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Abstract

This paper presents an algorithm for recovering the

globally optimal 2D human figure detection using a loopy

graph model. This is computationally challenging because

the time complexity scales exponentially in the size of the

largest clique in the graph. The proposed algorithm uses

Branch and Bound (BB) to search for the globally optimal

solution. The algorithm converges rapidly in practice and

this is due to a novel method for quickly computing tree

based lower bounds. The key idea is to recycle the dynamic

programming (DP) tables associated with the tree model to

look up the tree based lower bound rather than recomputing

the lower bound from scratch. This technique is further sped

up using Range Minimum Query data structures to provide

O(1) cost for computing the lower bound for most iterations
of the BB algorithm. The algorithm is evaluated on the Iter-

ative Parsing dataset and it is shown to run fast empirically.

1. Introduction

Recovering the 2D configuration of a human figure from

an image is difficult because human bodies are capable of a

large variety of postures. A common approach is to model

the human figure in terms of body parts, e.g., using Pictorial

Structures (PS) [5]. When coupled with strong body part

detectors, the PS model provides good results [1].

The PS model captures kinematic constraints between

limbs using a tree structured graphical model. The model

has been extended to include additional constraints such

as appearance symmetry of clothing [16] and spatial con-

straints between body parts [8]. However, the associated

graphical models are loopy graphs, i.e., graphs with loops,

and the time complexity for recovering the global solution

scales exponentially in the size of the largest clique in the

graph.

Our goal is to recover the optimal solution for a loopy

graph in a reasonable amount of time in practice. This is

useful for comparing the performance of different models

1This research was funded in part through grant NSF IIS-0713168.

for detecting human figures and estimating body poses. Ap-

proximation algorithms are not useful in this case because

we cannot ascribe a model’s performance to modeling er-

rors, approximation errors or a mixture of both. In con-

trast, we can exclude approximation errors from considera-

tion when using exact algorithms.

Existing algorithms for detecting 2D human figures us-

ing loopy graphical models, both exact and approximate al-

gorithms, suffer from the following drawbacks:

1. Algorithm does not scale. To keep the algorithm

fast [2] or prevent an explosion of variables in the prob-

lem encoding [8, 16], the number of candidate loca-

tions for each body part is kept small (∼ 103 or less

for each body part). These algorithms typically require

a thresholding step to remove low scoring candidates

and this thresholding heuristic is sub-optimal because

candidates are removed without considering their rela-

tion to other body parts or the global cost function.

2. Specialized edge cost. The edge cost functions are as-

sumed to have a specific form in order to accelerate

the inference algorithm, e.g., variables are assumed to

be jointly Gaussian in [10]. This limits the applicabil-

ity of these models because useful constraints such as

appearance symmetry [16] or positional exclusion [8]

cannot be modeled using Gaussian distributions.

We present an approach for computing the exact solu-

tion that overcomes the aforementioned drawbacks. It is a

global optimization algorithm based on Branch and Bound

(BB) (Sec. 4). The BB algorithm uses a novel technique to

quickly compute tree based lower bounds on the cost func-

tion and it only incurs an O(1) look up cost for most of the
BB iterations (Sec. 4.2). Consequently, this boost in speed

enables our method to handle problem sizes that are multi-

ple orders of magnitude greater than previous work (∼ 106

locations per body part compared to ∼ 103 previously).

Asymptotically, in the worst case, our algorithm requires

exponential time, but our experiments show that the algo-

rithm recovers the optimal solution in a reasonable amount

of time in practice (Sec. 5).
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2. Related Work

We broadly categorize the related work based on the type

of model used (tree vs. loopy models) and the class of in-

ference algorithm used (approximate vs. exact).

Tree Model + Exact Inference In this class of work [1,

5, 14, 15], the state space is discrete and exact inference can

be performed efficiently using the belief propagation algo-

rithm. One drawback of the tree model is the over-counting

of evidence problem where legs are often localized to the

same region. In our work, we demonstrate how to amelio-

rate this problem using a loopy graph model that encodes

constraints across different branches of the tree and we also

provide a practical algorithm that performs exact inference

quickly in practice.

Loopy Model + Approximate Inference In addition to

the underlying kinematic tree model, useful pairwise con-

straints were proposed in [8, 16] and the resulting models

contain loops in the associated graphs. The time complex-

ity for exact inference in loopy graphs scales exponentially

in the size of the largest clique in the graph and approxima-

tion algorithms are commonly used for inference.

Inference in loopy graph models can be transformed into

Integer Programs [8] or Integer Quadratic Programs [16]

and solved using approximate algorithms that depend on

general purpose linear program solvers. Unfortunately,

these approaches do not scale well to larger sized problems;

e.g., both [8, 16] use less than 500 candidate locations for
each body part. In comparison, our method performs exact

inference by exploiting structure within the combinatorial

problem and it is capable of handling more than 106 candi-

dates for each body part.

Other approximate methods, such as Tree Reweighing

(TRW) [18] or Loopy Belief Propagation (LBP) are an or-

der of magnitude slower than our exact method. TRW

and LBP require multiple rounds of message passing and

when messages cannot be created using the distance trans-

form trick [5], then creating a message requiresO(h2) time,
where h is the number of candidates for a body part. For ex-

ample, the distance transform trick cannot be used to create

messages along arcs that enforce constraints such as the Ap-

pearance Symmetry and Evidence Scaling constraints used

in our experiments (Sec. 5). In our experience, computing

a message involving one of these constraints takes 22 min-

utes and multiple rounds of message passing requires many

hours of computation time. In contrast, our method avoids

this problem by using a fast branch and bound algorithm

that uses a novel lower bounding technique. Our method

runs faster empirically and on top of that, it recovers the

optimal solution.

A model that uses a convex combination of spanning

trees was proposed in [19]. This model can be viewed

as an approximation to a loopy graph model. In contrast,

our work recovers the optimal solution to the original loopy

graph model.

Loopy Model + Exact Inference The Common Factor

Model (CFM) [10] was proposed as an alternative model to

graphical models with dense cliques and the CFM assumes

a jointly Gaussian distribution among the variables within a

clique. In contrast, our method allows more complex rela-

tionships between variables. For example, we use the Re-

gion Covariance constraint in our experiments to compute

the difference between two appearance patches and this can-

not be handled in the CFM.

Bergtholdt, et al. [2] used the A∗ search algorithm and

compute an admissible cost using the Belief Propagation

(BP) algorithm. In each iteration of the A∗ search, the BP

algorithm requires O(nh2) time for h labels in each of the
n nodes. In comparison, our lower bounding technique re-

quires a constant O(1) time complexity for most iterations.
This computational advantage allows our method to handle

label sizes orders of magnitudes larger than [2] and thus ob-

viates the need to threshold feature detection in [2], which

potentially could lead to a sub-optimal solution.

Exact methods based on Non Serial Dynamic Program-

ming [3], Junction Trees (see e.g., [9]) or Bucket Elim-

ination [4] have memory requirements that are too large

for the problem sizes we are handling. Consider the case

where each variable has 106 candidate locations and further

assume that we are only dealing with pairwise functions. If

we are eliminating a variable within a clique of size three,

then we need to store a table of size 106 × 106 = 1012. If

each label is stored as a four byte integer, then the table re-

quires an astounding four terabytes of memory. Therefore,

these algorithms are unsuitable for our problem size.

Others Other works do not explicitly optimize the en-

ergy function of a graphical model, e.g., [12] which uses

over segmentation to assemble body parts and in [7], detec-

tion is formulated as a consistent max covering problem.

Branch and Bound Branch and bound is used in

Bayesian Networks with large numbers of random variables

with a small domain [11, 13]. The search proceeds by in-

stantiating each of the random variables sequentially. For

our problem, the situation is reversed. We have a small

number of random variables but a large set of values for

each variable (∼ 106). Rather than instantiating the vari-

ables sequentially (which is too slow for our problem size),

we choose to prune away large regions of the solution space

quickly through the use of fast upper and lower bounding

techniques.

3. Human Model

We adopt the commonly used ten part model consisting

of the torso, head, upper and lower arms, as well as upper

and lower legs. The 2D configuration of a human figure

X = {x1, . . . , x10} consists of parameters xi for each body

part. The conditional probability of configuration X given
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Figure 1. Ten body parts model. HEA : Head, TOR : Torso, LUA :

Left upper arm, etc. Solid edges represent kinematic constraints

between body parts and dotted edges represent additional con-

straints such as appearance symmetry constraints, spatial exclu-

sion constraints, etc.

an image I , is

p(X |I) ∝ p(I|X)p(X), (1)

where p(I|X) denotes the likelihood and p(X) is the spatial
prior over the configurationX .

3.1. Tree Model

The tree model was proposed in [5] and it assumes inde-

pendence of appearance among the body parts. The likeli-

hood is factorized as

p(I|X) ∝
∏

i∈V

φi(xi), (2)

where V represents the set of body parts (corresponding to

vertices of the graph in Fig. 1) and the unary terms φi(xi)
are functions of the body part detector scores. The spatial

prior is tree structured and it is factorized as

p(X) ∝
∏

ij∈Et

φij(xi, xj), (3)

where Et denotes the set of kinematic constraints between

body parts (corresponding to solid edges in Fig. 1).

3.2. NonTree Model (Loopy Graph Model)

In the loopy graph model, additional edges are added to

the basic tree model. The likelihood models additional ap-

pearance dependency between body parts and factorizes as

p(I|X) ∝
∏

i∈V

φi(xi)
∏

ij∈Ea

ψij(xi, xj), (4)

where Ea denotes the set of appearance constraint edges

and the potential function ψij(xi, xj) models appearance
dependency between body parts i and j.

The model also allows constraints between the spatial

positions of the body parts. The spatial prior factorizes as

p(X) ∝
∏

ij∈Et

φij(xi, xj)
∏

ij∈Es

σij(xi, xj), (5)

where Es denotes the set of additional spatial constraint

edges and the set of functionsσij(xi, xj)model spatial con-
straints between between parts i and j. The full model is

p(X|I) ∝
Y

i∈V1

φi(xi)
Y

i ∈ V − V1

ij ∈ Es

σij(xi, xj)

Y

ij∈Et

φij(xi, xj)
Y

ij∈Ea

ψij(xi, xj),

(6)

where V1 represents the set of vertices that are not con-

nected by any of the ψij or σij edges.

4. Optimization

We recover the optimal solution by minimizing the neg-

ative log of the posterior, i.e.,

X∗ = arg min
X

U(X), (7)

where the energy U(X) ∝ − logP (X |I). The potentials
are exponential functions, where φij ∝ exp(−Uij(xi, xj)),
and the energy U(X) has the form,

U(X) =
∑

i∈V

Ui(xi) +
∑

ij∈Et

S

Ea

S

Es

Uij(xi, xj). (8)

The energy minimization proceeds by first discretizing

the parameter space for X (following [5]), then the energy

function is minimized using a Branch and Bound (BB) algo-

rithm. The BB algorithm recursively subdivides the search

space into disjoint regions. These regions are ranked ac-

cording to a lower bounding function and the region with

the smallest lower bound is chosen for the next subdivision

step (details are shown in Algorithm 1).

4.1. Lower Bound

The performance of the Branch and Bound algorithm de-

pends on the quality of the lower bounding function. We de-

fine the following lower bound that performs well in prac-

tice. Given a regionΩ that contains one or more solutions, a
lower boundLB(Ω) satisfies the propertyLB(Ω) ≤ U(Xi)
for all Xi ∈ Ω. The lower bound for a region Ω is

LB(Ω) =

{

U(X) If Ω contains onlyX ,

minX∈Ω Utree(X) otherwise,

(9)

where

Utree(X) =
∑

i∈V

Ui(xi) +
∑

ij∈Et

Uij(xi, xj) (10)

is the energy associated with the tree model.

When defining Eq. 9, we require that the tree model cost

is less than the original model cost, i.e., Utree(X) ≤ U(X).



Algorithm 1 Branch and Bound algorithm

SetΩ as initial solution space and set priority queueQ to empty
X∗ = arg min

X∈Ω

Utree(X)

UB = U(X∗)
Insert (Ω, LB(Ω)) into Q
while true do

Ω = pop(Q)
if Ω contains only a single solutionX then

ReturnX
else

(Ω1,Ω2) = split(Ω)
X∗

1 = arg min
X∈Ω1

Utree(X)

X∗

2 = arg min
X∈Ω2

Utree(X)

UB = min{U(X∗

1 ), U(X∗

2 ), UB}
If LB(Ω1) ≤ UB, insert (Ω1, LB(Ω1) into Q
If LB(Ω2) ≤ UB, insert (Ω2, LB(Ω1) into Q

end if

end while

Algorithm 2 (Ω1,Ω2) = split(Ω)

Input : Ω = 〈ω1 × · · · × ω10, RMQ(d), d〉 where ωi is the

candidate list for body part i, with d as the index of the current
body part’s candidate list being split in topological ordering and

RMQ(d) denotes the range minimum query data structure built
over the cost tableDd(xd) (Eq. 16).
if |ωd| == 1 then

Ω′ = 〈ω1 × · · · × ω10, RMQ(d+ 1), d+ 1〉
(Ω1,Ω2) = split(Ω′)
Return (Ω1,Ω2)
end if

Suppose ωd = [p1, · · · , pk].
ω′

d = [p1, . . . ,
1

2
(p1 + pn)]

ω′′

d = [ 1
2
(p1 + pn) + 1, . . . , pn]

Ω1 = 〈ω1 · · · × ω′

d × · · · × ω10, RMQ(d), d〉
Ω2 = 〈ω1 · · · × ω′′

d × · · · × ω10, RMQ(d), d〉

Return (Ω1,Ω2)

This can be satisfied by assuming that all the unary and pair-

wise cost functions in the energy U(X) are non-negative.
This assumption is easily satisfied in practice. The unary

costs are normalized to the range [0, 1] using a softmax
transformation and the pairwise functions are typically dis-

tance functions, which are non-negative by definition.

4.2. Computing the Lower Bound LB(·) Efficiently

Computing the lower bound involves a minimization

over the region Ω. Naively, if we compute the minimum
cost using dynamic programming on the tree structure then

it requires a time complexity of O(nh2) for n nodes with
h labels each. This is a prohibitive cost for each branch

and bound iteration because the number of labels is huge

(h ∼ 106 in the problem size we are handling). We outline

Ω1 Ω2

ω2

Figure 2. Region partitioning by making use of the dynamic pro-

gramming trellis. The original domain is partitioned into Ω1 and

Ω2 by splitting the domain for the body part at the root into half.

The region Ω1 retains the original tree model solution and the op-

timal tree model solution has to be recomputed for Ω2, which is

efficiently computed by making use of a range minimum search

data structure.

an approach that avoids computing the lower bound from

scratch at each iteration and instead it recovers the lower

bound from a look up table.

We describe the key ingredients of our technique using

a toy example. The loopy model consists of three variables

X = {x1, x2, x3}, with cost function

U(X) =
∑

i∈{1,2,3}

Ui(xi) +
∑

ij∈{12,13,23}

Uij(xi, xj). (11)

In a preprocessing step, we select the spanning tree with x1

as the root, x2 and x3 are the child and grandchild respec-

tively. The associated tree cost is

Utree(X) =
∑

i∈{1,2,3}

Ui(xi)+
∑

ij∈{12,23}

Uij(xi, xj). (12)

Next, we apply dynamic programming to obtain a set of DP

tables Bj(xi) [5]. These tables are recursively defined for
non-root nodes i as

Bj(xi) = min
xj

Uj(xj) + Uij(xi, xj) +
∑

k∈child(j)

Bk(xk),

(13)

where child(j) is the set of child nodes for j. Fig. 2 shows
the familiar dynamic programming trellis, where each row

of black dots represents the state space of the variable (with

the root node at the top). The solid path from the root to

the leaf is the minimum cost solution. Once the programing

table is constructed, we recover the lower bound

LB(Ω) = min
x1

U1(x1) +B2(x1). (14)

Given the initial solution spaceΩ = S(1,h)×S(1,h)×S(1,h),

where S(1,h) = {1, . . . , h} is an index set over all possi-
ble configurations of a body part, the first iteration of the



branch and bound partitions the region Ω into two smaller
regions Ω1 and Ω2 and then the algorithm computes the

lower bounds LB(Ω1) and LB(Ω2) for the new regions.
Naively, these bounds are computed using dynamic pro-

gramming but we can speed up the computation by selecting

an advantageous partitioning for Ω.
We propose partitioning the original region Ω by split-

ting the domain of the root node in half, i.e., Ω1 =
S(1,⌊h/2⌋)×S(1,h)×S(1,h) andΩ2 = S(⌊h/2⌋+1,h)×S(1,h)×
S(1,h). This partitioning scheme allows us to reuse the op-

timal tree solution from the larger domain Ω. In the toy
example, the optimal tree solution for the larger region Ω is
contained within the left smaller regionΩ1 (Fig. 2). We can

easily verify that LB(Ω1) = LB(Ω).
The remaining task is to compute the optimal tree solu-

tion for the other regionΩ2. The algorithm scans the second

region Ω2 root level entries, in the set ω2, for the minimum

cost entry. The lower bound for the second region is

LB(Ω2) = min
x1∈{⌊h/2⌋+1,h}

U1(x1) +B2(x1). (15)

Once the minimum cost entry is found, we can reconstruct

the optimal tree solution by back tracking through the rest

of the DP table.

In the toy example, when the domain for the root is re-

duced to a single element, i.e., when Ω = S(p,p) × S(1,h) ×
S(1,h), then the child node will be split next. In general, we

use a topological sorted ordering of the tree nodes such that

no child nodes come before a parent node and this ordering

allows the cost entries in DP tables to be reused. Before

splitting the new node, some housekeeping is required to

update the cost entries of the new node. If there are n vari-

ables and the domains for the first k−1 variables have been
reduced to a single element, i.e.,

Ω = S(p1,p1) × · · · × S(pk−1,pk−1) × S(1,h) · · · × S(1,h),

then the cost entries for node k are defined as

Dk(xk) =Ck(X∗
k ) + Uk(xk) + Ukk′ (xk, xk′ [pk′ ])

+
∑

i∈child(k)

Bi(xk), (16)

where k′ denotes the parent of k, child(k) are the children
of node k, the notation xi[pi] refers to looking up the dis-
cretized value for body part i using the index pi, and Ck(·)
denotes the fixed tree cost for node k which is defined as

Ck(X∗
k ) =

∑

i∈V

Ui(xi[pi]) +
∑

ij ∈ Et

i, j ∈ V

Uij(xi[pi], xj [pj ]),

(17)

and X∗
k denotes tree solution obtained by fixing the first

k − 1 values and identifying the values for the other parts
by backtracking in the DP tables. The set of vertices V (k)

includes node k and its descendants and V = V − V (k).
Intuitively, the fixed tree cost is a partial cost of the lower

bound that does not change with respect to splitting the do-

main of node k.

Speedup Using Range Minimum Query (RMQ) Data

Structure Computationally, we require linear time to

search for the minimum cost entry in the set ω2. This linear

search is repeat over the same list but over different ranges

of the list when computing the lower bound. We propose

building a RMQ data structure [6] over the list such that

querying for the minimum cost entry within a given range

only requiresO(1) processing time. Building the RMQ data
structure requires O(h) time for processing h entries in a
list. At the start of the branch and bound algorithm, the

RMQ structure is built over the DP table of the root node,

i.e., B1(x1) and subsequently, the RMQ table is built over
the cost tableDk(xk) (Eq. 16) when splitting node k.

Pruning by Upper Bounding A pruning step is added

to the Branch and Bound algorithm (Algorithm 1). In each

iteration, the region Ω is split into Ω1 and Ω2. On top of

recovering the lower bounds, we also recover the actual

configurationsX∗
1 and X

∗
2 that correspond to the tree costs

(this is done with a constant cost by backtracking using the

back pointers in the DP tables). We compute the actual

loopy graph cost U(X∗
1 ) and U(X∗

2 ) and pick the smaller
value as an upper bound UB on the optimal solution, i.e.,

UB = min{U(X∗
1 ), U(X∗

2 )}. In general, we keep the
smallest upper bound encountered so far in the branch and

bound. Regions with lower bounds that exceed the current

upper bound are pruned away, i.e., these regions will not

be inserted into the priority queue. This is safe because the

optimal solution is not within these regions.

4.3. Correctness of Algorithm 1

We prove that Algorithm 1 always terminates and re-

turns the optimal solution. The solution space Ω is discrete
and we can map the subdivision process onto a tree. The

root of the tree represents the entire solution space, the child

nodes are the subdivided regions and the leaves are single-

ton sets, i.e., sets with only one solution. Since there is

a finite number of leaf nodes, the algorithm will terminate

and in the worst case it visits all the leaf nodes. To prove

that the algorithm recovers the optimal solution, we argue

that the first singleton set popped off the priority queue is

the optimal solution. In the case where the top of the pri-

ority queue contains the singleton set Ω = {X} then its
lower bound is the smallest among all the other regions Ω′

in the priority queue, i.e., LB({X}) ≤ LB(Ω′). Since
LB(Ω′) ≤ U(Y ) for all Y ∈ Ω′ and U(X) = LB({X})
then U(X) ≤ U(Y ) for all Y ∈ Ω′. �



Figure 3. Left: Andriluka et al. (AN) [1] solution does not tightly

group the body parts and body parts are localized on two different

human figures. Right: Our result enforces kinematic constraints

on AN’s solution. This is achieved by performing a MAP infer-

ence using AN’s posterior marginal as unary cost and adding a

tree structured kinematic constraint.

5. Experiments

Currently, [1] reports the best 2D human detection re-

sults on the Iterative Parsing dataset [14], but the inference

method has two drawbacks. Firstly, the body parts are not

tightly grouped together (see Fig. 3). Secondly, the solu-

tions suffer from the over-counting of evidence problem

common in tree models (see Fig. 4). Our method amelio-

rate these two problems.

For comparison with [1], we use the same dataset,

i.e., the Iterative Parsing dataset [14]. The standard tree

model [5] is chosen as the spanning tree to compute the

lower bound (shown as the tree with solid edges in Fig. 1).

Following [1], each body part xi consists of three parame-

ters, namely, rotation and (x, y) positions.
Running Time We use the same state space discretiza-

tion as [1], i.e., 24 rotation angles and all image posi-

tions are considered. An image size of 167 × 251, has
slightly over a million candidate locations for each body

part. Currently, the algorithms are implemented in Matlab

and the computation-intensive parts are implemented using

mex files. On average, it takes about one minute to compute

the DP tables and another minute for the branch and bound

algorithm to converge. We independently implemented the

algorithm of [1] using Matlab, and the detection accuracy

differs slightly different from results published in [1] (see

Table. 1, second row).

Kinematic Constraints We adopt the kinematic con-

straints of [5] and the pairwise potential is given as

φij(xi, xj) = exp

{

−
λ

2
(x′i − x′j)

TM−1
ij (x′i − x′j)

}

,

(18)

where x′i = Tij(xi) and x
′
j = Tji(xj) are transformed co-

ordinates and the diagonal covariance matrix Mij can be

learned from training samples (see [5] for more details).

Unary Cost The strong body parts detector proposed by

Andriluka, et al. [1] provides good results for detection.

Each body part i is detected by maximizing the marginal

posterior p(xi|I). These marginal posteriors can be reinter-

Figure 4. Resolving over-counting of evidence problem. Left: Us-

ing Andriluka et al.’s [1] algorithm, both legs are localized onto the

same region. Right: Our method finds a better solution with legs

apart after enforcing the Evidence Scaling constraints that rescale

detector scores based on the overlapping regions.

preted as re-weighted body part detector scores. We use the

marginal posteriors as the unary cost for our model, i.e.,

φi(xi) = p(xi|I). (19)

In the absence of other pairwise terms φij , ψij and σij , our

model reduces to Andriluka et al.’s model. In this case, the

best solution for each body part will be the maximum of

the posterior marginal, but such an inference algorithm is

unable to group the body parts tightly. This results in dis-

memberment of the human figure (Fig. 3 left). This can be

rectified by adding kinematic constraints φij (Fig. 3 right).

Appearance Symmetry Humans tend to wear clothing

with symmetrical appearance [16] and we include such con-

straints in our model. The constraints are shown as dot-

ted edges in Fig. 1. We use the Region Covariance (RC)

descriptor [17] to describe the appearance of a rectangular

patch associated with a body part configuration x. We ex-

tract the spatial coordinates (u, v) and red, green and blue
color intensity (r, g, b) for each pixel location i within the
patch, i.e., F (yi) = [ui, vi, ri, gi, bi]. The RC descriptor
is the covariance matrix of the collection of F (yi). Given
two covariance matrices C1 and C2, a distance metric is

ρ(C1, C2) =
√

∑

i ln2 λi(C1, C2) where λi are the gener-

alized eigenvalues. The potential is defined as

ψij(xi, xj) = exp(−ρ(C1, C2)). (20)

Evidence Scaling Tree models suffer from the over-

counting of evidence problem. Limbs are often placed close

together in a region with high detection scores. This is fur-

ther exacerbated by the symmetric appearance constraint

since stacking one limb on top of the other will give iden-

tical appearance. We address this problem by scaling the

unary costs for limbs participating in a symmetry appear-

ance term (see Fig. 4). For a limb xi constrained to have

symmetric appearance with another limb xj we scale the

body part detector score with

σij(xi, xj) =
|R(xi) \R(xj)| +

1
2 |R(xi)

⋂

R(xj)|

|R(xi)|
(21)



where R(x) denotes the 2D region of the limb and |.| is the
area of the region. The scaling σij(xi, xj) is in the range
of [ 12 , 1]. The evidence scaling function is not symmetrical,
i.e., σij(xi, xj) 6= σji(xj , xi). In practice, it suffices to in-
clude one of these terms and this has the effect of penalizing

the intersection between the two areas. The area of intersec-

tion between two rectangles is computed by first clipping

one rectangle against the other using the Sutherland Hodg-

man algorithm and the resulting intersection polygon’s area

can be computed using the surveyor’s formula.

The full model is shown in Fig. 1. The solid edges

form the kinematic tree and the dotted edges are the addi-

tional pairwise constraints. Intuitively, our model discour-

ages overlapping parts and rewards finding body parts with

similar appearance.

Dimensionality of RMQ. The body part configurations

in the DP table are 3D but we use a 1D Range Minimum

Query algorithm [6] to reduce memory usage in the BB al-

gorithm. The DP table is flattened into a 1D array (ordering

does not matter). This flattening does not affect the cor-

rectness of the Branch and Bound algorithm as the solution

space is not modified.

Results We compare our algorithm against the method

in [1] and the quantitative comparison is summarized in

Table 1. A body part is correctly localized when both

endpoints of the body part are within half the body part

length of the ground truth (following [1]). We compare the

tree structured maximum a posteriori solution [5] (row 1)

with our model (row 5), and we achieve an improvement

of ∼ 6% in the average detection rate. When compared
with [1] (row 2), our results (row 5) achieve an improve-

ment of ∼ 1% in the average detection rate with a notice-
able improvement in the localization of both the upper and

lower legs. Our Evidence Scaling and Appearance Symme-

try constraints are effective in curbing the dismemberment

problem and the over-counting of evidence problem.

Performance of Branch and BoundWe conducted two

experiments to assess the performance of the Branch and

Bound algorithm. See Fig. 6 and Fig. 7 for details.

6. Discussion and Conclusion

We proposed a Branch and Bound algorithm to compute

the global optimal solution for a non-tree model and the al-

gorithm converges quickly in practice. As demonstrated in

the experiments, enforcing Evidence Scaling and Appear-

ance Symmetry in a loopy model helps to improve the ac-

curacy of the state of the art 2D human detector. Further-

more, our optimization technique is general since the algo-

rithm only requires the constraint functions to return a scalar

value when evaluating the upper bound and these functions

can effectively be treated as black boxes.

The spanning tree chosen for the lower bound consists

of all the kinematic edges in the Pictorial Structure model.
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Figure 6. We examine the relationship between the total number

of BB nodes explored during the search (vertical axis) and qual-

ity of the lower bound. The quality of the lower bound which

is computed as the ratio of the loopy graph cost for the optimal

solution X∗ and the first lower bound computed in the BB, i.e.,

U(X∗)/LB(Ω), where Ω is the entire solution domain. Each tri-
angle in the plot represents a test image from the Iterative Parsing

dataset. For 97% (199 out of 205) of the test cases, the BB con-
verges after visiting at most 4 × 105 nodes (or at most 100 secs.).
Empirically, the optimal cost U(X∗) is at most 1.5 greater than
the initial tree based lower bound LB(Ω), and this good approxi-
mation allows our BB algorithm to converge quickly.
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Figure 7. We probe the performance of the algorithm when the

lower bound deteriorates. For a fixed image, we increased the ratio

U(X∗)/LB(Ω) by increasing the weights on the Evidence Scal-
ing and Region Covariance constraints. As the lower bound dete-

riorates, the number of BB nodes explored increases gradually but

after a certain threshold it increases sharply in a non-linear fashion

and our server (with 32GB RAM) quickly runs out of memory to

store the priority queue. This behavior is typical for all the images

but the threshold varies among the images.

This is primarily for efficiency reasons: the DP table is

constructed in linear time [5] instead of quadratic time for

general DP. The quadratic time complexity is impractical

in our case because of the large number of candidates for

each body part (∼ 106). But our technique works for any

choice of spanning tree. In future work, algorithms could

be developed to choose the spanning tree by optimizing the

tightness of the resulting lower bound. Potentially, these

other spanning trees may incur the quadratic computational

cost in computing the DP table. Thus, the choice of span-

ning tree must balance between complexity of computing

the DP tables and the tightness of the bound. In our experi-

ments, we found that the spanning tree we propose strikes a

good balance and yields the optimal detection and pose esti-

mation in a reasonable amount of time, i.e., within minutes,

rather than hours or days.



Figure 5. First Row Over-counting of Evidence Problem: When using the method in [1], two legs are frequently localized to the same

region (left image). By making use of the Evidence Scaling and Appearance Symmetry constraints, our model tries to recover a solution

where the left and right legs are similar in appearance but with less overlap between the legs. Second Row, Dismemberment Problem:

The body parts are not tightly grouped when using [1] (left image) and this is corrected in our model (right image).

Torso Upper Arms Upper Legs Lower Arms Lower Legs Head Avg

Left Right Left Right Left Right Left Right

FH [5] 73.7 43.4 41.5 62.0 54.1 35.6 29.3 57.0 50.2 59.5 50.6

AN [1] 78.0 45.4 49.3 65.9 60.0 37.6 35.6 60.0 52.2 66.3 55.0

AN + KC 78.5 46.8 48.8 66.3 61.0 39.5 32.2 61.0 54.6 67.3 55.6

AN + KC + ES 80.0 46.3 49.3 67.3 63.4 39.0 32.7 61.0 57.0 67.8 56.4

AN + KC + RC + ES 80.0 46.8 49.3 68.8 61.5 39.5 32.7 62.0 55.6 67.3 56.4

KC : Kinematic Constraints RC : Region Covariance ES : Evidence Scaling

Table 1. Body part detection accuracy in percentages. A body part is correctly localized when both ends of the limb are within half the

part’s length from the ground truth. Row 1: Using FH [5] dynamic programming. Row 2: Using the sum product belief propagation for

inference as suggested in AN [1]. Row 3-5: Combining different constraints with the original AN model. Note that the AN row differs

slightly from the published result of [1] because we used our implementation.
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