
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2019

Design of secure and trustworthy

system-on-chip architectures using

hardware-based root-of-trust techniques

https://hdl.handle.net/2144/36148

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

DESIGN OF SECURE AND TRUSTWORTHY

SYSTEM-ON-CHIP ARCHITECTURES USING

HARDWARE-BASED ROOT-OF-TRUST TECHNIQUES

by

LAKE BU

B.S., Wuhan University, 2006
M.S., Boston University, 2008

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2019

© 2019 by
LAKE BU
All rights reserved

Approved by

First Reader

Michel A. Kinsy, PhD
Assistant Professor of Electrical and Computer Engineering

Second Reader

Mark G. Karpovsky, PhD
Professor of Electrical and Computer Engineering

Third Reader

Ari Trachtenberg, PhD
Professor of Electrical and Computer Engineering
Professor of Systems Engineering

Fourth Reader

Qiaoyan Yu, PhD
Assistant Professor of Electrical and Computer Engineering
University of New Hampshire

The LORD is my shepherd; I shall not want.
He makes me lie down in green pastures. He leads me beside still waters.
He restores my soul. He leads me in paths of righteousness for his name’s
sake.

– Psalm 23:1-3

iv

Acknowledgments

First, I would like to sincerely thank my PhD advisor Michel A. Kinsy. Professor

Kinsy sets up a role model for me in academic area with his tireless and hardworking

attitude. He always encourages me to work for excellence in every detail. He also sets

up a good example in faithfully doing everything that needs to be done, no matter

if he likes it or not. Professor Kinsy cares a lot about me and my family in many

aspects, such as giving me advices in family life and inviting my family to his home.

Although he is strict in research as a professor, he is also always ready to help as a

great mentor. I can never forget the evening which was his birthday, but professor

Kinsy stayed late with me to help me with my defense preparation. Sincerely, I have

been so blessed to be his student and mentored by him. If I can choose again, I would

still choose to be his student.

Second, I want to sincerely thank professor Mark G. Karpovsky, who supervised

me from 2014-2016 as my academic advisor. Professor Karpovsky guided me into

the research field and taught me abundant knowledge on coding theory, which later

became the most important mathematical tool in my PhD research. He sets up a great

example for me by working with me together to solve each problem on scratch papers

and white boards, even on his birthday. Professor Karpovsky has great insights in his

field and always provided me with valuable advices in both the research perspectives

and detailed problem solving. He is also very caring to my personal career and always

supports me unconditionally.

Then, I would like to mention that my lab mates, Rashmi Agrawal, Mihailo Isakov,

Novak Boskov, Alan Ehret, Miguel Mark, Shanshan Wang, and Sahan Bandara, who

offered me great help during my thesis writing and defense rehearsal by spending a

great amount of time in listening to my practice and proofreading my thesis draft.

Finally, I want to dedicate this thesis to my dear family. They have provided

v

precious support during my thesis writing and defense preparation. My parents (Jun

Fan and Jinfeng Lei) took care of house chores and gave wholehearted love to my wife

Rachel, my son Eli, and me. Without them I will not be able to finish my last year

of PhD.

My wife Rachel always supported me with her full understanding and encourage-

ment when I had to go home late or even stay up for the whole night in the lab. She

is such a great wife that always offers her unconditional and sacrificial love to me. It

is my greatest blessing to spend the rest of my life with her.

Lake Bu

PhD student

ECE Department of Boston University

vi

DESIGN OF SECURE AND TRUSTWORTHY

SYSTEM-ON-CHIP ARCHITECTURES USING

HARDWARE-BASED ROOT-OF-TRUST TECHNIQUES

LAKE BU

Boston University, College of Engineering, 2019

Major Professor: Michel A. Kinsy, PhD
Assistant Professor of Electrical and Computer
Engineering

ABSTRACT

Cyber-security is now a critical concern in a wide range of embedded computing

modules, communications systems, and connected devices. These devices are used

in medical electronics, automotive systems, power grid systems, robotics, and avion-

ics. The general consensus today is that conventional approaches and software-only

schemes are not sufficient to provide desired security protections and trustworthiness.

Comprehensive hardware-software security solutions so far have remained elusive.

One major challenge is that in current system-on-chip (SoCs) designs, processing

elements (PEs) and executable codes with varying levels of trust, are all integrated

on the same computing platform to share resources. This interdependency of modules

creates a fertile attack ground and represents the Achilles’ heel of heterogeneous SoC

architectures.

The salient research question addressed in this dissertation is “can one design a

secure computer system out of non-secure or untrusted computing IP components and

cores?”. In response to this question, we establish a generalized, user/designer-centric

vii

set of design principles which intend to advance the construction of secure heteroge-

neous multicore computing systems. We develop algorithms, models of computation,

and hardware security primitives to integrate secure and non-secure processing ele-

ments into the same chip design while aiming for: (a) maintaining individual core’s

security; (b) preventing data leakage and corruption; (c) promoting data and resource

sharing among the cores; and (d) tolerating malicious behaviors from untrusted pro-

cessing elements and software applications.

The key contributions of this thesis are:

1. The introduction of a new architectural model for integrating processing ele-

ments with different security and trust levels, i.e., secure and non-secure cores

with trusted and untrusted provenances;

2. A generalized process isolation design methodology for the new architecture

model that covers both the software and hardware layers to (i) create hardware-

assisted virtual logical zones, and (ii) perform both static and runtime security,

privilege level and trust authentication checks;

3. A set of secure protocols and hardware root-of-trust (RoT) primitives to support

the process isolation design and to provide the following functionalities: (i)

hardware immutable identities – using physical unclonable functions, (ii) core

hijacking and impersonation resistance – through a blind signature scheme,

(iii) threshold-based data access control – with a robust and adaptive secure

secret sharing algorithm, (iv) privacy-preserving authorization verification –

by proposing a group anonymous authentication algorithm, and (v) denial of

resource or denial of service attack avoidance – by developing an interconnect

network routing algorithm and a memory access mechanism according to user-

defined security policies.

4. An evaluation of the security of the proposed hardware primitives in the post-

viii

quantum era, and possible extensions and algorithmic modifications for their

post-quantum resistance.

In this dissertation, we advance the practicality of secure-by-construction method-

ologies in SoC architecture design. The methodology allows for the use of unsecured

or untrusted processing elements in the construction of these secure architectures and

tries to extend their effectiveness into the post-quantum computing era.

ix

Contents

1 Introduction 1

1.1 Security Challenges in Current SoCs and Distributed Systems 3

1.1.1 Trust Issues in the Supply Chain 3

1.1.2 Insufficient Security by Software-only Protections 4

1.1.3 Introduction of General-Purpose Quantum Computers 6

1.2 Thesis Contributions . 9

1.3 Thesis Outline and Chapter Summaries 12

2 Generalized Framework for Designing Secure SoC Architectures from
Untrusted Components 19

2.1 Introduction . 19

2.1.1 Security Problems . 20

2.1.2 Threat Models . 20

2.1.3 Overview of the Chapter . 23

2.2 Related Work . 24

2.3 Security Policy . 25

2.3.1 Process Isolation via Hardware Virtualization 25

2.3.2 Enhanced Programmable Memory Access Management 28

2.4 Security Mechanisms: Distributed Island Key Management Approach 31

2.5 Untrusted Processing Element Resistance and Privacy Preservation . 34

2.5.1 Dishonest Requesting Nodes Resistance — Tailored Access Code

(AC) Fetching . 35

x

2.5.2 Dishonest Sponsor Tolerance—Threshold Join Authorization . 37

2.5.3 Threshold Join Authorization with Cheater Tolerance 40

2.5.4 Invisible Island Join . 46

2.5.5 Group Anonymous Authentication Protocol 48

2.6 Architecture Support . 59

2.6.1 Hardware Implementation of the Network Interface 60

2.6.2 Communication Protocol . 61

2.6.3 Trust-Aware On-Chip Routing Algorithm 62

2.6.4 Illustrative Example . 63

2.7 Conclusion . 65

3 Hardware Root-of-Trust Security Primitives 67

3.1 Introduction . 67

3.1.1 PUFs Using Explicitly-introduced Randomness 69

3.1.2 PUFs Using Intrinsic Randomness 70

3.1.3 Strong and Weak PUFs . 71

3.1.4 PUF Modeling and Secure PUFs 71

3.1.5 PUF Implementation Challenges 72

3.2 The Architectures of Delay-based PUFs 74

3.2.1 Delay PUFs . 74

3.3 Implementation Problems and Solutions 77

3.3.1 Handling Design Rule Violations 78

3.3.2 Preventing Logic Trim . 80

3.4 RO PUF: Design of the Stopwatch 81

3.4.1 The Comparison Timing with the Synchronous Stopwatch . . 82

3.4.2 The Asynchronous Stopwatch 83

xi

3.5 Fixed Placement, Pin, and Relative Routing for PUF Implementation

in Vivado . 85

3.6 Multi-identity PUF (Mi-PUF) . 94

3.6.1 Authentication Protocol of Mi-PUF 95

3.6.2 Design and Implementation of Mi-PUF 96

3.6.3 ID Box . 96

3.6.4 Strict Avalanche Criterion Network 97

3.6.5 First Order Reed-Muller Encoder 98

3.7 Design and Implementation Evaluation 99

3.7.1 |CRP | and |RSP | Set Sizes 99

3.7.2 Uniformity . 100

3.7.3 Uniqueness . 101

3.8 Conclusion . 102

4 Towards Programmable All-Digital True Random Number Genera-
tors 104

4.1 Introduction . 104

4.2 Motivation and Preliminaries . 107

4.2.1 Possible Applications of the Proposed Design 107

4.2.2 Preliminaries of the Lorenz Chaotic Systems 109

4.3 The Proposed Programmable True Random Number Generator . . . 112

4.3.1 The SAC Network and Its Configuration of {α, β, γ} 114

4.3.2 Asynchronous STopwatch-controlled Ring Oscillator (ASTRO) 115

4.3.3 Lorenz Function Group . 116

4.3.4 QNTF Module . 117

4.3.5 BLD Module . 117

xii

4.4 The Physical Entropy Source: Asynchronous Stopwatch-controlled Ring

Oscillator (ASTRO) . 118

4.4.1 The ASTRO Architecture . 118

4.4.2 ASTRO FPGA Implementation 120

4.5 Programmability and Experiments 121

4.5.1 The Six Configurable Parameters 121

4.5.2 The High Throughput, High Quality, and Low Energy Cost

Working Modes of the Proposed TRNG 125

4.5.3 Cost-Performance Trade-off 125

4.5.4 Output Entropy and Seed Sensitivity 128

4.5.5 Comparisons with the Other Chaotic Map-based RNGs 130

4.5.6 Comparisons with the Other Types of RNGs 132

4.5.7 Comparisons with a Combination of Multiple Traditionally Op-

timized RNGs . 133

4.5.8 Comparisons with Other Ring Oscillators-based TRNGs . . . 135

4.6 Conclusion . 136

5 Quantum-resistant Extension of Hardware Primitives 137

5.1 Quantum-resistant Hardware Primitives Based on Ring-Learning with

Errors . 138

5.1.1 Primitive Algorithms . 140

5.1.2 Efficient and Secure Hardware Implementation of the Primitives144

5.1.3 Cost and Performance . 149

6 System Performance Evaluation of the Proposed Architectural Model155

7 Conclusions 161

References 163

xiii

Curriculum Vitae 175

xiv

List of Tables

3.1 |CRP | and |RSP | Comparison . 100

3.2 Uniqueness Evaluation . 102

4.1 Configurable Parameters of the TRNG 122

4.2 The NIST Scores of the Proposed TRNG under High Quality Mode

(LSB = 24, INIT = 32, N = 8, BLD = f) 126

4.3 Sensitivity Evaluation . 130

4.4 Statistical Comparison on p-values 132

4.5 Comparisons on Entropy, Throughput, and Energy/bit 133

4.6 Statistical Comparison on p-values 134

4.7 Comparisons with Conventionally Optimized RNGs 134

4.8 Comparisons with Other RO-based TRNGs 136

5.1 Correlation between {q, n} and Latency & Area for KeyGen, Enc and

Dec Modules . 152

5.2 Hardware Cost with different n and q=12289 153

5.3 Latency (cycles) for KeyGen, Enc and Dec Modules in PKC 154

6.1 FPGA implementation resource utilization. 156

6.2 FPGA power estimates using Xilinx Power Estimator (XPE). 156

xv

List of Figures

1·1 The global supply chain map from the Semiconductor Industry Asso-

ciation ((SIA), 2018). 2

1·2 New Trust and Assurance Approaches. Source: DoD (Lapedus, 2018). 4

1·3 Defense Advanced Research Projects Agency (DARPA): Brief to De-

fense Science Board (DSB) Task Force (May 2011). 5

1·4 NTRU says critical infrastructure “MUST be re-tooled when the threat

window opens” (Wilson, 2016). As more breakthroughs are achieved

in the past three years in the physical implementation of quantum

computers, the threat window may move even closer to us. 8

1·5 Projected qubit growth with different quantum computer mechanisms

(Quantum Computing Report, 2017). 9

1·6 Four virtual islands partitioning based on PEs’ dynamic security char-

acteristics: highly trusted, trusted, untrusted and unknown. 13

2·1 Nodes of different trust levels have their own local memory and cache. They

are connected by an on-chip router. 23

2·2 Trusted/untrusted applications running on trusted/untrusted cores.

Different trust levels are illustrated by different colors (e.g., red repre-

sents the least trusted program or core). 26

2·3 Illustrative case of ward groupings with associated ward table. 27

2·4 Hardware virtualization through highly trusted, trusted, untrusted

and unknown island partitioning. 28

xvi

2·5 Programmable enhanced access control at the node boundary through

the router network interface. 30

2·6 Access key managed memory zones. 30

2·7 The two forms of the join operation protocol. 33

2·8 (a) A temporary AC is dynamically generated and signed. (b) The AC now

becomes the signature and the proof of knowledge of the signed content, to

be verified by node j. 36

2·9 Node i has to collect at least t supportive sponsors to gain access to island v. 38

2·10 Stage 1 and 2 are sufficient if the number of actual cheaters cact = 0. If

cheating is detected by Stage 2, then Stage 3 with RS decoder is called

under the assumption of cest < n/3. If Stage 3 fails then Stage 4 with

group testing is able to identify n/3 ≤ cest ≤ n− t cheaters. If cact is even

beyond this scale, an extra invitation module can be introduced to resolve

the issue. 43

2·11 When node i makes an obfuscated request for j’s public key, anchor y

returns to i all the obfuscated public keys in its ward. The obfuscation

approach of those public keys by y is related to i’s request, in a way that

all the public keys are masked differently, and only j’s key can be recovered

by i. 47

2·12 A 4-step passcode blind-fetching protocol. With this protocol, each em-

ployee can only acquire his/her own passcode, and will remain completely

unaware of other codes. The manager also does not know the code selection

of the employees. 51

2·13 The IM functions as described in Protocol 2.5.4 step 4). 57

2·14 The element authentication module. 57

2·15 The verifier authentication module. 58

xvii

2·16 The proposed architectural model. A new Network Interface is the

key component of it. All of the security features of the system are

independent of the processing unit. 61

2·17 Group-forming example (Steps 1–4). 64

2·18 Group-forming example (Step 5–6). 64

2·19 Group-forming example (Step 7). 65

3·1 The circuit above produces 1 bit of PUF response. 72

3·2 The circuit above produces 1 bit of RO PUF response. To generate more

response bits, more RO groups and counters can be added. 75

3·3 The challenge vector determines whether the rising signal will reach the

DFF data port or the clock port. In the former case 1 will be the response,

and 0 will be the latter case. The circuit above produces 1 bit of PUF

response. To generate more response bits with the same challenge input,

more MUX chains can be added. 77

3·4 A ring oscillator consisting of 5 inverters (NOT gates). 78

3·5 The counter is driven by the combinational logic of RO. 79

3·6 A 5-stage RO is logically trimmed to a single NAND gate. 80

3·7 The RTL schematics (upper) of a 5-stage RO generated by Vivado synthesis,

and the technology schematics (lower) of the same RO instantiated by one

LUT2 as NAND, and four LUT1s, as inverters. 81

3·8 If Counter_0’s driving RO is faster than Counter_1’s, then its overflow pe-

riod is smaller. When the stopwatch fires the comparison signal, Counter_0

will have a larger reading than Counter_1. Thus a 1 bit response can be

generated by comparing the two readings. 82

xviii

3·9 If Counter_1’s RO is faster than Counter_0’s, then it has a smaller overflow

period. However, if the stopwatch’s period is larger than Counter_1’s, then

before the comparison signal is set, Counter_1 has already overflown. Then

when the comparison happens Counter_1 may have a smaller reading than

Counter_0, mistakenly indicating that Counter_0’s RO is faster. 83

3·10 RO_0’s counter’s period is 776.4 ms (left), and RO_1’s counter’s period is

782.5 ms (right). 84

3·11 If Counter_0 firstly reaches to MAX, then both counters stop and the

comparison is made. Vice versa for Counter_1’s case. 84

3·12 RO_0 on the left occupies only one slice, while the RO_1 on the right

takes two slices and they are far away from each other. Obviously when a

challenge demands the comparison between RO_0 and RO_1, the former

will be faster and result in a larger reading its counter than the latter in all

FPGA boards. 85

3·13 Two ROs with identical placements (LUTs highlighted in blue) and pins

(highlighted in blue in each LUT). 89

3·14 Two ROs with identical routing (highlighted by bold dotted lines). For

better demonstration, RO_0 at the lower CLB is manually routed, whose

routing is then cloned to RO_1 at the upper CLB. 90

3·15 The routing highlighted in dotted cyan lines is from the lower MUX of a

stage to both MUXes in the next stage, and the dotted blue lines are the

route from the upper MUX to the next stage. The two routings are not

exactly the same but are close enough to each other to minimize the impact

of routing difference. 91

xix

3·16 The routing of w1 should be the same as w2 in terms of length and path

shape, and w3 the same as w4. I1 of the upper MUX should be the same

pin as the I1 of the lower MUX, similarly to I0. 92

3·17 All the dotted black lines represent the next possible nodes following the

node “CLBLL_LOGIC_OUTS12”, which is highlighted in the “Assigned

Nodes” menu. By selecting the nodes one by one, a user can route the

output of a MUX to the inputs of the two MUXes in the following stage

until he/she finds the desired path. 94

3·18 The w1 is successfully routed to the input pin I0 of a MUX in the next

stage via the bold blue path. 95

3·19 The upgraded RO for the RO-based Mi-PUF. 97

3·20 The upgraded MUX chain for the Arbiter-based Mi-PUF. 98

3·21 In the basic design of an ID Box, each box possesses two identities, and so

the five ID Boxes in Fig. 3·19 provide 25 identities in total. Suppose it is

replaced by h 2-to-1 ID boxes or one h-to-1 ID box, then the number of

identities will increase to 25h. 99

3·22 The uniformity of both RO- and Arbiter-based Mi-PUFs are around 35%

to 50% across the 32 identities. The larger is the PUF size, the better the

uniformity. 101

4·1 Different modules in the system above require different security levels and

random bits usages. The random sequences for each module therefore have

different characteristics. 108

4·2 The 3d trajectory of a Lorenz system projected onto x− y, x− z and y − z

planes, usually in a butterfly or “8” pattern. 111

xx

4·3 The inputs ({α, β, γ} and p0) of the Lorenz Functions group are pre-processed

by the SAC network and the ASTRO. Its outputs are processed by the

QNTF and BLD modules. The architecture also features six customizable

parameters for the tuning of the cost-performance trade-off. 113

4·4 The six user inputs of the TRNG to program it to the desired setting for

different purposes. 114

4·5 When β (left) or γ (middle) or both of them (right) fluctuates, the attractors

will drift away according to the fluctuation magnitude. α on the other hand

is related to the size of the trajectory. Every point with distance ̸= 0 stands

for a new chaotic map due to the change made to {α, β, γ}. 115

4·6 When the integer bits or all the 56 decimal bits are arbitrarily changed

(up-right), the results trajectory could be no longer chaotic. Only the 48

LSBs or less (bottom-right for 32 bits) can be arbitrarily configured while

maintaining the chaotic property. 116

4·7 Whichever RO reaches to the counter overflow first, will send an asyn-

chronous “Stop” signal to pause the other RO’s counter. 119

4·8 The entropies of most bits produced by ASTRO are located between the

[0.93, 1] bit window, which is already in good quality. It can be further im-

proved to a [0.997, 1] bit window by the proposed TRNG microarchitecture

(cf. Fig. 4·17). 120

4·9 The total entropy in each case is very close to the output size. The average

entropy provided by each bit of ASTRO is 0.964. 121

4·10 The qualifying rate is almost in a normal distribution under various LSB

values. 123

4·11 The qualifying rate when INIT = 48 reaches the highest. However, INIT

= 32 is more influential in the sub-test scores. 123

xxi

4·12 Both the charts show a trend that the greater N is, the better quality will

be for the generated random bits. 124

4·13 Both the qualifying rate and sub-test impacts show the superior perfor-

mance when BLD = a, f, especially f. 124

4·14 Uniform distribution of p-values. The tests with a * have their results in

averaged values to save space. 127

4·15 The power consumption is almost linearly proportional to the number (N)

of active Lorenz functions. 128

4·16 The blue dotted trend shows that the quality of the random sequences rises

with the energy (nJ) consumed per bit. 129

4·17 The entropy of the TRNG final outputs, which is 0.998 bit per output bit

in average. To be comparable with Fig. 4·8, the TRNG is made to work

under 128 bits/cycle throughput. 130

4·18 If a competitor has more than one design of RNG, the one with the best

p-value is adopted in the figure. 131

4·19 If a competitor has more than one design of RNG, the one with the best

p-value is adopted in the figure. 135

5·1 The four basic operations of the PKC algorithm: Polynomial Addition,

Polynomial Subtraction, Scalar Multiplication, and Scalar Division to the

Nearest Binary Integer. With careful design and optimization, we manage

to perform all the four modulo operations over Rq without using a general

mod q reduction module. 147

5·2 The schematic diagram for butterfly NTT operation. 151

5·3 The three core building blocks for the primitives: Key Generation (Key-

Gen), Encryption (Enc), and Decryption (Dec). Therefore, it can be used

as either the public key distribution party, or the encryption party. 152

xxii

5·4 Hardware Cost with different q and n for PKC System 153

5·5 Latency comparison of the NTT-based Multiplier between the proposed de-

sign, and the designs of (Chen et al., 2015), and (Pöppelmann and Güneysu,

2012) . 154

6·1 Percentage of interaction with other islands for different traffic classifications.158

6·2 Throughput per benchmark for the baseline and the proposed architectural

model. 158

6·3 The average latency per benchmark for the baseline and the proposed ar-

chitectural model. 159

6·4 Throughput per benchmark in SPLASH-2 suite for the new architectural

model. 160

6·5 Degree of interaction among SPLASH-2 application traffic, measured as

percentages. 160

xxiii

List of Abbreviations

AC Access Code
BEL Basic Element
CRP Challenge-Response Pairs
GTB Group Testing Based codes
IC Integrated Circuit
IP Intellectual Property
KEX Key Exchange
LUT Look Up Table
MDS Maximum Distance Separable
Mi-PUF Multi-Identity Physical Unclonable Functions
MMU Memory Management Unit
NI Network Interface
NIST National Institute of Standards and Technology
NOC Network-on-Chip
NTT Number-Theoretic Transform
NVM Non-Volatile Memories
NWC Negative Wrapped Convolution
OLSC Orthogonal Latin Square Codes
OT Oblivious Transfer
PE Processing Element
PKC Public-key Cryptosystem
PUF Physical Unclonable Functions
R-LWE Ring-Learning with Errors
RO Ring Oscillator
RoT Root of Trust
RS Reed-Solomon
SoC System on Chip
SCC Self-Checking Checker
TRNG True Random Number Generator
ZKP Zero-Knowledge Proof

xxiv

1

Chapter 1

Introduction

Heterogeneous system-on-chip (SoC) architectures have many advantages. They gen-

erally consist of highly specialized application-specific processing units and general-

purpose cores. Their performance and power can be better optimized, and the spe-

cialization of compute units to different tasks promises greater energy/area efficiency.

For example, (Kumar et al., 2004) show that a heterogeneous computer architecture

can outperform a comparable-area homogeneous architecture by up to 63%.

By integrating cross-vendor chipsets and software onto one platform, heteroge-

neous system-on-chip (SoC) architectures allow users or programmers to take advan-

tage of a whole suite of distinct functionalities provided by different manufacturers

and intellectual property (IP) providers.

An equally important fact is that, the design of these systems and the develop-

ment of associated kernels and applications are increasingly global. As shown by the

Semiconductor Industry Association (SIA) report in Fig. 1·1, at present the top par-

ticipants of the semiconductor industry (manufacturing, fabrication, and packaging

companies, etc.) come from more than 23 countries on 3 continents (Asia, North

America, and Europe). A single semiconductor production process can involve at

least 4 countries and 3 trips around the world. As a result, the provenances of IPs

become harder to establish.

In addition, the runtime interactions on those heterogeneous SoC systems are

fairly complex. Processes may share processing elements, data, and I/O processing

2

Figure 1·1: The global supply chain map from the Semiconductor
Industry Association ((SIA), 2018).

time. Similarly, processing elements/processors/cores themselves may share cache or

memory structures, network-on-chip resources, and I/O modules.

In all, despite the many advantages of heterogeneous SoC systems, e.g., higher

performance, better energy efficiency, lower communication latencies, they also give

rise to a number of critical security challenges. One, the globalization of the semicon-

ductor industry has made IP provenance checking more challenging. Second, runtime

interactions and resource sharing of processing elements have created a fertile attack

ground and represents the Achilles’ heel of heterogeneous SoC architectures.

3

1.1 Security Challenges in Current SoCs and Distributed
Systems

We identify three security challenges in current heterogeneous SoCs, which motivate

the work in this dissertation.

1.1.1 Trust Issues in the Supply Chain

As mentioned in the beginning of this section, most heterogeneous SoCs may consist

of processing elements from different IP providers or manufacturers. Also the appli-

cations running on them may have varying levels of security and trust, all executing

on the same compute platform while sharing resources with each other.

For example, in a multicore smartphone chip, complex runtime interactions be-

tween processors running untrusted applications can sometimes circumvent the built-

in security guards, in order to access memory blocks in protected sections of the

phone. These systems are vulnerable to a variety of software-centric attacks, such as

spyware, trojans and viruses, as well as hardware-centric attacks such as side channel

attacks and hardware trojans (Tehranipoor and Koushanfar, 2010).

There have been several research efforts exposing the security issues in the global

supply chain. As (Salmani, 2018) pointed out, in semiconductor industry, the time

to market window is made as short as possible in order to maximize the revenue.

Therefore, design strategies based on intellectual property (IP) reuse and manufac-

ture outsourcing are widely adopted. For this very reason, vulnerabilities in the IPs

and trojans inserted in the manufacturing process (hardware design, fabrication, pack-

aging etc.) have turned into a growing concern. Worse, since most semiconductor

companies are focusing on design only and becoming “fab-less”, malicious hardware

modifications and trojans can be inserted at fabrication time by untrusted foundries

(Forte et al., 2016). For example, according to the recent reports (International De-

4

fense Security and Technology (IDST), 2019) (Zorz, 2018), counterfeits and trojans

are the two major causes of hardware vulnerabilities in the U.S. military systems.

On the other hand, realizing that most semiconductor designers and users have to

live with an untrusted supply chain, there is a trend to move away from relying only

on “trusted foundries”, to “security by design and chain of custody” (Lapedus, 2018).

The U.S. Department of Defense (DoD) released their view on approaches to ensure

trusted semiconductor products, as shown in Fig. 1·2. This flow diagram covers a

wide spectrum from design to operation, assuming injection of malicious conducts

can happen during any of the production stages.

Figure 1·2: New Trust and Assurance Approaches. Source: DoD
(Lapedus, 2018).

1.1.2 Insufficient Security by Software-only Protections

A general consensus today is that conventional approaches and software-only add-on

schemes have failed to provide sufficient security protections and trustworthiness. As

Defense Advanced Research Projects Agency (DARPA) showed in their brief (Fig.

1·3), it is increasingly expensive to defend by software-only solutions than to attack

5

(Kaufman, 2011).

Figure 1·3: Defense Advanced Research Projects Agency (DARPA):
Brief to Defense Science Board (DSB) Task Force (May 2011).

In addition, some hardware security issues are beyond the capability of software-

based protections. In an analysis by IoT Inspector on over 4,000 embedded devices

from 70 different hardware vendors, they found 580 cryptographic secret keys shared

between a great number of devices (Khandelwal, 2015). Not only have some “lazy”

manufacturers used identical keys among their own devices, but also there are keys

shared amongst different vendors.

Another alarming fact is that, when the researchers scanned the Internet for those

580 keys, they found that at least 230 of them are actively used by more than 4 Million

IoT devices all over the world, with the United States being the top affected country

(by owning 26.3% of those devices).

These carelessly shared secret keys can be used to forge counterfeits which can

deceive authentication and breach secure systems. A similar report (Byrne, 2015)

stressed that, since all these keys are hard-coded into the IoT devices, this issue

cannot be resolved using software patches.

6

In a report titled Is Computer Security Becoming a Hardware Problem? (Byrne,

2016), Kocher, the co-author of the SSL v3.0 protocol, stated that: “To make progress,

we need another building block: simple, high-assurance hardware for secure compu-

tation.”

As a matter of fact, there have been increasing proposals to utilize hardware as

the root of trust (RoT) for critical tasks such as authentication, key storage, and

key transmission etc. The Computer Security Resource Center (CSRC) in National

Institute of Standards and Technology (NIST) launched a project to study the use

of hardware RoT in securing computing systems (NIST, 2018). Companies such

as Synopsis and Intel have also been exploring this field (Elias, 2017) (Intel, 2017)

even before NIST. The advantage of this approach is that it can provide functions

that malware cannot tamper with. A system equipped with hardware RoT typically

cannot be breached unless the attackers gain physical access to it.

1.1.3 Introduction of General-Purpose Quantum Computers

In the last three years, we have witnessed a number of breakthroughs and several key

milestones towards the development of general-purpose quantum computers. These

advances do bring with them critical challenges to classical cryptosystems, due to the

existing quantum algorithms to solve certain security reduction problems on which

the classical cryptosystems rely.

Shor’s algorithm (Shor, 1999) leveraging quantum Fourier transform is able to

solve the integer factorization problem efficiently. Therefore, the current popular

cryptographic algorithms such as RSA, ElGamal, Diffie-Hellman, and elliptic-curve

cryptography, which rely on the hardness of integer factorization and discrete loga-

rithms, are now subject to attacks by quantum computers. Moreover, for symmetric

cryptography, Grover’s algorithm (Grover, 1996) applies fast search in the key space,

so that the security level of symmetric encryptions can be reduced to the square root

7

of its original (e.g., the 128-bit and 192-bit AES now only have 64-bit and 96-bit

security levels, failing to meet the 112-bit minimum security level recommended by

NIST).

Since the possibility of using quantum effects in computation was brought up by

(Feynman, 1959), numerous efforts have been dedicated to realize and even commer-

cialize the quantum computers, especially in the past three years.

From late 2017 to early 2018, technology companies such as IBM, Intel, and

Google, announced their construction and testing of 50-, 49-, and 72-qubit computers

respectively (Knight, 2017) (Hsu, 2018) (Courtland, 2017). In July 2018, for the first

time in the world, the University of Sydney accomplished a multi-qubit computation

on a system of trapped ions, which is believed to be one of the leading platforms

in building universal quantum computers (Science-Daily, 2018). In December 2018,

IonQ claimed to have built a quantum computer with 160 qubits, which was referred

to as the “best quantum computer yet” by reporters (Mandelbaum, 2018). In Jan-

uary 2019, IBM released its first 20-qubit commercial quantum computer: Q System

One (Aron, 2019). Besides the boost in physical implementation of quantum com-

puters, breakthroughs in the verification of quantum computation were achieved in

2017 (Aharonov et al., 2017), and more efficient error correction schemes have been

proposed recently as well (Michael et al., 2016).

NTRU Innovation, a cryptographic company dedicated to developing quantum-

resistant cryptosystems, made a projection of the arrival of universal quantum com-

puters in late 2015 (Fig. 1·4). Based on the milestones achieved then, NTRU pre-

dicted that within 5 to 10 years, powerful quantum computers may become accessible

(Wilson, 2016). This also matches the time line given by other institutes such as Mi-

crosoft Quantum and NIST.

Another interesting attempt to apply Moore’s law to the growth of qubits, also

8

0

20

40

60

80

100

2020 2022 2024 2026 2028 2030 2032 2034 2036 2038

P
ro

b
ab

ili
ty

Year

Projected probability of general purpose quantum
computers arriving by year

Late 2015 Projection Early 2015 Projection

Threat Window

Figure 1·4: NTRU says critical infrastructure “MUST be re-tooled
when the threat window opens” (Wilson, 2016). As more breakthroughs
are achieved in the past three years in the physical implementation of
quantum computers, the threat window may move even closer to us.

shows a similarly estimated time line in breaking the RSA scheme within 5 to 10

years (Quantum Computing Report, 2017), as shown in Fig. 1·5.

These estimations indicate that, it is feasible that within the next decade, secure

systems based on classical cryptographic algorithms, e.g., most banking, government,

or medical systems, will no longer be considered trustworthy.

In response to the looming threat of the quantum computers, a number of new

cryptosystems have been proposed for the post-quantum era. In early 2017, NIST

launched a standardization campaign for post-quantum cryptography and 69 can-

didates were submitted. On January 30, 2019, 27 candidates were selected for the

second round (semi-final) of this contest (NIST, 2019). Among all these submis-

sions, lattice-based (12 candidates) and code-based (8 candidates) cryptosystems are

leading candidates. However, efficient and secure hardware implementation of these

algorithms still remains a young research field.

9

Figure 1·5: Projected qubit growth with different quantum computer
mechanisms (Quantum Computing Report, 2017).

1.2 Thesis Contributions

The question we aim to address in this dissertation is “can one design a secure com-

puter system out of non-secure or untrusted computing IP components and cores?”.

Considering the previous discussions on security challenges in SoCs, this question can

break down to: (1) how to protect heterogeneous processing elements (PEs) with

different security levels; (2) how to optimally and securely share resources and data

among those processing elements; (3) how to anchor the system security on a strong

root-of-trust and construct secure protocols to resist PE’s malicious behaviors; and

(4), how to extend the usability of the system to the post-quantum era.

Therefore, to address these design challenges, in this thesis we propose a new

architectural model. The major technical contributions of this approach are:

1. The introduction of a new architectural model for integrating processing

10

elements with different security and trust levels, i.e., secure and non-secure

cores with trusted and untrusted provenances;

2. A generalized process isolation design methodology (Kinsy et al., 2018) for

the new architecture model that covers both the software and hardware layers to

(i) create hardware-assisted virtual logical zones, and (ii), perform both static

and runtime trust level verification.

Specifically, we group the processing elements (PE) into virtual logical zones

called islands based on each PE’s dynamic trust level. Process and data isolation

are thus established based on the partition by islands. Data/resource sharing

is allowed within an island but prohibited across islands. A set of island join

and leave protocols are enforced to verify the legitimacy of each memory access

request.

3. Hardware-based root-of-trust: we anchor the security of the SoC system

on hardware-based root-of-trust (RoT), which consists of:

• Hardware-assisted process isolation: a hardware Network Interface (NI)

module is constructed to facilitate the dynamic island forming by 1) han-

dling the memory access requests; 2) verifying the privilege level of each

request; and 3) generating island session keys upon each island member-

ship change;

• Hardware immutable identities: we use Physical Unclonable Functions

(PUFs) to perform PE authentication, identification, and key storage/-

transmission (Bu et al., 2018a) (Bu et al., 2018b). We also propose a

Multi-identity PUF (Mi-PUF) design (Bu and Kinsy, 2018a) which en-

ables an individual PE to be labeled with multiple identities upon its

different activities (memory accesses or island memberships).

11

4. A set of secure protocols based on hardware root-of-trust to strengthen the

process isolation. They provide the following functionalities:

• Core impersonation resistance: using a blind signature scheme to uniquely

bound each core’s memory access permission to itself, so that the memory

access activity cannot be spoofed (Kinsy et al., 2018);

• Threshold authorization to data resources: using a robust adaptive secure

secret sharing algorithm to prevent dishonest “gatekeepers” of an island

from unfaithfully authorizing island join to disqualified PEs (Bu et al.,

2018c) (Bu et al., 2017);

• Privacy-preserving privilege verification: through a group anonymous au-

thentication algorithm to verify each PE’s trust level without revealing its

identity;

• Denial of service attack avoidance: by developing a security-aware inter-

connect network routing algorithm and a memory access mechanism based

on user-defined security policies (Kinsy et al., 2018).

5. To construct the secure protocols in 2 and 4, we propose to use a set of

quantum-resistant primitives as the basic building blocks: public-key cryp-

tosystem (PKC), key exchange (KEX), oblivious transfer (OT), and zero-knowledge

proof (ZKP) (Bu et al., 2019). Their features are:

• All primitives are based on the Ring-Learning with Errors (R-LWE) cryp-

tosystems. R-LWE as a variation of lattice-based cryptosystems, is one

of the most promising candidates of NIST’s post-quantum cryptography

standardization;

• Novel algorithms for simple oblivious transfer and zero-knowledge proof

based on post-quantum cryptography (Bu et al., 2019);

12

• A fully parameterizable hardware design of these primitives;

• All primitives can be reused to compose more complex secure systems for

the post-quantum era.

1.3 Thesis Outline and Chapter Summaries

The dissertation aims to construct from untrusted elements trustworthy heteroge-

neous SoCs with certain security features. We establish a set of design principles to

enable process isolation, and a set of hardware RoT-based protocols to defend against

malicious processing elements (PEs). We now outline each of the chapters.

Chapter 2: Generalized Framework for Designing Secure SoC Architec-
tures from Untrusted Components

We begin by introducing a new architectural model which consists of a set of design

principles to build trusted heterogeneous systems from untrusted components.

As mentioned previously in the thesis contribution, this new architectural model

addresses virtual channel and memory attacks through process isolation, by grouping

processors into virtual logical zones called islands. It also inherits and extends the

well-established concept of session keys, which enable elements within an insecure

network to establish secure communications (Katz and Shin, 2005).

First, the on-chip PEs are divided into wards (physical zones for PE residence) that

are identified and formed at system integration time, based on IP or PE provenance.

Wards are created to help negotiate the security keys used to create the islands in

a trusted manner. Because the security level is inherent to the IP origin, the wards

remain constant throughout the chip’s lifetime.

Second, the PEs in the new architectural model are virtually grouped into logical

zones called islands based on their static or runtime security characteristics. These

nodes can be either secure processors or non-secure processors, as well as any combi-

13

nation of hardware processing units with varying levels of trust. Figure 1·6 shows an

illustration of a virtually partitioned islands on a multicore chip. Each PE is assigned

to an island based on both trust levels of the PE and the applications running on

the PE. PEs within the same island will be able to share data, but resource sharing

across islands is prohibited.

Core0 Core3

Core4 Core10

Core1 Core7

Core13 Core15

Core8 Core9

Core12 Core5

Core2 Core11

Core6 Core14

Highly
Trusted
Island

Trusted
Island

Non-Trusted
Island

Unknown
Island

Figure 1·6: Four virtual islands partitioning based on PEs’ dynamic
security characteristics: highly trusted, trusted, untrusted and un-
known.

One of the key innovations of the proposed architectural model is that the phys-

ical wards and the virtual islands are decoupled, hence making the node placement

decisions independent of the processing cores’ security needs. This allows for efficient

on-chip routing and node grouping.

The architectural model coordinates the virtual island partitioning through a

secure hardware module — the network interface (NI). The NI serves as the enforcer

of the user-defined security policy by facilitating the dynamic island forming. The

NI verifies if a memory access request is valid according to its access code (AC), and

authorizes island join if the request is found to be legitimate.

In addition, we propose a set of secure protocols to:

14

(1) tailor the AC for each request using a blind signature scheme, so that the same

AC cannot be reused by other untrusted elements;

(2) authorize the island join in a group decision manner by a cheater-tolerant secret

sharing scheme, so that a dishonest sponsor nodes cannot jeopardize the join

authorization;

(3) enable an incognito join mode with oblivious transfer algorithms, in order to

preserve PEs’ privacy on data requests;

(4) perform privilege verification without revealing a PE’s identity by a group

anonymous authentication protocol.

These secure protocols are constructed based on a number of well-established

cryptographic primitives such as physical unclonable functions (PUF), true random

number generator (TRNG), public-key cryptosystem (PKC) and oblivious transfer

(OT). They will be introduced in detail in Chapters 3, 4, and 5.

Chapter 3: Hardware Root-of-Trust Security Primitives

In this chapter we introduce the design and implementation of the physical unclonable

functions (PUF), which will serve as a hardware root-of-trust primitive for many of the

secure protocols in this thesis. We use PUF as the unique identifier, authentication

and key storage primitive of the PEs in SoC. PUF works by its challenge-response

pairs (CRP). Before a hardware element with a PUF is released, the verifier will feed

the PUF with multiple inputs called “challenges”. The outputs are collected and

stored as “responses”. A challenge and its corresponding response form a CRP. Upon

authentication, the verifier sends a challenge to the element’s PUF. By comparing

the returned response with the stored CRP, the verifier is able to determine the

authenticity of the element.

15

PUF is built by amplifying the unique manufacturing variations of a piece of

hardware. Such variations can be the slight differences on transistor sizes, drain

currents, threshold voltages, or capacitance. Since PUFs take advantage of the natural

characteristics of circuits, they are also called “hardware fingerprints”.

There are a couple of advantages to use such a hardware primitive as the RoT

instead of using a static string (a secret key or an ID tag). First, PUFs do not

require expensive non-volatile memories (NVM) for secret key storage. Second, PUFs

are naturally integrated in circuits and cannot be separated from them to make

counterfeits. Third, as CRPs are independent from each other, capturing one does

not impact the security of others.

In this chapter, we first explore different types of PUFs and choose the delay-

based PUF to construct the RoT. We then dive into the implementation details of

PUFs on the FPGA platform. We provide a discussion on the common mistakes made

by PUF designers, and related mitigations. In the end, we propose a novel type of

PUF named Multi-identity PUF (Mi-PUF). Unlike ordinary PUFs which attest only

one legal identity of an element, the Mi-PUF is able to attach multiple legitimate

identities to a single hardware element. Mi-PUFs can be used to assign multiple

identities to the same PE to label its different activities (memory accesses or island

memberships).

Chapter 4: Towards Programmable All-Digital True Random Number
Generators (TRNG) for Cryptographic Functions

TRNG are crucial for cryptosystems. They determine the quality of secret keys

and random vectors. In the proposed architectural model, true random numbers are

used in a number of modules such as the public-key system and the majority of the

secure protocols. To serve these modules for different purposes (high entropy, high

throughput, low power etc.), we design a programmable TRNG using ring oscillators

16

and Lorenz chaotic maps.

Chapter 5: Quantum-resistant Extension of Hardware Primitives

In order to construct the secure protocols in the proposed architectural model, we need

two hardware primitives: the public-key cryptosystem (PKC) and oblivious trans-

fer (OT). While there are abundant hardware implementation resources for classical

cryptosystems such as RSA or ECC, we choose to implement the quantum-resistant

cryptosystems for the reasons mentioned in Section 1.1.3: the proposed new archi-

tectural model can remain trustworthy if universal quantum computers ever become

feasible.

The semi-final of NIST’s post-quantum cryptography standardization contest offi-

cially started in March 2019 (NIST, 2019). Out of 27 candidates, 12 are Ring-Learning

with Error (R-LWE)-based, 8 code-based, 4 multivariate-based (all under digital sig-

nature category), and 3 others. It is clear that the R-LWE and code-based (McEliece)

cryptosystems have a high chance of winning the contest. Therefore, in this thesis

we implement the hardware primitives based on the R-LWE cryptosystem, and will

explore the code-based cryptosystem primitives in the future work.

Although there are a myriad of works exploring different implementations of the

Ring-LWE algorithm in software, hardware level design space exploration efforts have

been very timid. Moreover, out of the existing hardware implementations, very few of

them focus on scalability and efficiency. One technical reason is that large finite field

operations (thousands of bits for one vector) – which form the core computational

kernel of both algorithms – remain a key challenge for many hardware designers.

To address this design challenge, we introduce a set of highly-optimized, parame-

terizable quantum-resistant hardware primitives for design space exploration of post-

quantum cryptosystems. These hardware primitives include four frequently used secu-

rity components: the public key cryptosystem (PKC), key exchange (KEX), oblivious

17

transfer (OT), and zero-knowledge proof (ZKP).

The major contributions of this hardware primitive toolbox are:

• Algorithm: Novel proposals of the quantum-resistant OT and ZKP primitives;

• Parameterization: A parameterizable design to generate variable-sized primi-

tives to enable their deployment in small devices such as IoT devices, as well

as large computing platforms such as homomorphic encryption engines;

• Implementation: FPGA-tailored optimization to reduce the area and power

cost.

These primitives can serve as the fundamental building blocks to aid hardware

designers in constructing larger secure systems for the post-quantum era.

Chapter 6: Experiments and Evaluation

For the system performance and evaluation, we implement an 8 × 8 2-D mesh topol-

ogy design on a Xilinx FPGA device. For the power estimates, we use the Xilinx

Power Estimator (XPE) in the Vivado Design Suites. The power numbers are the

post-routing estimates using a vector based switching activity format (i.e., SAIF).

The process feature was set to maximum and the power supply to default.

The Heracles (Kinsy et al., 2013) and the BRISC-V (Bandara et al., 2019) RTL

simulators are used for all the experiments. Heracles’ injector cores are used to create

network and memory traffic. The trust level per core is assigned arbitrarily. The

synthetic benchmarks and the SPLASH-2 benchmark suite are used to evaluate the

new architectural model’s performance and security enforcement.

We show through experimental results that, while performing the correct function-

ality under protection, the new architectural model adds hardware (area) overhead of

no more than 17%, and no significant performance (throughput and latency) penalty.

18

Chapter 7: Conclusion and Feature Works

In this chapter, we conclude the dissertation and propose some of the future work on

heterogeneous SoC systems.

19

Chapter 2

Generalized Framework for Designing
Secure SoC Architectures from Untrusted
Components

2.1 Introduction

In this chapter we discuss the core of the proposed new architectural model, which

provides a set of design principles to construct secure heterogeneous systems from

untrusted components (Kinsy et al., 2018).

The current trend in system-on-chip (SoCs) designs is system-level integration of

heterogeneous technologies on the same chip. The design of these systems and the de-

velopment of associated kernels and applications are increasingly global (Oberg et al.,

2013). System designers and users of integrated circuits (ICs), intellectual property

(IP), and SoCs are increasingly facing trust issues. In these designs, the processing el-

ements may come from different providers, and application executable code may have

varying levels of security and trust, all executing on the same compute platform and

sharing resources. This creates a fertile attack ground and represents the Achilles’ heel

of heterogeneous SoC architectures and distributed connected devices. The general

consensus today is that conventional approaches and software-only add-on schemes

have failed to provide sufficient security protections and trustworthiness.

20

2.1.1 Security Problems

Heterogeneous system-on-chip designs are vulnerable to a variety of software-centric

and hardware-centric attacks, such as spyware or viruses at the software level and

side channel analysis or trojans at the hardware level (Tehranipoor and Koushanfar,

2010). On SoC architectures consisting of multiple cores, the runtime interactions be-

tween processing elements can be very complex and difficult to fully analyze at design

time. As a result, processors running untrusted applications can sometimes circum-

vent the built-in security guards and access memory blocks in encrypted sections of

the system (Chen et al., 2014).

These SoC architectures generally have: (a) a set of heterogeneous processing

elements; (b) a memory subsystem; and (c) an interconnect network. For scalability

reasons, network-on-chip (NoC) is broadly used as the communication fabric in these

systems (Jerger and Peh, 2009). Unfortunately, the NoC is not immune to attacks.

In fact, it is one of most targeted parts of the architecture, because it serves as the

gateway to the other modules in systems (i.e., processing elements and memory units).

An adequate solution towards secure SoCs needs to provide: (i) a provable mech-

anism for robust isolation of hardware subsystems and program code (e.g., trusted

vs. untrusted); (ii) efficient and fast access control to system resources (e.g., physical

memory and routing paths); and (iii) support for user-defined security policies.

2.1.2 Threat Models

Heterogeneous multicore systems can be vulnerable to several attacks (Fiorin et al.,

2007), including invasive attacks against hardware modules (using micro probing or

other similar techniques), non-invasive attacks such as side channel attacks, Trojans

and malware. In this work, we assume the attacker (malicious processes or untrusted

PEs) has the following capabilities:

21

(a) The attacker is able to inject a deluge of useless packets into the network, in

order to attempt on-chip denial of service (OC-DoS) attacks;

(b) The attacker is able to plow shared virtual channels (VC) and build their packet

contents out of other flows’ residual data;

(c) The attacker is able to leverage direct memory accesses (DMA) to attempt to

read/write the physical memory;

(d) The attacker is able to apply cache side-channel attacks;

(e) The attacker is able to leverage transient executions (speculative or out-of-order

executions) to attempt to bypass privilege checks.

We also assume the limitations of attackers:

• The attacker does not have physical access to the chip once it is integrated;

• The attacker cannot modify the kernel or operating system (OS);

• The attacker cannot access the system programming port;

• The attacker cannot manipulate or apply side-channel attacks to the memory

management unit (MMU);

• The attacker cannot perform online re-multiplexing or manipulate the pro-

grammable logic controller (PLC) to re-multiplex the I/O pins.

The design methodology behind the new architectural model’s design principles

is to provide hardware-assisted mechanisms for user-defined security rules and their

enforcement in heterogeneous many-core SoCs. It effectively decouples the trust level

management of processing cores from the integrated SoC by process isolation. This

22

isolation is achieved through 1) virtualized partitioning based on cores’ runtime trust

levels, and 2) enforcing privilege checks on memory accesses.

Regarding the attack model, this new architectural model is geared towards pro-

viding the following key protections:

(A) A security-aware on-chip routing to cooperate with the virtualized process isola-

tion, so that maliciously injected junk packets by untrusted processing elements

(PEs) will not jam the traffic of trusted PEs, which are virtually partitioned

into other virtual zones;

(B) The security-aware on-chip routing ensures that different paths are assigned to

PEs of different trust levels. Also, sensitive communications between cores are

encrypted. Thus, an untrusted PE cannot plow any confidential information

from a trusted PE’s virtual channel;

(C) With the trust level verification enforced on memory access requests, including

the ones from physical I/O ports, no PE or external device is able to bypass

this check to issue direct memory access (DMA);

(D) The virtual isolation allocates different memory regions for processes in differ-

ent trust levels. Therefore, the isolation works as a hardware-assisted memory

coloring, which effectively prevents untrusted processes from sharing the same

cache sets with trusted processes. This approach guards the memory sub-system

from certain classes of side-channel attacks;

(E) In addition, due to the trust level verification enforced on memory access re-

quests, attacks leveraging speculative execution (Meltdown- or Spectre-like) will

not be able to bypass privilege checks.

It is notable that, the proposed architectural model places no restrictions on the

provenance or trust level of PEs. Thus, the model does not address the vulnerabilities

23

inherited from the PEs, such as side-channel attacks to page table pages leveraging

the vulnerability of MMU, or Foreshadow-like attacks leveraging the L1 terminal fault

of certain type of processors.

2.1.3 Overview of the Chapter

A high-level view of the proposed architectural model is shown in Fig. 2·1. It is

an integration template allowing designers to include processing elements of various

trust levels while still maintaining their security.

External M
em

ory Socket

External Memory Socket

O
n-

ch
ip

 L
L

C
ac

he

Memory Controller Memory ControllerScratchpad Memory

Memory Controller Memory ControllerScratchpad Memory

I/OI/O

O
n-

ch
ip

 L
L

C
ac

he

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

PE
Socket

External M
em

ory Socket

Figure 2·1: Nodes of different trust levels have their own local memory
and cache. They are connected by an on-chip router.

The rest of the chapter is organized as follows: Section 2.2 briefly lists the related

24

work; Section 2.3 gives an overview of the security policy of the proposed design;

Section 2.4 introduces the distributed key management of the architectural model,

which is the core mechanism of the proposed system; Section 2.5 proposes 4 protocols

to enhance the security of the architectural model on dishonest PE tolerance and PE

privacy preserving; Section 2.6 explains the architecture support; and finally Section

2.7 concludes the chapter.

2.2 Related Work

Many hardware-based security techniques have been proposed in recent years (Wang

et al., 2008). For most multicore system-on-chip, a secure core at each node is unnec-

essary. In these systems, mixed criticality or multi-tenant/multi-trust computation

is often the design choice (Oberg et al., 2013). Different solutions have been pro-

posed at different design abstraction levels, from gate-level description (Tiwari et al.,

2009) to system virtualization (Hwang et al., 2008). Wassel et al. implemented

a non-interfering scheme for secure NoC in SurfNoC (Wassel et al., 2013). Sajeesh

and Kapoor (Sajeesh and Kapoor, 2011) highlighted some of the advantages of im-

plementing security policies at the network interface level in NoC based systems for

secure communication among such IP cores. Porquet et al. (Porquet et al., 2011)

introduced a solution for co-hosting different protection domains or compartments on

the same shared memory multiprocessor SoC using a NoC architecture. The proposed

design model addresses both the hardware and software components of multi-tenant

execution. It allows system designers to define and enforce execution communication

rules for both secure and non-secure cores or software at the on-chip communication

layer. Previously proposed secure processors (Chhabra et al., 2010) are still supported

in the proposed architecture model since the security protocols are not bound by the

processor core type. The design of the group key management scheme is informed

25

by the model of attacks highlighted in (Katz and Shin, 2005). In this model, if a

secure processor core is used at a processing site, the system designer can bypass the

network interface security module. In such cases, the traffic coming from the pro-

cessor is treated as non-secure communication from the point of view of the on-chip

network security protocol. In (Katz and Shin, 2005), an Authenticated Key Exchange

amongst a group is explored. Using group keys allows a message to be sent to multiple

recipients without having to pay the cost of encrypting the data multiple times.

2.3 Security Policy

The proposed new architectural model supports secure multicore computing archi-

tectures. It reduces the system attack surface by creating a virtualization layer that

isolates processes based on system and user defined trust levels and security policies.

2.3.1 Process Isolation via Hardware Virtualization

In current SoCs, dynamic scheduling of tasks to processing elements makes it difficult

to reason about the runtime interactions between functions of different trust levels,

especially in the absence of hardware-level support. This procedure often leads to ad-

hoc execution modes where trusted or untrusted software could be running on both

trusted or untrusted hardware. Figure 2·2 shows a set of applications with mixed

security mapped onto mixed security hardware. The new architectural model achieves

both hardware and software views of secure processing by grouping processors into

physical zones called wards and virtual logical zones called islands.

First, the on-chip processing elements are divided into wards that are identified

and formed at system integration time, based on IP or processing element provenance.

Wards are created to help negotiate the security keys used to create the islands in

a trusted manner. Because the security level is inherent to the IP origin, the ward

membership remains constant throughout the chip’s lifetime. The chip is divided into

26

physical quadrants, and, within each quadrant, nodes of the same security level make

up one ward. Hardware security is divided into highly trusted, trusted, untrusted,

and unknown levels.

Each ward has a representative processing element/node, called the anchor node,

specified and selected during system integration stage. The anchor node has a table

containing the reachability and security information of the other anchor nodes and

nodes in the same ward. Figure 2·3 shows the ward grouping of the illustrative mixed

security heterogeneous architecture presented in Figure 2·2. The anchoring of wards

provides a simple method of node discovery and key distribution without requiring a

full list of node keys at each node.

Pr
oc

es
s

Pr
oc

es
s

Core1 Core3

Core4 Core10

Core7 Core6

Core13 Core15

Core2 Core11

Core12 Core0

Core15 Core8

Core9 Core14

Figure 2·2: Trusted/untrusted applications running on trusted/un-
trusted cores. Different trust levels are illustrated by different colors
(e.g., red represents the least trusted program or core).

Second, the processing nodes of the architectural model are virtually grouped into

logical zones called islands based on their static or runtime security characteristics.

Figure 2·4 shows an illustration of a virtually partitioned view of a multicore chip,

based on each node’s trust level.

Kernel and user applications are assigned a security abstraction, trusted or un-

27

trusted, that creates four basic island security levels namely: (1) trusted hardware

and trusted software; (2) trusted hardware and untrusted software; (3) untrusted

hardware and trusted software; and (4) untrusted hardware and untrusted software.

Each node is assigned to an island based on the applications running on them and

their IP trust credentials. Islands allow keys to be managed at runtime to maintain

isolation as tasks are moved between the processing units.

One of the key innovations of the architectural model is that the physical wards

and the virtual islands are decoupled, hence making the node placement decisions in-

dependent of the processing elements’ security characteristics. This allows for efficient

on-chip routing and node grouping.

Ward Anchor Members

0 Core0 Core4

1 Core3

2 Core10

3 Core5

4 Core8 Core9
Core12

5 Core2 Core6

6 Core11 Core14

7 Core1

8 Core7

9 Core13

10 Core15

Core0

Core4

Core3

Core10

Core5

Core8 Core9

Core12

Core2

Core6

Core11

Core14

Core1

Core7

Core13 Core15

Ward0 Ward1

Ward2

Ward3

Ward4

Ward5

Ward6

Ward7

Ward9

Ward8

Ward10

Figure 2·3: Illustrative case of ward groupings with associated ward
table.

28

Core1 Core4

Core6 Core15

Core0 Core3

Core14 Core5

Core2 Core10

Core11 Core12

Core7 Core8

Core9 Core13

Highly
Trusted
Island

Trusted
Island

Unknown
Island

Non-Trusted
Island

Figure 2·4: Hardware virtualization through highly trusted, trusted,
untrusted and unknown island partitioning.

2.3.2 Enhanced Programmable Memory Access Management

In multicore systems, the implementation of on-chip security policies is typically

handled by the memory management unit (MMU) through: (1) application memory

management; (2) operating system memory management; and (3) hardware memory

management. The MMU is placed between the processing element and the memory

subsystem where it translates virtual addresses into physical addresses and performs

access right validations. All of the memory management safeguards, however, stop at

the processing node boundary.

The proposed design extends the MMU protections and security policies beyond

the node boundary into the NoC layer while still applying conventional system mem-

ory management techniques at the node-level. The new architectural model is an

interconnected network of nodes where the physical memory is distributed. A por-

tion of the total on-chip memory is allocated to each processor node in a Non-uniform

Memory Access (NUMA) style. Figure 2·5 shows the system with its enhanced node

organization. The MMU not only provides local memory protection guarantees for

29

processing requests serviced at the node-level but also guarantees their secure rout-

ing when requests need to traverse the on-chip network by sending processor id and

access code AC along with the messages.

On a load or store miss at the processing element, the higher order bits in the

address are used to locate the physical location of the memory block being addressed.

During packetization at the source, the processing element id is concatenated to the

address and/or data with an access code (shorter version of island key). The packet

is then encrypted using the island key or the destination master key, depending on

whether the request is within or across islands. At the remote node, the security layer

checks that if the process or processor making the request belongs to the appropriate

island. After depacketization, the local router sends the source PE id, the address,

the access code (AC), and the data if it is a write operation, to the memory module.

The lower bits of the address are used to index into the Access Code Table (ACT) to

check that the PE is a member of the island authorized to access the memory block.

In parallel to this, memory boundaries and access code are fetched from Base Table

(BT) to verify that the PE protection key matches the current access code value

associated with the memory block being accessed. The AC, in addition to the Base

and Limit registers, helps preserve forward and backward secrecy by being updated

on changes in island membership, even over the same memory range. Figure 2·6

illustrates the memory access control logic.

30

NetworkCache

Local
Memory

Processing
Element

Data

Address

Data

Address

Network
Interface /

Router

Data

{id, addr, AC}

{id, addr, AC}

Data Address

System Memory

Data

Figure 2·5: Programmable enhanced access control at the node
boundary through the router network interface.

Base Table Index Processing Elements Process Ids

1 P2, P8 Pid1, Pid2

0 P2, P3, P7 Pid3, Pid4

Base Limit Access Code

0x0077B8 0x0000FF 34

0x008800 0x000088 89

=
{id, addr, AC}

=

Access Code Table

Base Table Entries

X

Base

Limit

Physical Memory

≈ ≈

≈ ≈

≈ ≈

≈ ≈

Figure 2·6: Access key managed memory zones.

31

2.4 Security Mechanisms: Distributed Island Key Manage-
ment Approach

The proposed new architectural model uses an efficient dynamic key management

protocol to manage and isolate various trust levels with low hardware-overhead (Kinsy

et al., 2017). The protocol generates island keys based on the processing elements’

and applications’ trust levels.

For this type of distributed key management system, there are three general ap-

proaches for handling the distribution: (1) store the full list of public keys at each

node; (2) store only neighbor’s key at each node; and (3) divide the nodes into clus-

ters, where one node in the cluster stores the public keys of the other clusters, while

the remaining nodes in the cluster only store the lead node’s public key. For prac-

ticality and security purposes, we implement the third approach: a distributed and

coarse-grained method, where nodes only store certain public keys.

As the application data are placed onto the nodes, public keys are stored on

anchor nodes. Each anchor node has a table containing the public key list of the

other anchor nodes and the nodes in its ward. The notation for node keys is as

follows: the public key of a node i is denoted KPi
, the private key is KSi

, and an

island v’s key is represented as KGv . Public requests and responses are denoted

rqKPi
and rpKPi

, respectively. The process of dynamically creating, expanding and

contracting islands happens through the join and leave operations.

The join operation protocol is used to add a node to an island or to create an

island. An island is a set of nodes with access to a particular data block. When

a new node needs access to a data block, it first must obtain the public key of an

island member (referred to as its sponsor) and join the island before requesting access.

The sponsoring node will verify the security level of the requesting node and, if the

security is sufficient, will initiate the key update process and provide the new node

32

with the island key. The full protocol is described below, assuming requesting node

i is in anchor node x’s ward and the sponsor node j is in anchor node y’s ward.

Protocol 2.4.1. The protocol of a new node conducting the join operation is as
follows:

1. Node i sends an encrypted message to its ward’s anchor node x requesting
node j’s public key: EKPx

(EKSi
(Mix(rqKPj

))). E and M denote the encryption
operation and message, respectively.

2. Anchor node x sends an encrypted message to anchor node y requesting node
j’s public key on behalf of node i (denoted by ni) including i’s public key:
EKPy

(EKSx
(Mxy(rqKPj

, ni, KPi
))).

3. Anchor node y sends an encrypted message to node i using i’s public key con-
taining node j’s public key for node i: EKPi

(EKSy
(Myi(rpKPj

))).

4. Node i then sends an encrypted message to node j using j’s public key requesting
to join the island assigned to the memory block at j: EKPj

(EKSi
(Mij(rqKGv

))).

5. Node j verifies node i’s access code embedded in the key request message to
determine i’s trust level. If there is no island, node j creates a symmetric key
and sends it to i, EKPi

(EKSj
(Mji(rpKGv

))). If there is an existing island, node j
creates a new island key using a one-way function f such that KG′

v
= f(KGv).

Node j sends the new island key KG′
v
to both i and j sponsors for the island to

enable the propagation of updates. Node j also marks its island table to reflect i
as a dependent node. When sponsor key update reply comes back, then j sends
i the new key.

6. When node i receives the message, it updates its island table to make j its
sponsor for the particular island. �

Figure 2·7 (a) shows an illustration of the join operation. To reduce the number of

messages for establishing or joining a new island, we add the message relay capability,

where if two anchor nodes are at the same trust level, then the second anchor can

directly send the island key request to the node in its ward, as shown Figure 2·7 (b).

33

Anchor1 PE3

PE4 PE5

Anchor2 PE6

PE7 PE8

Anchor3 PE9

PE10 PE11

Anchor0 PE0

PE1 PE2

1

2 3

4

5

Anchor1 PE3

PE4 PE5

Anchor2 PE6

PE7 PE8

Anchor3 PE9

PE10 PE11

Anchor0 PE0

PE1 PE2

1

2

3

4

(a) (b)

Figure 2·7: The two forms of the join operation protocol.

Protocol 2.4.2. The leave operation protocol is as follows:

1. Node i sends to node j, its sponsor for an island, a leave request. j sends the
new island key KG′

v
to its node sponsor of the island for propagated updates.

When the sponsor’s reply arrives, node j removes i from its island table and
sends a reply to i.

2. When node i receives the message, it updates its island table for the particular
island. �

Islands dynamically change when certain execution events occur. For example,

when a cache-miss involves a remote access and the processing node making the cache

request is not part of the island holding access key to the memory block of interest.

This event will lead to an island join operation. Dynamic task and thread schedul-

ing, re-scheduling and load re-balancing may also activate idle nodes and create join

operations. When tasks or threads finish or exit the system, these events may trigger

leave operations.

Both join and leave operations may lead to a new island topology. In such cases,

the routing connectivity graph of the island needs to be rebuilt and associated routing

tables will need to be updated. During the re-keying process, network virtual channels

are also reset to prevent VC plowing.

34

2.5 Untrusted Processing Element Resistance and Privacy
Preservation

Protocols 2.4.1 and 2.4.2 have provided a convenient and trustworthy approach to

allow a node to join and leave a virtual island. However, in this approach, an assump-

tion is made that, although nodes have different trust levels, they will remain honest

in the entire join and leave processes. This means that: (1) a node i will only apply

for an island using an access code AC matching its trust level; and (2) a sponsor node

j will verify the requesting node i’s trust level honestly and will not let in any of the

disqualified nodes.

With any of the above conditions broken, there will be grave vulnerabilities in the

system. For example, since the access code AC is a static string, any node who has

knowledge of this code (by legal or illegal means) can request for an island key it does

not deserve. Another scenario can be that a sponsor node j, say from an unknown

island, treats its sponsorship with misconduct by letting in a node without a proper

AC.

Additionally, there may also be a need for a requesting node to join and leave

an island silently without being known by other nodes and even the anchor nodes,

except a necessary sponsor. This applies particularly to the scenario when a highly

trusted node has to join a lower trust-level island and it does not want to be listed

as a potential sponsor. This invisible join ensures that its public key will not be

requested by other untrusted nodes who also want to join the island.

In response to these vulnerabilities and privacy demands, we propose a set of

corresponding solutions that enhance the join protocol 2.4.1. With these solutions:

1. We apply a dynamic access code AC fetching protocol, so that only the nodes

properly being verified and applying for AC can present to its sponsor node a

legal AC, which is also tailored for the requesting node.

35

2. We apply a threshold join authorization protocol, so that it takes more than

one sponsor node to allow a join of a new node. Thus, even if one sponsor node

accepts invalid join request, other sponsor(s) can prevent invalid joins.

3. We apply an invisible island join request protocol, so that a requesting node with

a higher trust level can hide its lower trust-level destination from the anchor or

any other nodes. The privacy of the node is preserved and it will not be listed

as a potential sponsor in a lower trust-level island.

4. In addition, we propose a group anonymous authentication protocol (GAAP),

which enables the new architectural model to verify the elements’ trust levels

without revealing their individual identities. This protocol can be applied to

many area where authentication and privacy are both demanded.

This section describes the protections of the key management approach in Sec-

tion 2.4, under the assumption of dishonest entities’ existence. The protection scheme

consists of 4 protocols to address the problems mentioned above.

2.5.1 Dishonest Requesting Nodes Resistance — Tailored Access Code
(AC) Fetching

As introduced in Section 2.3.2, the access code AC is one of the key elements in the

proposed architectural model. It is derived from the island key, and grants a node

with the permission to access the block of data which matches the node’s trust level.

The AC is a static, shorter version of island key KGv and remains the same to any

node acquiring it. Its generation and storage are not privacy preserving. This means

any node with this string will be able to make a request, and there is no particular

protection approach to prevent nodes from re-using it without authorization.

A desirable secure AC fetching would require that each node has to dynamically

acquire a temporary (one-time) and tailored AC before its join request; this AC

36

should be valid only once for this request and for this node. When node i is authen-

ticated and verified with its trust level, it needs to acquire a temporary AC, whose

value is only known to itself. To do so, it will firstly send a masked string to the

Access Code Table, who will sign the masked string. Then, i will remove the mask

without destroying the signature. The signature and a proof of knowledge of the

string will be sent to its prospective sponsor j for AC verification.

The figurative illustration of this procedure is shown in Figure 2·8.

Access Code
Table Nodei

10010...

10010...

Nodei

10010...

Nodej

(a)

10010...

(b)

Commit

Figure 2·8: (a) A temporary AC is dynamically generated and signed.
(b) The AC now becomes the signature and the proof of knowledge of the
signed content, to be verified by node j.

Protocol 2.5.1. Inspired by the compact e-cash (Camenisch et al., 2005) scheme,
we propose the following protocol for the dynamic AC fetching.

1. Node i firstly proves its authenticity and trust level to the Access Code Table
(ACT) through authentication (e.g., through a hardware one-way function such
as PUF (see Chapter 3)).

2. Node i selects an arbitrary string x, computes its commitment COM(x). For sim-
plicity, a commitment here can be considered as a one-way hash.

3. Node i selects a masking function c(), such that c(x) leaks zero knowledge of x.
In addition, there exists a function c′() such that c′(c(x)) = x.

4. Node i shows c(x) to the ACT. The ACT signs it with function S ′(c(x)) and re-
turns it to the device. In addition, there exists a function S() that S(S ′(c(x))) =

c(x). This function S() is known by all the current island members.

37

5. At the time of the join request, node i applies c′(S ′(c(x))) = S ′(x), which is the
temporary AC, and sends COM(x) together with S ′(x) to node j.

6. Node j applies S(S ′(x)), and verifies if:

COM(S(S ′(x)))
?
= COM(x). (2.1)

If so, then node j agrees to be the sponsor of node i. �

∗ (Note: The c(), c′(), S(), S ′() functions also satisfy commutative encryption prop-
erty.)

In this way, the AC is dynamically generated and no longer a reusable string.

Consequently, the Access Code Table (ACT) is replaced by the verification of equation

COM(S(S ′(x)))
?
= COM(x), which carries out the same task to check that the PE

is part of the island authorized to access the memory block.

2.5.2 Dishonest Sponsor Tolerance—Threshold Join Authorization

In Protocol 2.4.1 Step 5, node j, the prospective sponsor, will need to first decrypt the

request EKPj
(EKSi

(Mij(rqKGv
))), and then check node i’s AC. Upon the verification

of the AC embedded in rqKGv
, node j determined whether to send the new island key

KG′
v
to node i.

Although in Section 2.5.1 the new model ensures the proper fetch of AC, if a

sponsor node j is not honest, then it could let in any node with or without a qualified

AC. This might not happen among the sponsors on the highly trusted islands or

trusted islands. However, it is possible among the untrusted or unknown ones in

Figure 2·4.

Therefore, we propose a dishonest sponsor tolerance scheme that does not put the

trust on a single sponsor. Instead, it takes the permission from multiple sponsors to

enable the join operation. In this scheme, we set a threshold t where node i must

38

acquire the permission from no less than t of any sponsor nodes in the desired island.

Less than this threshold, node i is unable to join.

Such a group decision approach has been proposed by a number of research efforts

(Ohkubo et al., 1999) (Iftene, 2007) (Chu and Tzeng, 2008). Briefly speaking, to gain

the access to the desired island, node i must acquire an authorization token A. In that

island, each of the existing nodes holds its own id and a ballot, which is computed

by Shamir’s secret sharing equation based on A and its id. After verifying the AC

in node i’s request message, the prospective sponsors who agree to grant i the island

key will send their ballots to i, and those who do not agree will not. Node i needs to

collect at least t ballots to retrieve A to prove its qualification for KGv . Figure 2·9

depicts the voting procedure.

Is

la
nd

 v

Nodej1

Nodej2

Nodejn

...

t A
ids

Ballots

Nodei

join

Figure 2·9: Node i has to collect at least t supportive sponsors to gain
access to island v.

Protocol 2.5.2. The threshold island key authorization protocol with dishonest spon-
sor tolerance has two stages:

1. Ballot Distribution:

(a) For an authorization token A at an island, its commitment COM(A) is

39

made publicly known to all existing nodes;

(b) Denote node j’s id as idj, then node j’s ballot βj is computed by:

βj = a0 ⊕ a1idj ⊕ a2id
2
j ⊕ · · · ⊕ Aidt−1

j , (2.2)

where all the coefficients of a can be arbitrarily chosen.

2. Threshold Voting:

(a) Node i has to contact t prospective sponsors, who will verify its AC (some
dishonest sponsors may not). Only the sponsors who agree to let i join
will send their ballots to i. If there are at least t sponsors supporting the
decision, then with the Lagrange interpolation formula:

A =
t−1⊕
j=0

βj∏t−1
j=0,j ̸=k (idk ⊕ idj)

, (2.3)

the authorization token A can be reconstructed by node i. If there are
less than t supportive voters, then A remains unknown to i, meaning the
join request is denied;

(b) Node i computes COM(A) and proves to all the sponsors it reaches the
qualification threshold. Then, the island key will be granted by any of
the supportive sponsors.

(c) Once i joins the island, it will hold its ballot βi as a potential sponsor
too. �

Equations (2.2) and (2.3) are the share distribution and secret reconstruction

equations of the t-threshold secret sharing (TSS) scheme, which was first introduced

by Shamir (Shamir, 1979) and later studied by many researchers. With this tech-

nique, the probability of admitting a disqualified node with a single dishonest sponsor

is eliminated. For example, at an unknown trust level island where t = 2, a dishon-

est sponsor decides to casually give its ballot to node i, whose AC is disqualified.

Another sponsor checks the AC faithfully and decides not to support the join of i.

Then, without enough ballots, information of A remains unknown to node i. Thus, i

40

cannot acquire KGv by showing COM(A).

2.5.3 Threshold Join Authorization with Cheater Tolerance

The threshold authorization presented in Section 2.5.2 assumes that each sponsor

will truthfully turn in their ballots (shares). It does not handle the situations when

malicious sponsors (cheaters) distort their shares, or try to reveal the authorization

token A collectively.

In this section we propose a stronger threshold join authorization scheme with

cheater tolerance. We not only aim to detect any cheating in the authorization

procedure, but also identify the cheaters.

Share Verification and Secret Verification

An interesting fact is that, the ballot/share distribution Eq. 2.2 is inherently equiva-

lent to the non-systematic encoding equation of the well-known Reed-Solomon (RS)

error correcting codes. RS codes are maximum distance separable (MDS) codes which

meet the Singleton bound with equality. With such a distribution equation, an (n, t, d)

Reed-Solomon codeword (β0, β1, · · · βn−1) is encoded with n symbols (shares) in total,

t information symbols, and distance d = n− t+1 which corrects up to n−t
2

erroneous

symbols with algorithms in (Berlekamp, 2015), (Gao, 2003). Usually an assumption

is made that there are no more than t dishonest shareholders so that they cannot

recover the secret token. Denote the estimated number of cheating shareholders as

cest, then we have:

cest < n/3 (2.4)

[Eq. 2.4] indicates that if n instead of t shareholders are involved in the secret

reconstruction and [Eq. 2.4] holds, then we can tolerate up to n/3 cheaters by a RS

decoder while retrieving the correct secret. However, if the actual number of cheaters

cact > cest, then there is a chance that the system will mis-detect cheaters.

41

Another approach is to verify the secret (Wang et al., 2016b). Usually before

being shared, the secret is encoded with some modification detection capability. Then

after reconstruction the system will be able to verify the secret’s authenticity to tell

whether there is any dishonesty. However, this approach usually can only detect

but not identify the cheaters. A standard cryptographic hash function (HMAC) can

be used here. An alternative is the Algebraic Manipulation Detection (AMD) code

[(Wang and Karpovsky, 2011)] which supports flexible digest size.

Unlike HMAC, the AMD codes operate over finite fields and its security level is

adjustable by block size b. The AMD encoding is defined as follows:

Definition 2.5.1. Let K = (K1, K2, · · · , Km), where Ki ∈ GF (2b) is a randomly
generated b-bit vector. An gth order Generalized Reed-Muller code (GRM) with
m variables consists of all codewords (f(0), f(1), · · · , f(2bm − 1)), where f(K) is a
polynomial of K = (K1, K2, · · · , Km) of degree up to g. Let

A(K) =


⊕m

i=1K
g+2
i , if g is odd;⊕m−1

i=2 K1K
G+1
i , if g is even and m > 1;

where
⊕

is the accumulated sum in GF (2b). Let

B(K,S) =
⊕

1≤j1+j2+···+j1≤g+1

yj1,j2,··· ,jm

m∏
i=1

Kji
i ,

where
∏m

i=1K
ji
i is a monomial of R of a degree between 1 and g+1. And

∏m
i=1 K

ji
i /∈

△B(K,S) which is defined by:{Kh+1
1 , Kg+1

2 , · · · , Kg+1
m }, if g is odd;

{Kg+1
2 , K1K

g
2 , · · · , K1K

g
m}, if g is even and m > 1.

Let f(K,S) = A(K)⊕B(K,S), then a generalized AMD codeword is composed of
the vectors (S,K, f(K,S)), where S is the information portion, K the random vector,
and f(K,S) the redundancy signature portion [(Wang and Karpovsky, 2011)]. �

Remark 2.5.1. If the attack involves a non-zero error on the information S, which
is the major purpose of almost all attacks, then in f(K,S) the term A(K) can be

42

omitted [(Bu and Karpovsky, 2017)]. Further more, if only one random number vector
is used, the encoding equation can be further more simplified to:

AMD(K,S) = f(K,S) =
⊕

1≤j1+···+ji+···+jm≤h+1

Sj1,··· ,ji,··· ,jmK
ji (2.5)

where Sji is a b-bit block of S. �

The Robust and Adaptive Secure Secret Sharing Scheme (RASSS)

In this section we combine the share and secret verifications with group testing

and hardware root of trust, to construct a secure and robust secret sharing scheme

(RASSS) with strong cheater tolerance (Bu et al., 2018c). RASSS has 4 adaptive

stages, that a more powerful stage will only be activated when the previous stage

fails. Thus the scheme functions in a cost-efficient way and consumes minimal re-

sources on average.

The work flow of the proposed scheme is shown in Fig. 2·10.

Stage 1: Encoding and Distribution of the Secret

First, we setup a authorization token reconstruction hardware module. This module

takes shares and IDs from sponsors and performs [Eq. 2.3] to reconstruct the token.

Also it is equipped with a secure key sharing channel on it. One trustworthy and

lightweight solution is to use a physical unclonable function (PUF), whose challenge-

response pairs can be used to establish key agreement.

Before sharing the secret authorization token, the proposed architectural model

will encode the token A with an Encryption-then-MAC function EtM() to E =

EtM(K,A). K is a PUF response randomly picked from the dealer’s repository,

which stores the challenge and response pairs (CRPs) of the reconstructor’s PUF.

The MAC function is for secret verification, and the encryption function is to prevent

passive cheaters to retrieve A stealthily. Let CHL be the corresponding challenge to

K. Then the dealer shares E to all shareholders with the following new distribution

43

Stage 1.

EtM() Encoder

S

E

Share Distribution

...

Stage 2. cest = 0

Secret
Reconstruction

Secret
Authentication

t

Is E legal?

Correct secret retrieved; cheaters identified.

Y

Stage 3. cest < n/3

Share Correction
(by Reed-Solomon

Decoder)

Able to correct
shares?

Secret
Reconstruction

Secret
Authentication

...
n

Is E legal?

Y

N

Stage 4. n/3 ≤ cest ≤ n-t

Cheaters
identified?

...
n

Y

N

cest > n -t
Extra Invitation

(optional)

N

Group Testing

Figure 2·10: Stage 1 and 2 are sufficient if the number of actual cheaters
cact = 0. If cheating is detected by Stage 2, then Stage 3 with RS decoder
is called under the assumption of cest < n/3. If Stage 3 fails then Stage
4 with group testing is able to identify n/3 ≤ cest ≤ n − t cheaters. If cact
is even beyond this scale, an extra invitation module can be introduced to
resolve the issue.

equation (Bu et al., 2017):

βi = CHL⊕ a1idi ⊕ a2id
2
i ⊕ · · · ⊕ Eidt−1

i . (2.6)

Stage 2: Secret Reconstruction

At the voting/authorization moment, first there will be t shareholders to participate

in the secret retrieving. The reconstructor will use [Eq. 2.3] to retrieve Ẽ, and the

44

following Lagrange interpolation formula to retrieve CHL:

CHL =
t−1⊕
i=0

idi · βi∏t−1
j=0,j ̸=i (idi ⊕ idj)

. (2.7)

The reconstructor now applies CHL to its own PUF to acquire K. Now it is able

to authenticate Ẽ by the message authentication code in the EtM() function.

If the authentication claims validity of the secret, then it is considered a successful

secret reconstruction with no cheat. If not, the scheme calls for Stage 3 for share

correction.

Stage 3: Client - Share Error Correction

This stage uses the Reed-Solomon error correction module in the classic protocol.

Here, n = 3cest + 1 shareholders will be invited to participate in the protocol, where

cest is the number of estimated cheaters defined by the system. The RS decoder will

try to correct the shares and then send them back to the secret reconstructor. If it

passes both the share correction (by RS decoder module) and secret verification (by

authentication function), then the secret reconstruction is successful. When cact <

n/3, the cheater tolerance probability is 100%. If either module fails then the protocol

ascends to its fourth stage, indicating that the actual number of cheaters cact ≥ n/3.

Stage 4: Client - Group Testing

This stage will be activated if the previously retrieved secret is not legal. It will

involve up to n shareholders, among whom there are at least n/3 cheaters. The client

will generate a group testing pattern which is able to identify up to cest = n − t

cheaters with a minimum number of t honest holders. Even if there are more than

n−t cheaters, it is still able to detect the cheating by the message authentication code

(MAC), although the correct secret is beyond reconstruction because of insufficient

honest holders.

The group testing pattern’s construction is as follows.

45

Construction 2.5.1. For any t-threshold secret sharing scheme, suppose among n

holders there are cest cheaters where 0 ≤ cest ≤ n− t. A test pattern to identify the
honest holders and attackers can be constructed as a binary matrix M of size T × n,
where T is the number of tests needed at most. The rows of M consist of all different
n-bit vectors with exactly t 1’s and so T =

(
n
t

)
. Each column of the matrix therefore

has
(
n−1
t−1

)
number of 1’s. The 1’s in each row (test) correspond to the shareholders

participating in that particular test. Each test is a two-step procedure:

1. A secret reconstruction to retrieve the secret Ẽ with its specific participants;

2. An authentication to retrieve the challenge CHL and K to verify the validity
of Ẽ.

The test syndrome is a T -bit binary vector u, where 0’s in u indicate a pass, and 1’s
authentication failure. �

The cheater identification algorithm is then described in Algorithm 1.

Algorithm 1: Cheater Identification Algorithm
For any t-threshold secret sharing scheme and its corresponding group testing matrix M
there are n shareholders participating in the tests indexed by H = {0, 1, 2, · · · , n− 1}.
Among the n shareholders there are cest cheaters where n/3 ≤ cest ≤ n− t.

1 Let w = (w0, w1, · · · , wn−1) be a n-digit vector and w = u⊤ ×M , where u is the T -bit
binary test syndrome and × is the multiplication of regular arithmetic.

2 The cheaters’ indexes belong to the set {l| wl =
(
n−1
t−1

)
}. and the rest of the holders are

honest. �

As we can see, the testing technique in Algorithm 1 requires
(
n
t

)
tests in total to

identify the cheaters. This can be a large number when n and t are large. Therefore

its adaptive form is given below in Algorithm 2 which drastically reduces the average

number of tests to a linear function.

If the group testing module in Stage 4 cannot successfully identify the cact cheaters

in the system, where n− t < cact ≤ n, then the number of honest shareholders is less

than t.

At this point, the proposed scheme will still raise the cheating alarm based on

the secret authentication. Moreover, the protocol is adaptive enough to be extended

46

Algorithm 2: Adaptive Cheater Identification Algorithm
For a test pattern M of size T × n generated by Construction 2.5.1. Let △T be the
number of tests needed to find the first 0 (a pass of authentication) in the test syndrome.

1 The n shareholders are indexed by H = {0, 1, 2, · · · , n− 1}. The t honest holders identified
by this test are indexed by I = {i0, i1, · · · , it−1}.

2 Now the system only needs to run at most n− t more tests whose participants are
{i0, i1, · · · , it−2, j}, where j ∈ H\I. Each test’s syndrome indicates holder j as an
attacker or not by 1 or 0.

3 The total number of tests needed to identify all holders is then at most △T + (n− t). �

to a further stage to include an invitation module. This module can pull in the

execution additional participants and perform new rounds of group testing, as shown

in Algorithm 3. From the hardware perspective, the invitation module can be power-

gated and disabled when not in use.

Algorithm 3: Extra Invitation Algorithm
Let the number of honest shareholders in the current group testing be △t and 0 ≤ △t < t.

1 Suppose the system is able to identify an extra set of t honest shareholders from another
group. Then these t honest parties can be combined into the current group with the
modified group testing matrix of size

(
n+t
t

)
× (n+ t).

2 With this new test pattern, the △t+ t honest shareholders can be identified and the rest
will be properly labeled as cheaters. �

2.5.4 Invisible Island Join

In these heterogeneous SoC architectures, the attacker needs to first identify the

victim node before devising an attack scheme. Consequently, any degree of node

identity obfuscation will harden the system’s security posture. Concretely, in cases

where a highly trusted node i wishes to join an untrusted or unknown island, it may

be favorable if its privacy can be preserved when communicating with other lower

trust-level nodes and even the anchor nodes who have introduced i to its sponsor j.

In a sense, node i enters an “incognito” mode.

For security purposes, we only allow trusted and highly trusted nodes to have this

invisible island join feature. This feature allows a node i to hide its destination from

47

the anchor who introduces it to the sponsor j, while still getting the public key of j

from the anchor, so that in the entire network, only j knows the join of i.

The brief idea is to make the public key request in an oblivious manner. In Pro-

tocol 2.4.1 Step 1, instead of putting the rqKPj
in the request message, i uses an

obfuscated message which does not reveal j’s identity. In step 3, anchor y responds

also with obfuscated public keys of all the nodes in its ward. Then, i is only able to

retrieve j’s public key but not others.

Figure 2·11 depicts the invisible join procedure:

KPj
Anchory Nodei

j

KPl KPj

KPh KPf

KPj

Figure 2·11: When node i makes an obfuscated request for j’s public
key, anchor y returns to i all the obfuscated public keys in its ward. The
obfuscation approach of those public keys by y is related to i’s request, in a
way that all the public keys are masked differently, and only j’s key can be
recovered by i.

Protocol 2.5.3. The invisible join protocol is as follows:

1. When node i wants to have j as its sponsor, it firstly notifies anchor y through
anchor x that it requests for one of the public keys anchor y holds;

2. Suppose anchor y has m nodes in its ward. It generates m random vectors {r0,
r1, · · · , rl, · · · , rm−1} with the same length of the public keys;

3. Anchor y has a pair of public-private keys {pky, sky}. Anchor y sends pky to-
gether with the m random numbers to i, while keeping sky to itself privately;

4. Particularly, i wants to connect with j, so i generates the following vector:

u = rj + Encpky(T), (2.8)

where T is a random vector and Enc() is a public-key encryption function;

48

5. On receiving u through anchor x, anchor y calculates:

tl = Decsky(u− rl) (2.9)

for all l ∈ {0, 1, · · · ,m− 1}, and Dec() is a public-key decryption function.

6. Anchor y sends all these m messages to i:

sl = tl +KPl
, (2.10)

for all l ∈ {0, 1, · · · ,m− 1}.

7. Node i computes:
KPj

= sj − T. (2.11)

8. In this way, node i acquires the public key of node j in the desired island. All
other public keys remain unknown to i, and the identity of j is unknown to all
other nodes including the anchor nodes, except j itself. �

This protocol leverages the 1-out-of-n oblivious transfer (OT) (Tzeng, 2004) (Li

et al., 2005) which provides invisibility of node i’s join into j’s island. This way i stays

unlisted from the sponsor list and even anchor nodes x and y in the join Protocol

2.4.1 do not know where it has joined. Thus, i’s public key will not be requested by

other low trust level nodes who want to join the island.

2.5.5 Group Anonymous Authentication Protocol

Although we leverage an oblivious transfer-assisted invisible join protocol to enable

elements with anonymity, their true identities are still revealed in each of the authen-

tication procedure. The authentication is a critical procedure and cannot be omitted,

since it is the foundation on which the the proposed architectural model determines

the security level of each element.

However, an ideal privacy-preserving system would be able to verify the elements’

attribute (security level, privilege etc.), without revealing the elements’ identities. We

49

now introduce a novel Group Anonymous Authentication Protocol (GAAP), which

enables the proposed architectural model to: (1) authenticate each element’s secu-

rity level (trusted, untrusted, unknown), (2) without compromising the element’s

anonymity.

In this protocol, each element still needs to perform authentication (through a

hardware one-way function, e.g., PUF (see. Chapter 3)) to verify its legitimacy in

the very beginning. Meanwhile, the verifier (the proposed architectural model) will

prepare for each trust level a unique pool of authentication tags. Then, according to

their trust levels, elements will fetch their own authentication tags from the pools in

a double-blind manner, which will be used for their authentication later on. The tag

fetching must satisfy a set of functionality and security criteria as follows.

Definition 2.5.2. The functionality of GAAP should satisfy:

(i) Anonymity: All elements in the same security level (group) should be indistin-
guishable to the verifier;

(ii) Unlinkability: The verifier should not be able to link several authentication
requests/tags to the same anonymous element;

(iii) Group Attribute: The verifier should be able to distinguish requests from dif-
ferent groups (security levels) by matching the authentication tags, without
revealing the individual identities of the requesting elements;

(iv) Collision-free Tag Fetching: When the tags are fetched in a double-blind man-
ner, the verifier should be able to identify any fetch collision (two or more
elements about to fetch the same tag) without revoking the anonymity;

(v) Multi-Group Membership: An element should be able to belong to multiple
groups. In other words, groups can have overlaps.

Definition 2.5.3. The security of GAAP should satisfy:

(i) Curious Authority-resistance: A curious authority such as a verifier, a key dis-
tributor, or a certificate manager, should not be able to learn the individual
identity of any element;

50

(ii) Impostor-resistance: Any element in a group should not be able to spoof an-
other. In addition, any number of collusive dishonest elements should not be
able to acquire more information than what they are granted;

(iii) Eavesdrop-resistance: A passive Man-in-the-Middle (MITM) should not be able
to acquire any information by eavesdropping the channel.

Before the mathematical definition, a figurative analogy is presented to illustrate

its major principles.

Analogy 2.5.1. A manager wants to give several groups of employees some one-time
passcodes to different buildings. So that each employee in a certain group can access a
corresponding building anonymously. For example, in group A with three employees,
the manager prepared three different passcodes for building x. Now the passcodes
should be picked up in a way that:

a. For security reasons, the passcodes cannot be left in an unsupervised room for
the employees to pick up freely;

b. There should be no collision in the picking of the codes among the three em-
ployees;

c. The manager should not know any employee’s code selection;

d. An employee should not know his two colleagues’ codes.

Thus, any employee can enter building x with his/her passcode, which does not
leak any information on his/her personal identity.

Such a demand can be implemented with the procedure illustrated in Fig. 2·12.

(1) Initial setup:

(a) There are three types of papers (blue, green, red) and three corresponding
solutions (αb, αg, αr). When a solution is applied to its pairing type of
paper, it does no harm to it. However, when it is applied to other types,
it permanently wipes out all the content from them. passcodes a, b, c are
written to the blue, green, and red papers respectively for multiple copies;

51

1

2

3

β1

β2

β3

αb

αg

αr

αb αg αr

1

2

3

γ

β1

β2

β3

β1

β2

β3

a b c

a

b

c

Figure 2·12: A 4-step passcode blind-fetching protocol. With this proto-
col, each employee can only acquire his/her own passcode, and will remain
completely unaware of other codes. The manager also does not know the
code selection of the employees.

(b) In addition, each of the 3 employees has a special colorless solution denoted
by β1, β2, β3, which can temporarily erase the content from any type of
papers, and by applying this solution again the content will be restored.
But βi cannot restore the content masked by βj if i ̸= j.

(c) At last, there is a solution named γ, that when mixed with α it changes its
color with a random bijection mapping back in {blue, green, red}, which
is unknown to the manager.

(2) The three employees are given three different solutions, and they come to an
agreement that each one picks one solution. At this point zero information of
the passcodes is known to anyone. In Fig. 2·12 employee 1 picks αb in order to
acquire passcode a, employee 2 picks αg to acquire passcode b, and employee 3
gets αr for code c. Their own solution β is mixed with the selected α respectively,
and then with solution γ. The resulted solution colors are a bijection of the

52

original color set. For example, in Fig. 2·12, αb+β1 is converted to red, αg+β2

to blue, and αr + β3 to green.

(3) The manager looks at the three new solutions and has no idea of what their
original colors are. Thus he also does not know about their passcode selection.
However, the manager can tell that they have made a collision-free selection.
So he applies each of the solutions to a set of passcode papers (green, blue, red)
with a, b, c on them. All the papers are now wiped out, some temporarily, and
some permanently.

(4) When each employee gets back his/her set of blank papers, he/she applies
his/her own β solution to those papers. Only the passcode on the previously
picked color paper can be restored, and the other two papers are garbage. The
employee can now use his own code (employee 1 gets a, 2 with b, 3 with c) to
access building x without being distinguished. �

The GAAP Protocol

In this protocol, an element (in distributed systems, devices) first proves its legitimacy

by being authenticated through its PUF. At this stage there is no anonymity and the

purpose is only to validate the participants for the tag fetching later on. Then,

the elements acquires their own authentication tags in a double-blind but verifiable

manner according to their security levels. Through tag matching, the elements can

be authenticated anonymously with only their security levels revealed.

We first define the following functions. The definitions are brief, so that the focus

remains on the protocol. More of the functions’ details will be given later.

◦ TagGen(n,m): for a group of n elements where each element can be authenti-

cated m times, the verifier uses this function to generate nm tags.

◦ IndexSel({j}, {i}): all elements in a group use this function to create a bijection

mapping from the element IDs to the tag indexes. The output of this function

is a set {cj}, where cj = i, meaning element j has chosen the ith tag.

53

◦ ColnChk({z}): this function checks if there are duplicates in the extensional

set {z}.

◦ Enc(x, pkj): the verifier uses this function to encrypt a message x with the

public key pkj of element j.

◦ Dec(y, skj): element j uses this function to decrypt y with its private key skj.

◦ Initializer Module (IM): its only task is to generate and distribute random

numbers. It has no other functional capability and cannot participate in any

other activity.

◦ ⊕: an involution operator such as xor.

Protocol 2.5.4. Let us assume that there are w elements and u groups (e.g., parti-
tioned by security levels) in a system. Each element is firstly authenticated through
its PUF with its identity revealed to the verifier. For an arbitrary group g, there
are n elements. The Group Anonymous Authentication for group g is performed as
follows – other groups operate in a similar manner:

1. For the group g, the verifier uses TagGen(n,m) to generate nm arbitrary au-
thentication tags ti stored in set Tg. There are n elements {Elmj} indexed by
j ∈ {0, 1, · · · , n− 1}. Each element fetches m tags to enable m authentication
sessions. Every element has a public-private key pair: {pkj, skj};

2. In the 1st round, the verifier arbitrarily takes n tags out of the nm tags, and
indexes them by i ∈ {0, 1, 2, · · · , n− 1} as {t0, t1, t2, · · · , ti, · · · , tn−1};

3. The n elements come to an agreement over the index i selection using the
function IndexSel({j}, {i}) = {cj}. Each element’s choice is cj = i, meaning
that the element Elmj plans to acquire tcj . This agreement should be performed
in a collision-free manner. Any double-dealing in the agreement will be spotted
in step 6) by the verifier;

4. A Initializer Module (IM), which essentially is a random number generator,
generates n random vectors {r0, r1, r2, · · · , rn−1}, and a random number d ∈
{0, 1, 2, · · · , n − 1}. The IM sends d and rd to all the elements. It also sends

54

all the random vectors {r0, r1, r2, · · · , rn−1} to the verifier. The transmission
can be protected against MITM eavesdropping simply by using the public key
systems of the verifier and elements;

5. Each element computes
ej = cj + d (mod n), (2.12)

and sends ej to the verifier. ej leaks zero-knowledge of cj since the verifier has
no knowledge of d;

6. The verifier checks if there are any index selection collisions using the function
ColnChk({ej}), where j ∈ {0, 1, · · · , n − 1}. If any element fools the index
selection agreement function IndexSel() in step (3), it will be detected with
probability of 1 without nullifying the tag selection process. If no collision, the
verifier proceeds;

7. For any element Elmj’s ej, the verifier computes:

fi = ti ⊕ rej−i (mod n) (2.13)

for all i ∈ {0, 1, · · · , n− 1}, and stores the results in the set of {fi}Elmj
whose

cardinality is n;

8. The verifier uses each element’s public key pkj to compute Enc({fi}Elmj
, pkj),

and sends the results to Elmj;

9. When element Elmj receives its tag set, it uses Dec(Enc({fi}Elmj
, pkj), skj)

to decrypt and retrieve {fi}. Then by the previously received rd from the IM,
Elmj computes its selected authentication tag by:

tcj = fcj ⊕ rd, (2.14)

and it has zero-knowledge of the other tags;

10. All the participants repeat the steps above for another (m− 1) rounds allowing
each element to acquire m tags. In each round, the IM generates a new set of
random vectors {r0, r1, r2, · · · , rn−1} and a new d;

11. During the authentication itself, an element shows one of its tags to the verifier
to prove that it belongs to group g. If the shown tag matches with a tag in the
verifier’s set Tg, the element is successfully authenticated. Then the element

55

can legitimately request privileges assigned to its group without revealing its
individual identity. �

Remark 2.5.2. In Protocol 2.5.4 steps 3 and 4, cj is equivalent to the solution α in
the “building passcode” illustration presented in the beginning of this section. The
d generated by IM is equivalent to the solution γ, which obfuscates the passcode
selection to the verifier. Each device’s public-private key pair is equivalent to the
solution β.

Protocol 2.5.4 step 7 [Eq. 2.13] is equivalent to the step (3) in the “building
passcode” illustration, which erases the selected paper temporarily, and destroys all
other papers permanently. It ensures the double blindness that the verifier does not
know which tcj is revealed to Emj, and Elmj does not know other elements’ tags
neither.

We now prove the GAAP’s satisfaction on Definition 2.5.2 and 2.5.3.

Proof: Satisfaction of functionality Definition 2.5.2

(i) Anonymity: Since the selection of authentication tags is obfuscated by d which

is unknown to the verifier, the verifier does not know the obfuscated index

selection;

(ii) Unlinkability: Since in Protocol 2.5.4 step 10, during each round of tag fetching

a new obfuscation vector d is generated, the verifier will not be able to link two

tags fetched by the same element in two independent rounds;

(iii) Group Attribute: By generating unique pools (sets) of authentication tags for

different groups, the verifier is able to distinguish the group attribute of all the

devices;

(iv) Collision-free Tag Fetching: Although d is unknown to the verifier, this unique

offset creates a bijection mapping from the index selection to the obfuscated

index selection. Therefore any tag fetching collision can be immediately spotted;

56

(v) Multi-Group Membership: An element can fetch multiple groups’ authentication

tags in order to be a member of them, as long it is properly authenticated in

the very beginning through its PUF. �

Proof: Satisfaction of security Definition 2.5.3

(i) Curious Authority-resistance: It is obvious that the verifier is unable to link au-

thentication tags to elements due to the GAAP’s Anonymity and Unlinkability

properties;

(ii) Impostor-resistance: Due to the collision check in Protocol 2.5.4 step 6, no

element can spoof others by fetching the same tags. Furthermore, collusive

elements cannot acquire any more tag information other than the ones selected

by their own.

(iii) Eavesdrop-resistance: The obfuscated tags are encrypted by each element’s

public key, and so a MITM cannot acquire any information from the channel.

�

Note: It is notable that the proposed GAAP does not resist the verifier and IM

collusion. Filling this gap will be the future work of this protocol.

The GAAP Hardware Primitive
We now present the GAAP hardware design details. The hardware primitive im-

plementation as a standalone module enables convenient add-on deployment option

in existing connected device network systems. The add-on consists of three compo-

nents: an initializer module, a plug-in for each component/device, and a plug-in for

the verifier.

Initializer Module (IM)

The only task of initializer module (IM) is to generate and distribute random numbers.

It does not participate in any other activity. An IM consists of two sub-modules as

57

shown in Fig. 2·13: a random number generator (RNG), and an encryption unit

(ENC) to carry out the public key Enc() function.

IM
RNG

Element Element... Verifier

ENC

Random Vectors {d, rd}

Figure 2·13: The IM functions as described in Protocol 2.5.4 step 4).

Authentication Module for Elements

As shown in Fig. 2·14, the first task of an element’s plug-in is to coordinate with

other elements for index selection agreement in Protocol 2.5.4 step 3).

 Element Authentication Module

Index
Selection

MEM

Index
Obfuscation

DEC

Tag
De-obfuscation

{d, rd}

Tag

rd

Ve
rifi

er

Obfuscated Index

Element Authentication Module
MEM

Updated IndexSet

d

IndexSet

IM

SelectedIndex

Figure 2·14: The element authentication module.

The Index Selection function is described as Algorithm 4.

Then the SelectedIndex cj is obfuscated by [Eq. 2.13] in Protocol 2.5.4 step 5)

before being sent to the verifier. In Protocol 2.5.4 step 9), on receiving the encrypted

58

Algorithm 4: Index Selection Agreement Algorithm
1 IndexSet = [0 to n-1]
2 for (from Elm0 to Elmn−1) do
3 SelectedIndex = random.choice(IndexSet)
4 IndexSet = IndexSet.remove(SelectedIndex)
5 end

authentication tags, the DEC and Tag De-obfuscation modules are able to retrieve the

targeted tag tcj by Dec() function based on the public-key scheme and de-obfuscation

[Eq. 2.14].

Authentication Module for the Verifier

In the verifier authentication module as shown in Fig. 2·15, the Tag Generator is

practically another RNG, generating nm authentication tags as in Protocol 2.5.4

steps 1) and 2).

 Verifier Authentication Module

Tag Generator

MEM

ENC

Collision Check

Tag
Obfuscation

Element Element...

...

IM

...

Tags

Obfuscated Index

Obfuscated
Tags

Encrypted
Obfuscated

Tags

Random Vectors

Figure 2·15: The verifier authentication module.

On receiving the obfuscated index selections from devices, the Collision Check

functions (described in Algorithm 5) as Protocol 2.5.4 step 6). Since the obfuscated

index selection is a bijection to the original index set, we are able to adopt an efficient

collision check algorithm. First, each obfuscated index is assigned with an extra

59

FlagBit. The FlagBit is initialized to 0, indicating this vector has not been visited

yet. Then the Collision Check module traverse the obfuscated index set and uses each

element as a pointer to visit another. If any element is found to be visited more than

once, a collision is detected.

Algorithm 5: Collision Check with time complexity O(n)
Initialization:
ObIndexSet = [n obfuscated indexes]
for i = 0 to n do

1 ObIndexSet[i].FlagBit = 0
2 end
3 for i = 0 to n do
4 if ObIndexSet[ObIndexSet[i]].FlagBit == 0 then
5 ObIndexSet[ObIndexSet[i]].FlagBit = 1
6 end
7 else
8 Report collision on ObIndexSet[i]
9 end

10 end

With the previously received n random vectors, the Tag Obfuscation module

performs [Eq. 2.13] in Protocol 2.5.4 step 7). [Eq. 2.13] is a critical operation to

ensure the delivery of tcj and concealment of other tags. The obfuscated tags are

then encrypted by the ENC module before being sent back to the devices, as in

Protocol 2.5.4 step 8).

2.6 Architecture Support

The design methodology behind the proposed architectural model is to provide hardware-

supported mechanisms for designer/user-defined security rules and their enforcement

in heterogeneous multicore system-on-chip (SoC). It effectively decouples the security

or trust level management of processing cores from the integrated SoC.

60

2.6.1 Hardware Implementation of the Network Interface

The hardware template depicted in Figure 2·16 can be described as the high-level node

module of the new architectural model. Each processing node has: (1) a processor

socket to support integration of third party processing IPs; (2) a network interface

module supporting the novel secure computing protocol; and (3) a virtual channel

router. A major contribution of this work is the complete decoupling of the system

level fine-grained security management scheme from the processing elements (cores or

tenants) and executing software security level. Any processing unit executing any type

of software can be installed in the processor socket. Similarly, the proposed security

and trust models are oblivious to the on-chip network router microarchitecture.

The hardware modification is constrained to the Network Interface (NI) module.

The NI is responsible for converting data traffic coming from the local processor and

cache subsystem into packets/flits that can be routed inside the network, and for

reconstructing packets/flits into data traffic at the opposite side when exiting the

NoC. The new network interface has two datapaths: one encrypted and one bypass.

The encrypted datapath’s functional block description is provided in Section 2.6.2.

The Bypass path through the NI module enables the disabling or power-gating of the

encryption function at a given core site.

61

Key Box

Key
Manager

Conventional
Front-End
Packetizer

Hash Function
Engine

Enc-Dec
Engine

MAC

TRNG

Bypass Datapath

Public Key Exchange Path

New
Back-End
Packetizer Master Key

Key ChainRouter

Crossbar
Switch

...

Routing
Module

VC
Allocator

Switch
Allocator

Network Interface

IP SOCKET

Figure 2·16: The proposed architectural model. A new Network In-
terface is the key component of it. All of the security features of the
system are independent of the processing unit.

2.6.2 Communication Protocol

The communication in the proposed architectural model is an encryption-based scheme.

Its communication protocol is as follows:

1. A local processor unit generates message traffic consisting of memory load and

store operations, cache coherency messages and inter-core communication traffic.

2. The Front-End Packetizer converts the processor produced data traffic into pack-

ets that can be used for communication with the Network Interface (NI).

3. The appropriate communication key is selected by the Key Manager in the NI.

All of the keys are stored in the Key Box, which also contains the Key Manager

function block. There is a single master key per processing site stored in the

62

Key Box. The set of all the other keys is referred to as the Key Chain.

4. The message authentication code (MAC) is generated by feeding the key and

one random number into the Hash Function Engine. MAC is used as session

encryption key, so that even the same core-pair can have multiple distinctive

communication sessions.

5. The processor generated packets are fed into the Encryption Engine with the

MAC to be encrypted. We implement AES key encryption algorithm for the

actual encoding of packets, given its low hardware logic cost.

6. The Encryption Engine uses the MAC as a key to encrypt the data using the

AES algorithm.

7. The encrypted packet and a second random number are re-packetized by the

Back-End Packetizer.

8. On the receiving side, packets are first depacketized into encrypted packets and

random numbers. The random number is used with the communication key to

generate the MAC used to decrypt the packet. The blue directional edges in

Figure 2·16 show the return side data-flow. �

2.6.3 Trust-Aware On-Chip Routing Algorithm

The on-chip routing is also aware of the logical security islands and tries to either

prohibit or limit the traversal of zones by non-member generated traffic. It uses a

similar application-aware deadlock-free oblivious routing approach as introduced in

(Kinsy et al., 2009). Algorithm 6 describes the added routing function.

63

Algorithm 6: Trust-aware on-chip routing algorithm
1 Objective
2 Minimize intersections across all routing path sets among islands;
3 A system with a list of processing elements P = {p1, p2, ..., pn} ;
4 With the following corresponding list of routers R = {r1, r2, ..., rn} ;
5 Find a set of routes S = {S(R1), S(R2), ..., S(Rn)} ;
6 Such that ∀ pi ∈ P, S(Ri) = {ru, ..., rv} with 1 ≤ u < v ≤ n while

minimizing ∀(i, j) S(Ri) ∩ S(Rj). ;
7 The association of a processing element pi to a router rj is denoted pi ◃ rj (a pi runtime

trust classification depends on the IP core trust level and the security of the program
running on the core. ;

8 ∀ pi ∈ P, S(Ri) = ϕ;
9 for i ∈ [1, n] do

10 for j ∈ [1, n] do
11 if (pi ◃ rj) then
12 S(Ri) = S(Ri) ∪ {rj}
13 end
14 end
15 end
16 while (∀ pi ∈ P, |S(Ri)| > 1 and ∀(i, j) S(Ri) ∩ S(Rj) ̸= ϕ) do
17 if (∃(pi, pj) | S(Ri) ∩ S(Rj) ̸= ϕ) then
18 if ((|S(Ri)| > 1) ∧ (|S(Rj)| > 1)) then

19 S(Ri) =

{
S(Ri)− {S(Rmin) ∩ S(Ri)} where
S(Ri) ({S(Rmin) ∩ S(Ri)}
{re} for any re ∈ S(Ri) otherwise

20 end
21 end
22 end

2.6.4 Illustrative Example

Figures 2·17 and 2·18 show the case where the data placement for an application task

and read and write operations dynamically create a security group. The initial place-

ment is shown in Step 1. The effect of a read-only request from PE 2 is presented in

Step 2. A read/write request from PE 4 causes the group to expand (Step 3). In Step

4, an attempt to read/write by PE 6 through PE 2 fails (red edge), since PE 2 cannot

be a sponsor. Sponsorship consists of authorizing other threads/tasks/processes to

read or write a copy of data without informing the initial owner. Consequently, PE

64

6 had to join the security group through PE 1 (Step 5). In Step 6, PE 8 is able to

join the group through PE 6 and bypass PE 1’s sponsorship.

Sponsorship	
 consists	
 of	
 authorizing	
 other	
 threads/tasks	
 or	
 processes	
 to	
 read	
 or	

write	
 a	
 copy	
 of	
 data	
 which	
 informing	
 the	
 initial	
 owner.	
 Step	
 6	
 shows	
 such	
 a	
 case	

where	
 PE	
 6	
 shares	
 with	
 PE	
 8	
 a	
 data	
 item	
 without	
 going	
 through	
 PE	
 1.	
 	

	

	

Figure	
 5:	
 Group-­‐forming	
 example	
 (steps	
 1	
 through	
 4)	

	

Figure	
 6:	
 Group-­‐forming	
 example	
 (step	
 5	
 and	
 6)	

	

As	
 shown	
 in	
 Figure	
 7,	
 PE	
 1	
 has	
 no	
 record	
 of	
 the	
 sharing	
 between	
 PE	
 3,	
 5,	
 7	
 and	
 PE	
 4.	

This	
 is	
 done	
 to	
 avoid	
 updating	
 the	
 whole	
 group	
 structure	
 on	
 every	
 entry	
 or	
 exit.	

Therefore,	
 the	
 control	
 of	
 the	
 security	
 policies	
 becomes	
 distributed.	
 Changes	
 are	

more	
 localized	
 and	
 the	
 protocol	
 is	
 more	
 resilient	
 to	
 group	
 membership	
 change	

notification	
 propagation	
 delay	
 or	
 large	
 broadcasting	
 functions.	
 	

	

	

	

���� ����

����

���
������������	��

����

����

��	�
��������

����

��	�
����������	��� ��	���

����

����

		�����������

����

	�����������		�
��

����

�	�����������

	�
��

	�
��

�����)� �����*� �����+� �����,�

{�} {pe2}

{�} {�} {�}

{pe2, pe4}

{�} {�}

{pe2, pe4}

{�}

����

����

		�����������

����

	�����������

����

	�����������

		�
��

�	�����������

	�
��

	�
��

	�
��

	���

	���

��
��������

	���

�
��
��������

	���

�
��
��������

����

�
��
��������

�
����

�
����

�
����

	���

��
��������

����
�����-� �����.�

{�} {�}

{�}

{�}

{�}

{pe2, pe4, pe6} {pe2, pe4, pe6}

{pe8}

{�}

Figure 2·17: Group-forming example (Steps 1–4).

Sponsorship	
 consists	
 of	
 authorizing	
 other	
 threads/tasks	
 or	
 processes	
 to	
 read	
 or	

write	
 a	
 copy	
 of	
 data	
 which	
 informing	
 the	
 initial	
 owner.	
 Step	
 6	
 shows	
 such	
 a	
 case	

where	
 PE	
 6	
 shares	
 with	
 PE	
 8	
 a	
 data	
 item	
 without	
 going	
 through	
 PE	
 1.	
 	

	

	

Figure	
 5:	
 Group-­‐forming	
 example	
 (steps	
 1	
 through	
 4)	

	

Figure	
 6:	
 Group-­‐forming	
 example	
 (step	
 5	
 and	
 6)	

	

As	
 shown	
 in	
 Figure	
 7,	
 PE	
 1	
 has	
 no	
 record	
 of	
 the	
 sharing	
 between	
 PE	
 3,	
 5,	
 7	
 and	
 PE	
 4.	

This	
 is	
 done	
 to	
 avoid	
 updating	
 the	
 whole	
 group	
 structure	
 on	
 every	
 entry	
 or	
 exit.	

Therefore,	
 the	
 control	
 of	
 the	
 security	
 policies	
 becomes	
 distributed.	
 Changes	
 are	

more	
 localized	
 and	
 the	
 protocol	
 is	
 more	
 resilient	
 to	
 group	
 membership	
 change	

notification	
 propagation	
 delay	
 or	
 large	
 broadcasting	
 functions.	
 	

	

	

	

���� ����

����

���
������������	��

����

����

��	�
��������

����

��	�
����������	��� ��	���

����

����

		�����������

����

	�����������		�
��

����

�	�����������

	�
��

	�
��

�����)� �����*� �����+� �����,�

{�} {pe2}

{�} {�} {�}

{pe2, pe4}

{�} {�}

{pe2, pe4}

{�}

����

����

		�����������

����

	�����������

����

	�����������

		�
��

�	�����������

	�
��

	�
��

	�
��

	���

	���

��
��������

	���

�
��
��������

	���

�
��
��������

����

�
��
��������

�
����

�
����

�
����

	���

��
��������

����
�����-� �����.�

{�} {�}

{�}

{�}

{�}

{pe2, pe4, pe6} {pe2, pe4, pe6}

{pe8}

{�}

Figure 2·18: Group-forming example (Step 5–6).

As shown in Figure 2·19, PE 1 has no record of the sharing between PE 3, 5,

7 and PE 4. This is done to avoid updating the whole group structure on every

entry or exit. Therefore, the control of the security policies becomes distributed.

65

Changes are more localized and the protocol is more resilient to notification propaga-

tion delay associated with group membership alterations. The evaluations show that

this distributed approach is more scalable than the full broadcast scheme with equal

security guarantees.

	

Figure	
 7:	
 Group-­‐forming	
 example	
 (step	
 7)	

	

Our	
 results	
 show	
 that	
 this	
 distributed	
 approach	
 is	
 more	
 scalable	
 than	
 the	

conventional	
 broadcast	
 schemes.	
 	

	

	

Evalution	
 section	

	

�
��

�
��

�����������

�
��

�
�����������

�
��

�
�����������

����

�
�����������

�
����

�
��

�����������

�
��

�����������

�
��

�
�����������

�
����

�
����

�
�	

�����������

����

����

�����
����

�����/�

{�} {�} {�}

{�}

{�}

{pe2, pe4, pe6}

{pe3, pe5, pe7}

{pe8}

�����!����� ��

���#���# � 	� ���%�

�����!����� ��

Figure 2·19: Group-forming example (Step 7).

2.7 Conclusion

To solve the problem of mixed security of software and hardware components, in

this chapter we develop: (1) a new architectural model which is a generalized multi-

tenant, multicore computer architecture with virtual logical zones to enforce isolation

by trust levels; (2) a dynamic key management protocol that lends itself well to the

architecture for secure efficient heterogeneous computing; and (3) a set of schemes to

detect and tolerate dishonest processing elements (PEs) in the island join procedure,

while supporting privacy preservation for the trusted PEs.

The new architectural model isolates flows and processes based on their trust

66

levels, effectively creating system-level control access to shared resources: (a) shared

memory regions in the network, i.e., virtual channels at the router; and (b) distributed

shared main memory modules. In the various sub-parts of the system, the architecture

monitors processing traffic to verify their compliance to the trust level security policy

in effect. The new architectural model is currently limited to offline classification of

programs and processing elements. In addition, the set of rules governing the mapping

of programs to cores must be defined beforehand. The architecture has no runtime

learning and classification of threats or trust level re-assignments.

67

Chapter 3

Hardware Root-of-Trust Security
Primitives

3.1 Introduction

As part of the SoC security, authenticating and unique identifying of PEs or other

hardware components is a critical procedure. An identity of a PE indicates its trust

level and so the memory access privilege. In other words, the PE authentication

determines the trustworthiness of the initial stage in dynamic island forming.

The conventional approach of hardware authentication is usually to attach a static

secret key or ID to the device. However, this static approach suffers from several

disadvantages. First, it takes an expensive non-volatile memory (NVM) to store such

a piece of secret and the secret can be maliciously re-programmed. Second, many

identity tags (such as RFIDs, barcodes, and MAC addresses etc.) are separately

produced apart from the devices they attach to. Thus a verifier or user is unable to

distinguish between a genuine product and a counterfeit with a genuine ID. Finally,

under most occasions a device or a person is identified by an ID or a key, which is

essentially a string of numbers. A malicious party will be able to spoof the legitimate

device or person if it acquires this static string (or even just part of it, such as the

last four digits of a credit card number of social security number).

Therefore, a more robust approach for authentication and key storage/transmis-

sion is desired. This approach should be inexpensive, naturally integrated in the

68

device, unpredictable and unclonable, and support dynamic verification. Under this

demand the physical unclonable function (PUF) was proposed. A PUF is a piece of

hardware that upon given challenges (inputs to the hardware), unique responses will

be produced due to its intrinsic manufacturing variation. Each PUF’s output (re-

sponse) is a non-linear function of the outside input (challenge) and the PUF’s own

physical and unique diversity, in another word, “Silicon Fingerprints” (EE Times,

2010). To apply PUF in the security field, it also needs to be easy to manufacture

but hard to duplicate, even under exact the same circuit layout and manufacturing

procedures. Because of its attributions of randomness and uniqueness, PUFs can be

used for secret keys generation, authentication (i.e. IC, user, product authentication),

and identification. In this dissertation we use PUF as the unique identifier and key

storage of PEs in SoCs. In distributed systems, we use PUF as the authentication

and key agreement primitives among devices (Bu et al., 2018a) (Bu et al., 2018b).

The authentication protocol leveraging PUF’s Challenge and Response Pairs (CRP)

is shown in Protocol 3.1.1.

Protocol 3.1.1. Denote CHLi as the ith challenge (input) to a PUF and RSPi the
corresponding response (output). The authentication or identification procedure of
PUF is as follows:

i Before a PUF is released, the verifier will challenge it with {CHLi} and store
its {RSPi} as a set of CRPs;

ii After a PUF is released and needs to be authenticated, the verifier will send a
pre-stored challenge CHLi to the PUF;

iii When the PUF returns a response RSP ′
i to the server, this RSP ′

i will be com-
pared with the verifier’s pre-stored RSPi to verify it validity. �

Beside authentication, PUF can also be used to facilitate key agreements (Günlü

et al., 2018) (Chatterjee et al., 2018) (Bu et al., 2018c). Protocol 3.1.2 shows a

simplified PUF-assisted key agreement.

69

Protocol 3.1.2. Denote CHLi as the ith challenge (input) to a PUF and RSPi the
corresponding response (output). The key agreement between Alice and Bob is as
follows:

i Before a PUF is released to Bob, Alice will acquire a set of CRPs of the PUF;

ii When a new key needs to be established between Alice and Bob, Alice will
select an arbitrary response of the PUF as the new key, e.g., RSPi. Alice then
sends the related challenge CHLi to Bob;

iii Bob uses this CHLi to challenge his PUF and generates RSPi, which is now
the commonly shared secret key between Alice and Bob. �

Although this concept of physical uniqueness has been known since 1983 (Bauder,

1983), the term PUF only came to be in 2002 (Gassend et al., 2002b). And from 2010,

PUF has become more popular and drawn large attention. Since then, researchers

have been studying and developing different types of PUFs and their implementations.

PUFs can be categorized in several divisions. Based on how the randomness is

introduced, there are PUFs using explicitly-introduced randomness, and PUFs using

intrinsic randomness.

3.1.1 PUFs Using Explicitly-introduced Randomness

For this type of PUFs, the manufacturing variation is directly controlled by artificially

introduced randomness. Thus devices tend to have more distinguishing behaviors.

Optical and coating interventions are mostly used in this type (Herder et al., 2014).

• Optical PUF: It uses a laser beam to shine onto a material doped with light

scattering particles, which brings random and unique speckle patterns;

• Coating PUF: It is built upon the top layer of an IC with randomly doped

dielectric particles. Its randomness comes from the capacitance between such

metal wires.

70

3.1.2 PUFs Using Intrinsic Randomness

PUFs using intrinsic randomness are highly attractive because they can be included

in a design without modifications to the manufacturing process. Moreover, this prop-

erty makes PUF also manufacturer-resistant. Meaning even manufacturers cannot

manipulate its manufacturing procedure to produce two identical PUFs.

For this reason we will focus more on this type in the dissertation. Based on the

source of randomness, there are several types of PUFs in this category:

• Delay PUF: It uses the random variations in delays of the basic elements of the

circuit (gates, LUTs, etc.). Essentially, the uniqueness comes from the slight

size variation of each transistors. Given an input (challenge), a race condition

will appear in the circuit, and different chips with the same circuit will have

different delay patterns. Some implementations of this kind are ring oscillator-

based (RO) PUF, bistable ring PUF, and multiplexer and latch-based Arbiter

PUF;

• Memory PUF: Almost all ICs have memories on them and they can be used

for IC authentication or identification. The output of a memory PUF is

the boot up state (1 or 0) of each memory cell, which varies from device to

device. A bit enrollment algorithm is usually involved to select the “stable”

memory cells (the cells having consistent boot up states every time) for the

PUF output. Both SRAM and DRAM have been proposed to be used as

PUFs. Also butterfly PUF based on cross-coupling of two latches has already

been commercialized;

• Mixed-signal (Analog) PUF: It quantizes an analog signal (drain currents,

threshold voltage etc.) to produce a digital response.

Besides these common implementation of PUFs using intrinsic randomness, there

71

are also other types: magnetic PUF made from magnetic stripe card, metal Resistance

PUF, and quantum confinement PUF etc.

3.1.3 Strong and Weak PUFs

Based on the size of the challenge-response pairs, PUFs can be categorized as weak

and strong PUFs, which have different applications in security.

Weak PUF

The challenge-response pair (CRP) set size grows linearly with the PUF size. A weak

PUF usually only has one CRP (such as the memory PUF), and so its CRP should

be secured and not accessible by untrusted parties;

Strong PUF

The CRP set size grows exponentially with the PUF size, mostly used for dynamic

authentication. For strong PUFs, even a large set of CRP is made publicly accessible,

it should still be extremely difficult for an adversary to predict any unknown CRPs.

3.1.4 PUF Modeling and Secure PUFs

Although PUFs are supposed to be unclonable and non-reproducible, researchers have

proposed ways to clone PUFs and predict their responses. One popular approach is

to use statistical tools such as machine learning or algebraic techniques (Rührmair

et al., 2013).

Several secure constructions were proposed to add more non-linearity to PUF

designs in order to resist modeling attacks. Lightweight secure PUF (Majzoobi et al.,

2008) was among the first of the proposals. In a secure PUF, several Arbiter PUFs

are placed together to create one response bit. Each of the Arbiter PUFs receives the

obfuscated challenges by a strict avalanche criterion (SAC) network and the responses

72

of these PUFs are then XORed and combined with transformed challenges to build

the final response bits.

SAC
Network

SAC
Network

...

Arbiter
PUF

Arbiter
PUF

... Output
Network

Challenge Response

Figure 3·1: The circuit above produces 1 bit of PUF response.

However, later research efforts show that when modeling attacks are assisted by

side channel attacks on the PUF’s helper data (Delvaux and Verbauwhede, 2013),

most PUF’s including lightweight secure PUFs can still be modeled.

Therefore, in addition to secure hardware designs, researchers have also proposed

algorithmic approaches to strengthen PUF’s unclonability. Hashing the challenges or

responses of a PUF (Gassend et al., 2002a) was shown to be effective since machine

learning so far has not been able to learn cryptographic hash functions. Adversarial

machine learning was also adopted as a cost-efficient approach to secure PUFs against

modeling attacks (Nguyen et al., 2018) (Yu et al., 2016) (Yu et al., 2011).

3.1.5 PUF Implementation Challenges

It is notable that the same challenge should receive different responses from different

PUFs, even though those PUFs are built from identical design on identical circuits.

Also ideally, different responses should have as large a Hamming distances as possible.

Usually non-cryptographic hash functions are used to randomize the responses to

amplify their variations.

Also due to some unstable factors (temperature, voltage etc.), there is usually

73

noise in PUF’s response. Therefore error control coding and helper data are used to

remove the noise.

Despite the many existing research efforts on PUF’s high level architectures,

PUF’s low level implementation is still non-trivial. Without a proper design and

configuration, regardless how elegant the high level architecture is, the PUFs will lose

their uniqueness. Namely all the PUFs built from the same circuit will return the

same responses upon a challenge. Although much research has been done in this

area on Xilinx ISE, there have been few for the new IDE Vivado due to its inconve-

nient FPGA editing. Therefore, this chapter will discuss these problems and provide

solutions and improvements to these PUF implementations on FPGA. The major

contributions of this chapter are:

1. It explores the implementation problems and solutions in the new Vivado IDE;

2. It suggests several improvements to the existing delay PUF designs to enhance

reliability;

3. It proposes a novel type of PUF named multi-identity PUF (Mi-PUF). Unlike

ordinary PUFs which attest only one legal identity of an element, the Mi-PUF is

able to demonstrate multiple legitimate identities from one element. Mi-PUFs

can be used to preserve the privacy of an element while proving its legitimacy.

The rest of the chapter is organized as follows. Sections 3.2 gives a brief intro-

duction of several delay-based PUFs’ architecture. Section 3.3 explores the critical

problems of their implementations on FPGA with the latest IDE. Section 3.4 proposes

an improved design for the RO PUF. Section 3.5 explores the routing and placement

of RO and Arbiter PUFs in the latest IDE. Section 3.6 proposes the Mi-PUF based on

both RO and Arbiter PUFs. And finally Section 3.7 evaluates the Mi-PUF’s quality.

74

3.2 The Architectures of Delay-based PUFs

In this section several popular designs of delay-based PUFs are introduced, based on

which Section 3.3 will dig deeper into their implementations. For brevity we refer to

delay-based PUFs as delay PUFs from now on.

3.2.1 Delay PUFs

We focus more the delay PUFs because they generate much larger CRP sets than

memory PUFs which are vulnerable under replay or probing attacks. With delay PUFs

there can be a new challenge for every round of authentication or identification, so that

replay attacks will never apply. Delay PUFs can be used both for authentication or

secret key generation. In addition, most secure PUFs are also based on the basic delay

PUFs. To better facilitate the presentation, we introduce the following notations:

• CHL: a PUF’s challenge;

• RSP : a PUF’s response;

• c: the number of bits in a PUF’s CHL;

• r: the number of bits in a PUF’s RSP ;

• n: the number of ROs in a RO group which produces 1 bit of response;

• |CRP |: the size of a PUF’s CRP set;

The commonly seen delay PUFs are: Ring Oscillator (RO) PUF (Suh and Devadas,

2007) (Maiti et al., 2012), Arbiter PUF (Jae W et al., 2004) (Lim et al., 2005), Glitch

PUF (Shimizu et al., 2012) (Anderson, 2010), HELP (Aarestad et al., 2013) and etc.

Among them the most popular ones are the RO and Arbiter PUFs. The challenges

are the inputs of the circuit, and the responses are generated by the delay differences

of the circuit.

75

Ring Oscillator (RO) PUF

A RO PUF consists of multiple inverter chains, and in each chain odd number of

inverters are connected in a loop. Due to the manufacturing variation resulting in

each inverter’s delay, each oscillator has a different and unpredicted frequency from

others. At the end of this circuit there are two counters of the same size whose

increment speed depends on the frequencies of the corresponding chains, which serve

as the clock. A 1-bit RO PUF is shown in the Fig. 3·2. The challenge will be the

input to the decoder selecting two ROs from the group of n ROs, and the response is

the comparison of the values of the two counters clocked by the selected ROs.

Counter

Enable

RO1

Enable

ROn

...

0

1

S0

MUX

Counter

> ?
Response

Challenge

n

Figure 3·2: The circuit above produces 1 bit of RO PUF response. To
generate more response bits, more RO groups and counters can be added.

Suppose for a RO PUF, there are r RO groups and in each group there are n ROs.

If the first and second half of the challenge CHL is used to select two different ROs

in this group, then for the challenge size c is:

c = 2 · ⌈log2n⌉. (3.1)

76

The total number of CRP is:

|CRP | =
(
n

2

)
. (3.2)

While the Arbiter PUF requires highly symmetric implementation, the RO PUF

does not, which makes it easier to be implemented on FPGAs, although it still requires

identical routing and relative placement for each RO. In the FPGA implementation,

each inverter is instantiated by a 1-to-1 lookup-table (LUT), and the NAND gate by

a 2-to-1 LUT.

Arbiter PUF

Arbiter PUF is multiplexer (MUX) and D-flip-flop (DFF)-based. It takes two sets

of parallelly connected MUXes and the output is latched by a DFF as shown in Fig.

3·3. As a positive edged signal is applied to the first two MUXes, the binary challenge

vector determines which two paths the signal will go through. Because of the unique

intrinsic delay in each MUX, the positive edged signal will create a racing condition

between the two paths to the clock port and data port of the DFF. The output of

the DFF is then a random response bit as shown in Fig. 3·3. In this case the two

parallel MUX chains’ wiring should be completely symmetric, so that the only factor

that determines the response will be the MUXes’ manufacturing variations.

For an Arbiter PUF, if there are r MUX chain pairs, and the challenge has c bits,

then the total number of CRP is:

|CRP | = 2c. (3.3)

77

0

1

S0

0

1

S0

1

0

0

1

S0

0

1

S0

1

0

0 0

1 1

0

1

S0

0

1

S0

1

0

0

1

...

...

D Q

Q

Response
Enable

Challenge

Figure 3·3: The challenge vector determines whether the rising signal will
reach the DFF data port or the clock port. In the former case 1 will be the
response, and 0 will be the latter case. The circuit above produces 1 bit
of PUF response. To generate more response bits with the same challenge
input, more MUX chains can be added.

3.3 Implementation Problems and Solutions

Previously, most researchers prefer to use the combination of Xilinx ISE + Xilinx

FPGA because ISE allows users to configure the placement and route of the circuits

using its FPGA Editor (Soybali et al., 2011) (Morozov et al., 2010) (Khoshroo, 2013).

However, from October 2013 ISE is no longer updated and most researchers in the

FPGA field have moved to the Vivado IDE (latest version 2017.2). Nevertheless,

since then there are few works being done with clear presentation of PUF design

methodology with this new IDE. One of the major reasons is that Vivado does not

have the convenient FPGA Editor anymore and users need to find the alternatives

such as XDC macro or hard macro.

Since the new Vivado IDE creates many unique problems comparing to its pre-

decessor, in this chapter we will illustrate the problems and solutions of PUF design

in this new environment. We will also give detailed instructions and improvements

on PUF’s design and implementation, in order to assist the researchers who need to

78

work with new FPGA models and IDE without the FPGA editor.

We will focus on the design and implementation of delay PUFs, especially the

basic RO and Arbiter PUFs. Once these fundamental elements are figured out, one

can make modifications easily based on them to produce other delay PUFs.

The following three sections are organized as follows. Sections 3.3.1 and 3.3.2 are

about the common errors designers could encounter in Vivado. Section 3.4 is on the

timing issue of the comparison between two RO’s counters. Section 3.5 explores the

fixed relative routing and placement in the new Vivado IDE.

3.3.1 Handling Design Rule Violations

Both Arbiter and RO PUFs involve violations against certain design rules. These

violations need to be properly allowed otherwise Vivado will refuse to proceed with

synthesize or implementation.

Combinatorial Loops

Taking a closer look at a single ring oscillator (RO), it consists of odd number of

inverters as in Fig. 3·4:

Enable

RO1

RO_out

Figure 3·4: A ring oscillator consisting of 5 inverters (NOT gates).

When “Enable” is set to 1, this inverter chain will produce a 1→0→1→0→1 · · ·

sequence similar to a clock signal. However, since the RO_out signal is fed back to

the NAND’s input pin, it forms a combinatorial loop which is not permitted by the

synthesis tools.

79

To allow a combinatorial loop, the following line should be added before the

instantiation of a RO module:
(* ALLOW_COMBINATORIAL_LOOPS = "TRUE" *)

To further secure the green light to allow combinatorial loops in the .bit file, firstly

a .tcl file should be created with the following tcl commands:
set_property SEVERITY {Warning} [get_drc_checks LUTLP-1]

This will downgrade the combinatorial loop error to an ordinary warning so that

the bitstream can be written.

Then in the Vivado IDE’s Project settings → Bitstream → tcl.pre*, the .tcl file

needs to be loaded prior to device programming in order to execute this severity

downgrade.

Gated-clock

In the RO PUF, since the counter is clocked by a combinational logic, it forms a so-

called “gated-clock” as shown in Fig. 3·5. Gated clocks can cause glitches, increased

clock delay, and clock skew. Therefore designs of this type are not encouraged by the

synthesis tools. In some cases, it can cause a critical error preventing the synthesis

or implementation process.

Counter

Enable

RO1

RO_out

Figure 3·5: The counter is driven by the combinational logic of RO.

Similar problem also exists in the Arbiter PUF. In Fig. 3·3 one of the signals drives

the clock port of the arbiter (DFF). Gated-clock can cause errors in the synthesis,

80

implementation, and bit stream writing processes. In order to accomplish these pro-

cesses, the severity of this error also needs to be downgraded as the combinatorial

loop error.

To do so, in the .tcl file mentioned previously, the following tcl command should

also added:
set_property SEVERITY {Warning} [get_drc_checks NSTD-1]

This command will set the gated-clock error down to a ordinary warning so that

the bit stream can be written.

3.3.2 Preventing Logic Trim

As shown in Fig. 3·4 that a RO consists of odd number of inverters. However, this

circuit is logically equivalent to a single inverter when Enable is set, which will be the

result of synthesis’ optimization as in Fig. 3·6.

Enable

Figure 3·6: A 5-stage RO is logically trimmed to a single NAND gate.

To preserve the inverters in RO from being optimized away, the attribute of

“KEEP” is commonly suggested. However, the “KEEP” attribute is not able to

preserve elements from logic trim in post-optimization of the synthesized design.

In order to preserve the entire inverter ring, the following attribute is needed before

the declaration of each inverter and wire, as well as the RO module instantiation

(Xilinx, 2018b):
(* DONT_TOUCH = "TRUE" *)

Now for the RO module instantiation, before it there should be two attributes:

81

“DONT_TOUCH” and “ALLOW_COMBINATORIAL_LOOPS”.

Then in both RTL and technology schematics, every component of the ring is

kept:

Figure 3·7: The RTL schematics (upper) of a 5-stage RO generated by
Vivado synthesis, and the technology schematics (lower) of the same RO
instantiated by one LUT2 as NAND, and four LUT1s, as inverters.

3.4 RO PUF: Design of the Stopwatch

There is a moment that the two counters in Fig. 3·2 will be compared against each

other at a certain point. However, it cannot be any moment. The comparison needs

to be made before overflow occurs to any of the two counters. Otherwise a counter’s

value at the comparison point might not represent its RO frequency correctly.

Thus there needs to be a stopwatch to fire the comparison signal at the right

timing. The stopwatch’s period needs to be smaller than both the two counter’s

overflow periods as shown in the figure below.

However, if the stopwatch’s period is larger than any of the counters’, the com-

parison of counter values may not correctly reflect the two RO’s speed difference as

shown in Fig. 3·9.

Usually the stopwatch module is controlled by a real clock on FPGA. Then its

period needs to be set under the knowledge of the RO frequency (counter overflow

period). On the other hand, the stopwatch’s period also needs to be large enough to

82

Counter_0 Period

Counter_1 Period
Counter_0 Reading

Counter_1 Reading

Stopwatch Period

Figure 3·8: If Counter_0’s driving RO is faster than Counter_1’s, then its
overflow period is smaller. When the stopwatch fires the comparison signal,
Counter_0 will have a larger reading than Counter_1. Thus a 1 bit response
can be generated by comparing the two readings.

reveal the ROs’ frequency difference.

3.4.1 The Comparison Timing with the Synchronous Stopwatch

Denote the frequency of the 1st RO as fRO_0, the 2nd RO as fRO_1, the FPGA’s

clock as fFPGA, and the size of the counters as b-bits. Assume the stopwatch fires

the comparison signal at the kth clock cycle, to have the stopwatch module function

properly as shown in Fig. 3·8, the following statement needs to be true:(
1

fRO_0

≪ k

fFPGA

<
2b − 1

fRO_0

)
&&

(
1

fRO_1

≪ k

fFPGA

<
2b − 1

fRO_1

)
. (3.4)

Note: fFPGA can be acquired from the FPGA manual.

The counter size b can be set as a large value first, say 28 ∼ 32, in order to acquire

a measurable overflow period. Then the most significant bit (MSB) of the counter

can be set as an output pin which connects to an oscilloscope. By observing the

waveform the overflow period can be calculated, as well as the RO frequency. If the

overflow period of a counter is denoted as TOF , then:

fRO =
2b − 1

TOF

. (3.5)

83

Counter_0 Period

Counter_1 Period
Counter_0 Reading

Counter_1 Reading

Stopwatch Period

Figure 3·9: If Counter_1’s RO is faster than Counter_0’s, then it has a
smaller overflow period. However, if the stopwatch’s period is larger than
Counter_1’s, then before the comparison signal is set, Counter_1 has al-
ready overflown. Then when the comparison happens Counter_1 may have
a smaller reading than Counter_0, mistakenly indicating that Counter_0’s
RO is faster.

With these parameters a proper k can then be selected.

Example 3.4.1. We show an example on how to use measured RO frequencies which
can be used to set the comparison timing. The waveform of the MSB (the 28th bit)
of RO_0’s counter implemented on a BASYS 3 FPGA board is shown in Fig. 3·10
together with another RO_1’s counter’s. The two ROs are identically routed and
placed.

By [Eq. 3.5] the frequencies of RO_0 and RO_1 are:

fRO_0 =
228 − 1

0.7764
= 345, 743, 759Hz.

fRO_1 =
228 − 1

0.7825
= 343, 048, 505Hz.

Therefore RO_0 is faster than RO_1 for about 2.7 MHz and this difference will
be demonstrated by the comparison of the counters. �

3.4.2 The Asynchronous Stopwatch

A better approach is to use an asynchronous stopwatch. A MAX value can be preset

where MAX ≤ 2b − 1. Then whichever counter reaches to the MAX first, both the

counters will stop incrementing and then the comparison is made. The advantage of

84

Figure 3·10: RO_0’s counter’s period is 776.4 ms (left), and RO_1’s
counter’s period is 782.5 ms (right).

this approach is the avoidance of using the FPGA’s clock, as well as the complication

of measuring and calculating [Eq. 3.4, 3.5]. The only criterion is that b should be a

large enough number to reveal the RO’s frequency difference. Then the comparison

timing graph will be:

Counter_0 Period

Counter_1 Period

MAX

Counter_0 Reading

Counter_1 Reading

Figure 3·11: If Counter_0 firstly reaches to MAX, then both counters
stop and the comparison is made. Vice versa for Counter_1’s case.

With the above improvement, overflow of the counters will never be an issue as

in Fig. 3·9. In addition, it saves the power of using the system clock and the hassle

of identically routing it to Counter_0 and Counter_1.

85

3.5 Fixed Placement, Pin, and Relative Routing for PUF
Implementation in Vivado

A properly functional delay PUF design should generate different responses on dif-

ferent FPGA boards. However, if the routing and placement are automatically car-

ried out by the design tools, then the circuit delay produced by automated routing

will dominate over the intrinsic delay of the LUTs. This will result in having the

same CRPs on different FPGA boards upon a challenge, namely the PUFs lose their

uniqueness.

For example, to produce one bit of response, a RO PUF will make comparison

between the frequencies of two identical ROs. Although the two ROs can be instanti-

ated from the same HDL module, after implementation they could be automatically

placed and routed in different ways as shown below.

Figure 3·12: RO_0 on the left occupies only one slice, while the RO_1 on
the right takes two slices and they are far away from each other. Obviously
when a challenge demands the comparison between RO_0 and RO_1, the
former will be faster and result in a larger reading its counter than the latter
in all FPGA boards.

Therefore the frequencies of the two ROs in Fig. 3·12 are determined essentially

by their routing and placement which are identical on every FPGA, rather than the

LUTs’ intrinsic manufacturing differences, which are unique on every FPGA. Due to

86

this reason if the generated .bit file is programmed to different FPGA boards, although

the responses may seem random, all the FPGAs will all have identical CRPs and so

the PUFs fail to have their unique silicon fingerprints.

Similar or even more severe situation also exists in the Arbiter PUFs. When the

signal of a positive edge is propagated from one stage of two MUXes to the next in

two different routes, these two routes have to be symmetrically routed, otherwise the

routing delay will overcome the MUXes’ intrinsic delay. Moreover, at the end of the

stages the two routes will enter into the clock port and the data port of the arbiter.

The symmetry of these two paths is even more critical in producing the final response.

To eliminate the timing difference caused by automatic placement and route, all

the ROs or the MUXes need to be manually placed and routed identically, so that

the LUTs’ intrinsic delays will be the only factor affecting the response.

There are three parameters to fix:

1. Placement

• RO PUF: the 5 LUTs of each RO need to have the same relative placement;

• Arbiter PUF: the two MUXes of each stage need to have the same relative

placement;

2. Pins

• RO PUF: since different pins of a LUT have different speed, the pins for

each LUT in each RO should be locked identically;

• Arbiter PUF: the propagation of the signals among the stages is shown

as Fig. 3·3. For the two MUXes in each stage, the signal will either be

propagated from the previous stage to either both of the inputs 0, or both

inputs 1 of the current stage. Therefore the inputs 0 of all MUXes should

be locked to the same pin, and similarly input 1 to another pin;

87

3. Route

• RO PUF: the same relative routing constraints need to be applied to all the

ROs and their LUTs within;

• Arbiter PUF: as shown in the Fig. 3·3, the routing from both outputs of

the previous stage to both inputs 0 of the next stage should be the same, as

well as the routing from the outputs of the previous stage to both inputs 1

of the next stage.

In Vivado, although the FPGA Editor is no more, users can use the .xdc file to

specify placement and route. They can also use XDC macros to duplicate the routing

of one manually routed RO or MUX to others.

Fixing the Placement and Pins

We will firstly take one RO shown in Fig. 3·4 as an example of the fixed place and

route.

Firstly, each RO’s NAND gate and 4 NOT gates are all instantiated by the LUTs

and referred to as cells in the implementation process. A NAND gate is instantiated

by LUT2 which is a 2-to-1 MUX, and a NOT gate by LUT1 which is a 1-to-1 MUX.

These LUTs should all have identical relative placement. Knowing that each Xilinx

FPGA’s SLICEL (logic slice) has 4 LUT6s and 8 flip-flops, the 4 NOT gates for

example, can be placed on those 4 LUT6s and the NAND gate on another SLICEL’s

LUT6. Their relative locations also need to be fixed for every RO. One example is

from NAND0 to NOT2 on basic elements (BEL) A5LUT to D5LUT, and NOT3 on

the neighboring SLICEL’s A5LUT.

The relative placement can be set through the set_property LOC and BEL key-

word in the .xdc constraints file as (Xilinx, 2016):
Placing each cell into a fixed SLICEL

88

set_property LOC SLICE_X0Y0 [get_cells RO_0/NAND0]
set_property LOC SLICE_X0Y0 [get_cells RO_0/NOT0]
set_property LOC SLICE_X0Y0 [get_cells RO_0/NOT1]
set_property LOC SLICE_X0Y0 [get_cells RO_0/NOT2]
set_property LOC SLICE_X1Y0 [get_cells RO_0/NOT3]

Placing each cell into a relative LUT in that SLICEL
set_property BEL A5LUT [get_cells RO_0/NAND0]
set_property BEL B5LUT [get_cells RO_0/NOT0]
set_property BEL C5LUT [get_cells RO_0/NOT1]
set_property BEL D5LUT [get_cells RO_0/NOT2]
set_property BEL A5LUT [get_cells RO_0/NOT3]

Secondly, for a certain cell in all the ROs, its pins should be locked identically.

According to the Vivado constraints manual, A6 and A5 are the faster pins than A1

∼ A4. However, as long as each of the five LUTs in different ROs is locked with the

same pins, it matters not that which LUT has which pins.

The pins can also be set through the set_property LOCK_PINS keyword in the

.xdc constraints file as. One example would be:
Lock the input pins
set_property LOCK_PINS {I0:A1 I1:A3} [get_cells RO_0/NAND0]
set_property LOCK_PINS {I0:A5} [get_cells RO_0/NOT0]
set_property LOCK_PINS {I0:A6} [get_cells RO_0/NOT1]
set_property LOCK_PINS {I0:A4} [get_cells RO_0/NOT2]
set_property LOCK_PINS {I0:A2} [get_cells RO_0/NOT3]

Fig. 3·13 shows two ROs with the same relative placement and pin locking. Each

RO takes up a Complex Logic Block (CLB, consisting of two SLICELs).

Fixing the Routes

Finally, each cell’s route needs to be fixed identically through the set_property

FIXED_ROUTE command in the .xdc constraints file. Since RO PUF does not

require symmetric design, as long as any two ROs’ routings are the same, they are

considered identical.

Firstly, one can either manually route a wire, or let Vivado Implementation do it

automatically. The user can leverage the following tcl command to acquire the route

89

Figure 3·13: Two ROs with identical placements (LUTs highlighted in
blue) and pins (highlighted in blue in each LUT).

of that wire. For example, to request the routing path of wire W1 in RO_0:
get_property ROUTE [get_nets RO_0/W1]

And then the following command can be used to duplicate the same routing to

wire W1 in RO_1:
set_property FIXED_ROUTE {RO_0/W1's route} [get_nets RO_1/W1]

Similarly the other cell’s routing can be fixed as well. Fig. 3·14 shows two iden-

tically routed ROs.

Although pins, BELs, and relative routing can be duplicated easily to other ROs

by set_property, it should be noted that the absolute location property SLICE should

be different for each RO:
set_property LOC SLICE_XxYy [get_cells ...]

90

Figure 3·14: Two ROs with identical routing (highlighted by bold dot-
ted lines). For better demonstration, RO_0 at the lower CLB is manually
routed, whose routing is then cloned to RO_1 at the upper CLB.

where “x” and “y” are unique coordinates for different ROs.

The Arbiter PUF is a much more difficult case. For the RO PUF, each RO

is more of a standalone system. As long as the routing among the five inverters

of a RO is the same as the other ROs, the response should be able to reflect the

manufacturing variations. However, in the Arbiter PUF, each pair of two MUXes

of a stage are connected to both MUXes of the next stage, making the entire MUX

chain an interconnected system. Under this circumstance, it is almost impossible

to make exactly identical routing between two stages in FPGA. This is because the

LUTs and their possible routing paths in an FPGA are not symmetrically allocated.

91

Briefly speaking, the placement and wiring of two neighboring slices are not mirrored.

Some researchers claim that for this reason FPGA might not be an ideal platform for

Arbiter PUF (Morozov et al., 2010).

Therefore a potential solution would be to make the routes as similar to each

other as possible, in order to eliminate the timing differences from routing. Fig. 3·15

shows one example of such attempt.

Figure 3·15: The routing highlighted in dotted cyan lines is from the
lower MUX of a stage to both MUXes in the next stage, and the dotted blue
lines are the route from the upper MUX to the next stage. The two routings
are not exactly the same but are close enough to each other to minimize the
impact of routing difference.

In addition, the RO PUF’s routing can be easily carried out by acquiring one RO’s

routing and then duplicate to another using tcl commands or xdc constraints. But

the Arbiter PUF’s routing between stages has to be manually configured and fixed in

order to achieve as much symmetry as possible. Although an FPGA provides many

routing options from one BEL to another, the routing path cannot be “invented” by

simply editing the xdc constraints. It has to be explored using the “Assign Routing

Mode” (Xilinx, 2018a).

The “Assign Routing Mode” is a FPGA editing mode which allows users to apply

their own configurations post implementation. However from one cell to another there

92

are only limited resources (paths) for routing. Users will need to manually discover

the best BEL, pin, and route for a cell within this limited resource.

We will use the notations in Fig. 3·16 for better illustration.

0

1

S0

0

1

S0

1

0

0

1

S0

0

1

S0

1

0

O1

O0

I0

I1

I0

I1

w3

w1

w2

w4

0 0

1 1

Figure 3·16: The routing of w1 should be the same as w2 in terms of
length and path shape, and w3 the same as w4. I1 of the upper MUX
should be the same pin as the I1 of the lower MUX, similarly to I0.

The instructions below can be followed to manually configure and fix the routing

from one cell to another.

1. First, the placement of two stages of MUXes (4 MUXes) can be fixed symmet-

rically by the set_property BEL and set_property LOC commands using xdc

constraints. For now the pins will be left unfixed to allow the routing with more

flexibility.

2. Then, after running the implementation, in the “Device” tab by right clicking

on the wires sprung from pin O1, a menu will pop up from which “Unroute”

can be selected to cancel the current automatic routing of the wire. By right

93

clicking on O1 again we can select “Enter assign routing mode”, which enables

us to manually route O1 to the two MUXes of the next stage.

3. After choosing the “Enter assign routing mode”, we will be asked if we want

to set the routing target/destination or not. In Fig. 3·16 it refers to pin I0 of

the lower MUX and pin I1 of the upper MUX in stage 2. For more routing

flexibility, “No load” should be chosen to explore all possible options of routing

to any cell and any pin.

4. Once “No load” is selected, then a window will pop up to let the user choose

where to start routing from. Usually the first node in the list can be selected.

Then a menu named “Routing Assignment” will appear on the right hand side

of the device window. By clicking on the first item (node) under “Assigned

Nodes”, the next possible nodes and their connections will show up in dotted

lines, from which we can set the routing path node by node, and finally to the

target cell. If a node and its route is not preferred, one can also right click on

it in the “Assigned Nodes” window to remove them from the path.

5. When the wire is finally routed to the target MUX, all the newly routed path

will be displayed in bold. This accomplishes the routing of w1 from O1 to I0

as shown in Fig. 3·18.

6. Then w2 should be routed in a similar way to minimize the delay difference

caused by unsymmetrical routing. In addition, once the routing of w1 is deter-

mined, the pin for I0 is also determined. Therefore w2 should also be routed to

the same pin of the upper MUX’s I0 as shown in Fig. 3·16.

7. After w1, w2, w3, w4 are all routed, their routing path can be read out by:
get_property ROUTE [get_nets wirename]

94

Figure 3·17: All the dotted black lines represent the next possible nodes
following the node “CLBLL_LOGIC_OUTS12”, which is highlighted in the
“Assigned Nodes” menu. By selecting the nodes one by one, a user can route
the output of a MUX to the inputs of the two MUXes in the following stage
until he/she finds the desired path.

which will be a list of all the nodes in its path:
{ CLBLL_LL_A { CLBLL_LL_AMUX CLBLL_LOGIC_OUTS20 IMUX_L36 CLBLL_L_D2 }

CLBLL_LOGIC_OUTS12 IMUX_L0 CLBLL_L_A3 }

In this way a designer will be able to explore and discover the best placements,

pins, and routes for his/her elements in the Arbiter PUF. �

3.6 Multi-identity PUF (Mi-PUF)

In the previous section the concepts and design of RO and Arbiter PUFs have been

introduced. Based on these two basic PUFs we now discuss the multi-identity PUF

(Mi-PUF) (Bu and Kinsy, 2018a).

95

Figure 3·18: The w1 is successfully routed to the input pin I0 of a MUX
in the next stage via the bold blue path.

3.6.1 Authentication Protocol of Mi-PUF

For a conventional PUF, no matter how many challenge and response pairs (CRPs) it

has, it can only be identified and authenticated for one identity. However, a Mi-PUF

can be identified and authenticated for multiple identities through an extra input

called identity selection Iden-Sel. In addition, although a Mi-PUF remains a single

piece of hardware, with different Iden-Sel inputs, each identity has a distinct CRP

behavior from another. We introduce the new notations:

• CHLk: the kth challenge to a Mi-PUF;

• Dij : the jth identity of the Mi-PUF indexed by i;

• |ID|: the total number of a Mi-PUF’s identities;

• |id|: the number of identities a verifier can verify on a Mi-PUF, |id| ≤ |ID|;

• RSPkj : the response of CHLk under identity Dij of the Mi-PUF.

Protocol 3.6.1. The Mi-PUF’s authentication procedure for multiple identities on
a single device is as follows:

96

1. Before a Mi-PUF is delivered to its owner Di, the manufacturer will challenge it
with multiple challenges {CHL0, CHL1, · · · , CHLk, · · · } for |ID| rounds un-
der identities {Di0 , Di1 , · · · , Di|ID−1|}. The responses are stored under each
identity’s CRP set;

2. A verifier acquires |id| number of CRP sets from the manufacturer in a trusted
way, where |id| ≤ |ID|;

3. When the owner claims to be Dij , it needs to be verified by taking the verifier’s
CHLk to its Mi-PUF;

4. When the Mi-PUF returns a response to the verifier, this response will be
compared with the pre-stored RSPkj under identity Dij to check its validity.
If it matches with the verifier’s record, then the Mi-PUF owner is legitimately
associated with Dij . The verifier can repeat the steps above to validate other
identities as well.

3.6.2 Design and Implementation of Mi-PUF

In a Mi-PUF, three functional blocks are integrated: the ID box, Strict Avalanche

Criterion (SAC) network, and First Order Reed-Muller (FORM) encoder.

Fig. 3·19 and 3·20 illustrate the basic element of the RO-based and Arbiter-based

Mi-PUFs. The ID Box is installed between every two neighboring stages. The SAC

and FORM encoder transform the Iden-Sel for security purposes.

3.6.3 ID Box

The ID box manifests the personality variation of Mi-PUF by altering the PUF circuit.

It consists of two inverters and one 2-to-1 MUX as shown in Fig. 3·19 and 3·20. Each

ID box takes in one bit of the transformed Iden-Sel input, and will affect the timing

but not the value of the propagated signal. With different inputs to the ID Box, the

RO- and Arbiter-based Mi-PUFs will function under various timing characteristics,

thus behaving differently under the change of Iden-Sel.

97

First Order Reed-Muller Encoder

SAC Network

Iden-Sel

Enable ID BOX
0

1

S0

ID BOX ID BOX ID BOX ID BOX

Figure 3·19: The upgraded RO for the RO-based Mi-PUF.

If more identities are needed (especially for weak PUFs such as RO PUF), the ID

box can further evolve in at least two ways as shown in Fig. 3·21: 1) by fitting in

multiple ID boxes between two stages; 2) by adding more choices of timing routes to

the MUX. Both points are able to provide a great number of additional circuit delay

characteristics to the Mi-PUF.

3.6.4 Strict Avalanche Criterion Network

On receiving an input of Iden-Sel, it will be first transformed by a Strict Avalanche

Criterion (SAC) network, which is also used in the design of lightweight secure PUFs

(Majzoobi et al., 2008). In a SAC network, whenever a single input bit is flipped, each

output bit should have a probability of 0.5 to flip. The introduction of the SAC net-

work is to increase the unpredictability and diversity a Mi-PUF circuit generated by

a given Iden-Sel. Thus every two Iden-Sel inputs with a small Hamming distance will

not result in similar circuits. This helps to prevent learning attacks across different

identities.

98

0

1

S0

0

1

S0

1

0

0

1

S0

0

1

S0

1

0

0 0

1 1

ID BOX
0

1

S0

ID BOX
0

1

S0

ID BOX

ID BOX

0

1

S0

0

1

S0

1

0

0

1

ID BOX

ID BOX

...

...

D Q

Q

Response
Enable

First Order Reed-Muller Encoder

SAC Network

Iden-Sel

Challenge

Figure 3·20: The upgraded MUX chain for the Arbiter-based Mi-PUF.

3.6.5 First Order Reed-Muller Encoder

Encoding schemes using error control codes (Bu et al., 2018d) are usually adopted

to address the issue of side channel attacks on PUFs (Mahmoud et al., 2013). In the

Mi-PUF design the First Order Reed-Muller (FORM) encoder is utilized to address

this issue. An N -bit FORM codeword can be generated by check matrix M = [M1

M0
],

where M1 is a single row of all 1’s, and the columns of M0 consist of all different

vectors of ⌈log2N⌉ bits. One important attribution of FORM codes is to ensure

equal weights and uniformity of 1’s and 0’s in all its outputs (the vectors of all 1’s

and all 0’s are excluded). In this way there are always half of ID boxes turned on in

the slower route (port 1 of the MUX in the ID Box), and half of them in the faster

route (port 0 of the MUX), which makes the power analysis on different personalities

harder for attackers. The price to pay is the encoding redundancy.

99

...

ID BOX
0

1

S0

ID BOX
0

1

S0

ID BOX
0

1

S0

ID BOX
0

1

S0

ID BOX
0

1

S0

00

01

10

11

2

Figure 3·21: In the basic design of an ID Box, each box possesses two
identities, and so the five ID Boxes in Fig. 3·19 provide 25 identities in total.
Suppose it is replaced by h 2-to-1 ID boxes or one h-to-1 ID box, then the
number of identities will increase to 25h.

3.7 Design and Implementation Evaluation

In this section, we evaluate the design and implementation of Mi-PUF in terms of (1)

response sizes, (2) uniformity, (3) uniqueness of the identities using intra-board/chip

and inter-board/chip Hamming distances.

3.7.1 |CRP | and |RSP | Set Sizes

For a five-stage RO PUF based Mi-PUF (cf. Fig. 3·19), it is fair to assume that there

are m ROs in an RO group and r of such groups. Since the number of identities will

be |ID| = 25, the total number of CRPs is:

|CRP | = 25 ·
(
m

2

)
, (3.6)

which is also the total number of unique responses |RSP |.

For an Arbiter PUF based Mi-PUF in Fig. 3·19, the assumption is c MUX pairs

in a MUX chain and r of such chains. The number of identities is |ID| = 2c and the

total number of CRPs and unique responses are:

100

|CRP | = 2c · 2c = 22c, (3.7)

(Gassend et al., 2008) proposed a controlled PUF (CPUF) which introduced the

concept of a personality input to increase the range of the conventional PUF. The

differences between a CPUF and a Mi-PUF are:

1. A CPUF does not change the conventional PUF’s structure. It remains the

same piece of hardware while using hash to combine the personality input and

challenge into a new CHL. As for the Mi-PUF, each identity is linked to a

unique PUF circuit and signal route.

2. A CPUF does not increase the number of unique responses, while Mi-PUF does.

Mi-PUF also provides more |CRP | than the CPUF under the same settings.

Table 3.1 shows the differences among the proposed Mi-PUF, conventional PUF,

and CPUF on the |CRP | size and unique response set size |RSP |.
Table 3.1: |CRP | and |RSP | Comparison

PUF Proposed Mi-PUF conventional PUF CPUF

Type |CRP | |RSP | |CRP | |RSP | |CRP | |RSP |

RO 25 ·
(
m
2

)
25 ·

(
m
2

) (
m
2

) (
m
2

)
a ·
(
m
2

) (
m
2

)
Arbiter 22c 22c 2c 2c a · 2c 2c

I a the constant is the number of personalities.
II The proposed Mi-PUF has the largest |CRP | and |RSP |, CPUF the second,
and the conventional PUF the smallest. Posessing more responses can help
the PUF be more resistant to modeling attacks.

3.7.2 Uniformity

Under the uniformity testing shown in Fig. 3·22, we examine the PUF’s responses in

terms of their bit vector balance between 0’s and 1’s. The ideal is 50-50 ratio. For a

101

given response, uniformity is calculated by:

Uniformity =
1

r

j=1∑
r

RSP (j) · 100%

where RSP (j) is the jth bit of the response. We examine 32 identities’ uniformity in

each of the five Mi-PUF sizes with r ∈ {8, 16, 32, 96, 128}.

8

16

32

64

96

128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P
U

F
 S

iz
e

Identity

RO-based Mi-PUF

0.00%-10.00% 10.00%-20.00% 20.00%-30.00% 30.00%-40.00%

40.00%-50.00% 50.00%-60.00% 60.00%-70.00%

8

16

32

64

96

128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P
U

F
 S

iz
e

Identity

Arbiter-based Mi-PUF

0.00%-10.00% 10.00%-20.00% 20.00%-30.00% 30.00%-40.00%

40.00%-50.00% 50.00%-60.00% 60.00%-70.00%

Figure 3·22: The uniformity of both RO- and Arbiter-based Mi-PUFs are
around 35% to 50% across the 32 identities. The larger is the PUF size, the
better the uniformity.

3.7.3 Uniqueness

Uniqueness is one of the most important parameters of a PUF and is evaluated

using the average Hamming Distances (HD) of the PUF’s responses. We provide

two types of uniqueness for the Mi-PUF’s evaluation in Table 3.2: 1) the “PUF

uniqueness” across 12 FPGA boards (inter-board uniqueness under the same Iden-

102

Sel), and 2) the “identity uniqueness” across |id| = 32 identities on one FPGA (intra-

board uniqueness under different Iden-Sel). Both are calculated based on the average

Hamming Distance (HD) of their responses under the same CHL:

Uniqueness = 2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

HD(RSPi, RSPj)

r
· 100%

where l is the number of boards for the inter-board uniqueness, and number of iden-

tities for the intra-board.

Table 3.2: Uniqueness Evaluation

Inter-board Intra-board

RO-based Arbiter-based RO-based Arbiter-based

Without Hash 33.81% 19.13% 25.40 % 23.09 %

With Hash 49.27% 49.31% 49.30% 49.29%
I It can be seen that even without hashing the Mi-PUF response, the identically
placed and routed Mi-PUFs already achieve an acceptable uniqueness (50%
being the ideal).

3.8 Conclusion

In this chapter we explore the design and implementation of delay-based PUFs on

FPGA, which will serve as the hardware root-of-trust for the proposed architectural

model to provide authentication, identification, key storage functionalities.

We propose a novel type of PUF named multi-identity PUF (Mi-PUF). Unlike

ordinary PUFs which attest only one legal identity of an element, the Mi-PUF is able

to demonstrate multiple legitimate identities from one element. With this technique

multiple unique IDs can be assigned to a PE upon its different activities (e.g., memory

accesses or island memberships).

103

For implementation, we point out several common errors that designers may en-

counter in using this new platform, and provided solutions to them. We also suggest

an improved design for the RO PUF, and instructions on how to discover the quasi-

symmetric routing for the Arbiter PUF.

104

Chapter 4

Towards Programmable All-Digital True
Random Number Generators

4.1 Introduction

Modern cryptographic approaches like encryption and authentication can achieve

stronger security guarantees by making their algorithms public, instead of relying

on obscurity as in early cryptographic algorithms. The open nature of these crypto-

graphic mechanisms anchors the actual security of the system in the strength of secret

vectors (Vassilev and Hall, 2014) (NIST, 2012), such as keys, obfuscation masks, or

one-time pads etc. A secret key or vector is considered secure, if it is hard enough to

guess/predict by any malicious parties. In other words, it needs to be random, and

preferably with high physical entropy.

For this very reason, true random number generators (TRNG) have become an

important category of cryptographic primitives. In this dissertation, it serves as a

critical component to construct the key pairs, generate random vectors, and sampling

small errors for cryptographic primitives such as the public-key cryptosystem (PKC)

or oblivious transfer (OT).

On the procedure of making a TRNG, we also notice that for different application

purposes, various levels of randomness are usually required. For example, in order

to facilitate tasks such as sampling or re-ordering, true random numbers of moderate

quality are acceptable. However, random masking used to protect a system against

105

cold boot attacks, requires a large amount of random bits in a short period of time.

For cryptographic applications relying heavily on secret keys, such as data encryption,

high entropy and high quality random bits are generally desired for strong keys.

Usually, for different applications with various demands on random bits, different

designs of RNGs has to be adopted. There are also cases when within a single

system, multiple modules need random numbers with different requirements, e.g.,

high throughput for random masking, low power for frequent nonces, and high quality

for secret keys etc. Therefore, in order to tackle this issue, we propose a design of

programmable multi-purpose TRNGs to satisfy these needs altogether. The major

contributions of this design are:

1. It provides a real time programmable framework of the TRNG. Users are able

to tune a number of parameters in order to generate a random sequence fitting

a specific demand: entropy, throughput, power, and quality etc.;

2. The tuning of the TRNG’s parameters also enables a cost-performance trade-

off, where less energy is consumed with lower quality or throughput demand,

and high quality or throughput will be available if more energy is allowed;

3. It achieves better performance than its competitors in terms of the randomness

quality, throughput, and energy cost per bit, when configured to work in the

corresponding mode.

The proposed programmable multi-purpose TRNG uses chaotic maps to further

amplify the randomness of the seeds from its physical entropy source. Chaotic maps

have the property that once a proper set of system parameters are selected, the

output of the function will be highly sensitive to their initial state. This divergence

property fits well in the concept of random number generation, which has become a

popular field where chaotic systems are applied to. In the past decade, various types

106

of pseudo or true random number generators based on chaotic maps (e.g., logistic,

Bernoulli shift, and dissipative quantum maps etc.) have been proposed (Lynnyk

et al., 2015), (Kim et al., 2017), (François et al., 2014), (Akhshani et al., 2014),

(de la Fraga et al., 2017), (Wang et al., 2016a), (Özkaynak, 2014). These works have

presented approaches to design RNGs successfully passing the National Institute of

Standards and Technology (NIST) random bit test (Bassham III et al., 2010). In

this chapter, these works will serve as the comparative designs of the proposed design

using Lorenz chaotic maps.

Besides the chaotic map-based RNGs, a more general comparison is also made

between the proposed work and a number of representative TRNGs of various types

(Kohlbrenner and Gaj, 2004), (Tsoi et al., 2003), (Danger et al., 2009), (Kwok and

Lam, 2006), (Wieczorek and Golofit, 2014), (Sunar et al., 2007), (Wang et al., 2009),

(Martin et al., 2018), (Cret et al., 2008), in terms of output quality, throughput, and

energy cost etc.

The rest of the chapter is organized as follows. Section 4.2 lists several possi-

ble applications of the proposed TRNG, as well as the preliminaries of the Lorenz

chaotic maps. Section 4.3 introduces the architecture of the programmable TRNG.

Section 4.4 is on the FPGA-based digital physical entropy source. Section 4.5 ex-

plains the methodology and experiments on parameter tuning, in order to present

the programmable characteristic of the proposed multi-purpose TRNG. Finally, a

comprehensive comparison is made between the proposed work and other RNGs of

fine quality. Section 4.6 concludes the chapter.

It is notable that in previous chapters, the designs usually strictly land on theo-

retical definitions and proofs. In this chapter, however, the design of TRNG requires

extensive experiments in order to derive the best configuration. This is due to the

nature of unpredictability and unstableness in a TRNG who relies on physical en-

107

tropy. Thus, in this chapter a large amount of data were collected and presented,

from which we are able to suggest a set of proper parameters to tune the proposed

TRNG for different purposes.

4.2 Motivation and Preliminaries

4.2.1 Possible Applications of the Proposed Design

As mentioned in the Introduction Section, the proposed design aims to provide a

programmable TRNG, in order to serve various demands on random bits in a system.

For example, in the proposed new architectural model where Ring-Learning With

Errors (R-LWE) public-key encryption is often utilized, the public key {a, b} can be

generated by a uniformly random vector a ∈ Rn
q and b = a · s+ e, where s, e← X the

Gaussian noise sampling. In this key generation procedure, a should come from the

high quality output of the TRNG, and the error e can be generated in a moderate

quality mode due to its smaller value range limited by the error rate and Gaussian

distribution. Similarly, in the OT scheme, the random vectors {r0, r1, · · · , rn−1}

demand less in quality than the public key pairs.

In a nutshell, the multi-purpose primitive fits into systems characterized by Fig.

4·1.

The system in Fig. 4·1 consists of multiple modules {M0 · · · ,Mi, · · · ,Mn} with

different properties. For example, M0 carries less sensitive tasks, but is called fre-

quently and thus consumes lots of random bits. In this case a TRNG with a small

energy/bit cost and mediocre randomness quality will be sufficient. Meanwhile, Mn

processes highly sensitive tasks and is activated less frequently. Therefore a high qual-

ity TRNG which is cryptographically secure will be the best option. For this case,

it is reasonable to have a slightly larger energy/bit cost. Other modules in between

have the similar trade-offs as shown in the figure.

108

Mn: highly sensitive,
but less frequently called

Mi: medium sensitivity and activity

M0: less sensitive, but frequently called

. . .

High

Low

Low

High

. . .

Se
cu

rit
y

Le
ve

l

R
andom

 Bits U
sage

Figure 4·1: Different modules in the system above require different secu-
rity levels and random bits usages. The random sequences for each module
therefore have different characteristics.

The system designer can either equip each module with an ad hoc TRNG fitting

its demand, or more wisely, have one universal TRNG which is able to satisfy all the

demands through real time configuration. In this work, we construct a programmable

multi-purpose TRNG for comprehensive systems like Fig. 4·1. Besides the examples

listed previously, some other possible application scenarios are discussed below.

Information Storage Systems

A straightforward application is any information storage systems with different levels

of sensitivity and data validity periods, such as a military intelligence program (MIP)

or memory hierarchy.

There are data with short validity periods which get processed and dumped fre-

quently (i.e., the less sensitive information processed daily in MIP, or data in L1 cache

in a memory hierarchy). There are also data with longer validity periods which need

to be protected with more security (i.e., highly sensitive information in MIP, or data

in the memory module). There can also be cases in between. Such a system fits the

model in Fig. 4·1 and can use a programmable TRNG to generate different levels of

109

random masks or keys for each scenario.

Distributed Systems

For an edge node in a distributed systems, its communication with other nodes in

the same local group will be frequent but less sensitive, similar to the M0 case in

Fig. 4·1. Its interaction with the nodes in neighboring groups or middle stations will

be less frequent, but probably with more sensitive information (the Mi case). And

its communication with the cloud server might be the least frequent but require the

highest security (the Mn case).

Randomness Functions in OS

Linux users often use /dev/urandom to generate random bits for most general purpose

programs, and /dev/random for any highly confidential programs demanding more

entropy and security. While /dev/urandom outputs with high throughput and never

blocks (the M0 case), /dev/random (the Mn case) frequently blocks whenever the

entropy pool is empty (collected random bits from system’s physical noise are used

up).

Although regular computers can always feed the entropy pool with keyboard

strokes or sound chip noises, it is not the case for web servers without those pe-

ripherals (Connolly, 2007), which becomes a potential vulnerability in their secure

sockets layer (SSL) relying heavily on secret keys. While solutions such as HAVEGE

(Seznec and Sendrier, 2003) by replacing Linux Kernel Module deals with the problem

in software, a programmable multi-purpose TRNG can be a lightweight hardware fix.

4.2.2 Preliminaries of the Lorenz Chaotic Systems

Chaotic maps are a type of nonlinear and unpredictable systems which are highly

sensitive to the initial condition. In such a system, any slight difference in the initial

110

state will produce rapid escalating and compounding variations in the system’s future

behavior. These phenomena capture the infinite complexity of the nature, which is

often described by fractal mathematics and thus can serve as a proper candidate of

randomness generation.

There are many types of chaotic systems, such as one-dimension (1D) logistic map,

two-dimension (2D) Van der Pol system, and three-dimension (3D) Chua circuit etc.

In this chapter we focus on the three dimensional Lorenz system. The Lorenz system

was originally invented to describe and model the consequent bidirectional convection

of thermally induced fluid, which is uniformly heated from below and cooled from

above. However, because of its chaotic properties, it has also been used for a number

of cryptographic purposes. The most common application is obfuscation such as

block cipher (Jakimoski and Kocarev, 2001) and image encryption (Kwok and Tang,

2007). Another popular usage is on key agreements (Guo and Chang, 2013). There

also have been researches to take advantage of both divergence and convergence to

achieve lightweight authentication (Bu et al., 2018a).

To better facilitate the following presentation, the following notations are sug-

gested:

• α, β, γ: the parameters of Lorenz system’s functions;

• pn = (x, y, z): the output point of a three-dimension (3D) Lorenz function.

n stands for the number of iterations a Lorenz function has been run before

generating such output, and (x, y, z) the coordinates;

• LFi(p0-i, n): the ith Lorenz function characterized by {αi, βi, γi}. With p0-i

being the initial condition, LFi(p0-i, n) = pn-i, where pn-i = (xi, yi, zi) stands

for the output of the ith Lorenz function.

111

The discrete form of the Lorenz functions is given below:
xn+1 = xn + α(xn − yn)△t

yn+1 = yn + (γxn − xnzn − yn)△t,

zn+1 = zn + (xnyn − βzn)△t

(4.1)

where △t determines the resolution of the map.

Fig. 4·2 is shape of [Eq. 4.1] with system parameters α = 10, β = 2.6667, γ = 28,

which were the original values chosen only for fluid convection modeling. Obviously,

other proper values can be selected to construct different Lorenz maps.

-20 -10 0 10 20
-30

-20

-10

0

10

20

30
x-y phase plane

-20 -10 0 10 20
0

10

20

30

40

50
x-z phase plane

-40 -20 0 20 40
0

10

20

30

40

50
y-z phase plane

Figure 4·2: The 3d trajectory of a Lorenz system projected onto x−y, x−z
and y − z planes, usually in a butterfly or “8” pattern.

The major properties of Lorenz functions are:

1. Stationary points: In [Eq. 4.1], when γ > 1, there are two distinct stationary

points, which are:

C1, C2 = (±
√

β(γ − 1),±
√

β(γ − 1), γ − 1) (4.2)

Although C1 and C2 are not physically on the trajectory, they serve as the

attractors to balance out the initial transients, and drive the system towards its

typical behavior.

112

2. Convergence: The attractors bring in the convergence property of a chaotic

system. In other words, even if the initial state p0 is not a point on the tra-

jectory, it will soon be converged to the orbit within limited iterations. In

addition, although the timing of a point appearing on the trajectory is highly

unpredictable, over time the points are all conformed to the butterfly pattern

statistically.

The convergence attribution can be described by Hausdorff dimension dimHK,

which is bounded by (Pogromsky et al.,):

dimHK ≤ 3− 2(α + β + 1)

α + 1 +
√

(α− 1)2 + 4γα
(4.3)

3. Divergence: The key property leveraged for the construction of the proposed

TRNG. Intuitively, the divergence comes from the high randomness of the loca-

tion and timing that a point pn = (x, y, z) appears on a 3D Lorenz map. With

a tiny variation of the initial condition p0, after n iterations the final output

pn will be largely deviated. Theoretically speaking, Lyapunov exponent can be

used to measure the rate of divergence of a chaotic system:

|δ(p)| ≈ |δ(0)|eλp, (4.4)

where for a trajectory T (p)’s nearby orbit T (p) + δ(p), δ(p) is a vector with

infinitesimal initial length. The maximal λ is known to be approximately 0.9056.

4.3 The Proposed Programmable True Random Number Gen-
erator

In this section we will introduce the architecture of the proposed programmable multi-

purpose true random number generator (TRNG). First, a digital physical entropy

source named Asynchronous STopwatch-controlled Ring Oscillator (ASTRO) pro-

113

vides true random seeds for the TRNG. Then a group of Lorenz functions work as

randomness amplifiers of the seeds. For the randomness amplifiers we also have the

choices of using ciphers or hash functions. We choose chaotic functions for their sim-

ple implementation and high throughput properties. Later we show that the design

passes the NIST SP 800-90A test which is a standard of cryptographically secure

random number generators.

The outputs of the Lorenz functions are quantified and blended together to further

improve their quality, before being sent out as the TRNG output. The architecture

of the TRNG is shown in Fig. 4·3.

TRNG

Loren
Function QNTF

Loren
Function QNTF

Loren
Function QNTF

Loren
Function QNTF

... ...
BLD

Init
p0

Init
p0

Init
p0

Init
p0

...
α
β
γ

α
β
γ

α
β
γ

α
β
γ

Shuffled
Input

ASTRO

Hardware
Uniqueness

Real-time

Unstableness

User Input

Output

Figure 4·3: The inputs ({α, β, γ} and p0) of the Lorenz Functions group
are pre-processed by the SAC network and the ASTRO. Its outputs are
processed by the QNTF and BLD modules. The architecture also features
six customizable parameters for the tuning of the cost-performance trade-off.

In this design, all the vectors ({α, β, γ} and {x, y, z}) in the proposed TRNG are

64-bit, where the 8 most significant bits (MSBs) are the integer part, and the 56 least

significant bits (LSBs) decimal.

There are six user inputs to program and customize the TRNG to the desired

working mode (e.g., high physical entropy, high quality, high throughput, energy

114

saving etc.) as shown in Fig. 4·4, which will be introduced briefly in subsections 4.3.1

to 4.3.5, and explored in details with experimental data in Section 4.5.

α
β
γ

Init
p0

Loren
Function QNTF BLD

Randomizing
the low 32 bits

{ 16-, 32-, 48-,
64-, 80-, 96-,
112-, 128-bit }

INIT = { 0, 16,
32, 48 }

N = { 1, 2, 3, 4,
5, 6, 7, 8 }

LSB = { 1, 2, 4,
8, 16, 24, 32,
40, 48, 56 }

BLD = { a, b, c,
d, e, f }

Figure 4·4: The six user inputs of the TRNG to program it to the desired
setting for different purposes.

4.3.1 The SAC Network and Its Configuration of {α, β, γ}

The proposed TRNG supports optional user inputs (any user-designated information

source) which configures {α, β, γ} of the Lorenz functions. Although the user input

is not mandatory since all {α, β, γ} can be preset, this configuration enables more

diversity in the entire system.

According to [Eq. 4.2], the change of {α, β, γ} will result in the re-locating of the

two attractors, which ultimately leads to a new chaotic map. Fig. 4·5 shows how the

two attractors drift away with the change of {α, β, γ}.

Given a user input (a binary vector), it will be transformed by a binary Strict

Avalanche Criterion (SAC) network/matrix (Cao et al., 2015) for shuffling first, before

being used for {α, β, γ} configuration. In a SAC network, whenever a single input

bit is flipped, each output bit should have a probability of 0.5 to flip. Thus any two

user inputs with a small difference, say only one bit off, will result in largely different

configurations. For example, the S-Box in AES is a function satisfying SAC.

However, while the shuffled user input can be any arbitrary value, the Lorenz

parameters {α, β, γ} cannot be arbitrarily configured. Otherwise the resulted trajec-

115

-5 0 5
0

2

4

6

8

10

12

14

Di
st

an
ce

-5 0 5
0

2

4

6

8

10

12

14

Di
st

an
ce

0
5

5

5

D
is

ta
nc

e

10

0

15

0
-5 -5

Figure 4·5: When β (left) or γ (middle) or both of them (right) fluctuates,
the attractors will drift away according to the fluctuation magnitude. α on
the other hand is related to the size of the trajectory. Every point with
distance ̸= 0 stands for a new chaotic map due to the change made to
{α, β, γ}.

tory may lose its chaotic property (Bu et al., 2018b). Fig. 4·6 shows the results of

configuring all the 8 integer bits, all the 56 decimal bits, and only the last 32 decimal

bits of a Lorenz map with the original parameters {α = 10, β = 0.6, γ = 28}.

To be on the safe side, only the last 32 bits of all the {α, β, γ} are left for the

shuffled input. It is also notable that due to the human-related nature of the user

input, it does not necessarily provide security and unpredictability for the TRNG,

which officially should be the job of ASTRO.

4.3.2 Asynchronous STopwatch-controlled Ring Oscillator (ASTRO)

The Asynchronous STopwatch-controlled Ring Oscillator (ASTRO) module serves

as the physical entropy source to provide seeds of true randomness to the TRNG.

ASTRO is a variant of ring oscillator-based physical entropy generator, as proposed

by (Sunar et al., 2007) and (Wang et al., 2009). Besides providing high physical

entropy (shown later in this chapter) as conventional RO does, ASTRO is able to

achieve a larger throughput by its design.

ASTRO provides 16- to 128-bit true random seeds (per user’s customization)

for the initial condition p0, which has three coordinates {x, y, z}. This feature fits

perfectly into Lorenz function’s divergence property, that a small variation in p0 will

116

10

15

20

20

25

30

35

Z

40

Y

0

orignal figure

X

-20 151050-5-10-15

0

-500

first 8 bits changed

0

X

50

100

-50 -100

Z

Y

150

200

-100

250

-150-150

0

10 10
5

00

Y X

-5
-10

-10

20

-15 -20

Z

last 56 bits changed

40

20

last 32 bits changed

0
X

10

15

15

20

10

25Z
30

5

35

40

0
Y

-5 -10 -15-20

Figure 4·6: When the integer bits or all the 56 decimal bits are arbitrarily
changed (up-right), the results trajectory could be no longer chaotic. Only
the 48 LSBs or less (bottom-right for 32 bits) can be arbitrarily configured
while maintaining the chaotic property.

lead to drastic deviation in pn.

The ASTRO module manages a configurable parameter INIT ∈ {48, 32, 16, 0},

determining from which bit each coordinate is to be dynamically modified by ASTRO.

The design and implementation details of ASTRO are presented in Section 4.4.

4.3.3 Lorenz Function Group

All Lorenz functions in the group have the 32 MSBs of their {αi, βi, γi} fixed with

different values. Their 32 LSBs of {αi, βi, γi} and {p0-i} are arranged by the SAC and

ASTRO. By [Eq. 4.1], a Lorenz function can be implemented on an FPGA by mainly

117

fixed-point adders and multipliers.

This module manages a configurable parameter N ∈ {1, 2, 3, 4, 5, 6, 7, 8}, namely

the number of Lorenz functions.

4.3.4 QNTF Module

The quantification (QNTF) module is in charge of truncating the outputs of the

Lorenz functions. It has been proved (Lynnyk et al., 2015) that using the entire

output vector as the random bit string will not pass the NIST test. This is because

the MSBs of the output (especially the first 8) change very slowly as the iteration

goes. Therefore a proper LSB should be chosen to maintain both the randomness

and throughput.

Thus, the QNTFmodule manages a configurable parameter LSB ∈ {1, 2, 4, 8, 16, 24, 32,

40, 48, 56}, which determines the number of LSBs to use for the random string.

4.3.5 BLD Module

The blender (BLD) module blends all the {pn-i} from the Lorenz function group into

the final TRNG output. The BLD module manages a configurable parameter BLD

∈ {a, b, c, d, e, f}, selecting which of the following six formulas to incorporate all the

QNTF-truncated {pn-i} into the final random string.

The six formulas below are designed to shuffle and combine the outputs of the

N Lorenz functions by XORing, permuting, reversing, and interleaving in multiple

ways. Indeed, more formulas can be explored and added to this module.

a. (x0 ⊕ y0 ⊕ z0)|| · · · ||(xN−1 ⊕ yN−1 ⊕ zN−1);

b. (x0 ⊕ · · · ⊕ xN−1)||(y0 ⊕ · · · ⊕ yN−1)||(z0 ⊕ · · · ⊕ zN−1);

c.
⊕N−1

i=0 ((i is even)?xi : zi) ||
⊕N−1

i=0 ((i is even)?yi : xi) ||
⊕N−1

i=0 ((i is even)?zi : yi);

118

d.
⊕N−1

i=0 ((i is even)?xi :
←−xi) ||

⊕N−1
i=0 ((i is even)?yi : ←−yi) ||

⊕N−1
i=0 ((i is even)?zi : ←−zi);

e.
⊕N−1

i=0 ((i is even)?xi :
←−zi) ||

⊕N−1
i=0 ((i is even)?yi : ←−xi) ||

⊕N−1
i=0 ((i is even)?zi : ←−yi);

f.
⊕N−1

i=0 (xi ⊕ yi ⊕ zi),

where ⊕ stands for bitwise XOR, || concatenation, and ←− the bit order reverse oper-

ator.

4.4 The Physical Entropy Source: Asynchronous Stopwatch-
controlled Ring Oscillator (ASTRO)

In this section we propose the physical entropy source of the TRNG named Asyn-

chronous STopwatch-controlled Ring Oscillator (ASTRO). Unlike many chaotic map-

based TRNGs using analog circuits as the physical entropy source, ASTRO can be

conveniently programmed and instantiated as a digital circuit by Hardware Descrip-

tion Language (HDL) and implementation constraints on FPGAs.

4.4.1 The ASTRO Architecture

The micro-architecture of ASTRO is shown in Fig. 4·7. It consists of two five-stage

ring oscillators (RO) and each clocks a counter. One serves as the other’s stopwatch.

The ASTRO’s true randomness comes from the RO’s unpredictable frequency

fluctuation. Due to the manufacturing variation of each gate, the two ROs will have

different frequencies. In addition, according to the measurements, the RO frequency is

highly sensitive to the surrounding environment and varies from time to time. Thus

the timing of the faster RO’s counter reaching overflow and triggering the “Stop”

signal varies at each run, and the incrementing speed of the slower RO’s counter also

changes every time. These two interactive uncertainties together make it possible for

true randomness.

119

 Asyn Stopwatch

Enable

Counter

Counter

Overflow

Stop

RO2

RO1

True Random Seed
QNTF

Figure 4·7: Whichever RO reaches to the counter overflow first, will send
an asynchronous “Stop” signal to pause the other RO’s counter.

The RO frequency is usually around 350 MHz and much higher than the 100 MHz

FPGA clock. To clearly reflect the frequency difference (usually < 3MHz) between

the two ROs, the counter size has to be no smaller than 28 bits. Through statistical

analysis, the 12 MSBs of the slower RO’s counter are relatively stable. However,

the 16 LSBs always demonstrate adequate unpredictability, and can thus serve as a

physical entropy source.

The proposed TRNG is equipped with eight ASTROs. Therefore it is able to

output up to 8 × 16 = 128 bits of true random seeds. The entropy of each bit is

calculated in Fig. 4·8 based on over 50,000 sets of ASTRO output data.
The total and average entropies produced by eight sizes of ASTRO outputs (from

16 to 128 bits) are shown in Fig. 4·9.

It is notable that in order to provide strong cryptographic keys, information se-

curity standards (Barker and Roginsky, 2011) require at least 112-bit of security

strength from physical entropy (equivalent to seven ASTROs turned on). Since ev-

ery individual ASTRO costs negligible power (0.005W), we suggest all eight ASTROs

to be turned on for any security-oriented applications.

120

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

0 16 32 48 64 80 96 112 128

E
n
tr

o
p
y

Bit No.

Entropy of ASTRO (128 bits)

Figure 4·8: The entropies of most bits produced by ASTRO are located
between the [0.93, 1] bit window, which is already in good quality. It can
be further improved to a [0.997, 1] bit window by the proposed TRNG
microarchitecture (cf. Fig. 4·17).

4.4.2 ASTRO FPGA Implementation

Once a piece of HDL code is written to generate an ASTRO, the two ROs’ placement

and routing need to be identically fixed. Otherwise the circuit timing produced by

automated routing will dominate over the intrinsic hardware uniqueness between the

two ROs (Bu and Kinsy, 2018b). In that case, ASTROs on different FPGAs will

behave similarly, thus eliminating sufficient entropy production.

Hence, similar to the construction of physical unclonable functions (PUF), three

constraints need to be set identically: relative placement, pins, and routing. For

complete details one can refer to Section 3.5 in Chapter 3 on PUF.

Remark 4.4.1. It is notable that ASTRO is different from the physical unclon-
able functions (PUF). The later demands reproducibility for authentication purposes,
while the former favors irreproducibility for randomness. Thus ASTRO has less re-
strictions and is much simpler to implement than PUF.

121

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

16

32

48

64

80

96

112

128

16 32 48 64 80 96 112 128

A
v
e

ra
g
e

 E
n

tr
o

y
P

e
r

B
it
 (

b
it
s
)

T
o

ta
l
E

n
tr

o
y
 (

b
it
s
)

ASTRO Size (bits)

Entropy Measurement

Total Entroy Average Entroy Per Bits

Figure 4·9: The total entropy in each case is very close to the output size.
The average entropy provided by each bit of ASTRO is 0.964.

4.5 Programmability and Experiments

In this section, we study the behavior of the proposed TRNG by tuning its parameters

in real time, which leads to its programmability to serve multiple purposes, such as

producing high quality random sequences, outputting at large throughput, or func-

tioning at an adjustable power range. Switching among these purposes also enables

the trade-off between cost (energy/bit) and performance (randomness quality).

In addition, we evaluate the TRNG’s output entropy and the key sensitivity. In

the end, a comparison is made between the proposed TRNG and the existing chaotic

map-based RNGs. We show that the proposed work is able to achieve higher output

quality than all its competitors.

4.5.1 The Six Configurable Parameters

As shown in the TRNG’s architecture in Fig. 4·7 and discussed in Section 4.3, the

lower 32 bits of {α, β, γ} can be randomized by user input, and the physical entropy

source (ASTROs) can also be adjusted by users from 16 to 128 bits. The larger the

122

physical entropy size, the more security it can provide when used for cryptographic

purposes.

Besides these two, there are four configurable parameters LSB, INIT, N, and BLD

to program the TRNG to work under different modes (high throughput, high quality,

and low energy cost). The available values for the four parameters are:

Table 4.1: Configurable Parameters of the TRNG

LSB {1, 2, 4, 8, 16, 24, 32, 40, 48, 56}

INIT {0, 16, 32, 48}

N {1, 2, 3, 4, 5, 6, 7, 8}

BLD a b c d e f

Throughput N · LSB 3LSB 3LSB 3LSB 3LSB LSB
I The unit of throughput is bits/cycle.

In this chapter, the randomness quality of all the possible parameter combina-

tions are evaluated by their NIST test scores (p-values, goodness of fit). The NIST

test consists of 15 sub-tests: AET, FBT, CST (forward (FW) and reverse (RV)),

DFTT, FT, LCT, LROBT, NTMT, OTMT, RET, REVT, BMRT, RT, ST (1 and 2),

MUST. Their detailed introduction can be found in (Bassham III et al., 2010). An

exhaustive search is made for each parameter on its all possible combinations with

other parameters. The search aims to discover two indicators on each parameter:

• Qualifying Rate: the ratio of passed tests over all tests;

• Sub-test Impact: how the change of that parameter affects the p-values of

certain sub-tests.

123

LSB

It determines the number of least significant bits of the Lorenz functions’ outputs to

be kept for use.

0.4

0.45

0.5

0.55

0.6

4 8 16 24 32

P

LSB

Sub-test Impacts

ST-2 MUST BMRT LCT

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 2 4 8 16 24 32 40 48 56

LSB

Qualifying Rate

Figure 4·10: The qualifying rate is almost in a normal distribution under
various LSB values.

As in Fig. 4·10, {4, 8, 16, 24, 32} are acceptable values for LSB (the others have

too low qualifying rates). Particularly, among the 17 sub-tests, LSB = {16, 24, 32}

have been found to have positive impacts in the ST-2, MUST, BMRT, and LCT.

INIT

It sets the ASTRO configuration window in each of p0’s three 64-bit coordinates.

As shown in Fig. 4·11, in terms of sub-test impacts, INIT = 32 shows its advantage

over other values in many sub-tests: CST, DFTT, LCT, FT, ST-1, and ST-2.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 16 32 48

INIT

Qualifying Rate

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 16 32 48

P

INIT

Sub-test Impacts

CST DFTT LCT FT ST-2 ST-1

Figure 4·11: The qualifying rate when INIT = 48 reaches the highest.
However, INIT = 32 is more influential in the sub-test scores.

124

N

It determines the number of Lorenz functions embedded in the TRNG.

As in Fig. 4·12, a larger N will be the proper choice if the design is random bits

quality-oriented . However, the great N is, the more power-consuming the TRNG

will be, due to the increasing number of multipliers.

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

1 2 4 8

P

N

Sub-test Impacts

OTMT DFTT BMRT ST-1 ST-2

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

1 2 4 8

N

Qualifying Rate

Figure 4·12: Both the charts show a trend that the greater N is, the
better quality will be for the generated random bits.

BLD

It selects in which way the truncated outputs of Lorenz functions are to be mixed for

the final TRNG output.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

a b c d e f

BLD

Qualifying Rate

0.35

0.4

0.45

0.5

0.55

0.6

0.65

a b c d e f

P

BLD

Sub-test Impacts

ST-1 DFTT OTMT CST-FW ST-2

Figure 4·13: Both the qualifying rate and sub-test impacts show the
superior performance when BLD = a, f, especially f.

Although BLD = f performs better than others, it produces the least amount of

random bits in a circle (lowest throughput).

125

4.5.2 The High Throughput, High Quality, and Low Energy Cost Work-
ing Modes of the Proposed TRNG

The proposed TRNG’s programmability to serve multi-purposes can be explained as

below (more experimental data follow).

By Table 4.1, to work on the high throughput mode, LSB, N, BLD can be tuned

to achieve various throughputs (bits/cycle): {16, 24, 32, · · · , 128, 144, 168, 192, 224,

256}. By Figs. 4·10, 4·12, 4·13, a large LSB and N with BLD = a will produce high

throughput without sacrificing the randomness quality (p-values), but will consume

more power.

To work on the high quality mode, by Figs. 4·10-4·13, the configuration needs

to come out from LSB ∈ {16, 24}, INIT ∈ {32, 48}, BLD ∈ {a, f}, and a large N

(leading to higher power consumption). Table 4.2 and Fig. 4·14 show the detailed

NIST scores and their uniformity from the best configuration guided by such quality-

oriented principles.

To work on the low energy cost mode, some Lorenz functions can be shut down

(i.e., reducing N). This is because the most heavy-duty component in the design is

the fixed-point multiplier of the Lorenz functions. However, by Fig. 4·12, reducing

N will also reduce the randomness quality.

4.5.3 Cost-Performance Trade-off

As discussed in Section 4.5.1, the proposed multi-purpose TRNG is able to gener-

ate random sequences upon different demands. However, the power-, throughput-,

and performance (quality)-oriented designs all come with some trade-offs, which are

discussed as follows.

First, as stated previously, the power consumption is dominated by the fixed-point

multipliers in the Lorenz functions. Other modules, such as the ASTRO, QNTF, and

BLD, consume almost negligible power (< 0.1W) comparing with the Lorenz group.

126

Table 4.2: The NIST Scores of the Proposed TRNG under High Quality Mode (LSB = 24, INIT = 32, N = 8, BLD
= f)

No. Statistical Tests Sequences with p ≥ 0.01 Sequences with p < 0.01 Passing Rate p-value
(successfully passed) (failed to pass) (goodness of fit)

1 FT 991 9 99.10% 0.437274
2 FBT 990 10 99.00% 0.350485
3 CST-FW 995 5 99.50% 0.739918

CST-RV 990 10 99.00% 0.275709
4 RT 993 7 99.30% 0.991468
5 LROBT 986 14 98.60% 0.739918
6 BMRT 991 9 99.10% 0.437274
7 DFTT 984 16 98.40% 0.637119
8 NTMT* 988.99 11.01 98.90% 0.452054
9 OTMT 987 13 98.70% 0.534146
10 MUST 1000 0 100.00% 0.911413
11 AET 989 11 98.90% 0.911413
12 RET (1016 samples)

(1) x = −4 124 3 97.64% 0.739918
(2) x = −3 126 1 99.21% 0.350485
(3) x = −2 126 1 99.21% 0.534146
(4) x = −1 124 3 97.64% 0.739918
(5) x = 1 126 1 99.21% 0.911413
(6) x = 2 126 1 99.21% 0.739918
(7) x = 3 122 5 96.06% 0.350485
(8) x = 4 122 5 96.06% 0.213309

13 REVT (2304 samples)
(1) x = −9 128 0 100.00% 0.534146
(2) x = −8 128 0 100.00% 0.350485
(3) x = −7 127 1 99.22% 0.350485
(4) x = −6 128 0 100.00% 0.213309
(5) x = −5 128 0 100.00% 0.350485
(6) x = −4 128 0 100.00% 0.350485
(7) x = −3 128 0 100.00% 0.122325
(8) x = −2 128 0 100.00% 0.911413
(9) x = −1 127 1 99.22% 0.534146
(10) x = 1 128 0 100.00% 0.739918
(11) x = 2 126 2 98.44% 0.350485
(12) x = 3 127 1 99.22% 0.350485
(13) x = 4 127 1 99.22% 0.739918
(14) x = 5 127 1 99.22% 0.534146
(15) x = 6 126 2 98.44% 0.122325
(16) x = 7 127 1 99.22% 0.991468
(17) x = 8 128 0 100.00% 0.534146
(18) x = 9 128 0 100.00% 0.911413

14 ST-1 989 11 98.90% 0.739918
ST-2 994 6 99.40% 0.911413

15 LCT 983 17 98.30% 0.964295
I The test scores are calculated based on 1000 Sequences with bit stream length of 100,000 each.
II Averaged results are taken for the tests marked with * (i.e., the NTMT test).

127

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

FT

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

FBT

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

CST *

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

RT

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

LROBT

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

BMRT

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

DFTT

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

NTMT *

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

OTMT

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

MUST

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

AET

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

RET *

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

REVT *

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

ST *

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 C

o
u

n
t

p-values

LCT

Figure 4·14: Uniform distribution of p-values. The tests with a * have
their results in averaged values to save space.

128

Thus, the power consumption is mostly affected by the parameter N , as shown in

Fig. 4·15.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8

P
o
w

e
r

(W
)

N

Power Consumption Based on N

Figure 4·15: The power consumption is almost linearly proportional to
the number (N) of active Lorenz functions.

Then, we denote “cost” as the energy (nJ) needed to produce one TRNG output

bit. With the power data in Fig. 4·15, the throughputs listed in Section 4.5.1, and

the p-values of all the possible configurations, we plot the cost-performance trade-off

trend in Fig. 4·16.

Fig. 4·16 shows that the proposed design is able to work as a multi-purpose TRNG

serving various demands of a system, as proposed in Section 4.2 and verified in Section

4.5.1. By tuning its parameters, the programmable TRNG can either function at a

low cost with acceptable output quality, or achieve satisfying quality and security

with more energy, or anything in between.

4.5.4 Output Entropy and Seed Sensitivity

In the proposed TRNG, there can be up to 128-bit true randomness seeds from the

physical entropy source ASTRO. Obviously, this space can be easily expanded by

using more ASTROs. While Fig. 4·8 shows that ASTRO alone already achieves a

129

0

5

10

15

20

25

30

35

40

45

50

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

C
o
s
t
(n

J
/b

it
)

Average p-Value

Cost and Performance Trade-off Trend

Figure 4·16: The blue dotted trend shows that the quality of the random
sequences rises with the energy (nJ) consumed per bit.

relatively good entropy (0.964 bit/output bit), it can still be improved to a more

satisfying degree, by the supporting modules in the TRNG architecture in Fig. 4·3.

Ideally, when the seed changes, the resulted random bit sequences should have as

large Hamming Distance (HD) as possible. For the proposed TRNG three cases are

studied:

1. Intra-TRNG with different seeds and user inputs;

2. Intra-TRNG with different seeds and same user inputs;

3. Inter-TRNG.

The following equation is used to calculate the sensitivity:

Sensitivity =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

HD(RBSi, RBSj)

Len
(4.5)

where HD() is the Hamming Distance function, RBSi the ith random bit string,

Len = 2, 000, 000 the length of each sequence, and l the number of sequences involved

in evaluation. Table 4.3 shows the sensitivity of the three cases.

130

0.9900

0.9910

0.9920

0.9930

0.9940

0.9950

0.9960

0.9970

0.9980

0.9990

1.0000

0 16 32 48 64 80 96 112 128

E
n

tr
o

p
y

Bit No.

Entropy of TRNG

Figure 4·17: The entropy of the TRNG final outputs, which is 0.998 bit
per output bit in average. To be comparable with Fig. 4·8, the TRNG is
made to work under 128 bits/cycle throughput.

Table 4.3: Sensitivity Evaluation

Intra-TRNG w/ Intra-TRNG w/
Inter-TRNG

different inputs the same input

Sensitivity 50.0016% 50.0032% 49.9990%
I The sensitivity of the three cases are all around the ideal number 50%.

4.5.5 Comparisons with the Other Chaotic Map-based RNGs

As mentioned in Section 3.1, there have been quite a few works in the recent years to

construct RNGs based on chaotic-maps. Lynnyk et al. (Lynnyk et al., 2015) (referred

to as [1] in the following comparisons) proposed two PRNGs also based on Lorenz

functions. Kim et al. (Kim et al., 2017) ([2]) proposed a low power TRNG based

on 1-D linear piecewise affine Markov chaotic maps and analog-to-digital converter

(ADC). François et al. (François et al., 2014) ([3]) tried to mix three logistic maps

together. Dissipative quantum maps are used by Akhshani et al. (Akhshani et al.,

2014) ([4]). Fraga et al. (de la Fraga et al., 2017) ([5]) studied different behaviors of

RNGs based on three chaotic maps: Bernoulli shift, Tent, and Zigzag maps. Wang et

131

al. (Wang et al., 2016a) ([6]) built a PRNG based on an enhanced version of logistic

maps. Özkaynak (Özkaynak, 2014) ([7]) used chaotic maps in a novel way as the

additional input to an existing PRNG to improve its performance. However, they all

lack flexible programmability for different applications.

In this subsection, the proposed TRNG is compared with the other chaotic map-

based RNGs above on output quality, entropy, throughput, and energy cost. In each

comparison, the proposed TRNG is configured to work on the corresponding mode

respectively (cf. subsection 4.5.2).

First, in Fig. 4·18, a comparison on output quality (evaluated by NIST random

test) is made between the proposed TRNG and these 7 competitors (referred to by

their citation indexes).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

NIST Test Score Comparison

Proposed [1] [2] [3] [4] [5] [6] [7]

Figure 4·18: If a competitor has more than one design of RNG, the one
with the best p-value is adopted in the figure.

By a closer look at the p-values in Table 4.4, when programmed to be working in

the high quality mode (cf. Table 4.2), the proposed TRNG outscores the competitors.

It has the best average p-value and more sub-tests with high p-values. It is also free

of barely passing scores (p ≈ 0.01) or even low scores (p ≈ 0.1). In contrast, each

competitor has at least one low score.

Then a comparison is made on entropy, throughput, and energy/bit. Thus the

132

Table 4.4: Statistical Comparison on p-values

Proposed [1] [2] [3] [4] [5] [6] [7]

Average p 0.65 0.38 0.36 0.26 0.44 0.59 0.41 0.32
p ≥ 0.3 16 9 8 6 11 14 11 6
p ≥ 0.5 11 6 5 1 7 8 6 5
p ≥ 0.7 8 2 0 1 1 6 1 2
p ≥ 0.9 5 1 0 0 0 4 1 0

Low Scores 0 4 2 5 1 1 2 3
Barely Pass 0 1 0 2 0 0 0 1
I Most competitors have a large distance to the proposed TRNG in terms
of the average p-value. The closest one is the Bernoulli shift map-based
RNG in (de la Fraga et al., 2017) [5], and then the quantumn map-based
RNG in (Akhshani et al., 2014) [4].

proposed RNG will work on its high-throughput and low-energy modes respectively

(the entropy/bit remains the same for all configurations). Please note that some of

the works on chaotic map-based RNGs did not provide data on all the aspects.

4.5.6 Comparisons with the Other Types of RNGs

Besides the chaotic map-based RNGs, we also select another seven representative

RNGs of other types (Kohlbrenner and Gaj, 2004) (referred to as [8] in the following

comparison), (Tsoi et al., 2003) ([9]), (Danger et al., 2009) ([10]), (Kwok and Lam,

2006) ([11]), (Wieczorek and Golofit, 2014) ([12]), (Martin et al., 2018) ([13]), (Cret

et al., 2008) ([14]) for comparison. These RNGs work under various mechanisms such

as dual-metastability-based, RO-based, hash-based, and open-loop-based etc. Most

of them have high citation numbers and sufficient data for comparison.

Similar to Fig. 4·18, Fig. 4·19 shows the NIST random test scores by the p-values

of each sub-test. The other RNGs are referred to by their citation indexes.

Table 4.6 gives a closer look at the p-values. Similar to the comparison in subsec-

tion 4.5.5, the proposed TRNG has the best average p-value and more sub-tests with

133

Table 4.5: Comparisons on Entropy, Throughput, and Energy/bit

Entropy/bit Entropy/bit Throughput Energy/bit
(Physical) (RNG Output) (Mbps) (nJ/bit)

Proposed 0.94 0.99 192 4.68
[1] N/A N/A N/A N/A
[2] N/A 0.99 0.27 0.0003
[3] N/A 0.99 N/A N/A
[4] N/A 0.99 0.54 N/A
[5] N/A 0.99 7.4 16.2
[6] N/A N/A 0.006 177.3
[7] N/A 0.69 N/A N/A

I It can be seen that in terms of entropy, throughput, and energy/bit,
that the proposed RNG still outperforms its competitors.

II It is notable that (Kim et al., 2017) [2] achieves very low energy con-
sumption because it is made by analog circuit. When only the FPGA
based designs are considered, the proposed TRNG is the most energy-
saving design.

high p-values. It is also free of barely passing scores (p ≈ 0.01) or even low scores

(p ≈ 0.1). In contrast, each competitor has at least one low score.

4.5.7 Comparisons with a Combination of Multiple Traditionally Opti-
mized RNGs

Among all the competitors, we select three RNGs which are traditionally optimized

on high-quality and entropy ((de la Fraga et al., 2017)), high throughput ((Danger

et al., 2009)), and low energy/bit ((Wieczorek and Golofit, 2014)) respectively. A

comparison is made between the proposed work and the combination of the three.

The purpose of this comparison is to verify which is better: to have one pro-

grammable multi-purpose TRNG (the proposed work), or to have a combination of

three traditional optimized RNGs?

Table 4.7 shows that the proposed programmable TRNG is able to outperform

the RNGs which were optimized specifically for randomness quality and throughput.

134

Table 4.6: Statistical Comparison on p-values

Proposed [8] [9] [10] [11] [12] [13] [14]

Average p 0.65 0.50 0.31 0.40 0.34 0.22 0.52 0.32
p ≥ 0.3 16 10 9 9 8 7 12 9
p ≥ 0.5 11 8 4 8 5 1 9 4
p ≥ 0.7 8 6 3 6 3 1 5 3
p ≥ 0.9 5 3 1 0 2 1 2 1

Low Scores 0 2 7 7 7 10 1 6
Barely Pass 0 2 2 4 5 7 0 3
I Most competitors have a large distance to the proposed TRNG in terms
of the average p-value. The closest one is the RO-based RNG under
ionizing radiation in (Martin et al., 2018) [13].

Table 4.7: Comparisons with Conventionally Optimized RNGs

Quality Entropy/bit Throughput Energy/bit
(Average p-value) (RNG Output) (Mbps) (nJ/bit)

Proposed 0.65 0.99 192 4.68
[5]: Quality 0.59 0.99 7.4 16.2

[10]: Throughput 0.40 0.99 100 N/A
[12]: Energy 0.22 0.98 30 3.10

135

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

NIST Test Score Comparison 2

Proposed [8] [9] [10] [11] [12] [13] [14]

Figure 4·19: If a competitor has more than one design of RNG, the one
with the best p-value is adopted in the figure.

Its energy consumption per bit is also very close to the RNG optimized for low power.

In one word, having one such programmable TRNG tends to be a better choice (in

terms of both performance and cost) than having a combination of multiple traditional

TRNGs, which are optimized for different purposes.

4.5.8 Comparisons with Other Ring Oscillators-based TRNGs

Since the proposed TRNG uses ring oscillators (RO) as its physical entropy source in

ASTRO, we also compare it with other RO-based TRNGs. The most-cited RO-based

RNG works of Sunar (Sunar et al., 2007) (referred to as [15]) and Wold (Wang et al.,

2009) [16] are involved. Then some other works ((Tsoi et al., 2003) [17], (Martin et al.,

2018) [18], (Cret et al., 2008)[19]) with sufficient details on entropy, throughput, and

energy are also compared.

From Table 4.8, it can be seen that the proposed RNG performs better than other

RO-based RNGs in terms of NIST scores, throughput, and energy cost per bit.

136

Table 4.8: Comparisons with Other RO-based TRNGs

Quality Entropy/bit Throughput Energy/bit
(Average p-value) (RNG Output) (Mbps) (nJ/bit)

Proposed 0.65 0.99 192 4.68
[15]

N/A 0.99 100 N/A
[16]
[17] 0.31 N/A 0.07 121.3
[18] 0.52 0.93 25 N/A
[19] 0.32 N/A 9.4 N/A

I (Wang et al., 2009)[16] is an improvement of (Sunar et al., 2007)[15] therefore
we group their data together for this comparison.

4.6 Conclusion

In this chapter we propose a design of a programmable multi-purpose true random

number generator (TRNG) based on Lorenz chaotic systems. The original purpose

was to have it serve the cryptosystems in the proposed architectural model. However,

as the research advanced, we found that high quality TRNG design is non-trivial and

it is understood nowadays much less than it should be. Therefore, it extended to a

larger project as we have seen in this chapter.

Through six configurable parameters, the proposed TRNG is able to generate

any desired version by tuning the cost-performance trade-off. Therefore, it is able to

serve the systems consisting of multiple modules with different demands on random

sequences, e.g., budget-limited, high throughput, hight quality and security etc. More

work can done to further extend this design, such as: 1) plugging in alternative

chaotic maps, 2) using more efficient multipliers, and 3) designing better blender

(BLD) formulas.

137

Chapter 5

Quantum-resistant Extension of Hardware
Primitives

In order to construct the secure protocols in Chapter 2 (e.g., island join protocol 2.4.1,

invisible join protocol 2.5.3, or group anonymous authentication protocol 2.5.4, etc.),

we need two hardware primitives: Public-Key Cryptosystem (PKC) and Oblivious

Transfer (OT).

As there are many out-of-box hardware implementations available for RSA, El-

liptic Curve Cryptography or ElGamal, one option was to use one of these existing

schemes as is. However, we take the approach to design and implement a set of

quantum-resistant hardware primitives. The advantages of this approach include but

not limited to: lower power consumption and smaller hardware area cost comparing

with the classical cryptosystems, and a better chance to withstand the computing

power of quantum computers.

Although there are different opinions on the feasibility of large scale quantum

computers (Dyakonov, 2018), many estimations projected a time line of 5 to 10 years

for universal quantum computers to be readily available. Particularly, in the last

three years, we have witnessed a raft of breakthroughs and several key milestones

towards the development of quantum computers. These rapid advances do bring

with them critical challenges to classical cryptosystems. Most classical cryptosys-

tems build their security reduction on integer factorization and discrete logarithm

problems. However, there exist quantum computer-based algorithms to solve these

138

problems with relatively high efficiency, given universal quantum computers with a

large number of logical qubits. For example, Shor’s algorithm (Shor, 1999) leverag-

ing quantum Fourier transform is able to solve the integer factorization problem by

efficiently calculating the Carmichael’s totient function.

Researchers have been actively investigating new algorithms and designs for cryp-

tosystems in post-quantum era. In 2017, NIST launched a campaign of post-quantum

cryptography standardization and totally 69 candidates were submitted. On January

30, 2019, 27 candidates made to the second round (semi-final) of this contest (NIST,

2019). Among all these submissions, lattice-based (12 candidates) and code-based (8

candidates) cryptosystems are the leading candidates. Particularly, designs based on

Ring-learning with errors (R-LWE) (Lyubashevsky et al., 2010), which is an approxi-

mation of lattice-based cryptography, thus far have proven to be the most promising

approach.

In this chapter we mainly focus on the hardware primitives based on R-LWE (Bu

et al., 2019).

5.1 Quantum-resistant Hardware Primitives Based on Ring-
Learning with Errors

Ring-Learning with Errors (R-LWE) was originally proposed by (Regev, 2009) as an

approximation of lattice-based cryptosystem by simplifying the computations over

polynomial rings. The ring parameters are carefully chosen to further reduce the com-

putation complexity. The R-LWE-based cryptosystem has become the most promis-

ing candidate in NIST’s post-quantum standard cryptography contest in all the three

categories: public-key, key exchange, and digital signature. In contrast, code-based

systems do not apply to digital signature schemes, and multivariate-based systems

do not to public-key and key exchange.

139

R-LWE-based cryptosystems have the following advantages (i) their security re-

duction is a modification of the shortest vector problem (SVP), which are known to

be NP-hard, and so far there are no efficient classical or quantum algorithms to solve

them; (ii) they can support homomorphic encryption (HE) schemes; (iii) they have

much smaller key size comparing with other cryptosystems; (iv) finally, they own the

potential to more efficient hardware implementations than their classical competitors

(e.g., RSA, ElGamal etc.).

In contrast to the extensive literature on the study and software implementation

(mostly C++) of the Ring-LWE algorithm, there has been little work on its efficient

hardware implementation. Moreover, out of the existing hardware implementations,

very few of them focus on scalability and efficiency. One technical reason is that

large finite field operations (thousands of bits for each vector) - which form the core

computational kernel of R-LWE - remain a key challenge for many hardware designers.

Recently, a handful of works have explored the FPGA implementation of the Key

Exchange (KEX) (Oder and Güneysu, 2017), and even less the Public-Key Cryp-

tosystem (PKC) (Roy et al., 2014). There is also a general lack of discussion on

the design and hardware implementation of other cryptographic primitives such as

oblivious transfer (OT) and zero-knowledge proof (ZKP), which play critical roles

in many applications, such as private machine learning and crypto-currencies using

blockchain. Efficient and secure hardware implementation of these schemes remains

a young research field.

Therefore, in this work, we construct a small representative set of reusable, stan-

dalone hardware modules of these quantum-resistant cryptographic primitives: PKC,

KEX, OT, and ZKP. The major contributions of these hardware primitives are:

• Algorithm: novel proposals of the quantum-resistant OT and ZKP algorithms;

• Parameterization: a parameterizable design to generate variable sized primitives

140

to enable their deployment in small devices such as Internet of Things (IoT),

and large computing platforms such as homomorphic encryption engines;

• Implementation: FPGA-tailored optimization to reduce the area and power

cost.

These primitives can serve as the fundamental building blocks to aid hardware de-

signers in constructing various quantum-resistant secure systems in the post-quantum

era.

5.1.1 Primitive Algorithms

The detailed algorithms of the public-key cryptosystem (PKC) and key exchange

(KEX) can be found in (Lyubashevsky et al., 2010) and (Alkim et al., 2016), respec-

tively. To avoid redundancy, we will only briefly introduce them in Algorithms 7 and

10.

The oblivious transfer (OT) is an important primitive aiding the invisible join

protocol 2.5.3 and group anonymous authentication protocol 2.5.4, where a 1-out-of-

N OT scheme is used. This OT mechanism enables a receiver to choose and receive

a certain piece of information out of many pieces from the sender, while having no

knowledge to the other pieces. The sender also remains oblivious to the receiver’s

selection. The OT is a widely used protocol in privacy-preserving applications such

as DNA database query (Katz and Malka, 2010) and private machine learning (Liu

et al., 2017).

There have been a handful proposals of quantum-resistant OT (David et al., 2014)

(Brakerski and Döttling, 2018). However, some of them are 1-out-of-2 OT (it can be

used to build 1-out-of-N OT with a hierarchical construction though), while others

incur high computation or communication complexity, which makes them unsuitable

for resource-bounded hardware designs.

141

Algorithm 7: R-LWE Public Key Cryptosystem
Setup: Let the ring Rq be Rq = R/⟨q⟩ = Zq[x]/⟨f(x)⟩, where f(x) = xn + 1 is an
irreducible polynomial with n a power of 2, and q ≡ 1 mod 2n is a large prime number.
Thus Rq is a ring of integer polynomials modulo both f(x) and q, and it has qn elements.
Let X be a discrete Gaussian distribution of small errors/noise centered around zero with
standard deviation αp, where α <

√
log n/n. If t = ⌊ q2⌋, a, b ∈ Rq and s, e, r0, r1, r2 ← X ,

then the public key encryption protocol between Alice and Bob is as follows.

1 Key Generation: Alice picks a random a ∈ Rq and samples s, e← X to generate the
public key pk = {a, b} and the private key sk = {s} by:

b = a · s+ e (5.1)

where · is polynomial multiplication over the ring.
2 Encryption: Bob samples r0, r1, r2 ← X . He then converts his message into a binary

vector (plaintext) m of length n, and generates the cipher {c0, c1} as:{
c0 = b · r0 + r2 + tm,

c1 = a · r0 + r1.
(5.2)

3 Decryption: Alice decrypts the cipher by:

m = ⌈(c0 − c1 · s)/t⌋ (5.3)

where ⌈ ⌋ stands for taking the nearest binary integer.

142

We propose a simple universally composable 1-out-of-N OT (Bu et al., 2019). It

is constructed on the foundation of the PKC primitive.

Algorithm 8: Oblivious Transfer Based on R-LWE Public Key Encryption
Setup: Let the ring Rq be Rq = R/⟨q⟩ = Zq[x]/⟨f(x)⟩, where f(x) = xn + 1 is an
irreducible polynomial with n a power of 2, and q ≡ 1 mod 2n is a large prime number.
Thus Rq is a ring of integer polynomials modulo both f(x) and q, and it has qn elements.

Let KeyGen() be the key generation function of the sender Alice, Enc() the encryption
function of the receiver Bob, and Dec() the decryption function of Alice as in Algorithm
7. Alice has N n-bit binary messages {m1, · · · ,mN} that Bob can choose from, and N
n-byte random vectors {r1, · · · , rN} where ri ∈ Rq. Then the oblivious transfer between
Alice the sender and Bob the receiver is as follows.

Alice sends {r1, · · · , rN} to Bob. Bob chooses the cth vector rc in order to acquire mc.
Then Bob generates a random binary vector K ∈ Rn

2 and computes v to send to Alice:

v = rc + Encpk(K) (5.4)

where rc is added to both ciphertexts {c0, c1} (ref. [Eq.5.2])
1 For all i ∈ {1, 2, · · · , N}, Alice computes the set {m′

i} and sends it back to Bob:

m′
i = Decsk(v − ri)⊕mi (5.5)

where ri is subtracted from both ciphertexts {c0, c1}. ⊕ is bitwise XOR.
2 Bob computes his desired mc while remaining oblivious to other mi if i ̸= c:

mc = m′
c ⊕K. (5.6)

Remark 5.1.1. It is obvious that in order to breach the obliviousness, either Alice
has to know K, or Bob has to know all the {r1, · · · , rN} and be able to break Dec(),
namely acquiring the secret key by solving the SVP. �

In addition to PKC and OT, which are key building blocks for the secure protocols

in Chapter 2, we also propose two more primitives: zero-knowledge proof (ZKP) and

key exchange (KEX). The ZKP enables an entity to prove to a verifier that it knows

a secret value s, without revealing any information apart from the fact that it knows

the value.

Similarly to OT, there have been only a handful proposals of quantum-proof

ZKP (Goldfeder et al., 2016) (Chase et al., 2017). However, these implementations

too incur a large communication overhead (e.g., multi-party computation (MPC)

143

protocol). Hence, they are also impractical for resource-bounded hardware designs.

We propose a simple ZKP scheme (Bu et al., 2019) in Algorithm 9. It takes two

rounds of interactions between Alice and Bob for the proof.

Algorithm 9: Zero-Knowledge Proof Based on R-LWE
Setup: Let the ring Rq be Rq = R/⟨q⟩ = Zq[x]/⟨f(x)⟩, where f(x) = xn + 1 is an
irreducible polynomial with n a power of 2, and q ≡ 1 mod 2n is a large prime number.
Thus Rq is a ring of integer polynomials modulo both f(x) and q, and it has qn elements.
Let X be a discrete Gaussian distribution of small errors/noise centered around zero with
standard deviation αp, where α <

√
log n/n. Let t = ⌊ q2⌋, a, b, s ∈ Rq and e, r, e′, u← X .

Suppose Alice has a secret s and needs to prove her ownership of it to Bob. It is notable
that unlike the PKC scheme where s← X , in this ZKP scheme, s can be any arbitrary
polynomial in Rq.

1 Alice picks a random a ∈ Rq and samples e, e′, r ← X . Alice also selects an arbitrary
binary vector m to compute: {

b = a · s+ e,

c = a · r +mt+ e′
(5.7)

where · is polynomial multiplication over the ring.
2 Alice sends {a, b, c,m} to Bob without revealing s.
3 Bob samples u← X , and interactively sends it to Alice.
4 Alice responds with x to Bob:

x = r + s · u. (5.8)

5 Bob verifies if:
⌈(c− a · x+ b · u)/t⌋ ?

= m, (5.9)

where ⌈ ⌋ stands for taking the nearest binary integer.
6 If the equality of [Eq. 5.9] stands, then Alice has successfully proven her ownership of s to

Bob.

Remark 5.1.2. It is obvious that given {a, b, c,m}, solving s for Bob is equivalent to
solving the SVP in lattice-based cryptography, as proven by (Regev, 2009). However,
by expanding [Eq. 5.9] we have:

⌈(c− a · x+ b · u)/t⌋
= ⌈(a · r + m̄t+ e′)− (a · r + a · s · u) + (a · s · u+ e · u)/t⌋
= ⌈(m̄t+ e′ + e · u)/t⌋ = ⌈(m̄t+ “small”)/t⌋
= m̄

(5.10)

If m̄ = m, Alice proves her ownership of s without revealing it. �

Finally in Algorithm 10, we introduce the key exchange (KEX) scheme, also known

144

as the “NewHope” as proposed by (Lyubashevsky et al., 2010).

Algorithm 10: R-LWE Key Exchange
Setup: Let the ring Rq be Rq = R/⟨q⟩ = Zq[x]/⟨f(x)⟩, where f(x) = xn + 1 is an
irreducible polynomial with n a power of 2, and q ≡ 1 mod 2n is a large prime number.
Thus Rq is a ring of integer polynomials modulo both f(x) and q, and it has qn elements.
Let X be a discrete Gaussian distribution of small errors/noise centered around zero with
standard deviation αp, where α <

√
log n/n. Let Rec() and HelpRec() be reconciliation

functions to eliminate the deviation caused by small errors (Alkim et al., 2016), and
SHA3-256 a standard secure hash function. If a, b, u, v ∈ Rq and s, s′, e, e′, e′′ ← X , then
the key exchange protocol between Alice and Bob is as follows.

1 Alice picks random s and e and sends {a, b} to Bob:

b = a · s+ e (5.11)

where · is polynomial multiplication over the ring.
2 Bob picks random s′ and e′, e′′ and sends {u, r} to Alice:

u = a · s′ + e′,

v = b · s′ + e′′,

r = HelpRec(v).
(5.12)

3 Key Agreement:
Alice computes the following and acquires the secret key µ:{

w = Rec(u · s, r),
µ = SHA3-256(w).

(5.13)

Similarly, Bob computes the following and acquires the secret key µ:{
w = Rec(v, r),
µ = SHA3-256(w).

(5.14)

5.1.2 Efficient and Secure Hardware Implementation of the Primitives

From Algorithm 7 to 10, we find that they all share the following common operations:

1. Polynomial Addition: [Eq. 5.1, 5.2, 5.4, 5.7, 5.8, 5.9, 5.11, 5.12];

2. Polynomial Subtraction: [Eq. 5.3, 5.5, 5.9];

3. Scalar Multiplication: [Eq. 5.2, 5.7];

145

4. Scalar Division to the Nearest Binary Integer: [Eq. 5.3, 5.9];

5. Polynomial Multiplication: [Eq. 5.1, 5.2, 5.3, 5.7, 5.8, 5.11, 5.12, 5.13];

Note: All operations are modular.

Software implementations for these operators can be done in a relatively straight-

forward way. Since latency is usually the only concern in software implementation of

these algorithms, many operations are carried out in minimum cycles. For example,

to conduct an addition between two polynomials of length n, the n component-wise

coefficient modular additions can be done either partially or fully parallel. Resource

planning is rarely a concern for this case.

However, when the operators are implemented on a hardware cryptographic prim-

itive or co-processor (whose speed is much faster than software on a general purpose

processor), resource utilizations such as area and power consumption become the ma-

jor concerns. For example, a 20-bit modular multiplier alone costs about 300 LUTs

on FPGAs. It will be utterly unwise to perform n (n ≥ 128 for most cases) parallel

multiplications in parallel, which will lead to high resource utilization.

Therefore, we suggest the following optimized hardware-oriented implementation

of those operators without compromising the security. The pseudo codes below are

written in Verilog style.

We propose Algorithms 11 and 12 (polynomial addition and subtraction) with a

conditional assignment to avoid the use of expensive modulo operations.

Similarly, Algorithm 13 (scalar multiplication) also leverages conditional assign-

ment to avoid performing the actual multiplication operation, since the polynomial

multiplicand is a binary vector.

We also manage to avoid using expensive divisions in the scalar division operation

in Algorithm 14. We leverage the facts that (1) all the numbers are within the range

of [0, q− 1], and (2) the divisor is (q− 1)/2. First, we measure the absolute difference

146

Algorithm 11: Polynomial Addition Over Rq

Setup: Let a = {a0, · · · , an−1}, b = {b0, · · · , bn−1}, c = a+ b ∈ Rq be two n-byte
polynomials.

Let the counter register i be initialized as i = 0.

1 if i < n then
2 c[i] = a[i] + b[i]− (a[i] + b[i] ≥ q?q : 0)
3 i = i+ 1;
4 end
5 else
6 Return c
7 end

Algorithm 12: Polynomial Subtraction Over Rq

Setup: Let a = {a0, · · · , an−1}, b = {b0, · · · , bn−1}, c = a− b ∈ Rq be two n-byte
polynomials.

Let the counter register i be initialized as i = 0.

1 if i < n then
2 c[i] = a[i]− b[i] + (a[i] ≥ b[i]?0 : q)
3 i = i+ 1;
4 end
5 else
6 Return c
7 end

Algorithm 13: Scalar Multiplication Over Rq

Setup: Let t = ⌊q⌋ be a constant, m = {m0, · · · ,mi, · · ·mn−1} where mi ∈ {0, 1}. Then
c = tm ∈ Rq.

Let the counter register i be initialized as i = 0.

1 if i < n then
2 c[i] = (m[i] == 0?0 : t)
3 i = i+ 1;
4 end
5 else
6 Return c
7 end

147

between the divisor and dividend. Then, we compare the difference with half of the

divisor ((q − 1)/4). If the difference is smaller, then it returns 0, otherwise 1.

Algorithm 14: Scalar Division to the Nearest Integer Over Rq

Setup: Let t = (q − 1)/2 and thalf = t/2 be constants. Also let
a = {a0, · · · , ai, · · · an−1} ∈ Rq and c = ⌈a/t⌋ ∈ R2.

Let the counter register i be initialized as i = 0.

1 if i < n then
2 c[i] = ((a[i] ≥ t)?(a[i]− t) : (t− a[i])) < thalf?1 : 0
3 i = i+ 1

4 end
5 else
6 Return c
7 end

The hardware micro-architectures realizing Algorithms 11 - 14 are shown in Fig.

5·1.

+

>=

q

0

-

a b
c

- >=

q

0 +

a b

c

t m

==
0

0
>=

ct

-

-
>=

t/2

0

1

a

c

Polynomial Addition Polynomial Subtraction

Scalar Multiplication Scalar Division to the Nearest Binary Integer

Figure 5·1: The four basic operations of the PKC algorithm: Polynomial
Addition, Polynomial Subtraction, Scalar Multiplication, and Scalar Divi-
sion to the Nearest Binary Integer. With careful design and optimization,
we manage to perform all the four modulo operations over Rq without using
a general mod q reduction module.

148

Polynomial Multiplication

All the four operations mentioned in the previous subsection are component-wise oper-

ations and can be implemented using conditional assignment. This approach reduces

the hardware resource utilization significantly. However, the polynomial multiplica-

tion is essentially a convolution operation and has the highest hardware cost. An

efficient multiplication module will substantially improve hardware cost of the entire

crypto-primitive.

A straightforward convolution between two n-byte vectors requires O(n2)multipli-

cations. However, by the convolution theorem, using fast discrete Fourier transform

(DFT) will take the complexity down to O(n log n) multiplications.

For polynomial multiplication over the ring, the butterfly Number-Theoretic Trans-

form (NTT) with Negative Wrapped Convolution (NWC) are used instead of DFT.

The use of NWC eliminates both polynomial length expansion and irreducible poly-

nomial reduction during multiplication. Hence, the combination of NTT and NWC

will largely improve the efficiency of polynomial multiplications (Chen et al., 2015).

The multiplication algorithm using NTT is described in Algorithm 15.

The major contribution of this implementation of NTT-based polynomial multi-

plier, is a parameterizable NTT/iNTT algorithm fully tailored and optimized for hard-

ware implementation. Although there exist a number of parameterizable FFT/DFT

algorithms, they perform a large number of multiplications and divisions to compute

the indexes of points and twiddle factors. While this may not be an issue for software

implementation, it quickly adds up to the hardware cost in both area and power.

In the proposed algorithm, instead of multiplication and divisions, all index cal-

culations performed are shift, XOR, and conditional assignments, which are mostly

cost-efficient operations in hardware. It is notable that since the proposed NTT algo-

rithm uses many bit level manipulations, this algorithm does not translate to software

149

Algorithm 15: NTT-based Polynomial Multiplier
Let a = {a0, · · · , an−1}, b = {b0, · · · , bn−1} ∈ Zq[x]/⟨f(x)⟩ be two polynomials of length n
(with n coefficients), where f(x) = xn + 1 is an irreducible polynomial with n a power of
2, and q ≡ 1 mod 2n is a large prime number).

Let ω be the n-th root of unity, ω−1 the inverse of ω, ϕ2 = ω mod q, and ϕ−1 the inverse
of ϕ.

1 Precompute: {wi, w−i, ϕi, ϕ−i} for all i ∈ {0, 1, · · · , n− 1}
/* negative wrap convolution (NWC) of a and b */

2 for i=0 to n-1 do
3 āi ← aiϕ

i

4 b̄i ← biϕ
i

5 end
/* number-theoretic transforming (NTT) a and b */

6 Ā← NTTn
ω (ā)

7 B̄ ← NTTn
ω (b̄)

/* component-wise multiplying A and B */
8 C̄ = Ā · B̄
9 c̄← iNTTn

ω (C̄)
/* inverse negative wrap convolution (iNWC) of c */

10 for i=0 to n-1 do
11 ci ← c̄iϕ

−i

12 end
13 Return c

implementation easily.

Fig. 5·2 shows the corresponding multiplier and NTT hardware implementation.

The proposed implementation, when compared with (Chen et al., 2015), is highly

simplified as shown in the figure.

Figure 5·3 shows the fully parameterizable R-LWE PKC system architecture using

the operators built in this section.

5.1.3 Cost and Performance

We implemented the PKC system on a Zynq-7000 FPGA. Synthesis of the implemen-

tation is carried out using Xilinx Vivado 2018.2 design suite.

We present the correlation between the system parameter {n, q} and costs (latency

and hardware) for all the three building blocks of PKC system. The equations in table

5.1 provide an estimation of the performance and upon the selected {n, q}. Therefore,

150

Algorithm 16: Number-Theoretic Transform Fully Optimized for Hardware
Implementation
Let a = {a0, · · · , an−1} ∈ Zq[x]/⟨f(x)⟩ where where n is a power of 2, and q ≡ 1 mod 2n is
a prime number. Let ω be the n-th root of unity for q. Let ω−1 be the inverse of ω.
Precompute ωi and ω−i for i ∈ {0, 1, · · · , n/2− 1}, and store them in the array element
ω[i] and iω[i] respectively.

Let a be swapped to A so that A[j] = a[jrev], where jrev is a binary vector bit-reversed
from j. Let i, Stage both be initialized to 0.

Index Computation:
/* calculate the correspding point’s index icorr to the ith point */

1 assign icorr = i XOR (1 << Stage);
/* calculate the twiddle factor k for both icorr and i */

2 assign k0 = (Stage == 0)?0 : (i << (log n− Stage));
3 assign k = k0[log q − 1 : 1];

Shared Variable Computation:
4 assign v = A[icorr] ∗ ω[k] mod p;

NTT Function:
5 if Stage < log n then
6 if i < n then
7 i = i+ 1;
8 if i == n− 1 then
9 Stage = Stage+ 1;

10 end
11 if i[Stage] == 0 then
12 A[i] = A[i] + v − (A[i] + v ≥ q?q : 0);
13 A[icorr] = A[i]− v + (A[i] ≥ v?0 : q);

14 end
15 end
16 end
17 else
18 Return A as the transformed polynomial of a.
19 end

151

NTT

b

c
X X

a
φ

NTT

INTT X
φ-1

Polynomial Multiplication

X
n-1

i

X >=

+

-

+ >=

-

<<
1

log
n

w q

a

0

Butterfly NTT

Figure 5·2: The schematic diagram for butterfly NTT operation.

it helps researchers to plan ahead on hardware resources and latency expectations in

their designs.

As shown in table 5.1, the latency (in clock cycles) can be precisely computed as

a function of n, and the hardware cost is proportional to n log2 n log2 q.

Table 5.2 presents the hardware implementation results for the entire PKC system.

The hardware cost is proportional to the length of the polynomial and size (bit-width)

of the chosen prime number. Synthesis results are generated using various polynomial

length n, while the prime number q is set to 12,289.

We also present the hardware cost trend for different combinations of n and q in

Figure 5·4. These trends further prove and confirm the correctness of the estimations

given in Table 5.1.

In table 5.3, we present the latency of the PKC system with varying polynomial

length n. We can see that the latency (in clock cycles) is determined by n and

152

Decryption
Key Generation

Encryption

b

Noise Sampler r1

r0
Poly
MUL

Mod
Redu

Poly
Add c0

Scalar
MUL

[q/2]

m

Poly
MUL

Mod
Redu

Poly
Add

c1
r2

a

M
es

sa
ge

 to
 E

nc
ry

pt

Cipher In

Cipher Out
Public Key In

Public Key Out
Noise Sampler

TRNG

e

s
Poly
MUL

Mod
Redu

Poly
Add

b

a

Nearest
Binary
Integer

of
u/[q/2]

c0

c1

s
Poly
MUL

Mod
Redu

Poly
Sub

m

u

Decrypted Message

Application System
Interface

Figure 5·3: The three core building blocks for the primitives: Key Gener-
ation (KeyGen), Encryption (Enc), and Decryption (Dec). Therefore, it can
be used as either the public key distribution party, or the encryption party.

Table 5.1: Correlation between {q, n} and Latency & Area for Key-
Gen, Enc and Dec Modules

Operation Latency

KeyGen 3n+ 3n
2
log2 n

Enc 7n+ 2n log2 n

Dec 4n+ n log2 n

Resource Cost

LUTs O(n log2 n log2 q)

Registers O(n log2 n log2 q)

independent of q. However, it is notable that the maximum frequency will be reduced

as q increases, due to the increasing combinational logic for the mod q operation.

153

Table 5.2: Hardware Cost with different n and q=12289

Length n LUTs Registers DSP
8 9578 1104 26
16 12961 2157 26
32 19812 4273 26
64 31510 8340 26
128 66251 16805 26
256 11490 33138 26
512 227458 65643 26
1024 426402 130540 26

0

100000

200000

300000

400000

500000

600000

12289 18433 40961 59393 65537

L
U

T
 U

ti
li

za
ti

o
n

Different q values

Hardware Cost

n = 64 n = 128 n = 256 n = 512 n = 1024

Figure 5·4: Hardware Cost with different q and n for PKC System

We also compare the latency of the proposed design implementation for NTT

Multiplier to the design of (Chen et al., 2015) and (Pöppelmann and Güneysu, 2012)

as shown in Figure 5·5. The figure shows the proposed implementation brings in a

performance improvement of 23% comparing with Chen et al. (Chen et al., 2015)

and 71% with (Pöppelmann and Güneysu, 2012).

154

Table 5.3: Latency (cycles) for KeyGen, Enc and Dec Modules in
PKC

Length n KeyGen Enc Dec
8 96 152 80
16 240 368 192
32 576 864 448
64 1344 1984 1024
128 3072 4480 2304
256 6912 9984 5120
512 15360 22016 11264
1024 33792 48128 24576

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

256 512 1024 2048

L
at

en
cy

 (
cy

cl
es

)

Polynomial length (n)

NTT Multiplier Latency Comparison

The Proposed Chen et al. Popplemann et al.

Figure 5·5: Latency comparison of the NTT-based Multiplier between the
proposed design, and the designs of (Chen et al., 2015), and (Pöppelmann
and Güneysu, 2012)

.

155

Chapter 6

System Performance Evaluation of the
Proposed Architectural Model

The effectiveness of the protection provided by the the new architectural model to the

attack models outlined in Chapter 2 is measured through flows and processes isolation.

Strict isolation of flows and processes based on trust levels effectively creates control

access to shared resources: (1) shared memory regions in the network, i.e., virtual

channels at the router; and (2) distributed shared main memory modules. The degree

of process isolation provided by the new architectural model inversely corresponds to

the computing system attack surface, where higher isolation means smaller attack

surface.

For the high-fidelity assessment of the system performance and hardware over-

heads, we adopt a register-transfer level (RTL) based evaluation approach in the

experiments. We use the Heracles (Kinsy et al., 2013) (Kinsy et al., 2011), the

HAsim (Pellauer et al., 2011), and the BRISC-V (Bandara et al., 2019) RTL de-

sign and simulation platforms for the development and evaluation of the proposed

architectural model.

To illustrate and summarize the system performance evaluation, an 8 × 8 2-

D mesh topology design is implemented on a Xilinx Virtex7-XC7VX690T FPGA

device. The board has 433, 200 LUTs and 866, 400 register slices. The unmodified

switch allocation step in the routing process has the critical path due to the arbitration

scheme logic. The operating frequency is 151.5 MHz across all the designs. For the

156

power estimates, the Xilinx Power Estimator (XPE) in the Vivado Design Suites

is used. The power numbers are the post-routing estimates using a vector based

switching activity format (i.e., SAIF). The process feature was set to maximum,

the airflow to 500 LFM and the power supply to default.

The router has four virtual channels and eight slots per virtual channel. Heracles’

injector cores are used to create network and memory traffic. Table 6.1 shows the

FPGA synthesis results. In the table, BA stands for baseline architecture—Heracles’

seven-stage in-order RISC processor, AES the 128-bit version and KS stands for key

storage unit, and PA the proposed architecture model. The hardware overhead to

fully implement the security features of the new architectural model is only 17%.

Table 6.2 has the power estimates for the different design. These estimates correlate

fairly well to the logic resource utilization.

Table 6.1: FPGA implementation resource utilization.

Resource BA BA + AES BA + AES + KS PA

Regs 391,054 424,298 437,980 472,864
LUT 277,038 299,202 307,512 324,251

Percentage - 8 11 17

Table 6.2: FPGA power estimates using Xilinx Power Estimator
(XPE).

Power Estimates BA BA + AES BA + AES + KS PA

Dynamic 57.9 62.54 64.27 67.75
Device Static 6.45 6.96 7.16 7.54

Total On-Chip Power (W) 64.48 69.64 71.57 75.44

The trust level per core is randomly assigned. The synthetic benchmarks, Uniform

random, Bit complement (BitComp), Shuffle, Transpose, and Bit reverse (BitRev),

157

are used for the various evaluations. Figure 6·1 shows the interactions among the

different traffic classifications. For example, in the Uniform random benchmark, less

than 2% of the highly secure traffic is interacting (i.e., sharing a physical link or buffer

space or memory block) with other types of traffic. The limited interaction reduces

the attack surface and ensures greater security.

Figures 6·3 and 6·2 show throughput and latency results of all the synthetic bench-

marks on the baseline and the proposed architectural model. The graphs are color-

coded to match the trust-level (e.g., HA BitRev green means that the Bit reverse

traffic is run in the highly secure mode). Overall, the proposed secure architecture

model shows no significant performance penalty. In some cases, we actually see a per-

formance improvement at higher injection rates. This improvement occurs because

the proposed architectural model tries to confine the traffic to their trust classifica-

tion islands, which decreases path diversity and throughput for low injection rates but

reduces head-of-line-blocking at high injection rates. In other words, by maximizing

within-island routing, as a secondary effect, the algorithm also provides better traffic

distribution and load balancing in the network.

158

0

2

4

6

8

10

12

14

16

18

Uniform	random Bit	complement	 Transpose Shuffle Bit	reverse

Pe
rc
en

ta
ge
	o
f	r
ec
ei
ve
d	
tr
af
fic

Synthetic	Benchmark	Applications

Interaction	with	other	islands	

Non-trusted	islands
Unknown	islands
Trusted	islands
Highly	secure	islands

Figure 6·1: Percentage of interaction with other islands for different traffic
classifications.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Injection rates

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

nu
m

be
r

of
 p

ac
ke

ts
)

Baseline Architecture (BA) vs. Proposed Architecture (PA)

PA BitRev
PA Shuffle
PA Transpose
PA BitComp
BA BitRev
BA Shuffle
BA Transpose
BA BitComp

Figure 6·2: Throughput per benchmark for the baseline and the proposed
architectural model.

159

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Injection rates

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Baseline Architecture (BA) vs. Proposed Architecture (PA)

PA BitRev
PA Shuffle
PA Transpose
PA BitComp
BA BitRev
BA Shuffle
BA Transpose
BA BitComp

Figure 6·3: The average latency per benchmark for the baseline and the
proposed architectural model.

In addition to the synthetic benchmarks, applications from the SPLASH-2 bench-

mark suite are used to evaluate the new architectural model’s network performance

and security enforcement. SPLASH-2 (Woo et al., 1995) is a diverse pool of appli-

cations commonly used to test and evaluate an architecture or a microarchitecture

feature performance in a shared memory setting. These applications are simulated as

traces. The Graphite (Miller et al., 2010) distributed x86 multicore simulator is used

to generate the traces. Figure 6·4 shows the throughput results for the new architec-

tural model on the SPLASH-2 benchmarks as fractions of throughput on the baseline

architecture. The performance decline is only 1% to 9% across all the benchmarks

when compared to the non-secure baseline architecture.

Figure 6·5 shows the degree of interaction among traffic for the different appli-

cations, measured as percentages. For these results, 25 placements (of processes

and data) and simulations are performed and the best results are reported. Non-

160

interacting means that flows from the application are routed within the routers as-

signed to the application without needing to use other applications’ island or lo-

cal memory.

0.92

0.96

0.91

0.99

0.97
0.96

0.94

0.98

0.93
0.94

Fr
ac
tio

ns
	o
f	t
he

	b
as
el
in
e	
ar
ch
ite

ct
ur
e

SPLASH-2	benchmarks	

Normalized	Throughput of the Proposed Architecture Model

Figure 6·4: Throughput per benchmark in SPLASH-2 suite for the new
architectural model.

87

92

89

92

99

91

88

100

97

90

13

8

11

8

1

9

12

0

3

10

80

82

84

86

88

90

92

94

96

98

100

Pe
rc
en

ta
ge
	o
f	i
nt
er
ac
tin

g	
th
re
ad

s	f
ro
m
	d
iff
er
en

t	i
sla

nd
s

SPLASH-2	benchmarks	

Thread	Isolation	

Interacting

Non-interacting	

Figure 6·5: Degree of interaction among SPLASH-2 application traffic,
measured as percentages.

161

Chapter 7

Conclusions

In this dissertation we propose a new architectural model aiming to build secure

computer system out of non-secure and untrusted processing elements (PEs). It

intends to address the security issues in heterogeneous SoCs caused by varying levels

of security and trust of the PEs. Such vulnerability can lead to data leakage from

the shared memory resources or denial of service attacks. To address these issues, the

proposed architectural model takes 3 major approaches: (1) process isolation through

hardware virtualization. Based on PEs’ runtime trust levels, they are dynamically

grouped to different virtual islands, which are logically isolated. Data leakage from

trusted islands to less trusted ones are thus prohibited; (2) hardware-based root-of-

trust, which provides a trustworthy channel to authenticate hardware components

and resist counterfeits or spoofing; (3) a set of secure protocols to protect the system

from untrusted PEs’ malicious behaviors and to preserve the privacy of the trusted

ones.

In order to extend the architectural model’s usability to the post-quantum era,

we use a set of quantum-resistant cryptographic hardware primitives as the basic

building blocks for the secure protocols in this architectural model. These primitives

can also aid designers to construct larger secure systems for the post-quantum era.

The proposed architectural model is evaluated by the Heracles RTL simulator

with a set of benchmarks. The results show that the architectural model introduces

acceptable hardware and throughput overheads while successfully carrying out the

162

protection to heterogeneous systems.

Our future work consists of the following parts: (1) to extend the capability of

the proposed architectural model in detecting and resisting malicious components; (2)

to reduce the hardware overhead of this architectural model through more efficient

hardware implementations and algorithms; (3) to address the problem of elevating

data from a less trusted island to a highly trusted with data sanitization; and (4), to

construct the non-binary OLSC-based McEliece cryptosystem and verify its security

level. We aim to explore the possibility of using OLSC-based McEliece cryptosystem

as an approach to reduce decryption complexity and key size.

References

Aarestad, J. et al. (2013). Help a hardware-embedded delay puf. IEEE Design and
Test.

Aharonov, D., Ben-Or, M., Eban, E., and Mahadev, U. (2017). Interactive proofs
for quantum computations. arXiv preprint arXiv:1704.04487.

Akhshani, A., Akhavan, A., Mobaraki, A., Lim, S.-C., and Hassan, Z. (2014). Pseudo
random number generator based on quantum chaotic map. Communications in
Nonlinear Science and Numerical Simulation, 19(1).

Alkim, E., Ducas, L., Pöppelmann, T., and Schwabe, P. (2016). Post-quantum key
exchange-a new hope. In USENIX Security Symposium, volume 2016.

Anderson, J. H. (2010). A puf design for secure fpga-based embedded systems.
Proceedings of the 2010 Asia and South Pacific Design Automation Conference.

Aron, J. (2019). Ibm unveils its first commercial quantum computer. https://www.
newscientist.com/article/2189909-ibm-unveils-its-first-commercial-quantum-computer/.

Bandara, S., Ehret, A., Kava, D., and Kinsy, M. A. (2019). BRISC-V: an open-
source architecture design space exploration toolbox. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, page
306.

Barker, E. and Roginsky, A. (2011). Transitions: Recommendation for transitioning
the use of cryptographic algorithms and key lengths. NIST Special Publication,
800:131A.

Bassham III, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Barker,
E. B., Leigh, S. D., Levenson, M., Vangel, M., Banks, D. L., et al. (2010). Sp 800-
22 rev. 1a. a statistical test suite for random and pseudorandom number generators
for cryptographic applications. National Institute of Standards & Technology.

Bauder, D. (1983). An anti-counterfeiting concept for currency systems. Research
report PTK-11990. Sandia National Labs.

Berlekamp, E. (2015). Algebraic coding theory: Revised Edition. World Scientific.

163

164

Brakerski, Z. and Döttling, N. (2018). Two-message statistically sender-private ot
from lwe. In Theory of Cryptography Conference, pages 370–390. Springer.

Bu, L., Agrawal, R., Cheng, H., and Kinsy, M. A. (2019). Post-quantum crypto-
graphic hardware primitives. Boston Area Computer Architecture Workshop, arXiv
preprint arXiv:1903.03735.

Bu, L., Cheng, H., and Kinsy, M. A. (2018a). Adaptive and dynamic device authenti-
cation based on lorenz chaotic systems. In 61st International Midwest Symposium
on Circuits and Systems (MWSCAS).

Bu, L., Cheng, H., and Kinsy, M. A. (2018b). Fast dynamic device authentication
based on lorenz chaotic systems. In 2018 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE.

Bu, L., Isakov, M., and Kinsy, M. A. (2018c). A secure and robust scheme for sharing
confidential information in iot systems. Ad Hoc Networks.

Bu, L. and Karpovsky, M. G. (2017). A design of secure and reliablewireless trans-
mission channel for implantable medical devices. 3rd International Conference on
Information Systems Security and Privacy.

Bu, L. and Kinsy, M. (2018a). Weighted group decision making using multi-identity
physical unclonable functions. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), pages 251–2514. IEEE.

Bu, L. and Kinsy, M. A. (2018b). Weighted group decision making using multi-
identity physical unclonable functions. In 28th International Conference on Field
Programmable Logic and Applications (FPL).

Bu, L., Mark, M., and Kinsy, M. A. (2018d). A short survey at the intersection of
reliability and security in processor architecture designs. IEEE Computer Society
Annual Symposium on VLSI.

Bu, L., Nguyen, H. D., and Kinsy, M. A. (2017). Rasss: A perfidy-aware protocol for
designing trustworthy distributed systems. In 2017 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages
1–6. IEEE.

Byrne, M. (2015). Internet of things encryption vulnerabilities show how often
devs rip-off code. https://motherboard.vice.com/en_us/article/nz7v77/internet-of-things-
encyption-vulnerabilities-show-how-often-people-rip-off-code.

Byrne, M. (2016). Is computer security becoming a hardware problem? https:
//motherboard.vice.com/en_us/article/z43qn9/is-computer-security-a-hardware-problem.

165

Camenisch, J., Hohenberger, S., and Lysyanskaya, A. (2005). Compact e-cash.
Annual International Conference on the Theory and Applications of Cryptographic
Techniques.

Cao, Z., Chen, F., Chen, B., and Zhang, X. (2015). Research on the balanced boolean
functions satisfying strict avalanche criterion. In 2015 International Conference
on Computational Science and Computational Intelligence (CSCI), pages 680–684.
IEEE.

Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., and Zaverucha, G. (2017). Post-quantum zero-knowledge and sig-
natures from symmetric-key primitives. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1825–1842. ACM.

Chatterjee, U., Govindan, V., Sadhukhan, R., Mukhopadhyay, D., Chakraborty, R. S.,
Mahata, D., and Prabhu, M. M. (2018). Building puf based authentication and
key exchange protocol for iot without explicit crps in verifier database. IEEE
Transactions on Dependable and Secure Computing.

Chen, D. D., Mentens, N., Vercauteren, F., Roy, S. S., Cheung, R. C., Pao, D., and
Verbauwhede, I. (2015). High-speed polynomial multiplication architecture for
ring-lwe and she cryptosystems. IEEE Transactions on Circuits and Systems I:
Regular Papers, 62(1):157–166.

Chen, Q. A., Qian, Z., and Mao, Z. M. (2014). Peeking into your app without
actually seeing it: Ui state inference and novel android attacks. In Proceedings of
the 23rd USENIX Conference on Security Symposium, SEC’14, pages 1037–1052,
Berkeley, CA, USA. USENIX Association.

Chhabra, S., Solihin, Y., Lal, R., and Hoekstra, M. (2010). An analysis of secure
processor architectures. In Transactions on computational science VII, volume
5890, pages 101–121. Springer-Verlag.

Chu, C.-K. and Tzeng, W.-G. (2008). Efficient k-out-of-n oblivious transfer schemes.
Journal of Universal Computer Science, 14(3).

Connolly, R. (2007). Entropy and random number generators in linux. NIST Special
Publication.

Courtland, R. (2017). Google aims for quantum computing supremacy. IEEE
Spectrum, 54(6):9–10.

Cret, O., Suciu, A., and Gyorfi, T. (2008). Practical issues in implementing trngs
in fpgas based on the ring oscillator sampling method. In 10th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2008.
SYNASC’08., pages 433–438. IEEE.

166

Danger, J.-L., Guilley, S., and Hoogvorst, P. (2009). High speed true random num-
ber generator based on open loop structures in fpgas. Microelectronics journal,
40(11):1650–1656.

David, B., Dowsley, R., and Nascimento, A. C. (2014). Universally composable obliv-
ious transfer based on a variant of lpn. In International Conference on Cryptology
and Network Security, pages 143–158. Springer.

de la Fraga, L. G., Torres-Pérez, E., Tlelo-Cuautle, E., and Mancillas-López, C.
(2017). Hardware implementation of pseudo-random number generators based on
chaotic maps. Nonlinear Dynamics, 90(3).

Delvaux, J. and Verbauwhede, I. (2013). Side channel modeling attacks on 65nm
arbiter pufs exploiting cmos device noise. Hardware-Oriented Security and Trust
(HOST).

Dyakonov, M. (2018). The case against quantum computing. https://spectrum.ieee.
org/computing/hardware/the-case-against-quantum-computing.

EE Times (2010). Nxp and intrinsic-id to raise smart chip security. UBM Tech
Electronics.

Elias, A. (2017). Understanding hardware roots of trust. https://www.synopsys.com/
designware-ip/technical-bulletin/understanding-hardware-roots-of-trust-2017q4.html.

Feynman, R. P. (1959). There’s plenty of room at the bottom [data storage]. Journal
of microelectromechanical systems, 1(1):60–66.

Fiorin, L., Silvano, C., and Sami, M. (2007). Security aspects in networks-on-chips:
Overview and proposals for secure implementations. In 10th Euromicro Conference
on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007, pages
539–542.

Forte, D., Perez, R., Kim, Y., and Bhunia, S. (2016). Supply-chain security for
cyberinfrastructure [guest editors’ introduction]. Computer, 49(8):12–16.

François, M., Grosges, T., Barchiesi, D., and Erra, R. (2014). Pseudo-random number
generator based on mixing of three chaotic maps. Communications in Nonlinear
Science and Numerical Simulation, 19(4).

Gao, S. (2003). A new algorithm for decoding reed-solomon codes. In Communica-
tions, Information and Network Security, pages 55–68. Springer.

Gassend, B., Clarke, D., Van Dijk, M., and Devadas, S. (2002a). Controlled physical
random functions. In 18th Annual Computer Security Applications Conference,
2002. Proceedings., pages 149–160. IEEE.

167

Gassend, B., Dijk, M. V., Clarke, D., Torlak, E., Devadas, S., and Tuyls, P. (2008).
Controlled physical random functions and applications. ACM Transactions on
Information and System Security (TISSEC).

Gassend, B. et al. (2002b). Silicon physical random functions. Proceedings of the
Computer and Communications Security Conference.

Goldfeder, S., Chase, M., and Zaverucha, G. (2016). Efficient post-quantum zero-
knowledge and signatures. IACR Cryptology ePrint Archive, 2016:1110.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 212–219. ACM.

Günlü, O., Kernetzky, T., İşcan, O., Sidorenko, V., Kramer, G., and Schaefer, R.
(2018). Secure and reliable key agreement with physical unclonable functions.
Entropy, 20 (5):340.

Guo, C. and Chang, C.-C. (2013). Chaotic maps-based password-authenticated
key agreement using smart cards. Communications in Nonlinear Science and
Numerical Simulation, 18(6):1433–1440.

Herder, C., Yu, M.-D., Koushanfar, F., and Devadas, S. (2014). Physical unclonable
functions and applications: A tutorial. Proceedings of the IEEE, 102(8):1126–1141.

Hsu, J. (2018). Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy. IEEE
Spectrum Tech Talk.

Hwang, J.-Y., bum Suh, S., Heo, S.-K., Park, C.-J., Ryu, J.-M., Park, S.-Y., and
Kim, C.-R. (2008). Xen on arm: System virtualization using xen hypervisor for
arm-based secure mobile phones. In 5th IEEE Consumer Communications and
Networking Conference, 2008. CCNC 2008., pages 257–261.

Iftene, S. (2007). General secret sharing based on the chinese remainder theorem
with applications in e-voting. Electronic Notes in Theoretical Computer Science,
186:67–84.

Intel (2017). Intel security essentials. https://www.intel.com/content/dam/www/public/
us/en/documents/solution-briefs/security-essentials-solution-brief.pdf.

International Defense Security and Technology (IDST) (2019). Threats to ict supply
chains including counterfeit electronic components and hardware trojans present
critical risk to military systems, researchers developing new innovations. www.
idstch.com/home5/international-defence-security-and-technology/cyber/the-digital-video-guard-
can-protect-against-cyber-threats-of-hardware-trojans-claims-dsto-researchers.

168

Jae W, L., Devadas, S., et al. (2004). A technique to build a secret key in integrated
circuits for identification and authentication applications. VLSI Circuits.

Jakimoski, G. and Kocarev, L. (2001). Chaos and cryptography: block encryption
ciphers based on chaotic maps. Ieee transactions on circuits and systems i: fun-
damental theory and applications, 48(2):163–169.

Jerger, N. E. and Peh, L.-S. (2009). On-chip networks. Synthesis Lectures on
Computer Architecture, 4(1):1–141.

Katz, J. and Malka, L. (2010). Secure text processing with applications to private
dna matching. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 485–492. ACM.

Katz, J. and Shin, J. S. (2005). Modeling insider attacks on group key-exchange
protocols. In Proceedings of the 12th ACM Conference on Computer and Commu-
nications Security, CCS ’05, pages 180–189, New York, NY, USA. ACM.

Kaufman, D. (2011). Darpa: Cyber analytical framework. https://www.slideshare.net/
scovetta/darpa-cyber-analytical-framework-kaufman.

Khandelwal, S. (2015). Millions of iot devices using same hard-coded crypto keys.
https://thehackernews.com/2015/11/iot-device-crypto-keys.html.

Khoshroo, S. (2013). Design and evaluation of fpga-based hybrid physically unclon-
able functions. The University of Western Ontario.

Kim, M., Ha, U., Lee, K. J., Lee, Y., and Yoo, H.-J. (2017). A 82-nw chaotic map
true random number generator based on a sub-ranging sar adc. IEEE Journal of
Solid-State Circuits, 52(7):1953–1965.

Kinsy, M., Bu, L., Isakov, M., and Mark, M. (2018). Designing secure heterogeneous
multicore systems from untrusted components. Cryptography, 2(3):12.

Kinsy, M. A., Cho, M. H., Wen, T., Suh, G. E., van Dijk, M., and Devadas, S.
(2009). Application-aware deadlock-free oblivious routing. In 36th International
Symposium on Computer Architecture (ISCA 2009), June 20-24, 2009, Austin, TX,
USA, pages 208–219.

Kinsy, M. A., Khadka, S., Isakov, M., and Farrukh, A. (2017). Hermes: Secure het-
erogeneous multicore architecture design. In 2017 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 14–20. IEEE.

Kinsy, M. A., Pellauer, M., and Devadas, S. (2011). Heracles: Fully synthesizable
parameterized mips-based multicore system. In International Conference on Field
Programmable Logic and Applications, FPL 2011, September 5-7, Chania, Crete,
Greece, pages 356–362.

169

Kinsy, M. A., Pellauer, M., and Devadas, S. (2013). Heracles: A tool for fast
rtl-based design space exploration of multicore processors. In Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’13, pages 125–134, New York, NY, USA. ACM.

Knight, W. (2017). Ibm raises the bar with a 50-qubit quantum computer. Sighted
at MIT Review Technology.

Kohlbrenner, P. and Gaj, K. (2004). An embedded true random number generator
for fpgas. In Proceedings of the 2004 ACM/SIGDA 12th international symposium
on Field programmable gate arrays, pages 71–78. ACM.

Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi, N. P., and Farkas, K. I. (2004).
Single-isa heterogeneous multi-core architectures for multithreaded workload per-
formance. In Proceedings. 31st Annual International Symposium on Computer
Architecture, 2004., pages 64–75.

Kwok, H. and Tang, W. K. (2007). A fast image encryption system based on chaotic
maps with finite precision representation. Chaos, solitons & fractals, 32(4):1518–
1529.

Kwok, S. H. and Lam, E. Y. (2006). Fpga-based high-speed true random number
generator for cryptographic applications. In TENCON 2006. 2006 IEEE Region
10 Conference, pages 1–4. IEEE.

Lapedus, M. (2018). A crisis in dod’s trusted foundry program? www.semiengineering.
com/a-crisis-in-dods-trusted-foundry-program.

Li, B., Li, H., Xu, G., and Xu, H. (2005). Efficient reduction of 1 out of n oblivious
transfers in random oracle model. IACR Cryptology ePrint Archive, 2005:279.

Lim, D., Lee, J. W., Gassend, B., Suh, G. E., Van Dijk, M., and Devadas, S. (2005).
Extracting secret keys from integrated circuits. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 13(10):1200–1205.

Liu, J., Juuti, M., Lu, Y., and Asokan, N. (2017). Oblivious neural network pre-
dictions via minionn transformations. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 619–631. ACM.

Lynnyk, V., Sakamoto, N., and Čelikovskỳ, S. (2015). Pseudo random number
generator based on the generalized lorenz chaotic system. IFAC-PapersOnLine,
48(18):257–261.

Lyubashevsky, V., Peikert, C., and Regev, O. (2010). On ideal lattices and learning
with errors over rings. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–23. Springer.

170

Mahmoud, A., Rührmair, U., Majzoobi, M., and Koushanfar, F. (2013). Combined
modeling and side channel attacks on strong pufs. IACR Cryptology ePrint Archive,
2013:632.

Maiti, A., Kim, I., and Schaumont, P. (2012). A robust physical unclonable func-
tion with enhanced challenge-response set. IEEE Transactions on Information
Forensics and Security, 7(1):333–345.

Majzoobi, M., Koushanfar, F., and Potkonjak, M. (2008). Lightweight secure pufs.
In Proceedings of the 2008 IEEE/ACM International Conference on Computer-
Aided Design, pages 670–673. IEEE Press.

Mandelbaum, R. F. (2018). This could be the best quantum computer yet. www.
gizmodo.com/this-could-be-the-best-quantum-computer-yet-1831085617.

Martin, H., Martin-Holgado, P., Peris-Lopez, P., Morilla, Y., and Entrena, L. (2018).
On the entropy of oscillator-based true random number generators under ionizing
radiation. Entropy, 20(7):513.

Michael, M. H., Silveri, M., Brierley, R., Albert, V. V., Salmilehto, J., Jiang, L., and
Girvin, S. M. (2016). New class of quantum error-correcting codes for a bosonic
mode. Physical Review X, 6(3):031006.

Miller, J. E., Kasture, H., Kurian, G., Gruenwald, C., Beckmann, N., Celio, C.,
Eastep, J., and Agarwal, A. (2010). Graphite: A distributed parallel simulator
for multicores. In 2010 IEEE 16th International Symposium on High Performance
Computer Architecture (HPCA), pages 1–12.

Morozov, S., Maiti, A., and Schaumont, P. (2010). An analysis of delay based puf
implementations on fpga. In International Symposium on Applied Reconfigurable
Computing, pages 382–387. Springer.

Nguyen, P. H., Sahoo, D. P., Jin, C., Mahmood, K., Rührmair, U., and van Dijk,
M. (2018). The interpose puf: Secure puf design against state-of-the-art machine
learning attacks. IACR Cryptology ePrint Archive, 2018:350.

NIST (2012). True randomness can’t be left to chance: Why entropy is important
for information security. NIST Special Publication.

NIST (2018). Root of trust. csrc.nist.gov/Projects/Hardware-Roots-of-Trust.

NIST (2019). Post-quantum cryptography. csrc.nist.gov/news/2019/pqc-standardization-
process-2nd-round-candidates.

Oberg, J., Sherwood, T., and Kastner, R. (2013). Eliminating timing information
flows in a mix-trusted system-on-chip. IEEE Design & Test, 30(2):55–62.

171

Oder, T. and Güneysu, T. (2017). Implementing the newhope-simple key exchange
on low-cost fpgas. Progress in Cryptology–LATINCRYPT, 2017.

Ohkubo, M., Miura, F., Abe, M., Fujioka, A., and Okamoto, T. (1999). An im-
provement on a practical secret voting scheme. In International Workshop on
Information Security. Springer.

Özkaynak, F. (2014). Cryptographically secure random number generator with
chaotic additional input. Nonlinear Dynamics, 78(3):2015–2020.

Pellauer, M., Adler, M., Kinsy, M. A., Parashar, A., and Emer, J. S. (2011). Hasim:
Fpga-based high-detail multicore simulation using time-division multiplexing. In
17th International Conference on High-Performance Computer Architecture (HPCA-
17 2011), February 12-16 2011, San Antonio, Texas, USA, pages 406–417.

Pogromsky, A. Y., Santoboni, G., and Nijmeijer, H. An ultimate bound on the
trajectories of the lorenz system and its applications. Nonlinearity, 16.5:55–62.

Pöppelmann, T. and Güneysu, T. (2012). Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware. In International Conference on
Cryptology and Information Security in Latin America, pages 139–158. Springer.

Porquet, J., Greiner, A., and Schwarz, C. (2011). Noc-mpu: A secure architecture
for flexible co-hosting on shared memory mpsocs. Design, Automation and Test in
Europe Conference and Exhibition, pages 1–4.

Quantum Computing Report (2017). Applying moore’s law to quantum qubits.
www.quantumcomputingreport.com/our-take/applying-moores-law-to-quantum-qubits.

Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM (JACM), 56(6):34.

Rührmair, U., Sölter, J., Sehnke, F., Xu, X., Mahmoud, A., Stoyanova, V., Dror, G.,
Schmidhuber, J., and Burleson, W. (2013). Puf modeling attacks on simulated
and silicon data. IEEE Transactions on Information Forensics and Security,
8.11:1876–1891.

Roy, S. S., Vercauteren, F., Mentens, N., Chen, D. D., and Verbauwhede, I. (2014).
Compact ring-lwe cryptoprocessor. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 371–391. Springer.

Sajeesh, K. and Kapoor, H. K. (2011). An authenticated encryption based security
framework for noc architectures. In Proceedings of the 2011 International Sym-
posium on Electronic System Design, ISED ’11, pages 134–139, Washington, DC,
USA. IEEE Computer Society.

172

Salmani, H. (2018). The global integrated circuit supply chain flow and the hardware
trojan attack. In Trusted Digital Circuits, pages 1–11. Springer.

Science-Daily (2018). World-first quantum computer simulation of chemical bonds
using trapped ions. www.sciencedaily.com/releases/2018/07/180724110028.htm.

Seznec, A. and Sendrier, N. (2003). Havege: A user-level software heuristic for
generating empirically strong random numbers. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 13(4):334–346.

Shamir, A. (1979). How to share a secret. Communications of the ACM, 22.11.

Shimizu, K., Suzuki, D., and Kasuya, T. (2012). Glitch puf extracting informa-
tion from usually unwanted glitches. IEICE Transactions on Fundamentals of
Electronics, 95.1:223 – 233.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Review, 41(2):303–332.

(SIA), S. I. A. (2018). Beyond borders report. www.semiconductors.org/resources/beyond-
borders-the-global-semiconductor-value-chain/sia-beyond-borders-report-final-may-6-1.

Soybali, M., Ors, B., and Saldamli, G. (2011). Implementation of a puf circuit on a
fpga. IEEE 4th IFIP International Conference on New Technologies, Mobility and
Security (NTMS).

Suh, E. and Devadas, S. (2007). Physical unclonable functions for device authentica-
tion and secret key generation. Proceedings of the 44th annual Design Automation
Conference.

Sunar, B., Martin, W. J., and Stinson, D. R. (2007). A provably secure true random
number generator with built-in tolerance to active attacks. IEEE Transactions on
computers, 56(1).

Tehranipoor, M. and Koushanfar, F. (2010). A survey of hardware trojan taxonomy
and detection. IEEE Design Test of Computers, 27(1):10–25.

Tiwari, M., Wassel, H. M., Mazloom, B., Mysore, S., Chong, F. T., and Sherwood,
T. (2009). Complete information flow tracking from the gates up. ACM Sigplan
Notices, 37(1):109–120.

Tsoi, K. H., Leung, K., and Leong, P. H. W. (2003). Compact fpga-based true
and pseudo random number generators. In 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 51–61.

Tzeng, W.-G. (2004). Efficient 1-out-of-n oblivious transfer schemes with universally
usable parameters. IEEE Transactions on Computers, 53(2):232–240.

173

Vassilev, A. and Hall, T. A. (2014). The importance of entropy to information
security. Computer, 47(2).

Wang, X., Tehranipoor, M., and Plusquellic, J. (2008). Detecting malicious inclusions
in secure hardware: Challenges and solutions. In IEEE International Workshop
on Hardware-Oriented Security and Trust (HOST), pages 15–19.

Wang, Y., Liu, Z., Ma, J., and He, H. (2016a). A pseudorandom number generator
based on piecewise logistic map. Nonlinear Dynamics, 83(4):2373–2391.

Wang, Z., Karpovsky, M., and Bu, L. (2016b). Design of reliable and secure devices
realizing shamir’s secret sharing. IEEE Transactions on Computers, 65(8):2443–
2455.

Wang, Z. and Karpovsky, M. G. (2011). Algebraic manipulation detection codes
and their applications for design of secure cryptographic devices. IEEE On-Line
Testing Symposium.

Wang, Z., Karpovsky, M. G., and Kulikowski, K. (2009). Replacing linear hamming
codes by robust nonlinear codes results in a reliability improvement of memories.
IEEE/IFIP International Conference on Dependable Systems and Networks.

Wassel, H. M. G., Gao, Y., Oberg, J. K., Huffmire, T., Kastner, R., Chong, F. T.,
and Sherwood, T. (2013). Surfnoc: A low latency and provably non-interfering
approach to secure networks-on-chip. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’13, pages 583–594, New York,
NY, USA. ACM.

Wieczorek, P. Z. and Golofit, K. (2014). Dual-metastability time-competitive true
random number generator. IEEE Transactions on Circuits and Systems I: Regular
Papers, 61(1):134–145.

Wilson, L. (2016). The rise of quantum computers - the current state of cryptographic
affairs. www.activecyber.net/rise-quantum-computers-current-state-cryptographic-affairs.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. (1995). The splash-
2 programs: characterization and methodological considerations. In Proceedings
22nd Annual International Symposium on Computer Architecture, pages 24–36.

Xilinx (2016). Vivado design suite user guide - using constraints. Xilinx Software
Manuals.

Xilinx (2018a). Vivado design suite user guide - implementation. Xilinx Software
Manuals.

Xilinx (2018b). Vivado design suite user guide - synthesis. Xilinx Software Manuals.

174

Yu, M.-D., Hiller, M., Delvaux, J., Sowell, R., Devadas, S., and Verbauwhede, I.
(2016). A lockdown technique to prevent machine learning on pufs for lightweight
authentication. IEEE Transactions on Multi-Scale Computing Systems, 2(3):146–
159.

Yu, M.-D. M., M’Raihi, D., Sowell, R., and Devadas, S. (2011). Lightweight and
secure puf key storage using limits of machine learning. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 358–373. Springer.

Zorz, Z. (2018). Supply chain compromise: Adding undetectable hardware trojans
to integrated circuits. https://helpnetsecurity.com/2018/12/10/hardware-trojans.

CURRICULUM VITAE

176

177

178

179

180

