
Boston University

OpenBU http://open.bu.edu

BU Open Access Articles BU Open Access Articles

2017-07-01

Multi-capacity bin packing with

dependent items and its application to

the packing of brokered workloads in

virtualized environments

Christine Bassem, Azer Bestavros. 2017. "Multi-Capacity Bin Packing with Dependent Items

and its Application to the Packing of Brokered Workloads in Virtualized Environments." FUTURE

GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,

Volume 72, pp. 129 - 144 (16).

https://hdl.handle.net/2144/25979

Downloaded from DSpace Repository, DSpace Institution's institutional repository

Network-Constrained Packing of Brokered
Workloads in Virtualized Environments

Christine Bassem
Computer Science Department

Boston University
Boston, MA 02215

Email: cbassem@cs.bu.edu

Azer Bestavros
Computer Science Department

Boston University
Boston, MA 02215

Email: best@cs.bu.edu

Abstract—Providing resource allocation with performance
predictability guarantees is increasingly important in cloud
platforms, especially for data-intensive applications, in which
performance depends greatly on the available rates of data
transfer between the various computing/storage hosts underlying
the virtualized resources assigned to the application. Existing
resource allocation solutions either assume that applications
manage their data transfer between their virtualized resources, or
that cloud providers manage their internal networking resources.
With the increased prevalence of brokerage services in cloud
platforms, there is a need for resource allocation solutions that
provides predictability guarantees in settings, in which neither
application scheduling nor cloud provider resources can be
managed/controlled by the broker. This paper addresses this
problem, as we define the Network-Constrained Packing (NCP)
problem of finding the optimal mapping of brokered resources
to applications with guaranteed performance predictability. We
prove that NCP is NP-hard, and we define two special instances
of the problem, for which exact solutions can be found efficiently.
We develop a greedy heuristic to solve the general instance of the
NCP problem , and we evaluate its efficiency using simulations
on various application workloads, and network models.

I. INTRODUCTION

Service brokerage in a cloud computing setting allows bro-
kers to act as intermediaries between the resources offered by
the data center providers, such as Amazon EC2 [1], and their
consumers. Service brokers allow customers to access services
that are not usually offered by the individual providers;e.g., in
the form of unique services over an existing cloud platform,
or in the form of an aggregation of existing services provided
by multiple cloud platforms [6], [18]. This brokerage model
creates a marketplace, in which the resources of existing cloud
platforms are used to provide services tailored according to the
customer’s need, at a competitive price.

Data-intensive applications, such as MapReduce [10], and
Message Passing Interface (MPI) [32] applications, devote
most of their processing time to data transfer and manipulation,
and their execution time depends mainly on the size of the data
to be processed, and the characteristics of the network over
which this data is transferred [30]. Resource virtualization has
enabled data center providers to offer such applications virtu-
ally isolated computing resources for a fraction of the cost of
the actual physical hardware. These virtual resources share the
data center’s network infrastructure, i.e., the fabric, and thus
allow all applications to access the fabric in an uncontrolled
and opportunistic manner, resulting in unpredictable network

performance, which in turn affects the execution times of data-
intensive applications, and consequently their costs [19], [22],
[2].

Improving the performance predictability of applications
has been a great concern, to the extent that public cloud
providers started to offer computing resources with access
to a dedicated full-bisection, high bandwidth network, as in
Amazon’s HPC instances [1], and various resource allocation
models have been proposed, which guarantee or improve
an application’s performance predictability on non-dedicated
networks. Existing models, that we explore later in the paper,
fall into one of two categories; network-aware application
management, and application-aware network management,
both of which are not suitable for a brokerage model.

To provide a brokerage service for predictable performance
on cloud platforms, we need a model for predictable resource
allocation, in which neither the application, nor the data
center resources can be managed. We propose a brokerage
model, in which a broker acts as an intermediary between
the resources provided by the data center providers, and the
applications demanding these resources. This model is based
on the abstraction of the main properties of both the data center
provider, and the application’s workload, which allows us to
efficiently allocate physical resources obtained from any set of
data center providers to applications, without the need to alter
their internal management structures.

Fig.1 shows an architectural view of a framework based
on our proposed brokerage model. Given a set of virtual
machine containers, i.e., slots, obtained from a data center
provider, an inference service is used to infer the physical
resources available for them. Recent studies have shown that
the network resources accessible by a virtual machine (VM)
is highly dependent on the properties of the hypervisor on
the physical machine that it’s placed on [5], [35]. Therefore,
we assume that the inference service identifies collocated VM
slots, infers the network resources available from their hosting
physical machines [25], and the relationship between them [5].

On the application’s side, the profiling service is used to un-
derstand the behavior of the application’s internal components.
We assume that it abstracts the application’s requirements into
the number of homogeneous VMs it needs, and the bandwidth
required on the path between each pair of VMs to achieve
a predefined execution time. This abstraction is similar to
that used in existing application-aware network management

Fig. 1: An architectural view of a framework

models, as it considers only the necessary details that affect the
predictability of an application, and it can be obtained using
approaches similar to these presented in [36], [37].

Finally, the resource allocation service takes as input the
output of the inference and profiling services, and provides
predictability guarantees by efficiently allocating physical re-
sources to the applications according to their demand. In this
paper, we present the Network-Constrained Packing (NCP)
problem, which is that of finding the optimal packing of the
components of a brokered workload onto the brokered physical
containers. An optimal packing minimizes the cost of using
the underlying data center fabric, while satisfying the capacity
and demand constraints of the system. By observing the range
of data-intensive applications and data center topologies, we
exploit the abstractions defined in our model to classify the
problem model into several special instances, and to develop
polynomial-time exact algorithms for two of these special
instances that occur frequently in reality. Finally, we develop
a greedy heuristic to solve the NCP problem in the general
model, and exemplify its ability to provide a good allocation
for data-intensive applications through extensive simulations.

The remainder of this paper is organized as follows; in
Section 2, we provide a brief description of the related work.
In Section 3, we present our model, define the NCP problem
problem, prove it to be NP-hard, and identify special instances
of the model. In Section 4, we offer exact algorithms for two
of these special instances, with a proof of optimality for each
described in [4], and we define the Greedy NCP algorithm to
solve the general instance of the problem. In Sections 5, we
evaluate the efficiency of the G-NCP algorithm using extensive
simulations, and in Section 6, we conclude the paper with a
summary of results, and our on-going and future research.

II. RELATED WORK

The resource allocation problem of parallel applications has
long been studied in the domains of grid, and cloud computing.
In this section, we provide a summary of the approaches
used to manage resources allocated to applications with inter-
dependent parallel components, in which dependence is in the
form of required bandwidth between the components, and we
classify them according to the management model adopted.

Application-aware Network Management

It’s the model in which the physical network provider is
responsible of managing its own physical resources according
to the application demands it receives, with an objective to
optimize some performance metric. Virtual network embed-
ding (VNE) is the most commonly adopted approach in grid
systems, such as PlanetLab, in which a slice of the physical
network resources is reserved for the application, according
to its properties. In VNE, the physical provider’s network
follows an internet topology, and is represented as a substrate
graph. The application’s requested virtual network is embedded
within that substrate graph, such that virtual nodes are mapped
in a one-to-one fashion to substrate nodes, and virtual links
are mapped to paths in the substrate network. Algorithms for
VNE vary according to how they perform the mapping; link
and node mapping can be performed separately, as in [40],
[39], [27], or in a joint manner as in [8], [7]. Approaches also
vary according to their embedding objectives, and optimization
strategies used; recent surveys of VNE can be found in [12],
[11].

With the emergence of data center networks, with well-
structured topologies, performance predictability is achieved
either using network sharing models, or explicit allocation of
network resources. In network sharing [3], [17], bin pack-
ing [23] approaches are used allocate computing resources
to the workloads, and then providers attempt to share the
network resources among the different workloads according
to their demand, or payment. For explicit allocation, several
approaches have been proposed to perform joint reservation of
both the computing and networking resources during allocation
to guarantee predictability. Such algorithms differ according
to the model assumed for the application’s network demands;
applications with hose-model abstractions have been assumed
in [2], [37], while pipeline-model abstractions have been as-
sumed in [16], [14], [13], and product traffic patterns have been
assumed in [38]. Moreover, the degree of network management
varies from managing the routing between the switches in
the fabric [16], to rate limiting applications by managing the
servers’ hypervisors [2].

Network-aware Application Management
In this model, the resources allocated to the user cannot be

chosen, controlled, or substituted, and the user is responsible
for scheduling its inner application tasks to optimize for its
own objective. This approach is fairly recent in the cloud
computing domain, and algorithms vary according to their
placement strategies. In [25], performance predictability is im-
proved by greedily placing communicating tasks in VMs with
high bandwidth among them, while in [26], the application
components are divided into smaller tasks, and packed inside
the virtual machines to maximize virtual machine utilization,
while minimizing the cost of tasks communicating across these
virtual machines.

III. NETWORK-CONSTRAINED WORKLOAD PACKING

In this section, we present our proposed brokerage service
model, and the NCP problem based on it.

A. The Broker Model

In our model, we differentiate between the data center
provider, and the service broker. A physical data center net-
work is composed of a set of physical severs each capable

of hosting multiple virtual machines. Servers are connected
to rack switches, which are in turn connected to each other
through the datacenter’s backbone network, i.e., the fabric,
which usually follows some tree topology, such as fat tree
[31], or VL2 [15]. VMs hosted on a server are controlled by a
hypervisor that multiplexes their access to the various physical
resources on the server, and the network it has access to. The
data center provider manages all the resources in its network,
and allocates them to its tenants, in the form of VM slots.

We define the service broker, as an entity that has access
to only a subset of the VM slots provided by the data
center provider. The broker is oblivious to the status of other
VM slots in the data center, and the data center fabric.
An inference service groups collocated VM slots into m
servers, and represents the properties of these servers by the
tuple (D,C,B), which represents the relationship between the
servers, and the computing and bandwidth resources available
on them. The distance matrix D :< m × m > represents
the relationship between the servers, i.e., the value of di,j
could represent the network distance between the servers, the
delay of communication between them, or some other cost of
communication metric as defined by the service broker. The
vector C :< 1 × m > represents the computing resources
available at each server, which is basically the number of VM
slots available on the server, since we assume a single type
of VM in our model. Finally, the vector B :< 1 × m >
represents the bandwidth shared between the VM slots collo-
cated on each server. We note that the communication between
VMs on separate servers i and j is limited to a bandwidth
of min{bi, bj}, while communication between VMs on the
same server experience a virtually unlimited bandwidth with
negligible cost.

An application in our model is represented by the number
of homogeneous virtual machines it requires, n, and the
bandwidth required between each pair of VMs represented
by the traffic matrix T . The traffic matrix T :< n × n >
is a symmetric matrix with a diagonal of 0’s, representing the
network bandwidth required on each path between all pairs of
VMs.

B. The Network-Constrained Packing Problem

A feasible packing is a mapping of a job’s VM to a server
hosting a VM slot, with a the mapping function, M : 1, ..., n→
1, ...,m, such that M(i) = j,∀1 ≤ i ≤ n, 1 ≤ j ≤ m, which
satisfies all the demands of the job, while remaining within
the capacity constraints of the service broker. Each packing is
associated with a cost, and an optimal packing is the one with
the minimum associated cost.

Definition 1: Network-Constrained Packing. We define
the NCP problem as that of finding the optimal packing of
the job’s components onto the servers with minimal cost of
using the data center fabric. The cost of using the data center
fabric, as associated with a packing, is defined as the sum
of product of the bandwidth allocated between two servers,
and the distance between them;

∑
1≤i≤n(

∑
∀j:M(i)6=M(j) ti,j×

dM(i),M(j)).

1) Problem Formulation: The NCP problem can be for-
mulated as an integer linear optimization problem, which is
known to be NP-hard to solve [24].

(a) Virtual 1:1 over-subscription (b) VL2 topology

Fig. 2: Classes of server distances

2) Complexity of the NCP problem : We prove that the
NCP problem is NP-hard by providing a polynomial time
reduction of the bin packing problem to it, such that the
optimal solution found for the constructed NCP problem
instance corresponds to an optimal solution for the original
bin packing problem instance [4].

C. Instances of the NCP Problem

Based on an examination of the range of variables in
our model, specifically the job’s traffic matrix and the server
distances, we develop a taxonomy of special instances of the
problem that we develop based on an examination of the range
of variables in our model.

The job’s traffic matrix. Work on profiling traffic de-
mands of data-intensive applications have shown that these
types of applications usually have a structured workload pat-
tern [9], which can be used to identify the most typically oc-
curring communication patterns among its VMs. Accordingly,
we can classify the communication patterns of data-intensive
applications into four main classes; constant, tree-based, clus-
tered, and arbitrary traffic. Applications with constant traffic,
such as MapReduce [10] and Dryad [20], initially distribute the
data to be processed among all of its VMs, and then uniform
communication occurs among the VMs through out the job
execution, in which data is transferred from one VM to almost
all of the other VMs for processing [2], [37]. Jobs with tree-
based traffic, such as those found in back-end web services,
usually follow a partition-aggregate model of computation, in
which a master VM that holds the master task assigns tasks
to its workers that in turn assign them to their workers, and
so on. In tree-based traffic patterns the bandwidth required
between a VM, and its parent VM is greater than or equal to
the bandwidth required between that same VM, and its children
VMs. Jobs with clustered communication patterns, such as
those presented in [2] as virtual over-subscribed clusters, can
be used to describe applications with clusters of VMs with
high intra-cluster communication and lower inter-cluster com-
munication, as in Hive [34]. Finally, arbitrary communication
patterns can be seen in domain-specific applications such as
in MPI [32], and MTC [33] applications.

The service broker’s distance matrix. The service broker
model varies as well, according to the properties that the
data center fabric is based upon. We consider three main
classes of server distances; equal distance, tree-based distance,
and arbitrary distance. The interpretation of these classes
varies according to the semantics of the distance metric. For
example, if the distance metric represents the delay encoun-
tered on the paths between the servers, then equal distances

indicate that the data center fabric provides virtual 1:1 over-
subscription (Fig.2a), tree-based distances indicate a balanced
tree-structured fabric (Fig.2b), and arbitrary distances indicate
otherwise.

IV. ALGORITHMS FOR NETWORK-CONSTRAINED
PACKING

According to our analysis of the NCP problem , and the
taxonomy of its special instances, we define polynomial-time
exact algorithms for two of these special instances, and we
develop the Greedy Network-Constrained Packing (G-NCP)
algorithm for a general problem instance, of servers with
arbitrary distances, and jobs with arbitrary communication
patterns. Before we define the algorithms, we present some
essential definitions.

A. Algorithm Definitions

1) Server Effective Capacity: Since the number of VMs
from a specific job that can be packed in a server not only
depends on the server’s available computing resources, but
also its bandwidth resources, we need to estimate the server’s
effective VM slot capacity according to the job’s network
demands. Given a job that requires n VMs, with required
bandwidth described in T following some arbitrary commu-
nication model, we compute the average VM-pair bandwidth
required by all pairs of VMs in that job. Then, we define the
effective capacity of a server as the number of VMs that can be
packed in the server, assuming all VM pairs in the job require
bandwidth equal to the average VM-pair bandwidth.

EC(i, k) = max{k ≤ ci}, such that k(n− k)tk ≤ bi

in which tk is the job k’s average VM-pair bandwidth, and
ci and bi are the servers available computing and bandwidth
resources respectively.

2) Server Cost: For each server, we need to have an esti-
mate of how it will affect the packing cost of the jobs, and then
choose the server with minimum estimated cost. According to
the definition of packing cost in the NCP problem , a low cost
server would be one which maximizes the collocation of the
job’s VMs, by having a high effective capacity, and by being
closer to other servers with high effective capacities.

Given a job k requesting n VMs, the server i’s cost is
defined as,

Cost(i, k) = (n− EC(i, k)) ∗
∑

1≤j≤m
di,j

EC(j,k)

m− 1

, in which the effective capacity of a server i according
to job k’s requirements is represented by EC(i, k), and di,j
represents the distance between servers i and j.

The value computed above is suitable for choosing the first
server for packing, but it is not sufficient when a set of servers
have already been chosen to accommodate a subset of the job’s
VMs. Given a set of chosen servers, to which n′ of the job’s
VMs have already been mapped, a server’s cost for allocating

resources to the remaining VMs has to include its distance to
these already chosen servers. Thus, we update our definition
of server cost to be,

Cost(i, k) =

∑
j∈chosen di,j

|chosen|
(1a)

+ (n′ − EC(i, k)) ∗
∑

1≤j≤m
di,j

EC(j,k)

m− 1
(1b)

3) VM Connectivity: Since the packing cost is directly
proportional to the amount of traffic reserved from a server’s
bandwidth, partitioning the job’s VMs into groups of VMs with
the minimum traffic demand among them is preferred. Due to
the varying capacity constraints of the servers in our model,
basic partitioning and clustering techniques cannot be directly
applied. We propose a greedy approach to choose a cluster of
VMs to be collocated on a single server, in which an initial
VM is chosen as the cluster seed, and then VMs that provide
maximum connectivity to the cluster are added to it until the
compute capacity constraints of the server are violated. We
define a VM’s connectivity, as the difference between the traffic
it saves the cluster, and the traffic it adds to the cluster. In this
work, we adopt a simple greedy heuristic to decide on the
seed VM in a cluster; we choose the unmapped VM with the
highest connectivity to other unmapped VMs.

B. Optimal Algorithms for Constant-Traffic Applications

An application with constant traffic patterns (CTA) is
represented by the number n of VMs it requires, and a
single bandwidth value b required between all its VM pairs.
This constant communication model equates that any k VMs
collocated together will always need a total of k(n − k)b
bandwidth from the server hosting them. The advantage of
this property is that it allows us to ignore the bandwidth
constraints enforced by a server during packing, by computing
the effective capacity of each server before performing the
packing. Since the VM-pair bandwidth required is constant for
CTA, the effective capacity of a server represents the actual
number of the job’s VMs that can be packed in that server.
This removal of the bandwidth capacity constraints from the
packing problem reduces its complexity, and enables us to
define exact algorithms for service broker models with equal,
and tree-based distances among their servers.

1) Allocation on Equally-Distant Servers (EDS): In the
case of servers with equal distances, servers can be considered
as unrelated bins, in which the cost of mapping VMs to the bins
is only affected by the number of bins used, which resembles
the Bin Packing problem with equal-sized items. We develop
the E-NCP algorithm, which is similar in nature to the first
fit bin packing algorithm [23] with bins sorted in decreasing
order according to their effective capacity. Given an instance of
a service broker and a job, we initially compute the effective
computing capacity of each server in our instance, and sort
them according to their computed capacities. Then, we simply
map the job’s VMs to the servers, in order, until there are no
more VMs to be mapped. This complexity of the algorithm
is O(m.logm), and we prove that the packing cost associated
with this algorithm is always optimal [4].

2) Allocation on Tree-Organized Servers (TOS): In this
special instance of the model, the distance between the servers
is in the form of a tree, in which the leaves represent the
servers, and the inner tree nodes represent virtual switches
connecting them to each other. The advantage of this distance
structure is that it can be exploited to find the optimal packing
in polynomial time. The algorithm’s main idea is to annotate
every node in the distance tree, in a bottom-up approach, with
the optimal cost of hosting n VMs on the servers in the sub-tree
rooted at that node. This algorithm’s worst case complexity is
O(m.logm), and it is guaranteed to provide an optimal packing
due to the bottom-up approach used to compute the optimal
cost of packing [4].

C. The Greedy NCP Algorithm

With our analysis of the special instances of the NCP
problem , we note the similarity of the general problem in-
stance to that of the two-dimensional bin packing, in which the
computing and networking resources represent the dimensions
of the bins. The increased complexity of the NCP problem is
two-fold; the distanceS between the servers, i.e., the bins, and
the non-additive property of the network dimension, since col-
location might result in a reduced packing cost. Consequently,
we define the G-NCP algorithm , inspired by bin packing,
in which the smallest set of servers with minimum distances
among them are chosen for the packing of the job’s VMs.

In the G-NCP algorithm , as presented in Alg.1, the packing
is performed in an iterative manner. In the first iteration of the
algorithm, the server costs is computed according to Equation
1, and the server with the minimum cost is chosen to be packed
with a cluster of VMs that doesn’t violate its capacity. The
mapped VMs are recorded, and the server is added to the
chosen set of servers, with an updated effective capacity. In
the next iteration, the server costs are recomputed, and the
process is repeated until either all the job’s VMs are mapped
successfully, or none of the servers could accommodate any
of the job’s VMs in a given iteration.

Algorithm 1 The Greedy NCP Algorithm
Precondition: The job J = (n, T) and physical servers S =

(D,C,B)

1: function G-NCP(J, S)
2: Define list R to record the mapping result of each VM
3: n′ ← n; b ← average bandwidth in T ;
matchFound← false

4: while n′ > 0 and not(matchFound) do
5: Compute cost of each server
6: Sort according to cost
7: for i← 1 to m do
8: Get V; the most connected VMs to be packed

on server i
9: if |V | > 0 then

10: matchFound← true; n′ ← n′ − |V |
11: Add allocation information to R
12: Update ci and bi
13: break
14: Return R if matchFound, and φ otherwise

V. PERFORMANCE EVALUATION

In this section, we evaluate four aspects of the G-NCP
algorithm via extensive simulations; the algorithm’s efficacy,
the algorithm’s performance in an offline setting with varying
properties, the benefit of reserving network bandwidth for jobs
in an online setting, and the disadvantage of using abstractions.

A. Baseline Model

To evaluate the performance of our proposed algorithm in
multiple settings, we designed a Java simulator that generates
various problem instances, namely scenarios. In each scenario,
we generate a problem instance with a service broker, a set
of jobs requesting resources from that broker, and a resource
allocation algorithm.

Service broker model. A service broker is defined by
the number of available VM slots it holds, and the number
of servers they are distributed onto. Once these values are
defined, the available slots are uniformly distributed over the
servers, and the available network resources, i.e., bandwidth,
at each server is computed. In most of our experiments, a
server’s available bandwidth is a random value generated from
the uniform distribution, U(max/4,max). The value max is
defined as the product of the average job size, the average
bandwidth required on a path between any pair of VMs, and
the average capacity of a server. Finally, the distance between
the servers could be defined as equal, with a matrix of all 1’s
and a diagonal of 0’s, or according to some tree-based topology
similar as defined in [29].

Job communication model. The size of a job, i.e., the
number of VMs it requires, is a uniform random variable
which is an appropriate distribution for evaluating the effect
of the job size as adopted in [14],. The communication pattern
of a job can either be constant, clustered, or arbitrary. For
arbitrary communication, the bandwidth demands in a job’s
traffic matrix are obtained from a Gaussian distribution as
adopted in [29]. Clustered traffic is generated using a Gaussian
distribution with high mean for intra-cluster traffic, and another
Gaussian distribution with low mean for inter-cluster traffic.

VM allocation algorithms. In a scenario, VM allocation
can be performed using the G-NCP algorithm as defined
above, or using one of the three algorithms that we compare
our algorithm against. The first two are baseline algorithms
that perform basic VM placement without considering the
job’s traffic patterns; first-fit, and random allocation. The first-
fit allocation algorithms is one of the most commonly used
allocation algorithms, in which the VMs of a chosen job
are collocated on servers according to their compute and
bandwidth capacities, until all VMs are mapped to physical
servers. On the other hand, the random allocation algorithm
represents the worst case scenario of placing VMs in a
datacenter, in which VMs are mapped to severs randomly,
with no attempt of collocation. Finally, since no allocation
algorithm exists, to the best of our knowledge, which considers
the adequacy of a physical server to a specific job during
allocation, we developed a greedy virtual network embedding
algorithm inspired from [40] to evaluate the G-NCP algorithm
against. In this embedding algorithm, we model the broker
as substrate graph, with the nodes representing the available
VM slots, and we compute the ranks of the nodes according

to the stress on their links. Servers are ordered according to
their rank, and VMs are ordered according to their bandwidth
demand, and then we greedily map the VMs to the VM slots,
with consideration to the capacity constraints of the servers
hosting them.

Performance metrics. We evaluate the efficiency of an al-
location using several system-centric metrics, which represent
the effect of the allocation on the service broker. The allocation
cost, as defined above, represents the cost of traffic flowing
through the data center fabric, as defined by the service broker
properties, and it’s better minimized. The server utilization
represents the ratio between the number of used VM slots,
and the total number of VM slots originally offered by the
service broker, and it’s better maximized. Moreover, for online
experiments, we measure the response time, which represents
the average time a job spends in the system from arrival
until completion at steady state, and the throughput, which
represents the average number of jobs served per unit time at
steady state.

B. Single-Job Experiments

To evaluate the efficacy of our greedy heuristic, we need
to compare its objective value, the allocation cost, to that of
the optimal solution. Since we have proven the hardness of the
problem and its corresponding ILP formulation, it’s infeasible
to obtain optimal solutions for larger instances to compare
against. Therefore, we resort to generating problem instances
with a known optimal solution by construction, as done in [21].
To guarantee a correct optimal construction, we assume equal
distances between all servers, and we eliminate all bandwidth
constraints over the servers, i.e, allow unlimited bandwidth to
be used between any two servers. Communication between
any two VMs is never constrained, with 0 cost within the
same server, and a constant cost of 1 if performed across
multiple servers. We set up the service broker model in that
way, to ensure that the allocation cost only depends on the
traffic demands of the job.

In this set of experiments, we generate a service broker with
400 available computing slots, to be uniformly distributed over
some number of physical servers, which differ according to the
scenario to be simulated. As mentioned above, there is infinite
bandwidth available at each server, and the distance matrix
contains all 1’s with a diagonal of 0’s. We generate a single
job to be allocated resources, with varying size starting at 2
VMs, up to 400 VMs. The job’s traffic matrix is generated after
the job’s VMs are placed on the servers, to guarantee optimal
allocation cost. We start by sorting the servers in decreasing
order according to their computing capacity, and placing the
job’s VMs using the first-fit algorithm. Then, we generate the
traffic matrices using one of two methods; Gaussian optimal,
and sparse optimal.

In the method of Gaussian optimal construction, we create
two Gaussian distributions with different means, and the same
variance, with a guarantee that the minimum value generated
by the high-mean distribution is always higher than the max-
imum value generated by the low-mean distributio. For every
pair of VMs, we generate a random traffic value of from
the high-mean distribution if they are collocated, and from
the low-mean distribution otherwise. In the method of sparse

Fig. 3: Cost ratio improves with larger cluster sizes.

optimal construction, which represents a worst case scenario
of the job’s communication model, we define two values for
the traffic demand; a minimum and a maximum value. Then,
for every pair of VMs, their requested traffic is maximum if
they are collocated, and is minimum otherwise.

Traffic generated by both approaches corresponds to the
clustered communication model, in which cluster sizes depend
on the average capacity of the servers. Moreover, jobs are
allocated their optimal resources using a decreasing first fit
approach, thus it’s excluded from our experiments below, in
which evaluate the effect of the server capacity, and the job
size on the efficacy of the algorithm. For each scenario within
an experiment, we compute the ratio between the allocation
cost of our proposed G-NCP algorithm , and the optimally
constructed allocation cost, and similarly for the greedy, and
the random algorithms. The results shown below are the
average of the values obtained from running each scenario
40 times, each with high mean / maximum value of 0.7, low
mean / minimum value of 0.1, and a standard deviation of 0.2.

In the first experiment, we evaluate the effect of the server
capacity, i.e., the average number of collocated VM slots
within a single server, on the efficacy of the algorithms. In
each scenario, we generate a single job with a size of 400
VMs, with traffic demands that are either Gaussian or sparse,
as defined above. The results in Fig.3 represent the allocation
cost ratio with increased server capacity, i.e., with decreased
number of servers over which the 400 VM slots are distributed.
For scenarios with low server capacity, all algorithms provide
almost-optimal allocation costs, which is a direct result of the
small sizes of the clusters of communicating VMs within the
job that result in less communication cost. As the average
server capacity increases, the cluster sizes increase, creating
more structured communication patterns among the VMs, and
higher allocation costs. The cost ratio of the G-NCP algorithm
increases at a very low rate because it considers the internal
structure of the job during allocation, which is evident in
the almost optimal cost ratio at the highest values of server
capacity.

In the second experiment, we evaluate the effect of the job
size on the efficacy of the algorithms. In each scenario, we
generate a single job with varying size, and Gaussian-based
optimally constructed traffic matrix. We show the experiment
results for scenarios with servers with an average capacity
of 20 VM slots each in Fig.4a, and an average capacity

(a) Capacity = 20 (b) Capacity = 40

Fig. 4: Cost ratio is unaffected by the number of clusters in a
job.

of 40 VM slots in Fig.4b. The cost ratio of the random
and greedy algorithms reaches the worst cost ratio when job
sizes are double that of the average server capacity, and then
decreases with increased job size. This occurs because the
number of clusters within the job increases with its size, given
a fixed server capacity, which reduces the chance of deviating
from the true allocation. Meanwhile, the cost ratio of the G-
NCP algorithm is consistently lower than that of the other
algorithms, and is almost unaffected by the job size.

C. Batch of Jobs Experiments

In the next set of experiments, we evaluate the performance
of the allocation algorithms when applied to a batch of jobs.
To apply these algorithms on a batch of jobs, with varying
sizes and traffic demands, we sort the jobs according to their
average traffic demand, and consider one job at a time for
allocation. For each job, one of the algorithms is used to find
an allocation. If one is found, the job’s demanded resources
are reserved, and the service broker properties are updated. If
no solution is found, the job is considered rejected, and it is
not allocated any resources.

1) Packing in G-NCP algorithm : In the first experiment,
the importance of choosing servers that increase the chance
of collocating the job’s VMs is highlighted. Jobs are created
with random sizes generated by a uniform distribution with
an average varying between 5 and 50 VMs, and an arbitrary
communication model with a random mean between [0, 1], and
a standard deviation of 0.2. The average allocation costs per
VM achieved by the algorithms for a service broker with 400
VM slots, and an average server capacity of 6, and 10 VM
slots are shown in Fig.5. In Fig.5a, the allocation cost of all
algorithms approach that of the random due to the small server
capacity, which doesn’t enable enough collocation to minimize
the allocation cost. This is confirmed in Fig.5b, in which the
server capacity is increased by a small factor, allowing for
better collocation for all algorithms. Moreover, this increased
capacity exemplifies the G-NCP algorithm ’s capability of
choosing better servers for allocation, as evident by its lower
costs.

In the second experiment, the superiority of the G-NCP
algorithm with jobs that have some structure in their communi-
cation model is highlighted. Jobs are created with random sizes
generated by a uniform distribution with an average varying
between 5 and 50 VMs, and a clustered communication model
is generated using two Gaussian distributions, one with a mean
of 2.0 for intra-cluster communication, and another with a

(a) Capacity = 6 (b) Capacity = 10

Fig. 5: Even for arbitrary traffic, server choice improves the
allocation cost.

Fig. 6: The G-NCP algorithm is superior for jobs with struc-
tured communication models.

Fig. 7: The efficiency of the G-NCP algorithm improves with
higher server capacities.

mean of 0.5 for inter-cluster communication, and both with
a standard deviation of 0.5. The results shown in Fig.6, 7 are
for a service broker with 400 VM slots, and an average server
capacity of 6 and 10 VM slots respectively. The efficiency of
the G-NCP algorithm over the other algorithms is a result of
our server packing approach, in which we start by choosing
the most cost-efficient server according to the job demands,
and then perform the VM packing according to the server’s
capacity. This approach results in choice of a smaller number
of servers for allocation, while clustering the job’s VMs in a
way that minimizes the cross communication between these
servers, resulting in a much improved allocation cost. More-
over, this superiority is highlighted by the average utilization
of the service broker’s resources, and an even more improved
cost with higher server capacities.

2) Effect of traffic demand: In the next offline experiment,
we evaluate the effect of the variation of traffic demand
among VMs on the allocation performance. Jobs are created
with random sizes generated by a uniform distribution with
an average of 30, and their traffic matrices are generated
using a Gaussian distribution with a random mean, and a
standard deviation that varies between of 0.1, and 2.0. The
allocation results for a service broker with 400 VM slots,
and an average server capacity of 6 VM slots, are shown
in Fig.8. As mentioned above, allocation cost of jobs with

Fig. 8: Increased traffic variance enables better allocation.

Fig. 9: The G-NCP algorithm is always superior for allocation
jobs with structured communication patterns.

arbitrary communication models with small variance on servers
with small capacities usually isn’t affected by the nature
of the allocation algorithm. When the variance is increased
in this experiment, the communication model exhibits some
structure, which allows the G-NCP algorithm to decide on
better allocations.

Since the superiority of the G-NCP algorithm is better
observed for jobs with communication patterns, we perform
this third offline experiment, in which jobs have clustered
communication patterns. The allocation results for a service
broker with 400 VM slots, an average server capacity of 6
VM slots, and jobs with cluster sizes varying between 60,
i.e., high communication among all VMs, and 1, i.e, low
communication among all VMs, are shown in Fig.9. We note
that the decreased allocation cost trend for all algorithms is
attributed to the decreased cluster size, which minimizes the
amount of bandwidth required by the job in general.

D. Online Experiments

In this next set of experiments, we aim to demonstrate
the advantages of explicit bandwidth reservation for jobs in
an online setting, as that observed in commercial cloud data
center providers. In an online setting, jobs arrive to the system
at some rate requesting resources from the service broker,
and they are allocated physical resources according to the
admission control policy adopted by the provider. In the next
set of experiments, we compare between two admission con-
trol policies; network-oblivious and network-aware. Network-
oblivious admission control is the policy currently adopted
by commercial data center providers, in which only a job’s
computing requirements are considered upon the job’s arrival,
and physical resources are allocated to the job regardless of
its network demand. In such a model of admission control,
a decreasing first-fit allocation algorithm is usually applied,
to increase the locality of the allocation. On the other hand,
in network-aware admission control, both the job’s computing
and traffic demands are considered upon the job’s arrival, and
the admission of a job is only allowed if both the computing
and network bandwidth can be reserved for the job. In such

Fig. 10: Network aware admission provides better response
time.

Fig. 11: Jobs are charged a constant amount of money, with
improved system capacity.

a model of admission control, a network-aware allocation
algorithm is required, and we use the G-NCP algorithm in
our experiments.

In all of our online experiments, we generate a service
broker with 400 VM slots with average server capacity of 10
VMs, and jobs have clustered communication models with a
high mean of 2.0, a low mean of 0.5, and a standard deviation
of 0.2. In the first online experiment, we evaluate the effect
of the jobs’ arrival rate on the system’s performance, in terms
of response time and throughput, as well as its effect on the
monetary payment to be paid by the job’s owner. For the
purposes of this experiment, we define a job’s payment as the
product of the number of VMs required by the job, and the
amount of time that the job uses these VMs. Since network-
aware admission guarantees predictable execution of jobs, we
observe how their payments are constant, depending only on
the size of the job, regardless of the load on the system.
Unlike in the network-oblivious admission model, in which
the job’s payment increases until the network gets saturated
as the system reaches its maximum capacity. Moreover, the
results indicate that network-aware admission leads to higher
throughput, consequently an increased system capacity, which
depends on the average job size and not the job’s network
bandwidth demand.

E. Effect of Inaccurate Inference on Performance

So far, in all of our previous experiments, we assumed
that the input of the allocation service, in terms of the
service broker’s bandwidth capacities, and the job’s bandwidth
demands, are accurate, which might not be the case in a
real system. In the next couple of experiments, we study the
effect of using bandwidth capacity values as estimated by
an inference service, as opposed to using their corresponding
accurate values. We generate a data center with 16 servers,
each with 30 VM slots, connected in a fat tree topology, as
show in Fig.2b. In such a topology, all network links have a
bandwidth of 1024 Mbps, and there is a single path between
servers connected to the same edge switch, two paths between

Fig. 12: The effect of abstraction on system utilization.

servers connected to the same pod, and four paths between
servers connected to different pods. To emulate the state of
the data center at about 50% utilization, we generate jobs with
arbitrary communication patterns to fill all 480 VM slots in the
data center, and then we remove half of them. For each job,
the VMs are mapped to random servers, and the data between
any pair of VMs is routed through an available path, chosen
at random, between the servers accommodating them. When a
job is removed, the VM slots it was using are made available,
and its traffic demand is removed from the fabric.

To emulate the behavior of the inference service, we con-
sider the available bandwidth capacity of a server to be defined
as the maximum bandwidth measured between that server and
every other server accessed by the service broker. We assume
that the inference service performs multiple experiments to
measure the available bandwidth between pairs of servers,
and that it estimates the bandwidth between a pair of servers
according to one of two policies; the minimum, or the average
observed bandwidth. To compare the effectiveness of both
estimation approaches, we attempt to allocate resources for
a batch of jobs with arbitrary traffic, and we compute the
utilization of the compute resources of the service broker.
The results shown in Fig.12, indicate that using the minimum
observed bandwidth leads to the under-utilization of the service
broker resources, especially for large job sizes, as opposed to
using the average observed bandwidth.

Although average observed bandwidth estimates provide
better resource utilization, they lead to situations in which the
reserved bandwidth, during allocation, is more than what is
actually provided by the data center fabric. To examine the
effect of this over-reservation, we evaluate the performance
of network-aware admission control with bandwidth capaci-
ties estimated using the average observed bandwidth. In this
experiment, the server bandwidth capacity is computed at the
beginning of each scenario using average values, and never
changes during the simulation. Meanwhile, the true available
bandwidth varies through out the simulation, by changing the
paths used to route data between servers. The results in Fig.13
represent the average response time, and cost per job with an
increased load on the system. Jobs stay longer than expected in
the system, but their payments and response time are still not
affected by the load on the system, and is only affected by the
error in estimated bandwidth. Leading to a slightly degraded
performance as compared to accurate values, but a significantly
better performance than network-oblivious approaches.

VI. CONCLUSION

In this paper, we presented two growing trends in cloud
platforms; service brokerage, and providing predictability guar-
antees for data-intensive jobs, and argued the need to define a

Fig. 13: Admission with inaccurate estimations is still better
that network-oblivious admission.

resource allocation model that can satisfy both trends. To that
extent, we propose the first brokerage model for providing
predictability guarantees on cloud platforms, which does not
assume any control over either the cloud provider, or the
customer, and present our view of a framework based on
that model. We focused on the resource allocation component
of that framework, and proposed the Network-Constrained
Packing problem, prove its hardness, and exploit its resem-
blance to bin packing to develop efficient exact algorithms for
two of its special instances, and a greedy heuristic for the
general problem instance. Evaluation results for the proposed
G-NCP algorithm confirm that it performs better with jobs
with structured communication models, and that its perfor-
mance is not affected by the job size, or the average server
capacity. Moreover, our evaluations exemplify the advantage
of performing network-aware admission control, even with
uncertain inference of the available resources. Our current
work involves the analysis of the other special cases of the
NCP problem to identify more efficient algorithms for them,
and the development of better approaches for clustering the
job’s components according to the properties of the server
to be packed in. In our future work, we plan to study the
problem of scheduling and allocating resources to a batch of
brokered workloads, as well as the design and implement the
other elements of our proposed brokerage framework

ACKNOWLEDGMENTS

This work is supported by NSF CISE CNS Award #
1347522, # 1239021, # 1012798.

REFERENCES

[1] I. Amazon Web Services. Amazon EC2.
[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards

predictable datacenter networks. ACM SIGCOMM Computer Commu-
nication Review, 41(4):242, Oct. 2011.

[3] O. G. Ballani H, Jang K, Karagiannis T, Kim C, Gunawardena D. Chatty
Tenants and the Cloud Network Sharing Problem. In NSDI, 2013.

[4] C. Bassem and A. Bestavros. Network-Constrained Packing of Brokered
Workloads in Virtualized Environments. Technical report, Boston
University, 2014.

[5] D. Battré, N. Frejnik, S. Goel, O. Kao, and D. Warneke. Evaluation of
network topology inference in opaque compute clouds through end-
to-end measurements. In Cloud Computing (CLOUD), 2011 IEEE
International Conference on, pages 17–24. IEEE, 2011.

[6] A. Bestavros and O. Krieger. Toward an open cloud marketplace: Vision
and first steps. IEEE Internet Computing, 18(1):72–77, 2014.

[7] X. Cheng, S. Su, Z. Zhang, K. Shuang, F. Yang, Y. Luo, and J. Wang.
Virtual network embedding through topology awareness and optimiza-
tion. Computer Networks, 56(6):1797–1813, Apr. 2012.

[8] M. Chowdhury, M. R. Rahman, and R. Boutaba. ViNEYard: Virtual
Network Embedding Algorithms With Coordinated Node and Link
Mapping. IEEE/ACM Transactions on Networking, 20(1):206–219, Feb.
2012.

[9] M. Chowdhury and I. Stoica. Coflow: A networking abstraction for
cluster applications. In Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, pages 31–36. ACM, 2012.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[11] F. Esposito, I. Matta, and V. Ishakian. Slice embedding solutions for
distributed service architectures. ACM Comput. Surv., 46(1):6:1–6:29,
July 2013.

[12] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach.
Virtual Network Embedding: A Survey. IEEE Communications Surveys
& Tutorials, 15(4):1888–1906, Jan. 2013.

[13] C. Fuerst, S. Schmid, and A. Feldmann. Virtual network embedding
with collocation: Benefits and limitations of pre-clustering. In 2013
IEEE 2nd International Conference on Cloud Networking (CloudNet),
pages 91–98. IEEE, Nov. 2013.

[14] I. Giurgiu, C. Castillo, A. Tantawi, and M. Steinder. Enabling efficient
placement of virtual infrastructures in the cloud. In Proceedings of the
13th International Middleware Conference, pages 332–353. Springer-
Verlag New York, Inc., 2012.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. Vl2: A scalable and flexible
data center network. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, SIGCOMM ’09, pages 51–62,
New York, NY, USA, 2009. ACM.

[16] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet. In Proceedings of the 6th International
COnference on - Co-NEXT ’10, page 1, New York, New York, USA,
2010. ACM Press.

[17] Y. Guo, A. L. Stolyar, and A. Walid. Shadow-routing based dynamic
algorithms for virtual machine placement in a network cloud. In 2013
Proceedings IEEE INFOCOM, pages 620–628. IEEE, Apr. 2013.

[18] I. Houidi, M. Mechtri, W. Louati, and D. Zeghlache. Cloud service
delivery across multiple cloud platforms. In Services Computing (SCC),
2011 IEEE International Conference on, pages 741–742. IEEE, 2011.

[19] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. H. Epema. Performance analysis of cloud computing services
for many-tasks scientific computing. Parallel and Distributed Systems,
IEEE Transactions on, 22(6):931–945, 2011.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, EuroSys ’07, pages 59–72, New York, NY,
USA, 2007. ACM.

[21] J. Ishakian, Vatche and Sweha, Raymond and Bestavros, Azer and
Appavoo. CloudPack* Exploiting Workload Flexibility Through Ra-
tional Pricing. In Proceedings of the 13th International Middleware
Conference, pages 374—-393, 2012.

[22] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright. Performance analysis of
high performance computing applications on the amazon web services
cloud. In Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on, pages 159–168. IEEE, 2010.

[23] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis,
Massachusetts Institute of Technology, 1973.

[24] R. M. Karp. Reducibility among combinatorial problems. Springer,
1972.

[25] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan. Choreo. In
Proceedings of the 2013 conference on Internet measurement conference
- IMC ’13, pages 191–204, New York, New York, USA, 2013. ACM
Press.

[26] Li, Xin, Jie Wu, Shaojie Tang and S. Lu. Lets Stay Together: Towards
Trafc Aware Virtual Machine Placement in Data Centers. In INFOCOM,
2014.

[27] J. Lischka and H. Karl. A virtual network mapping algorithm based
on subgraph isomorphism detection. In Proceedings of the 1st ACM

workshop on Virtualized infrastructure systems and architectures - VISA
’09, page 81, New York, New York, USA, 2009. ACM Press.

[28] J. Londoño, A. Bestavros, and S.-H. Teng. Colocation games: And their
application to distributed resource management. In Proceedings of the
2009 Conference on Hot Topics in Cloud Computing, HotCloud’09,
Berkeley, CA, USA, 2009. USENIX Association.

[29] X. Meng, V. Pappas, and L. Zhang. Improving the Scalability of Data
Center Networks with Traffic-aware Virtual Machine Placement. In
2010 Proceedings IEEE INFOCOM, pages 1–9. IEEE, Mar. 2010.

[30] A. Middleton. Data-intensive technologies for cloud computing. In
B. Furht and A. Escalante, editors, Handbook of Cloud Computing,
pages 83–136. Springer US, 2010.

[31] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: A scalable
fault-tolerant layer 2 data center network fabric. SIGCOMM Comput.
Commun. Rev., 39(4):39–50, Aug. 2009.

[32] P. S. Pacheco. Parallel programming with MPI. Morgan Kaufmann,
1997.

[33] I. Raicu, I. T. Foster, and Y. Zhao. Many-task computing for grids and
supercomputers. In Many-Task Computing on Grids and Supercomput-
ers, 2008. MTAGS 2008. Workshop on, pages 1–11. IEEE, 2008.

[34] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. Proceedings of the VLDB Endowment, 2(2):1626–
1629, 2009.

[35] G. Wang and T. Ng. The impact of virtualization on network perfor-
mance of amazon ec2 data center. In INFOCOM, 2010 Proceedings
IEEE, pages 1–9, March 2010.

[36] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Profiling and
modeling resource usage of virtualized applications. In Proceedings of
the 9th ACM/IFIP/USENIX International Conference on Middleware,
Middleware ’08, pages 366–387, New York, NY, USA, 2008. Springer-
Verlag New York, Inc.

[37] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is
change. ACM SIGCOMM Computer Communication Review, 42(4):199,
Sept. 2012.

[38] K. You, B. Tang, and F. Ding. Near-optimal virtual machine placement
with product traffic pattern in data centers. In 2013 IEEE International
Conference on Communications (ICC), pages 3705–3709. IEEE, June
2013.

[39] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual net-
work embedding. ACM SIGCOMM Computer Communication Review,
38(2):17, Mar. 2008.

[40] Y. Zhu and M. Ammar. Algorithms for Assigning Substrate Network
Resources to Virtual Network Components. In Proceedings IEEE
INFOCOM 2006. 25TH IEEE International Conference on Computer
Communications, pages 1–12. IEEE, 2006.

