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Alternating Randomized Block Coordinate Descent

Jelena Diakonikolas 1 Lorenzo Orecchia 1

Abstract
Block-coordinate descent algorithms and alter-
nating minimization methods are fundamen-
tal optimization algorithms and an important
primitive in large-scale optimization and ma-
chine learning. While various block-coordinate-
descent-type methods have been studied exten-
sively, only alternating minimization – which ap-
plies to the setting of only two blocks – is known
to have convergence time that scales indepen-
dently of the least smooth block. A natural ques-
tion is then: is the setting of two blocks special?
We show that the answer is “no” as long as the
least smooth block can be optimized exactly –
an assumption that is also needed in the setting
of alternating minimization. We do so by intro-
ducing a novel algorithm AR-BCD, whose con-
vergence time scales independently of the least
smooth (possibly non-smooth) block. The basic
algorithm generalizes both alternating minimiza-
tion and randomized block coordinate (gradient)
descent, and we also provide its accelerated ver-
sion – AAR-BCD.

1. Introduction
First-order methods for minimizing smooth convex func-
tions are a cornerstone of large-scale optimization and ma-
chine learning. Given the size and heterogeneity of the data
in these applications, there is a particular interest in design-
ing iterative methods that, at each iteration, only optimize
over a subset of the decision variables (Wright, 2015).

This paper focuses on two classes of methods that consti-
tute important instantiations of this idea. The first class
is that of block-coordinate descent methods, i.e., methods
that partition the set of variables into n ≥ 2 blocks and
perform a gradient descent step on a single block at every
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iteration, while leaving the remaining variable blocks fixed.
A paradigmatic example of this approach is the random-
ized Kaczmarz algorithm of (Strohmer & Vershynin, 2009)
for linear systems and its generalization (Nesterov, 2012).
The second class is that of alternating minimization meth-
ods, i.e., algorithms that partition the variable set into only
n = 2 blocks and alternate between exactly optimizing one
block or the other at each iteration (see, e.g., (Beck, 2015)
and references therein).

Besides the computational advantage in only having to up-
date a subset of variables at each iteration, methods in these
two classes are also able to exploit better the structure of
the problem, which, for instance, may be computationally
expensive only in a small number of variables. To formal-
ize this statement, assume that the set of variables is par-
titioned into n ≤ N mutually disjoint blocks, where the
ith block of variable x is denoted by xi, and the gradient
corresponding to the ith block is denoted by ∇if(x). Each
block i will be associated with a smoothness parameter Li,
I.e., ∀x,y ∈ RN :

∥∇if(x+ IiNy)−∇if(x)∥∗ ≤ Li∥yi∥, (1.1)

where IiN is a diagonal matrix whose diagonal entries equal
one for coordinates from block i, and are zero otherwise.

In this setting, the convergence time of standard ran-
domized block-coordinate descent methods, such as those
in (Nesterov, 2012), scales as O

(∑
i Li

ϵ

)
, where ϵ is the

desired additive error. By contrast, when n = 2, the conver-
gence time of the alternating minimization method (Beck,
2015) scales as O

(
Lmin

ϵ

)
, where Lmin is the minimum

smoothness parameter of the two blocks. This means that
one of the two blocks can have arbitrarily poor smooth-
ness (including ∞), as long as it is easy to optimize over
it. Some important examples with a nonsmooth block
(with smoothness parameter equal to infinity) can be found
in (Beck, 2015). Additional examples of problems for
which exact optimization over the least smooth block can
be performed efficiently are provided in Appendix B.

In this paper, we address the following open question,
which was implicitly raised by (Beck & Tetruashvili, 2013):
can we design algorithms that combine the features of
randomized block-coordinate descent and alternating min-
imization? In particular, assuming we can perform ex-
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act optimization on block n, can we construct a block-
coordinate descent algorithm whose running time scales
with O(

∑n−1
i=1 Li), i.e., independently of the smoothness

Ln of the nth block? This would generalize both existing
block-coordinate descent methods, by allowing one block
to be optimized exactly, and existing alternating minimiza-
tion methods, by allowing n to be larger than 2 and requir-
ing exact optimization only on a single block.

We answer these questions in the affirmative by present-
ing a novel algorithm: alternating randomized block coordi-
nate descent (AR-BCD). The algorithm alternates between
an exact optimization over a fixed, possibly non-smooth
block, and a gradient descent or exact optimization over a
randomly selected block among the remaining blocks. For
two blocks, the method reduces to the standard alternating
minimization, while when the non-smooth block is empty
(not optimized over), we get randomized block coordinate
descent (RCDM) from (Nesterov, 2012).

Our second contribution is AAR-BCD, an accelerated ver-
sion of AR-BCD, which achieves the accelerated rate of
1
k2 without incurring any dependence on the smoothness
of block n. Furthermore, when the non-smooth block is
empty, AAR-BCD recovers the fastest known convergence
bounds for block-coordinate descent (Qu & Richtárik,
2016; Allen-Zhu et al., 2016; Nesterov, 2012; Lin et al.,
2014; Nesterov & Stich, 2017). Another conceptual contri-
bution is our extension of the approximate duality gap tech-
nique of (Diakonikolas & Orecchia, 2017), which leads to a
general and more streamlined analysis. Finally, to illustrate
the results, we perform a preliminary experimental evalua-
tion of our methods against existing block-coordinate algo-
rithms and discuss how their performance depends on the
smoothness and size of the blocks.

Related Work Alternating minimization and cyclic
block coordinate descent are old and fundamental algo-
rithms (Ortega & Rheinboldt, 1970) whose convergence (to
a stationary point) has been studied even in the non-convex
setting, in which they were shown to converge asymptoti-
cally under the additional assumptions that the blocks are
optimized exactly and their minimizers are unique (Bert-
sekas, 1999). However, even in the non-smooth convex
case, methods that perform exact minimization over a fixed
set of blocks may converge arbitrarily slowly. This has lead
scholars to focus on the case of smooth convex minimiza-
tion, for which nonasymptotic convergence rates were ob-
tained recently in (Beck & Tetruashvili, 2013; Beck, 2015;
Sun & Hong, 2015; Saha & Tewari, 2013). However, prior
to our work, convergence bounds that are independent of
the largest smoothness parameter were only known for the
setting of two blocks.

Randomized coordinate descent methods, in which steps

over coordinate blocks are taken in a non-cyclic random-
ized order (i.e., in each iteration one block is sampled
with replacement) were originally analyzed in (Nesterov,
2012). The same paper (Nesterov, 2012) also provided an
accelerated version of these methods. The results of (Nes-
terov, 2012) were subsequently improved and generalized
to various other settings (such as, e.g., composite minimiza-
tion) in (Lee & Sidford, 2013; Allen-Zhu et al., 2016; Nes-
terov & Stich, 2017; Richtárik & Takáč, 2014; Fercoq &
Richtárik, 2015; Lin et al., 2014). The analysis of the dif-
ferent block coordinate descent methods under various sam-
pling probabilities (that, unlike in our setting, are non-zero
over all the blocks) was unified in (Qu & Richtárik, 2016)
and extended to a more general class of steps within each
block in (Gower & Richtárik, 2015; Qu et al., 2016).

Our results should be carefully compared to a number
of proximal block-coordinate methods that rely on differ-
ent assumptions (Tseng & Yun, 2009; Richtárik & Takáč,
2014; Lin et al., 2014; Fercoq & Richtárik, 2015). In this
setting, the function f is assumed to have the structure
f0(x) + Ψ(x), where f0 is smooth, the non-smooth con-
vex function Ψ is separable over the blocks, i.e., Ψ(x) =∑n

i=1 Ψi(xi), and we can efficiently compute the proximal
operator of each Ψi. This strong assumption allows these
methods to make use of the standard proximal optimiza-
tion framework. By contrast, in our paper, the convex ob-
jective can be taken to have an arbitrary form, where the
non-smoothness of a block need not be separable, though
the function is assumed to be differentiable.

2. Preliminaries
We assume that we are given oracle access to the gradi-
ents of a continuously differentiable convex function f :
RN → R, where computing gradients over only a subset
of coordinates is computationally much cheaper than com-
puting the full gradient. We are interested in minimizing
f(·) over RN , and we denote x∗ = argminx∈RN f(x).
We let ∥ · ∥ denote an arbitrary (but fixed) norm, and
∥ · ∥∗ denote its dual norm, defined in the standard way:
∥z∥∗ = supx∈RN :∥x∥=1 ⟨z,x⟩.1

Let IN be the identity matrix of size N , IiN be a diagonal
matrix whose diagonal elements j are equal to one if vari-
able j is in the ith block, and zero otherwise. Notice that
IN =

∑n
i=1 I

i
N . Let Si(x) = {y ∈ RN : (IN − IiN )y =

(IN − IiN )x}, that is, Si contains all the points from RN

whose coordinates differ from those of x only over block i.

We denote the smoothness parameter of block i by Li, as

1Note that the analysis extends in a straightforward way to the
case where each block is associated with a different norm (see,
e.g., (Nesterov, 2012)); for simplicity of presentation, we take the
same norm over all blocks.
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defined in Equation (1.1). Equivalently, ∀x,y ∈ RN :

f(x+ IiNy) ≤ f(x) +
⟨
∇if(x),y

i
⟩
+
Li

2
∥yi∥2. (2.1)

The gradient step over block i is then defined as:

Ti(x)

= argmin
y∈Si(x)

{
⟨∇f(x),y − x⟩+ Li

2
∥y − x∥2

}
.

(2.2)

By standard arguments (see, e.g., Exercise 3.27 in (Boyd &
Vandenberghe, 2004)):

f(Ti(x))− f(x) ≤ − 1

2Li
∥∇if(x)∥2∗. (2.3)

Without loss of generality, we will assume that the nth

block has the largest smoothness parameter and is possi-
bly non-smooth (i.e., it can be Ln = ∞). The standing
assumption is that exact minimization over the nth block
is “easy”, meaning that it is computationally inexpensive
and possibly solvable in closed form; for some important
examples that have this property, see Appendix B. Observe
that when block n contains a small number of variables, it
is often computationally inexpensive to use second-order
optimization methods, such as, e.g., interior point method.

We assume that f(·) is strongly convex with parameter
µ ≥ 0, where it could be µ = 0 (in which case f(·) is
not strongly convex). Namely, ∀x,y:

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥y − x∥2. (2.4)

When µ > 0, we take ∥ · ∥ = ∥ · ∥2, which is customary for
smooth and strongly convex minimization (Bubeck, 2014).

Throughout the paper, whenever we take unconditional ex-
pectation, it is with respect to all randomness in the algo-
rithm.

2.1. Alternating Minimization

In (standard) alternating minimization (AM),
there are only two blocks of coordinates, i.e.,
n = 2. The algorithm is defined as follows.

x̂k = argmin
x∈S1(xk−1)

f(x),

xk = argmin
x∈S2(x̂k)

f(x),

x1 ∈ RN is an arbitrary initial point.

(AM)

We note that for the standard analysis of alternating min-
imization (Beck, 2015), the exact minimization step over
the smoother block can be replaced by a gradient step
(Equation (2.2)), while still leading to convergence that is
only dependent on the smaller smoothness parameter.

2.2. Randomized Block Coordinate (Gradient) Descent

The simplest version of randomized block coordinate (gra-
dient) descent (RCDM) can be stated as (Nesterov, 2012):

Select ik ∈ {1, . . . , n} w.p. pik > 0,

xk = Tik(xk−1),

x1 ∈ RN is an arbitrary initial point,

(RCDM)

where
∑n

i=1 pi = 1. A standard choice of the probability
distribution is pi ∼ Li, leading to the convergence rate that
depends on the sum of block smoothness parameters.

3. AR-BCD
The basic version of alternating randomized block co-
ordinate descent (AR-BCD) is a direct generalization
of (AM) and (RCDM): when n = 2, it is equivalent
to (AM), while when the size of the nth block is zero,
it reduces to (RCDM). The method is stated as follows:

Select ik ∈ {1, . . . , n− 1} w.p. pik > 0,

x̂k = Tik(xk−1),

xk = argmin
x∈Sn(x̂k)

f(x),

x1 ∈ RN is an arbitrary initial point,

(AR-BCD)

where
∑n−1

i=1 pi = 1. We note that nothing will
change in the analysis if the step x̂k = Tik(xk−1)
is replaced by x̂k = argminx∈Sik

(xk−1)
f(x), since

minx∈Sik
(xk−1) f(x) ≤ f(Tik(xk−1)).

In the rest of the section, we show that (AR-BCD) leads
to a convergence bound that interpolates between the con-
vergence bounds of (AM) and (RCDM): it depends on the
sum of the smoothness parameters of the first n− 1 blocks,
while the dependence on the remaining problem parameters
is the same for all these methods.

3.1. Approximate Duality Gap

To analyze (AR-BCD), we extend the approximate duality
gap technique (Diakonikolas & Orecchia, 2017) to the set-
ting of randomized block coordinate descent methods. The
approximate duality gap Gk is defined as the difference of
an upper bound Uk and a lower bound Lk to the minimum
function value f(x∗). For (AR-BCD), we choose the upper
bound to simply be Uk = f(xk+1).

The generic construction of the lower bound is as follows.
Let x1,x2, ...,xk be any sequence of points from RN (in
fact we will choose them to be exactly the sequence con-
structed by (AR-BCD)). Then, by (strong) convexity of
f(·), f(x∗) ≥ f(xj)+⟨∇f(xj),x∗ − xj⟩+ µ

2 ∥x∗−xj∥2,
∀j ∈ {1, . . . , k}. In particular, if aj > 0 is a sequence
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of (deterministic, independent of ij) positive real numbers
and Ak =

∑k
j=1 aj , then:

f(x∗) ≥
∑k

j=1 ajf(xj) +
∑k

j=1 aj ⟨∇f(xj),x∗ − xj⟩
Ak

+

µ
2

∑k
j=1 aj∥x∗ − xj∥2

Ak

def
= Lk. (3.1)

3.2. Convergence Analysis

The main idea in the analysis is to show that E[AkGk −
Ak−1Gk−1] ≤ Ek, for some deterministicEk. Then, using
linearity of expectation, E[f(xk+1)] − f(x∗) ≤ E[Gk] ≤
E[A1G1]

Ak
+

∑k
j=2 Ej

Ak
. The bound in expectation can then

be turned into a bound in probability, using well-known
concentration bounds. The main observation that allows us
not to pay for the non-smooth block is:

Observation 3.1. For xk’s constructed by (AR-BCD),
∇nf(xk) = 0, ∀k, where 0 is the vector of all zeros.

This observation is essentially what allows us to sample ik
only from the first n − 1 blocks, and holds due to the step
xk = argminx∈Sn(x̂k)

f(x) from (AR-BCD).

Denote Rxi
∗

= maxx∈RN {∥IiN (x∗ − x)∥2 : f(x) ≤
f(x1)}, and let us bound the initial gap A1G1.

Proposition 3.2. E[A1G1] ≤ E1, where E1 =

a1
∑n−1

i=1

(
Li

2pi
− µ

2

)
Rxi

∗
.

Proof. By linearity of expectation, E[A1G1] = E[A1U1]−
E[A1L1]. The initial lower bound is deterministic, and, by
∇nf(x1) = 0 and duality of norms, is bounded as:

E[A1L1] ≥a1f(x1)− a1
n−1∑
i=0

∥∇if(x1)∥∗∥xi
∗ − xi

1∥

+ a1
µ

2
∥x∗ − x1∥2.

Using (2.3), if i2 = i, then:

U1 = f(x2) ≤ f(x̂2) ≤ f(x1)−
1

2Li
∥∇if(x1)∥2∗.

Since block i is selected with probability pi and A1 = a1:

E[A1U1] ≤a1f(x1)−
n−1∑
i=1

a1pi
2Li

∥∇if(xi)∥2∗.

Since the inequality 2ab− a2 ≤ b2 holds ∀a, b, we have:

a1∥∇if(x1)∥∗∥xi
∗ − xi

1∥ −
a1pi
2Li

∥∇if(xi)∥2∗

≤ a1Li

2pi
∥xi

∗ − xi
1∥2, ∀i ∈ {1, . . . , n− 1}

Hence, when µ = 0, E[A1G1] ≤
∑n−1

i=1
a1Li

2pi
∥xi

∗ − xi
1∥2.

When µ > 0, since in that case we are assuming ∥·∥ = ∥·∥2
(Section 2), ∥x∗ − x1∥2 ≥

∑n−1
i=1 ∥xi

∗ − xi
1∥2, leading to

E[A1G1] ≤ a1
∑n−1

i=1

(
Li

2pi
− µ

2

)
∥xi

∗ − xi
1∥2.

We now show how to bound the error in the decrease of the
scaled gap AkGk.

Lemma 3.3. E[AkGk − Ak−1Gk−1] ≤ Ek, where Ek =

ak
∑n−1

i=1

(
akLi

2Akpi
− µ

2

)
Rxi

∗
.

Proof. Let Fk denote the natural filtration up to iteration k.
By linearity of expectation and AkLk − Ak−1Lk−1 being
measurable w.r.t. Fk,

E[AkGk −Ak−1Gk−1|Fk]

= E[AkUk −Ak−1Uk−1|Fk]− (AkLk −Ak−1Lk−1).

With probability pi and as f(xk+1) ≤ f(x̂k+1), the change
in the upper bound is:

AkUk −Ak−1Uk−1 ≤Akf(x̂k+1)−Ak−1f(xk)

≤akf(xk)−
Ak

2Li
∥∇if(xk)∥2∗,

where the second line follows from x̂k+1 = Tik(xk) and
Equation (2.3). Hence:

E[AkUk −Ak−1Uk−1|Fk]

≤ akf(xk)−Ak

n−1∑
i=1

pi
2Li

∥∇if(xk)∥2∗.

On the other hand, using the duality of norms, the change
in the lower bound is:

AkLk −Ak−1Lk−1

≥ akf(xk)− ak
n−1∑
i=1

∥∇if(xk)∥∗∥xi
∗ − xi

k∥

+ ak
µ

2
∥x∗ − xk∥2

≥ akf(xk)− ak
n−1∑
i=1

∥∇if(xk)∥∗
√
Rxi

∗

+ ak
µ

2
∥x∗ − xk∥2.

By the same argument as in the proof of Proposi-
tion 3.2, it follows that: E[AkGk − Ak−1Gk−1|Fk] ≤
ak

∑n−1
i=1

(
Liak

2Akpi
− µ

2

)
Rxi

∗
= Ek. Taking expectations

on both sides, asEk is deterministic, the proof follows.

We are now ready to prove the convergence bound for (AR-
BCD), as follows.

Theorem 3.4. Let xk evolve according to (AR-BCD). Then,
∀k ≥ 1:
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1. If µ = 0 : E[f(xk+1)] − f(x∗) ≤
2
∑n−1

i=1

Li
pi

Rxi
∗

k+3 . In
particular, for pi = Li∑n−1

i′=1
Li′
, 1 ≤ i ≤ n− 1:

E[f(xk+1)]− f(x∗) ≤
2(
∑n−1

i′=1 Li′)
∑n−1

i=1 Rxi
∗

k + 3
.

Similarly, for pi = 1
n−1 , 1 ≤ i ≤ n− 1 :

E[f(xk+1)]− f(x∗) ≤
2(n− 1)

∑n−1
i=1 LiRxi

∗

k + 3

2. If µ > 0, pi = Li∑n−1

i′=1
Li′

and ∥ · ∥ = ∥ · ∥2 :

E[f(xk+1)]− f(x∗)

≤
(
1− µ∑n−1

i′=1 Li′

)k

·
(
∑n−1

i′=1 Li′)∥(IN − InN )(x∗ − x1)∥2

2
.

Proof. From Proposition 3.2 and Lemma 3.3, by linearity
of expectation and the definition of Gk:

E[f(xk+1)]− f(x∗) ≤ E[Gk] ≤
∑k

j=1Ej

Ak
, (3.2)

where Ej =
aj

2

Aj

∑n−1
i=1

Li

2pi
Rxi

∗
.

Notice that the algorithm does not depend on the sequence
{aj} and thus we can choose it arbitrarily. Suppose that

µ = 0. Let aj = j+1
2 . Then aj

2

Aj
= (j+1)2

j(j+3) ≤ 1, and

thus:
∑k

j=1 Ej

Ak
≤

2
∑n−1

i=1

Li
pi

Rxi
∗

k+3 ,which proves the first part
of the theorem, up to concrete choices of pi’s, which follow
by simple computations.

For the second part of the theorem, as µ > 0, we are as-
suming that ∥ · ∥ = ∥ · ∥2, as discussed in Section 2. From
Lemma 3.3, Ej = aj

∑n−1
i=1

(
ajLi

2Ajpi
− µ

2

)
Rxi

∗
, ∀j ≥ 2.

As pi = Li∑n−1

i′=1
Li′

, if we take aj

Aj
= µ∑n−1

i′=1
Li′

, it fol-

lows that Ej = 0, ∀j ≥ 2. Let a1 = A1 = 1 and
aj

Aj
= µ∑n−1

i′=1
Li′

for j ≥ 2. Then: E[f(xk+1)] − f(x∗) ≤

E[Gk] ≤ E[A1G1]
Ak

.As A1

Ak
= A1

A2
· A2

A3
·· · ·· Ak−1

Ak
and Aj−1

Aj
=

1− aj

Aj
: E[f(xk+1)]−f(x∗) ≤

(
1− µ∑n−1

i′=1
Li′

)k−1

E[G1].

It remains to observe that, from Proposition 3.2, E[G1] ≤(
1− µ∑n−1

i′=1
Li′

) (
∑n−1

i′=1
Li′ )∥(IN−In

N )(x∗−x1)∥2

2 .

We note that when n = 2, the asymptotic convergence
of AR-BCD coincides with the convergence of alternating
minimization (Beck, 2015). When nth block is empty (i.e.,

when all blocks are sampled with non-zero probability and
there is no exact minimization over a least-smooth block),
we obtain the convergence bound of the standard random-
ized coordinate descent method (Nesterov, 2012).

4. Accelerated AR-BCD
In this section, we show how to accelerate (AR-BCD) when
f(·) is smooth. We believe it is possible to obtain similar
results in the smooth and strongly convex case, which we
defer to a future version of the paper. Denote:

∆k = IikN ∇f(xk)/pik ,

vk = argmin
u

{ k∑
j=1

aj ⟨∆j ,u⟩

+
n∑

i=1

σi
2
∥ui − xi

1∥2
}
, (4.1)

where σi > 0, ∀i, will be specified later. Accel-
erated AR-BCD (AAR-BCD) is defined as follows:

Select ik from {1, . . . , n− 1} w.p. pik ,

x̂k =
Ak−1

Ak
yk−1 +

ak
Ak

vk−1,

xk = argmin
x∈Sn(x̂k)

f(x),

yk = xk +
ak

pikAk
IikN (vk − vk−1),

x1 is an arbitrary initial point,

(AAR-BCD)

where
∑n−1

i=1 pi = 1, pi > 0, ∀i ∈ {1, . . . , n − 1}, and
vk is defined by (4.1). To seed the algorithm, we further
assume that y1 = x1 + Ii1N

1
pi1

(v1 − x1).

Remark 4.1. Iteration complexity of (AAR-BCD) is domi-
nated by the computation of x̂k,which requires updating an
entire vector. This type of an update is not unusual for ac-
celerated block coordinate descent methods, and in fact ap-
pears in all such methods we are aware of (Nesterov, 2012;
Lee & Sidford, 2013; Lin et al., 2014; Fercoq & Richtárik,
2015; Allen-Zhu et al., 2016). In most cases of practical
interest, however, it is possible to implement this step effi-
ciently (using that vk changes only over block ik in itera-
tion k). More details are provided in Appendix B.

To analyze the convergence of AAR-BCD, we will need
to construct a more sophisticated duality gap than in the
previous section, as follows.

4.1. Approximate Duality Gap

We define the upper bound to be Uk = f(yk). The con-
structed lower bound Lk from previous subsection is not
directly useful for the analysis of (AAR-BCD). Instead, we
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Λk =

∑k
j=1 ajf(xj) + minu∈RN

{∑k
j=1 aj ⟨∆j ,u− xj⟩+

∑n−1
i=1

σi

2 ∥u
i − xi

1∥2
}
−

∑n−1
i=1

σi

2 ∥x
i
∗ − xi

1∥2

Ak
. (4.2)

will construct a random variable Λk, which in expectation
is upper bounded by f(x∗). The general idea, as in previ-
ous subsection, is to show that some notion of approximate
duality gap decreases in expectation.

Towards constructing Λk, we first prove the following tech-
nical proposition, whose proof is in Appendix A.
Proposition 4.2. Let xk be as in (AAR-BCD). Then:

E[
k∑

j=1

aj ⟨∆j ,x∗ − xj⟩] = E[
k∑

j=1

aj ⟨∇f(xj),x∗ − xj⟩].

Define the randomized lower bound as in Eq. (4.2), and ob-
serve that (4.1) defines vk as the argument of the minimum
from Λk. The crucial property of Λk is that it lower bounds
f(x∗) in expectation, as shown in the following lemma.
Lemma 4.3. Let xk be as in (AAR-BCD). Then f(x∗) ≥
E[Λk].

Proof. By convexity of f(·), for any sequence {x̃j} from

RN , f(x∗) ≥
∑k

j=1 aj(f(x̃j)+⟨∇f(x̃j),x∗−x̃j⟩)
Ak

. Since the
statement holds for any sequence {x̃j}, it also holds if {x̃j}
is selected according to some probability distribution. In
particular, for {x̃j} = {xj}:

f(x∗) ≥E
[∑k

j=1 aj(f(xj) + ⟨∇f(xj),x∗ − xj⟩)
Ak

]
.

By linearity of expectation and Proposition 4.2:

f(x∗) ≥ E
[∑k

j=1 aj(f(xj) + ⟨∆j ,x∗ − xj⟩)
Ak

]
. (4.3)

Adding and subtracting (deterministic)
∑n−1

i=1
σi

2 ∥x
i
∗ −

xi
1∥2 to/from (4.3) and using that:
k∑

j=1

aj ⟨∆j ,x∗ − xj⟩+
n−1∑
i=1

σi
2
∥xi

∗ − xi
1∥2

≥ min
u

{ k∑
j=1

aj ⟨∆j ,u− xj⟩+
n−1∑
i=1

σi
2
∥ui − xi

1∥2
}

= min
u
mk(u),

where mk(u) =
∑k

j=1 aj ⟨∆j ,u− xj⟩+
∑n−1

i=1
σi

2 ∥u
i −

xi
1∥2, it follows that:

f(x∗) ≥ E
[∑k

j=1 ajf(xj)−
∑n−1

i=1
σi

2 ∥x
i
∗ − xi

1∥2

Ak

+
minu∈RN mk(u)

Ak

]
,

which is equal to E[Λk], and completes the proof.

Similar as before, define the approximate gap as Γk = Uk−
Λk. Then, we can bound the initial gap as follows.

Proposition 4.4. If a1 = a1
2

A1
≤ σipi

2

Li
, ∀i ∈ {1, ..., n− 1},

then E[A1Γ1] ≤
∑n−1

i=1
σi

2 ∥x∗ − x1∥2.

Proof. As a1 = A1 and y1 differs from x1 only over block
i = i1, by smoothness of f(·):

A1U1 = A1f(y1)

≤ a1f(x1) + a1
⟨
∇if(x1),y

i
1 − xi

1

⟩
+
a1Li

2
∥yi

1 − xi
1∥2.

On the other hand, the initial lower bound is:

A1Λ1 =a1(f(x1) + ⟨∆1,v1 − x1⟩)

+
n−1∑
i=1

σi
2
∥vi

1 − xi
1∥2 −

n−1∑
i=1

σi
2
∥xi

∗ − xi
1∥2.

Recall that yi
1 = xi

1+
1
pi
(vi

1−xi
1). UsingA1Γ1 = A1U1−

A1Λ1 and the bounds on U1, Λ1 from the above: A1Γ1 ≤∑n−1
i=1

σi

2 ∥x
i
∗−xi

1∥2, as a1 ≤ pi
2 σi

Li
, and, thus, E[A1Γ1] ≤∑n−1

i=1
σi

2 ∥x
i
∗ − xi

1∥2.

The next part of the proof is to show that AkΓk is a super-
martingale. The proof is provided in Appendix A.

Lemma 4.5. If ak
2

Ak
≤ pi

2σi

Li
, ∀i ∈ {1, . . . , n − 1}, then

E[AkΓk|Fk−1] ≤ Ak−1Γk−1.

Finally, we bound the convergence of (AAR-BCD).

Theorem 4.6. Let xk, yk evolve according to (AAR-BCD),
for ak

2

Ak
= min1≤i≤n−1

σipi
2

Li
= const. Then, ∀k ≥ 1:

E[f(yk)]− f(x∗) ≤
∑n−1

i=1 σi∥xi
∗ − xi

a∥2

2Ak
.

In particular, if pi =
√
Li∑n−1

i′=1

√
Li′

, σi = (
∑n−1

i′=1

√
Li′)

2,

and a1 = 1, then:

E[f(yk)]−f(x∗) ≤
2(
∑n−1

i′=1

√
Li′)

2
∑n−1

i=1 ∥xi
∗ − xi

1∥2

k(k + 3)
.

Alternatively, if pi = 1
n−1 , σi = Li, and a1 = 1

(n−1)2 :

E[f(yk)]− f(x∗) ≤
2(n− 1)2

∑n−1
i=1 Li∥xi

∗ − xi
1∥2

k(k + 3)
.
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Proof. The first part of the proof follows immediately by
applying Proposition 4.4 and Lemma 4.5. The second part
follows by plugging in the particular choice of parameters
and observing that aj grows faster than j+1

2 in the former,
and faster than j+1

2(n−1)2 in the latter case.

Finally, we make a few remarks regarding Theorem 4.6. In
the setting without a non-smooth block (when nth block
is empty), (AAR-BCD) with sampling probabilities pi ∼√
Li has the same convergence bound as the NU ACDM al-

gorithm (Allen-Zhu et al., 2016) and the ALPHA algorithm
for smooth minimization (Qu & Richtárik, 2016). Fur-
ther, when the sampling probabilities are uniform, (AAR-
BCD) converges at the same rate as the ACDM algorithm
(Nesterov, 2012) and the APCG algorithm applied to non-
composite functions (Lin et al., 2014).

5. Numerical Experiments
To illustrate the results, we solve the least squares problem
on the BlogFeedback Data Set (Buza, 2014) obtained from
UCI Machine Learning Repository (Lichman, 2013). The
data set contains 280 attributes and 52,396 data points. The
attributes correspond to various metrics of crawled blog
posts. The data is labeled, and the labels correspond to
the number of comments that were posted within 24 hours
from a fixed basetime. The goal of a regression method is to
predict the number of comments that a blog post receives.

What makes linear regression with least squares on this
dataset particularly suitable to our setting is that the smooth-
ness parameters of individual coordinates in the least
squares problem take values from a large interval, even
when the data matrix A is scaled by its maximum absolute
value (the values are between 0 and ∼354).2 The minimum
eigenvalue of ATA is zero (i.e., ATA is not a full-rank
matrix), and thus the problem is not strongly convex.

We partition the data into blocks as follows. We first sort
the coordinates by their individual smoothness parameters.
Then, we group the first N/n coordinates (from the sorted
list of coordinates) into the first block, the second N/n
coordinates into the second block, and so on. The cho-
sen block sizes N/n are 5, 10, 20, 40, corresponding to
n = {56, 28, 14, 7} coordinate blocks, respectively.

The distribution of the smoothness parameters over blocks,
for all chosen block sizes, is shown in Fig. 1(a)-1(d). Ob-
serve that as the block size increases (going from left to
right in Fig. 1(a)-1(d)), the discrepancy between the two
largest smoothness parameters increases.

2We did not compare AR-BCD and AAR-BCD to other meth-
ods on problems with a non-smooth block (Ln = ∞), as no other
methods have any known theoretical guarantees in such a setting.

In all the comparisons between the different methods, we
define an epoch to be equal to n iterations (this would cor-
respond to a single iteration of a full-gradient method). The
graphs plot the optimality gap of the methods over epochs,
where the optimal objective value f∗ is estimated via a
higher precision method and denoted by f̂∗. All the results
are shown for 50 method repetitions, with bold lines repre-
senting the median3 optimality gap over those 50 runs. The
norm used in all the experiments is ℓ2, i.e., ∥ · ∥ = ∥ · ∥2.

Non-accelerated methods We first compare AR-BCD
with a gradient step to RCDM (Nesterov, 2012) and stan-
dard cyclic BCD – C-BCD (see, e.g., (Beck & Tetruashvili,
2013)). To make the comparison fair, as AR-BCD makes
two steps per iteration, we slow it down by a factor of two
compared to the other methods (i.e., we count one iteration
of AR-BCD as two). In the comparison, we consider two
cases for RCDM and C-BCD: (i) the case in which these
two algorithms perform gradient steps on the first n − 1
blocks and exact minimization on the nth block (denoted
by RCDM and C-BCD in the figure), and (ii) the case in
which the algorithms perform gradient steps on all blocks
(denoted by RCDM-G and C-BCD-G in the figure). The
sampling probabilities for RCDM and AR-BCD are pro-
portional to the block smoothness parameters. The permu-
tation for C-BCD is random, but fixed in each method run.

Fig. 1(e)-1(h) shows the comparison of the described
non-accelerated algorithms, for block sizes N/n ∈
{5, 10, 20, 40}. The first observation to make is that adding
exact minimization over the least smooth block speeds up
the convergence of both C-BCD and RCDM, suggesting
that the existing analysis of these two methods is not tight.
Second, AR-BCD generally converges to a lower optimal-
ity gap. While RCDM makes a large initial progress, it stag-
nates afterwards due to the highly non-uniform sampling
probabilities, whereas AR-BCD keeps making progress.

Accelerated methods Finally, we compare AAR-BCD
to NU ACDM (Allen-Zhu et al., 2016), APCG (Lin et al.,
2014), and accelerated C-BCD (ABCGD) from (Beck &
Tetruashvili, 2013). As AAR-BCD makes three steps per
iteration (as opposed to two steps normally taken by other
methods), we slow it down by a factor 1.5 (i.e., we count
one iteration of AAR-BCD as 1.5). We chose the sampling
probabilities of NU ACDM and AAR-BCD to be propor-
tional to

√
Li, while the sampling probabilities for APCG

are uniform4. Similar as before, each full run of ABCGD is
performed on a random but fixed permutation of the blocks.

3We choose to show the median as opposed to the mean, as
it is well-known that in the presence of outliers the median is a
robust estimator of the true mean (Hampel et al., 2011).

4The theoretical results for APCG were only presented for uni-
form sampling (Lin et al., 2014).
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(a) N/n = 5 (b) N/n = 10 (c) N/n = 20 (d) N/n = 40

(e) N/n = 5 (f) N/n = 10 (g) N/n = 20 (h) N/n = 40

(i) N/n = 5 (j) N/n = 10 (k) N/n = 20 (l) N/n = 40

Figure 1. Comparison of different block coordinate descent methods: (a)-(d) distribution of smoothness parameters over blocks, (e)-(h)
comparison of non-accelerated methods, and (i)-(l) comparison of accelerated methods. Block sizes N/n increase going left to right.

The results are shown in Fig. 1(i)-1(l). Compared to
APCG (and ABCGD), NU ACDM and AAR-BCD con-
verge much faster, which is expected, as the distribution
of the smoothness parameters is highly non-uniform and
the meethods with non-uniform sampling are theoretically
faster by factor of the order

√
n (Allen-Zhu et al., 2016).

As the block size is increased (going left to right), the dis-
crepancy between the smoothness parameters of the least
smooth block and the remaining blocks increases, and,
as expected, AAR-BCD exhibits more dramatic improve-
ments compared to the other methods.

6. Conclusion
We presented a novel block coordinate descent algorithm
AR-BCD and its accelerated version for smooth mini-
mization AAR-BCD. Our work answers the open question
of (Beck & Tetruashvili, 2013) whether the convergence
of block coordinate descent methods intrinsically depends
on the largest smoothness parameter over all the blocks by
showing that such a dependence is not necessary, as long as
exact minimization over the least smooth block is possible.
Before our work, such a result only existed for the setting
of two blocks, using the alternating minimization method.

There are several research directions that merit further in-
vestigation. For example, we observed empirically that ex-
act optimization over the non-smooth block improves the
performance of RCDM and C-BCD, which is not justified
by the existing analytical bounds. We expect that in both
of these methods the dependence on the least smooth block
can be removed, possibly at the cost of a worse dependence
on the number of blocks. Further, AR-BCD and AAR-BCD
are mainly useful when the discrepancy between the largest
block smoothness parameter and the remaining smoothness
parameters is large, while under uniform distribution of the
smoothness parameters it can be slower than other methods
by a factor 1.5-2. It is an interesting question whether there
are modifications to AR-BCD and AAR-BCD that would
make them uniformly better than the alternatives.
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