
Boston University

OpenBU http://open.bu.edu

BU Open Access Articles BU Open Access Articles

2017

Linear Coupling: An Ultimate Unification

of Gradient and Mirror Descent

L Orecchia, Zeyuan Allen-Zhu. "Linear Coupling: An Ultimate Unification of Gradient and Mirror

Descent." Innovations in Theoretical Computer Science

https://hdl.handle.net/2144/27036

Downloaded from DSpace Repository, DSpace Institution's institutional repository



Linear Coupling: An Ultimate Unification of
Gradient and Mirror Descent∗

Zeyuan Allen-Zhu1 and Lorenzo Orecchia2

1 Institute for Advanced Study, Princeton, USA
zeyuan@csail.mit.edu

2 Boston University, USA
orecchia@bu.edu

Abstract
First-order methods play a central role in large-scale machine learning. Even though many
variations exist, each suited to a particular problem, almost all such methods fundamentally rely
on two types of algorithmic steps: gradient descent, which yields primal progress, and mirror
descent, which yields dual progress.

We observe that the performances of gradient and mirror descent are complementary, so that
faster algorithms can be designed by linearly coupling the two. We show how to reconstruct Nes-
terov’s accelerated gradient methods using linear coupling, which gives a cleaner interpretation
than Nesterov’s original proofs. We also discuss the power of linear coupling by extending it to
many other settings that Nesterov’s methods cannot apply to.
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1 Introduction

The study of fast iterative methods for approximately solving convex problems is a central
research focus in Machine Learning, Combinatorial Optimizations and many other areas of
Computer Science and Mathematics. For large-scale programs, first-order iterative methods
are usually the methods of choice due to their cheap and often highly parallelizable iterations.

First-order methods access the target optimization problem minx∈Q f(x) in a black-
box fashion: the algorithm queries a point y ∈ Q at every iteration and receives the pair(
f(y),∇f(y)

)
.1 The complexity of a first-order method is usually measured in the number

of queries necessary to produce an additive ε-approximate minimizer. First-order methods
have recently experienced a renaissance in the design of fast algorithms for fundamental
computer science problems, varying from discrete ones such as maximum flow problems [20],
to continuous ones such as empirical risk minimization [39].

Despite the myriad of applications, first-order methods with provable convergence guaran-
tees can be mostly classified as instantiations of two fundamental algorithmic ideas: gradient

∗ The authors would like to thank Silvio Micali for listening to our work and suggesting the name “linear
coupling”. The full version of this paper can be found on arXiv https://arxiv.org/abs/1407.1537.

1 Here, variable x is constrained to lie in a convex set Q ⊆ Rn, which is known as the constraint set of
the problem.
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3:2 Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent

descent and the mirror descent.2 We argue that gradient descent takes a fundamentally
primal approach, while mirror descent follows a complementary dual approach. In our main
result, we show how these two approaches blend in a natural manner to yield a new and
simple accelerated gradient method for smooth convex optimization problems, as well as lead
to other applications where the classical accelerated gradient methods do not apply.

1.1 Understanding First-Order Methods: Gradient Descent and Mirror
Descent

We now provide high-level descriptions of gradient and mirror descent. While this material
is classical, our intuitive presentation of these ideas forms the basis for our main result in
the subsequent sections. For a more detailed survey, we recommend the textbooks [9, 26].

Consider for simplicity the unconstrained minimization (i.e. Q = Rn), but, as we will see
in Section 2, the same intuition and a similar analysis extend to the constrained or even the
proximal case. We use generic norms ‖ · ‖ and their duals ‖ · ‖∗. At a first reading, they can
be both replaced with the Euclidean norm ‖ · ‖2.

1.1.1 Primal Approach: Gradient Descent
A natural approach to iterative optimization is to decrease the objective function as much as
possible at every iteration. To formalize the effectiveness of this idea, one usually introduces a
smoothness assumption on the objective f(x). Specifically, recall that an L-smooth function
f satisfies ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for every x, y. Such a smoothness condition yields
a global quadratic upper bound on the function around a query point x:

∀y, f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2 ‖y − x‖
2 . (1.1)

Gradient-descent algorithms exploit this bound by taking a step that maximizes the guaran-
teed objective decrease (i.e., the primal progress) f(xk)− f(xk+1) at every iteration k. More
precisely,

xk+1 ← arg min
y

{L
2 ‖y − xk‖

2 + 〈∇f(x), y − xk〉
}
.

Notice that here ‖ · ‖ is a generic norm. When this is the Euclidean `2-norm, the step takes
the familiar additive form xk+1 = xk − 1

L∇f(xk). However, in other cases, e.g., for the
non-Euclidean `1 or `∞ norms, the update step will not follow the direction of the gradient
∇f(xk) (see for instance [18, 27]).

Under the smoothness assumption above, the magnitude of this primal progress is at least

f(xk)− f(xk+1) ≥ 1
2L‖∇f(xk)‖2∗ . (1.2)

In general, this quantity will be larger when the gradient ∇f(xk) has large norm. Classical
convergence analysis of gradient descent usually combines (1.2) with a basic convexity
argument to relate f(xk)−f(x∗) and ‖∇f(xk)‖∗: that is, f(xk)−f(x∗) ≤ ‖∇f(xk)‖∗‖xk−x∗‖.

2 We emphasize here that these two terms are sometimes used ambiguosly in the literature; in this paper,
we attempt to stick as close as possible to the conventions of the optimization community and in
particular in the textbooks [9, 26] with one exception: we extend the definition of gradient descent to
non-Euclidean norms in a natural way, following [18].
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For L-smooth objectives, the final bound shows that gradient descent converges in O
(
L
ε

)
iterations [26].

The limitation of gradient descent is that it does not make any attempt to construct a
good lower bound to the optimum value f(x∗). It essentially ignores the dual problem. In
the next subsection, we review mirror descent, a method that focuses completely on the dual
side.

1.1.2 Dual Approach: Mirror Descent
Mirror-descent methods (see for instance [9, 12, 24, 28, 44]) tackle the dual problem by
constructing lower bounds to the optimum. Recall that each queried gradient ∇f(x) can be
viewed as a hyperplane lower bounding the objective f : that is, f(u) ≥ f(x) + 〈∇f(x), u−x〉
for all u. Mirror-descent methods attempt to carefully construct a convex combination of
these hyperplanes in order to yield even a stronger lower bound. Formally, suppose one has
queried points x0, . . . , xk−1, then we form a linear combination of the k hyperplanes and
obtain3

∀u, f(u) ≥ 1
k

k−1∑
t=0

f(xt) + 1
k

k−1∑
t=0
〈∇f(xt), u− xt〉 . (1.3)

On the upper bound side, we consider a simple choice x = 1
k

∑k−1
t=0 xt, i.e., the mean of the

queried points. By straightforward convexity argument, we have f(x) ≤ 1
k

∑k−1
t=0 f(xt). As a

result, the distance between f(x) and f(u) for any arbitrary u can be upper bounded using
(1.3):

∀u, f(x)− f(u) ≤ 1
k

k−1∑
t=0
〈∇f(xt), xt − u〉

def= Rk(u) . (1.4)

Borrowing terminology from online learning, the right hand side Rk(u) is known as the regret
of the sequence (xt)k−1

t=0 with respect to point u. Now, consider a regularized version R̃k(u)
of the regret

R̃k(u) def= 1
k
·
(
− w(u)

α
+
k−1∑
t=0
〈∇f(xt), xt − u〉

)
,

where α > 0 is a trade-off parameter and w(·) is some regularizer that is usually strongly
convex. Then, mirror-descent methods choose the next iterate xk by minimizing the maximum
regularized regret at the next iteration: that is, choose xk ← arg maxu R̃k(u). This update
rule can be shown to successfully drive maxu R̃k(u) down as k increases, and thus the right
hand side of (1.4) decreases as k increases. This can be made into a rigorous analysis and
show that mirror descent converges in T = O(ρ2/ε2) iterations. Here, ρ2 is the average value
of ‖∇f(xk)‖2∗ across the iterations.

To sum up, the smaller the queried gradients are (i.e. the smaller ‖∇f(xk)‖∗ is), the
tighter the lower bound (1.3) becomes, and therefore the fewer iterations are needed for
mirror descent to converge. (Note that the above mirror-descent analysis can also be used to
derive the 1/ε convergence rate on smooth objectives similar to that in gradient descent [11];
since this adaption is not needed in our paper, we omit the details.)

3 For simplicity, we choose uniform weights here. For the purpose of proving convergence results, the
weights of individual hyperplanes are typically uniform or only dependent on k.
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3:4 Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent

Remarks. Mirror descent admits several different algorithmic implementations, such as
Nemirovski’s mirror descent [24] and Nesterov’s dual averaging [28].4 Results based on one
implementation can usually be transformed into another with some efforts. In this paper, we
adopt Nemirovski’s mirror descent as our choice of mirror descent, see Section 2.2.

One may occasionally find analyses that do not immediately fall into the above two
categories. To name a few, solely using mirror descent and dual lower bounds, one can also
obtain a convergence rate 1/ε for smooth objectives similar to that in gradient descent [11].
Conversely, one can deduce the mirror-descent guarantee by applying gradient descent on
a dual objective (see Appendix A.3). Shamir and Zhang [40] obtained an algorithm that
converges slightly slower than mirror descent, but has an error guarantee on the last iterate,
rather than the average history.

1.2 Our Conceptual Question

Following this high level description of gradient and mirror descent, it is useful to pause and
observe the complementary nature of the two procedures. Gradient descent relies on primal
progress, uses local steps and makes faster progress when the norms of the queried gradients
‖∇f(xk)‖ are large. In contrast, mirror descent works by ensuring dual progress, uses global
steps and converges faster when the norms of the queried gradients ‖∇f(xk)‖ are small.

This interpretation immediately leads to the question that inspires our work:

Can Gradient Descent and Mirror Descent be combined to obtain faster first-order methods?

In this paper, we initiate the formal study of this key conceptual question, and propose a linear
coupling framework. To properly discuss our framework, we choose to mostly focus in the
context of convex smooth minimization, and show how to reconstruct Nesterov’s accelerated
gradient methods using linear coupling. We also discuss the power of our framework by
extending it to many other settings beyond Nesterov’s original scope.

1.3 Accelerated Gradient Method Via Linear Coupling

In the seminal work [25, 26], Nesterov designed an accelerated gradient method for L-smooth
functions with respect to `2 norms, and it performs quadratically faster than gradient descent
– requiring Ω(L/ε)0.5 rather than Ω(L/ε) iterations. This is asymptotically tight [26]. Later
in 2005, Nesterov generalizes his method to allow non-Euclidean norms in the definition of
smoothness [27]. All these versions of methods are referred to as accelerated gradient methods,
or sometimes as Nesterov’s accelerated methods.

Although accelerated gradient methods have been widely applied (to mention a few,
see [38, 39] for regularized optimizations, [19, 30] for composite optimization, [29] for cubic
regularization, [31] for universal method, and [20] for an application on maxflow), they are
often regarded as “analytical tricks” [17] because their convergence analyses are somewhat
complicated and lack of intuitions.

In this paper, we provide a simple, alternative, but complete version of the accelerated
gradient method. Here, by “complete” we mean our method works for any norm, and for both

4 Other update rules can be viewed as specializations or generalizations of the mentioned implementations.
For instance, the follow-the-regularized-leader (FTRL) step is a generalization of Nesterov’s dual
averaging step where the regularizers are can be adaptively selected (see [23]).
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the constrained and unconstrained case.5 Our key observation is to construct two sequences
of updates: one sequence of gradient-descent updates and one sequence of mirror-descent
updates.

Thought Experiment. Consider f(x) that is unconstrained and L-smooth. For sake of
demonstrating the idea, suppose ‖∇f(x)‖2, the norm of the observed gradient, is either
always ≥ K, or always ≤ K, where the cut-off value K is determined later. Under such
“wishful assumption”, we propose the following algorithm: if ‖∇f(x)‖2 is always ≥ K, we
perform T gradient-descent steps; otherwise we perform T mirror-descent steps.

To analyze such an algorithm, suppose without loss of generality we start with some
point x0 whose objective distance f(x0)− f(x∗) is at most 2ε, and we want to find some x
so that f(x)− f(x∗) ≤ ε.6 If T gradient-descent steps are performed, the objective decreases
by at least ‖∇f(·)‖2

2
2L ≥ K2

2L per step according to (1.2), and we only need T ≥ Ω( εLK2 ) steps to
achieve an ε accuracy. If T mirror-descent steps are performed, we need T ≥ Ω(K

2

ε2 ) steps
according to the mirror-descent convergence. In sum, we need T ≥ Ω

(
max

{
εL
K2 ,

K2

ε2

})
steps

to converge to an ε-minimizer. Setting K to be the “magic number” to balance the two
terms, we only need T ≥ Ω

(
L
ε

)1/2 iterations as desired.

Towards an Actual Proof. To turn our thought experiment into an actual proof, we face the
following obstacles. Although gradient-descent steps always decrease the objective, mirror-
descent steps may sometimes increase the objective, cancelling the effect of the gradient
descent. On the other hand, the mirror-descent steps are only useful when a large number
of iterations are performed in a row; if any gradient-descent step stands in the middle, the
convergence is destroyed.

For this reason, it is natural to design an algorithm that, in every single iteration k,
performs both a gradient and a mirror descent step, and somehow ensure that the two steps
are coupled together. However, the following additional difficulty arises: if from some starting
point xk, the gradient-descent step instructs us to go to yk, while the mirror-descent step
instructs us to go to zk, then how do we continue? Do we look at the gradient at ∇f(yk) or
∇f(zk) in the next iteration?

This problem is implicitly solved by Nesterov using the following simple idea7: in the
k-th iteration, we choose a linear combination xk+1 ← τzk + (1− τ)yk, and use this same
gradient ∇f(xk+1) to continue the gradient and mirror steps of the next iteration. Whenever
τ is carefully chosen (just like the “magic number” K), the two descent sequences provide a
coupled bound on the error guarantee, and we recover the same convergence as [27].

Roadmap. We review the key lemmas of gradient and mirror descent in Section 2. We
propose a simple method with fixed step length to recover Nesterov’s accelerated methods
for the unconstrained case in Section 3, and generalize it to the full-setting in Section 4. We

5 Some authors have regarded the result in [26] as “momentum analysis” [32, 41] or “ball method” [10].
These analyses only apply to Euclidean spaces. We point out the importance of allowing non-Euclidean
norms in Appendix A.1. In addition, our proof in this paper extends naturally to the proximal version
of first-order methods, but for simplicity, we choose to include only the constrained version.

6 For all first-order methods, the heaviest computation always happens in this 2ε to ε process.
7 We wish to point out that Nesterov has phrased his method differently from ours, and little is known

on why this linear combination is needed from his proof, except for being used as an algebraic trick to
cancel specific terms.

ITCS 2017
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discuss several important applications of linear coupling that Nesterov’s original methods do
not solve in Section 5.

2 Key Lemmas of Gradient and Mirror Descent

2.1 Review of Gradient Descent
Consider a function f(x) that is convex and differentiable on a closed convex set Q ⊆ Rn,
and assume that f is L-smooth with respect to ‖ · ‖, that is, for every x, y ∈ Q, it satisfies
‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖. Here, ‖ · ‖∗ is the dual norm of ‖ · ‖.8

I Definition 2.1. For any x ∈ Q, the gradient (descent) step (with step length 1
L ) is

x̃ = Grad(x) def= arg min
y∈Q

{L
2 ‖y − x‖

2 + 〈∇f(x), y − x〉
}

and we let Prog(x) def= −miny∈Q
{
L
2 ‖y − x‖

2 + 〈∇f(x), y − x〉
}
≥ 0.

In particular, when ‖·‖ = ‖·‖2 is the `2-norm and Q = Rn is unconstrained, the gradient step
can be simplified as Grad(x) = x− 1

L∇f(x). Or, slightly more generally, when ‖ · ‖ = ‖ · ‖2
is the `2-norm but Q may be constrained, we have Grad(x) = x− 1

LgQ(x) where gQ(x) is the
gradient mapping of f at x (see Chapter 2.2.3 of [26]).

The classical theory on smooth convex programming gives rise to the following lower
bound on the amount of objective decrease (proved in Appendix B for completeness):

f(Grad(x)) ≤ f(x)− Prog(x) (2.1)

or in the special case when Q = Rn f(Grad(x)) ≤ f(x)− 1
2L‖∇f(x)‖2∗ .

From the above descent guarantee, one can deduce the convergence rate of gradient descent.
For instance, if ‖ · ‖ = ‖ · ‖2 is the Euclidean norm, and if gradient step xk+1 = Grad(xk) is
applied T times, we obtain the following convergence guarantee (see [26])

f(xT )−f(x∗) ≤ O
(
L‖x0 − x∗‖2

2

T

)
or equivalently T ≥ Ω

(
L‖x0 − x∗‖2

2

ε

)
⇒ f(xT )−f(x∗) ≤ ε .

Here, x∗ is any minimizer of f(x). If ‖·‖ is a general norm, but Q = Rn is unconstrained, the
above convergent rate becomes f(xT )−f(x∗) ≤ O

(
LR2

T

)
, where R = maxx:f(x)≤f(x0) ‖x−x∗‖.

We provide the proof of this later case in Appendix B because it is less known and we cannot
find it in the optimization literature.

Note that, we are unaware of any universal convergence proof for both the general norm
and the unconstrained case. As we shall see later in Section 4, this convergence rate can be
improved by accelerated gradient methods, even for the general norm ‖·‖ and the constrained
case.

2.2 Review of Mirror Descent
Consider some function f(x) that is convex on a closed convex set Q ⊆ Rn, and assume
that f is ρ-Lipschitz continuous with respect to norm ‖ · ‖, that is, for every x, y ∈ Q, it
satisfies |f(x)− f(y)| ≤ ρ‖x− y‖. This is equivalent to saying that f admits a subgradient

8 ‖ξ‖∗
def= max{〈ξ, x〉 : ‖x‖ ≤ 1}. For instance, `p norm is dual to `q norm if 1

p + 1
q = 1.
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∂f(x) at every point x ∈ Q, and satisfies ‖∂f(x)‖∗ ≤ ρ. (Recall that ∂f(x) = ∇f(x) if f is
differentiable.)

Mirror descent requires one to choose a regularizer (also referred to as a distance generating
function):

I Definition 2.2. We say that w : Q → R is a distance generating function (DGF), if w
is 1-strongly convex with respect to ‖ · ‖, or in symbols, ∀x ∈ Q \ ∂Q, ∀y ∈ Q: w(y) ≥
w(x) + 〈∇w(x), y − x〉+ 1

2‖x− y‖
2. Accordingly, the Bregman divergence is given as

Vx(y) def= w(y)− 〈∇w(x), y − x〉 − w(x) ∀x ∈ Q \ ∂Q, ∀y ∈ Q .

The property of DGF ensures that Vx(x) = 0 and Vx(y) ≥ 1
2‖x− y‖

2 ≥ 0.

Common examples of DGFs include (i) w(y) = 1
2‖y‖

2
2, which is strongly convex with respect

to the `2-norm over every Q, and the corresponding Vx(y) = 1
2‖x−y‖

2
2, and (ii) the entropy

function w(y) =
∑
i yi log yi, which is strongly convex with respect to the `1-norm over any

Q ⊆ ∆ def= {x ≥ 0 : 1Tx = 1}. and the corresponding Vx(y) =
∑
i yi log(yi/xi) ≥ 1

2‖x− y‖
2
1.

I Definition 2.3. The mirror (descent) step with step length α can be described as

x̃ = Mirrx(α · ∂f(x)) where Mirrx(ξ) def= arg min
y∈Q

{
Vx(y) + 〈ξ, y − x〉

}
.

Mirror descent’s core lemma is the following inequality (proved in Appendix B for complete-
ness):

If xk+1 = Mirrxk
(
α · ∂f(xk)

)
, then

∀u ∈ Q, α(f(xk)− f(u)) ≤ α〈∂f(xk), xk − u〉 ≤
α2

2 ‖∂f(xk)‖2
∗ + Vxk (u)− Vxk+1 (u) . (2.2)

The term 〈∂f(xk), xk − u〉 features prominently in online optimization, and is known as
the regret at iteration k with respect to u (see Appendix A.2 for the folklore relationship
between mirror descent and regret minimization). It is not hard to see that, telescoping (2.2)
for k = 0, . . . , T − 1, setting x def= 1

T

∑T−1
k=0 xk to be the average of the xk’s, and choosing

u = x∗, we have

αT (f(x)− f(x∗)) ≤
T−1∑
k=0

α〈∂f(xk), xk − x∗〉 ≤ α2

2

T−1∑
k=0

‖∂f(xk)‖2
∗ + Vx0 (x∗)− VxT (x∗) . (2.3)

Finally, letting Θ be any upper bound on Vx0(x∗) (recall Θ = 1
2‖x0 − x∗‖22 when ‖ · ‖ is the

Euclidean norm), and α =
√

2Θ
ρ·
√
T

be the step length, inequality (2.2) can be re-written as

f(x)− f(x∗) ≤
√

2Θ · ρ√
T

or equivalently T ≥ 2Θ · ρ2

ε2 ⇒ f(x)− f(x∗) ≤ ε . (2.4)

Remark. While their analyses share some similarities, mirror and gradient steps are often
very different. For example, if the optimization problem is over the simplex with `1 norm,
then gradient step gives x′ ← arg miny{ 1

2‖y − x‖
2
1 + α〈∇f(x), y − x〉}, while the mirror step

with entropy regularizer gives x′ ← arg miny{
∑
i yi log(yi/xi) + α〈∇f(x), y − x〉}. We point

out in Appendix A.1 that non-Euclidean norms are very important for certain applications.
In the special case of w(x) = 1

2‖x‖
2
2 and ‖ · ‖ is `2-norm, gradient and mirror steps are

indistinguishable from each other. However, as we have discussed earlier, these two update
rules are often equipped with very different convergence analyses, even if they ‘look the same’.

ITCS 2017
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3 Warm-Up Method with Fixed Step Length

Consider the same setting as Section 2.1: that is, f(x) is convex and differentiable on its
domain Q, and is L-smooth with respect to some norm ‖ · ‖. (Note that f(x) may not have a
good Lipschitz continuity parameter ρ, but we do not need such a property.) In this section,
we focus on the unconstrained case Q = Rn, and combine gradient and mirror descent to
produce a very simple accelerated method. We explain this method first because it avoids the
mysterious choices of step lengths as in the full setting, and carries our conceptual message
in a very clean way.

Design an algorithm that, in every step k, performs both a gradient and a mirror step, and
ensures that the two steps are linearly coupled. More specifically, starting from x0 = y0 = z0,
in each iteration k = 0, 1, . . . , T − 1, we first define xk+1 ← τzk + (1− τ)yk and then

perform a gradient step yk+1 ← Grad(xk+1), and
perform a mirror step zk+1 ← Mirrzk

(
α∇f(xk+1)

)
.9

Above, α is the (fixed) step length of the mirror step, while τ is the parameter controlling
the coupling rate. The choices of α and τ will become clear at the end of this section, but
from a high level,

α will be determined from the mirror-descent analysis, similar to that in (2.3), and
τ will be determined as the best parameter to balance the gradient and mirror steps,
similar to the “magic number” K in our thought experiment discussed in Section 1.3.

Classical gradient-descent and mirror-descent analyses immediately imply the following:

I Lemma 3.1. For every u ∈ Q = Rn,

α〈∇f(xk+1), zk − u〉
¬
≤ α2

2 ‖∇f(xk+1)‖2∗ + Vzk(u)− Vzk+1(u)
­
≤ α2L

(
f(xk+1)− f(yk+1)

)
+ Vzk(u)− Vzk+1(u) . (3.1)

Proof. To deduce ¬, we note that our mirror step zk+1 = Mirrzk(α∇f(xk+1)) is essentially
identical to that of xk+1 = Mirrxk(α∇f(xk)) in (2.2), with only changes of variable names.
Therefore, inequality ¬ is a simple copy-and-paste from (2.2) after changing the variable
names (see the proof of (2.2) for details). The second inequality ­ is from the gradient step
guarantee f(xk+1)− f(yk+1) ≥ 1

2L‖∇f(xk+1)‖2∗ in (2.1). J

One can immediately see from Lemma 3.1 that, although the mirror step introduces an
error α2

2 ‖∇f(xk+1)‖2∗, this error is proportional to the amount of the gradient-step progress
f(xk+1) − f(yk+1). This captures the observation we stated in the introduction: if
‖∇f(xk+1)‖∗ is large, we can make a large gradient step, or if ‖∇f(xk+1)‖∗ is small, the
mirror step suffers from a small loss.

If we choose τ = 1 or equivalently xk+1 = zk, the left hand side of inequality (3.1) becomes
〈∇f(xk+1), xk+1 − u〉, the regret at iteration xk+1. In such a case we wish to telescope it for
all iterations k in the spirit of mirror descent (see (2.3)). However, we face the problem that
the terms f(xk+1)− f(yk+1) do not telescope. 10 On the other hand, if we choose τ = 0 or

9 Here, the mirror step Mirr is defined by specifying any DGF w(·) that is 1-strongly convex over Q.
10 In other words, although a gradient step may decrease the objective from f(xk+1) to f(yk+1), it may

also get the objective increased from f(yk) to f(xk+1).
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equivalently xk+1 = yk, then the terms f(xk+1)− f(yk+1) = f(yk)− f(yk+1) telescope, but
the left hand side of (3.1) is no longer the regret. 11

To overcome this issue, we use linear coupling. We compute and upper bound the
difference between the left hand side of (3.1) and the actual “regret”:

α〈∇f(xk+1), xk+1 − u〉 − α〈∇f(xk+1), zk − u〉

= α〈∇f(xk+1), xk+1 − zk〉 = (1− τ)α
τ

〈∇f(xk+1), yk − xk+1〉 ≤
(1− τ)α

τ
(f(yk)− f(xk+1)). (3.2)

Above, we used the fact that τ(xk+1 − zk) = (1− τ)(yk − xk+1), as well as the convexity
of f(·). It is now immediate that by choosing 1−τ

τ = αL and combining (3.1) and (3.2), we
have

I Lemma 3.2 (Coupling). Letting τ ∈ (0, 1) satisfy that 1−τ
τ = αL, we have that

∀u ∈ Q = Rn, α〈∇f(xk+1), xk+1 − u〉 ≤ α2L
(
f(yk)− f(yk+1)

)
+
(
Vzk(u)− Vzk+1(u)

)
.

It is clear from the above proof that τ is introduced to precisely balance the objective decrease
f(xk+1)− f(yk+1), and the (possible) objective increase f(yk)− f(xk+1). This is similar to
the “magic number” K discussed in the introduction.

Finally Convergence Rate. We telescope inequality Lemma 3.2 for k = 0, 1, . . . , T − 1.
Setting x def= 1

T

∑T−1
k=0 xk and u = x∗, we have

αT (f(x)− f(x∗)) ≤
T−1∑
k=0

α〈∂f(xk), xk − x∗〉 ≤ α2L
(
f(y0)− f(yT )

)
+ Vx0 (x∗)− VxT (x∗) . (3.3)

Suppose our initial point is of error at most d, that is f(y0) − f(x∗) ≤ d, and suppose
Vx0(x∗) ≤ Θ, then (3.3) gives f(x)− f(x∗) ≤ 1

T

(
αLd+ Θ/α

)
. Choosing α =

√
Θ/Ld to be

the value that balances the above two terms,12 we obtain that f(x)− f(x∗) ≤ 2
√
LΘd
T . In

other words,

in T = 4
√
LΘ/d steps, we can obtain some x satisfying f(x)− f(x∗) ≤ d/2,

halving the distance to the optimum. If we restart this entire procedure a few number of
times, halving the distance for every run, then we obtain an ε-approximate solution in

T = O
(√

LΘ/ε+
√
LΘ/2ε+

√
LΘ/4ε+ · · ·

)
= O

(√
LΘ/ε

)
iterations, matching the same running time of Nesterov’s accelerated methods [25, 26, 27].
It is important to note here that α =

√
Θ/Ld increases as time goes (i.e., as d goes down),

and therefore τ = 1
αL+1 decreases as time goes. This lesson instructs us that gradient steps

should be given more weights than mirror steps, when it is closer to the optimum.13

11 Indeed, our “thought experiment” in the introduction is conducted as if we both had xk+1 = zk and
xk+1 = yk, and therefore we could arrive at the upcoming (3.3) directly.

12This is essentially the same way to choose α in mirror descent, see (2.3).
13One may find this counter-intuitive because when it is closer to the optimum, the observed gradients
will become smaller, and therefore mirror steps should perform well due to our conceptual message
in the introduction. This understanding is incorrect for two reasons. First, when it is closer to the
optimum, the threshold between “large” and “small” gradients also become smaller, so one cannot rely
only on mirror steps. Second, when it is closer to the optimum, mirror steps are more ‘unstable’ and
may increase the objective more (in comparison to the current distance to the optimum), and thus
should be given less weight.
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Algorithm 1 AGM(f, w, x0, T )
Input: f a differentiable and convex function on Q that is L-smooth with respect to ‖ · ‖;

w the DGF function that is 1-strongly convex with respect to the same ‖ · ‖ over Q;
x0 some initial point; and T the number of iterations.

Output: yT such that f(yT )− f(x∗) ≤ 4ΘL
T 2 .

1: Vx(y) def= w(y)− 〈∇w(x), y − x〉 − w(x).
2: y0 ← x0, z0 ← x0.
3: for k ← 0 to T − 1 do
4: αk+1 ← k+2

2L , and τk ← 1
αk+1L

= 2
k+2 .

5: xk+1 ← τkzk + (1− τk)yk.
6: yk+1 ← Grad(xk+1) � = arg miny∈Q

{
L
2 ‖y − xk+1‖2 + 〈∇f(xk+1), y − xk+1〉

}
7: zk+1 ← Mirrzk

(
αk+1∇f(xk+1)

)
� = arg minz∈Q

{
Vzk(z) + 〈αk+1∇f(xk+1), z − zk〉

}
8: end for
9: return yT .

Conclusion. Equipped with the basic knowledge of gradient descent and mirror descent,
the above proof is quite straightforward and gives intuition on how the two “magic numbers”
α and τ are selected. However, this simple algorithm has several caveats. First, the value α
depends on the knowledge of Θ; second, a good initial distance bound d has to be specified;
and third, the algorithm has to be restarted. In the next section, we let α and τ change
gradually across iterations. This overcomes the mentioned caveats, and also extends the
above analysis to allow Q to be constrained.

4 Final Method with Variable Step Lengths

In this section, we recover the main result of [27] in the constrained case, that is

I Theorem 4.1. If f(x) is L-smooth w.r.t. ‖ · ‖ on Q, and w(x) is 1-strongly convex
w.r.t. ‖ · ‖ on Q, then AGM outputs yT satisfying f

(
yT
)
− f(x∗) ≤ 4ΘL/T 2, where Θ is

any upper bound on Vx0(x∗).

We remark here that it is very important to allow the norm ‖ · ‖ to be general, rather than
focusing on the `2-norm as in [26]. See our discussion in Appendix A.1.

Our algorithm AGM (see Algorithm 1) starts from x0 = y0 = z0. In each step k =
0, 1, . . . , T − 1, it computes xk+1 ← τkzk + (1− τk)yk and then

performs gradient step yk+1 ← Grad(xk+1), and
performs mirror step zk+1 ← Mirrzk

(
αk+1∇f(xk+1)

)
.

Here, αk+1 is the step length of mirror descent and will be chosen at the end of this section.
The value τk is 1

αk+1L
which is slightly different from 1

αL+1 used in the warm-up case. (This
is necessary to capture the constrained case.) Our choice of αk+1 will ensure that τk ∈ (0, 1]
for each k.

Convergence Analysis. We state the analogue of Lemma 3.1 whose proof is in Appendix C:

I Lemma 4.2. If τk = 1
αk+1L

, then it satisfies that for every u ∈ Q,

αk+1〈∇f(xk+1), zk − u〉 ≤ α2
k+1LProg(xk+1) + Vzk(u)− Vzk+1(u)

≤ α2
k+1L

(
f(xk+1)− f(yk+1)

)
+ Vzk(u)− Vzk+1(u) .
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We state the analogue of Lemma 3.2, whose proof is slightly different and in Appendix C:

I Lemma 4.3 (Coupling). For any u ∈ Q,(
α2
k+1L

)
f(yk+1)−

(
α2
k+1L− αk+1

)
f(yk) +

(
Vzk+1(u)− Vzk(u)

)
≤ αk+1f(u) .

We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. In order to telescope Lemma 4.3, we only need to set the sequence
of αk so that α2

kL ≈ α2
k+1L − αk+1 as well as τk = 1/αk+1L ∈ (0, 1]. In our AGM, we let

αk = k+1
2L so that α2

kL = α2
k+1L−αk+1 + 1

4L . Summing up Lemma 4.3 for k = 0, 1, . . . , T −1,
we obtain

α2
TLf(yT ) +

T−1∑
k=1

1
4Lf(yk) +

(
VzT (u)− Vz0(u)

)
≤

T∑
k=1

αkf(u) .

By choosing u = x∗, we notice that
∑T
k=1 αk = T (T+3)

4L , f(yk) ≥ f(x∗), VzT (u) ≥ 0 and
Vz0(x∗) ≤ Θ. Therefore, we obtain

(T + 1)2

4L2 Lf(yT ) ≤
(T (T + 3)

4L − T − 1
4L

)
f(x∗) + Θ ,

which after simplification implies f(yT ) ≤ f(x∗) + 4ΘL
(T+1)2 . J

Let us make three remarks.
AGM is slightly different from [27]: (1) we use Nemirovski’s mirror steps instead of dual
averaging steps, (2) we allow arbitrary starting points x0, and (3) we use τk = 2

k+2 rather
than τk = 2

k+3 .
AGM is very different from the perhaps better-known version [26], which is known by
some authors as the “momentum method” [32, 41]. Momentum methods do not apply to
non-Euclidean settings.
In Appendix D, we also recover the strong convexity version of accelerated gradient
methods [26], and thus linear coupling provides a complete proof of all existing accelerated
gradient methods.

5 Beyond Accelerated Gradient Methods

Providing an intuitive, yet complete interpretation of accelerated gradient methods is an
open question in Optimization [17]. Our result in this paper is one important step towards
this general goal. Linear coupling not only gives a reinterpretation of Nesterov’s accelerated
methods, more importantly, it provides a framework for designing first-order methods in a
bigger agenda. Since the original version of this paper appeared online, our linear-coupling
framework has led to breakthroughs for several problems in computer science. In all such
problems, the original Nesterov’s accelerated methods do not apply. We illustrate a few
examples in this line of research, in order to demonstrate the power and generality of linear
coupling.

Recall the key lemmas of gradient and mirror descent in linear coupling (see (3.1)):

gradient descent: f(xk+1)− f(yk+1) ≥ 1
2L‖∇f(xk+1)‖2∗ (5.1)

mirror descent: α〈∇f(xk+1), zk − u〉 ≤
α2

2 ‖∇f(xk+1)‖2∗ + Vzk(u)− Vzk+1(u) (5.2)
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Extension 1: Strengthening (5.2) and (5.1). If f satisfies good properties other than
smoothness, one can also develop objective decrease lemma to replace (5.1). In addition, if
necessary, a non-strongly convex regularizer can be used in mirror descent to replace (5.2).
In either or both such cases, linear coupling can still be used to combine the two methods
and obtain faster running times; in contrast, Nesterov’s original accelerated methods do not
apply.

For example, recent breakthroughs on positive linear programming (positive LP) are all
based on the above extension of linear coupling [3, 4, 5, 22, 42, 43]. For such LPs, the
corresponding objective f is intrinsically non-smooth. Some authors including Nesterov
himself have applied simple smoothing to turn f into a smooth variant f ′, and then minimized
f ′ [27]; however, even if Nesterov’s accelerated methods are used to minimize f ′, the resulting
running time scales with the problem’s width, a parameter that can be exponential in input
size.14 In contrast, if linear coupling is used, one can show that f(xk+1)− f(yk+1) is lower
bounded by a constant times

∑
j max{|∇jf(xk+1)|, 1}2 for the original objective f (see [4]).

This is a weaker version of (5.1). However, after linear coupling, it leads to a faster algorithm
than naively applying Nesterov’s accelerated methods on f ′ in all parameter regimes.

Extension 2: Three-Point Coupling. One may naturally consider linearly coupling for
more than two vectors. While this is provably unnecessary for minimizing a smooth objective
in the full-gradient setting (because accelerated gradient methods are already optimal), it
can be very helpful in the stochastic-gradient setting.

More specifically, it was a known obstacle in Nesterov’s accelerated methods (including
our AGM) that if the full gradient ∇f(xk+1) is replaced with a random estimator ∇̃ whose
expectation E[∇̃] = ∇f(xk+1), then acceleration disappears in the worst case. Using
linear coupling, we can fix this issue by providing the first direct accelerated stochastic
gradient method. In [1], the author replaced the coupling step xk+1 ← τzk + (1− τ)yk with
xk+1 ← τ1zk + τ2x̃ + (1 − τ2 − τ1)yk, where x̃ is a snapshot point whose full gradient is
computed exactly but very infrequently. Such a “three-point” linear coupling provides an
accelerated running time because one can combine (5.1), (5.2), together with a so-called
variance-reduction inequality [16] all three at once.

Extension 3: Optimal Sampling Probability. Nesterov’s accelerated methods generalize to
coordinate-descent settings, that is, to minimize f that is Li-smooth for each coordinate i.
The best known coordinate-descent method [21] samples each coordinate i with probability
proportional to Li, and is based on a randomized version of Nesterov’s original analysis.
Using linear coupling, the authors of [6] discovered that one should select i with probability
proportional to

√
Li for an even faster running time.

To illustrate the reasoning behind this, let us revisit (5.1) and (5.2). In the coordinate-
descent setting, if we abbreviate xk+1 with x, the right hand side of (5.1) simply becomes

1
2Li (∇if(x))2 if coordinate i is selected. As for (5.2), to ensure its left hand side stays the
same in expectation, one should replace ∇f(x) with 1

pi
∇if(x), where pi is the probability

to select i. As a result, the first term on the right hand side of (5.2) becomes α2

2p2
i
(∇if(x))2.

By comparing these two new terms 1
2Li (∇if(x))2 and α2

2p2
i
(∇if(x))2, we immediately notice

14We recommend interested readers to find detailed discussions in [4] regarding the importance of designing
width-independent solvers for positive LP. As an illustrative example, in the problem of maximum
matching (which can be written as positive LP), the width of the problem is the number of edges in the
graph.
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that pi had better be proportional to
√
Li in order for the two terms to cancel. This simple

idea, fully motivated from linear coupling, leads to the fastest accelerated coordinate-descent
method [6].

Extension 4: Supporting Non-Convexity. Consider objectives f that are not even convex
but still smooth. For instance, neural network training objectives fall into this class if
smoothed activation functions are used. In such a case, both (5.1) and (5.2) remain true.
However, when coupling the two steps, we cannot claim 〈∇f(xk+1), xk+1−u〉 ≥ f(xk+1)−f(u)
because there is no convexity. In [2], the authors discovered that one can use the quadratic
lower bound 〈∇f(xk+1), xk+1 − u〉 ≥ f(xk+1)− f(u)− L

2 ‖xk+1 − u‖2 to replace convexity
arguments, and still perform a weaker version of linear coupling. This leads to a stochastic
algorithm that converges to approximate saddle-points,15 outperforming both gradient
descent and stochastic gradient descent, the only two known first-order methods with
provably convergence guarantees.
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A Several Remarks on First-Order Methods

A.1 Importance of Non-Euclidean Norms
Let us use a simple example to illustrate the importance of allowing arbitrary norms in
studying first-order methods.

Consider the saddle point problem of minx∈∆n
maxy∈∆m

yTAx, where A is an m × n
matrix, ∆n = {x ∈ Rn : x ≥ 0 ∧ 1Tx = 1} is the unit simplex in Rn, and ∆m = {y ∈ Rm :
y ≥ 0 ∧ 1T y = 1}. This problem is important to study because it captures packing and
covering linear programs that have wide applications in many areas of computer science (see
the survey of [8]).

Letting µ = ε
2 logm , Nesterov has shown that the following objective

fµ(x) def= µ log
( 1
m

m∑
j=1

exp
1
µ (Ax)j ) ,
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when optimized over x ∈ ∆n, can yield an additive ε/2 solution to the original saddle point
problem [27].

This fµ(x) is proven to be 1
µ -smooth with respect to the `1-norm over ∆n, if all the

entries of A are between [−1, 1]. Instead, fµ(x) is 1
µ -smooth with respect to the `2-norm over

∆n, only if the sum of squares of every row of A is at most 1. This `2 condition is certainly
stronger and less natural than the `1 condition, and the `1 condition one leads to the fastest
(approximate) width-dependent positive LP solver [27].

Different norm conditions also yield different gradient and mirror descent steps. For
instance, in the `1-norm case, the gradient step is x′ ← arg minx′∈∆n

{ 1
2‖x
′ − x‖21 +

α〈∇fµ(x), x′−x〉
}
, and the mirror step is x′ ← arg minx′∈∆n

{∑
i∈[n]x

′
i log x′i

xi
+α〈∇fµ(x), x′−

x〉
}
. In the `2-norm case, gradient and mirror steps are both of the form

x′ ← arg minx′∈∆n

{ 1
2‖x
′ − x‖22 + α〈∇fµ(x), x′ − x〉

}
.

As another example, [35] has shown that the `1 norm, instead of the `2 one, is crucial
when computing the minimum enclosing ball of points. One can find other applications
as well in [27] for the use of non-Euclidean norms, and an interesting example of `∞-norm
gradient descent for nearly-linear time maximum flow in [18].

It is now important to note that, the methods in [25, 26] work only for the `2-norm case,
and it is not clear how the proof can be generalized to other norms until [27]. Some other
proofs (such as [13]) only work for the `2-norm because the mirror steps are described as (a
scaled version of) gradient steps.

A.2 Folklore Relationship Between Multiplicative Weight Updates and
Mirror Descent

The multiplicative weight update (MWU) method (see the survey of Arora, Hazan and
Kale [8]) is a simple method that has been repeatedly discovered in theory of computation,
machine learning, optimization, and game theory. The setting of this method is the following.

Let ∆n = {x ∈ Rn : x ≥ 0 ∧ 1Tx = 1} be the unit simplex in Rn, and we call any vector
in ∆n an action. A player is going to play T actions x0, . . . , xT−1 ∈ ∆n in a row; only after
playing xk, the player observes a loss vector `k ∈ Rn that may depend on xk, and suffers
from a loss value 〈`k, xk〉. The MWU method ensures that, if ‖`k‖∞ ≤ ρ for all k ∈ [T ], then
the player has an (adaptive) strategy to choose the actions such that the average regret is
bounded:

1
T

( T−1∑
i=0
〈`k, xk〉 − min

u∈∆n

T−1∑
i=0
〈`k, u〉

)
≤ O

(ρ√logn√
T

)
. (A.1)

The left hand side is called the average regret because it is the (average) difference between
the suffered loss

∑T−1
i=0 〈`k, xk〉, and the loss

∑T−1
i=0 〈`k, u〉 of the best action u ∈ ∆n in

hindsight. Another way to interpret (A.1) is to state that we can obtain an average regret of
ε using T = O(ρ

2 logn
ε2 ) rounds.

The above result can be proven directly using mirror descent. Letting w(x) def=
∑
i xi log xi

be the entropy DGF over the simplex Q = ∆n, and its corresponding Bregman divergence
Vx(x′) def=

∑
i∈[n]x

′
i log x′i

xi
, we consider the following update rule.

Start from x0 = (1/n, . . . , 1/n), and update xk+1 = Mirrxk
(
α`k
)
, or equivalently, xk+1,i =

xk,i · exp−α`k,i /Zk, where Zk > 0 is the normalization factor that equals to
∑n
i=1 xk,i ·
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exp−α`k,i .16 Then, the mirror-descent guarantee (2.2) implies that17

∀u ∈ ∆n, α〈`k, xk − u〉 ≤
α2

2 ‖`k‖
2
∞ + Vxk(u)− Vxk+1(u) .

After telescoping the above inequality for all k = 0, 1, . . . , T − 1, and using the upper bounds
‖`(xk)‖∞ ≤ ρ and Vx0(u) ≤ logn, we obtain that for all u ∈ ∆n,

1
T

T−1∑
k=0
〈`k, xk − u〉 ≤

αρ2

2 + logn
αT

.

Setting α =
√

logn
ρ
√
T

we arrive at the desired average regret bound (A.1).
In sum, we have re-deduced the MWU method from mirror descent, and the above proof

is quite different from most of the classical analysis of MWU (e.g., [7, 8, 14, 34]). It can
be generalized to solve the matrix version of MWU [8, 33], as well as to incorporate the
width-reduction technique [8, 34]. We ignore such extensions here because they are outside
the scope of this paper.

A.3 Deducing the Mirror-Descent Guarantee via Gradient Descent
In this section, we re-deduce the convergence rate of mirror descent from gradient descent.
In particular, we show that the dual averaging steps are equivalent to gradient steps on the
Fenchel dual of the regularized regret, and deduce the same convergence bound as (2.4).
(Similar proof can also be obtained for mirror steps but is notationally more involved.)

Given a sequence of points x0, . . . , xT−1 ∈ Q, the (scaled) regret with respect to any
point u ∈ Q is R(x0, . . . , xT−1, u) def=

∑T−1
i=0 α〈∂f(xi), xi − u〉. Since it satisfies that αT ·

(f(x)− f(u)) ≤ R(x0, . . . , xT−1, u), the average regret (after scaling) upper bounds on the
distance between any point f(u) and the average x = 1

T (x0 + · · ·+ xT−1). Consider now the
regularized regret

R̂(x0, . . . , xT−1) def= max
u∈Q

{ T−1∑
i=0

α〈∂f(xi), xi − u〉 − w(u)
}
,

and we can rewrite it using the Fenchel dual w∗(λ) def= maxu∈Q{〈λ, u〉 − w(u)} of w(·):

R̂(x0, . . . , xT−1) = w∗
(
− α

T−1∑
i=0

∂f(xi)
)

+
T−1∑
i=0

α〈∂f(xi), xi〉 .

The classical theory of Fenchel duality tells us that w∗(λ) is 1-smooth with respect to the
dual norm ‖ · ‖∗, because w(·) is 1-strongly convex with respect to ‖ · ‖. We also have
∇w∗(λ) = arg maxu∈Q{〈λ, u〉 − w(u)}. (See for instance [36].)

With enough notations introduced, let us now minimize R̂ by intelligently selecting
x0, . . . , xT−1. Perhaps a little counter-intuitively, we start from x0 = · · · = xT−1 = x∗

and accordingly ∂f(x∗) = 0 (if there are multiple subgradients at x∗, choose the zero one).

16This version of the MWU is often known as the Hedge rule [14]. Another commonly used version is to
choose xk+1,i = xk,i(1−α`k,i)

Zk
. Since e−t ≈ 1− t whenever |t| is small and our choice of α will make sure

that |α`k,i| � 1, this is essentially identical to the Hedge rule.
17To be precise, we have replaced ∂f(xk) with `k. It is easy to see from the proof of (2.2) that this loss

vector `k does not need to come from the subgradient of some objective f(·).
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This corresponds to a regret value of zero and a regularized regret R̂(x∗, . . . , x∗) = w∗(0) =
−minu∈Q{w(u)}.

Next, we choose the values of x0, . . . , xT−1 one by one. We choose x0 = arg minu∈Q{w(u)}
as the starting point.18 Suppose that the values of x0, . . . , xk−1 are already determined, and
we are ready to pick xk ∈ Q. Let us compute the changes in the regularized regret as a
function of xk:

∆R̂ = R̂(x0, . . . , xk, x
∗, . . . , x∗)− R̂(x0, . . . , xk−1, x

∗, . . . , x∗)

= w∗
(
− α

k∑
i=0

∂f(xi)
)
− w∗

(
− α

k−1∑
i=0

∂f(xi)
)

+ α〈∂f(xk), xk〉

≤
〈
∇w∗

(
− α

k−1∑
i=0

∂f(xi)
)
,−α∂f(xk)

〉
+ 1

2
∥∥α∂f(xk)

∥∥2
∗ + α〈∂f(xk), xk〉 . (A.2)

Here, the last inequality is because w∗(a)− w∗(b) ≤ 〈∇w∗(b), a− b〉+ 1
2‖a− b‖

2
∗, owing to

the smoothness of w∗(·). At this moment, it is clear to see that if one chooses

xk = ∇w∗
(
− α

k−1∑
i=0

∂f(xi)
)

= arg min
u∈Q

{
w(u) +

k−1∑
i=0

α〈∂f(xi), u〉
}
,

the first and third terms in (A.2) cancel out, and we obtain ∆R̂ ≤ 1
2
∥∥α∂f(xk)

∥∥2
∗. In other

words, the regularized regret increases by no more than 1
2
∥∥α∂f(xk)

∥∥2
∗ ≤ α

2ρ2/2 in each step,
so in the end we have R̂(x0, . . . , xT−1) ≤ −w(x0) + α2ρ2T/2.

In sum, by the definition of the regularized regret, we have

αT · (f(x)− f(x∗))− w(x∗) ≤
T−1∑
i=0

α〈∂f(xi), xi − x∗〉 − w(x∗)

≤ R̂(x0, . . . , xT−1)

≤ −w(x0) + α2ρ2T

2 .

This implies the following upper bound on the optimality of f(x)

f(x)− f(x∗) ≤ αρ2

2 + w(x∗)− w(x0)
αT

= αρ2

2 + Vx0(x∗)
αT

≤ αρ2

2 + Θ
αT

.

Finally, choosing α =
√

2Θ
ρ·
√
T

to be the step length, we arrive at f(x)− f(x∗) ≤
√

2Θ·ρ√
T

, which
is the same convergence rate as (2.4).

B Missing Proof of Section 2

For the sake of completeness, we provide self-contained proofs of the mirror descent and
mirror descent guarantees in this section.

18Dual averaging steps typically demand the first point x0 to be at the minimum of the regularizer w(·),
because that leads to the cleanest analysis. This can be relaxed to allow an arbitrary starting point.
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B.1 Missing Proof for Gradient Descent
Gradient Descent Guarantee

f(Grad(x)) ≤ f(x)− Prog(x) (2.1)

or in the special case when Q = Rn f(Grad(x)) ≤ f(x)− 1
2L‖∇f(x)‖2∗ .

Proof. 19 Letting x̃ = Grad(x), we prove the first inequality by

Prog(x) = −min
y∈Q

{L
2 ‖y − x‖

2 + 〈∇f(x), y − x〉
}

= −
(L

2 ‖x̃− x‖
2 + 〈∇f(x), x̃− x〉

)
= f(x)−

(L
2 ‖x̃− x‖

2 + 〈∇f(x), x̃− x〉+ f(x)
)
≤ f(x)− f(x̃) .

Here, the last inequality is a consequence of the smoothness assumption: for any x, y ∈ Q,

f(y)− f(x) =
∫ 1

τ=0
〈∇f(x+ τ(y − x)), y − x〉dτ

= 〈∇f(x), y − x) +
∫ 1

τ=0
〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ

≤ 〈∇f(x), y − x) +
∫ 1

τ=0
‖∇f(x+ τ(y − x))−∇f(x)‖∗ · ‖y − x‖dτ

≤ 〈∇f(x), y − x) +
∫ 1

τ=0
τL‖y − x‖ · ‖y − x‖dτ

= 〈∇f(x), y − x〉+ L

2 ‖y − x‖
2

The second inequality follows because in the special case of Q = Rn, we have

Prog(x) = −min
y∈Q

{L
2 ‖y − x‖

2 + 〈∇f(x), y − x〉
}

= 1
2L‖∇f(x)‖2∗ . J

I Fact 2.1 (Gradient Descent Convergence). Let f(x) be a convex, differentiable function
that is L-smooth with respect to ‖ · ‖ on Q = Rn, and x0 any initial point in Q. Consider the
sequence of T gradient steps xk+1 ← Grad(xk), then the last point xT satisfies that

f(xT )− f(x∗) ≤ O
(LR2

T

)
,

where R = maxx:f(x)≤f(x0) ‖x− x∗‖, and x∗ is any minimizer of f .

Proof. 20 Recall that we have f(xk+1) ≤ f(xk)− 1
2L‖∇f(xk)‖2∗ from (2.1). Furthermore, by

the convexity of f and Cauchy-Schwarz we have

f(xk)− f(x∗) ≤ 〈∇f(xk), xk − x∗〉 ≤ ‖∇f(xk)‖∗ · ‖xk − x∗‖ ≤ R · ‖∇f(xk)‖∗ .

Letting Dk = f(xk)−f(x∗) denote the distance to the optimum at iteration k, we now obtain
two relationships Dk −Dk+1 ≥ 1

2L‖∇f(xk)‖2∗ as well as Dk ≤ R · ‖∇f(xk)‖∗. Combining
these two, we get

D2
k ≤ 2LR2(Dk −Dk+1) =⇒ Dk

Dk+1
≤ 2LR2

( 1
Dk+1

− 1
Dk

)
.

19This proof can be found for instance in the textbook [26].
20Our proof follows almost directly from [26], but he only uses the Euclidean `2 norm.
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Noticing that Dk ≥ Dk+1 because our objective only decreases at every round, we obtain
that 1

Dk+1
− 1

Dk
≥ 1

2LR2 . Finally, we conclude that at round T , we must have 1
DT
≥ T

2LR2 ,
finishing the proof that f(xT )− f(x∗) ≤ 2LR2

T . J

B.2 Missing Proof for Mirror Descent
Mirror Descent Guarantee

If xk+1 = Mirrxk
(
α · ∂f(xk)

)
, then

∀u ∈ Q, α(f(xk)−f(u)) ≤ α〈∂f(xk), xk−u〉 ≤
α2

2 ‖∂f(xk)‖2∗+Vxk(u)−Vxk+1(u) . (2.2)

Proof. 21 we compute that

α〈∂f(xk), xk − u〉 = 〈α∂f(xk), xk − xk+1〉+ 〈α∂f(xk), xk+1 − u〉
¬
≤ 〈α∂f(xk), xk − xk+1〉+ 〈−∇Vxk(xk+1), xk+1 − u〉
­= 〈α∂f(xk), xk − xk+1〉+ Vxk(u)− Vxk+1(u)− Vxk(xk+1)
®
≤
(
〈α∂f(xk), xk − xk+1〉 −

1
2‖xk − xk+1‖2

)
+
(
Vxk(u)− Vxk+1(u)

)
¯
≤ α2

2 ‖∂f(xk)‖2∗ +
(
Vxk(u)− Vxk+1(u)

)
Here, ¬ is due to the minimality of xk+1 = arg minx∈Q{Vxk(x)+〈α∂f(xk), x〉}, which implies
that 〈∇Vxk(xk+1) + α∂f(xk), u− xk+1〉 ≥ 0 for all u ∈ Q. ­ is due to the triangle equality
of Bregman divergence.22 ® is because Vx(y) ≥ 1

2‖x − y‖
2 by the strong convexity of the

DGF w(·). ¯ is by Cauchy-Schwarz. J

C Missing Proofs of Section 4

I Lemma 4.2. If τk = 1
αk+1L

, then it satisfies that for every u ∈ Q,

αk+1〈∇f(xk+1), zk − u〉
¬
≤ α2

k+1LProg(xk+1) + Vzk(u)− Vzk+1(u)
­
≤ α2

k+1L
(
f(xk+1)− f(yk+1)

)
+ Vzk(u)− Vzk+1(u) .

Proof. The second inequality ­ is again from the gradient descent guarantee f(xk+1) −
f(yk+1) ≥ Prog(xk+1). To prove ¬, we first write down the key inequality of mirror-descent

21This proof can be found for instance in the textbook [9].
22 That is,

∀x, y ≥ 0, 〈−∇Vx(y), y − u〉 = 〈∇w(x)−∇w(y), y − u〉
= (w(u)− w(x)
− 〈∇w(x), u− x〉)− (w(u)− w(y)− 〈∇w(y), u− y)〉)
− (w(y)− w(x)− 〈∇w(x), y − x〉)

= Vx(u)− Vy(u)− Vx(y) .
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analysis (whose proof is identical to that of (2.2))

αk+1〈∇f(xk+1), zk − u〉 = 〈αk+1∇f(xk+1), zk − zk+1〉+ 〈αk+1∇f(xk+1), zk+1 − u〉
¬
≤ 〈αk+1∇f(xk+1), zk − zk+1〉+ 〈−∇Vzk(zk+1), zk+1 − u〉
­= 〈αk+1∇f(xk+1), zk − zk+1〉+ Vzk(u)− Vzk+1(u)− Vzk(zk+1)
®
≤
(
〈αk+1∇f(xk+1), zk − zk+1〉 −

1
2‖zk − zk+1‖2

)
+
(
Vzk(u)− Vzk+1(u)

)
Here, ¬ is due to the minimality of zk+1 = arg minz∈Q{Vzk(z) + 〈αk+1∇f(xk+1), z〉}, which
implies that 〈∇Vzk(zk+1) + αk+1∇f(xk+1), u − zk+1〉 ≥ 0 for all u ∈ Q. ­ is due to the
triangle equality of Bregman divergence (see Footnote 22 in Appendix B). ® is because
Vx(y) ≥ 1

2‖x− y‖
2 by the strong convexity of the w(·).

If one stops here and uses Cauchy-Shwartz 〈αk+1∇f(xk+1), zk− zk+1〉− 1
2‖zk− zk+1‖2 ≤

α2
k+1
2 ‖∇f(xk+1)‖2∗, he will get the desired inequality in the special case of Q = Rn, because

Prog(xk+1) = 1
2L‖∇f(xk+1)‖2∗ from (2.1).

For the general unconstrained case, we need to use the special choice of τk = 1/αk+1L

follows. Letting v def= τkzk+1 + (1− τk)yk ∈ Q so that xk+1 − v = (τkzk + (1− τk)yk)− v =
τk(zk − zk+1), we have

〈αk+1∇f(xk+1), zk − zk+1〉 −
1
2‖zk − zk+1‖2

= 〈αk+1

τk
∇f(xk+1), xk+1 − v〉 −

1
2τ2
k

‖xk+1 − v‖2

= α2
k+1L

(
〈∇f(xk+1), xk+1 − v〉 −

L

2 ‖xk+1 − v‖2
)
≤ α2

k+1LProg(xk+1)

where the last inequality is from the definition of Prog(xk+1). J

I Lemma 4.3 (Coupling). For any u ∈ Q,(
α2
k+1L

)
f(yk+1)−

(
α2
k+1L− αk+1

)
f(yk) +

(
Vzk+1(u)− Vzk(u)

)
≤ αk+1f(u) .

Proof. We deduce the following sequence of inequalities

αk+1
(
f(xk+1)− f(u)

)
≤ αk+1〈∇f(xk+1), xk+1 − u〉
= αk+1〈∇f(xk+1), xk+1 − zk〉+ αk+1〈∇f(xk+1), zk − u〉
¬= (1− τk)αk+1

τk
〈∇f(xk+1), yk − xk+1〉+ αk+1〈∇f(xk+1), zk − u〉

­
≤ (1− τk)αk+1

τk
(f(yk)− f(xk+1)) + αk+1〈∇f(xk+1), zk − u〉

®
≤ (1− τk)αk+1

τk
(f(yk)− f(xk+1)) + α2

k+1L
(
f(xk+1)− f(yk+1)

)
+ Vzk(u)− Vzk+1(u)

¯=
(
α2
k+1L− αk+1

)
f(yk)−

(
α2
k+1L

)
f(yk+1) + αk+1f(xk+1) +

(
Vzk(u)− Vzk+1(u)

)
Here, ¬ uses the choice of xk+1 that satisfies τk(xk+1 − zk) = (1 − τk)(yk − xk+1); ­ is
by the convexity of f(·) and 1 − τk ≥ 0; ® uses Lemma 4.2; and ¯ uses the choice of
τk = 1/αk+1L. J
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D Strong Convexity Version of Accelerated Gradient Method

When the objective f(·) is both σ-strongly convex and L-smooth with respect to the same
norm ‖ · ‖2, another version of accelerated gradient method exists and achieves a log(1/ε)
convergence rate [26]. We show in this section that, our method AGM(f, w, x0, T ) can be used
to recover that strong-convexity accelerated method in one of the two ways. Therefore, the
gradient-mirror coupling interpretation behind our paper still applies to the strong-convexity
accelerated method.

One way to recover the strong-convexity accelerated method is to replace the use of the
mirror-descent analysis on the regret term by its strong-convexity counterpart (also known
as logarithmic-regret analysis, see for instance [15, 37]). This would incur some different
parameter choices on αk and τk, and results in an algorithm similar to that of [26].

Another, but simpler way is to recursively apply Theorem 4.1. In light of the definition
of strong convexity and Theorem 4.1, we have

σ

2 ‖yT − x
∗‖22 ≤ f(yT )− f(x∗) ≤

4 · 1
2‖x0 − x∗‖22 · L

T 2 .

In particular, in every T = T0
def=
√

8L/σ iterations, we can halve the distance ‖yT − x∗‖22 ≤
1
2‖x0 − x∗‖22. If we repeatedly invoke AGM(f, w, ·, T0) a sequence of ` times, each time feeding
the initial vector x0 with the previous output yT0 , then in the last run of the T0 iterations,
we have

f(yT0)− f(x∗) ≤
4 · 1

2` ‖x0 − x∗‖22 · L
T 2

0
= 1

2`+1 ‖x0 − x∗‖22 · σ .

By choosing ` = log
(‖x0−x∗‖2

2·σ
ε

)
, we conclude that

I Corollary 4.1. If f(·) is both σ-strongly convex and L-smooth with respect to ‖ · ‖2,
in a total of T = O

(√
L
σ · log

(‖x0−x∗‖2
2·σ

ε

))
iterations, we can obtain some x such that

f(x)− f(x∗) ≤ ε.

This is slightly better than the result O
(√

L
σ · log

(‖x0−x∗‖2
2·L

ε

))
in Theorem 2.2.2 of [26].

We remark here that O’Donoghue and Candès [32] have studied some heuristic adaptive
restarting techniques which suggest that the above (and other) restarting version of the
accelerated method practically outperforms the original method of Nesterov.


