1999-12-15

BU/NSF Workshop on Internet Measurement, Instrumentation and Characterization

Govindan, Ramesh

Boston University Computer Science Department

http://hdl.handle.net/2144/3751

Boston University
Optimizing Internet Data Transport

Venkata N. Padmanabhan
Microsoft Research
http://www.research.microsoft.com/~padmanab

BU/NSF IMIC Workshop
August 30, 1999
Outline

Two issues

- Concurrent data streams
 - discovering presence of shared bottleneck
 - coordinating distributed senders

- All packets are not equal
 - shielding vulnerable packets
Concurrent Data Streams

- Coordination better than competition
 - shared learning of network conditions
 - reflect user utility rather than network dynamics
 - e.g.: optimal progressive Web page delivery [GB99]

- TCP Session [Pad98]
 - congestion control
 - loss recovery
 - bandwidth sharing
TCP Session Performance

Coordination ⇒ more predictable performance
Concurrent Heterogeneous Streams

- Heterogeneous often implies distributed
 - specialized servers
 - new usage scenarios
 - e.g., listening Internet radio while surfing

- Looking beyond TCP ⇒ looking beyond host-pair coordination
Concurrent Heterogeneous Streams

Web

Audio

Video

Internet

congested links

Client
Challenges & Potential Solutions

- Discovering presence of shared bottleneck
 - indirect: correlation of delay/loss patterns
 - [Bolot93], MINC [CDH+99]
 - do not need synchronized clocks
 - direct: enhanced ECN

- Coordinating distributed senders
 - explicit: receiver-driven flow control
 - implicit: congestion feedback filtering
Congested Intranet Link

Wide-area inverse-muxed T1 links (3 Mbps)
Congested Intranet Link

Significant correlation in queuing delay
Single Congested Link

Connections 1 & 2 share a congested link
Single Congested Link

Shared bottleneck \(\Rightarrow\) high delay correlation
Multiple Congested Links

Connection 1 traverses two congested links only one of which is shared with connection 2.
Presence of multiple congested links reduces effectiveness of delay correlation technique.
Enhanced ECN

- ECN plus unique router tag
 - tag helps discover shared bottleneck
- Non-unique tags can be used for efficiency
 - periodic re-hashing to avoid persistent collisions
- Works better with multiple congested links
- Could complement delay correlation technique
Coordinating Distributed Senders

Explicit

- RTSP Speed/Pause
- TCP advertised window

Implicit

- More frequent ECN
- Less frequent ECN
All Packets Are Not Equal

- Certain packets more important than others
 - TCP
 - SYN packet
 - packets sent when window is small
 - retransmission
 - RM repair request
- Vulnerable to loss of important packets
Retransmission Timeouts

Very little data typically sent between timeouts
Shielding Vulnerable Packets

- Diffserv coupled with protocol-specific knowledge
- High drop priority for vulnerable packets
- FIFO scheduling avoids reordering

Diagram:
- High drop priority
- Normal drop priority

Legend:
- R
Summary

- Need to coordinate concurrent data streams
 - E2E/router-assisted detection of shared bottleneck
 - congestion feedback filtering
- All packets are not equal
 - diffserv to shield vulnerable packets

http://www.research.microsoft.com/~padmanab