be wasted. Consequently, choosing the right arity has to
balance utilizing the resources and providing a small start-up delay.

Beside deciding on the number of trees and their arity, we need to decide
on the placement of each client in each tree. First, let us consider the case in
which there are no angels. Adding angels to this construction is straightfor-
ward and will be explained shortly. In our construction, each client calculates
how many children it can adopt across all trees, which equals the upstream
capacity of the node divided by the rate of a substream, rt. Let us call this
parameter li, where li = bu(ci)/rtc. Our construction dictates that these
children be allocated in the minimum number of trees. This is necessary to
avoid degenerate trees, where parents have only one child. Thus, the number
of trees where this client can have d children is gi = bli/dc. Client i can have
the remaining children assigned to one more tree and it will be a leaf in all
the other trees. Whenever a new client arrives, it will join all trees. To ensure
that no tree is starving for bandwidth while another one has an abundance
of it, the new client will be a parent in the trees where there are fewer places
to adopt more children. We use vacantSpots to denote the number of places
in a tree where it is possible to adopt more children.

The position of clients in each tree is equally important. To ensure a small
start-up delay, the depth of the trees should be minimized. In a bounded-
degree setting, the path from any node to the root should be logarithmic
in the size of the swarm. Subsection 3.3 shows that full trees with large
arity achieve that. Therefore, nodes that can adopt more children should
be higher in the tree. Subsection 4.1 shows how we add/remove clients and
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change connections while maintaining low-depth trees.

Figure 5: An example where the stream is split into three trees. Each node is a parent to
as many children as possible in the least number of trees.

In all the trees, the order of a client in the tree is not important, as long
as the clients who are assigned d children are in the top levels, the ones
assigned less than d children are in the second to last level and the ones with
no children are leafs. Figure 5 illustrates that. The number of nodes in the
second to last level in any tree is at least one third of the number of the
nodes in the tree. Thus if the number of trees is bigger than two, each client
will be assigned to the second to last level at most once.

Adding angels to this construction is straightforward. The minimum
upstream capacity of angels needed, u(A), is given by the lower bound in
Equation 4. This upstream capacity would be divided equally between a
number of angels na = u(A)/(k ∗ rt), each of which will be assigned to a
different tree. Each angel will have k children in that tree. Whenever the
number of vacantSpots in a tree falls below a certain threshold, we know that
this tree is in poor health, hence we add an angel to that tree. When a tree
has too many vacantSpots, we eliminate an angel, if any exists in this tree.
Even though when an angel is added, it is added to a single tree, the health
of the other trees will also improve. This is because newer clients will not
need to become parents in this tree and will allocate their resources to other
needy trees.

As for the provider, it will be a parent to the roots of the trees. The
excess capacity of the provider can be utilized fully as well, as the provider
can adopt more children. To avoid adding angels in all trees at the start, the
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provider focuses its extra capacity in fewer trees.
To conclude, this construction allows each client to download with rate r

and achieves near optimal utilization of the clients upstream capacity. The
remaining upstream capacity that is not enough to adopt a child equals∑

i∈C(u(ci) mod rt), which can be seen as insurance in the case of band-
width oscillations. The gap between the clients’ upstream capacities and the
playout (and hence download) rate can be supplemented by angels, and each
node will not have to connect to more than k other nodes. In the following
subsection, we show that our construction has, on average, a logarithmic
startup delay in the number of clients, c.

3.3. Bounding the Startup Delay

In this section, we compute the startup delay given our construction in
Subsection 3.2. A node with d children dedicates rt of its upstream capacity
to each one of them. Therefore, if we serialize the dissemination by sending
a packet to a child at a time, the time to send a packet of size ψ to the first
child will be ψ/(rt ∗ d). The time to disseminate a packet of size ψ to all the
d children, is d ∗ψ/(rt ∗ d) = ψ/rt seconds. Each tree has c children, thus, it
has logd(c) levels. Therefore, the time it takes for the last client in the last
level of the tree to download a packet is:

D = logd(c) ∗
ψ

rt
= logd(c) ∗

ψ

r ∗ (d+ 1)/k

This startup delay is the minimum when ∂D
∂d

= 0

∂D

∂d
=

ψ ∗ k ∗ ln(c)

r
∗ (
−(d+1

d
+ log(d) ∗ 1)

ln2(d)
)

ln(d∗) = −d
∗ + 1

d∗
At

∂D

∂d
= 0 (4)

d∗ = e

The above means that in order to minimize the start-up delay, the degree
of the tree should be maximized – i.e., k − 1. This result illustrates the
trade-off between minimizing the start-up delay and minimizing the needed
angel capacity: The more trees we have, the better we are utilizing the
angels/clients at the expense of increasing the start-up delay.
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4. AngelCast Architecture

Figure 6 shows the components in our peer-assisted service. While the
registrar does not disseminate data, it choreographs the connectivity of clients
and angels in the system. As indicated before, our service operates in a uni-
cast setting. The registrar is the main agent in our cloud service. Content
providers contact the registrar to enroll their streams. The registrar uses the
profiler to estimates the upstream capacity of clients. The accountant uses
the estimated gap between the clients’ upstream capacity and the stream
playout bit-rate to give the content provider an estimate of how many angels
it will need.

Figure 6: The architectural elements of AngelCast.

The AngelCast service could be incorporated and offered as a distinguish-
ing feature by the cloud provider, or it can be implemented as a value-added
proposition by a third-party service provider. The cost of the AngelCast
services constitute an overhead that must be borne by the parties benefiting
from the services (cloud provider, content provider, or clients). Clearly, there
are many ways to appropriate the cost of such overhead. For instance, cloud
providers could bear the cost of such service. Charging content providers or
clients could also be an option. If clients are to collectively bear such costs,
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one option may be to charge only the clients who use the service. Another
option would be to distribute the cost in proportion to the benefit that clients
get from the service. Yet, a third option would be to charge clients equally,
independent of whether they benefit from the service or not.

Algorithm 1 UpdateClosestAdopter()

oldAdopter = self.closestAdopter
if This node can adopt more children then

self.closestAdopter = self
self.closestAdopterDistance = 0

5: else
minDistance = Infinity
adopter =NULL
for all child in ChildList do
if child.closestAdopterDistance < minDistance then

10: minDistance = child.closestAdopterDistance;
adopter = child.closestAdopter

end if
end for
self.closestAdopter = adopter

15: self.closestAdopterDistance = minDistance +1
end if
if oldAdopter!=self.closestAdopter then

parent.UpdateClosestAdopter()
end if

4.1. Membership Management: The Registrar

Live streaming swarms are dynamic in nature. Clients arrive and depart
the stream constantly. Also, some bilateral connections between clients can
degrade arbitrarily. Thus, it is absolutely essential to incorporate resilience
in the design of swarms to ensure that some minimal quality of service is
maintained. In this section, we explain how AngelCast handles membership
management, i.e., handling client arrival and departure, and replacing de-
graded connections with new ones. Our system relies on a special server to
achieve that, the registrar. The registrar is a special node in the system that

17



orchestrates the swarm and choreographs the connectivity of the clients.3

When a new node joins the stream, it contacts the registrar and informs it
of its available upstream capacity. The registrar uses a data-structure rep-
resenting the streaming trees and assigns the new client to a parent node in
each tree. The registrar also decides how many future children the new node
can adopt in each tree. Clients can also “complain” to the registrar about
their parents. The registrar would pick a new parent for a complaining client,
informs the client of its new parent, and also probes the under-performing
parent to ensure it is still alive. If not, it pro-actively informs other children
to disconnect from it and provides them with new parents.

These decisions are crucial in guaranteeing a continued service with low
start-up delay and little disruption. In order to ensure fast response to clients’
requests, the registrar maintains a data-structure containing the state of each
node in the system. The state of a node contains: (1) the depth of the subtree
rooted at that node, (2) a pointer to the closest descendent with a vacant
spot that can adopt one new child, which we call the closestAdopter, and
(3) the distance to the closestAdopter. When a new client joins the swarm,
the registrar adds it to the root’s closest adopter in each tree. The arrival
and departure of clients changes this state. Algorithm 1 shows the function
that updates the closestAdopter as well as the distance to it. The value of
the closestAdopter can change for the new/old parent as well as for prede-
cessors, recursively all the way to the root (by construction, a logarithmic
process at worst). If the node has vacantSpots, then it is its own closestA-
dopter with distance zero. Otherwise, it picks the closestAdopter of one of
its children, the one with the minimum distance to its closestAdopter. The
update will propagate recursively along the path towards the root until the
closestAdopter of a node along the path does not change.

However, this addition could change the root’s closestAdopter if it does
not have vacantSpots for more children. In such a case, we will recursively
update the closestAdopter value of the nodes in the path from the old clos-
estAdopter to the root. If a node has more vacantSpots, it sets itself as the
closestAdopter, otherwise, it embraces the closestAdopter of one of its chil-
dren, the one with the minimum distance to its closestAdopter. By doing
that, we are sure that each node is actually keeping track of its closestA-
dopter. The update will propagate recursively upward towards the root until

3Readers may observe some similarity between the registrar and a P2P system tracker.
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the closestAdopter of a node along the path does not change.
As we alluded before in Subsection 3.3, in order to minimize the average

start-up delay, we need to minimize the depth of the tree. We note that the
degeneration of a tree could be caused by these few nodes that cannot have
the maximum number of children. Our goal is to push these nodes down
the tree to avoid this condition. In order to do so, we allow new nodes to
intercept certain connections. By intercepting a connection we mean severing
a connection between a parent and a leaf child node, making the parent
adopt the new node, and making the new node adopt the child node. We
prefer interception over adoption if the distance to the closestIntercept is
smaller than the distance to the closestAdopter. We maintain and update
the information about the closestIntercept and its distance for each node in
the tree in a way similar to the closestAdopter. The pseudo-code for updating
the closestIntercept is highlighted in algorithm 2.

The registrar receives complaints from nodes about their parents when
they are not downloading at an adequate bit-rate. The registrar sends a
probe to the parent, if the parent is alive and replies, the problem is with
the link not with the parent. The registrar severs the connection to that
parent and attaches the complaining child, and the subtree below it, to the
closestAdopter in the tree. We need to ensure that the complaining node is
not re-attached to the same parent, or worse to a descendent of its own. We
ensure that by setting the closestAdopter distance of the parent to a very big
number and propagating the update up the tree, forcing the root to choose a
closest adopter away from the complaining node. We then attach the severed
subtree to the new closestAdopter then set the closestAdopter distance of the
old parent to zero and update up the tree. By the end of this process, the
complaining node gets allocated, with its subtree, to a different part of the
tree and the values of closestAdopter of all the nodes are adjusted.

Figure 7 illustrates how the value of the closestAdopter changes when a
new client arrives. Before the addition, nodes C and D had vacantSpots. The
root, node A, has node C as the closestAdopter. Thus node C will adopt
the new node, F. This will change the value of the closestAdopter up the
path to the root. Nodes C, F will have no closestAdopter. Thus, node A’s
closestAdopter will become node D, its other child, node B’s, closestAdopter.

If the registrar’s probe to a node results in no response, the registrar
concludes that the client unsubscribed from the stream. Thus, it will actively
remove it from all trees. When a node is removed from a tree, each of its
orphaned children will be added, one by one, to the closestAdopter in the
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Algorithm 2 UpdateClosestIntercept()

oldIntercept = self.closestIntercept
if This node can adopt more children then

self.closestIntercept = self
self.closestInterceptDistance = 0

5: else
minDistance = Infiniti
intercept =NULL
for all child in ChildList do
if child is leaf then

10: minDistance = -1
intercept = self

end if
if child.closestInterceptDistance < minDistance then

minDistance = child.closestInterceptDistance;
15: intercept = child.closestIntercept

end if
end for
self.closestIntercept = intercept
self.closestInterceptDistance = minDistance +1

20: end if
if oldIntercept!=self.closestIntercept then

parent.UpdateClosestIntercept()
end if

tree. To maintain balance in the tree, the children with smaller distance to
their closestAdopter are added before the children with larger distance to
their closestAdopter. Our service enables a graceful departure of clients by
allowing them to declare their intention to leave the stream.

Figure 8 illustrates how our membership management techniques work
through an example. Step 1 shows the initial state in which the provider
is the root of the three trees, with an upstream capacity of 4 and a stream
playout rate of 3. Thus, the root, s, has 4 vacantSpots, two of which are
assigned to the first tree and one vacantSpot for each of the second tree and
the third tree. Client x joins in Step 2. It has two vacant spots, both of
them will be assigned to the second tree. As we discussed before we assign
a client as a parent in the minimum number of trees to maintain low depth
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Figure 7: Node F joins the tree, the registrar updates the data structure accordingly.

trees. As a result of client x’s arrival, the number of vacantSpots in the third
tree is reduced to zero. Thus a new angel, A, is added automatically to the
third tree. The angel’s upstream capacity equals 3, allowing it to have three
children in one tree. If we had only one tree, the angel would have been
useless as it will have had only one child and downloading as much as it is
uploading. Because there are no vacantSpots in the third tree, the added
angel will intercept the connection between the provider and client x. Step 3
illustrates the arrival of client y. Both of its vacantSpots will be assigned to
the tree with the minimum number of vacantSpots, which is tree 1. In Step
4, client x complains about its connection to the provider in the first tree.
The registrar disconnects it from the provider and instructs it to connect to
client y. Step 5 illustrates the departure of client y. It will be removed from
all trees and its children, if any, will be added one by one.

4.2. The AngelCast Protocol

The registrar decides on the number of substreams, the fan-out of the
trees and adds the provider as root to all trees. It also initializes the data
structure in which the state of the system is kept. The registrar then starts
a listener process to receive join requests and complaints from clients. It
uses the membership management techniques, described in Subsection 4.1,
to respond to such request. Whenever the number of vacantSpots in a tree
falls below a certain threshold, the registrar instantiates a new machine from
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Figure 8: A hypothetical scenario illustrating the formation of AngelCast trees when
clients join, leave or change parents.

the cloud as an angel. When a tree has too many vacantSpots, an angel is
released from this tree, if any exists. A full implemented system, serving
many live streams concurrently, can instantiate a couple of machines and
leave them on standby at all time. Therefore, in the case when a stream is
in need of help, an angel would be ready to help and there would be no need
to wait for the typical delay associated with acquiring a machine from the
cloud.

In our implementation, the provider and clients need to download plug-
ins (software) to enable them to interact with the AngelCast system. On the
provider side, the software divides live content as it arrives into substreams,
which are maintained in separate substream buffers. The content of each
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buffer is divided into chunks of fixed size. The provider also starts a lis-
tener process, which instantiates threads in response to join requests. These
threads read from a substream buffer and sends chunks of data to the client.
On the client side, the software starts by contacting the registrar asking to
join a stream. The registrar replies with information about the stream as
well as the identity of a parent capable of serving the (sub)stream in each
tree. Upon contacting these parents, a newly-arriving client is able to start
downloading the substreams into different buffers. The software on the client
side includes a thread that reads from these buffers in a round robin fashion
and writes to a local port using an HTTP server. Any media players with
the ability to play streams over HTTP (e.g., mplayer) can play out the
stream from this local port. Similar to the software on the provider side, the
software at the client also starts a listener process, which instantiates threads
in response to join request from children. When such a request is received
for a specific substream, the software sends data from the buffer associated
with that substream. The angels’ software is similar to the software at the
clients, except that angels need only subscribe to one substream and then
listen and serve incoming client requests for that one substream.

Figure 9 illustrates an example of the interaction between a newly arriv-
ing client, client A, the registrar and other clients chosen by the registrar
as parent to client A in two trees. Client A joins the system by sending a
“Join” message (message #1) to the registrar, the “Join” message contains
the ID of the requested stream and the upstream capacity it is willing to
contribute. The registrar replies with a “Welcome” message (message #2)
informing the client with the stream playout rate, the number of trees (sub-
streams), the chunk size, and the identity of the chunk it should download
first. The registrar also sends to the client the IP/port# of each parent that
the client should contact for each substream (Messages #3 and #5). When
contacting these parents (messages #4, #6), the client specifies the tree ID
and the chunk it is expecting to start downloading from. Messages #7 to
#13 represent data messages from the parents to client A. The data mes-
sages has the chunkID and the associated streaming data. In this example,
the streaming continues smoothly (message #13), after that the connection
is lost or degraded (message #14 is lost). The client realizes that and con-
tacts the registrar before it depletes its buffer. It sends message #15 to the
registrar informing it that it was disconnected from its parent in the first
tree, client B. The registrar replies to client A with a new parent to connect
to , client D (Message #16). The client sends message #17 to the new par-
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Figure 9: An interaction diagram showing the exchange of messages between a new client,
the registrar and the parents.

ent, client D, requesting chunks starting at where it stopped, the new parent
starts streaming this substream. In the meanwhile, the registrar probes old
parent, client B, to check if it is still alive or not (Message #18). In this
case it receives an ”EchoBack” message (#19), and the registrar sends the
old parent message #20 informing it to disconnect that child. If the registrar
had not received an ”EchoBack” message, it would have assumed the client
is disconnected and would have sent a proactive message to all its children
in all trees to connect to a different parent. For security reasons, the regis-
trar sends messages to the parents informing them which clients to accept as
children. The client can ignore any download request from any unauthorized
client. We omitted those messages from this example for simplicity.
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We implemented a prototype of our AngelCast protocol in python. 4 Our
prototype includes the code for the registrar, provider, clients and angels.
Our prototype does not include the profiler, thus clients report how much
upstream capacity they are willing to contribute to each swarm.

5. Experimental Evaluation

To evaluate the performance of our AngelCast prototype, we deployed it
in the widely used research platforms: Emulab [8] and PlanetLab [27]. On the
one hand, the Emulab experiments give us accurate insights by isolating our
protocol form other experiments, which is particularly useful to analyse the
effects of churn, and also making it possible for our results to be repeatable.
On the other hand, the PlanetLab experiments are meant to validate that
AngelCast performs well “in the wild” on the Internet.

Our main motivation in performing these experiments is four-fold: (1)
establish confidence in our implementation by comparing its performance
to that of widely used streaming solutions, (2) establish the effectiveness of
deploying angels from the cloud for the purpose of guaranteeing the desired
streaming rates, (3) measure the performance of our system under churn,
and (4) study the effectiveness of setting Angelcast system’s parameters. We
deploy the registrar on a machine of its own. The angels are deployed on
Emulab/PlanetLab machines instead of the cloud. All results are reported
with 95% confidence interval.

The first set of experiments aims at validating our AngelCast prototype
by comparing its performance to that of SopCast [30]. SopCast is a popular
P2P streaming client used widely on the Internet. We ran SopCast and An-
gelCast protocols on the same set of machines at the same time to neutralize
unpredictabilities related to host/network processes (e.g., cross-traffic).

We performed experiments to compare the frame drop-ratio of AngelCast
vs Sopcast for streams of varying rates (280 Kbps to 1.4 Mbps) on Planetlab.
We use traffic shapers to limit the upstream capacity of the nodes which had
significantly higher upstream bandwidth than the average household. We
limit the upstream capacity of the provider to twice the stream rate, 2 ∗ r,
and clients upstream capacity to (4/3) ∗ r. This assignment guarantees that
there is enough upstream capacity for all clients, thus, there is no need for

4Available at:http://csr.bu.edu/angelcast/AngelCast/
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Emulab PlanetLab

Figure 10: The frame drop ratios of AngelCast vs SopCast.

angels. The metric which we utilize throughout the experiments is frame
drop ratio which for the correctness includes not only the frames that did
not arrive to the clients, but also the frames that did not arrive on time.
In this baseline experiment, the stream is split into ten substreams each is
disseminated through a trinary tree. The start-up buffer between the time a
client requests to join a stream and the start of the playout is four seconds.
The result in Figure 10a shows that the frame drop-ratios of AngelCast and
SopCast are comparable when the upstream capacity is plentiful.

Figure 10b shows the result of the same experiment on PlanetLab. The
frame drop-ratio is significantly higher than in Emulab but the performance
of AngelCast and Sopcast is still comparable. This is expected, since the
benefits gained from AngelCast will only be observed when there is a sig-
nificant gap between the clients’ aggregate upload and download capacity.
Because Emulab allow us to perform repeatable experiments and to isolate
the performance from other experiments running on the same machine, we
decided to run the rest of the experiments on Emulab.

The second set of experiments aims to characterize the effectiveness of
angels. Our system deploys angels when a tree has no vacantSpots. We
secured 125 clients for downloading a live stream at r=950Kbps playout rate.
We vary the client upstream capacity between 60% to 100% of the stream
rate, r. AngelCast splits the stream into ten trees each with a fan-out of
three. The provider’s upstream capacity is double the stream rate, ensuring
that the provider is not the bottleneck. An angel upstream capacity is 1.5
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Angel Capacity Drop Ratio

Figure 11: Minimal amount of angel capacity is sufficient to achieve good stream rates.

times the stream rate, ensuring that it is larger than the stream rate. but
also that it does not have too many children in one tree (maximum=15).

On the x-axis of Figures 11a and 11b, we vary the client upstream capac-
ity, shown as the ratio between the client upstream capacity and the stream
rate. On the y-axis of Figure 11a we plot the capacity of angels deployed
by AngelCast against the theoretical bound for the minimum angel capacity
(AngelCast theoretical). Also, we compare it against the minimum server
capacity when the server downloads the whole live stream (ServerCast). The
results confirm that AngelCast utilizes near minimal capacity, and that it
achieves significant savings when compared to ServerCast. On the left-hand-
side of Figure 11b (in red), we plot the angel capacity being used and on
the right-hand-side scale (in black), we plot the associated frame drop ratio.
This experiment verifies that our system achieves reliable streaming utilizing
near minimal resources.

The third set of experiments aims to demonstrate the performance of
AngelCast under churn. In live streaming, churn is due to client arrivals
and departures. This is different from how churn is typically modeled in
VoD where playback functionality, such as pause, seek and fast-forward must
be considered as well [10]. Therefore in this experiment, we observe a live
stream over a period of 210 seconds, whereby clients join the stream after an
exponentially distributed waiting period with a mean of ten seconds. Clients
watch the stream for an exponential amount of time of mean 50, 100, 150,
200 or 250 seconds then leave.
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Figure 12: The performance of AngelCast under churn.

We set the upstream capacity of the provider to be twice the playout rate;
we set the upstream capacity of angels to be 1.5 times the playout rate; and
we set the clients’ upstream capacity to be 0.7 times the playout rate. The
stream is divided over ten trinary trees and the stream start-up buffer is 4
seconds. The first set of results are in Figure 12, on the x-axis we vary the
expected duration of the client’s stay. On the right y-axis we show the frame
drop-ratio. This experiment shows that, as expected, higher churn results in
poor performance, (e.g., when clients stay less than a minute on average, the
frame drop ratio is as bad as 5% but as clients stay longer, the frame drop
ratio drops to 0.5%). On the left y-axis, we plot the aggregate capacity of
the deployed angels. When there is no churn, six angels are needed to fill
the capacity gap. In the presence of churn, the number of deployed angels
is almost fixed to ten, the number of trees. The reason for that is the lack
of vacantSpots in each tree at different points during the experiment, due to
churn.

In the aforementioned experiment, clients leave the system and do not
rejoin. Stutzbach and Rejaie observed that some clients who leave the stream,
rejoin it [32]. Thus, in Figure 13 we show results for the same experiment
where a departing client rejoins the stream after an average of 10 seconds
waiting time. The results show similar performance to the ones shown in
Figure 12 – mainly a frame drop ratio as bad as 5% under heavy churn,

28



0r

2r

4r

6r

8r

10r

12r

14r

16r

50s 100s 150s 200s 250s
0%

2%

4%

6%

8%

10%

12%

N
o

rm
a

liz
e

d
 U

p
lo

a
d

 D
e

fi
c
it

F
ra

m
e

 D
ro

p
 R

a
ti
o

Expected Stay of a Client (sec)

Frame Drop Ratio
Deployed Angel Capacity

Figure 13: The performance of Angel-
Cast under churn where clients rejoin the
stream after they leave.
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Figure 14: The frame drop ratio for non-
churning clients against varying churning
rate for other clients.

which drops significantly as churn rate decreases.
Our next experiment studies the effect of churning clients on the perfor-

mance of non-churning clients (i.e., clients who stay for the whole duration
of the experiment). Given the similarity in the performance of churn mod-
els (cf. Figures 12 and 13), we select the client departure model to be the
one where clients leave and do not return and measure the frame drop ratio
of non-churning clients. Figure 14 shows the results obtained while varying
the expected duration of a churning client’s stay. The left y-axis, shows the
aggregate capacity of the deployed angels, while the right y-axis shows the
frames drop-ratio for non-churning clients.The results show that the per-
formance of non-churning clients is independent of the churn level of other
clients. It also illustrates that not only our system’s tolerance for churn, but
also highlight that the resulting modest degradation is confined largely to
churning clients.

The final set of experiments aims at studying the effect of setting An-
gelCast parameters on the performance of clients. We evaluate two system
level parameters: start-up buffer size and number of substreams (trees). Fig-
ure 15 shows the result of an experiment studying the effect of the start-up
buffer on the performance of clients. The x-axis denotes the start-up delay
in seconds and the y-axis denotes the frame drop ratio. We plot the results
of a family of varying churn levels, where clients stay for a duration of 50,
100, 150, 200 or 250 seconds (i.e. no churn). The results highlight that three
or four seconds are enough to achieve smooth streaming. Longer buffers will
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Figure 16: The frame drop ratio of
clients against an increasing number of
substreams (trees).

result in stale content without achieving meaningful performance gains.
Figure 16 presents results highlighting the effect of varying number of

substreams (trees) on the performance clients. The x-axis denotes the num-
ber of such trees, the right y-axis denotes the frame drop ratio, and the left
y-axis denotes the normalized angel capacity utilized. We set the number of
available angels to ten. When the number of trees is less than ten, the frame
drop ratio is low. In fact, the optimal value for this specific configuration is
six trees, as the frame drop ratio is lowest and we use the least number of
angels. When the number of trees is greater than ten, some trees will not be
assigned angels. Thus in the event of churn there will be significant frame
loss in the angel-less trees despite having enough overall angel capacity to
deliver the content. We conclude that we should limit the number of trees
to a handful to avoid wasting angel capacity or having high frame drop ratio
in the angel-less trees.

In our experiments, the AngelCast system was able to handle a cluster
of Emulab nodes. In a typical P2P stream setting, there may be more nodes
under management. We note that the architecture of our AngelCast system
is scalable by design as an embarrassingly parallel system. In particular,
Angels can be allocated from the cloud which can scale based on demand.
The registrar and accounting services (cf. Figure 6) can be implemented as
services on a Mesos/Marathon cluster while node information can be kept in
a DHT or NoSQL database to ensure scalability.
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6. Related Work

This work builds on a rich body of work that approach the problem of
content delivery in general and live streaming in particular from a number
of perspectives:
Pull-based Mesh Protocols: There is a large number of papers/systems
that utilize pull-based mesh streaming, such as SopCast, PPLive, UUsee,
Joost, and CoolStreaming. Our push-based approach differs from these in
that it choreographs the connectivity among nodes to guarantee the quality of
streaming for every client. We choose to compare AngelCast against SopCast
[30] as it is extensively used, allows users to stream their own channels and
works with mplayer over Linux. An example of such pull-mesh protocols
is CoolStreaming [38], the streaming version of Bittorrent. The difference
is that the deadline of a chunk playtime is a factor in the piece selection
algorithm. Feng et al. [9] illustrated the inherent shortcomings of pull-based
mesh networks as well as providing a glossary of such protocols.
Peer-Assisted Content Distribution: The research community is aware
of the promise of P2P in alleviating the load of content distribution on servers.
Nonetheless, it is also aware of its limitations, especially in providing suffi-
cient upstream capacity. For file sharing, Sweha et al. [33], introduced the
idea of angels to minimize the bulk download time for a fixed group of clients.
Wang et al. [36] proposed adding powerful peers to BitTorrent swarms to ac-
celerate the download rate. This is not optimal, because these “helpers” will
unnecessarily consume the scarce upstream capacity in the swarm. Montre-
sor and Abeni [18] employs a single passive helper and enforces strict limits
on the number of (costly) interactions with it that originate from peers. In
Antfarm [26], the authors propose a protocol for seeders to measure the vital
signs for multiple swarms and allocate more seeder bandwidth to struggling
swarms. Jin et al. [12] introduced edge caching to help original servers stream
to clients at the prescribed bit-rate. The cache contains the objects where
the ratio between the client request rate and the deficit between download
rate and playback rate is maximal. This work is different as it requires in-
network caching, but it highlights the need for infrastructure help to ensure
smooth streaming.
Modeling P2P Performance: Qiu and Srikant’s seminal work [28] is the
first to characterize the average download time in a swarm. Das et al. [6]
extended Qiu’s model [28] of swarm download rate to incorporate seeders.
The result points out that the average download time is inversely proportional
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to the seeders’ aggregate upload rate. However, the increase in the number of
peers requires a linear increase in the number of seeders to maintain the same
average download time. Although Qiu’s model is fundamentally different,
these results are in line with our findings. Parvez et al.[25] extended Qiu
and Srikant’s model [28] to the case of stored VoD, studying the need for
sequential progress instead of random chunk download. This is inline with
our design concept of choreographing the connectivity of the swarm instead
of relying on random chunk download.

Kumar et al. [15] used the uplink sharing model [19] to find the bound on
the highest streaming rate a swarm can handle given the upstream/downstream
capacities of the clients. They proposed a fluid construction that achieve their
bound. We extend their model to compute the required angel capacity to
achieve a desired streaming rate. Likewise, we built an optimal fluid con-
struction that achieves the bound, incorporating angels. They highlighted
the gap between the upstream capacity and download rate, stating that most
channels in PPLive are running at rate 2-4 times the upstream capacity of
many residential broadband peers. Angels are the answer to this problem.
Liu et al. [17] extended Kumar’s model in the case of bounded node degree
as well. They proposed creating spanning trees with varying streaming ca-
pacities. Given their construction, they provided bounds on the depth of the
tree, the maximal upload rate and the minimum server capacity. Their con-
structions assumes the provider can connect to all clients, that the number
of spanning trees can reach the number of clients and the depth of some trees
can be linear in the size of the swarm. Our AngelCast technique avoids these
three problems.
Multicast Multi-Tree Construction: Many papers leverage the idea of
constructing multiple multicast trees (a forest) for file distribution as well as
for streaming [35]. SplitStream [4] constructs a forest of multicast trees, one
for each stripe, all with the same rate. This approach is different from ours
in that the client can choose the number of stripes it wants to subscribe to,
thus receiving a subset of the broadcasted data. In contrast to tree-based
multicast, the load on the nodes is balanced as each node is an internal node
in one tree but a leaf node on the others. When the internal nodes of one
tree cannot adopt any more children, the child must search for some node in
the excess capacity tree to download this strip. This leads to inefficiencies
as a node could perform a distributed linear search until it finds a suitable
parent. More importantly a client with significantly large capacity can adopt
many children each in a different tree resulting in degenerate trees and more

32



than logarithmic depth of trees. Our technique makes sure that any parent
has at least two children except for the nodes in the second to last level,
insuring a logarithmic depth of all trees.

P2PCast [21] is a modification of SplitStream where all nodes subscribe
to all trees to download the same content. They require from each client to
participate an upstream capacity equal to the download rate. This could be
unrealistic given the diversity of user’s upstream capacities and the shield-
ing of some clients behind NATs. CoopNet[24, 23] creates multiple trees,
each streaming a substream of an MDC encoded video. Their contribution
is in providing a mechanism to cope with the fluctuation in the available
bandwidth.
Coding for Adaptive Streaming: Multiple Description Coding (MDC)[5]
and Scalable Video Coding (SVC) [1] were introduced to enable clients to
download the same video on different rates/qualities. MDC tends to be
more theoretical, where any number of descriptions are enough to decode
the movie at a rate proportional to the number of received descriptions.
SVC codes the video in layers, the base layer is essential for decoding while
the subsequent layers are increasingly less important. Such techniques are
increasingly deployed to overcome the uncertainty of the available bandwidth
and its fluctuation, in particular Dynamic Adaptive Streaming over HTTP
(DASH) [31]. We consider these techniques complementary to our angels
approach. Providers who prefer better than best effort delivery to their clients
can deploy angels to offer better download rate. MDC and SVC can be
deployed in conjunction with angels in this case, where clients can attempt
subscribing to m trees downloading m descriptions/layers. If a client is not
able to download all the layers, it is still able to decode the video with lower
quality. Our current prototype implementation works over HTTP, we are
planning on extending our protocol to conform more closely to DASH.
Hybrid Cloud-P2P Systems: Existing work in P2P with cloud assis-
tance deal mainly with large number of clients and focus on improving the
aggregate system performance [13, 39, 37, 14, 34, 7, 16]. Jin and Kwok [13]
present a cloud assisted system architecture for P2P media streaming among
mobile peers to minimize energy consumption. Zhao et al. [39] use a loss
network model to tradeoff between inter-ISP traffic and cloud bandwidth
consumption and propose a hybrid P2P-cloud CDN system. Wang et al.
[34] presented a generic framework called CALMS for the migration of live
streaming services to the cloud, which adaptively leases and adjusts cloud
resources to meet dynamic user demands. CloudStream [11] considered re-
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altime transcoding of videos in different qualities over cloud and delivered
video streams via a cloud-based SVC proxy. The authors in [7] propose an
architecture that adapts dynamically the playback rate to guarantee that
peers receive the stream even in cases where the total upload bandwidth
changes very abruptly. Our work focuses on using cloud resources as Angels
to supplement the persistent gap that exists between the average downlink
and the average uplink capacity of peers.

7. Conclusion

In this paper we highlighted the potential of peer-assisted content dis-
tribution for affordable high quality live streaming. As the deficit between
clients’ uplink and downlink capacities limits the use of pure P2P architec-
ture in such a setting, we introduced the notion of angels – servers who do
not have a feed of the live stream and are not interested in downloading it
in full. We computed the minimum amount of angel capacity needed in a
swarm to achieve a certain bit-rate to all clients and provided a fluid model
construction that achieves that bound. We introduced practical techniques
that handle limited node degree constraints and churn. We built Angel-
Cast, a cloud-based service that assists content providers in delivering quality
streams to their customers, while allowing the content providers to leverage
the customers’ resources to the fullest. We deployed AngelCast unto two re-
search platforms: Planetlab and Emulab. We showed that the performance
of AngelCast is comparable to that of SopCast, a widely used streaming pro-
tocol, and that it is capable of supplementing the bandwidth deficit with near
minimal capacity, while being able to handle churn. We are currently devel-
oping a version of AngelCast for wide-spread deployment. We are planning
on collecting measurements of its performance in delivering real-world live
streams. Our future work will explore ways in which under-utilized angels
are managed. This includes the possibility of using angels across multiple
swarms. Security is another focus of our future work, especially securing the
registrar control messages.
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