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MALARIAL PATHOGENESIS AND INTERVENTIONS OF KELCH 

MEDIATED ARTEMISININ RESISTANCE IN PLASMODIUM FALCIPARUM 

 

KEERTHANA PITTALA 

 

 ABSTRACT 

 Malaria, a parasitic disease, was commonly associated with third world countries, 

with the highest mortality in nations in Sub-Saharan Africa and Asia. But, travel 

increases the risk of spread to more temperate regions, such as Western Europe and the 

United States where Malaria has been successfully eradicated. In the past 40 years, with a 

better understanding of the mosquito vector and the parasite itself, advancements in 

treatment and containment have been made.  

 Understanding the parasite as well as its pathogenesis is vital in formulating 

effective treatments. Following the incidences of Plasmodium falciparum, knowlesi, 

vivax, malaria, ovale, and less commonly cynomolgi and simium over time as well as 

region helps to better illuminate the methods of Malarial transmission, interplay with 

environmental factors, and methods of treatment. While each species of parasite is similar 

in terms of mode of infection, they differ slightly when considering incubation periods 

and diagnostic and treatment techniques.  

Many drugs have been developed to treat Malaria and include Chloroquine, 

Primaquine and derivatives of Artemisinin. While the discovery of these drugs was a 

significant breakthrough that dramatically reduced incidence and deaths caused by 
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Malaria, improper administration of treatment has led to a recent increase in strains of the 

parasite which have developed drug resistance to Artemisinin Combination Therapies 

(ACT’s). Of these species, P. falciparum and P. vivax, the most common causes of 

malaria, are also so far the only species to have developed drug resistance. The goal of 

this thesis is to explore popular interventions, both drug and public health based, and how 

research focus has now shifted to better understanding the mechanism of parasitic drug 

resistance, specifically linked to mutations found in the Kelch protein in P. Falciparum. 

The recent findings about Kelch mutations pave the way towards addressing the growing 

problem of anti-Malarial resistance. 
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INTRODUCTION 

 

 Malaria is a treatable, preventable, parasitic disease with a high mortality rate and 

faces many obstacles when considering complete eradication of the disease. Over 219 

million cases were reported in 2017 which was an increase from the 217 million cases 

reported the year before1. Efforts to address the burden of this historically devastating 

disease were the focus of many public health campaigns. The Global Malaria Eradication 

Program (GMEP), launched in 1955, sought to eradicate malaria through the use of 

dichloro-diphenyl-trichloroethane (DDT), an insecticide. Through this initiative Malaria, 

specifically caused by P. falciparum and P. vivax, was successfully eradicated in 37 

countries with the use of drugs and DDT2. While total eradication was found to be 

possible, lack of funding and necessary infrastructure halted the GMEP’s efforts. 

Worsened by states of poverty, the number of Malaria cases remain highest in Sub-

Saharan Africa, especially Niger, as well as Asia, predominantly in India. In 2016, almost 

Table 1. Estimated Malaria Death by WHO Region. 20152 
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90% of cases recorded worldwide were found in Africa and resulted in 445,000 deaths 

worldwide3–5 (Table 1). Groups at highest risk of infection include infants, children, 

pregnant women, and immunologically compromised individuals. Malarial infections 

often coincide with HIV and AIDS, diseases that are also predominantly associated with 

areas in which Malaria is endemic 5. 

Treatment efforts for Malaria are two-fold: drugs which target the parasite and 

environmental interventions which target the mosquito vectors. Drug-based treatment 

includes various drugs that are administered upon diagnosis of Malaria, 

chemoprevention, and Malarial vaccines6. Drug development over the years has yielded 

multiple options for treatment including Quinine, Chloroquine, Artemisinin (and its 

derivatives), as well as others. While these drugs are administered after infection, there is 

also a possibility of preventative drug administration that would decrease development of 

Malaria all together or at least prevent progression into severe Malaria. The effectiveness 

of Chemoprevention is still being studied but may be a solution to reducing the mortality 

of Malaria6. Vaccines are also still under development and have yet to gain mainstream 

approval or use5. In the case of both chemoprevention and vaccines, the cost, benefits, 

and side effects of treatment play a major role in hindering a wider use of these 

interventions5. Efforts to decrease exposure to mosquitoes carrying the parasite include 

insecticide treated nets and spraying insecticides indoors. These environmental efforts 

combined with medical treatment has reduced morality significantly to the 445,000 

deaths as of 20163. 
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Pathogenesis 

 
Understanding the parasitic lifecycle has better illuminated points of intervention 

for drugs. Malarial parasites are transmitted from mosquito to human and vice versa; 

however, P. Knowlesi, a less common species, is an exception in terms of the vector and 

is transmitted from primates, specifically Macaques, to mosquitoes and then to humans7,8. 

The development of vaccines and drugs concentrates specifically on targeting P. 

falciparum because of its prevalence. In recent years, P. falciparum has developed the 

most robust drug resistance and is found in pan-tropical regions of Sub-Saharan Africa 

and South east (SE) Asia, see Table 2. 

 

Initially, gametophytes of the parasite in the female Anopheles mosquito slowly 

develop into sporozoites, a motile stage of the parasitic lifecycle. The sporozoites are 

passed from the mosquito vector to humans through a bite. These sporozoites first travel 

to the liver and begin to undergo mitosis. During an incubation period of 12-20 days, the 

sporozoites mature into schizonts which then rupture releasing merozoites into the 

bloodstream. Entry of these merozoites into the bloodstream causes the onset of typical 

Malarial symptoms such as fever, nausea, headaches, muscle pain and fatigue. The 

Table 2: Geographical Distribution, Prevalence, Lethality and Drug Resistance 

Risk of the Human Malaria Parasites (Adapated from Doolan et al. 2009) 
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merozoites invade red blood cells and become trophozoites resulting in ring shaped 

figures that can be seen in red blood cells through light microscopy, this stage is aptly 

named the ring stage, as shown in Figures 1 and 29,10. After progression through the ring 

stage, more schizonts are formed within the red blood cells. These rupture once again 

Figure 1: Lifecycle of the Malarial Parasite (Adapted from Reece et al. 2011) 
Progression of the parasite’s lifecycle from a female Anopheles mosquito, into the blood of 
a host is shown. The production of gametophytes in the human host results in subsequent 
infection of other mosquitoes. Important steps of the cycle targeted by drugs are shown. 
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releasing more merozoites for infection of more red blood cells as well as possibly 

passing on the merozoites into any mosquitoes that feed off infected individuals. Rupture 

of and subsequent infection of other red blood cells exponentially increases parasitemia 

while also putting the patient at risk of anemia. 

 P. Vivax and P. Ovale have a unique dormancy stage in their parasitic 

progression11,12. Sustained dormant hypnozoites, derived from the same sporozoites, in 

the liver can lead to malarial relapse weeks, months, or even years later7,13,14. With 

progression of the disease, especially if left untreated, there is a greater chance of 

development of hypoglycemia, excessive electrolyte and fluid loss, ketoacidosis, anemia, 

and in the most severe cases cerebral malaria3,5. Each stage of infection presents a 

Figure 2: Plasmodium Malariae with Intracellular Ring Forms. (Adapted 
from Lawrence et al. 2002)  

The Ring Stage in parasite development is marked with characteristic ring 
formations, caused by mature trophozoites, which can be seen inside the red 
blood cells with light microscopy. This sign is commonly used to confirm 
diagnosis of Malaria. 
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different area of attack for either drugs or vaccines. Along with stages of infection, 

specific molecular mechanisms can be targeted with chemotherapy. Changes within these 

mechanisms can also cause the development of resistance to chemotherapy interventions. 

Kelch is one such protein that has been linked to antimalarial drug resistance. Many 

studies have found a positive correlation between mutated forms of Kelch and resistance 

to ACT’s. The interplay between chemotherapy resistance and Kelch protein mutations 

is, currently, a vital method of tracking the progression of resistance over time and 

geographically. Understanding the mechanism of Kelch mutation related Artemisinin 

resistance and current research into the region-specific prevalence of such mutations, can 

help shape future anti-Malarial efforts. Current interventions are effective but not 

foolproof. There are many challenges that health professionals must overcome in order to 

work towards total Malaria eradication. 
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LITERATURE REVIEW 

 
CURRENT INTERVENTIONS 

Chemotherapy 

 Youyou Tu, a Chinese scientist studying herbal remedies for Malaria, was 

awarded the Nobel Prize in Physiology and Medicine for her discovery of Artemisinin in 

197915. Tu turned to traditional Chinese herbal medicine during efforts to find a treatment 

for Malaria which killed many soldiers fighting in the Vietnam War. Extracted from 

Sweet Wormwood, Artemisinin became one of the first medications that effectively 

treated Malaria16. Recent research also supports anticancer properties of Artemisinin 

along with its effects on parasitic diseases like Malaria and Schistosomiasis8,17. 

Nowadays, Artemisinins refer to a group of derivatives of the original Artemisnin 

compound including Artesunate, Artemether, Artemisone, and Dihydroartemisinin. These 

Artemisinins are widely used in treating Malaria around the world but have not been 

approved for use in the United States18. Artesunate causes arrhythmias and therefore is 

not allowed for use in the United States but is still a viable option around the world. It is 

also one of the few anti-malarials that is given intravenously rather than orally in severe 

cases of Malaria19. 
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The most common theory of anti-malarial activity is that Artemisins are activated 

when bound to the heme in red blood cells which opens the ring and generates reactive 

oxygen species and free radicals20,21. An endoperoxide bridge, highlighted in yellow in all 

four Artemisinin derivatives depicted in Figure 3, is hypothesized to be activated by a 

ferrous ion which then leads to the generation of free radicals upon interaction with 

heme1. These free radicals directly destroy the parasites intracellular structures through 

Figure 3: Artemisinin and Derivatives Structures.1 
  

While the structures of all four Artemisinin derivatives differ slightly, they all 
possess the distinctive endoperoxide bridge (highlighted in yellow for each 
molecule). This is the distinctive motif that makes Ferrous ions interact with in 
Artemisinins that make this specific chemical family so effective in creating free 
radicals that attack malarial parasites. 
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oxidation and alkylation22. It is proposed that P. falciparum parasites which consume 

hemoglobin, in the blood-stage of the lifecycle, then are vulnerable to Artemisinins. 

While a specific mechanism for the anti-malarial function of Artemisinin remains ill-

defined, current research points to this mechanism as the key behind ACT’s anti-malarial 

effects17,21.  

ACT’s are the most popular and recommended treatment for Malaria and pair 

Artemisinin derivatives with Cinchona Alkaloids like Quinine and Quinidine. Pairing 

Artemisinins with other drugs is recommended in order to decrease the chance of 

resistance development. Artemisinins act on both the asexual and sexual parasitic stages 

but with a short half-life (about 1 hour) and lack the ability to prevent infection. While 

effective in quickly treating severe malaria, Artemisinins’ short half-life increases chance 

of relapse. Therefore, Artemisinins are paired with longer-lasting drugs in ACT23.  

Other Artemisinin based drugs include Chloroquine and Primaquine. Both of 

these options are effective interventions but have other side effects and challenges. 

Chloroquine can be used for prevention and treatment of Malaria. It’s mechanism of 

action prevents protein synthesis by binding to the parasitic DNA24. The malarial parasite 

attacks Hemoglobin within red blood cells, during a later stage of its life cycle, producing 

toxic hemazoin crystals. Chloroquine disrupts the production of vital proteins necessary 

for the breakdown of these crystals in vacuoles and causes a buildup of toxins which kills 

the parasite25. The malfunction of the vacuole and a lack of proteins necessary for the 

degradation of hemazoin crystals slows down the breakdown of Chloroquine and 

increases its anti-malarial effects. While very successful in treating Malaria, overuse of 
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Chloroquine has led to P. falciparum and P. vivax developing resistance over the years 

and this resistance has spread to every region where malaria is endemic25.  

Primaquine, or Primaquine phosphate, is another successful treatment against 

Malaria. It has the unique ability to target ‘dormant’ parasites that cause relapses and is 

especially effective against P. vivax26. Unfortunately, Primaquine has many side effects 

that must be considered before use, these side effects limit safe usage of the drug. 

Anemia is a significant issue with any anti-malarial treatment since targeted therapy can 

result in the death of red blood cells and is especially dangerous in children. But, 

Primaquine use in individuals with Glucose-6-Phosphate Deficiency (G6PD) can lead to 

Hemolytic Anemia. G6PD, a lack of the enzyme Glucose-6-Phospahte Dehydrogenase, 

renders patients unable to make NADPH, an energy molecule generated in the Pentose 

Phosphate pathway that is vital for the synthesis of Ribose-5-Phosphate, which makes up 

the backbone of RNA and subsequently DNA. NADPH, a by-product of this pathway, is 

essential for reacting with reactive oxygen species in red blood cells and decreasing their 

toxicity to the cell. A deficiency of Glucose-6-Phosphate Dehydrogenase in red blood 

cells, the enzyme necessary for the first step of the Pentose Phosphate Pathway, causes a 

buildup of reactive oxygen species that eventually results in cell death or Hemolytic 

Anemia27. Before receiving treatment, individuals must be tested for G6PD, to avoid 

hemolytic anemia down the line. Limited testing is available for those who might have 

G6PD, therefore in regions where adequate testing is not an option, other support for 

anemia must be readily available. In moderate cases of Malaria, Primaquine can be given 
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to individuals with G6PD but with careful monitoring and consideration of benefits 

versus side effects27,28.  

P. falciparum’s and vivax’s resistance to Artemisinins and more broadly ACT’s is 

of growing concern considering the incidence rate of Malaria29. In recent years, there has 

been a recorded increase in resistant strains, especially in Africa, which threaten to undo 

progress made in reducing mortality. This “evolutionary arms race” between parasite, 

vector, and patient has therefore made advancements in understanding the mechanism 

behind Artemisinin resistance incredibly important in order to continue progress in 

hopefully eradicating Malaria8. 

 

Chemoprevention 

Seasonal Malarial Chemoprevention (SMC) or Intermittent Preventive Treatment 

(IPT) is an effective prevention of Malaria for high risk populations and provides 

different options for children and pregnant women. Intermittent Preventive Treatment of 

Malaria in children (IPTc) or in infants (IPTi) is a targeted therapy specifically for 

children in high prevalence regions. Medication with Sulfadoxine-Pyrimethamine and 

Amodiaquine (SP+AQ) given before and during the Malarial season maintain high 

concentrations of anti-malarial drug in the blood in the hopes of preventing infection30–32. 

Studies have found that IPTi and IPTc with SP+AQ administered monthly to children 

under five, the demographic at the greatest risk for infection, in the Sub-Saharan African 

region reduce the rate of infection and overall mortality31. However, widespread 
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application of such a treatment faces structural limitations that must be considered in 

terms of distribution of the drug to at risk populations, consistent administration during 

the Malarial season, and cost. Intermittent Preventive Treatment of Malaria during 

Pregnancy (IPTp) faces the same limitations as IPTc but focuses on combining Malarial 

treatment with antenatal care33. Both the mother and the fetus are at risk of infection and 

infection could cause spontaneous abortion, maternal death, and neonatal death34. 

Dihydroartemisinin-piperaquine (DHAP), another option for chemoprevention especially 

in IPTp, is an alternative for multi-drug resistant P. falciparum and in regions where the 

risk of infection is high all year around, such at SE Asia32,35. Again, monthly 

administration is important in maintaining appropriate levels of the drugs in the system35. 

To prevent relapses, especially in P. vivax, Primaquine is a prime candidate because of its 

focused attack on parasites that stay dormant within hepatic tissues36. Unfortunately, 

Primaquine is not safe for pregnant women and has been linked to DNA damage and 

genetic mutations in the fetus and possible negative effects on fertility27,36.  

As with regular chemotherapy upon presentation of Malaria symptoms, SMC and 

IPT can also lead to the development of drug-resistance37. For populations with a high 

incidence of Malaria, chemoprevention is not the preferred method of treatment. Even if 

the steep cost of SP+AQ and DHAP was overcome, there still would be an issue of 

noncompliance when following drug regimens, sharing of medication, and a lack of 

sustainability in the long-term for any of those previous reasons38. 
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Natural Immunity 

Natural or Acquired Immunity is not well understood, and ongoing research aims 

to better understand the mechanisms of natural immunity in order to develop vaccines 

and directed medication. Historically, European travelers to tropical regions who had no 

previous exposure to Malaria, considered malaria-naïve individuals, suffered the greatest. 

On the other hand, adults native to those lands did not face such adverse or immediate 

infection which led to the question of innate immunity. In regions where Malaria is 

endemic, like Sub-Saharan/Sahelian Africa and SE Asia, consistent and continuous 

exposure and infection by P. falciparum aids in the acquisition of immunity. Such 

immunity is found to fade with decreased exposure to the parasite39.  

While healthy individuals of a population where Malaria is endemic benefit from 

natural immunity, vulnerable individuals like pregnant women and children are at higher 

risk of serious infection. Maternal transmission of immunity is effective in preventing 

infection in children before the age of 6 months39. The transfer of antibodies, specifically 

IgG and IgA in utero and through breast milk respectively, jumpstart infants’ immune 

response to parasitemia exposure. During these vital first six months, infants are at the 

highest risk with risk of malarial mortality decreasing significantly after five years of 

age39,40. Despite high risk of infection in infancy, children also benefit from early 

exposure through the development of their immunity which is sustained as they continue 

to live in the region. As is the case in areas in which Malaria is endemic, many 

individuals may carry the parasites and show no symptoms, which helps maintain natural 

immunity but can unknowingly spread region-specific parasites to other vulnerable 
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populations41. Natural immunity can therefore prevent infection in those who are carriers 

but maintains the level of parasites in a community which increases the chance of 

transmission to those more susceptible. 

The mechanism of natural immunity is complicated but is assumed to develop in 

the blood stage of malarial infection. Both antibodies that target infected red blood cells 

and T-cells are activated during the blood-stage of the malarial lifecycle, thereby 

preventing the development and spread of the parasite to hepatocytes42. But, such natural 

immunity requires sustained exposure to continue the production of targeted antibodies 

and T-cells, which still leave adults susceptible to infection. Conversely, vaccines and 

other interventions that strive to limit exposure to the parasite can interfere with innate 

immunity. If efforts to eradicate mosquito vector populations are not thorough, it could 

do more harm than good by negatively impacting the development of a population’s 

innate immunity. Therefore, sterilizing immunity–or permanent immunity–to Malaria is 

the best option; however, it has never been achieved neither innately nor through the use 

of vaccines and remains a major focus of current research. 

 

Vaccines 

Vaccines developed in response to Malaria are inspired by natural immunity that 

some individuals possess or can develop therefore vaccines are seen as induced 

immunity. As is the case in both types of immunity, there are many challenges when 

considering development, sustainability, and administration. Initial development of a 
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vaccine relied on the application of Radiation Attenuated malarial Sporozoites (RAS) 

which acted at the blood-stage of infection through activation of antibodies and T-cells 

that targeted surface proteins of infected red blood cells, which were subsequently 

destroyed in the spleen42. RAS mimic natural immunity but work by strengthening the 

body’s usual response to the first stages of infection. This led to the development of the 

multiple RAS-derived vaccines including one in use today, RTS,S. 

Approved in 2015, the Malarial vaccine RTS,S was found to be effective in 

preventing infection by P. falciparum43. RTS,S shares the same effects as RAS in its 

induction of antibody production and T-cell activation but specifically acts on the liver 

stage of the parasite’s lifecycle and targets the most common surface protein of 

sporozoites: the circumsporozoite protein (CSP)42. CSP is said to play a significant role in 

the attachment of parasitic sporozoites to hepatocytes, hence targeting this particular 

surface protein with antibodies might prevent migration of the parasite into hepatocytes, 

see Figure 444.  

High circulating levels of targeted antibodies and T-cells as a result of the vaccine 

ensure that infection can be fought off. Unfortunately, as with natural immunity where 

sustained exposure is required, the vaccine must be administered repeatedly to also 

maintain a consistent and specific pool of memory B cells in a patient’s body. The 

relative efficacy of the vaccine is therefore low, at about 30% protection over the course 

of four years and lacks sufficient data to support widespread use in all areas afflicted by 

Malaria42,43. Based on the relative success of RTS,S, future vaccines will hopefully 

sustainably raise antibody levels and eradicate parasites in the blood and liver stage. 
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As of 2019, the vaccine will be available to children only in Ghana, Kenya, and 

Malawi as it is still in its trial phase45. The vaccine is generally well accepted by 

recipients but there are many other cultural and societal limitations including lack of 

knowledge or fear of vaccines, low quality of healthcare and healthcare facilities, and 

geographical distance to such care45. Such structural issues call for action outside of just 

Figure 4 Next-Generation PfCSP Malaria Vaccine Design Strategy. (Adapted from 

Wardemann et al., 2018) 

 

(a) Shown are three separate regions of CSP targeted by antibodies. The NANP-repeat 

segment is the most highly conserved section across parasites. Antibodies that 

have been developed to target this NANP-repeat segment of CSP have been found 

to be the most effective. 

(b) and (c) show how B cell induction results in antibody production, and subsequent 

creation of a long-term pool of plasma cells which generate and maintain 

immunity. But, due to the short lived nature of vaccines, repeated vaccines are 

necessary to develop and maintain an immune response. 
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providing vaccines or healthcare and require a better understanding of communities in 

Ghana, Kenya, and Malawi. Initiatives must encompass educating populations about the 

benefits of vaccines, providing vaccines for free to combat financial restrictions, and 

keeping lines of communications with the target populations open in order to consistently 

administer the vaccine, track its efficacy, and also to learn of other challenges45,46. 

  

Public Health Interventions 

Aside from chemoprevention and vaccines, public health interventions focus on 

preventing and controlling the rate of infection through cost-effective and sustainable 

methods of containing the vector, mosquitoes. Each intervention poses limitations in 

terms of cost, durability, and amount of time for which it is effective.  

One option is the use of Insecticide-Treated Bed Nets (ITN), which are treated 

with long-lasting insecticides, usually pyrethroids. These nets provide protection to all 

demographics including those most susceptible: children under the age of five and 

pregnant women38. ITN’s require an initial investment but are easily installed and cost-

effective, the nets last for years, although they require reapplication of the insecticide 

over time, and therefore are seen as an effective intervention not only in Sub-Saharan 

Africa but across Southern Asia. Another less cost-effective option is investing initially 

in higher quality nets that do not require reapplication of insecticide, which incurs a 

greater initial investment but avoids concerns over reapplying the repellant in a timely 

manner. Through the diffuse use of ITN’s, rate of infection drops drastically and 
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mosquito to human and human to mosquito transmission decreases as well. With a drop 

in overall incidence of malaria the whole community benefits38.  

Pyrethroids can be used independently of nets and applied to clothing, buildings, 

and tents as a repellant. For refugees or in areas where ITN’s are not convenient, the 

more versatile repellant sprays are preferred. But, better understanding the needs of a 

community can help determine the best intervention. For example, instead of distributing 

ITN’s Rowland et al. chose instead to impregnate blankets, or chaddars, worn by the 

Afghan refugees displaced from their homes after a Soviet invasion, with pyrethroids to 

repel mosquitoes47. The camps established in Pakistan lacked adequate resources or 

housing therefore ITNs were not an ideal choice of intervention. Post treatment of 

chaddars and topsheets, the number of reported cases of infection dropped by 64% for 

children and 38% in adults under the age of 20 versus groups without treated blankets or 

sheets47,48. Through treatment of both topsheets and chaddars in the Afghani population, 

materials that the refugees already possessed or were provided and use regularly, there 

was no need for the introduction of ITNs. In such a case, treatment of existing materials 

with insecticide is an effective intervention. 

 Insecticides, like DDT, can also be sprayed over larger areas to control vector 

populations especially during the rainy season and in tropical regions where mosquitoes 

reproduce easily. Stagnant waters provide ample breeding grounds for Anopheles 

mosquitoes and targeting such areas with diffuse insecticide could cause greater 

repercussions on the environment. But, in cases where mortality and morbidity are too 

high, insecticides can quickly kill off large populations of mosquitoes38,49. With growing 
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knowledge of environmental treatments, it may be possible in the future to target 

breeding grounds by draining areas of stagnant water and disrupting the development of 

mosquito larvae38. 

 It is important as well to recall the importance of maintaining regular exposure to 

the parasite for native populations to develop and retain their natural immunity. So while 

ITNs, insecticide sprayings, and repellants are beneficial to decreasing the chance of 

infection in vulnerable populations, there is still a tradeoff in terms of natural immunity.  

As Phommasone et al. found in Laos that 20% of the 888 citizens who were tested were 

infected with P. falciparum but showed no symptoms50. With such a high level of 

infection, especially with proof of anti-malarial resistance in 75% of the infected 

individuals, their one recommendation was a greater focus on “rapid elimination” of the 

parasite and the vector50. Such asymptomatic individuals are capable of passing on anti-

malarial resistant parasites to those more susceptible. Individuals most vulnerable, apart 

from infants and pregnant women, also include malaria-naïve individuals, especially 

immigrants and refugees. With no previous exposure to malaria, immigrants and refugees 

to areas endemic for malaria struggle with appropriate shelter, a lack of acquired 

immunity to Malaria to fight off infection, and limited resources for preventing infection 

like ITNs.  
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ARTEMISININ COMBINATION THERAPIES (ACT’s) 

 
Resistance to Artemisinin and its derivatives is slowly growing and is prevalent in 

Southern Asian countries but harder to find in African regions51. Since the burden of 

Malaria is greatest in the Sub-Saharan African region, ACT is invaluable in treating 

patients. Resistance development to ACT could prove to be a significant issue as new 

drugs are still in the developmental phase. With few alternatives, it is vital that 

Artemisinin resistance is better understood and tracked in order to develop alternative 

drugs and to find a solution to this growing issue. Current combinations for ACT therapy 

include Artemether-Lumefantrine, Artesunate-Amodiaquine, Artesunate-Mefoquine, 

Dihydroartemisinin-Piperaquine, and Artesunate-Sulfadoxine-Pyrimethamine. 

Artemisinins, a drug with a short half-life, are paired with longer lasting drugs to be most 

effective in parasite elimination52. Every variation of ACT therapy is susceptible to 

resistance. Different markers of the parasite are associated with slower responses to 

single drug treatments, like Primaquine and Piperaquine. But once paired with 

Artemisinins or Chloroquine, the parasite’s half-life is significantly reduced52. Therefore, 

to combat the decrease in efficacy of ACT, triple combination treatments are being 

developed to target parasites with multiple anti-malarial resistant mutations52,53. Thus, 

focusing on resistance development is vital to addressing the growing issue of 

Artemisinin resistance that could halt efforts of Malaria eradication.  
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CHLOROQUINE RESISTANCE 

 
  Cholorquine, a Cinchona Alkaloid, is one option for pairing with Artemisinins for 

ACT and development of Chloroquine resistance is linked to Artemisinin resistance. 

Within the past two decades there has been an increase in resistance of P. falciparum and 

P. vivax to Chloroquine. Buppan et al. focused on multiple new mutations found in the 

gene for the Chloroquine resistance transporter and sought to explore the effects of 

“antimalarial selective pressure”54. Blood samples collected from infected individuals in 

Thailand from 1991 through 2016 were evaluated to track the progression and prevalence 

of mutations. A point mutation in the P. falciparum chloroquine resistance transporter 

(Pfcrt) found on the membranes of vacuoles is a main feature of resistance. The known 

mechanism of the effect of Chloroquine on the parasite involves degradation of toxins in 

the parasite. A mutation in Pfcrt would prevent the transport and buildup of Chloroquine 

inside vacuoles which leads to resistance25. Treatment of ACT differs between a 2-day 

and 3-day regimen, with improved prognosis and decreased presence of plasmodia for 

patients who had undergone the 3-day regimen. Through sequencing, they found 21 

unique genotypes of Pfcrt which persisted in Thailand over the years but also were 

similar to genotypes found in Ghana which pointed at the spread of P. falciparum’s 

resistance across borders. Through sequencing, 26 nucleotide changes that resulted in 21 

amino acid changes, mostly in the transmembrane domain coding segment of the Pfcrt 

gene, were found. A greater number of these haplotypes of P. falciparum were found in 
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patients who had undergone the 3-day ACT regimen. It is hypothesized that the greater 

concentrations of drugs over a longer period of time forces more mutations in the 

plasmodia reinforcing the theory of how antimalarials encourage mutations55. Buppan et 

al. also showed that the sustained incidence of certain haplotypes over the course of two 

decades implied that those mutations were particularly successful in resisting 

Chloroquine in ACT regimens54. As these mutations in the vacuole transporter gene may 

not definitively point to Chloroquine resistance, it has been shown that these mutated 

plasmodia concurrently resist Artemisinins and other drugs that are used in ACT. With a 

decrease in treatment with Chloroquine as a result of studies that proved the rise in 

resistance, chloroquine-sensitive plasmodia are now less common. This could encourage 

use of Chloroquine once again as an effective antimalarial especially within ACT. 

However, an increased use of 3-day ACT regimens again leads to the developed of 

Artemisinin resistance. With an overlap in the mutations’ effects on Chloroquine and 

Artemisinin metabolism, the pressure to find new drugs is growing. 

 

THE KELCH PROTEIN 

 
Originally found in drosophilia, The Kelch protein located on chromosome 13 

(K13) in P. falciparum has shown multiple polymorphisms in Artemisinin-resistant 

strains of the parasite, specifically in the Kelch propeller domain (Figure 5)56. Changes in 

this domain serve as markers for Artemisinin resistance and help to trace the 

development and progression of resistance in different regions. The Kelch protein is part 

of a larger family of proteins that possess similar motifs, namely the repeating Kelch 
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domains which fold in to a propeller57. The Cullin3-binding site, marked in Figure 5, 

interacts with ligases and links Kelch to the ubiquitination process58. 

 

 

 
 

Figure 5: Kelch Propeller Domain (Uchida et al., 2014) 
 
Each repeating Kelch domain folds in a -sheet which makes up a single “blade” of 
the “propeller.” This propeller region forms a substrate binding site important in 
initiating signal cascades. The Cullin2-binding site (labeled BTB) is also important 
and serves as the link between the Kelch protein and the Ubiquitination of misfolded 
proteins.  
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MECHANISM OF KELCH RELATED ARTEMISININ RESISTANCE 

 
While many studies support the significance of Kelch in Artemisinin resistance it 

is also important to explore why mutations in this specific protein cause resistance. Kelch 

proteins are universally associated with ubiquitination of misfolded or non-functional 

proteins59. Ubiquitination marks misfolded proteins for breakdown in order to maintain 

homeostasis within in a cell. Kelch mutations impair the initiation of ubiquitination and 

lead to a buildup of misfolded proteins, which upregulates the Unfolded Protein 

Response (UPR) response53.  

Mok et al. found that Artemisinin resistant parasites showed increased activity of 

the unfolded protein response, linked to Kelch polymorphisms, which maintains these 

parasites at a “younger” stage in their lifecycle22. The UPR is an intracellular cascade 

which takes action against misfolded proteins and maintains homeostasis. Because of its 

vital function, UPR also controls apoptosis. Cancer cells have been shown to take 

advantage of this “cyto-protective” quality of the UPR in order to maintain their 

growth59. This cancer-like quality aids the resistance of the mutated parasite to 

Artemisinin. Conversely in terms of this shared quality to cancer cells, DNA replication 

in these parasites was slowed down reaffirming their resistance to developing or aging 

like wild-type parasites. During the ring stage, while parasites are inside red blood cells, 

the step at which Artemisinin attacks, these young parasites are able to endure the 

antimalarial effects more effectively and survive22. Hott et al. proved that this prolonged 

ring stage was positively correlated with parasites that showed resistance to 

Artemisinin60. By using transcriptome analyses, Mok et al. found that slowing down the 
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aging process in the ring-stage led to decreased digestion of heme which is a prime target 

of Artemisinin22. Decreased digestion of heme means that Artemisinins create fewer free 

radicals. The limited free radicals that are produced are processed through the increased 

UPR before inflicting substantial damage to the parasite. Therefore, Kelch mutations that 

upregulate the UPR lead to Artemisinin resistance and require alternative interventions. 

 

MUTATIONS OF KELCH 

 

 

There has been a noticeable pattern in polymorphisms of Kelch arising in areas 

with recorded anti-malarial resistance. Known mutations that are markers of Artemisinin 

resistance include C508Y, Y493H, R539T, and I543T51,56,61. These specific mutations 

were established as markers based on the increase in parasite half-life62. The most 

common mutations that have been found to be associated with Artemisinin resistance are 

C508Y, F446I and more recently A578S and N585K. The A578S mutation is newer, 

located close to the C508Y mutation, and has been linked to slower parasitic clearance 

but the direct effect of this mutation is not well understood63. 

Each mutation is currently associated with different regions. C508Y is a 

significant problem in SE Asia and is spreading to other Malaria ridden areas by way of 

immigrants and refugees64. Site specific mutations in Kelch confirm that specific 

polymorphisms, especially C508Y, are involved in Artemisinin resistance65. Sá et al. 

used a monkey malaria model and found that parasites with the C508Y mutation survived 

the ring stage even with the administration of Artemisinins66. The prevalence of C508Y 

related resistance just within in the SE Asian countries, like Cambodia and Malaysia, 
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with limited exposure in other areas may point to issues that are hindering the spread of 

resistance67. According to a longitudinal study conducted by Cerqueira et al., a mismatch 

between host genetics and immune systems between individuals native to SE Asia versus 

Africa may be impeding the spread of specifically the C508Y mutation68. Historically, SE 

Asia has higher rates of infection and resistance to ACT, which require higher doses of 

medication that results in more and stronger resistance mutations. This trend was clear 

when Cerqueira et al. compared 194 isolates from 2001 to 2014; clearance rate of 

parasites increased three-fold68.  

The F446I mutation is also concentrated in SE Asia but has also been found in 

African countries. A578S is not as well researched but appears to be a mutation unique to 

Africa51. The N585K mutation, a recently identified mutation, was found only in 

parasites after treatment with ACT. Ingasia et al. hypothesizes that the new mutation 

might represent the selective pressure placed on the parasite through treatment with 

Artemisinins69. Whether this mutation causes Artemisinin resistance or not is unknown at 

this point. All these mutations are localized on the repeating Kelch domains of the 

protein, which makeup the blades of the propeller. The C508Y mutation substitutes a 

Cysteine for a Tyrosine, both of which are polar amino acids. The F446I mutation 

substitutes a Phenylalanine for an Isoleucine which are both non polar amino acids. The 

A578S mutation has the most significant change with an Alanine being replaced with a 

Serine, a polar amino acid replaced with a nonpolar. These amino acids are vital in the 

formation of the -sheets that make up a single blade. Disrupting the formation of the 

blade changes the functionality of the Kelch protein itself. There is a plethora of various 
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recorded mutations aside from the three listed above, see Table 3, but these other 

mutations lack sufficient evidence to be used as an Artemisinin resistant marker and do 

not necessarily cause Artemisinin resistance. 

All studies which compared the development of resistance in vitro and in vivo 

found antimalarial selective pressure to play a significant role54. Tyagi et al. compared 

the development of resistance in red blood cells and in a mouse model70. High doses of 

Artesunate were administered exceeding the dosage typically given to patients suffering 

from severe Malaria. This concentration in both red blood cells and in mice resulted in 

high resistance parasites, measured by rate of parasite survival and transmission. This 

data proposes that the higher the concentration of Artesunate administered, the greater the 

resistance to the drug and level of parasitemia in the mice. While such anti-malarial 

resistant parasites are not present in the field, Tyagi et al. postulated that this could be the 

future of malaria70. 

These studies point to the continual development and adaptation of the parasite in 

response to current treatment options. While chemotherapy, vaccines, and 

chemoprevention options are effective for now, there is a race to address the changing 

landscape of Malaria as resistance grows. Understanding the mechanism of resistance is 

just the one aspect of this public health issue. Tracking the incidence of Kelch mutation 

development is also vital to understanding the development of mutations as well as 

incidence of resistance globally. 
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DISCUSSION OF CURRENT LITERATURE 

 
 There are many current studies on the prevalence of specific mutations in Kelch. 

Of the 80 articles that covered Kelch mutations in relation to Malaria there were 30 

region specific studies of polymorphisms. Organized by region, in table 3, the studies 

ultimately recorded the incidence of certain polymorphisms, while taking note of novel 

mutations. 

Figure 6: Articles Chosen for Analysis 

Of the 80 articles that pertained to Malaria drug resistance, P.Falciparum, and the Kelch 
protein only 30 studies focused specifically on tracking the prevalence of various Kelch 
mutations in a chosen region where Malaria was endemic. The structure of the studies 
varied. Some studies focused on tracking which mutations persisted after administration 
of Antimalarials while other studies were purely observational and were purely 
researching mutation prevalence in a chosen population.   
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Table 3: Compilation of 30 Region-Specific Studies on Kelch Polymorphisms 
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Figure 7: Frequency Distribution of Wild-Type K13 Allele (Ménard et al. (2017)) 
The wild-type frequency is shown in green, with a majority of SE Asia marked in 
yellows and reds to show the prevalence of mutated parasites in the region. Countries in 
grey are where Malaria is endemic. This map was generated based on studies done 
before 2016 therefore the data might differ from what is represented in Table 3. 
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The map of haplotypes in the map in figure 7 visually represents and confirms 

data in table 351. While data from table 3 and the map of figure 7 have many similarities, 

data collected by Ménard et al. to generate the visual is limited to 2016, and many studies 

had been conducted and published since then51. While Ménard et al. claims that 

mutations in Kelch were limited to SE Asia, studies have proven that mutations and 

resistance has begun to spread to parts of Africa51.  

The data chosen for table 3 was limited to number of participants, treatment 

administered, and polymorphisms found. Demographics that were tested and relative 

incidence of mutations was not included based on different methods of measurement and 

data compilation that made it difficult to compare results. These parameters, however, are 

important to return to when analyzing and comparing all 30 studies. 

Of the 30 chosen studies, the 11 studies, throughout all 7 regions outlined below, 

that did not administer any type of treatment to individuals concentrated efforts on 

finding polymorphisms of Kelch that were already known to cause resistance to 

Artemisinins. The other 19 studies followed the general outline of administering 

medication, following up with more medication as seen fit, and recording rates of 

parasitemia. Higher counts of parasitemia post treatment with anti-malarials, which were 

all Artemisinin based, pointed to anti-malarial resistance. Ultimately, all these 

individuals’ blood was drawn and analyzed to find which mutations were present. While 

anti-malarial selective pressure was a large determinant in the development and incidence 

of mutations especially in Cambodia, other recorded incidences had varied causes. 

Prosser et al. found a single case of C508Y mutations in parasites from the blood of an 
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individual who had recently traveled to Papua New Guinea64. Every study in SE Asia, 

including Malaysia and Cambodia and surrounding countries showed prevalence of the 

C508Y mutation. This mutation has been shown to cross borders as Mishra et al. found 

while testing individuals in Arunachal Pradesh in the Northern part of India that shares its 

border with Myanmar71. The most significant trend, however, was the lack of mutations 

when one moves further away from SE Asian countries. An exception to this trend are 

Chenet et al.’s findings which highlight how anti-malarial pressure can cause mutations72. 

The C508Y mutation found in Guyana was determined to be independent of the C508Y 

mutation native to SE Asia. Microsatellite differences between these two similar but 

different mutations provide necessary proof that the mutation in Guyana was developed 

independently and not acquired originally in SE Asia72. Despite significant concerns 

about resistance, Kheang et al. postulates resistance might not be as strong as originally 

assumed73. In their study in provinces of Cambodia, 84% of the participants has the 

C508Y mutation but all but 1 of them recovered fully under ACT. This makes 

Artemisinin resistance an even more complicated issue considering the variance in 

resistance in different individuals, populations, and demographics. 

Venturing further out to Africa, there is a lack of substantial artemisinin 

resistance. The difference in mutations recorded in these regions can also be attributed to 

the ACT regimens that are readily available. Artesunate is preferred for treatment in SE 

Asia while Sub-Saharan Africa relies on other combinations of Artemether and 

DHAPQ19. The F446I mutation, the most diffuse mutation with incidence in Africa and 

parts of Asia, was found to be relatively common and linked to Artemisinin resistance74–
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76. Kakowla et al. found only 7 mutated parasites out of the 328 samples collected in 

Tanzania77. While parasitism persisted longer than others that underwent the AL/ASAQ 

and DHAPQ treatment, by the third day there were complete clearance of the parasites. A 

specific mutation was not mentioned, but the 7 mutations found were probably not strong 

enough to resist Artemisinin treatment altogether. While Bayih et al. managed to isolate 3 

novel mutations, with R622I showing significant Artemisinin resistance, only three out of 

the 148 samples taken from Northwest Ethiopia showed mutations78.  

The sudden rise in Artemisinin resistance in Sub-Saharan Africa is clear through 

Tacoli et al.’s findings that showed growth in polymorphisms recorded79. Incidence in a 

pool of 220 participants went from 0 to 2.5% to 4.5% from 2010 to 2014 to 2015 

respectively. The P574L mutation and A657V mutation originally associated only with 

SE Asia were also found in Rwanda further supporting the pressure that anti-malarials 

place on parasites that leads to these novel mutations in regions with limited resistance79.  

Uniquely, individuals recruited by Phommasome et al. in Laos, an area where 

Malaria is endemic, had constant levels of parasitemia but no actual symptoms of 

infection50. 75% of this population possessed the C508Y mutation. This poses a 

distinctive problem, as people living in these districts serve as a pool for sustaining 

parasite populations while also protecting the C508Y mutation. P. falciparum, that do not 

already carry the parasites, can easily be infected by feeding on individuals with no 

serious repercussions because of their innate immunity. As is the case in high incidence 

areas, Phommasome et al. advocates for focus on elimination of the vector over 

treatment50. 
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The E602D mutation, listed in table 3, that Djaman et al. found in the Côte 

D’Ivoire was not linked to artemisinin resistance but still aids in tracking the progression 

of region-specific mutation development80. Long-term studies that track the development 

of mutations to wild-type P. falciparum provide the best evidence of the effects of anti-

malarial medications. Guerra et al. compared results over the course of 8 years and 

discovered novel mutations in Continental Equatorial Guinea81. While Kelch 

polymorphisms are a reliable marker for Artemisinin resistance, they are not foolproof. 

As Kakowla et al. found, complete clearance of the mutated parasite with 

Artemisinins showed that Kelch polymorphisms may not be the best marker for 

resistance77. The P. falciparum multidrug resistant proteins (PfMDR) and P. falciparum 

Ferrodoxin might be promising new markers that can strengthen identification of resistant 

parasites82. Evidence already confers the effectiveness of these two markers for example 

Nguetse et al. found PfMDR1 to be associated with high levels of parasitemia in East 

African children83. The popular AL treatment preferred in African nations has also been 

linked to mutations in the PfMDR gene84. 

Artemisinins, because of their use in ACT, have led to the most robust resistance 

due to their diffuse use. This poses a problem for many nations and populations that rely 

on ACT’s as primary treatment for infection. There may be other drugs in the market but 

the effectiveness of the drug must outweigh its price and side effects. Therefore, research 

about Kelch polymorphisms that serve as a marker for ACT resistance in P. falciparum is 

invaluable. Tracking the progression of Kelch haplotypes and comparing microsatellite 

markers can show how anti-malarial drugs place pressure on P. falciparum and lead to 
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the development of novel mutations in an effort to survive ACT. These markers also 

point out that anti-malarial resistance development can happen independently and 

parasites do not necessarily need to be transported in a human host. With a better 

understanding of these mutations, addressing the rise in Artemisinin resistance will 

hopefully become easier.  
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CONCLUSION  

 
 With such a significant burden worldwide and throughout history, Malaria is a 

prime concern for health organizations and professionals. Though efforts have 

concentrated on complete eradication in the past, doing so successfully in North America 

and Europe, Malaria still remains endemic to a majority of African and tropical nations. 

Since their discovery in the late 1970s, Artemisinins have played a key role in combating 

this Malarial burden. These drugs effectively shed light on the mechanism of the 

parasite’s attack on the human system while intervening at the blood stage and preventing 

further infection. Unfortunately, the slow and steady development of P. falciparum’s 

resistance to Artemisinins and its derivatives seems to have locked in the future of 

Malaria treatment. Few other options exist for treatment and there has been resistance 

development to these other popular drugs, like Chloroquine and Primaquine.  

The development of multi-drug resistant Malaria has, in recent years, shifted the 

focus to more long-term solutions that concentrate on prevention rather than treatment. 

Public health interventions, chemoprevention, and vaccines form the foundation of these 

efforts to combat the steady mortality of Malaria. Public health interventions 

concentrating on educating populations at highest risk of infection are the most 

successful. Encouraging populations to actively learn about the disease and its prevention 

will hopefully help individuals gain a better understanding of the pathogenesis and allow 

them to take control of medication and interventions that are available. Rowland et al. 

(1999)’s efforts to impregnate chaddars of Afghan immigrants with insecticide were done 

so in reaction to news that individuals given mosquito nets would trade those nets in the 
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camp for other necessities. With little other resources or sources of income, the nets 

turned into currency and lost their true intention for those who truly needed them. 

Finding a solution to such infrastructural issues is paramount and presents a new 

challenge for every population. Impregnating the chaddars which were already used 

every day and culturally significant points towards public health interventions being led 

by native professionals who have an understanding of a population’s cultures and 

customs or for research teams to invest more time into understanding these infrastructural 

issues and using them to their advantage. Educating individuals also helps to explain the 

danger of sharing medication or not completing regimens are prescribed. Hopefully, such 

information would help slow the development of resistance to Artemisinins and ACTs.  

Chemoprevention faces the same limitations as chemotherapy in terms of patients 

following regimens but also financial limits. While Chloroquine is cheaper than ACT, 

both are still expensive when faced with the sheer burden of malaria. That financial 

burden is then either placed on families or on a country’s government, regardless it serves 

as another obstacle in the fight against Malaria. The consistent cost of medications pushes 

organizations and medical professionals to find more effective solutions that cost less and 

are more long-term. ITNs are one such investment that last for years and can be re-

impregnated with insecticide as needed. With a range of options available that differ in 

upfront cost, the nets require a hefty initial investment but pay themselves off over years 

of use. Higher quality nets that do not require re-application of the insecticide and are 

higher in price may seem like a logical intervention such an investment may be too much 

for high-risk families who live in poverty.  
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Concentrating on the elimination of the mosquito vector is another option that has 

the potential to be successful but requires a closer look at the environmental toll it would 

have. Cost also becomes an issue here with eradication efforts with insecticide requiring 

consistent investment with no certain guarantees of results. There is also proof of 

mosquitoes developing resistance to insecticides because of their continued exposure to 

common insecticides. Environmental interventions may be an option as most areas in 

which Malaria is endemic are tropical and therefore provide plenty of stagnant pools of 

water that serve as breeding grounds year-round. Draining these pools and decreasing 

breeding grounds has also been presented as an option and would help decrease the 

population of the vector itself. Decreasing the vector decreases the chance of infection 

which is a positive but can also hinder the development of natural immunity of these 

populations. Individuals that maintain a constant level of parasitemia retain a constant 

level of antibodies and T cells that fight against the parasite. Adults that possess this 

acquired natural immunity to the parasite are protected through infection but this leaves 

children, pregnant women, and immuno-compromised individuals at risk. This tradeoff 

must also be considered when weighing the benefits and costs of mosquito control. 

Outright elimination of the vector was highly encouraged by many studies conducted in 

SE Asian countries but this must be weighed against the natural immunity that infection 

grants. These public health interventions and efforts to prevent Malaria must be partnered 

with chemotherapy. Infection is constant and therefore, resources are spread thin when 

nations try to balance both the treatment and prevention of the disease. With 
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chemotherapy resistance becoming a bigger issue, it is natural that so much time and 

effort is being invested into finding out the cause and mechanism of resistance. 

The need for effective chemotherapy against Malaria is, therefore, a primary 

concern of the World Health Organization. ACT’s that combine three different drugs to 

ensure that even multi-drug resistance parasites are targeted effectively might be a 

growing option. Unfortunately, drug resistance will always be an issue as long as 

chemotherapy is necessary against Malaria. But, this new understanding of the 

mechanism of resistance will hopefully encourage changes in public health interventions, 

education about Malaria and the development of new treatments that target multi-drug 

resistant strains of the parasite and the actual mechanism behind the drug resistance itself. 
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LIST OF JOURNAL ABBREVIATIONS 

 

AJTMH The American Journal of Tropical Medicine and Hygiene 

AmAC Antimicrobial Agents and Chemotherapy 

MJ Malaria Journal 

NEJM New England Journal of Medicine 

PNAS Proceedings of the National Academy of Science of the United States of 
America 
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