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ABSTRACT

High-throughput next-generation sequencing techniques have hugely decreased

the cost and increased the speed of sequencing, resulting in an explosion of sequenc-

ing data. This motivates the development of high-efficiency sequence alignment

algorithms. In this thesis, I present multiple bit-parallel and Single Instruction Mul-

tiple Data (SIMD) algorithms that greatly accelerate the processing of biological

sequences. The first chapter describes the BitPAl bit-parallel algorithms for global

alignment with general integer scoring, which assigns integer weights for match, mis-

match, and insertion/deletion. The bit-parallel approach represents individual cells

in an alignment scoring matrix as bits in computer words and emulates the calcu-

lation of scores by a series of logic operations. Bit-parallelism has previously been
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applied to other pattern matching problems, producing fast algorithms. In timed

tests, we show that BitPAl runs 7 - 25 times faster than a standard iterative algo-

rithm.

The second part involves two approaches to alignment with substitution scoring,

which assigns a potentially different substitution weight to every pair of alphabet

characters, better representing the relative rates of different mutations. The first

approach extends the existing BitPAl method. The second approach is a new SIMD

algorithm that uses partial sums of adjacent score differences. I present a simple

partial sum method as well as one that uses parallel scan for additional acceleration.

Results demonstrate that these algorithms are significantly faster than existing SIMD

dynamic programming algorithms.

Finally, I describe two extensions to the partial sums algorithm. The first adds

support for affine gap penalty scoring. Affine gap scoring represents the biological

likelihood that it is more likely for gaps to be continuous than to be distributed

throughout a region by introducing a gap opening penalty and a gap extension

penalty. The second extension is an algorithm that uses the partial sums method to

calculate the tandem alignment of a pattern against a text sequence using a single

pattern copy.

Next generation sequencing data provides a wealth of information to researchers.

Extracting that information in a timely manner increases the utility and practicality

of sequence analysis algorithms. This thesis presents a family of algorithms which

provide alignment scores in less time than previous algorithms.
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to words 2, 4, 6, 8, 10, 12 and 14. Every word now has its final value. . 111
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Chapter 1

Introduction and Background

The principle known as the central dogma of molecular biology captures the way

in which genetic information, initially stored in DNA, is transformed into a protein

product via the translation of messenger RNA previously transcribed from DNA.

Each of these molecules are biological chain polymers that can be represented as

sequences of characters corresponding to nucleic acids (DNA/RNA) or amino acids

(protein). By examining these sequences, we can deepen our understanding of the

processes underlying the intra- and interspecies diversification, including phyloge-

netic relationships, the mechanisms by which genotype can influence phenotype,

and the evolution of proteins. Next generation sequencing (NGS) technologies have

greatly increased in speed and decreased in cost in recent years providing researchers

with an abundance of data. However, the timely processing of these data remains

challenging, as the computational processing and aligning of these sequences have

not improved as rapidly. This thesis addresses these challenges by presenting a fam-

ily of novel sequence alignment algorithms which hold a substantial processing-time

advantage over existing algorithms.

When DNA was first sequenced in the 1970s, labor and time intensive laboratory

techniques were commonplace. The fields of biology and healthcare were changed

forever with the first sequencing of the human genome in 2001 [38, 58]. The avail-

ability of the full human genome lead to an explosion of genomic studies and allowed

the development of next-generation sequencing techniques. High-throughput NGS
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techniques have hugely decreased the cost and increased the speed of sequencing.

Currently, a whole human genome can be sequenced for approximately a thousand

dollars in a short period of time, as little as 26 hours [46]. As advances are made

in biological sequencing technology and the price of sequencing continues to fall,

the number of sequencing projects underway is increasing. Projects like the 1000

Genome Project [13] and the Genome Project for Food Pathogens (100,000 genome

project)[1] are making available huge collections of genomic data. Consequently,

the amount of available sequence data generated is growing rapidly. These large

datasets, and the need to align reads across them, are highlighting the importance

of fast alignment tools. Several modern aligners (Bowtie[39], SOAP 2[43], BWA[42])

focus on the problems of indexing and seed creation, building efficient indices to allow

fast search through large databases. However, one avenue for optimization that has

not been fully explored is the alignment algorithms at the heart of these programs,

many of which use a traditional dynamic programming approach.

1.1 Background

The Benson lab focuses on the investigation of genomic features called tandem re-

peats (TR) and variable number of tandem repeats (VNTR)[6, 7, 23]. A tandem

repeat is a locus in the genome with multiple adjacent copies of an underlying pat-

tern.

Tandem repeats can vary in copy number across a population. For example, at a

particular locus, one person may have four copies and another may have five copies.

Such a locus is called a variable number of tandem repeats (VNTR). VNTRs are

known to have important effects on chromatin structure [55, 56, 2, 55, 61], gene ex-

pression [60], and disease states [59, 26, 21, 11, 41, 40, 52], so their discovery and

analysis are crucial to understanding genomic function. NGS data contains infor-
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Figure 1·1: In this figure, we represent a tandem repeat sequence as
the pattern sequence (in blue), with the repeated copies below it in
red. Anywhere the copy varies from the pattern, we show the base
that varies. Flanking sequence is shown in green.

mation on VNTRs, but current read mapping algorithms do not accurately map the

reads covering these TRs because the VNTRs look like insertions or deletions (indels)

or because the repeats look alike. The Benson lab has developed a computational

pipeline, VNTRseek, for genome wide discovery of these VNTRs. This pipeline uses

many alignments. For example, when two TRs are found that have the same pattern,

the flanking sequence on each side of them must be aligned to determine whether

the TRs are at the same location in the genome.

1.1.1 Global Alignment

In global sequence alignment, two sequences are aligned end-to-end, such that every

base in each sequence is aligned either to a base in the other sequence or to a gap.

Global alignments are useful for sequences of similar lengths expected to be generally

similar, for example orthologous genes, or in our lab, the flanking sequence surround-

ing TRs. This differs from local alignment, in which subsequences of the sequences

are aligned. A local alignment is better suited for scenarios where sequences that are

dissimilar in length or sequence are expected to contain small regions of similarity.

The first global sequence alignment algorithm was the dynamic programming so-

lution presented by Needleman and Wunsch [51]. Dynamic programming alignment
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Figure 1·2: Two tandem repeats at the same locus, where one has
just over 3 copies and one has just over 5.

algorithms like Needleman-Wunsch and Smith-Waterman [53] (which is used to com-

pute local alignment) iterate cell by cell over the alignment scoring matrix, with each

cell requiring many low-level machine operations. This leads to the general O(n2)

efficiency of dynamic programming alignment algorithms. Since then, bit-parallel

and Single Instruction Multiple Data (SIMD) algorithms have been applied to sim-

ilar pattern matching problems, resulting in large decreases in run time. One of

the computational differences between global and local alignment is that the global

alignment score is always dependent on the surrounding alignment scores, while local

alignment allows the alignment score to be reset to zero at any point in the algo-

rithm, breaking the local dependency. Bit-parallel and SIMD algorithms have been

developed for local alignment [31, 18, 16], but the acceleration of our algorithms

requires the local dependencies of global alignment.



5

1.1.2 Bit-parallel Algorithms

Bit-parallel algorithms use computer words to represent consecutive cells in rows of

the scoring matrix, so n-bit computer words can represent n sequence characters.

The use of bit-vectors to represent the scoring matrix means that low-level (and

fast) bit-operations can be used to compute the value of an entire bit-vector, instead

of costly branching statements applied within a loop. This effectively reduces the

order of magnitude of the algorithm, especially if only a few binary operations are

needed. Current computer word size is 64 bits, and operations on 128 and 256

bits are now possible using SIMD instructions (Single Instruction Multiple Data).

This means that significant speedups in run-time are possible over algorithms that

compute scores sequentially.

Bit-parallel methods are used primarily to compute alignment scores rather than

to recover the actual alignments, and they can be used as filters to quickly identify

sequences that are similar enough to warrant further exploration. Until recently,

efficient bit-parallel methods for pairwise sequence alignment were available only for

the longest common subsequence (LCS) [28, 14, 3] and unit-cost edit distance (ED)

[49, 32, 33, 29, 45] problems. However, the bit-parallel solutions for these problems

were ad hoc and not adaptable to other common scoring schemes.

1.1.3 SIMD Algorithms

Modern processors provide Single Instruction Multiple Data (SIMD) registers and

instructions that allow multiple values to be stored and processed as a unit. These

have been used in the past [18], [16] to implement accelerated dynamic programming

alignment algorithms. One of the weaknesses of these algorithms has been that scores

stored in SIMD registers cause overflows within the small space (1 byte) provided by

the most dense SIMD format, requiring recalculation with a larger storage mode (2,
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4, or 8 bytes).

1.2 Thesis Overview

In this thesis, I present several bit-parallel and SIMD algorithms for sequence align-

ment. All of our algorithms are based on the principle of storing the difference in

scores rather than the scores themselves. This is advantageous in the case of bit-

parallel algorithms because it allows us to use a fixed and small number of bit-vectors.

In the case of the SIMD algorithms, storing the differences ensures that our values fit

within the limits of the SIMD registers. This avoids the recomputation of previous

SIMD methods.

1.2.1 BitPAl, bit-parallel algorithms for global alignment with general

integer scoring

Chapter 2 describes BitPAl, our bit-parallel algorithms for global alignment with

general integer scoring. Integer-scoring schemes assign integer weights for match,

mismatch and insertion/deletion. The bit-parallel approach represents individual

cells in an alignment scoring matrix as bits in computer words and emulates the

calculation of scores by a series of logic operations composed of AND, OR, XOR,

complement, shift and addition. Bit-parallelism has been successfully applied to the

longest common subsequence (LCS) and edit-distance problems, producing fast algo-

rithms in practice. The BitPAl method uses structural properties in the relationship

between adjacent scores in the scoring matrix to construct classes of efficient algo-

rithms, each designed for a particular set of weights. In timed tests, we show that

BitPAl runs several times faster than a standard iterative algorithm.
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1.2.2 Bit-parallel and SIMD algorithms for global alignment with sub-

stitution scoring

Substitution scoring assigns a potentially different substitution weight to every pair

of alphabet characters, which better represents the relative rates of different muta-

tions. Examples of substitution scoring include BLOSUM scoring, commonly used

for protein sequences, and transition-transversion scoring, used for DNA sequences.

Chapter 3 extends the BitPAl algorithm to use substitution scoring and introduces

new SIMD algorithms for global alignment. The BitPAl approach extends the ex-

isting algorithm to the more complicated relationship between adjacent scores when

given more than two possible substitution scores. The SIMD algorithm is a new

approach that uses partial sums of adjacent score differences. I present a simpler

partial sum method as well as one that uses parallel scan for additional acceleration.

Results demonstrate that these algorithms are significantly faster than an existing

SIMD dynamic programming algorithm.

1.2.3 SIMD algorithms for global alignment with affine gapping and tan-

dem alignment

Chapter 4 implements two extensions to the partial sums algorithm. The first adds

support for affine gap penalty scoring. Affine gap scoring represents the biological

reality that it is more likely for gaps to be continuous than distributed throughout

a region by introducing a gap opening penalty and a gap extension penalty. The

second extension is an algorithm that uses the partial sums method to calculate the

tandem alignment of a pattern against a text sequence using a single pattern copy.
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Chapter 2

BitPAl: a bit-parallel, general

integer-scoring sequence alignment

algorithm

2.1 Introduction

Bit-parallel algorithms have been developed for exact and approximate string match-

ing problems. Early examples include the algorithms of [5], which finds exact matches

to a simple string pattern, and [62], which finds approximate matches to a string pat-

tern or a regular expression, where the number of differences between the pattern

and the text is at most k (counting single character substitutions and single character

insertions and deletions or indels). The latter is implemented as the Unix command

agrep. Additional k-differences examples include [63], an approach based on the Four

Russians technique [4], which finds matches to “limited expressions,” i.e., regular ex-

pressions without Kleene closure, [49], which finds matches to simple string patterns

and emulates the dynamic programming solution used in alignment, and [50], which

allows arbitrary integer weights for substitution of each pair of characters, insertion

of each character, and deletion of each character, and finds occurrences of regular

expressions where the sum of the edit weights is at most k. In most k-differences

algorithms, the complexity (and computing time) increases with increasing k.

Bit-parallel methods have been successfully applied to the longest common sub-

sequence (LCS) problem [3, 14, 28], and to unit-cost edit-distance [30, 32] by mod-
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ifications of [49]. These algorithms compute the alignment score, de-linking that

computation from the traceback which produces the final alignment. In the LCS

scoring matrix, scores are monotonically non-decreasing in the rows and columns

and bit-parallel implementations use bits to represent the cells where an increase

occurs. In edit-distance scoring, adjacent scores can differ by at most one, and the

binary representation stores the locations of (two of the three) possible differences,

+1,−1, and zero. These algorithms are ad hoc in their approach, relying on specific

properties of the underlying problems, making it difficult to directly adapt them to

other alignment scoring schemes. Bergeron and Hamel [9], addressed general integer

scoring, outlining construction of a distance-based algorithm from a corresponding

finite automaton, but the transformation was costly in terms of bit-operations and

they gave no implementation.

Below we present a bit-parallel method for similarity and distance based global

alignment using general integer-scoring [8], allowing arbitrary integer weights for

match, mismatch, and indel. Other approaches have been suggested by [62] and [9].

The method of [50] is more flexible in scoring and applies to both simple patterns

and regular expressions, but is much slower than our method in practice. Our con-

tribution is based on an observation of the regularity in the relationship between

adjacent scores in the scoring matrix (Section 2.2.1) and the design of an efficient se-

ries of bit operations to exploit that regularity (Section 2.3). Because every distinct

choice of weights requires a different program, we show how to construct a class of

efficient algorithms, each designed for a particular set of weights, and provide an

online C code generator for users. The complexity of our algorithms depends on

the weights, not the ultimate score of the alignment. Our method works for gen-

eral alphabets, but our interest derives from frequent use of DNA alignment when

analyzing high-throughput sequencing data to detect genetic variation.
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2.2 Methods

The problem to be solved is stated in terms of similarity scoring, but the technique

applies to distance scoring as well.

Problem: Given two sequences X and Y, of length n and m respectively, and

a similarity scoring function S defined by three integer weights M (match), I (mis-

match), and G (indel or gap), calculate the global alignment similarity score for X

and Y using logic and addition operations on computer words of length w.

We are interested in two measures of efficiency for the algorithms. The first is

standard time complexity and the second is a ratio of the word size, w, and the

count, p, of logic and addition operations required to process w consecutive cells

in the alignment scoring matrix. The efficiency, e = w/p, is the average number

of cells computed per operation. For example, when using 64 bit words, LCS has

e = 64/4 = 16 (p = 4 operations per word [28]), and edit distance has e = 64/15 ≈

4.2 (an improvement from 64/16 in the method of [49, 32]; see Appendix of [45] for

details). Since p is independent of w, if the word size doubles, e doubles too. Note

that we are counting only logic and addition operations, not storage of values in

program variables. Adding store operations would be more accurate but the number

of these operations is compiler and optimization level specific.

We require that the alignment method be global or semi-global. That is, we do

not restrict the initializations in the first row or column of the alignment scoring

matrix or where in the last row or column the alignment score is obtained. Typical

initializations require 1) a gap weight to be added successively to every cell (global

alignment from the beginning of a sequence), and 2) a zero in every cell (semi-global

alignment where an initial gap has no penalty).

We assume that match scores are positive or zero, M ≥ 0, mismatch and gap

scores are negative, I,G < 0 and that the use of mismatch is possible, meaning
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that its penalty is no worse than the penalty for two adjacent gaps, one in each

sequence, I ≥ 2G. While other weightings are possible, they either reduce to simpler

problems from a bit-parallel perspective (e.g., Longest Common Subsequence has

G = 0, I = −∞, M = 1) or require more complicated structures than detailed

here (e.g., protein alignment using PAM or BLOSUM style amino acid substitution

tables).

2.2.1 Function Tables

Let S be a recursively-defined, global similarity scoring function for two sequences

X and Y computed in an alignment scoring matrix:

S[i, j] = max



S[i− 1, j − 1] +M if Xi = Yj

S[i− 1, j − 1] + I if Xi 6= Yj

S[i− 1, j] +G delete Xi

S[i, j − 1] +G delete Yj

Instead of actual values of S, we store only the differences, ∆V , between a cell and

the cell above, and ∆H, between a cell and the cell to its left:

∆V [i, j] = S[i, j]− S[i− 1, j]

∆H[i, j] = S[i, j]− S[i, j − 1].

It is an easy exercise to prove that the minimum and maximum values for ∆V

and ∆H are G and M −G respectively. Lemma 2.2.1 gives the recursive definitions

for ∆V and ∆H in terms of M , I, and G.

Lemma 2.2.1. The values for ∆V are as shown below and the values for ∆H are

computed similarly. That is, ∆H[i, j] in matrix S is equal to V [j, i] in the transpose

of matrix S.
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∆V [i, j]
∀i,j≥1

=

M −∆H[i− 1, j] Match, i.e.: if Xi = Yj

I −∆H[i− 1, j] Mismatch, i.e.: if

I −G ≥

∆H[i− 1, j]

∆V [i, j − 1]

G Indel from above, i.e.: if

∆H[i− 1, j] ≥

I −G∆V [i, j − 1]

∆V [i, j − 1]+

G−∆H[i− 1, j] Indel from left, i.e.: if

∆V [i, j − 1] ≥

I −G∆H[i− 1, j](
V [0, j]
∀j≥1

= G or V [0, j]
∀j≥1

= 0

)

Proof. By substitution in the recursive formula for S.

The recursion for ∆V is summarized in the Function Table in Figure 2·1. Note

the value I−G, which frequently occurs in the recursion, and the relation ∆H = ∆V .

They set the boundaries for the marked zones in the table. These zones comprise

(∆V,∆H) pairs which determine how the best score of a cell in S is obtained in the

absence of a match, either as an indel from the left (Zones A and B), a mismatch

(Zone C), or an indel from above (Zone D). Borders between zones, indicated by
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A

C

D

B{
{

Figure 2·1: Zones in the Function Table for ∆V . Zone A: All val-
ues are in ∆Vhigh∈ {I −G+ 1, . . . ,M −G}; Zone B: All values are in
∆Vlow ∈ {G, . . . , I − G}; Zone C: All values are in ∆Vlow and values
depend only on ∆H; Zone D: All values are G; Last Row: Values
also apply when there is a Match;. First Column: Identity column for
values in ∆Vhigh.

dotted lines, yield ties for the best score. Figure 2·2 shows how the relative size of

the Zones changes with changes in I and G.

2.3 Algorithm

Definitions: min = G, max = M − G, mid = I − G, low ∈ {min, . . . ,mid}, high

∈ {mid +1, . . . ,max}.
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For the illustrations in this chapter, we use the scoring weights:

M = 2, I = −3, G = −5

which yield

min = −5,max = 7, mid = 2,

low ∈ {−5, . . . , 2}, high ∈ {3, . . . , 7}.

The ∆V Function Table for these weights is shown in Figure 2·3.

The algorithm proceeds row-by-row through the alignment matrix. For each row,

the input is

• the ∆H values from the preceding row,

• the leftmost ∆V value in the current row, and

• the Match positions in the current row.

The computation first determines all the remaining ∆V values for the current row

and then, using those, determines the ∆H values for the current row. A central

concept is a run of ∆Hmin. This is a set of consecutive positions in the preceding

row for which the values of ∆H all equal min (in Figure 2·4, positions for which

∆H = −5). The algorithm has the following steps (see Figure 2·4) which follow

from Lemma 2.2.1.

1. Find the locations where ∆V = max (highest value in Zone A):

Step 1A: due to a match between the characters in Sequence X and

Sequence Y. These occur at match locations where ∆H = min.

Step 1B: in any run of ∆Hmin to the right of a match location in the

run.
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2. Find the locations where ∆V = i, for i ∈ {mid+1, . . . ,max−1} (the remaining

values in Zone A). These are computed in decreasing order of i. For each i,

there are two categories, those locations:

Step 2A: due to a match or a larger preceding ∆V value. These also

depend on the ∆H value.

Step 2B: due to the value i being carried through a run of ∆Hmin.

3. Find the locations where ∆V = i, for i ∈ {min +1, . . . ,mid} (the values in

Zones B and C). These are computed separately for each value i and depend

on:

Step 3A: a match or the preceding ∆V value and the ∆H value (Zone

B).

Step 3B: the ∆H value alone (Zone C).

4. Find the locations where ∆V = min (the values in Zone D). These are:

Step 4: all the remaining locations with undetermined ∆V values.

5. Find the current row locations where the new ∆H = i for:

Step 5A: i > min.

Step 5B: i = min.

We describe the simplest case where the length of the first sequence is less than

the computer word size w. Longer sequences can be handled in “chunks,” where

each chunk has size w. Match positions for every row are computed prior to the

calculation of the row values as is also done for the LCS and edit-distance problems.

Details are given at the end.
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We present two algorithms, BitPAl and BitPAl Packed. They differ in the data

structures used to hold and process the ∆H and ∆V values and their computation of

Steps 3, 4, and 5. Correctness theorems and proofs for the various steps are presented

in Appendix A.

2.3.1 BitPAl

Data Structure for BitPAl. One computer word (sometimes called a vector)

represents each possible value of ∆H and ∆V . Bit i in a word refers to column i in

the alignment scoring matrix. With the weights used for illustration, there are 13

values {G, . . . ,M − G} = {−5,−4, . . . , 6, 7}, and therefore 13 words each, for ∆H

and ∆V . Computing the ∆ values. To compute its output values, each cell

needs to know its ∆H and ∆V input values. As in standard left to right processing,

the output ∆V value from one cell becomes the input value for the cell to its right.

All the input ∆H values are in the preceding row.

Zone A. Inspection of the Function Table (Figure 2·3) reveals that the output

values in Zone A are interdependent, and require computing in order from high to

low. For example, output ∆V = 5 can be obtained in two ways from higher ∆V

input values, (∆V = 7,∆H = −3) and (∆V = 6,∆H = −4). ∆V = 5 cannot be

obtained from lower ∆V input values.

The leftmost column in the table, ∆Hmin (−5 in the example), is an identity

column. This means that for runs of ∆Hmin, an input ∆V value yields the identical

∆V ouput for every location in the run to the right of the input. For example, if

the input ∆V = 5 for the leftmost position in a run, then the output ∆V for every

position in the run is also 5 (see Figure 2·4 steps 1B, 2B for 4). Carrying an input

value through a run of ∆Hmin can be accomplished with an addition (+) as seen

below. Addition is similarly used to solve left-to-right dependency problems in LCS
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and edit-distance bit-parallel algorithms.

Note in the bottom row of the Function Table that a Match acts as an input

∆Vmax (7 in the example), so we will treat the Match positions as having input

∆Vmax.

Steps 1A and 1B: The locations where ∆V = max, stored in the ∆Vmax vec-

tor, are calculated with four operations (Figure 2·5). The locations are shifted one

position to the right for input to subsequent calculations. The operations are: 1) an

AND to find max due to Matches, 2) an ADDITION (+) to carry max through runs of

∆Hmin and into the position following a run (because the result will be shifted). This

causes erroneous internal bit flips if there are multiple Matches in the same run, 3)

an XOR with ∆Hmin to complement the bits within the ∆Hmin runs, and 4) an XOR

with the initial ∆Vmax to correct any erroneous bits and finish the shift by removing

the locations set with Matches.

Steps 2A and 2B: Remaining ∆Vhigh vectors are calculated, in descending order

from ∆V = max−1 to ∆V = mid + 1 due to the dependencies as discussed above.

The operations are: 1) finding the locations due to a preceding higher ∆V value using

AND of appropriate (∆V,∆H) pairs (which intersect along a common diagonal in the

Function Table) and collecting them together with ORs, 2) shifting the initial vectors

right one position for subsequent calculations, 3) carrying through runs of ∆Hmin

computed in two operations, an ADDITION (+) as before and an XOR with ∆Hmin to

complement the bits within the ∆Hmin runs (Figure 2·6). Before the addition, those

∆Hmin positions that have already output a ∆Vmax value must be removed.

Steps 3A and 3B. (Figure 2·7). At this point, all the ∆Vhigh input values for

Zone B have been computed (they are the outputs from Zone A), remaining output

values are all ∆Vlow. The operations are: 1) the AND of appropriate (∆V,∆H) pairs,

which intersect along a common diagonal (Zone B), 2) the AND of the appropriate
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∆H vector and all positions without a ∆Vhigh output (Zone C), 3) an OR combination

of the preceding two results and 4) a shift of the locations one position to the right

for subsequent calculations.

Step 4: Zone D has only one output value, ∆Vmin. It is assigned to all remaining

locations as well as the zero location if gap penalty in the first column is being used.

Step 5: After the ∆V values are computed, all inputs are available and the

new ∆H vectors for the current row can be computed immediately. The Function

Table for the new ∆H is the transpose of the table for ∆V , i.e., the input labels

are swapped. Each new ∆H vector is obtained by the AND of appropriate (∆V,∆H)

input pairs, which intersect along a common diagonal, collected together with ORs.

Before this can proceed, though, the Match positions must be added to the previous

row’s ∆Hmax vector (with OR) and removed from all other previous row ∆H vectors.

Also, all previous row ∆Hlow locations must be converted to ∆Hmid.

2.3.2 BitPAl Packed

Data structure for BitPAl packed. The number of logic operations in BitPAl

scales linearly with the size of the function table. Many of these are the AND and OR

operations to compute identical values along Zone B diagonals. These calculations

can be performed more efficiently with a new representation. The idea is to store the

input ∆H and ∆V values in such a way that they can all be added simultaneously

to give the appropriate output values.

Rather than using bit-vectors to represent single ∆H or ∆V values, we use them

to represent binary digits (Figure 2·8). We map the ∆V values {min, . . . ,max}

one-to-one onto the positive values {0, . . . ,max−min} and store them in the vec-

tors ∆Vp0,∆Vp1,∆Vp2, etc. where pi is the place holder for the ith power of 2.

The mapping for ∆H is onto negative numbers i.e., {min, . . . ,max} are mapped to
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{0, . . . ,−(max−min)} and stored in vectors ∆Hp0,∆Hp1,∆Hp2, etc. After addition,

the sums will fall in {−(max−min), . . . ,max−min}, so we use dlog2(2(max−min)+

1)e bit-vectors for ∆H and ∆V . For our example, the ∆V values are mapped to

{0, . . . , 12}, the ∆H values are mapped to {0, . . . ,−12} and the sums fall within

{−12, . . . , 12}, so we use 5 vectors each for ∆H and ∆V .

BitPAl Packed does not change the computation of the ∆V values in Zone A.

The ∆H values are always maintained in the packed representation, but some are

unpacked into the original representation for the Zone A computations. Once Steps

1 and 2 are completed, all locations without a ∆V value are set to mid, all Match

locations are set to max, and the ∆V values are converted into the packed represen-

tation.

Steps 3 and 4 are computed by ”adding” together the two sets of packed vectors

using a series of AND, OR, and XOR operations (Figure 2·8) to produce the final encoded

values for ∆V . Any negative values (sign bit set) are converted to min (Zone D).

For Step 5, the new ∆H values are determined with a second addition. Since all

input ∆H in the range [min,mid] give the same result, we first re-encode that range

to mid.

Packing and unpacking. Packing ∆V vectors involves identifying the locations

where the binary representation of the encoded values all have a specific bit set.

For example, the binary representations for 1, 3, 5, 7, 9, and 11 all have the bit

representing 20 set and the binary representations for 2, 3, 6, 7, 10, and 11 all have

the bit representing 21 set. Effectively then,

∆Vp0 = ∆V1 OR ∆V3 OR ∆V5 OR ∆V7 OR ∆V9 OR ∆V11

∆Vp1 = ∆V2 OR ∆V3 OR ∆V6 OR ∆V7 OR ∆V10 OR ∆V11

etc.
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where ∆Vi is the vector of locations with encoded value i. However, as can be seen

for these two examples, there are common terms (∆V3,∆V7,∆V11), so combining the

terms as above leads to inefficiencies.

Unpacking the ∆H vectors involves identifying locations of specific encoded val-

ues from the binary representation vectors. For example, the ∆H−1 locations are

those (using two’s complement, -1 = 11111) that have all bits set and ∆H−2 loca-

tions are those (using two’s complement, -2 = 11110) that have all but the lowest

bit set. Again, effectively:

∆H−1 = ∆Hp0 & ∆Hp1 & ∆Hp2 & ∆Hp3 & ∆Hp4

∆H−2 = ∼ ∆Hp0 & ∆Hp1 & ∆Hp2 & ∆Hp3 & ∆Hp4

etc.

Again, there are common terms which can be combined to avoid inefficiencies. For

both packing and unpacking, we use a binary tree structure in the code genera-

tor to guide creation of temporary intermediate vectors so that operations are not

duplicated.

2.3.3 Other Tasks

Determining Matches. As a preprocessing step, the position of the matches are

determined for each character σ in the sequence alphabet. A bit vector Matchσ

records those positions in sequence X where σ occurs. Filling all the Matchσ simul-

taneously can be accomplished efficiently in a single pass through X.

Decoding the Alignment Score. The score in the last column of the last row

of the alignment scoring matrix can be obtained by calculating the score in the zero

column (= m ∗G) and then adding the number of 1 bits in each of the ∆H vectors

multiplied by the value of the vector. Using the method described in [36], this takes
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O(n+M − 2G) operations with a small constant:

S[m,n] = m ∗G+
M−G∑
i=G

bitsi ∗ i

where bitsi is the number of 1 bits set in ∆Hi.

For BitPAl Packed, the alignment score can similarly be computed in O(n · k)

operations

S[m,n] = m ∗G+
k−1∑
i=0

pbitsi ∗ 2i.

where pbits is the number of 1 bits set in ∆Hpi, and k is the number of bit vectors

in the packed representation.

Several straightforward methods can be used to efficiently find all scores in the

last row or last column.

2.3.4 Backtrace to Recover Alignment

In order to recover the alignment of the two sequences, dynamic programming al-

gorithms often store a traceback matrix which records, for each cell in the scoring

matrix, which cell(s) (left, diagonal, or above) the value came from. Starting at the

bottom right hand corner of the traceback matrix, the alignment can be recovered

by tracing backward along the path(s) that the score came from. This method was

extended in [64] to Myer’s bit-parallel edit-distance algorithm, via the creation of a

bit-parallel traceback matrix.

We present here an alternative method that does not require the creation of any

new data structures. For each row of the alignment, it only requires the storage of

the ∆H and ∆V bit-vectors storing the gap value.

Preliminaries We begin by creating two strings sx and sy to hold the aligned

sequences. We store the final row and column in variables r and c, respectively. We

set pointers pc and pr to the final character in each sequence X and Y .
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Recursion We check the row r ∆V gap bit-vector at column c. This can be done

by a SHIFT and an AND. If there is a bit set in column c, we decrement r, insert a

”-” character in sy, insert the character at pc in sx, and decrement pc. If there was

not a bit set in ∆V gap bit-vector column c, we check the row r ∆H gap bit-vector

at column c. If there is a bit set in column c, we decrement c, insert a ”-” character

in sx, insert the character at pr in sy, and decrement pr. If neither ∆V or ∆H have

a bit set in row r at column c, we decrement both c and r, insert the character at pc

in sx, insert the character at pr at sy, and decrement both pc and pr.

This process continues until r and c are zero. At the end, sx and sy contain

the reverse alignment of X and Y and the alignment can be recovered by reversing

both strings. This is similar to the method of [27], although that method only

uses the ∆V values and so must do more work to determine whether a horizontal

gap occurred. This method has been extended to the later bit-parallel and SIMD

algorithms described, allowing all of the algorithms presented to either calculate the

alignment score only or calculate the alignment score and recover the alignment.

2.3.5 Complexity and Number of Operations

The time complexity of our algorithms is O(znm/w) where z depends on the version.

For BitPAl standard, z represents the combined size of Zones A, B, and C (the latter

reduced to a single row as in Figure 2·3) in the Function Table. This in turn depends

on the alignment weights M, I, and G:

z =
(M − 2G+ 1)2 − (I − 2G)2

2

and the constant hidden in the big O notation is approximately 4 (dominated by two

operations per cell of Zones A, B, and C for ∆V and separately for ∆H). For the

example weights used in this chapter, the number of logic and addition operations,
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p, per word is 265, yielding an efficiency of 64/265 ≈ 0.24 cells per operation with

64 bit words.

For the packed version, z represents the size of Zone A, the number of distinct

∆H and ∆V values for the packing and unpacking steps, and the binary log of the

number of distinct values for the addition steps:

z = (M − I)2 + (M − 2G+ 1) + log2(M − 2G+ 1).

Unlike the standard version, the term constants are not uniform (approximately 2,

2, and 12 respectively). For the example weights used in this chapter, the number of

logic and addition operations, p, per word is 166, yielding an efficiency of 64/166 ≈

0.38 cells per operation for 64 bit words. See Figure 2·11 and Table ?? for a

comparison of the number of operations required by the two algorithms for different

alignment weights.

Implementation

Each unique set of weights M, I, and G requires a uniquely tailored program. To sim-

plify usage, we have constructed a web site, http://lobstah.bu.edu/BitPAl/BitPAl.

html that generates C source code for download. The website takes as input the

user’s alignment weights, the algorithm version (standard or packed), whether it will

be used for short sequences (single word) or long sequences (multiple word), and

where the final score should be found.

2.4 Experimental Results

We compared running times for several bit-parallel algorithms using different align-

ment weights: 1) BitPal, 2) BitPAl Packed, 2) NW – the classical [51] dynamic

programming alignment algorithm, 3) LCS – the bit-parallel LCS algorithm of [28],

http://lobstah.bu.edu/BitPAl/BitPAl.html
http://lobstah.bu.edu/BitPAl/BitPAl.html
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4) ED – our improved bit-parallel, unit-cost edit-distance algorithm from the method

of [49, 32], 5) WM – the unit-cost [62] approximate pattern matching algorithm, and

6) N – the [50] general integer scoring, approximate regular expression matching al-

gorithm. We implemented BitPAl, BitPAl Packed, NW, LCS, ED, and WM. N was

graciously provided by Gonzalo Navarro.

For all experiments, we used human DNA and ran 100 pattern sequences against

250,000 text sequences for a total of 25 million alignments. (Pattern and text distinc-

tions are irrelevant for BitPAl, BitPAl Packed, NW, LCS, and ED.) All sequences

were 63 characters long. For WM we varied k, the maximum number of allowed

errors, from 1 to 15. For N, we varied k from 1 to 12. All programs were compiled

with GCC using optimization level O3 and were run on an Intel Core 2 Duo E8400

3.0 GHz CPU running Ubuntu Linux 12.10. Results are shown in Figures 2·9 and

2·10 and Table 2.1. The runtime of WM depended on k, the number of differences

allowed. For k = 7, the runtimes for BitPal and WM are nearly the same. By k = 15,

BitPAl runs approximately twice as fast. N was 118 to 304 times slower than BitPAl

(0, -1, -1) even when optimal parameters were chosen. BitPAl Packed (2, -3, -5)

is approximately 7.1 times faster than NW and BitPAl (0,-1,-1) is approximately

24.9 times faster. For parameter values other than (0, -1, -1), BitPAl Packed is

faster than BitPAl and the number of operations it uses and its runtime grows more

slowly, leading to BitPAl Packed being approximately 4.8 times faster than BitPAl

for parameter values (4, -7, -11) with a third as many operations.

2.5 Discussion

The BitPAl and BitPAl packed algorithms outlined above can be extended in several

ways. Computers now in common usage have special 128 bit SIMD registers (Single

Instruction, Multiple Data). Later chapters will discuss SIMD implementations of
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Parameters (M, I, G)

Algorithm 0, -1, -1 2, -3, 5 3, -4, -6 4, -5, -9 4, -7, -11

BitPAl 0.284000 1.903778 2.702000 5.408722 8.517500

BitPAl Packed 0.390500 0.999945 1.126500 1.475222 1.755500

Table 2.1: Table of run times in minutes. Shown are averages over
three trials for 25 million alignments. Needleman-Wunsch has the same
runtime for all parameters, 7.056056 minutes.

Parameters (M, I, G)
Algorithm 0,-1,-1 2,-3,-5 3,-4,-6 4,-5,-9 4,-7,-11
BitPAl 23 265 416 763 1059
BitPal Packed 66 166 201 279 335

Table 2.2: Table of the number of operations in the main loop of
BitPAl and BitPAl Packed for various alignment parameters (M, I,
G).
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related algorithms. Another extension is due to the unexploited parallelism of the

operations. There are no dependencies on prior computations after the ∆V vectors

in Zone A are computed. This means that all the computations in Zones B, C, and D

for ∆V and all the subsequent computations for ∆H can be done simultaneously, an

ideal situation for the use of general purpose graphical processing units (GPGPU).

Extension to local alignment is also possible. This is a different class of problem

in that the best final alignment score can occur in any cell of the alignment matrix. If

all the cells have to be examined, then the time complexity shifts back to O(nm). [31]

had some success with this problem using unit cost weights and identifying columns

in which the score of at least one cell exceeds a predefined threshold k. The BitPAl

methods have already been used to accelerate software for detecting tandem repeat

variants in high-throughput sequencing data [23] and are well suited to other DNA

sequence comparison tasks that involve computing many alignments.
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Figure 2·3: The ∆V Function Table for the weights M = 2, I =
−3, G = −5. Note that ∆Vhigh,∆Hhigh ∈ [3, 7]; ∆Vlow,∆Hlow ∈
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∆V are swapped.
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Figure 2·4: An example of the calculation of ∆Vcurr and ∆Hcurr

values. ∆Hprev values come from the previous row. The Match loca-
tions and the leftmost ∆Vcurr value are known. The ∆Vcurr value for
a particular column is found using the table in Figure 2·3. The input
is the ∆Hprev value in the same column and the ∆Vcurr value in the
column to the left, except, when there is a Match, the value in the
column to the left is treated as a max and, starting with Step 3, if the
value in the column to the left is not assigned, it is treated as mid.
∆Hprev†is a modification of ∆Hprev in which all Match positions have
been changed to max and all values less than mid have been changed
to mid. The ∆Hcurr value for a particular column is found using the
transpose of the table in Figure 2·3. The input is the ∆Hprev†in the
same column and the ∆Vcurr value in the column to the left.
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1 1 1 1 1 1 Matches
AND 1110 1110 111110 1110 ∆Hmin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0100 1000 010100 0000 ∆Vmax (initial)

+ 1110 1110 111110 1110 ∆Hmin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1001 0001 100101 1110

XOR 1110 1110 111110 1110 ∆Hmin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0111 1111 011011 0000

XOR 0100 1000 010100 0000 ∆Vmax (initial)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0011 0111 001111 0000 >> ∆Vmax

(final and shifted)

Example Code:
INITpos7 = DHneg5 & Matches;
DVpos7shift = ((INITpos7 + DHneg5) ∧ DHneg5) ∧ INITpos7;

Figure 2·5: Finding ∆Vmax. Each line represents a computer word
with low order bit, corresponding to the first position in a sequence, on
the left. 1s are shown explicitly, 0s are only shown to fill runs of ∆Hmin

and the first position to the right of each run. Symbol >> indicates
that the final ∆Vmax values are shifted to the right one position. Bits
erroneously set by the ADD (+) are shown in bold. Sample code is
from the complete listing in Supplementary Information.
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1110 1110 11101110 ∆Hmin (remaining)
+ 1 1 1 1 X >> ∆V (initial shifted)
−−−−−−−−−−−−−−−−−−−−−−−−−−

0001 1 0001 00011110
XOR 1110 1110 11101110 ∆Hmin (remaining)
−−−−−−−−−−−−−−−−−−−−−−−−−−

1111 1 1111 11110000 >> ∆V (final and shifted)
Example Code:
RemainDHneg5 = DHneg5 ∧ (DVpos7shift >> 1);
INITpos3s = (DHneg1 & DVpos7shiftorMatch)|

(DHneg2 & DVpos6shiftNotMatch)|
(DHneg3 & DVpos5shiftNotMatch)|
(DHneg4 & DVpos4shiftNotMatch);

DVpos3shift = ((INITpos3s << 1) + RemainDHneg5) ∧ RemainDHneg5;
DVpos3shiftNotMatch = DVpos3shift & NotMatches;

Figure 2·6: Carry through runs of ∆Hmin for remaining values in
∆Vhigh. Symbol X marks a single position between runs which cannot
be 1 in the initial shifted values.

Example Code Zones B and C:

DVnot7to3shiftorMatch = ∼ (DVpos7shiftorMatch|DVpos6shift|
DVpos5shift|DVpos4shift|DVpos3shift);

DVpos2shift = ((DHzero & DVpos7shiftorMatch)|
(DHneg1 & DVpos6shiftNotMatch)|
(DHneg2 & DVpos5shiftNotMatch)|
(DHneg3 & DVpos4shiftNotMatch)|

(DHneg4 & DVpos3shiftNotMatch)|
(DHneg5 & DVnot7to3shiftorMatch)) << 1;

Example Code Zone D:

DVneg5shift = all ones ∧ (DVpos7shift|DVpos6shift|
DVpos5shift|DVpos4shift|DVpos3shift|
DVpos2shift|DVpos1shift|DVzeroshift|
DVneg1shift|DVneg2shift|DVneg3shift|
DVneg4shift);

Figure 2·7: Code for Zones B, C and D.



31

∆V -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Encoded 0 1 2 3 4 5 6 7 8 9 10 11 12

∆H -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Encoded 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

∆V BitPAl
vectors

-5 1 0 0 0 0 0 0 0 0
-4 0 1 0 0 0 0 0 0 0
-3 0 0 1 0 0 0 0 0 0
-2 0 0 0 1 0 0 0 0 0
...

...
7 0 0 0 0 0 0 0 0 1

True
Value -5-4-3-2 1 2 3 5 7

∆V Binary
place value BitPAlPacked

vectors vectors
1 0 1 0 1 0 1 0 0 0
2 0 0 1 1 1 1 0 1 0
4 0 0 0 0 1 1 0 0 1
8 0 0 0 0 0 0 1 1 1

sign bit 0 0 0 0 0 0 0 0 0
True
Value -5-4-3-2 1 2 3 5 7

carry1 = a1 & b1;
aplusb2 = (a2

∧ b2)
∧ carry1;

carry2 = (a2 & b2)|((a2 ∧ b2) & carry1));

Figure 2·8: Top: The BitPAl Packed mapping of ∆H and ∆V values
for the parameter set M = 2, I = −3, G = −5. Middle: Conversion
from the thirteen ∆Vi vectors at left to the five “packed” vectors at
right. Bottom: Example code for adding the packed representation.
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Figure 2·9: Running times. Each experiment involved 25 million
alignments. For BitPAl, alignment weights (M, I, G) are shown in
parenthesis. All times are averages of three runs. Unit-cost BitPAl,
unit-cost WM, LCS, and ED. k is the maximum number of errors
allowed for WM. k is not a parameter for the other algorithms and
their times are shown as horizontal lines. LCS uses 4 bit operations
per w cells, ED uses 15 bit operations, BitPAl (0, -1, -1) uses 23 bit
operations. For k = 7, the times for BitPal and WM are nearly the
same. By k = 15, BitPAl runs approximately twice as fast. Results
for N are not shown on the graph. It was 118 to 304 times slower than
BitPAl (0, -1, -1) even when optimal parameters were chosen.
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Figure 2·10: Running times. Each experiment involved 25 million
alignments. For BitPAl and BitPAl Packed, alignment weights (M,
I, G) are shown in parenthesis. All times are averages of three runs.
Variants of BitPAl and NW (shown as a horizontal line). For Bit-
PAl, time is approximately linearly proportional to one dimension of
the function table. For BitPAl packed, time is approximately linearly
proportional to the area of the function tables. BitPAl packed (2, -3,
-5) is approximately 7.1 times faster than NW and BitPAl (0,-1,-1) is
approximately 24.9 times faster.
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Figure 2·11: Comparison of the number of operations for BitPAl and
BitPAl packed for different alignment weights (M, I, G).
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Chapter 3

Bit-parallel and SIMD Methods for

Global Alignment with Substitution

Scoring

3.1 Introduction

In this chapter, we present bit-parallel and SIMD algorithms for similarity substitu-

tion scoring. For example, when aligning protein sequences, a BLOSUM (or PAM)

protein amino acid substitution table [24, 25, 17] is commonly used. Such tables

assign a weight to every pair of amino acids, (a, b). The weights are log odds scores

for the substitution of a for b in reliable alignments produced from related protein

sequences. Each weight is either a bonus (positive) or a penalty (negative) depend-

ing on whether the substitution is more or less likely than chance. The BLOSUM

62 table (the 62 means the table was generated from reliable alignments of protein

sequences with ≥ 62% identity) contains 15 distinct weights and for any given amino

acid, a, there can be anywhere from four to nine different weights. Another common

substitution table, used in DNA alignments, assigns different weights to transitions,

substitutions of nucleotides with similar structures (A to G, C to T), and transver-

sions, substitutions of nucleotides with different structures (A or G to C or T).

An earlier bit-parallel method by Navarro [50] allows arbitrary integer weights

for substitutions as well as insertions and deletions of each character and finds oc-

currences, for both simple patterns and regular expressions, where the sum of the
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edit weights is at most k. While more flexible than our algorithms, it is much slower

in practice [45]. An algorithm by Bergeron and Hamel [9] for distance scoring with

arbitrary substitution weights and fixed gap weight uses an extension of the Myers

[49] method, similar to our previous BitPAl method. However, no practical imple-

mentation was given.

SIMD techniques have been applied to alignment with substitution scoring, in-

cluding Farrar’s Needleman-Wunsch implementation [18] and Parasail (both Needleman-

Wunsch and Smith-Waterman alignment with substitution scoring) [16]. These ap-

proaches use a direct dynamic programming approach to calculate the scoring matrix.

They achieve their speedups via careful arrangement of storage and computation

steps. However, storing the score directly means that score values can overflow the

available SIMD storage space. When overflows occur, recomputation with a larger

SIMD storage size is necessary. Our SIMD method instead stores and uses score

differences, guaranteeing that overflows do not occur in a deleterious manner and

avoiding recomputation.

The remainder of the chapter is organized as follows. In Section 3.2 we state the

problem and give definitions and preliminary ideas. In Section 3.3.2, we describe

an extension to our bit-parallel algorithm of Chapter 2 and in Section 3.3.3 and

Section 3.3.4 we describe two new SIMD algorithms. In Section 3.5 we give results

of experiments comparing our algorithms with iterative dynamic programming and

SIMD accelerated dynamic programming.

3.2 Problem Description

Problem: Given two sequences X and Y, of length m and n respectively, a similarity

scoring function, S, defined by a negative, integer gap weight, G, and a table of

integer substitution weights, subst(a, b), defined over character pairs (a, b) from the
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alphabet Σ, where for every pair subst() > 2G, calculate the global alignment score

for X and Y using bit operations, addition, and max/min comparisons on computer

words of length w.

We allow two types of initialization in the zero row and column of the alignment

scoring matrix, 1) no penalty for an initial gap (zero in every cell), or 2) penalty for

an initial gap (gap weight G added to each successive cell). We do not restrict the

size of the alphabet, although the time complexity depends, in part, on the alphabet

size as a result of required pre-processing of the subst() table. The requirement that

subst() > 2G assures that every substitution is possible (i.e., that it will not be

precluded by two consecutive deletions).

Definitions and notation. Let S be a recursively-defined, similarity scoring func-

tion for global alignment for two sequences X = x1x2 . . . xm and Y = y1y2 . . . yn:

S[i, j] = max


S[i− 1, j − 1] + subst(xi, yj) substitute xi with yj

S[i− 1, j] +G delete xi

S[i, j − 1] +G delete yj

(3.1)

S[0, j] = j ∗G, S[i, 0] = i ∗G

where, in this case, we have defined a deletion penalty for an initial gap in the

alignment.

As in Chapter 2, instead of the actual scores in S, we store only the differences

between scores in adjacent cells, i.e., ∆v is the (vertical) difference between the scores

in a cell and the cell above, and ∆h is the (horizontal) difference between the scores
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in a cell and the cell to its left:

∆v[i, j] = S[i, j]− S[i− 1, j]

∆h[i, j] = S[i, j]− S[i, j − 1].

To simplify algorithmic explanation, for the remainder of this chapter we map

∆v and ∆h into new variables ∆V and ∆H using the formulas:

∆V = ∆v −G, ∆H = G−∆h. (3.2)

For convenience in the explanation, while referring to the current row i, we drop the

first index in every term. ∆H terms for rows i−1 and i are labeled ∆Hin and ∆Hout

respectively.

For a fixed letter x in sequence X and any position j in sequence Y , we define

L[j] = subst(x, yj)− 2G.

As we will see below, L[j] serves as a lower bound on ∆V [i, j − 1] when computing

∆V [i, j] for column j. We further define maximum and minimum values for the L[j]

over all letters x:

Lmax = max
x,j

L[j], Lmin = min
x,j

L[j]

Relationship between input and output values. The first two theorems

give the ranges for ∆V and ∆H and formulas for computing the values of ∆V and

∆Hout. Proofs for all theorems are given in the Appendices.

Theorem 3.2.1. ∆V and ∆H are integers which fall in the following ascending and
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descending ranges respectively:

∆V ∈ {0, 1, 2, . . . , Lmax}
∆H ∈ {0,−1,−2, . . . ,−Lmax}. (3.3)

Figure 3·1: Left: Actual alignment scores are shown in the corners.
∆v and ∆h are the differences between scores in adjacent cells and
are shown along the arrows. Middle: Actual differences have been
mapped into the variables ∆V and ∆H using Equations (3.2) with
G = −1. ∆H values are labeled ∆Hin for row i − 1 and ∆Hout for
the current row, i. The row i indices have been dropped for ∆V .
Right: Substituting ∆Hin[j] = −4, ∆V [j − 1] = 6, and L[j] = 5 into
Equation (3.4) yields ∆V [j] = 2. Note that ∆V [j − 1] > L[j] and the
sum is > 0. Substituting the same values into Equation (3.5), note
that ∆Hin[j] > −L[j] so ∆Hin[j] is not used. Also the sum is > 0, so
∆Hout[j] = 0, not 1.

Theorem 3.2.2. ∀j ≥ 1, ∆V and ∆H are computed by the following formulas (the

meaning of the underlined parts is explained below):

∆V [j] = max

(
0, max

(
∆V [j − 1], L[j]

)
+ ∆Hin[j]

)
(3.4)

∆Hout[j] = min

(
0, min

(
− L[j],∆Hin[j]

)
+ ∆V [j − 1]

)
. (3.5)

Note that the underlined part in each sum yields a restricted range which depends

on L[j] and Lmax.

max
(
∆V [j − 1], L[j]

)
∈ {L(j), . . . , Lmax} (3.6)

min
(
− L[j],∆Hin[j]

)
∈ {−L(j), . . . ,−Lmax}. (3.7)
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3.3 Algorithms

Our goal is to calculate the ∆Hout values in row i from:

• ∆Hin values in row i− 1,

• ∆V [0], the leftmost ∆V value in row i, and

• L[j] values for row character xi.

The ∆H values in row zero and the ∆V values in column zero depend on the type

of global alignment, as mentioned above, but are known in advance. The L values

are computed in a pre-processing step (outlined in Section 3.4) so that for any given

row character x, we have the appropriate L values available.

We describe three algorithms. The first is an extension of the bit-parallel algo-

rithms (BitPAl) presented in Chapter 2, the second is a new method based on partial

sums of ∆Hin values, and the third modifies the second by introducing a more effi-

cient parallel scan. The main obstacle for all is determining the missing ∆V values

because of the left-to-right dependency. Once the ∆V values for the current row

have been computed, determining the ∆Hout values is straightforward.

3.3.1 Data Structures

We use three data structures to store the ∆H and ∆V values (Figure 3·2). The first

two are used in the BitPAl extension method and the third is used in the Partial

Sums method:

• a vector structure where each possible value is stored in its own computer word

and where each bit represents a single column in the alignment scoring matrix.

• a “packed” structure where the binary representations of the values are stored

together in a set of k vectors b0, b1, . . . , bk−1 where the lth vector represents the
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Figure 3·2: Three representations for ∆ values. Boxed bits
represent the same value in the same column. The BitPAl Extension
method uses the vector and Packed representations. The Partial Sums
method used the Extended representation.

value 2l and where each one-bit-wide “slice” through the vectors represents a single

column in the alignment scoring matrix.

• an “extended” data structure where the binary representation is stored in a block

of k bits within a single computer word and each block represents a single column

in the alignment scoring matrix.

The vector structure is best for finding columns containing a specific value and the

packed structure is good for adding all values simultaneously, but each such addition

is high cost. Conversion between the two is efficient. The extended structure adds all

values very cheaply (one operation), however, it gives up the density of representation

of the other two data structures. In what follows, we will assume that for the extended

data structure, k = 8, i.e., that each value is stored in a byte, in order to use efficient

SIMD instructions (Single Instruction Multiple Data), but other values of k are

possible.
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3.3.2 BitPAl Extension for BLOSUM-type scoring.

The BitPAl algorithm of Chapter 2 applies to alignments with three weights, one

each for match, M , mismatch, I, and gap, G. In effect, there are two L values,

Lmax = L(x, x) = M − 2G (for any character x)

Lmin = L(x, y) = I − 2G (for any two different characters x and y).

Theorem 3.2.2 defines a series of Function Tables for the output ∆V values,

one table for each L value. Similarly defined are the Function Tables for ∆Hout.

Figure 3·3 shows Function Tables derived from a subst() table with three L values.

For a fixed row character x, the Function Table for each column characters yj is

determined solely by L(j).

The key idea from this algorithm is to compute the columns with a single specific

∆V value all at once even if they are not contiguous. We start with ∆V = Lmax,

and work down, in order, to ∆V = Lmin. Referring to the bottom left example in

Figure 3·3 and assuming that Lmax = L1 and Lmin = L2, first the columns with

output value 7 = Lmax are determined, then using those as input, the columns with

output value 6 = Lmin + 1 are determined. (This is Zone A2). The remaining

unknown ∆V values are all ≤ 5 = Lmin, so, according to equation (3.4) we use

Lmin in the sum at those columns and compute all the remaining ∆V values. At

this point, we have all the information required to compute the ∆Hout values for the

current row. Full details are given in [45].

The extension for BLOSUM-type scoring assumes that there are more than two

L values (bottom right example in Figure 3·3). Once the columns with output value

6 = L2 + 1 are determined, the remaining unknown ∆V values are all ≤ 5 = L2.

But only for some of them can we use L2 in the sum of equation (3.4). For those
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columns where 2 = L3 is the minimum, we need to keep computing output values

in decreasing order, i.e., 5, 4, 3. (This is the remainder of Zone A3.) Finally, we

use L3 = Lmin as the input value for all remaining unknown columns and finish

computing the ∆V values. Distinguishing the columns that should stop at L2 and

those that proceed to L3 is done with a masking operation using the information

stored in L[j].

The weakness of this algorithm is the dependence of the time on the size of the

largest Zone A. For a large Function Table, the computation cost is high. The second

and third methods reduce the cost for large tables.

3.3.3 SIMDParSums: Method of Partial Sums of ∆H

The key idea in this algorithm is to initially compute the ∆V [j] values as though

they were the result of a substitution or a vertical gap, i.e., as though these values

come directly from the row above. The initial values, which we denote ∆V [j] are

lower bounds on the true ∆V [j] since some are actually the result of a horizontal

gap. Then, in a logarithmic number of rounds, we allow the existing ∆V [j], some

of which are already correct, to propagate through horizontal gaps and improve the

value of other ∆V [j]. The moniker “SIMDParSums” (SIMD Partial Sums) comes

from the requirement to compute sums of contiguous intervals of ∆Hin values for the

propagation step. To make this more concrete, we state the following theorem.

Theorem 3.3.1. ∀j > 0, the ∆V [j] values can be computed by the following recur-
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rence:

∆V [1] = max

(
0,max

(
∆V [0], L[1]

)
+ ∆Hin[1]

)

∆V
∀j>1

[j] = (3.8)

max



0

L[j] + ∆Hin[j]

L[j − 1] + ∆Hin[j − 1] + ∆Hin[j]

L[j − 2] + ∆Hin[j − 2] + ∆Hin[j − 1]+

∆Hin[j]
...

max
(
∆V [0], L[1]

)
+ ∆Hin[1] + . . .

+∆Hin[j − 1] + ∆Hin[j]

(3.9)

Note that in the recurrence, 0 represents a vertical gap (because ∆V is defined as

∆v+G) and L[j]+∆Hin[j] represents a substitution. All the remaining alternatives

represent horizontal gaps arising from the left and using partial sums of the ∆Hin.

Since we do not know the length of the horizontal gap (if any) which gives any

particular ∆V [j], we need to consider all the possibilities. We do this in dlog2 ne+ 1

rounds of calculation. In the algorithm, round zero computes the initial ∆V [j],

derived as either a vertical gap or a substitution:

∆V
∀j≥1

[j] = max(0, L[j] + ∆Hin[j]). (3.10)

In round i, 1 ≤ i ≤ dlog2(n)e the ∆V [j] are updated so that they contain a maximum

value originating from one of the columns j−2i, . . . , j. This requires adding a partial
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sum of 2i−1 terms of ∆Hin:

∆V [j]
∀j≥2i−1

= max


∆V [j]

∆V [j − 2i−1] + ∆Hin[j − 2i−1 + 1]+

. . .+ ∆Hin[j]

(3.11)

Note that this method avoids the SIMD overflow/underflow problems of [16, 18]

because the sum of ∆Hin values in Equation (3.11) only affects the outcome when it

is greater than or equal to −Lmax. This is because in Equation 3.10, the minimum

possible value for ∆V is 0. At round i, if

∆Hin[j − 2i−1 + 1] + . . .+ ∆Hin[j] < −Lmax,

then

∆V [j − 2i−1] + ∆Hin[j − 2i−1 + 1] + . . .+ ∆Hin[j] < 0,

since ∆V [j − 2i−1] ≤ Lmax. Since the SIMD registers can hold everything in the

range −Lmax, Lmax, this underflow doesn’t affect our algorithm. Also, since all ∆Hin

values are less than or equal to 0, in round i+ 1, we know that if

∆Hin[j − 2i−1 + 1] + . . .+ ∆Hin[j] < −Lmax,

then

∆Hin[j − 2i + 1] + . . .+ ∆Hin[j] < −Lmax,

which implies that

∆V [j − 2i] + ∆Hin[j − 2i + 1] + . . .+ ∆Hin[j] < 0.

This means that a underflow in the sum of ∆Hin values during one round will
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never cause an incorrect ∆V value in a later round.

The calculation of the partial sums and the maximum calculation for all j can be

performed using linear work in each round. This is formally stated in the following

two Theorems:

Theorem 3.3.2. ∀j ∈ {1, . . . , n},∀i ∈ {0, . . . , log2 j}, partial sums of length 2i,

PS[j, i] = ∆Hin[j − 2i + 1] + ∆Hin[j − 2i + 2] + . . . + ∆Hin[j] can be computed in

dlog2 ne rounds in O(n log n) time.

Theorem 3.3.3. ∀j ∈ {1, . . . , n}, ∆V [j] can be computed in dlog2(n)e+1 rounds in

O(n log n) time if ∀j ∈ {1, . . . , n},∀i ∈ {0, . . . , log2 j} the partial sums PS[j, i] are

available.

In our bit parallel algorithm, we store multiple ∆V values in a single word of

length w. Our implementation uses SIMD instructions and word length w = 128

bits. With k = 8, this yields W = 128/8 = 16 values per word. The advantages of

using SIMD instructions are 1) longer word length w, 2) the ability to do independent,

parallel computations on values stored in consecutive bytes within each word, and 3)

the availability of max and min functions that compare two values and save the best

in a single operation. Theorem 3.3.4 shows that the computation time is sub-linear

when using multiple values per word for a sequence of length n. Pseudocode for the

SIMDParSums algorithm is shown as Algorithm 1 in Appendix B.

Theorem 3.3.4. ∀j ∈ {1, . . . , n), ∆V [j] and ∆Hout[j] can be computed in time

O (n log(W )/W ), where W is the number of values held in a word of length w.

3.3.4 Method of Partial Sums by Striped Scan

In Section 3.3.3, SIMDParSum completes the partial sum on each of the n/W SIMD

words sequentially. The sum is passed from one word to the next, resulting in

O(log(W )) work for each word and O(log(W ) · n/W ) in total per row. There are

two problems with this method. The first is that only a single SIMD word is being
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accessed, manipulated, and stored into at any given time. This reduces processor

pipeline efficiency, because it creates blocks of sequentially dependent operations.

The second is that each time a word is shifted, the addition involves fewer and fewer

of the values in the word (wasted operations). We will introduce two techniques that

can solve these problems.

The first is a striped data structure that was first described by [18] in an SIMD

implementation of the Smith-Waterman algorithm [54] to prevent intra-word depen-

dencies. It was also used in the SIMD alignment algorithm Parasail [16]. Striping

values across words allows addition of different SIMD words to each other to have

the effect of shifting without having operations wasted due to uninvolved values.

Definition 1. ‘Striped’ data storage - for a given data set of n elements, given a

SIMD word that can store W values, we will store the data in g = dn/W e words

such that the zeroth value is in the zeroth position of the zeroth word, the first value

in the zeroth position of the first word, ..., the gth value is in the first position of

the zeroth word, and so on such that the kth value is in the k modulo g word in the

bk/gc position.

Parallel prefix sums (also referred to as a scan) are frequently encountered in

parallel algorithms, and efficient methods for computing them are addressed in [10].

We combine the striped data structure of [18] with a modified version of [10] to present

an efficient striped SIMD scan for the partial sums calculations described in Section

3.3.3. The definitions and foundational theorems on the relationships between values

remain the same as in SIMDParSum - the change is in how the partial sums of values

are computed, resulting in a reduction in the number of redundant computations.

Blelloch’s scan [10] proceeds in two parts - an upsweep and a downsweep, with

operations modeled on an imaginary binary tree structure. We adapt Blelloch’s scan

to striped SIMD data. In the upsweep, pairs of values are summed and stored at

each level of the tree, as shown in Figure 3·5. The down-sweep, in which the final
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word is distributed to the rest of the words, is shown in Figure 3·6. The details of

our implementation are given in Appendix C.

3.4 Complexity and Space

3.4.1 BitPAl Extension Method

The time complexity excluding the pre-processing is

O
(znm

w

)
,

where z is proportional to the work for one computer word in one row of the alignment

scoring matrix.

z = ((Lmax − Lmin)2)/2 + log(2 ∗ Lmax).

The first term covers computing all ∆V values in the largest Zone A and the second

term covers computing all the remaining ∆V values and the ∆Hout values using a

manually constructed addition on the packed data structure.

3.4.2 SIMDParSum

Storing the L[j] values. Pre-processing involves storing the L[j] values for each

possible row character x. We have tested two methods. In the first, the sequence Y

is scanned one character, yj, at a time and for each x ∈ Σ, we store L(x, yj) in the

appropriate position of the L variables for x. The time required is O(|Σ|n).

The second method is useful for smaller alphabets with |Σ| < W . Y is first

scanned in linear time to find the columns of every character σ ∈ Σ. The column

indices are stored in |Σ| separate variables, Locσ. For each character x ∈ Σ, we

determine the set of σ which share the same L[x, σ] value and then store that value

in positions determined by performing ORs of the individual Locσ variables. The

time required is O(|Σ|2n/W ).



49

In both cases, the space required for the L[j] values is |Σ|n/W . For the ∆H and

∆V values, n/W space is required for each.

Post-processing involves retrieving the alignment score from the final ∆Hout val-

ues and is the same method as described in [45]. The time required is O(n).

The time complexity of our algorithm, excluding the pre- and post-processing, is

O

(
mn logW

W

)
.

m represents the number of rows that must be calculated, n/W is the number of

words that are calculated in each row, and logW is proportional to the number of

operations for each word.

3.4.3 SIMDScan

The time complexity for storing the L values and retrieving the alignment score

remains the same as in SIMDParSum. The time complexity of the main body of the

algorithm is

O
(
m
[ n
W

+ logW
])
.

m represents the number of rows that must be calculated, n/W is the number of

words that are calculated in each row as the scan time (except the end of the upsweep

in the last word) is linear in the number of words, and logW is proportional to the

number of operations done by the end of the upsweep in the final word.

3.5 Experimental Results

We compared the running times of our algorithms against the Needleman-Wunsch

iterative dynamic programming algorithm [51] and Parasail, an accelerated imple-

mentation of NW using SIMD [16, 15]. While our algorithm uses a linear gap

penalty, Parasail uses an affine gap penalty. This gives our algorithm a slight advan-
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|X| 1 20 63 100 150
NW 0.248 3.044 11.818 18.502 24.352
Parasail 2.316 2.583 3.041 3.492 4.105
SIMDParSums 0.819 1.075 1.659 2.171 2.852
SIMDParSumScan 0.843 1.010 1.435 1.757 2.232
SIMDParSumAffine 1.048 1.286 1.811 2.243 2.855

(a) 1 to 1

|X| 1 20 63 100 150
NW 0.118 2.810 11.185 16.649 22.192
Parasail 0.409 0.813 1.703 2.482 3.564
SIMDParSums 0.027 0.293 0.867 1.413 2.088
SIMDParSumScan 0.068 0.245 0.654 0.998 1.473
SIMDParSumAffine 0.070 0.290 0.780 1.208 1.849

(b) 1 to 100

Table 3.1: Tables of run times, in minutes, for 25 million alignments.
Top: A different pair of sequences was used for each alignment (1 to
1). Bottom: Each Y sequence was aligned against 100 X sequences
(1 to 100). Note that both tables include run times for the SIMDPar-
SumAffine algorithm introduced in Chapter 4.

tage, since it does not have to do the additional calculations for the affine gap. For

our algorithm, we used a gap penalty of −6. For Parasail we used a gap open penalty

of −11, a gap extend penalty of −1, the recommended “scan” version of the algo-

rithm with SSE 4.1 instructions, and the 16 bit wide data-structures to avoid score

overflows which occurred with the 8 bit data-structures. We used the BLOSUM 62

similarity table (for a 23 character amino acid alphabet with 15 L values, Lmax = 23,

Lmin = 8)). The algorithms are designated: 1) PartialSums (Partial Sums SIMD,

BLOSUM scoring), 2) SIMDScan (Partial Sums SIMD Scan, BLOSUM scoring), 3)

PARASAIL (Parasail, BLOSUM scoring), and 4) NW (Needleman-Wunsch).

For all experiments, we performed 25 million alignments, using randomly gener-

ated amino acid sequences. The length of sequence Y (along the top of the alignment
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scoring matrix which defines the number of columns) was 126. At this length, the

SIMDParSums and SIMDParSumsScan algorithms use eight words. Five lengths

were used for sequence X (along the left side of the alignment scoring matrix which

defines the number of rows), |X| = 1, 20, 63, 100, 150. |X| = 1 was used to estimate

the pre-processing overhead for each algorithm. The experiments were divided into

two sets. In the first, a new pair of sequences was generated for each alignment

(denoted “1 to 1”). In the second, each sequence Y was aligned, one at a time,

against 100 newly generated X sequences (denoted “1 to 100”). The 1 to 100 ex-

periment models the task of aligning a query sequence against a large number of

candidate matches. It also amortizes the pre-processing cost for sequence Y over the

100 alignments, reducing the impact of pre-processing.

All programs were compiled with GCC using optimization level O3 and march

= native (for SIMD commands) and run on an Intel Core i7-4710HQ CPU 2.50 -

3.5GHz CPU running Ubuntu Linux 14.04. Results are shown in Figures 3·7 and

3·8 and Table ??. As can be seen, our new algorithms are faster than NW at

all but very short sequence X lengths. In the 1 to 1 experiment, SIMDParSums

and SIMDParSumsScan are 30% faster and 46% faster than Parasail, respectively.

In the 1 to 100 experiment, the pre-processing costs for the SIMDParSums and

SIMDParSumsScan algorithms have become insignificant and they are 41% and 59%

faster than Parasail, respectively. This is a result of the fact that more of the work

of the SIMDParSums and SIMDParSumsScan algorithms lie in the pre-processing

step.

3.6 Discussion

We have developed a new algorithm that extends bit-parallel alignment and two new

SIMD algorithms for the case of global similarity alignment with a single gap penalty
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and a table for variably weighted substitutions. The first algorithm is an extension

of our previous work on general integer scoring bit-parallel global alignment (BitPAl

[8, 45]) and the other two are new approaches based on partial sums of horizontal

score differences in the alignment scoring matrix using commonly available SIMD

instructions. The BitPAl extension method requires a completely different program

for each different similarity table because the operations depend on the size and

characteristics of the Function Table which relates the input and output alignment

score differences. The SIMD programs are simpler and for different similarity tables

only differ in the number of operations required in a pre-processing step. Our SIMD-

ParSumScan algorithm is currently the fastest known algorithm for global alignment

with substitution scoring.
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Figure 3·3: Upper: Schematic of ∆V output Function Tables for
three L values, denoted l1 = 7, l2 = 5, l3 = 2. Note that the L values
and the relation ∆H = ∆V set the boundaries for the marked zones
in the tables. These zones contain (∆H,∆V ) pairs which determine
the source of the best score of a cell in S, either from a horizontal
gap (Zones A and B), a substitution (Zone C), or a vertical gap (Zone
D). Borders between zones, indicated by dotted lines, yield ties for the
best score. Each Table applies to the subset of columns j that share a
common L(j). Lower: Actual values in the l2 and l3 Function Tables.
Note in the left table, for example, when the ∆V input falls below l2
the output remains the same, i.e., l2 is the minimum ∆V [j − 1] value.
Compare with Equation (3.4).
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Figure 3·4: An example of how values are stored across SIMD words
in the striped format.

Figure 3·5: Upsweep step of SIMD prefix-sum computation. In this
example, each SIMD word holds 4 values. Step 1: the values are
striped across the SMID words. Step 2: pairs of words are added.
Step 3: pairs at the next level of the tree are added. This process
continues recursively until there is only one pair, the final SIMD word
and the middle word. Step 4: the upsweep is continued by doing a
parallel scan on the final SIMD word.
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Figure 3·6: Downsweep step of SIMD prefix-sum computation. In
this example, each SIMD word holds 4 values. The upsweep step has
already been completed, the final word holds prefix-sums from the
beginning for the 4 positions stored there. Step 1: the final word
is shifted, and added to the first and second words. Step 2: The
second word is added to the third. Step 3: This shows how values
can be reordered (unstriped) into their original positions, but this is
not actually done in each row.
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Figure 3·7: Comparison of algorithm run times for 25 million
alignments. Shown are averages over three trials. |Y | = 126. A new
pair of sequences was generated for each alignment (1 to 1).



57

1 to 1

0

1

2

3

4

0 50 100 150
Length of Sequence X (characters)

T
im

e 
to

 R
un

 (
m

in
ut

es
)

Algorithms
PARASAIL
SIMDParSums
SIMDParSumsScan

1 to 100

0

1

2

3

4

0 50 100 150
Length of Sequence X (characters)

T
im

e 
to

 R
un

 (
m

in
ut

es
)

Algorithms
PARASAIL
SIMDParSums
SIMDParSumsScan

Figure 3·8: Comparison of algorithm run times for 25 million
alignments. Shown are averages over three trials. |Y | = 126. Top:
A new pair of sequences was generated for each alignment (1 to 1).
Bottom: Each Y sequence was aligned against 100 newly generated X
sequences (1 to 100). This models the alignment of a query sequence
to a set of candidate matches and amortizes the pre-processing costs.



Chapter 4

Affine Gap and Tandem Alignment

4.1 Introduction

Our previous algorithms have all computed global alignment using a simple gap

penalty. We present two extensions to this scheme. The first extension allows the

computation of affine gaps and the second computes tandem alignment.

In a simple gap penalty scheme, the gap score depends only on the length of the

gap. Affine gap scoring uses a gap open penalty and a gap extension penalty. This

raises the cost of multiple short gaps relative to longer continuous gaps. Affine gaps

reflect the biological reality that fewer, longer indels are more likely than more short

indels. Protein sequence alignment typically uses an affine gap penalty scheme. Our

extension computes affine gap penalties with only a few additional operations.

Repetitive sequence motifs are common in biological sequences. Thus, it is often

useful to find multiple copies of a pattern in a text that possibly contains multiple

copies of the pattern. Wraparound tandem alignment solves this problem efficiently

by aligning a single copy of a pattern to a text [? ]. Our method is an exten-

sion of SIMDParSum to the wraparound dynamic programming approach to tandem

alignment of [19, 47].

The remainder of this chapter is organized as follows. In Section 4.2 we describe

the new algorithm for alignment with affine gapping. In Section 4.3, we describe

our new algorithm for tandem alignment. In Section 4.4 we give the complexity

58
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of both algorithms, and in Section 4.5 we give results of experiments comparing

our algorithms with iterative dynamic programming and SIMD accelerated dynamic

programming .

4.2 Affine Gap

4.2.1 Problem Definition, Affine Gap

Problem, affine gap: Given two sequences X and Y, of length m and n respectively,

a similarity scoring function, S, defined by a negative, integer gap opening penalty

α, a gap extension penalty β, and a table of integer substitution weights, subst(a, b),

defined over character pairs (a, b) from the alphabet Σ, calculate the global alignment

score for X and Y using bit operations, addition, and max/min comparisons on

computer words of length w.

We allow two types of initialization in the zero row and column of the alignment

scoring matrix, 1) no penalty for an initial gap (zero in every cell), or 2) penalty for

an initial gap ( α + j · β in each successive cell at j). We do not restrict the size of

the alphabet, although the time complexity depends, in part, on the alphabet size

as a result of required pre-processing of the subst() table.

As in the SIMDParSumScan method, instead of the actual scores in S, we store

only the differences between scores in adjacent cells. However, unlike previous chap-

ters we will not exclusively use the mapped values ∆V , ∆Hin, and ∆Hout as defined

in Chapter 3 Section 3.2. Instead, we will use ∆v, ∆hin, and ∆hout and ∆H. That

is:
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∆v[i, j] = S[i, j]− S[i− 1, j]

∆h[i, j] = S[i, j]− S[i, j − 1]

∆H[i, j] = β −∆h[i, j].

While referring to the current row i, we drop the first index in every term. ∆h

terms for rows i− 1 and i are labeled ∆hin and ∆hout respectively.

4.2.2 Definitions and notation, Affine Gap

Let S be a recursively-defined, similarity scoring function for global alignment score

for two sequences X = x1x2 . . . xm and Y = y1y2 . . . yn:

S[i, j] = max


S[i− 1, j − 1] + subst(xi, yj)

F [i, j]

E[i, j]

S[0, j] = α + j ∗ β, S[i, 0] = α + i ∗ β

Note that S is now defined in terms of the additional matrices E and F , which

maintain the affine gap calculations.

The affine gapping matrices E and F are defined by.

F [i, j] = max


α + β + S[i, j − 1]

β + F [i, j − 1]

F [i, 0] = S[i, 0] + α
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E[i, j] = max


α + β + S[i− 1, j]

β + E[i− 1, j]

E[0, j] = S[0, j] + α

Given the above new matrices, we define several terms in addition to ∆h and ∆v.

∆F [j] = F [i, j]− S[i, j]

∆Ein[j] = E[i− 1, j]− S[i− 1, j]

∆Eout[j] = E[i, j]− S[i, j]

LB[j] = max(score(xi, yj)−∆hin[j], β + max(∆Ein[j], α))

4.2.3 Algorithm: Affine Gap

Our goal is to calculate the ∆hout values in row i from:

• ∆hin values in row i− 1,

• ∆v[0], the leftmost ∆v value in row i,

• ∆Ein values in row i− 1, and

• subst(xi, yj) substitution score values for row character xi.

The ∆h values in row zero and the ∆v values in column zero depend on the type

of global alignment, as mentioned above, but are known in advance, as are the

∆Ein values in row zero. The subst(xi, yj) values are computed in a pre-processing

step (outlined in Section 4.4) so that for any given row character x, we have the

appropriate values available.
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Figure 4·1: Computing ∆F , ∆Ein and ∆Eout from the S, E, and F
matrices.

Method of Partial Sums, Affine Gap

In the dynamic programming algorithm for affine gap scoring, two additional ma-

trices, E and F , must be computed. The E matrix stores the best scores possible

from a continuing or newly started vertical affine gap and the F matrix stores the

best scores possible from a continuing or newly started horizontal gap. At each step

in the algorithm, the scores in E and F are updated and then used to compute the

score in S. As shown in Figure 4·1, instead of directly using E and F , we will be

considering ∆F , ∆Ein and ∆Eout.

To add support for affine gaps, we only need to add a single additional vector,

∆E that alternates between storing ∆Ein and ∆Eout. That is, ∆Ein at each row i

is exactly ∆Eout of row i− 1. In row i− 1, ∆Eout can be computed from the values

of ∆v and ∆Ein in row i− 1, as shown in the following theorem. Proofs are given in

Appendix D.

Theorem 4.2.1. Given ∆Ein[j] and ∆v[j], ∆Eout[j] can be computed by the equation

∆Eout[j] = max(α,∆Ein[j]) + β −∆v[j].
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∆Ein is used to compute the LB values, as given in the definitions:

LB[j] = max(subst(xi, yj)−∆hin[j], β + max(∆Ein[j], α))

Due to the way that the partial sums are calculated, the value of ∆F is implicitly

computed during the calculation of ∆v. Theorem 4.2.2 illustrates how the value of

∆v[j] is computed taking into consideration all possible horizontal affine gaps.

Computation using SIMD words and across multiple words occurs in an analogous

manner to SIMDParSumScan of Chapter 3.

Theorem 4.2.2. ∀j > 0, the ∆v[j] values can be computed by the following recur-

rence:

∆V [1] = max
(
∆V [0] + α,LB[1]− β

)
+ ∆Hin[1]

∆v
∀j>1

[j] = max



LB[j]

LB[j − 1] + α + ∆H[j]

LB[j − 2] + α + ∆H[j − 1] + ∆H[j]
...

LB[1] + α + ∆H[2] + . . .+ ∆H[j − 1] + ∆H[j]

∆v[0] + α + ∆H[1] + . . .+ ∆H[j − 1] + ∆H[j]

(4.1)

4.3 Tandem Alignment

The previously presented alignment algorithms have been designed to accommodate

three common types of sequence mutations: 1) Substitutions 2) Insertions and 3)

Deletions.

Tandem alignment handles a new type of mutation, tandem duplication. Tandem

duplication occurs when one or more bases of DNA are duplicated in a contiguous

fashion, with one or more new copies created. Tandem repeats, also known as micro-

and mini-satellites are the result of tandem duplications. Tandem repeats are a
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Figure 4·2: At the top, the wraparound dynamic programming scor-
ing matrix (1 copy of pattern aligned to 1 copy of text) compared to
the global alignment matrix for repeated pattern copies on the bottom.

common genomic feature, particularly in centromeres and telomeres.

Pattern copy number often varies between individuals for a given tandem re-

peat, leading to variable number of tandem repeats (VNTRs). VNTRs are useful in

DNA fingerprinting [34] and bacterial strain identification [35, 22, 20, 44, 57]. They

have also been implicated in a number of diseases including fragile-X syndrome [59],

Friedreich’s ataxia [11], Alzheimer’s disease [52], psychiatric disorders [12, 41, 40],

myotonic dystrophy [21], and Huntington’s disease [26]. VNTRs are also known to

have important effects on chromatin structure [55, 56, 2, 55, 61] and gene expression

[60].
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4.3.1 Problem Description, Tandem Alignment

Given a text sequence a and pattern sequence b, of length m and n respectively, a

similarity scoring function, S, defined by a negative, integer gap weight, G, and a

table of integer substitution weights, subst(x, y), defined over character pairs (x, y)

from the alphabet Σ calculate the global alignment score for one copy of a versus an

unknown number of tandem copies of b, that is the maximum of the global alignments

of a versus b, a versus bb, and so on, using bit operations, addition, and max/min

comparisons on computer words of length W. This alignment score can be computed

using wraparound dynamic programming with an alignment scoring matrix for one

copy of a and one copy of b, with the recursion S as defined below.

We allow two types of initialization in the zero row and column of the alignment

scoring matrix, 1) no penalty for an initial gap (zero in every cell), or 2) penalty for

an initial gap (gap weight G added to each successive cell). We do not restrict the

size of the alphabet, although the time complexity depends, in part, on the alphabet

size as a result of required pre-processing of the subst() table.

4.3.2 Definitions and notation, Tandem Alignment

Let S be a recursively-defined, similarity scoring function for the global wraparound

alignment score of text sequence a = a1a2 . . . am and pattern sequence b = b1b2 . . . bn:

Recursion:

Initialize row zero (1 ≤ j ≤ n):

S[0, 0] = 0

S[0, j] = S[0, 0] + j ·G

Initialize column zero (1 ≤ i ≤ m):
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S[i, 0] = S[0, 0] + j ·G

First pass (i ≥ 1, j ≥ 1):

S[i, j] =





S[i− 1, 0] + subst(ai, bj) \\diagonal

S[i− 1, n] + subst(ai, b1) \\wraparound diagonal

S[i, 0] +G \\from left

S[i− 1, 1] +G \\from above

if j = 1


S[i− 1, j − 1] + subst(ai, bj) \\diagonal

S[i, j − 1] +G \\from left

S[i− 1, j] +G \\from above

if j > 1

(4.2)

Second pass (i ≥ 1, 1 ≤ j < n):

S[i, j] = max


S[i, j]
S[i, n] +G if j = 1

S[i, j − 1] +G if j > 1

(4.3)

where, in this case, we have defined a deletion penalty for an initial gap in the

alignment.

We define two sets of horizontal and vertical differences for a given row i, one

based on S after the first pass and one based on S after the second pass.

For row 0, for all j, two sets of horizontal differences:
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∆h1[0, j] = ∆h2[0, j] = G

For row i > 0, two sets of vertical and horizontal differences:

After the first pass:

∆v1[i, j] = S[i, j]− S[i− 1, j]

∆h1[i, j] = S[i, j]− S[i, j − 1]

After the second pass:

∆v2[i, j] = S[i, j]− S[i− 1, j]

∆h2[i, j] = S[i, j]− S[i, j − 1]

To simplify algorithmic explanation, for the remainder of this chapter we map

∆v1,∆v2 and ∆h1,∆h2 into new variables ∆V1,∆V2 and ∆H1,∆H2 using the for-

mulas:

∆V1 = ∆v1 −G, ∆H1 = G−∆h1

∆V2 = ∆v2 −G, ∆H2 = G−∆h2 (4.4)

As with the SIMDParSum, for a fixed letter x in sequence X and any position j in

sequence Y , we define

L[j] = subst(x, yj)− 2G.
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4.3.3 Algorithm, Tandem Alignment

Our goal is to calculate the ∆H2 values in row i from:

• ∆H2 values in row i− 1,

• SPSi, the sum of ∆h2 values in row i− 1, and

• L[j] values for row character xi.

The ∆H2 values in row zero depend on the initialization of the alignment, as

mentioned above, but are known in advance. The L values are computed in a pre-

processing step (outlined in Section 4.4) so that for any given row character x, we

have the appropriate L values available.

Data Structures.

We use the “extended” data structure of Chapter 3 Section 3.3.1 to store the ∆H,

∆V , and L values.

Method of Tandem Alignment by Partial Sums

There are two important differences between this algorithm and the previous algo-

rithms based on SIMDParSum. First, there are the wraparound cases: the values

∆V1[i, 1] and ∆V2[i, 1] in each row i depend on the values at position n. Due to the

possibility of a wraparound, each row is computed in two passes, the first calculating

∆V1 and the second calculating ∆V2. Because the algorithm for calculating ∆V1[i, j]

and ∆V2[i, j] for j > 1 in both passes is very similar to the SIMDParSum algorithm,

we will only describe the special cases of calculating ∆V1[i, 1] and ∆V2[i, 1]. Second,

there is the new variable SPSi that contains the sum of ∆h2 values. We will start by

stating that SPSi does not need to be fully recomputed for each row (which would
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be O(n) work), it only requires a pair of operations. Additional theorems and proofs

are given in Appendix E.

Lemma 4.3.1. In row i > 0, given the values ∆V2[i, 1] and ∆V2[i, n], SPSi+1 for

row i+ 1 can be calculated as

SPSi+1 = SPSi + ∆V2[i, n]−∆V2[i, 1].

First pass:

Once we have computed SPSi for a row, we can use it to determine the value of

∆V1[i, 1], using SPSi to compute the diagonal wraparound.

Lemma 4.3.2. ∆V1[i, 1] can be computed as:

∆V1[i, 1] = max


SPSi + subst(ai, b1)−G \\diagonal wraparound

substitution

subst(ai, b1) + ∆H2[i− 1, 1] \\diagonal substitution

0 \\vertical gap

Given ∆V1[i, 1], ∆H2 and L, the remaining values of ∆V1[i, j] where j > 1 can

be computed as in SIMDParSum.

Second pass:

In the second pass, we compute ∆V2[i, 1] from SPSi, ∆V1[i, 1], and ∆V1[i, n].

Lemma 4.3.3. In row i > 0, given the values ∆V1[i, 1], ∆V1[i, n], and SPSi,

∆V2[i, 1] can be calculated as

∆V2[i, 1] = max(∆V1[i, 1], SPSi + ∆V1[i, n] +G).

After the second pass, ∆H2[i+1, j] can be computed from ∆V2[i, j−1], ∆V2[i, j],

and ∆H2[i, j] for all j just as ∆Hout was computed in SIMDParSum.
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4.4 Complexity and Space

Affine:

Pre-processing involves storing the value subst()− β for each possible row char-

acter x. We have tested two methods. In the first, the sequence Y is scanned one

character, yj, at a time and for each x ∈ Σ, we store subst(x, yj)−β in the appropriate

position of the SB vector for x. The time required is O(|Σ|n).

The second method is useful for smaller alphabets with |Σ| < W . Y is first

scanned in linear time to find the columns of every character σ ∈ Σ. The column

indices are stored in |Σ| separate variables, Locσ. For each character x ∈ Σ, we

determine the set of σ which share the same subst(x, σ) value and then store that

value in positions determined by performing ORs of the individual Locσ variables.

The time required is O(|Σ|2n/W ).

In both cases, the space required for the SB[j] values is |Σ|n/W . For the ∆H,

∆V , and ∆E vectors, n/W space is required for each.

Post-processing involves retrieving the alignment score from the final ∆Hout val-

ues and is the same method as described in [45]. The time required is O(n).

Because calculation of ∆E requires constant time, the time complexity of the

affine gap program is the same as SIMDParSumScan. Excluding the pre- and post-

processing, it is

O
(
m
[ n
W

+ logW
])
.

m represents the number of rows that must be calculated, n/W is the number of

words that are calculated in each row as the scan time (except the end of the upsweep

in the last word) is linear in the number of words, and logW is proportional to the

number of operations done by the end of the upsweep in the final word.

Tandem Alignment: The preprocessing costs for the tandem alignment algo-
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rithm remain the same as in the previous algorithms.

The time complexity of the tandem alignment program is analagous to SIMD-

ParSumScan. Excluding the pre- and post-processing, it is

O
(
m
[ n
W

+ logW
])
.

m represents the number of rows that must be calculated, n/W is the number of

words that are calculated in each row as the scan time (except the end of the upsweep

in the last word) is linear in the number of words, and logW is proportional to the

number of operations done by the end of the upsweep in the final word. Computing

whether each wraparound occurs is done in constant time. Depending on whether

or not a wraparound occurs, each row may be computed twice, but that results

in a constant multiple of the number of operations and does not change the time

complexity.

4.5 Experimental Results

4.5.1 Affine Gap Results

We compared the running time of our affine gap scoring algorithm against Parasail,

an accelerated implementation of NW using SIMD [16, 15]. For our algorithm

and Parasail we used a gap open penalty of −11 and a gap extend penalty of −1.

For Parasail, we used the recommended “scan” version of the algorithm with SSE

4.1 instructions, and the 16 bit wide data-structures to avoid score overflows which

occurred with the 8 bit data-structures. We used the BLOSUM 62 similarity table

(for a 23 character amino acid alphabet with 15 L values, Lmax = 23, Lmin = 8)). The

algorithms are designated: 1) SIMDAffine (Partial Sums SIMD, BLOSUM scoring

with affine gaps) and 2) PARASAIL (Parasail, BLOSUM scoring).

For all experiments, we performed 25 million alignments, using randomly gener-
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ated amino acid sequences. The length of sequence Y (along the top of the align-

ment scoring matrix which defines the number of columns) was 126. At this length,

the SIMDParSumsScan and SIMDParSumsAffine algorithms use eight words. Five

lengths were used for sequence X (along the left side of the alignment scoring ma-

trix which defines the number of rows), |X| = 1, 20, 63, 100, 150. |X| = 1 was used

to estimate the pre-processing overhead for each algorithm. The experiments were

divided into two sets. In the first, a new pair of sequences was generated for each

alignment (denoted “1 to 1”). In the second, each sequence Y was aligned, one at a

time, against 100 newly generated X sequences (denoted “1 to 100”). The 1 to 100

experiment models the task of aligning a query sequence against a large number of

candidate matches. It also amortizes the pre-processing cost for sequence Y over the

100 alignments, reducing the impact of pre-processing.

All programs were compiled with GCC using optimization level O3 and march

= native (for SIMD commands) and run on an Intel Core i7-4710HQ CPU 2.50 -

3.5GHz CPU running Ubuntu Linux 14.04. Results are shown in Figure 4·3 and in

Chapter 3, Table ??. As can be seen, our new algorithms are faster than NW at all

but very short sequence X lengths. In the 1 to 1 experiment, SIMDParSumsAffine

is 30% faster than Parasail and 22% slower than SIMDParSumScan. In the 1 to 100

experiment, the pre-processing costs for the SIMDParSumsAffine algorithm become

insignificant and it is 49% faster than Parasail and only 20% slower than SIMDPar-

SumsScan. This is a result of the fact that more of the work of the PartialSums

algorithm lies in the pre-processing step.

4.5.2 Tandem Alignment Results

We compared the running time of our tandem alignment algorithm against the WDP

algorithm described in [6]. The algorithms are designated: 1) SIMDTandem (Par-
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|X| 120 240 360 480 600
WDP 5.488 10.387 15.147 20.011 2.479
SIMDTandemScan 6.608 6.928 7.160 7.405 7.743

Table 4.1: Tables of run times, in minutes, for 250 thousand align-
ments. A different pair of sequences was used for each alignment (1 to
1).

tial Sums SIMD, wraparound tandem alignment) and 2) WDP (Global wraparound

dynamic programming).

For all experiments, we performed 250 thousand alignments, using randomly

generated nucleic acid sequences. The length of the pattern sequence Y (along the

top of the alignment scoring matrix which defines the number of columns) was 120.

At this length, the PartialSums SIMD tandem alignment algorithm uses eight words.

Five lengths were used for text sequence X (along the left side of the alignment

scoring matrix which defines the number of rows), |X| = 120, 240, 360, 480, 600.

All programs were compiled with GCC using optimization level O3 and march

= native (for SIMD commands) and run on an Intel Core i7-4710HQ CPU 2.50 -

3.5GHz CPU running Ubuntu Linux 14.04. Results are shown in Figure 4·4 and

Table 4.1. As can be seen, our new algorithm is faster than WDP at all but very

short sequence X lengths. SIMDtandem is up to 3 times faster than WDP.

4.6 Discussion

We have developed new algorithms for global alignment with affine gap penalties

and tandem alignment. Our algorithms are faster than the standard iterative dy-

namic programming solution, in the case of tandem alignment, and an updated SIMD

implementation of dynamic programming, in the case of global alignment. The incor-

poration of affine gap alignment makes our SIMD algorithm more representative of
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the biology of sequence mutation and more useful for protein alignment in particular.

Our tandem alignment program illustrates the flexibility of our SIMD algorithm and

will be useful for the tandem alignment computations done in our lab and others.
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Figure 4·3: Comparison of algorithm run times for 25 million
alignments. Shown are averages over three trials. |Y | = 126. Top:
A new pair of sequences was generated for each alignment (1 to 1).
Bottom: Each Y sequence was aligned against 100 newly generated X
sequences (1 to 100). This models the alignment of a query sequence
to a set of candidate matches and amortizes the pre-processing costs.
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77

Chapter 5

Conclusion

5.1 Discussion

We have developed a family of bit-parallel and SIMD algorithms for global align-

ment. Our bit-parallel algorithms are the first bit-parallel algorithm implementa-

tions for general integer scoring global alignment, and run significantly faster than

the dynamic programming approach. The BitPAl methods have already been used

to accelerate software for detecting tandem repeat variants in high-throughput se-

quencing data [23] and are well suited to other DNA sequence comparison tasks that

involve computing many alignments.

Our SIMD global alignment algorithms take a novel approach to SIMD accel-

erated alignment by storing the differences between scores rather than the scores

themselves. The SIMD programs are simpler than the BitPAl methods and for

different similarity tables only differ in the number of operations required in a pre-

processing step. Our SIMDParSumsScan algorithm is currently the fastest known

SIMD algorithm for global alignment with substitution scoring. We demonstrated

the extensibility of the SIMDParSumsScan approach by applying it to the global

alignment with affine gap penalty scoring and tandem alignment problems. The in-

corporation of affine gap alignment makes our SIMD algorithm more representative

of the biology of sequence mutation and more useful for protein alignment in partic-

ular. Our tandem alignment program will be used to accelerate the tandem repeats
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finder program developed in our lab[7].

5.2 Future Work

There are further alignment problems to which we believe that our methods can

be applied. Local alignment requires more information about the score than our

algorithms currently store. This is a different class of problem in that 1) the score

can be reset to zero in any cell and 2) the best final alignment score can occur in

any cell of the alignment matrix. If all the cells have to be examined, then the time

complexity shifts back to O(nm). However, [31] had some success with this problem

using unit cost weights and identifying columns in which the score of at least one cell

exceeds a predefined threshold k.

Another type of alignment that could result in even faster alignment scoring is

banded alignment. In banded alignment, rather than computing the entire align-

ment scoring matrix, only a narrow band along the diagonal is computed. Banded

alignment relies on the fact that good alignments tend to lie along the diagonal of

the scoring matrix. In a typical banded alignment algorithm, the band is kept cen-

tered around cells with a high score. Because our algorithm does not store the score

itself, this approach may require a heuristic to estimate the location of the high score

within a row.

In a similar vein to a banded alignment, k differences edit distance restricts the

search space to k differences between two sequences. In the k-differences approach

of [37], rather than considering rows they consider diagonals - each diagonal away

from the center representing an edit between the two sequences. [48] extended this

approach by using suffix arrays and range-minimum-queries (RMQ) for a faster al-

gorithm. It may be possible to replace the suffix array structures and RMQ methods

with a simpler bit-parallel representation of the diagonals, using a striped storage
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method to encode the interacting segments of multiple diagonals into a single SIMD

vector. This could allow even greater efficiency.



Appendix A

Proofs for BitPAl

Definitions

Max = M −G, the largest possible value for ∆V or ∆H.

Min = G, the smallest possible value for ∆V or ∆H.

Mid = I −G, the value that marks the border between Zones A and B and Zone C.

∆Vi and ∆Hi: bit-vectors that represent the locations of the ∆V or ∆H value

i ∈ [Min,Max].

<< 1: a shift of one bit toward the higher order bits in a bit-vector, with the inser-

tion of a 0 at the lowest order bit.

∆V <<
i : notation for ∆Vi << 1. The shift prepares the output of one cell for input

to the next.

Matches: a bit-vector representing the locations of the matches.

Block in ∆Hmin: within ∆Hmin, a region in which there are several contiguous bits

set to the same value (either 0 or 1).

The following theorems refer to Figure A·1 which shows the relationship between

values in four adjacent cells of an alignment scoring matrix.

Function Table. Theorem A.0.1 defines the function table for ∆V . The function

table for ∆H is identical but transposed.

Theorem A.0.1. Given x, y, w and z as in Figure A·1, match score M ≥ 0, mis-

match score I < 0 and gap (indel) score G < 0, ∆V input v and ∆H input h, with

80
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∆V

{ ∆H︷ ︸︸ ︷
x

h−→ y
v ↓ ↓ u
w → z

Figure A·1: The relationships between scores in adjacent cells in the
scoring matrix: w, x, y, z are scores, h, v, u are differences: h = y − x,
v = w − x, u = z − y.

v, h ∈ {Min,Min+ 1, . . . ,Max}, the output ∆V value u is:

u =



M − h, if there is a match, for h ∈ {Min, . . . ,Max}

(Match case) (1)

I − h, if v, h ∈ {Min, . . . ,Mid} (Zone C) (2)

v − h+G, if v ∈ {Mid+ 1, . . . ,Max} and v > h

(Zones A and B) (3)

G, otherwise (Zone D) (4)

Proof. From the similarity recurrence formula:

z = max


x+M if match

x+ I if mismatch

w +G horizontal gap

y +G vertical gap

Match case: Suppose that there is a match. Then

z = max(x+M,w +G, y +G)

= max(x+M,x+ v +G, x+ h+G)

but, v, h ≤ M − G. Taking the largest value creates equality in all three terms, so

z = x+M for all values of v, h. Substituting,

u = z − y = z − (x+ h) = z − x− h = M − h.
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Mismatch case (Zone C): Suppose that there is a mismatch and z = x+ I. Then

x+ I ≥ w +G ≥ x+ v +G⇒Mid = I −G ≥ v

x+ I ≥ y +G ≥ x+ h+G⇒Mid = I −G ≥ h

so h, v ∈ {Min, . . . ,Mid}. Substituting,

u = z − x− h = I − h.

Horizontal gap (Zones A and B): Suppose z comes from a horizontal gap only.

Then z = w +G and

w +G > x+ I ⇒ x+ v +G > x+ I ⇒ v > I −G = Mid

w +G > y +G⇒ x+ v +G > x+ h+G⇒ v > h.

Then v ∈ {Mid+ 1, . . . ,Max} and v > h, case (3). Substituting,

u = z − x− h = w +G− x− h = w − x− h+G = v − h+G.

Vertical gap (Zone D): Suppose z comes from a vertical gap. Then z = y + G

and

y +G ≥ w +G⇒ x+ h ≥ x+ v ⇒ h ≥ v

y +G ≥ x+ I ⇒ x+ h+G ≥ x+ I ⇒ h ≥ I −G = Mid.

Since z = y +G, u = G.

Output ∆V values. Theorems A.0.2–A.0.5 are used to compute the ∆V output

values for the four zones of the function table. The proof for ∆H values is omitted.

Zone A.

Theorem A.0.2. (Zone A max value.) Given the bit-vector ∆Hmin and the bit-vector

Matches, the bit-vector ∆V <<
max (∆Vmax << 1) can be computed using the following

equation:
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∆V <<
max =

(((∆Hmin ∧Matches) + ∆Hmin)⊕∆Hmin)

⊕ (∆Hmin ∧Matches)

Proof. Let left be the direction of the least significant bit and right the direction of

the most significant bit. There are two ways for u to equal Max, either h = Min

and there is a Match or h = Min and v = Max. Let

InitialVmax = ∆Hmin ∧Matches.

Then InitialVmax represents all the positions where u = Max because of a Match.

We consider two cases: a block of consecutive 1s in ∆Hmin and a block of consecutive

0s.

Block of consecutive 1s: Let Matches contain k 1s at locations {p1, p2, . . . , pk}
within the block with p1 the leftmost at the dth location within the block. InitialVmax

also has 1s at these locations and nowhere else in the block. The operation InitialVmax+

∆Hmin adds these 1s and causes a carry from p1 to the end of the block. In the re-

sult, 1s occupy all positions left of p1 in the block, positions {p2, p3, . . . , pk}, and

the position immediately to the right of the block, if it exists. When we XOR this

result with ∆Hmin, the 1s left of p1 are set to 0, p1 is set to 1, the 0s between the pis

are set to 1s, and the positions {p2, p3, . . . , pk} are set to 0. The bit to the right of

the block remains 1. The final XOR of the result and InitialVmax sets p1 to 0, and

{p2, p3, . . . , pk} to 1, since in InitialVmax those positions are all 1. The final result is

a block of n− d+ 1 1s, starting at position p1 + 1 and ending at the first position to

the right of the block.

Block of consecutive 0s: Within the block, InitialVmax is all 0s because ∆Hmin

was 0. Likewise InitialVmax + ∆Hmin is all 0s, unless a carry has entered the block

from the left, in which case the leftmost bit in the region is a 1. When we XOR this

result with ∆Hmin, the output is again all 0s, aside from the possible initial 1 bit.

After the final XOR with InitialVmax the output is again all 0s, except possibly the

initial bit.

Bits set to 1 now occupy all locations where u = Max, i.e., either from h = Min

and there is a Match, or h = Min and v = Max, all shifted one bit to the right.
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Theorem A.0.3. (Zone A Remaining Values.) Let u ∈ {Max−1,Max−2, . . . ,Mid+

1} be a ∆V output value in Zone A. Then the output bit-vector ∆V <<
u can be com-

puted by the equation

∆V <<
u =

[(∆HM−u ∧Matches)∨ (1)

(
∨

k,l|l−k+Min=u
k 6=Min
l>Mid

(∆Hk ∧ (∆V <<
l ∧ ¬Matches)))] << 1 (2)

+Remain∆Hmin ⊕Remain∆Hmin (3)

where Remain∆Hmin = ∆Hmin ⊕ (∆Hmin ∧Matches).

Proof. From the function table, an output of u can be obtained in three ways: from

a match, from ∆V input values v ∈ {Mid + 1,Mid + 1, . . . ,Max}, and from the

propagation of u through a block of 1s in ∆Hmin.

Formula Part 1: By Theorem A.0.1 (1), when there is a match, u = M − h⇒
h = M − u, so the bit-vector ∆HM−u ∧Matches gives locations where the output is

u due to matches.

Formula Part 2: (∆V <<
l ∧¬Matches) excludes locations in ∆V <<

l withMatches,

since the value of ∆V is not used if there is a match. The ∆Vl values are shifted

(∆V <<
l ) so that they are input to the next cell. Output values of u lie on the di-

agonal defined by ∆Hk and ∆Vl where l − k + Min = u. ANDing every such pair

(excluding the pair where k = Min and l = u + 1, which will be used in the last

step) and ORing the result gives a bit-vector of the locations where the u output

values come from the diagonal.

Parts 1 and 2 yield the locations in ∆V <<
u that must be computed before prop-

agating through blocks of ∆Hmin.

The << 1 operation shifts these output values one bit toward the high order bit

so they can act as input to the next cell.

Formula Part 3: In Part 1 of Theorem A.0.2, ∆Hmin inputs were used to

produce u output. These locations must be excluded from the propagation, since
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they have already produced an output. Remain∆Hmin is exactly ∆Hmin with all

such locations excluded. The operations + Remain∆Hmin ⊕ Remain∆Hmin carry

out the propagation through the blocks of ∆Hmin, as in the proof of theorem A.0.2

and results in output values shifted by one bit to the right.

Zones B and C.

Theorem A.0.4. Let u ∈ {Mid,Mid − 1, . . .Min + 1} be a ∆V output value in

Zones B or C.

∆V <<
u =

(∆HM−u ∧Matches)∨ (1) ∨
k,l|l−k+Min=u,

l>Mid

[∆Hk ∧ (∆V <<
l ∧ ¬Matches)]

∨ (2)

[
∆HI−u ∧

(
¬
Mid+1∨
l=Max

∆V <<
l

)]
(3)

Proof. From the function table, the ∆V output of u can be obtained in three ways:

from a match, from ∆V input values v ∈ {Mid + 1,Mid + 2, . . . ,Max} (Zone B),

and from the ∆V input values v ∈ {Min,Min+ 1, . . . ,Mid} (Zone C) .

Formula Part 1: See proof of A.0.3 Formula Part 1.

Formula Part 2: See proof of A.0.3 Formula Part 2.

Formula Part 3: The ∆V values from Min to Mid have the same outputs in

the function table, given the same ∆H input value. From Theorem A.0.1 (2), since

v ∈ {Min,Min + 1, . . . ,Mid} and u 6= Mid = G, then u = I − h and h = I − u.

Since Zone A has already been computed, we know the ∆V values from Max to

Mid+1. Since the sets {Min,Min+1, . . . ,Mid} and {Mid+1,Mid+2, . . . ,Max}
are complementary, we find the locations of the ∆V values from Min to Mid by tak-

ing the bit-wise complement of the ORed bitvectors ∆VMid+1,∆VMid+2, . . . ,∆Vmax.

ANDing them to ∆HI−u gives the locations of u.
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Zone D.

Theorem A.0.5. (Zone D.) Suppose that the bit-vectors ∆V <<
max,

∆V <<
Max−1, . . .∆V

<<
Min+1 have been computed (Zones A, B, and C). Then we can com-

pute the bit-vector ∆V <<
min with the equation:

∆V <<
min = ¬

(
max∨

k=Min+1

∆V <<
k

)
.

Proof. The locations of all previously computed ∆V outputs shifted 1 bit to the

right is simply
max∨

k=Min+1

∆V <<
k , so the locations that have Min output shifted 1 bit

to the right must be ¬
(

max∨
k=Min+1

∆V <<
k

)
.

BitPAl packed calculates the u values in Zones B and C by addition using an

encoding which converts all ∆V values v into the following b values and all ∆H

values h into the following c values:

b = v −Min

c = Min− h

The b values are zero or positive in the range [0,Max −Min] and the c values are

zero or negative in the range [Min −Max, 0]. The range of their sums is [Min −

Max,Max−Min].

Using individual bit-vectors to represent each ∆V or ∆H value results in very low

information density - few bits are set compared to the overall number of bits. Instead,

we use a twos complement encoding consisting of k bit vectors to store both the b and

c encodings as above. The b values are stored in vectors ∆V bits20 ,∆V bits21 , . . . ,∆V bits2k ,

the c values are stored in vectors ∆Hbits20 ,∆Hbits21 , . . . ,∆Hbits2k , and k is set

to accommodate the range of sums, i.e., 2k ≥ 2 ∗ (Max − Min) + 1 or k =

dlog2(2 ∗ (Max−Min) + 1)e
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For Zones B and C, all ∆V values < Mid are treated as Mid. In this case we

modify the encoding above so that

b =


Mid−Min if v ≤Mid

v −Min otherwise

The following theorem shows how to find output ∆V values using addition.

Theorem A.0.6. (Packed Zones B and C.) Consider v, h, and u from Figure A·1
and let b and c be as in the encoding above. If b + c > 0, then b + c = u −Min,

otherwise u = Min.

Proof.

b + c > 0:

v > Mid:

b + c = v −Min + Min − h = v − h and b + c > 0 ⇒ v − h > 0 ⇒ v > h. From

Theorem A.0.1 (3), u = v−h+G⇒ u = b+c+G⇒ b+c = u−G⇒ b+c = u−Min.

v ≤ Mid:

b+ c = Mid−Min+Min−h = Mid−h and b+ c > 0⇒Mid−h > 0⇒Mid > h.

From Theorem A.0.1 (2), u = I−h⇒ u = Mid+Min−h⇒ u−Min = Mid−h⇒
b+ c = u−Min.

b + c ≤ 0:

v > Mid:

b+ c = v −Min+Min− h = v − h and b+ c ≤ 0⇒ v − h ≤ 0⇒ v ≤ h. Then by

Theorem A.0.1 (4), u = G = Min

v ≤ Mid:

b+ c = Mid−Min+Min−h = Mid−h and b+ c ≤ 0⇒Mid−h ≤ 0⇒Mid ≤ h.

Suppose that Mid = h. Then by Theorem A.0.1 (2), u = I − h = I − Mid =

I − (I − G) = G = Min. Suppose that Mid < h. Then by Theorem A.0.1 (4),

u = G = Min.
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Application to Distance Based Scoring

Theorem A.0.7. For any distance based integer scoring scheme described by align-

ment weights (m, i, g) with m = 0, i, g > 0, i ≤ 2g, the global alignment bit-

parallel methods described above apply to an equivalent similarity based integer scor-

ing scheme, with weights (M, I,G), with M = 0, I = −i, and G = −g.

Proof. Let M = 0, I = −i, and G = −g. Equivalence of the two scoring schemes

for global alignment was established in (Smith and Waterman, 1981), Theorem 3,

which states that for similarity scores M, I,G, the corresponding distance scores are

m = 0, i = M − I, and g = M/2 − G. By substitution, M, I, and G will produce

m, i, and g.

The change in scoring weights is merely a remapping of the values for Max,

Min, and Mid as defined above. The function table dimensions and Zones remain

unchanged. Since M ≥ 0, k ≥ 0. Since i, g > 0, i > 2k, g > k.



Appendix B

Proofs on Substitution Scoring

Preliminaries

Theorem B.0.8. ∆V and ∆H are integers which fall in the following ascending

and descending ranges respectively:

∆V ∈ {0, 1, 2, . . . , Lmax}, ∆H ∈ {0,−1,−2, . . . ,−Lmax}. (B.1)

Proof. We first prove that G ≤ ∆v ≤ Lmax + G. Then using the transformation

∆V = ∆v −G, we obtain 0 ≤ ∆V ≤ Lmax. The proof for ∆h and ∆H is similar.

Lower bound: The recurrence for column zero is either S[i, 0] = i∗G (penalty for

an initial gap) or S[i, 0] = 0 (no penalty for an initial gap). In either case, ∆v ≥ G.

The recurrence for column j > 0 includes the alternative S[i, j] = S[i − 1, j] + G

(vertical gap). This again assures that ∆v ≥ G.

Upper bound: By induction. We will assume that there exists some pair x, y such

that subst(x, y) > G. This is the typical situation because all standard substitution

tables have at least one positive value. For column zero, the difference between

adjacent cells is either G or 0. Since Lmax = max
x,y

subst(x, y)− 2G > G− 2G > −G
we have Lmax +G > 0 ≥ ∆v.

For an arbitrary row i > 0 and column j > 0, we assume that the theorem is

true for every cell above and to the left. There are three possibilities for the score

S[i, j], it is due to a 1) vertical gap, 2) substitution, or 3) horizontal gap. If it

arises from a vertical gap, then ∆v = G which is < Lmax + G. If it arises from a

substitution, then S[i, j] = S[i−1, j−1]+subst(). Since ∆v = S[i, j]−S[i−1, j], the

largest difference occurs when S[i− 1, j] = S[i− 1, j− 1] +G (the minimum possible

horizontal difference). Then ∆v = S[i− 1, j − 1] + subst()− (S[i− 1, j − 1] +G) =

subst() − G ≤ Lmax + 2G − G ≤ Lmax + G. If it arises from a horizontal gap, then

S[i, j] = S[i, j − 1] +G. Since ∆v = S[i, j]− S[i− 1, j], the largest difference occurs

89
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when S[i − 1, j] = S[i − 1, j − 1] + G (the minimum possible horizontal difference)

and S[i, j−1] = S[i−1, j−1]+Lmax+G (the maximum possible vertical difference).

Then, ∆v ≤ S[i− 1, j − 1] + Lmax +G+G− (S[i− 1, j − 1] +G) ≤ Lmax +G.

Theorem B.0.9. ∀j ≥ 1, ∆V and ∆H are computed by the following formulas:

∆V [j] = max

(
0, max

(
∆V [j − 1], L[j]

)
+ ∆Hin[j]

)
(B.2)

∆Hout[j] = min

(
0, min

(
− L[j],∆Hin[j]

)
+ ∆V [j − 1]

)
. (B.3)

Proof. By substitution using the recursive formula for S and the definitions of ∆V ,

∆H, and L(j), we get, for ∆V :

∆V [i, j]
∀i,j≥1

=



L[j] + ∆H[i− 1, j] Substitution, i.e.: if

L[j] ≥

∆V [i, j − 1]

−∆H[i− 1, j]

0 Indel from above, i.e.: if

−∆H[i− 1, j] ≥

L[j]

∆V [i, j − 1]

∆V [i, j − 1] + ∆H[i− 1, j] Indel from left, i.e.: if

∆V [i, j − 1] ≥

L[j]

−∆H[i− 1, j]

Examination of each of the cases shows that each is a maximum in it’s range, yielding

Equation (B.2). The case for Equation (B.3) (∆Hout) is similar.
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Partial Sums

Theorem B.0.10. ∀j > 0, the ∆V [j] values can be computed by the following re-

currence:

∆V [1] = max

(
0,max

(
∆V [0], L[1]

)
+ ∆Hin[1]

)

∆V
∀j>1

[j] = max



0

L[j] + ∆Hin[j]

L[j − 1] + ∆Hin[j − 1] + ∆Hin[j]

L[j − 2] + ∆Hin[j − 2] + ∆Hin[j − 1] + ∆Hin[j]
...

max
(
∆V [0], L[1]

)
+ ∆Hin[1] + . . .+ ∆Hin[j − 1] + ∆Hin[j]

(B.4)

Proof. By induction on j. The base case (j = 1) is established by Equation (B.2).

For the induction step, assume that the recurrence is true for all indices up to j − 1,

i.e.:

∆V [j − 1] = max



0

L[j − 1] + ∆Hin[j − 1]

L[j − 2] + ∆Hin[j − 2] + ∆Hin[j − 1]
...

max
(
∆V [0], L[1]

)
+ ∆Hin[1] + . . .+ ∆Hin[j − 1]

(B.5)

For j, we again apply Equation (B.2), which yields three alternatives, 1) a lower

limit of zero, 2) the sum L[j] + ∆Hin[j], and 3) the sum ∆V [j − 1] + ∆Hin[j]. The

lower limit of zero is the first alternative in Equation (B.4). The sum L[j] + ∆Hin[j]

is the second alternative in Equation (B.4). The sum ∆V [j − 1] + ∆Hin[j] is the

maximum of the alternatives in Equation (B.5), each added to ∆Hin[j]. These sums

form the remaining alternatives in Equation (B.4). Note that we do not explicitly

include the sum 0 + ∆Hin[j] in Equation (B.4). Since all ∆Hin[j] are ≤ 0, this term

will be zero or negative and can be discarded.
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Theorem B.0.11. ∀j ∈ {1, . . . , n},∀i ∈ {0, . . . , log2 j}, partial sums of length 2i,

PS[j, i] = ∆Hin[j − 2i + 1] + ∆Hin[j − 2i + 2] + . . .+ ∆Hin[j]

can be computed in dlog2 ne rounds in O(n log n) time.

Proof. By induction on i. We show that after round i, PS[j, i] has been computed.

For the base case, i = 0, we set PS[j, i] = ∆Hin[j]. For the induction step, assume

that after round i we have the specified partial sums. In round i+ 1, ∀j > 2i we set

PS[j, i+ 1] = PS[j − 2i, i] + PS[j, i] (B.6)

=
(
∆Hin[j − 2i − 2i + 1] + . . .+ ∆Hin[j − 2i]

)
+
(
∆Hin[j − 2i + 1] + . . .+ ∆Hin[j]

)
= ∆Hin[j − 2i+1 + 1] + . . .+ ∆Hin[j]

where ∆Hin terms with an index < 1 are omitted. All PS are computed after round

dlog2 ne. Since round i ≥ 1 computes n− 2i additions, the number of operations per

round is linear and the total time is O(n log n).

Theorem B.0.12. ∀j ∈ {1, . . . , n}, ∆V [j] can be computed in dlog2(n)e+ 1 rounds

in O(n log n) time if ∀j ∈ {1, . . . , n},∀i ∈ {0, . . . , log2 j} the partial sums PS[i, j]

are available.

In Theorem B.0.12, we show how to compute the ∆V [j] in a logarithmic number of

rounds, The first round produces the best score from a vertical gap or a substitution

and subsequent rounds attempt to improve the score by finding horizontal gaps

starting increasing further to the left.

Proof. By induction on round i. Let ∆V [j] be a lower bound for the final ∆V [j]

value. ∆V [j] is updated at each round and is equal to ∆V [j] after the final round.

We show that after round i, for all j, ∆V [j] is the maximum of the first 2i + 1

alternatives in Equation (B.4). For the base case, round 0, we compute:

L[1] = max(L[1], V [0])

∆V
∀j≥1

[j] = max(0, L[j] + ∆Hin[j]). (B.7)
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Equation (B.7) computes the maximum of the first two (= 20 + 1) alternatives in

Equation (B.4). In round i, 1 ≤ i ≤ dlog2(n)e we compute:

∆V [j]
∀j≥2i−1

= max


∆V [j]

∆V [j − 2i−1] + ∆Hin[j − 2i−1 + 1] + . . .+ ∆Hin[j]

= ∆V [j − 2i−1] + PS[j, i− 1]

(B.8)

For the induction step, assume that after round i, ∆V [j] is the maximum of the first

2i + 1 alternatives in Equation (B.4). That is:

∆V [j]
∀j≥1

= max



0

L[j] + ∆Hin[j]

L[j − 1] + ∆Hin[j − 1] + ∆Hin[j]

L[j − 2] + ∆Hin[j − 2] + ∆Hin[j − 1] + ∆Hin[j]
...

L[j − 2i + 1] + ∆Hin[j − 2i + 1] + . . .+ ∆Hin[j]

(B.9)

Note specifically that ∆V [j − 2i], the lower bound 2i positions further back from j,

is the maximum of its first 2i + 1 alternatives:

∆V [j − 2i]
∀(j−2i)≥1

= max



0

L[j − 2i] + ∆Hin[j − 2i]

L[j − 2i − 1] + ∆Hin[j − 2i − 1] + ∆Hin[j − 2i]
...

L[j − 2i − 2i + 1] + . . .+ ∆Hin[j − 2i]

(B.10)

Then, in round i+ 1, Equation (B.8) looks back to ∆V [j− 2i] and in effect adds the

sum of the 2i terms ∆Hin[j − 2i + 1] + ∆Hin[j − 2i + 2] + . . .+ ∆Hin[j] = PS[j, i] to

every alternative in Equation (B.10). The maximum calculation in Equation (B.8) is

computed over these 2i+1 sums derived from the alternatives in Equation (B.10) and

the 2i + 1 alternatives from Equation (B.9). Because all the ∆Hin are ≤ 0, the first

sum in the set from Equation (B.10) is ≤ 0 and can be discarded. This leaves 2i+1 +1

alternatives and these are exactly the first 2i+1 + 1 alternatives in Equation (B.4).



94

At the end of round i = dlog2(n)e, all ∆V are equal to the maximum of their first

2dlog2(n)e + 1 ≥ n + 1 terms in Equation (B.4). Since ∆V [n] has n + 1 terms, all

∆V contain the final ∆V values. If the partial sums, PS[j, i] for the ∆H terms are

available, then each round has at most one addition and one maximum operation per

index j, except round 0 which has one additional maximum operation, so the total

number of operations per round is linear in n and the total time is O(n log n).

In our bit parallel approach, we store multiple ∆V values in the same word

of length w. For convenience, each ∆V is allotted eight bits and there are w/8

values stored in each word. In the current SIMD implementation using w = 128

bit words, we store 16 values per word. The computation with multiple values per

word requires a slight modification to the method described in Theorem B.0.12 and

Theorem B.0.11. The modified method is described in Theorem B.0.13.

Theorem B.0.13. ∀j ∈ {1, . . . , n), ∆V [j] and ∆Hout[j] can be computed in time

O (n logW/W )), where W is the number of ∆V values held in a word of length w.

∀j ∈ {1, . . . , n), ∆V [j] and ∆Hout[j] can be computed in dn/W e ∗
(
dlog2W e + 2

)
rounds and O ((n ∗ logW )/W )) time, where W is the number of ∆V values held in

a word of length w.

Proof. An array of words, denoted V val, holds the ∆V [j] values and are numbered

from 0 (containing the lowest j indices) to dn/W e − 1 (denoted V val0, V val1, etc.).

Each word holds W values, indexed from 0 to W − 1, and each value occupies w/W

bits. Similar arrays, denoted Hval, Lval, and PSval, hold the ∆H, L, and partial

sum values, PS, respectively. The V val words are processed in order starting with

word 0. Each word is processed independently in dlog2W e+1 rounds and the values

are determined as described in Theorems B.0.12 and B.0.11. For the V val it suffices

to show that 1) within a single word, the number of operations is linear in the

number of rounds and 2) information can be efficiently transferred from one word to

the next. Below we show how V val0 and V val1 are processed. The remaining words

are processed similarly. The ∆Hout[j], stored in the Hval, are computed by a small

set of instructions for each word, also shown below.

For the ∆V [j], we assume that preprocessing before computing row 1 initializes
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arrays Hval, PSval and Lval as follows:

for k = 0 to n/W

for h = 0 to W − 1

Hvalk[h] = ∆Hin[k ∗W + h+ 1]

Lvalk[h] = L[k ∗W + h+ 1]

PSvalk = ∆Hvalk

V val0: Round 0. This round computes the first two alternatives from Theorem B.0.10,

Equation (B.4) for j = 1 . . .W .

Lval0[0] = max(∆V [0], Lval0[0])

Sum = Lval0 +Hval0

V val0 = max(AllZeros, Sum)

The re-initialization of Lval0[0] assures that if the ∆v value in the first column is 0

to exclude an initial gap penalty, then the corresponding ∆V value (∆V [0] = −G)

is used if it is larger than L(1). The addition of the W values stored in Lval0 and

Hval0 are done simultaneously as one operation. This is possible if the number of

bits for each value is large enough to prevent overflow into the next value or, as we

have done, by using an SIMD “addition with saturation” instruction which restricts

each add to a single byte and, in the case of an overflow, stores the maximum (or

minimum) possible value. AllZeros in the max() calculation holds W values, all of

which are zero. The max() calculation can be performed with a fixed number of logic

instructions or with a single SIMD instruction.

V val0: Rounds i = 1, . . . , logW . These rounds compute the remaining alter-

natives from Theorem B.0.10, Equation (B.4), following the method presented in

Theorem B.0.11.

ShiftV val = V val0 << (2i−1 ∗ 8)

Sum = ShiftV val + PSval0

V val0 = max(V val0, Sum)

ShiftPS = PSval0 << (2i−1 ∗ 8)

PSval0 = PSval0 + ShiftPS
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The first three instructions are the max() calculation of Theorem B.0.12, Equa-

tion (B.8). ShiftV val is the ∆V value in the second alternative of that equation

and the addition of ShiftV val and PSval0 is the computation of the sum in the

second alternative. Note the shift is multiplied by 8 because we are using one byte to

store each value. The last two instructions prepare the partial sums variable for the

next round using the partial sums calculation of Theorem B.0.11, Equation (B.6).

V val1: Round 0 is identical to the one for V val0 except for the re-initialization

of Lval1[0]:

Lval1[0] = max(Lval1[0], V val0[W − 1])

Since the computation for V val0 is already complete, V val0[W − 1] contains its final

value, ∆V [W ]. The equation above computes the inner max() of Theorem B.0.9,

Equation (B.2), for j = W + 1. The remaining rounds for V val1 are identical to

those for V val0.

For the ∆Hout[j], we assume that preprocessing before computing row 1 initializes

array negLval which is the negative of the L values.

for k = 0 to n/W

for h = 0 to W − 1

negLvalk[h] = L[k ∗W + h+ 1]

(B.11)

The Hval variables are now used to hold the ∆Hout[j] (which are used subsequently

as the ∆Hin[j] for the next row). We compute them for a generic word Hvalk with

the following instructions:

Min = min(Hvalk, negLvalk)

ShiftV val = V valk << (1 ∗ 8)

ShiftV val[0] = V valk−1[W − 1]

Sum = Min+ ShiftV val

Hvalk = min(AllZeros, Sum)

(B.12)



97

The first instruction computes the inner min() of Theorem B.0.9, Equation (B.3).

The second and third instructions shift the ∆V [j] values up by one in preparation

for the addition, in of Equation (B.3), which is performed by the fourth instruction.

Note that since we shift the V valk up by one value, we need to insert the last value

from the previous word V valk−1. The fifth instruction performs the outer min() of

Equation (B.3).

There are dn/W e− 1 words holding the ∆V [j] values and each word is processed

for dlog2W e + 1 rounds using a fixed number of operations per round. There are

dn/W e − 1 words holding the ∆Hout[j] values and each word is processed with a

fixed number or operations. The total time is therefore O (n logW/W )).



98

Algorithm 1 BLOSUM-type Scoring Global Alignment by Partial Sums

1: procedure Partial Sums(Hval, Lval, negLval)
2: \\ Array Hval holds ∆Hin values
3: \\ Array Lval holds L values
4: \\ Array negLval holds −L values
5: \\ Each array contains dn/W e words indexed from 0 to dn/W e − 1.
6: \\ Each word holds W values indexed from 0 to W − 1
7: \\ AllZeros holds W values, each of which is zero
8:

9: \\ Initialize each partial sum variable PSvalk to hold ∆Hin values
10: for k = 0 to dn/W e − 1 do
11: PSvalk = Hvalk
12: end for
13:

14: \\ Process each variable V valk to find the final ∆V values
15: for k = 0 to dn/W e − 1 do
16:

17: \\ Round 0 for V valk
18: if (k == 0) then
19: Lval0[0] = max(Lval0[0],∆V [0])
20: else
21: Lvalk[0] = max(Lvalk[0], V valk−1[W − 1]) \\look back
22: end if
23: Sum = Lvalk +Hvalk
24: V valk = max(AllZeros, Sum)
25:

26: \\ Rounds i = 1, . . . , logW for V valk
27: for i = 1 to logW do
28: ShiftV val = V valk << (2i−1 ∗ 8) \\shift is by bytes
29: Sum = ShiftV val + PSvalk
30: V valk = max(V valk, Sum)
31: ShiftPS = PSvalk << (2i−1 ∗ 8) \\preparation for next round
32: PSvalk = PSvalk + ShiftPS \\preparation for next round
33: end for
34:

35: end for
36:

37: \\ Compute variables Hvalk, the output ∆H values
38: for k = 0 to dn/W e − 1 do
39: Min = min(Hvalk, negLvalk)
40: ShiftV val = V valk << (1 ∗ 8) \\shift is by bytes
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41: if (k == 0) then
42: ShiftV val[0] = ∆V [0] \\value in column zero
43: else
44: ShiftV val[0] = V valk−1[W − 1] \\look back
45: end if
46: Sum = Min+ ShiftV val
47: Hvalk = min(AllZeros, Sum)
48: end for
49: end procedure
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Appendix C

Proofs on Global Alignment with Partial

Sums by Scan

C.1 Introduction

We will show that the Partial Sum computations described in Appendix B can also

be done in O(n/W + log(W )) time by striping our values across computer words

[18] and performing a scan (parallel-prefix type sum or other prefix operation) across

the words [10]. The definitions and foundational theorems on the relationships be-

tween values remain the same as in Appendix B - the change is in how the partial

sums of values are computed, resulting in a reduction in the number of redundant

computations.

The SIMD scan algorithm requires that data be distributed across SIMD words

so that multiple parts of the scan can be done in a single SIMD operation.

Definition 2. ‘Striped’ data storage - for a given data set of n elements, given a

SIMD word that can store W values, we will store the data in g = dn/W e words

such that the zeroth value is in the zeroth position of the zeroth word, the first value

in the zeroth position of the first word, ..., the gth value is in the first position of the

zeroth word, and so on such that the kth value is in the (k modulo g) word in the

k/g position.

The striped data structure was first described by [18] and was used in the SIMD

alignment algorithm Parasail [16]. Our original SIMDParSum completes a scan on

each of the n/W SIMD words sequentially. The sum is passed from one word to the
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Figure C·1: Upsweep step of SIMD prefix-sum computation. In this
example, each SIMD word holds 4 values. Step 1: the values are
striped across the SMID words. Step 2: pairs of words are added.
Step 3: pairs at the next level of the tree are added. This process
continues recursively until there is only one pair, the final SIMD word
and the middle word. Step 4: the upsweep is continued by doing a
parallel scan on the final SIMD word.

next, resulting in O(log(W )) work for each word and O(log(W ) · n/W ) in total per

row. There are two problems with this method. The first is that only a single SIMD

word is being accessed, manipulated, and stored into at any given time. This reduces

processor pipeline efficiency, because it creates blocks of sequentially dependent op-

erations. The second is that each time a word is shifted, the addition involves fewer

and fewer of the values in the word (wasted operations). By striping values across

words, we can instead add different SIMD words to each other to have the effect of

shifting without having operations wasted due to uninvolved values.

Theorem C.1.1. ∀j ∈ {1, . . . , n}, ∆V [j] can be computed in

O
(
n
W

+ logW
)

time given ∆Hin[j] and L[j] stored in a striped manner in n
W

words.

Proof. For this proof, we will suppose that n/W , the number of words is a power of

2. It is trivial to extend the proof to situations where this is not true.

As in SIMDParSum, for a value j ∈ {1, 2, . . . , n} we will calculate ∆V [j] by the

recursion given in Appendix A:
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Figure C·2: Downsweep step of SIMD prefix-sum computation. In
this example, each SIMD word holds 4 values. The upsweep step has
already been completed, the final word holds prefix-sums from the
beginning for the 4 positions stored there. Step 1: the final word
is shifted, and added to the first and second words. Step 2: The
second word is added to the third. Step 3: This shows how values
can be reordered (unstriped) into their original positions, but this is
not actually done in each row.
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∆V [1] = max

(
0,max

(
∆V [0], L[1]

)
+ ∆Hin[1]

)

∆V
∀j>1

[j] = max



0

L[j] + ∆Hin[j]

L[j − 1] + ∆Hin[j − 1] + ∆Hin[j]

L[j − 2] + ∆Hin[j − 2] + ∆Hin[j − 1]

+∆Hin[j]
...

max
(
∆V [0], L[1]

)
+ ∆Hin[1] + . . .

+∆Hin[j − 1] + ∆Hin[j]

(C.1)

Note that the major work involved in this recurrence is the sum of ∆Hin values.

We will follow the outline of the efficient prefix-sum algorithm given by Blelloch [10],

and apply the method outlined there for computing the above recurrence. Blelloch’s

algorithm consists of two parts: an upsweep (or reduce) and a downsweep.

Blelloch’s upsweep is done in O(n/p + log(p)) time where n is the number of

values, p is the number of processors. Rather than parallelizing across processors, we

are parallelizing across SIMD vectors. By striping the data, each sum step we do on

the upsweep will apply to all W values in an SIMD word, resulting in O(n/W ) work

to get the upsweep into the final word. At that point, the upsweep continues in the

final word via shifts and adds within the word, as in the scan of our SIMDParSum

completing the upsweep in time log(W ). At each step in our scan, we are computing

both the sum of ∆Hin values as well as the maximum of L+
∑

∆Hin.

The upsweep proceeds as follows, using the sum of ∆Hin to illustrate:

We store ∆Hin in striped format in an array we call ∆HS with n/W striped words,
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(a) Blelloch’s Upsweep

(b) Striped SIMD upsweep

Figure C·3: Blelloch’s upsweep proceeds by summing pairs of values
in a conceptual binary tree. This binary tree with n leaves has n − 1
internal nodes, leading to n − 1 operations. The striped SIMD scan
arranges the pairs of values so that multiple value pairs within pairs
of SIMD words can be summed at the same time. In the final word,
values are shifted and added to complete the scan. Given W elements
per SIMD word, there are n/W−1 addition operations before the scan
in the final word and 2 · log(W ) operations (1 shift, 1 addition per log
step in the final word scan. The larger n and W are, the larger the
advantage of the striped SIMD scan.
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Figure C·4: Diagram of stripe format. Each word holds W values.
To store n values, we use n/W words. Each stripe i consists of all
values from words 0 to n/W at position i in each respective word.

as in Figure C·4. We indicate the zeroth value in the zeroth word by ∆HS[0][0]. Thus,

∆HS[0][0] = ∆Hin[1]

∆HS[1][0] = ∆Hin[2]

...

∆HS[n/W − 1][0] = ∆Hin[n/W ]

∆HS[0][1] = ∆Hin[n/W + 1]

... .

There are log(n/W ) steps, one for each level of the tree.

At step k, pairs of words are summed (with indices i and i − 2k−1 for i modulo

2k = 2k − 1) and the result stored in the higher indexed word of the pair, i.e.,

∆HS[i] = SIMDAdd(∆HS[i− 2k−1],∆HS[i]).

The words at i and i − 2k−1 were previously stored into at round k − 1, so step k



106

produces sums of 2k values. As a result, each word with index i where (i+1) modulo

2l = 0 for some l contains sums of 2l values after step l.

At step 1, each pair of words, i and i− 20 = i− 1, where i modulo 2 = 2− 1 = 1,

is summed and stored in the higher index of the pair, i.e.,

∆HS[1] = SIMDAdd(∆HS[0],∆HS[1])

∆HS[3] = SIMDAdd(∆HS[2],∆HS[3])

∆HS[5] = SIMDAdd(∆HS[4],∆HS[5])
...

(C.2)

Figure C·5 shows the results of this set of sums, note that ∆HS[0][0] is unchanged.
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At step 2, each pair of words, i and i − 21, where i modulo 22 = 22 − 1 = 3, is

summed, i.e.,

∆HS[3] = SIMDAdd(∆HS[1],∆HS[3])

∆HS[7] = SIMDAdd(∆HS[5],∆HS[7])
...

∆HS[i] = SIMDAdd(∆HS[i],∆HS[i− 2])

Note that the sum in step 2 makes use of results from step 1, so that the sums

produced by step 2 are sums of four ∆Hin values. For example,

∆HS[3][0] =
3∑
i=0

∆Hin[i].

Continuing through log(n/W ) steps, as in Figure C·6, the resulting final word

has sums of 2log(n/W ) = n/W values, meaning that the final word contains, in each

position i, the sum of all of the values in stripe i from every word. Let f = n/W − 1

be the index of the final word. Then

∆HS[f ][0] =

n/W∑
i=1

∆Hin[i]

∆HS[f ][1] =

2n/W∑
i=n/W+1

∆Hin[i]

...

∆HS[f ][k] =

kn/W∑
i=(k−1)n/W+1

∆Hin[i]

.

In order to have the sums in the final word start with the zeroth value rather

than the beginning of the particular stripe, we shift and sum in the final word. A
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shift and add is done for each of logW rounds, i.e., in round i ∈ {1, 2, ..., log(W )},

∆HS[f ] = SIMDAdd(∆HS[f ],∆HS[f ] << 2i).

At step 1,

∆HS[f ] = SIMDAdd(∆HS[f ],∆HS[f ] << 1),

which is equivalent to

∆HS[f ][0] = ∆HS[f ][0]

∆HS[f ][1] = ∆HS[f ][0] + ∆HS[f ][1]

...

∆HS[f ][W − 1] = ∆HS[f ][W − 2] + ∆HS[f ][W − 1].

From above, before the shift and add ∆HS[f ][0] =
∑n/W

i=1 ∆Hin[i] and ∆HS[f ][1] =∑2n/W
i=n/W+1 ∆Hin[i], so

∆HS[f ][1] =

n/W∑
i=1

∆Hin[i] +

2n/W∑
i=n/W+1

∆Hin[i]

=

2n/W∑
i=1

∆Hin[i]

Likewise,

∆HS[f ][2] =

2n/W∑
i=n/W+1

∆Hin[i] +

3n/W∑
i=2n/W+1

∆Hin[i]

=

3n/W∑
i=n/W+1

∆Hin[i]

Progressing through the log(W ) shifts and adds, the final values in ∆HS[f ] are
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∆HS[f ][0] =

n/W∑
i=1

∆Hin[i]

∆HS[f ][1] =

2n/W∑
i=1

∆Hin[i]

...

∆HS[f ][k] =
∑
i=1

kn/W∆Hin[i].

Because our upsweep in the final word computes sums from the beginning, some of

the downsweep work has already been done. Traversing the tree to spread the values

in the downsweep requires only a single set of operations at each node, resulting in

O(n/W ) work.

First, the values in the final word are shifted and saved in a temporary variable

SLW . SLW has in its first position 0, in its second position the sum of all the ∆Hin

values in Stripe 0, in its third position the sum of all the ∆Hin values in Stripe 0

and Stripe 1, and so on. This is shown in Figure C·7. Recall that in the upsweep,

every word with index k < n/W − 1 such that k+ 1 = 2l for some l, has values that

are sums to the beginning of the stripe. Each word with such an index k has SLW

added to it: ∆HS[k] = SIMDAdd(∆HS[k], SLW ) - this extends the sum from the

beginning of the stripe to the beginning of the values.

The downsweep then proceeds in steps from log(n/W )− 2 to 1. In our example,

shown in Figure C·8, the steps are log(16)−2 = 2, 1, and 0. The goal is to propagate

sums from words with indices k < n/W −1 where k+1 = 2l from left to right. These

are the words that just had SLW added to them.

In our initial step j = log(n/W ) − 2, we establish a set of words with indices

k < n/W − 1 such that k + 1 = 2l. We will term this set I. Each word with index

k ∈ I where k ≥ 2j is added to words with indices k + 2j. Recall that at index

k, the sum in each position x run from ∆Hin[1] to ∆Hin[k + x ∗ (n/W )]. At index

k + 2j, sums are from ∆Hin[k + x ∗ (n/W ) + 1] to ∆Hin[k + 2j + x ∗ (n/W )], so

if we add ∆HS[k] to ∆HS[k + 2j], the sum at k + 2j will now be from ∆Hin[1] to

∆Hin[k + 2j + x ∗ (n/W )]. Note that these values are the sums from the beginning.
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After performing the addition, we will add the indices k + 2j for k|k ≥ 2j, k ∈ I to

the set I and set j = j − 1.

For each consecutive step j, we recursively repeat this process, with I growing

to include by Step 0 all indices with odd values. In our final step, Step 0, we are

adding pairs of values, and all words have their final values. Because we are adding

into each word one time, this process is O(n/W ) work.

Thus, total time for the algorithm is O(n/W + log(W ) + n/W )



111

∆
H
S
[0

][
0]

=
∆
H
in

[1
]

∆
H
S
[1

][
0]

=
∆
H
in

[1
]+

∆
H
in

[2
]

∆
H
S
[2

][
0]

=
∆
H
in

[3
]

∆
H
S
[3

][
0]

=
∆
H
in

[3
]+

∆
H
in

[4
]

. . .

∆
H
S
[n
/W
−

2]
[0

]
=

∆
H
in

[n
/W
−

1]

∆
H
S
[n
/W
−

1]
[0

]
=

∆
H
in

[n
/W
−

1]
+

∆
H
in

[n
/W

]

,
∆
H
S
[0

][
1]

=
∆
H
in

[n
/W

+
1]

,
∆
H
S
[1

][
1]

=
∆
H
in

[n
/W

+
1]

+

∆
H
in

[n
/W

+
2]

,
∆
H
S
[2

][
1]

=
∆
H
in

[n
/W

+
3]

,
∆
H
S
[3

][
1]

=
∆
H
in

[n
/W

+
3]

+

∆
H
in

[n
/W

+
4]

. . .

∆
H
S
[n
/W
−

2]
[1

]
=

∆
H
in

[2
n
/W
−

1]

∆
H
S
[n
/W
−

1]
[1

]
=

∆
H
in

[2
n
/W
−

1]
+

∆
H
in

[2
n
/W

]

··
·
··
·
··
·
··
·

,
∆
H
S
[0

][
W
−

1]
=

∆
H
in

[n
/W

+
1]

,
∆
H
S
[1

][
W
−

1]
=

∆
H
in

[n
/W

+
1]

+

∆
H
in

[n
/W

+
2]

,
∆
H
S
[2

][
W
−

1]
=

∆
H
in

[n
/W

+
3]

,
∆
H
S
[3

][
1]

=
∆
H
in

[n
/W

+
3]

+

∆
H
in

[n
/W

+
4]

. . .

∆
H
S
[n
/W
−

2]
[W
−

1]
=

∆
H
in

[2
n
/W
−

1]

∆
H
S
[n
/W
−

1]
[W
−

1]
=

∆
H
in

[2
n
/W
−

1]
+

∆
H
in

[2
n
/W

]

F
ig

u
re

C
·5

:
S
u
m

s
st

or
ed

in
∆
H
S

af
te

r
fi
rs

t
st

ep
.



112

Figure C·6: log(n/W ) steps to upsweep to the final word. Pairs of
words at each level are summed and stored in the “right” side of the
pair.

Figure C·7: The shifted last word SLW is added to words with
indices that are 2l − 1 < f , in this case 0, 1, 3, and 7.

Figure C·8: Example of the downsweep after sums of SLW . Words
are summed from left to right in steps from log(n/W ) − 2 to 1, in
this case log(16)− 2 = 2 to 1.Step 2: We start with indices 1, 3, and
7. Words at these indices have their final values from the addition of
SLW . At step 2, we will be adding words with indices 22 = 4 apart.
1, 3 < 4, so only word 7 is used and added to word 11. Step 1: At
step one, we now consider indices 1, 3, 7, and 11. We will add 21 = 2
to each index ≥ 2. Words 3, 7, and 11 are added to words 5, 9, and 13.
Step 0: We will add 20 = 1 to each index ≥ 1. Words 1, 3, 5, 7, 9, 11
and 13 are added to words 2, 4, 6, 8, 10, 12 and 14. Every word now has
its final value.
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Appendix D

Proofs on Global Alignment with Affine

Gap Scoring

D.1 Definitions

Consider the dynamic programming algorithm for global alignment with affine gap

scoring. The scoring matrix S is defined by

Si,j = max


Fi,j

score(xi, yj) + Si−1,j−1

Ei,j

S0,j = α + j · β, j ∈ [0, . . . , n]

Si,0 = α + i · β, i ∈ [0, . . . ,m]

The affine gapping matrices E and F are defined by

Fi,j = max


α + β + Si,j−1

β + Fi,j−1

Fi,0 = Si,0 + α

Ei,j = max


α + β + Si−1,j

β + Ei−1,j
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Figure D·1: Computing ∆F , ∆Ein and ∆Eout from the S, E, and F
matrices.

E0,j = S0,j + α

where E represents a vertical gap and F represents a horizontal gap. Given the

recurrences above, we define several terms.

∆v[j] =Si,j − Si−1,j

∆hin[j] =Si−1,j − Si−1,j−1

∆hout[j] =Si,j − Si,j−1

∆H[j] =β −∆hin[j]

∆Hout[j] =β −∆hout[j]

∆F [j] =Fi,j − Si,j

∆Ein[j] =Ei−1,j − Si−1,j

∆Eout[j] =Ei,j − Si,j

D.2 Theorems and Proofs

Theorem D.2.1. Suppose that for a pair i, j we have ∆v[j− 1],∆hin[j], ∆F [j− 1],

and LB[j]. Then we can compute ∆v[j] with the equation
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∆v[j] = max


∆v[j − 1] + max(∆F [j − 1], α) + ∆H[j]

score(xi, yj)−∆hin[j]

max(∆Ein[j], α) + β.

Proof. From our definition, we know that ∆v[j] = Si,j − Si−1,j.

From the definition of S,

Si,j = max


Fi,j

score(xi, yj) + Si−1,j−1

Ei,j

.

Thus,

∆v[j] = Si,j − Si−1,j = max


Fi,j − Si−1,j (D.1)

score(xi, yj) + Si−1,j−1 − Si−1,j (D.2)

Ei,j − Si−1,j (D.3)

We will consider these three cases separately.

Case (1): From the definition of Fi,j,
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Fi,j − Si−1,j = max(α + β + Si,j−1, β + Fi,j−1)− Si−1,j

= max(α + β + Si,j−1 − Si−1,j, β + Fi,j−1 − Si−1,j)

= max(α + β + Si,j−1−Si−1,j−1 + Si−1,j−1 − Si−1,j,

β + Fi,j−1 − Si−1,j)

= max(α + β −∆hin[j] + ∆v[j − 1],

β + Fi,j−1−Si,j−1 + Si,j−1 − Si−1,j)

= max(α + β −∆hin[j] + ∆v[j − 1],

β + ∆F [j − 1] + Si,j−1 − Si−1,j)

= max(α + β −∆hin[j] + ∆v[j − 1],

β + ∆F [j − 1]−∆hin[j] + ∆v[j − 1])

= max(∆F [j − 1], α) + ∆v[j − 1]−∆hin[j] + β

= max(∆F [j − 1], α) + ∆v[j − 1] + ∆H[j]

where the underlined terms show the addition of zero.

Case (2): By definition, ∆hin[j] = Si−1,j − Si−1,j−1, so

score(xi, yj) + Si−1,j−1 − Si−1,j

= score(xi, yj)−∆hin[j].

Case (3): From the definition of Ei,j,

Ei,j − Si−1,j = max(α + β + Si−1,j, β + Ei−1,j)− Si−1,j

= max(α + β + Si−1,j − Si−1,j, β + Ei−1,j − Si−1,j)

= max(α + β,∆Ein[j] + β)

= max(∆Ein[j], α) + β
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Recombining, we get

∆v[j] = max


∆v[j − 1] + max(∆F [j − 1], α) + ∆H[j]

score(xi, yj)−∆hin[j]

max(∆Ein[j], α) + β.

For the discussion that follows, we define a new term LB[j]:

∀j > 0, LB[j] = max(score(xi, yj)−∆hin[j], β + max(∆Ein[j], α)).

Note that LB[j] is equal to the maximum of the second and third terms in the

formula for Theorem D.2.1, i.e., the maximum value for ∆v[j] from a substitution or

vertical gap score, the two possible values originating from the row above. As such,

LB[j] is a lower bound to ∆v[j] and Theorem D.2.1 can be rewritten as:

∆v[j] = max


∆v[j − 1] + max(∆F [j − 1], α) + ∆H[j]

LB[j].

(D.4)

Theorem D.2.2. Given ∆Ein[j] and ∆v[j], ∆Eout[j] can be computed by the equa-

tion

∆Eout[j] = max(∆Ein[j], α) + β −∆v[j]

.

Proof. From the definitions:
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∆Eout[j] = Ei,j − Si,j
= max(α + β + Si−1,j, β + Ei−1,j)− Si,j
= max(α + β + Si−1,j − Si,j, β + Ei−1,j − Si,j)
= max(α + β −∆v[j], β + Ei−1,j − Si,j)
= max(α + β −∆v[j], β + Ei−1,j−Si−1,j + Si−1,j − Si,j)

= max(α + β −∆v[j], β + ∆Ein[j]−∆v[j])

= max(∆Ein[j], α) + β −∆v[j]

Theorem D.2.3. Given ∆v[j − 1],∆v[j],∆H[j] and ∆F [j − 1], ∆F [j] can be com-

puted by the equation

∆F [j] = ∆v[j − 1]−∆v[j] + ∆H[j] + max(∆F [j − 1], α)

Proof. From the definition, ∆F [j] = Fi,j − Si,j.
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∆F [j] = Fi,j − Si,j
= Fi,j−Si−1,j + Si−1,j − Si,j
= Fi,j − Si−1,j −∆v[j]

= Fi,j−Si−1,j−1 + Si−1,j−1 − Si−1,j −∆v[j]

= Fi,j − Si−1,j−1 −∆hin[j]−∆v[j]

= Fi,j−Si,j−1 + Si,j−1 − Si−1,j−1 −∆hin[j]−∆v[j]

= Fi,j − Si,j−1 + ∆v[j − 1]−∆hin[j]−∆v[j]

= max(β + Fi,j−1, α + β + Si,j−1)− Si,j−1 + ∆v[j − 1]

−∆hin[j]−∆v[j]

= max(β + Fi,j−1 − Si,j−1, α + β + Si,j−1 − Si,j−1)

+ ∆v[j − 1]−∆hin[j]−∆v[j]

= max(β + ∆F [j − 1], α + β)

+ ∆v[j − 1]−∆hin[j]−∆v[j]

= max(∆F [j − 1], α) + ∆v[j − 1] + β −∆hin[j]−∆v[j]

= max(∆F [j − 1], α) + ∆v[j − 1] + ∆H[j]−∆v[j]

= ∆v[j − 1]−∆v[j] + ∆H[j] + max(∆F [j − 1], α)

Theorem D.2.4. ∀j > 0, the ∆v[j] values can be computed by the following recur-

rence:

∆v[1] = max
(
∆v[0] + α + ∆H[1], LB[1]

)

∆v
∀j>1

[j] = max



LB[j]

j−1
max
i=1

(
LB[i] + α +

j∑
k=i+1

∆H[k]

)
∆v[0] + α + ∆H[1] + ∆H[2]

+ . . .+ ∆H[j − 1] + ∆H[j]

(D.5)
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Proof. By induction on j.

Base case (j = 1): This is established by equation D.4 following Theorem D.2.1

because ∆F [0] = Fi,0 − Si,0 = α.

Induction step: Assume that the recurrence is true for all indices up to j−1, i.e.:

∆v[j − 1] = max



LB[j − 1]

j−2
max
i=1

(
LB[i] + α +

j−1∑
k=i+1

∆H[k]

)
∆v[0] + α + ∆H[1] + ∆H[2]

+ . . .+ ∆H[j − 1]

Note in particular that in the latter two alternatives, Si,j−1 comes from a hori-

zontal gap. That means that Si,j−1 was set equal to Fi,j−1, and in particular, that

∆F [j − 1] = 0. Substituting the formula above into equation D.4, produces

∆v[j] = max



LB[j]

LB[j − 1] +max(∆F [j − 1], α) + ∆H[j]

j−2
max
i=1

(
LB[i] + α +

j−1∑
k=i+1

∆H[k]

)
+max(∆F [j − 1], α) + ∆H[j]

∆v[0] + α + ∆H[1] + ∆H[2] + . . .+ ∆H[j − 1]

+max(∆F [j − 1], α) + ∆H[j]

In the second alternative, the maximum score, Si,j, comes from a gap which starts

in column j − 1 and derives from the score Si,j−1 which derives from a score in the

preceding row (hence the term LB[j−1]). In this event, Si,j−1+α+β ≥ Fi,j−1+β else

the gap would have started further to the left. Then α ≥ Fi,j−1−Si,j−1 ≥ ∆F [j− 1]
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and so max(∆F [j − 1], α) = α.

In each of the cases in the third and fourth alternatives, the maximum score, Si,j,

extends a gap which was also chosen as the best score for column j − 1. As stated

above, for these gaps, F [j − 1] = 0, and so max(∆F [j − 1], α) = 0.

Replacing the term max(∆F [j− 1], α) with α in the second alternative and with

0 in the third and fourth alternatives yields

∆v[j] = max



LB[j]

LB[j − 1] + α + ∆H[j]

j−2
max
i=1

(
LB[i] + α +

j−1∑
k=i+1

∆H[k]

)
+ ∆H[j]

∆v[0] + α + ∆H[1] + ∆H[2] + . . .+ ∆H[j − 1]

+∆H[j]

= max



LB[j]

j−1
max
i=1

(
LB[i] + α +

j∑
k=i+1

∆H[k]

)
∆v[0] + α + ∆H[1] + ∆H[2]

+ . . .+ ∆H[j − 1] + ∆H[j]

Theorem D.2.5. ∀j ∈ {1, . . . , n},∀k ∈ {0, . . . , log2 j}, partial sums of length 2k,

PS[j, k] = ∆Hin[j − 2k + 1] + ∆Hin[j − 2k + 2] + . . . + ∆H[j] can be computed in

dlog2 ne rounds in O(n log n) time.

Proof. See proof in Appendix A, Theorem 6.4.

Theorem D.2.6. ∀j ∈ {1, . . . , n}, the ∆v[j] can be computed in

dlog2(n)e + 1 rounds in O(n log n) time if ∀j ∈ {1, . . . , n}, ∀k ∈ {0, . . . , log2 j} the

partial sums PS[k, j] are available.

Proof. By induction on round k. Let V HG[j] be a lower bound for the value of ∆v[j]

obtained through a horizontal gap. V HG[j] is updated at each round and gives us

∆v[j] after the final round which selects the maximum of V HG[j] and LB[j].
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We define V HG[j] during round k = 0 · · · log2 j by

for k = 0:

for j = 1 :

V HG[1] = ∆v[0] + α + ∆H[1] (D.6)

∀j > 1 :

V HG[j] = LB[j − 1] + α + ∆H[j] (D.7)

for k > 0:

∀j > 2k−1 :

V HG[j] = max


V HG[j]

V HG[j − 2k−1] + ∆H[j − 2k−1 + 1] + . . .+ ∆H[j]

= V HG[j − 2k−1] + PS[j, k − 1]

(D.8)

Consider the expansion of Equation (D.5):

∆v
∀j≥1

[j] = max



LB[j]

LB[j − 1] + α + ∆H[j]

LB[j − 2] + α + ∆H[j − 1] + ∆H[j]
...

LB[1] + α + ∆H[2] + ∆H[3] + · · ·+ ∆H[j]

∆v[0] + α + ∆H[1] + ∆H[2]

+ . . .+ ∆H[j − 1] + ∆H[j]

(D.9)

We show that after round k, for all j, V HG[j] is the maximum of the second

through the 2k + 1 alternatives in Equation (D.9).

Base case: Round 0 computes
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V HG[1] = ∆v[0] + α + ∆H[1]

∀j > 1, V HG[j] = LB[j − 1] + α + ∆H[j]. (D.10)

Equation (D.10) computes the second (= 20 + 1) alternative in Equation (D.9).

For the induction step, assume that after round k − 1, for 0 ≤ k − 1 < dlog2(n)e
, V HG[j] is the maximum of the second through 2k−1 + 1 alternatives in Equa-

tion (D.9). That is:

V HG[j]
∀j>1

= max



LB[j − 1] + α + ∆H[j]

LB[j − 2] + α + ∆H[j − 1]

+∆H[j]
...

LB[j − 2k−1 + 1] + α + ∆H[j − 2k−1 + 2]

+ . . .+ ∆H[j − 1] + ∆H[j]

(D.11)

Note specifically that V HG[j−2k−1] is the maximum of its second through 2k−1+1

alternatives, for j − 2k−1 > 1:

V HG[j − 2k−1]
∀j|(j−2k−1)>1

= max



LB[j − 2k−1 − 1] + α + ∆H[j − 2k−1]

LB[j − 2k−1 − 2] + α + ∆H[j − 2k−1 − 1]

+∆H[j − 2k]
...

LB[j − 2k−1 − 2k−1 + 1] + α

+∆H[j − 2k−1 − 2k−1 + 2]

+ . . .+ ∆H[j − 2k−1 − 1]

+∆H[j − 2k−1]

(D.12)

Then, round k computes:



124

∀j > 2k−1 : (D.13)

V HG[j] = max


V HG[j]

V HG[j − 2k−1] + ∆H[j − 2k−1 + 1] + . . .+ ∆H[j]

= V HG[j − 2k−1] + PS[j, k − 1]

(D.14)

Round k, Equation (D.8), in effect adds the sum of the 2k−1 terms ∆H[j −
2k−1 + 1] + ∆H[j − 2k−1 + 2] + . . . + ∆Hin[j] = PS[j, k − 1] to every alternative

in Equation (D.12). The maximum calculation in Equation (D.8) is computed over

these 2k−1 alternatives as well as the 2k−1 alternatives from Equation (D.11). This

leaves 2k alternatives and these are exactly the second through 2k + 1 alternatives

in Equation (D.5). At the end of round i = dlog2(n)e, all V HG are equal to the

maximum of their second through 2dlog2(n)e + 1 ≥ n + 1 terms in Equation (D.5).

Since ∆v[n] only has n+ 1 terms, with a single additional maximization to set

V HG[j] = max
(
LB[j], V HG[j]

)
,∀j > 0,

V HG[j] will be exactly ∆v[j] as computed in Equation D.5.

If the partial sums, PS[j, k] for the ∆H terms are available, then each round has

at most one addition and one maximum operation per index j, except the final round

which has one additional maximum operation, so the total number of operations per

round is linear in n and the total time is O(n log n).

Theorem D.2.7. ∀j ∈ {1, . . . , n}, ∆Hout[j] can be computed in O(n) time, given

∆H[j] and ∆v[j] for all j.

Proof. From the definitions,
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∆Hout[j] = β −∆hout[j]

= β − Si,j + Si,j−1

= β − Si,j + Si−1,j − Si−1,j + Si,j−1

= β −∆v[j]− Si−1,j + Si,j−1

= β −∆v[j]− Si−1,j + Si−1,j−1 − Si−1,j−1 + Si,j−1

= β −∆v[j]−∆hin[j] + ∆v[j − 1]

= ∆H[j]−∆v[j] + ∆v[j − 1]

So

∆Hout[j] = ∆H[j]−∆v[j] + ∆v[j − 1]. (D.15)

Since we have all values ∆H[j] and ∆v[j], the ∆Hout[j] can be computed immediately.

These computations are done for each j ∈ [1, . . . , n], resulting in O(n) time.

For a fixed letter x, define SB[j] = subst(x, yj)− beta

Theorem D.2.8. ∀j ∈ {1, . . . , n}, ∆V [j] and ∆Hout[j] can be computed in dn/W e∗(
dlog2W e+ 2

)
rounds and O ((n ∗ logW )/W )) time, where W is the number of ∆V

values held in a computer word of length w.

Proof. Unlike previous proofs, this one will be illustrated using pseudocode. An

array of words, denoted V val, holds the ∆V [j] values and are numbered from 0

(containing the lowest j indices) to dn/W e − 1 (denoted V val0, V val1, etc.). Each

word holds W values, indexed from 0 to W − 1, and each value occupies w/W bits.

Similar arrays, denoted Eval, Hval, SBval, and PSval, hold the ∆E, ∆H, SB,

and partial sum values, PS, respectively. An array named allalpha has α as it’s value

at every location. The V val words are processed in order starting with word 0.

Each word is processed independently in dlog2W e + 1 rounds and the values are

determined as described in Theorems D.2.6 and D.2.5. For the V val it suffices to

show that 1) within a single word, the number of operations is linear in the number

of rounds and 2) information can be efficiently transferred from one word to the

next. Below we show how V val0 and V val1 are processed. The remaining words are

processed similarly to V val1. The ∆Hout[j], stored in the Hval, and ∆Eout[j] are

computed by a small set of instructions for each word, also shown below. We assume
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that preprocessing before computing row 1 initializes arrays Hval, PSval, Eval, and

SBval as follows:

for k = 0 to n/W

for h = 0 to W − 1

Hvalk[h] = ∆Hin[k ∗W + h+ 1]

SBvalk[h] = SB[k ∗W + h+ 1]

PSvalk = ∆Hvalk

Evalk = α + β

V val0: Round 0. This round computes the first alternative, LB from Theo-

rem D.2.4, Equation (D.5) for j = 0 . . .W .

SBval0[0] = max(∆V [0], SBval0[0])

DV bar0 = SBval0 +Hval0

DV bar0 = max(Eval0, DV bar0)

The re-initialization of SBval0[0] assures that if ∆v[0] = 0 to exclude an initial

gap penalty, then the corresponding ∆V value (∆V [0] = −G) is used if it is larger

than SB[0].

V val0: Round 1. This round computes the second alternative from Theorem D.2.4,

Equation (D.5) for j = 1 . . .W .

Shifted = (DV bar0 << 8)

V val0 = Shifted+ allalpha +Hval0

The values in DV bar0 are shifted 8 bits higher (1 byte) to put the j − 1 value in the

j position. Each addition of the W values stored in Shifted, allalpha, and Hval0 is

done simultaneously as one operation. This is possible if the number of bits for each

value is large enough to prevent overflow into the next value or, as we have done,

by using an SIMD “addition with saturation” instruction which restricts each add

to a single byte and, in the case of an overflow, stores the maximum (or minimum)
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possible value.

V val0: Rounds i = 2, . . . , logW . These rounds compute the remaining alter-

natives from Theorem D.2.4, Equation (D.5), following the method presented in

Theorem D.2.6.

ShiftV val = V val0 << (2i−1 ∗ 8)

ShiftV val = ShiftV val OR (allalpha >> 2k−i ∗ 8)

Sum = ShiftV val + PSval0

V val0 = max(V val0, Sum)

ShiftPS = PSval0 << (2i−1 ∗ 8)

PSval0 = PSval0 + ShiftPS

The first, third, and fourth instructions are the max() calculation of Theorem D.2.6,

Equation (D.8). The second instruction is to ensure that the values at the beginning

of the word aren’t affected by the max calculations. The values at the beginning of

the word should not be changing, since the values that we wish to compare are the

ones that are being shifted over, and we don’t want to compare the zeros that we are

shifting in to anything. The max() calculation can be performed with a single SIMD

instruction. ShiftV val is the ∆V value in the second alternative of Equation (D.8)

and the addition of ShiftV val and PSval0 is the computation of the sum in the

second alternative. Note the shift is multiplied by 8 because we are using one byte

to store each value. The last two instructions prepare the partial sums variable for

the next round using the partial sums calculation of Theorem D.2.5.

V val0: Round logW + 1. This round computes the maximum of 1) the first

alternative, LB, from Theorem D.2.4, Equation (D.5) and 2) the maximum of the

remaining alternatives, calculated above. Before computing the max of 1) and 2), 2)

is saved as DV Lmax in order to allow carrying over into the next word.

V val1: Round 0 is identical to the one for V val0 except the re-initialization of

SBval1[0] is not done:

DV bar0 = SBval0 +Hval0

DV bar0 = max(Eval0, DV bar0)

V val1: Rounds 1 . . . logW + 1 are identical to the ones for V val0, however there
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is an added step between round logW and round logW + 1.

for j in 0 . . .W :

Carry[j] = DV Lmax[W − 1]

Sum = Carry + PSval1

V val1 = max(Sum, V val1)

Since the computation for V val0 is already complete, V val0[W − 1] contains its final

value, ∆V [W ]. This allows the computations of Theorem D.2.4 Equation D.5 all the

way back to ∆v[0] to be done with a single computation rather than re-computing

each alternative.

For the ∆Hout[j], the Hval variables are now used to hold the ∆Hout[j] (which

are used subsequently as the ∆Hin[j] for the next row). We compute them for a

generic word Hvalk with the following instructions:

Hvalk = Hvalk − V valk
ShiftV val = V valk << (1 ∗ 8) [i.e., one byte]

ShiftV val[0] = V valk−1[W − 1]

Hvalk = Hvalk + ShiftV valk

(D.16)

The first instruction computes the subtraction of ∆H[j] and ∆v[j] as shown in

Theorem D.2.7 Equation (D.15). The second and third instructions shift the ∆V [j]

values up by one in preparation for the addition of ∆v[j − 1] in Theorem D.2.7

Equation (D.15), which is performed by the fourth instruction. Note that since V valk

is shifted up by one value, the last value from the previous word, V valk−1[W − 1], is

inserted at the beginning.

There are dn/W e− 1 words holding the ∆V [j] values and each word is processed

for dlog2W e + 1 rounds using a fixed number of operations per round. There are

dn/W e − 1 words holding the ∆Hout[j] values and each word is computed with a

fixed number of operations. The total time is therefore O (n logW/W )).
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Appendix E

Proofs on SIMD Tandem Alignment

E.1 Preliminaries

Consider the global Wraparound Dynamic Programming algorithm (WDP) for tan-

dem alignment of a pattern sequence of length n against a text of length m.

Definitions

Σ is the alphabet of characters over which the alignment is performed. G is the

gap penalty. subst is a table of substitution scores where subst(a, b) > 2G is the

substitution score from a to b with a, b ∈ Σ. W is the dynamic programming scoring

matrix for the wraparound dynamic programming algorithm.

Recursion: Initialize row zero (1 ≤ j ≤ n):

S[0, 0] = 0

S[0, j] = S[0, 0] + j ·G

Initialize column zero (1 ≤ i ≤ m):

S[i, 0] = S[0, 0] + j ·G

First pass (i ≥ 1, j ≥ 1):
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S[i, j] =





S[i− 1, 0] + subst(ai, bj) \\diagonal

S[i− 1, n] + subst(ai, bj) \\wraparound diagonal

S[i, 0] +G \\from left

S[i− 1, 1] +G \\from above

if j = 1
S[i− 1, j − 1] + subst(ai, bj) \\diagonal

S[i, j − 1] +G \\from left

S[i− 1, j] +G \\from above

if j > 1

(E.1)

Second pass (i ≥ 1, 1 ≤ j < n):

S[i, j] = max


S[i, j]
S[i, n] +G if j = 1

S[i, j − 1] +G if j > 1

(E.2)

Definition 3. We define two sets of horizontal and vertical differences for a given

row i, one based on W after the first pass and one based on W after the second pass.

For row 0, for all j, two sets of horizontal differences:

∆h1[0, j] = ∆h2[0, j] = G

For row i > 0, two sets of vertical and horizontal differences:

After the first pass:
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∆v1[i, j] = S[i, j]− S[i− 1, j]

∆h1[i, j] = S[i, j]− S[i, j − 1]

∆V1[i, j] = ∆v1[i, j]−G
∆H1[i, j] = G−∆h1[i, j]

After the second pass:

∆v2[i, j] = S[i, j]− S[i− 1, j]

∆h2[i, j] = S[i, j]− S[i, j − 1]

∆V2[i, j] = ∆v2[i, j]−G

∆H2[i, j] = G−∆h2[i, j]

Sums

Definition 4. For a row i > 0, SPSi (Second Pass Sum) is the sum of the ∆h2

values in row i− 1 (the previous row) for j = 2 . . . n, i.e. SPSi =
n∑
j=2

∆h2[i− 1, j] =

S[i− 1, n]− S[i− 1, 1].

Lemma E.1.1. In row i > 0, given the values ∆v1[i, 1], ∆v1[i, n], and SPSi,

∆v2[i, 1] can be calculated as

∆v2[i, 1] = max(∆v1[i, 1], SPSi + ∆v1[i, n] +G).

Proof. In row i, SPSi = S[i − 1, n] − S[i − 1, 1]. After the first pass , ∆v1[i, 1] =

S[i, 1]− S[i− 1, 1], and ∆v1[i, n] = S[i, n]− S[i− 1, n]. In the second pass, S[i, 1] =

max(S[i, 1], S[i, n] +G). Thus, ∆v2[i, 1] = max(S[i, 1], S[i, n] +G)− S[i− 1, 1].
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∆v2[i, 1] = max(S[i, 1], S[i, n] +G)− S[i− 1, 1]

= max(S[i, 1]− S[i− 1, 1], S[i, n] +G− S[i− 1, 1])

= max(∆v1[i, 1], S[i, n] +G− S[i− 1, 1])

= max(∆v1[i, 1], S[i, n]− S[i− 1, n] + S[i− 1, n] +G− S[i− 1, 1])

= max(∆v1[i, 1], S[i, n]− S[i− 1, n] +G+ S[i− 1, n]− S[i− 1, 1])

= max(∆v1[i, 1],∆v1[i, n] +G+ S[i− 1, n]− S[i− 1, 1])

= max(∆v1[i, 1],∆v1[i, n] +G+ SPSi)

Lemma E.1.2. In row i > 0, given the values ∆v2[i, 1] and ∆v2[i, n], SPSi+1 for

row i+ 1 can be calculated as

SPSi+1 = SPSi + ∆v2[i, n]−∆v2[i, 1].

Proof. In row i, SPSi = S[i− 1, n]− S[i− 1, 1] and in row i+ 1 SPSi+1 = S[i, n]−
S[i, 1]. After the second pass S[i, 1] = S[i−1, 1]+∆v2[i, 1] and S[i, n] = S[i−1, n]+

∆v2[i, n]. Thus,

SPSi+1 = S[i, n]− S[i, 1]

= S[i− 1, n] + ∆v2[i, n]− (S[i− 1, 1] + ∆v2[i, 1])

= S[i− 1, n]− S[i− 1, 1] + ∆v2[i, n]−∆v2[i, 1]

= SPSi + ∆v2[i, n]−∆v2[i, 1]
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Lemma E.1.3. ∆v1[i, 1] can be computed as:

∆v1[i, 1] = max


SPSi + subst(ai, b1) \\diagonal wraparound

substitution

subst(ai, b1)−∆h2[i− 1, 1] \\diagonal substitution

G \\vertical gap

Proof. By the definition,

∆v1[i, 1] = S[i, 1]− S[i− 1, 1]

Note that S[i, 1] = max(S[i − 1, 1] + G,S[i − 1, 0] + subst(ai, b1), S[i − 1, n] +

subst(ai, b1))

Suppose S[i, 1] = S[i− 1,1] + G. Then S[i, 1]− S[i− 1, 1] = S[i− 1, 1] + G−
S[i− 1, 1] = G.

Suppose S[i, 1] = S[i−1,0]+subst(ai, b1). S[i−1, 0] = S[i−1, 1]−∆h2[i−1, 1],

so

S[i, 1]− S[i− 1, 1]

= S[i− 1, 0] + subst(ai, b1)− S[i− 1, 1]

= S[i− 1, 1]−∆h2[i− 1, 1] + subst(ai, b1)− S[i− 1, 1]

= −∆h2[i− 1, 1] + subst(ai, b1)

Suppose S[i, 1] = S[i− 1, n] + subst(ai, b1). Since S[i − 1, n] − S[i − 1, 1] is

exactly SPSi,

S[i, 1]− S[i− 1, 1]

= S[i− 1, n] + subst(ai, b1)− S[i− 1, 1]

= SPSi + subst(ai, b1)

Hence,
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∆v1[i, 1] = max


SPSi + subst(ai, b1)

subst(ai, b1)−∆h2[i− 1, 1]

G

Definition 5. M = max
a,b∈Σ

(subst(a, b))

Theorem E.1.4. For all i > 0,

• SPSi ≤ −G

• G ≤ ∆v1[i, 1] ≤M −G

• G ≤ ∆v2[i, 1] ≤M −G.

Proof. By induction.

Base case:

SPS1 : At row 1, SPS1 is (n− 1) ·G. Since G < 0, SPS1 < 0 ≤ −G.

∆v1 : In row 1, ∆h2[0, j] = G for all j due to the initialization. From Lemma

E.1.3,

∆v1[1, 1] = max


SPS1 + subst(a1, b1)

subst(a1, b1)−∆h2[1− 1, 1]

G

Since SPS1 < −G = −∆h2[0, 1], the middle term is larger than the first term,

so ∆v1[1, 1] = max(subst(a1, b1)−G,G). The maximum value of subst(a1, b1) is M ,

so G ≤ ∆v1[1, 1] ≤M −G.

∆v2[1,1] : By Lemma E.1.1, ∆v2[1, 1] = max(∆v1[1, 1], SPS1 + ∆v1[1, n] + G).

Note that ∆v2[1, 1] ≥ ∆v1[1, 1] so ∆v2[1, 1] ≥ G

If ∆v2[1, 1] = ∆v1[1, 1], then G ≤ ∆v2[1, 1] ≤M −G.

Suppose instead that ∆v2[1, 1] = SPS1 + ∆v1[1, n] +G, then
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∆v2[1, 1] ≤ −G+ ∆v1[1, n] +G

∆v2[1, 1] ≤ ∆v1[1, n]

By Theorem 6.1 of Appendix A of Affine Gap Paper, 0 ≤ ∆V1[1, n] ≤ M − 2G

which implies that G ≤ ∆v1[1, n] ≤M −G. Thus, ∆v2[1, 1] ≤M −G
Hence, G ≤ ∆v2[1, 1] ≤M −G.

Induction step: We assume that SPSi ≤ −G, G ≤ ∆v1[i, 1] ≤ M − G, and

G ≤ ∆v2[i, 1] ≤M −G for all i up to k − 1. We have three conditions to prove:

Condition 1: SPSk ≤ −G:

We know that after the second pass in row k − 1,

S[k − 1, 1] = max(S[k − 1, 1], S[k − 1, n] +G)

⇒ S[k − 1, 1] ≥ S[k − 1, n] +G.

SPSk = S[k−1, n]−S[k−1, 1], so SPSk ≤ S[k−1, n]−(S[k−1, n]+G)⇒ SPSk ≤
−G.

Condition 2: G ≤ ∆v1[k, 1] ≤M −G From Lemma E.1.3,

∆v1[k, 1] = max


SPSk + subst(ai, bn)

subst(ak, b1)−∆h2[k − 1, 1]

G

we know that ∆v1[k, 1] ≥ G.

Consider SPSk + subst(ak, bn). SPSi ≤ −G and subst(ak, bn) ≤ M , so SPSk +

subst(ak, bn) ≤M −G. Similarly, because ∆h2[k−1, 1] ≥ G, subst(ak, b1)−∆h2[k−
1, 1] ≤M −G.

Hence, G ≤ ∆v1[k, 1] ≤M −G.

Condition 3: G ≤ ∆v2[k, 1] ≤M −G
By Lemma E.1.1, ∆v2[k, 1] = max(∆v1[k, 1], SPSk + ∆v1[k, n] + G). Note that

∆v2[k, 1] ≥ ∆v1[k, 1] so ∆v2[k, 1] ≥ G.
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If ∆v2[k, 1] = ∆v1[k, 1], then G ≤ ∆v2[k, 1] ≤M −G.

Suppose instead that ∆v2[k, 1] = SPSk + ∆v1[k, n] +G, then

∆v2[k, 1] ≤ −G+ ∆v1[k, n] +G

∆v2[k, 1] ≤ ∆v1[k, n]

By Theorem 6.1 of Appendix A of Affine Gap Paper, 0 ≤ ∆V1[k, n] ≤ M − 2G

which implies that G ≤ ∆v1[k, n] ≤M −G. Thus, ∆v2[k, 1] ≤M −G
Hence, G ≤ ∆v2[k, 1] ≤M −G.

Lemma E.1.5. 0 ≤ ∆V1[i, 1] ≤M − 2G and 0 ≤ ∆V2[i, 1] ≤M − 2G

Proof. From Theorem E.1.4, G ≤ ∆v1[i, 1] ≤ M − G and G ≤ ∆v2[i, 1] ≤ M − G.

Subtracting G from both sides of each equation gives us exactly

0 ≤ ∆V1[i, 1] ≤M − 2G

and

0 ≤ ∆v2[i, 1] ≤M − 2G.

Lemma E.1.6. ∀j ∈ {1, . . . , n},∀i ∈ {0, . . . , log2 j}, partial sums of length 2i,

PS1[j, i] = ∆H1[j − 2i + 1] + ∆H1[j − 2i + 2] + . . .+ ∆H1[j]

and

PS2[j, i] = ∆H2[j − 2i + 1] + ∆H2[j − 2i + 2] + . . .+ ∆H2[j]

can each be computed in dlog2 ne rounds in O(n log n) time.

Proof. See proof of Theorem B.0.11.

Theorem E.1.7. ∀j ∈ {2, . . . , n}, ∆V1[i, j] can be computed in dlog2(n)e+ 1 rounds

in O(n/W logW ) time if ∀j ∈ {1, . . . , n},∀i ∈ {0, . . . , log2 j} the partial sums

PS2[i, j] are available.
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Proof. By Lemma 6.3, ∆v1[i, 1] can be computed in constant operations. Given

∆H2 values of row i − 1, ∆V1[j] of row i where j > 1 can be computed exactly as

in Theorem B.0.12, in O(n/W logW ) time. Hence, ∆v1[i, j] can be computed in

O(n/W logW ) time.

Theorem E.1.8. ∀j ∈ {2, . . . , n}, ∆V2[j] can be computed in dlog2(n)e + 1 rounds

in O(n log n) time if ∀j ∈ {1, . . . , n},∀i ∈ {0, . . . , log2 j} the partial sums PS1[i, j]

are available.

Proof. By Lemma 6.1, ∆v2[i, 1] can be computed in constant operations. Given ∆H1

values of row i, ∆V2[j] of row i where j > 1 can be computed exactly as in Theorem

B.0.12, in O(n/W logW ) time. Hence, ∆v2[i, j] can be computed in O(n/W logW )

time.

Theorem E.1.9. ∀j ∈ {1, . . . , n}, ∆V1[j], ∆H1[j], ∆V2[j], and ∆H2[j] can be com-

puted in time O (n logW/W )), where W is the number of ∆V values held in a word

of length w.

Proof. Note that ∆V1 and ∆H1 and ∆V2 and ∆H2 can be computed in a manner

analogous to ∆V and ∆Hout of Theorem B.0.13. This results in ∼ 2 times the work,

for time O(2n logW/W )⇒ O(n logW/W ).
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[31] Hyyrö, H. and Navarro, G. (2006). Bit-parallel computation of local similarity score
matrices with unitary weights. Int. J. Found. Comput. Sci., 17(6), 1325–1344.
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