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ABSTRACT

The Casimir Effect is a physical manifestation of quantum fluctuations of the elec-

tromagnetic vacuum. When two metal plates are placed closely together, typically

much less than a micron, the long wavelength modes between them are frozen out,

giving rise to a net attractive force between the plates, scaling as d−4 even when

they are not electrically charged. Additionally, the lower density of electromagnetic

modes inside the cavity compared to outside is thought to result in a “negative energy

density,” however this has never been proven experimentally. Due to the small scale

of this effect, we use micro-electromechanical systems (MEMS) to investigate the

forces and energies which arise between these conductive surfaces. This dissertation

presents measurements of the Casimir force using a modified commercial accelerome-

ter as well as a novel chip-scale system for Casimir energy detection using a thin-film
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superconductor in a tunable nano-cavity.
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Chapter 1

Introduction

1.1 The Casimir Effect

The Casimir Effect is named after the Dutch physicist Hendrik Casimir, who, along

with with fellow researcher Dirk Polder, developed a theory for considering the forces

between polarizable, neutral atoms. Building off of the London-van der Waals model,

Casimir and Polder considered the effect of retardation on the energy of interaction

between the atoms—that is, considering the interaction to occur no faster than the

speed of light [Casimir and Polder, 1948]. The form of the expression they derived

in 1947 was, in their own words, “very simple” and suggested for this reason it could

be derived from “more elementary considerations.” The same year, Casimir wrote a

paper on this interaction between not just two atoms, but two neutral, conducting

plates [Casimir, 1948]. The force of attraction he calculated to be:

F =
~cπ2A

240d4
(1.1)

Where ~ is Planck’s reduced constant, c is the speed of light, A is the area of the

plates, and d is the separation.

According to most accounts, Casimir then had a conversation with Niels Bohr, who

suggested this expression could be derived from considering “zero-point energy”—an

importantly non-zero quantity of ground-state energy in the vacuum [Weisskopf,
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1935]. According to Casimir, Bohr had an ingenious way of making “fairly precise

qualitative statements about what quantum mechanics would predict without really

doing much mathematics” [Kuhn et al., 1963]. What Bohr suggested was concep-

tually simpler than the retarded dispersion forces laid out by Polder and Casimir,

but implied an even more extraordinary physical picture. Much like two ships in the

water, Bohr pictured the two conducting surfaces as obstacles interacting with fluc-

tuations of the electromagnetic vacuum. Just like the sea, spacetime also has random

waves of various amplitudes and wavelengths constantly propagating and interfering

with each other. This idea is sometimes referred to as a “quantum foam” [Wheeler,

1955]. In this ocean analogy, the presence of the two ships produces boundary condi-

tions on the random water waves. Because of this, over time, waves that are longer

in length than the separation of the ships will be damped out, leaving a subset of

shorter wavelengths in between. Outside of the ships however, no such boundary

conditions are present and the longer waves still exist. Due to this difference in total

energy density, the ships will feel a slight force pushing them together, which is indeed

a real effect reported by mariners [Boersma, 1996]. What Bohr was suggesting was

that this same phenomenon occurs with conducting surfaces and virtual particles in

the electromagnetic vacuum. Sure enough, if one considers the difference in energy

between the perfectly conducting plates (which only allow a subset of electromag-

netic waves in between them) compared to the energy of the empty vacuum, one

ends up deriving the same result as Casimir. It is important to note that although

the Casimir Effect has been observed, it is not necessarily proof that these virtual

particles exist, as one can derive the same result using Casimir’s original dispersion

force interpretation [Jaffe, 2005].
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1.2 Casimir cavities and negative energy

The implications of the virtual particle interpretation of the Casimir Effect are in-

teresting to say the least. Essentially, the physical picture in this case is a region

of space between the conducting plates which has an energy less than that of the

completely empty vacuum surrounding it. In other words, a Casimir cavity can have

arbitrarily negative energy density. The concept of “negative energy” is very abstract,

and while it can be described theoretically, it is difficult to imagine manifested in the

real world. That being said, on paper, negative energy can allow for some fantastical

physical outcomes, such as faster than light travel. Stephen Hawking has posited that

negative energy could allow for stabilized wormholes, a requirement for instantaneous

transportation between two points in space [Hawking, 1992]. Another potential appli-

cation of negative energy is the warp drive, or Alcubierre drive; a propulsion system

in which spacetime is contracted in front of a spacecraft and expanded behind it,

leading to superluminal travel [Alcubierre, 1994].

Whether or not Casimir cavities can make science fiction a reality, it is evident that

an accurate measurement of what goes on energetically inside a Casimir cavity could

be a key to better understanding the physics of the vacuum. In fact, for the last few

decades, one of the greatest unsolved mysteries in physics has been determining the

magnitude of the Cosmological Constant–a value which describes the energy density

of the vacuum. Current quantum field theory arguments estimate this constant to be

up to 120 orders of magnitude larger than what is observed, leading to some dubbing

it “the vacuum catasrophe” [Adler et al., 1995].

One experiment proposed to investigate the energy inside a Casimir cavity involves

using a superconductor. Superconductivity is a fascinating state of matter that some
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materials reach when cooled below a certain critical temperature. In this supercon-

ducting phase, electrons can move through the crystal lattice of the material with

exactly zero energy dissipation. This transition happens very abruptly such that the

electrical and optical properties of the material can change by orders of magnitude

over just a few tens of milli-Kelvin change in temperature. This sharp transition can

be used to probe small changes in the environment, and, as discussed further on in

this thesis, perhaps changes in the Casimir energy.

1.3 Casimir Effect in MEMS

Other than confirming or denying theory, Casimir Effect research has practical ap-

plications in engineering at the nanoscale. Micro-electromechanical systems (MEMS)

are a wide class of devices which couple mechanical motion and electrostatics at mi-

cro (and also nano) scales. These devices either transduce a physical change in the

environment into a measurable signal or, inversely, turn an input electrical signal into

a physical change of the device and/or its surroundings (usually mechanical actuation

of some kind). According to equation 1.1, the Casimir force between two plates of

area 100 µm2 at a distance of 100 nm is 13 nN. Considering typical spring constants in

MEMS of roughly 1 N m−1, that corresponds to 13 nm of displacement. These types

of forces become relevant with closely spaced objects and therefore understanding the

role of this effect is necessary in MEMS design.

While engineers may be interested in avoiding the Casimir force in their designs,

experimental physicists typically use MEMS for careful measurements of the Casimir

force. Because of their mechanical stability and robustness, MEMS sensors can mea-

sure extremely small signals either electrically or optically. For example, an atomic

force microscope (AFM) makes use of a MEMS cantilever with a nanoscale tip to inter-
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act with surfaces over a very small area. By measuring the deflection of a laser beam

off the back of the cantilever, one can resolve nanometer displacements and atomic

scale forces. Much experimental work has made use of AFM cantilevers for Casimir

force measurements [Mohideen and Roy, 1998,Roy and Mohideen, 1999,Van Zwol and

Palasantzas, 2010, Garrett et al., 2018]. Other work using MEMS has made use of

torsional resonators [Chan et al., 2001a,Chan et al., 2001b,Decca et al., 2003]. MEMS

devices that can integrate both Casimir surfaces onto a single chip [Zou et al., 2013]

are less prone to low-frequency noise and thermal drift due to smaller components

and higher mechanical resonant modes, but come at the cost of reduced interaction

area and limited separation ranges.

But what if the Casimir Effect could be leveraged as a practical, controllable en-

gineering tool within a MEMS system? Electrostatic MEMS sensors use a changing

capacitance or electrostatic signal of some kind as a measurement, which will scale as

one over separation or one over separation squared. We have seen that the Casimir

force scales as one over separation to the fourth power. This extraordinary scaling

with distance could be used to enhance the sensitivity of MEMS. For example, it

has been suggested that a MEMS oscillator parametrically driven by the Casimir

force would exhibit a gain that scales as one over the Casimir cavity size to the

fifth power or as applied direct current (DC) voltage to the tenth power [Imboden

et al., 2014b]. In addition to providing a means of investigating the Casimir Effect

itself, a system such as this could be useful for temperature sensing, alternate current

(AC) voltage measurements, low-impedance current measurements, or probing any

measurand which could be coupled into a physical change in size of the Casimir cavity.

The MEMS industry has been incredibly successful mainly due the parallel nature
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of device fabrication. Most MEMS are built using the same processes used in the

computer chip industry, so they benefit from the same technological improvements in

cost per device and minimum feature size that has been driving the semiconductor in-

dustry over the last few decades [Bohr and Young, 2017]. As a result, MEMS sensors

can be built reliably, cheaply and in large numbers. This rapid advancement of com-

mercial MEMS has resulted in devices with truly remarkable performance. Current

state-of-the-art low g MEMS accelerometers are capable of sensing sub mg acceler-

ations with noise densities of around 0.1 mg/Hz1/2 or less [Tez et al., 2015, Sabato

et al., 2017, Analog Devices Data Sheet, 2018]. Integrating the Casimir effect into

mature, high performance MEMS systems could result in a class of novel quantum-

enabled sensing devices.
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Chapter 2

Theory

2.1 Basic derivation of the Casimir Effect

One of the many interesting and counter-intuitive results of quantum theory is that

the ground-state energy, or “zero-point energy” of an empty electromagnetic field is

not zero, but rather [Milonni, 1994]:

〈E〉 =
1

2

∑
k

~ωk (2.1)

As seen by the expression in equation 2.1, this energy is an infinite sum of inde-

pendent harmonic oscillators with frequency ωk. The Casimir force can be derived by

considering the difference between the ground-state energy of the electromagnetic field

and the ground-state energy of only the field inside the cavity. A good illustration as

to why this difference is not simply zero can be seen in figure 2·1. In this schematic,

we see there is a series of standing waves inside the cavity due the boundary con-

ditions imposed by the perfectly conducting plates (recall that Maxwell’s equations

state that the transverse electric field must equal zero on the surface of a conductor).

Outside of the cavity, however, a continuum of modes are able to exist. This inherent

difference in energy density is what causes a net pressure, pushing the two plates

together.

For the following derivation (adapted from [Szulc, 2012]), we consider a 3D box

of side length L and an additional plate of dimension L × L at a distance R (R� L)
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Figure 2·1: An intuitive picture of the Casimir Effect [Kingsbury,
2009]

.

from the XY plane:

Figure 2·2: Diagram of a simple Casimir cavity. The presence of the
inner wall (shown in purple) changes the total energy inside the cube.

We are interested in determining the difference of the zero-point energies of the
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box without the plate, and the cube with the plate, that is:

∆E = ER + EL−R − EL (2.2)

Where ER denotes the energy of the region bounded between the XY axis and

the plate, EL denotes the energy of the whole box, and EL−R denotes the energy of

the region in the box, but outside of the plate. We assume all surfaces are perfect

conductors. Because of the boundary conditions imposed by the walls, the solution of

the wave equation is a series of standing waves whose wavevectors, k = kxx̂+kyŷ+kz ẑ

are given by:

kx =
nxπ

L
, ky =

nyπ

L
, kz =

nzπ

R
(2.3)

Where nx, ny, nz are positive integers. As introduced in equation 2.1, in the ground

state, each of these modes contributes an energy of ~ω/2. Recalling that ω = ck, we

can therefore express the total energy in any region of the box as:

〈E〉 =
1

2
~c
∑√

k2
x + k2

y + k2
z (2.4)

To solve equation 2.2, we want to determine equation 2.4 in each region. Because

R � L, the large regions can be approximated as integrals:

EL =
2L3

π3

∫ ∫ ∞∫
0

1

2
~c
√
k2
x + k2

y + k2
zdkxdkydkz (2.5)

EL−R =
2L2(L−R)

π3

∫ ∫ ∞∫
0

1

2
~c
√
k2
x + k2

y + k2
zdkxdkydkz (2.6)

ER =
∞∑

nz=0

2θnz

L2

π2

∫ ∞∫
0

1

2
~c
√
k2
x + k2

y +
(nzπ
R

)2

dkxdky (2.7)
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In the integrals, a change of variables has been made in order to integrate over

kx, ky, kz rather than nx, ny, nz. Note that the small region in equation 2.7 still retains

the summation in the Z direction. The variable θnz = 1/2 for nz = 0 and θnz = 1 for

nz > 0. This accounts for the number of polarization states of k (i.e. there exist two

independent modes for each positive integer nz).

Looking at these equations, it is clear that they diverge to infinity. In reality how-

ever, a conductor should not reflect up to arbitrarily high frequencies. We can use

the concept of the “plasma frequency” as a physical argument for this upper limit.

The plasma frequency is the cut-off at which free electrons in the conductor are no

longer able to keep up with the incident optical field. Above this frequency, light will

penetrate the conductor and not be reflected [Kittel, 1953]. From the Drude model

for metals, the plasma frequency, ωp, is can be written as:

ωp =

√
Ne2

ε0m
(2.8)

Where N is the number density of electrons, e is the electron charge, and m is

the electron mass. For this derivation, the expression for the plasma frequency is not

important, however it is worth mentioning to justify why we expect an upper limit

in these integrations. For simplicity, we multiply everything by a cut-off function f

with the following properties:

f(k/kp)→ 1, for k � kp (2.9)

f(k/kp)→ 0, for k � kp (2.10)

Here, k =
√
k2
x + k2

y + k2
z is the modulus of the wave vector, and kc is just the
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modulus of the wave vector corresponding to the plasma frequency (from wp = ckp).

Substituting equations 2.5, 2.5, and 2.5 into equation 2.2, we get:

∆E =
~cL2

π2

 ∞∑
nz=0

θnzg
(nzπ
R

)
− R

π

∞∫
0

g(kz)dkz

 (2.11)

Where we have defined the function g to simplify things:

g(ξ) =

∫ ∞∫
0

f

(
k

kp

)√
k2
x + k2

y + ξ2dkxdky (2.12)

Switching to cylindrical coordinates further simplifies the expression for g(kz).

Here, κ =
√
k2
x + k2

y is the inverse of the radial coordinate, so g(kz) becomes:

g(kz) =
π

2

∞∫
0

√
κ2 + k2

zf

(√
κ2 + k2

z

kp

)
κdκ (2.13)

The angular coordinate has been integrated from 0 to π/2, resulting in the leading

factor of equation 2.13. Now, a variable α is introduced where κ = απ/R. Therefore,

κdκ becomes (π/R)αdα. We also recall that kz = nzπ/R. Now we can write:

g(nz) =
π

2

∞∫
0

√
π2

R2
(n2

z + α2)f


√

π2

R2 (n2
z + α2)

kp

 π

R
αdα (2.14)

which simplifies to

g(nz) =
π3

2R2

∞∫
0

√
n2
z + α2f

(
π
√
n2
z + α2

Rkp

)
αdα (2.15)

One more change of variables to ω = n2
z + α2, dω = 2αdα gives:
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g(nz) =
π3

4R2

∞∫
n2
z

√
ωf

(
π
√
ω

Rkp

)
dω (2.16)

Defining the integral in equation 2.16 as F (nz), we can re-write equation 2.11 as:

∆E =
π2~cL2

4R3

 ∞∑
nz=0

θnzF (nz)−
∞∫

0

F (nz)dnz

 (2.17)

This term in square brackets is called the “Euler-Maclaurin formula” [Stoer and

Bulirsch, 1993] and can be approximated as:

∞∑
n=0

θnF (n)−
∞∫

0

F (n)dn = − 1

6× 2!
F ′(0) +

1

30× 4!
F ′′′(0)− ... (2.18)

Evaluating these terms, F ′(0) = 0 and F ′′′(0) = −4. Thus, equation 2.18 is

approximately equal to −4/(30×4!) = −1/180. Adding this into equation 2.17 gives:

∆E = −~cπ2L2

720R3
(2.19)

Here, L2 is just equal to the area, A, and the force due to this energy is −d∆E
dR

which is equal to

Fcas =
~cπ2A

240R4
(2.20)

as introduced in section 1.1.

2.2 Non-idealities in the Casimir force

Equation 2.20 is only for ideal conditions: absolute zero temperature and perfectly

flat, smooth infinitely conducting surfaces. Experimentally, however, these conditions

are never realized. First of all, our Casimir force experiment is done at room temper-

ature. Also, the metals used (Au and Ag) have different plasma frequencies and thus
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an adjustment of the calculated Casimir force must be made. Finally, the two surfaces

likely will not be perfectly smooth and planar. Surface roughness is always present

on any evaporated metal surface and will strongly affect surface forces at separations

comparable to the scale of that roughness. Also, aligning two planes to be perfectly

parallel is quite challenging. A much simpler set-up involves bringing one planar and

one spherical surface into close separation. In this arrangement, the orientation of

the plane relative to the sphere is unimportant, as the interaction area will be the

same at any given separation, d. Each of these non-idealities will be expanded upon

in the following sections.

2.2.1 Sphere-plate geometry and the Proximity Force Approximation

Figure 2·3: The proximity force approximation for a sphere-plate
geometry.

To calculate the Casimir Energy (and force) in a sphere-plate configuration, the

spherical surface can be approximated as many small parallel rings at different separa-
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tions from the plate. This is known as the Derjaguin Approximation or the Proximity

Force Approximation (PFA) and is a commonly used method in much surface energy

and tribology work [Derjaguin, 1934]. The PFA assumes a geometry like that depicted

in figure 2·3 in which the spherical surface is broken up into many small parallel sur-

faces. In the PFA, it is assumed that the separation, d is much less than the radius

of curvature of the surfaces (R). In this limit, the interaction energy between the

non-planar surfaces is approximated by summing the energetic contribution per unit

area from each set of parallel surfaces and then integrated over the area, as expressed

in equation 2.21.

E =

∫
S

W (d)dA (2.21)

Here, W is the interaction energy per unit area. It can be shown [Israelachvili,

2011] that for two spherical surfaces with respective radii R1 and R2, which interact

with any force law that scales with distance, equation 2.21 leads to the an approxi-

mated force:

F (d)sphere-sphere = 2π
R1R2

R1 +R2

W (d) (2.22)

If one of these radii of curvature is infinite (as in the case of a plane), equation

2.22 becomes simply:

F (d)sphere-plate = 2πRW (d) (2.23)

The energy per unit area is just equation 2.19 without the area term, so the

Casimir force for a sphere-plate geometry (with d� R) is then:

F 0
C(d) =

~cπ3R

360d3
(2.24)



15

2.2.2 Lifshitz Theory and optical properties of materials

As mentioned in the introductory section 1.1, Casimir and Polder’s first theoretical

findings arose from considering the effects of retardation on van der Waals forces.

Casimir then used this interpretation to derive the well-known Casimir force equa-

tion between two conducting surfaces. Some years later, Evgeny Lifshitz came up

with a generalized theory of macroscopic forces which arise between solid bodies due

to pairs of charges in each material [Lifshitz, 1956]. Unlike the previous London-van

der Waals theory, however, Lifshitz considered the effect of the neighboring molecules

in each material. For example, a conducting material which has a lot of free electrons

may screen individual point charges more than an insulating material. In the frame-

work of the Lifshitz Theory, the surface interactions which arise from fluctuations

of molecules are lumped into macroscopic properties of the materials: the dielectric

permittivity and dynamic atomic polarizability. It turns out that by using the Lif-

shitz Theory in the limit where the two bodies are separated by a distance that is

large compared to the absorption wavelength of the material, the Casimir force can

be reproduced [Klimchitskaya et al., 2009].

There is much theoretical work that has been done developing realistic models for

the Casimir energy and force based off of the Lifshitz Theory [Gies and Klingmüller,

2006, Bulgac et al., 2006, Emig et al., 2007, Rahi et al., 2009, Klimchitskaya et al.,

2009]. In the project discussed in chapter 3, a relatively simple model is consid-

ered [Geyer et al., 2002] which accounts for realistic physical effects such as non-zero

temperature and the finite conductivity of both metallic surfaces (in our case, Au and

Ag). In this model, shown in equation 2.25, a perturbation expansion in powers of

the relative penetration depths of electromagnetic oscillations into each metal (using

a plasma model) provides a corrected equation for the Casimir force given as:
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F P
C (d) = F 0

C

[
1 +

45ζ(3)

π3t3
− 1

t4
− 2

δ

d

(
2− 45ζ(3)

π3t3
+

2

t4

)

+
75

5

δ2

d2
− 320

7

δ3

d3

(
1− 2π2

105
(1− 3κ)

)
+

400

3

δ4

d4

(
1− 326π2

3675
(1− 3κ)

)]
(2.25)

Here, F 0
C is the Casimir force for a sphere-plate geometry given by equation 2.24,

ζ is the Reimann Zeta function, t is a dimensionless temperature parameter given by

t = (~c)(2kBTd)−1, and δ and κ are optical parameters given by:

δ ≡ δAu + δAg

2
(2.26)

κ ≡ δAu + δAg

(δAu + δAg)2 (2.27)

Where δAu and δAg are the effective penetration depths of the electromagnetic

oscillations into each metal film given by ~c/ωp in which we have used ωp = 9 eV

for Au and ωp = 8.6 eV for Ag [Rioux et al., 2014]. Equation 2.27 is a limiting case

of this theory in which 1/t � 1, which is a valid approximation at our operating

temperature (T = 301.15 K) and d < 1 µm.

Finally, a second order correction for surface roughness is included [Mohideen and

Roy, 1998,Maradudin and Mazur, 1980]:

FR
C (d) = F P

C (d)

[
1 + 6

(
AR
d

)2
]

(2.28)

Where AR is the stochastic RMS roughness amplitude of both surfaces. In the

experiment discussed in chapter 3, the Au plate and Ag spherical surfaces are char-

acterized with AFM. The surface roughness values were found to be AR,plate = 2 nm

and AR,sphere = 8 nm (appendix A.1). The total RMS roughness used in equation 2.28
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is AR = (A2
R,sphere +A2

R,plate)
1/2 = 8.25 nm. Equation 2.28 is the final corrected model

used to compare data with the ideal case (equation 2.24).

2.3 Casimir free energy

As discussed in section 1.2, a method of detecting the Casimir energy is by looking at

the transition of a superconducting material inside a Casimir cavity. It is theorized

that the Casimir energy should modify the condensation energy of the material, shift-

ing the critical field or temperature at which it becomes superconducting [Bimonte

et al., 2005c]. The physical mechanism behind this argument has to do with the

abrupt change in the optical properties of a superconductor as it transitions. Because

the Casimir energy depends on the reflectivity of the surfaces, when the metal be-

comes superconducting, there should be a sharp change in the Casimir energy (and

force). Conversely, a variation of the size of the Casimir cavity would theoretically

change the free energy of the system, thus altering the critical field.

2.3.1 Type I superconductors

Superconductivity is a phase that occurs in certain materials at low temperatures

(typically < 10 K). Physically speaking, a state of zero resistivity is attained in the

material, where currents can flow with no loss of energy. The Nobel Prize in Physics

was awarded in 1972 to John Bardeen, Leon Cooper, and John Robert Schrieffer

whose eponymous “BCS Theory” explained the physical mechanism for this effect as

a phonon mediated pairing of electrons within the material. Alone, only two electrons

(Fermions) can occupy the same state, however in these pairs, they act like Bosons,

and a large number of pairs can all be in the same quantum state. This is what

occurs in a superconductor and what allows for electron probability currents to flow
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Figure 2·4: Plot of critical field for a type I superconductor.

throughout the lattice with exactly zero energy loss [Kittel, 1953].

As a result of these dissipationless currents, all external magnetic fields are expelled

from the body of the superconductor (this is known as the Meissner effect). If the ex-

ternal field is large enough, however, the superconducting phase breaks down and the

material goes back to its normal properties (in type II superconductors, the material

first goes through an intermediate superconducting phase called the vortex state, but

here we will only focus on type I). The field strength at which this occurs is known

as the critical field (Hc) and it is a function of temperature, with a parabolic relation

given by Hc(T ) = H0 (1− T/Tc)2 and plotted in figure 2·4.

For a type I superconducting film, we can write the condensation energy (εcond)

which is equal to the difference in free energy between the normal state and that of

condensed state [Poole, 2000]:

εcond =
V

8π

(
Hc(T )

ρ

)2

(2.29)
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Here, V is volume of the sample, ρ is a coefficient which accounts for thin film

effects, and Hc is the critical magnetic field which destroys superconductivity. Ac-

cording to Bimonte et al., when this film now makes up one half of a Casimir cavity

(the other half being a non-SC metal), the condensation energy is shifted by another

term, ∆ECasimir, which is the difference in the Casimir free energy of the cavity in

the normal state (En
Casimir) and the superconducting state (Es

Casimir) [Bimonte et al.,

2005c]:

∆ECasimir = En
Casimir − Es

Casimir (2.30)

We now have an expression which relates the critical field in a cavity (a measurable

quantity) with a shift in Casimir energy:

εcond + ∆ECasimir =
V

8π

(
Hcav
C (T )

ρ

)2

(2.31)

Although this equation conveys the basic idea behind this detection scheme, it is

experimentally more straightforward to measure a shift in the critical temperature,

Tc, instead of the critical field. Theoretically however, as explained further on, the

expected shift is less easy to predict. In the experimental work presented, a change

in Tc is measured, although future work may require looking at both applied fields

and changing temperatures.

2.3.2 Shift in Tc

Conceptually, the presence of the superconductor results in a positive ∆ECasimir for

the reason that optically a superconductor more closely resembles an ideal mirror

than that same material would in its normal state. Some calculations from [Bimonte
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Figure 2·5: Simulation of the expected shift of the Tc vs. applied
field curve for a thin Al film of thickness 14 nm. Upper curve is the Al
film alone, and the lower curve is for a cavity consisting of the Al film
separated from a 100 nm thick Au layer by 6 nm. From [Bimonte et al.,
2008].

et al., 2008] indicate what one might expect in terms of the magnitude of this shift,

plotted in figure 2·5.

In figure 2·5, the y axis is a reduced value, δt, which is equal to 1−T/T 0
c , T being

the temperature and T 0
c being the critical temperature at zero-field. These two curves

show a couple of things: 1) the order of magnitude shift of critical temperature is

tens of µK for moderate applied fields and 2) in the low-field limit, there currently

is no theory for what the shift in Tc should be (indicated by the dashed line in the

lower curve of figure 2·5). Bimonte et al. explain that in this regime, the Casimir

free energy is on the order of the condensation energy, and the perturbative approach

used in these calculations is no longer valid [Bimonte et al., 2008]. Despite this lack

of theory, the magnitude of the effect should be larger when this is the case–i.e., the

larger the Casimir energy term is compared to the condensation energy, the larger a
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shift in critical field or critical temperature we should expect. This can be seen by

using equations 2.29 and 2.31 to express a relative change in critical field, δHc/Hc:

δHc

Hc

=
Hcav
c −Hc

Hc

(2.32)

δHc

Hc

=

√
∆ECasimir

εcond

+ 1− 1 (2.33)

We can see from equation 2.33 that the larger the Casimir free energy is compared

to the condensation energy, the larger the expected shift.

2.4 MEMS equations

2.4.1 Simple harmonic oscillator

Figure 2·6: Diagram of a simple mass spring damper system.

The simple harmonic oscillator, or forced-damped harmonic oscillator, is an in-

valuable model for understanding many MEMS systems (not to mention countless

other physical systems!). The classic picture of this model is a mass connected to a

spring and a damper, as pictured in figure 2·6. The spring follows Hooke’s law, such

that it provides a restoring force proportional to its displacement from equilibrium

by a constant, k. The damper also provides a force opposite to the motion of the

mass, and linearly proportional to the velocity by constant, c. We can then write the

equation of motion as:
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Fext(t) = mẍ+ cẋ+ kx (2.34)

Where ẋ is the derivative of the position with respect to time and ẍ is the second

derivative of the position with respect to time. It is convenient to divide through by

the mass and re-express equation 2.34 as:

G(t) = ẍ+ 2λẋ+ ω2
0x (2.35)

Where G(t) = Fext

m
, λ = c

2m
, and ω0 =

√
k
m

. Solving this differential equation is

not important here, however a few points will be made. A key system parameter is ω0,

which, in units of time−1, is the “natural frequency” of the system. All of the MEMS

systems discussed in this dissertation are “under-damped”–that is, the damping force

(cẋ) is small compared to the inertial force (mẍ). In under-damped systems, the

natural frequency is essentially the frequency at which the system will oscillate with

the largest amplitude. One way of visualizing this is by driving G(t) = G0 cos(2πft)

at a range of frequencies and plotting the amplitude of the resulting oscillations, |x(t)|.

Some real data for this type of system is plotted in figure 2·7. In this mini-experiment,

we drive a poly-silicon mass and spring system in air (so moderate damping is present)

across its natural resonance frequency of ∼ 3 kHz. For driving frequencies close to this

value, the amplitude is larger by about 3X. Another way that the natural frequency

shows up in experiment is in the response to a step input.

If one were to suddenly apply a non-zero force to the mass shown in figure 2·6,

the mass would move towards a new equilibrium position, overshoot it, come back

undershoot it, and so on until it finally settled at this new equilibrium point. This

motion is referred to as a “step-and-settle” response and it seen in every under-

damped system. The frequency at which it oscillates about the equilibrium point

will be very close to the natural frequency (in the limit of zero damping, it will be
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Figure 2·7: Resonant response of a linear, under-damped MEMS sys-
tem. The natural frequency of this system is around 3 kHz.

equal to the natural frequency) and the time it takes to ring down to 1/e of its initial

amplitude is equal to 1/λ. Shown in figure 2·8 is the response of an oscillator whose

equilibrium point is x = 0 but starts at some point x(t = 0) 6= 0. The transient

response (exponential decay) in this case is identical to that of a step-and-settle

response.

2.4.2 Accelerometer basics

The operating principle of a MEMS accelerometer is simple, and closely related to that

of the simple harmonic oscillator shown previously. In an accelerometer, a moveable

structure (known as the proof-mass) forms a capacitor with a fixed structure (these

are both typically doped poly-silicon). The proof-mass is tethered by some compliant

springs to the substrate. Under an applied acceleration, the proof-mass will move,

changing the capacitance, which is sensed electrically with on-board integrated cir-

cuitry. This type of device is shown in figure 2·9. For some applications, like tilt
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Figure 2·8: Ring down of an under-damped harmonic oscillator. The
decay envelope is equal to e−λt.

sensing, we are not concerned with the dynamic response of the system–some applied

tilt will apply a gravitational force to the proof-mass and it will move to a new po-

sition, and the capacitance reading will be different. Other applications, however,

like vibration sensing require the proof-mass to be able to move along with higher

frequency accelerations applied to the device. In this case, the proof-mass will be able

to resolve these high frequencies up to its natural frequency. Beyond this frequency,

as we can see in figure 2·7, the amplitude quickly drops off and the sensor can no

longer respond.

2.4.3 Non-linear oscillators and the Duffing equation

Equation 2.34, though very helpful in understanding myriad physical phenomena, is

a greatly simplified model and may not capture all that may be happening in a real

system. One assumption in this model, is that the spring constant, k, is linear with

displacement, x. This linearity, however, often holds only for small displacements.

What is often observed in real systems is that the restoring spring force may actually

vary non-linearly for large displacements due to various reasons [Elshurafa et al.,

2011,Liu, 2012]. This is known as “spring hardening” or “spring softening” which is
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Figure 2·9: Working principle of an accelerometer. At its most basic
form, a MEMS accelerometer is just a capacitor on a spring. The proof-
mass (of mass m) will move under an applied acceleration. It will come
to equilibrium when the external force is balanced by an equal and
opposite force due to the spring (spring constant k). The changing
position is sensed electrically by measuring the capacitance, C. When
driven dynamically, a damping force proportional to the velocity by c
is also present.

shown in the plot of restoring force vs. displacement in figure 2·10.

A system in which spring softening can occur is electrostatically driven MEMS.

In a device like the one shown in figure 2·9, the mass can be driven with a voltage

applied between the two plates. In this case, the mass will feel an electrostatic force

that is proportional to V 2/d where d is the separation between the plates. Therefore,

as the amplitude of oscillation gets larger, the movable plate will get closer and closer

to the fixed plate, increasing the electrostatic force. This will result in a non-linear

and asymmetric effective spring constant. Because of this increased pulling force on

one side of the cycle, the mass will feel as if the restoring spring is getting softer on

that side. This spring non-linearity is shown qualitatively by the thin dashed line in

figure 2·10.

The spring hardening effect often occurs due to geometry. Many MEMS designs

involve resonators that are moving transverse to their orientation (imagine a can-

tilever fixed on one end like a diving board or a doubly clamped beam). As the
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Figure 2·10: Linear and non-linear spring constants. The solid line is
a linear spring with an unchanging slope. The thick dotted line depicts
spring hardening behavior, symmetric about equilibrium. The thin
dashed line shows what spring softening behavior due to a one-sided
electrostatic driving force may look like.
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beam deflects downwards in the transverse direction, an axial strain along its length

is also introduced, like a guitar string being tightened. This stiffens the beam and

will increase the spring constant and also the resonant frequency [Liu, 2012]. Spring

hardening of this nature will occur in a symmetric manner about zero displacement,

resulting in a spring constant profile like that shown in the thick dotted line in figure

2·10.

The Duffing oscillator

A straightforward way to capture non-linear dynamics due to changing spring con-

stants is to modify the equation of motion (equation 2.34). Instead of a linear kx

term, the Duffing model includes both a linear term as well as a cubic term:

Fext(t) = mẍ+ cẋ+ k0x+ k1x
3 (2.36)

A positive k1 term is meant to approximate deviations from the typical linear

slope of k = dF
dx

at large x like those seen in geometry induced spring hardening. A

negative value of k1 would then result in spring softening (but unlike the electrostatic

spring softening described above, this would be symmetric). Solving this differential

equation is not important, but we can get a good idea of the dynamic behavior of

this model by examining some plots in figure 2·11.

The plots in figure 2·11 are meant to qualitatively show how the Duffing model

behaves for a given input parameter. These plots are produced by solving equation

2.36 numerically with a Euler approximation method. The parameters used in this

model are: Fext = A0 cos(2πft) where A0 = 5/8, m = 1, c = 0.01, k0 = 4π2, and k1

is varied between -25 and 25 (figure 2·11 on the left side). Note that for k1 = 0, we
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Figure 2·11: Duffing oscillator resonant responses. Amplitude re-
sponse (top row) and phase response (bottom row) are shown for vary-
ing non-linear spring constant k1 (left side) and for varying drive am-
plitude, A0 (right side).

obtain the typical resonant response of the SHO. On the right side of figure 2·11 we

have set k1 = 5.

As explained previously, negative values of k1 result in spring softening, which shift

the resonant frequency to lower frequencies, while positive k1 values shift the fre-

quency upwards. The resonant curves in the case of large k1 are wider and display

more asymmetry. Instead of a linear oscillator, which climbs up one side towards its

resonant peak and then back down the other side, Duffing oscillators will climb up

one side then abruptly drop down to near zero amplitude. This jump represents an
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instability in the solution for equation 2.36 where there exist multiple solutions. In

all the plots in figure 2·11, the frequency is swept from low to high. If one were to

instead sweep from high to low frequencies, the discontinuous jump would occur at a

different frequency.

The Duffing oscillator presented here, specifically one with spring hardening behavior,

is a very good model of the doubly clamped plate system we use to detect the Casimir

energy in chapter 4. We will use arguments from the results of this model versus what

we observe in experiment to infer about what may be going on mechanically in our

system at large driving amplitudes.
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Chapter 3

Casimir Force Measurement

3.1 Project outline

In this chapter, the Casimir force between two spherical and planar metal surfaces

is measured using a modified commercial MEMS accelerometer [Stange et al., 2019].

The operating principle of the device, the modification, and the measurement, are all

discussed in the following sections.

3.2 MEMS accelerometers

Accelerometers are a part of our everyday lives, from sensing the orientation of smart-

phones (low g) to detecting collisions in automobiles in order to deploy airbags (high

g). In this project, a two-axis low g MEMS accelerometer from Analog Devices

(ADXL203) is used. Its proof-mass typically weighs about 1 µg and has a spring con-

stant of 1 N m−1 so the accelerometer is therefore able to resolve approximately 1 pN

of force. These platforms are thus well suited for Casimir force measurements. The

goal of this project is to re-purpose the commercial MEMS accelerometer to perform

a sensitive Casimir force measurement in ambient conditions. The main advantage

of a modified accelerometer over other types of measurement methods is the pre-

optimized design of the MEMS and the supporting integrated circuitry simplify the

device fabrication and apparatus immensely. Compared to AFM, the size and cost is

superior by orders of magnitude and the linear transduction of an applied force to an
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electronic output signal is a built-in feature of the accelerometer.

Furthermore, the ability to measure the Casimir Effect with commercial MEMS ac-

celerometers is an exciting prospect because it indicates that this effect could be used

as a practical, controllable engineering tool within a MEMS system. Successfully

integrating a Casimir cavity into the well-developed, scalable technology of MEMS

accelerometers is an important step in realizing Casimir-enabled sensing devices as a

practical, room temperature quantum metrology tool.

3.3 Micro-gluing

Because the modification involves bonding objects to a post-release MEMS device,

great care must be taken in keeping mechanical forces exerted on the freely moving

proof-mass to a minimum. The technique presented here allows us to glue micro-

spheres directly to the proof-mass of the accelerometer without compromising the

functionality of the MEMS.

Outlined in figure 3·1b and 3·1d is our process which involves depositing ∼ pL vol-

ume droplets of UV curable epoxy using a micro-pipette attached to a piezoelectric

actuator onto the proof-mass then dropping a microsphere onto the droplet using a

probe tip (contact forces are sufficient to pick up the microsphere). The pipette or

probe tip can be moved in plane with a micromanipulator while the Z position is

controlled with nanometer precision using the piezoelectric actuator. An advantage

of assembling onto a post-release MEMS accelerometer is that we can sense when

contact with the proof-mass occurs by actively monitoring the noise on the outputs

of the accelerometer (see figure 3·1b inset). This feedback is what allows us to deposit

droplets gently onto the proof-mass without forcing liquid into the release holes or



32

Figure 3·1: a). Top-view optical image of the ADXL203 die inside
the package with the lid removed. The octagonal proof-mass can be
seen in the center. Highlighted red box indicates the area of the proof-
mass shown in the scanning electron microscope (SEM) image in c. b).
Schematic of feedback-assisted attachment of microspheres onto the
proof-mass. c). Colorized SEM image of one quadrant of the micro-
electromechanical system (MEMS) with a microsphere glued to the
proof-mass using the micro-gluing technique. The interdigitated sens-
ing electrodes and anchoring springs of the proof-mass can also be seen.
All of the MEMS structures are 4 µm thick. d). Schematic of device as-
sembly steps. e Colorized SEM image of an example of a fully modified
ADXL203 (not the device used in this work).
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breaking the springs. As shown in figure 3·1b.i. the ADXL output is monitored while

a piezoelectric actuator lowers a micro-pipette (30 µm tip diameter) containing UV

curable epoxy. Upon contact, surface forces draw out a few picoliters of epoxy and

the pipette is automatically retracted. In figure 3·1b.ii. the ADXL output monitored

as before while the sphere is lowered into the droplet. Once contact is made, the

epoxy is cured by ultraviolet (UV) exposure.

As can be seen in figure 3·1c, the proof-mass (shown in blue) provides only a few

small areas over which droplets can be placed without interfering with other parts of

the MEMS such as the sensing fingers or the springs. In order to attach larger objects,

we use one or more spheres (Au-coated solid barium titanate glass) as supports for

other objects to be set upon, like legs of a table. Once these “legs” are formed, one

can then attach a wide variety of micro-scale objects providing they don’t interfere

with the MEMS and are able to be picked up and placed gently. For example, it

is possible to place a sub-mm neodymium rare-earth magnet on top of the support

spheres for high resolution gradient magnetometry [Javor, 2018]. For the device pre-

sented here, two 30 µm diameter solid spheres were glued onto the proof-mass as a

platform for the rest of the assembly to be built on top of.

The functional component of the device is a conductive microsphere attached to the

proof-mass of the inertial sensor that forms one-half of the Casimir cavity. Doing this

results in a device that can not only measure accelerations applied to the device body

(as was originally intended) but also forces exerted directly onto the sphere, namely

electrostatic and Casimir forces. The sphere is 55 µm in radius, made up of a hollow

borosilicate glass shell coated with 50 nm of Ag. It has a mass of roughly 0.1 µg. It

was found that Ag-coated hollow spheres had much lower surface roughness than Au-
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coated solid spheres (appendix A.1), so an Ag sphere was used in the Casimir cavity,

while two smaller Au spheres (about 0.5 µg each) were used as supports. It should be

noted that the mass added to the proof-mass does not affect the functionality of the

device at DC. For dynamic measurements, however, the added mass does lower the

overall bandwidth of the device.

3.3.1 Residual electrical potential

One requirement in any Casimir device is the ability to control the electric potential

on the interacting surfaces. This is due to the presence of residual electrostatic forces,

which are caused by trapped charges, adsorbates, and the poly-crystalline nature of

the metallic surfaces [Van Blokland and Overbeek, 1978, Lamoreaux, 1997, Nonnen-

macher et al., 1991]. The latter results in local differences in the work function of

the materials (also known as patch potentials), which sum up to a non-zero effective

potential difference, even when the materials are electrically connected [Speake and

Trenkel, 2003]. This overall residual potential is a common source of error in Casimir

force measurements if not controlled for. To do this, a 500-nm-thick serpentine rib-

bon wire connects the surface of the Ag microsphere to an open bonding pad on the

ceramic package. The conductivity of the wire provides a means of controlling the

voltage on the sphere and its flexible geometry ensures a low spring constant, thus al-

lowing for minimal restriction of the motion of the proof-mass and the restoring force

of the poly-silicon springs. The lithography mask for the nano-ribbon wire (figure

3·1d.i.) is designed with a 2 mm nominal length, 25 µm lateral width, and a 58 µm

radius circle at each end for attachment.

The effect that the wire has on the overall effective spring constant of the system
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(and therefore the force sensitivity) is minimal and easily accounted for as the post-

modification force sensitivity is re-calibrated by using known electrostatic forces be-

tween the sphere and the plate. Additionally, because the electrostatic calibration is

done with the sphere and plate in the same configuration as the Casimir force mea-

surement, any rotational movement of the proof-mass due to torque applied from the

sphere (which is not perfectly centered) will be accounted for. The process of assem-

bling this device is shown schematically in figure 3·1d. After fabricating the wires out

of a 500 nm layer of evaporated Au on oxide with standard lithography and etching

(3·1d.ii.–iv.), the device is assembled (3·1d.v.–viii.) by attaching a microsphere to

one end of the wire, peeling the wire off the substrate with a pipette, then lowering

the Au nano-ribbon wire (with the Ag sphere attached) onto two smaller support

spheres, which have been previously bonded to the ADXL203 proof-mass using the

micro-gluing technique shown in 3·1b.

3.4 Apparatus and measurement

The modified ADXL203 is mounted on an XY translation stage attached to an optical

breadboard. On the same breadboard is another XYZ stage on which the Au-coated

plate (which forms the second half of the Casimir cavity) is mounted. This stage has

its Z position controlled by a Newport Picomotor stick-slip piezoelectric actuator. An

additional Newport NPC3SG piezoelectric stack actuator controls the fine position

of the plate in the X direction. The apparatus is contained inside a polystyrene foam

container along with a 50 Ω power resistor and resistance temperature detector for

PID controlled temperature with a 28 ◦C setpoint. Due to building heaters cycling on

and off, the maximum temperature variations inside the enclosure over long periods

of time are ∼ 12 m◦C; however, for shorter time periods (2 h or less), the temperature

can be held within ∼ 3 m◦C. The entire setup is mounted on an optical breadboard
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Figure 3·2: a. Optical image of the modified ADXL203 used to col-
lect the data presented in this thesis. Also pictured is the external
Au-coated plate mounted on a piezoelectric actuator (out of frame). b.
Schematic of full setup. The sensor X and Y outputs are fed through
an 8-pole low-pass filter with a 3 Hz cutoff to isolate the desired di-
rect current (DC) signal and then read by a 16-bit ADC. The Casimir
force acts along the X direction for this particular device. INSET: Di-
agram of Casimir cavity geometry showing sphere-plate separation (d)
and sphere radius (R). For simplicity, the two support spheres are not
pictured. In reality, the Ag sphere is sitting roughly 30 µm above the
proof-mass. c. Sensor signal data as Vbias is varied at different separa-
tions. Circles are measured data and the solid lines are second order
polynomial fits to the data. d. V0 and γ versus separation. These
values are computed from the minima and curvature of parabolas fit to
data in c.
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and contained in a temperature-controlled enclosure on top of an active vibration

isolation table. A schematic of the device and apparatus can be seen in figure 3·2.

3.4.1 Methods

Electrostatic force calibration and residual potential cancellation

As discussed in section 3.3.1, electrostatic forces are present between the sphere and

plate metal surfaces, even when the two metals are shorted together. By applying a

voltage equal and opposite to the residual potential, this unwanted electrostatic effect

can by minimized. Additionally, by applying known electrostatic forces between the

plate and the sphere, the force sensitivity of the output can be calibrated.

The forces acting on the sphere are assumed to be only due to electrostatic and

Casimir interactions. For the following equations, we define the separation:

d = xp − xs, where xp is the absolute position of the plate and xs is the absolute

position of the sphere. Assuming a simple electrostatic model, we can write:

F (d, Vbias) =
ε0πR(V0 + Vbias)

2

d
+ FCasimir(d) (3.1)

where ε0 is the permittivity of free space, V0 is the residual potential, Vbias is the

applied DC voltage between the sphere and plate, and R is the radius of the sphere.

Equation 3.1 uses the PFA for a sphere-plate geometry, which assumes d � R.

At large separations (typically > 200 nm) and large applied voltages (V0 + Vbias >

100 mV), the Casimir force term is negligible, and the force scales as V 2
bias. The resid-

ual potential can be measured by sweeping the bias voltage and finding the value of

Vbias at which the force is minimized. At this minimum, the applied bias is equal and

opposite to the residual potential.
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The sensor outputs an analog voltage, so to get a measurement in units of force,

a calibration must be performed. Because of the linear response of the device, the

output signal, S, is proportional to the force applied on the proof-mass by a constant,

γ:

F (d, Vbias) = γS(d, Vbias). (3.2)

For large separations and voltages, we can ignore the Casimir term in equation

3.1 and can now write:

S(d, Vbias) =
1

γ

ε0πR (V0 + Vbias)
2

d
. (3.3)

We can then write γ in terms of the second derivative of the signal with respect

to Vbias:

γ =
2πε0R

d

(
∂2S

∂V 2
bias

)−1

(3.4)

From these relations, the residual potential and force sensitivity can be measured

by fitting the raw signal data, S, to the function S = c1V
2

bias + c2Vbias + c3. Using the

returned fitting parameters we can calculate:

V0 =
c2

2c1

(3.5)

γ =
ε0πR

c1d
(3.6)

provided we are in a region where the electrostatic force is dominant over the

Casimir force.
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3.4.2 Measurement calibration

Electrostatic forces are used to measure the residual potential difference, V0, between

the sphere and the plate and to calibrate the force sensitivity, γ, which relates the

sensor output voltage, S, to the applied force according to F = γS. In figure 3·2c

the voltage output in the X direction (SX) is plotted versus potential applied be-

tween the grounded plate and the microsphere (Vbias). This measurement is repeated

over a range of separations between 200 nm and 1 µm where electrostatic forces are

much larger than the Casimir force. The minima of these voltage sweeps indicate the

bias that cancels residual potential between the metal surfaces, and the curvature of

the sweeps give a calibration coefficient between the sensor voltage output and force,

which can then be used for Casimir force measurements (see detailed discussion in

section 3.4.1).

Both the residual potential and the force sensitivity of the device appear to be func-

tions of separation and are approximately linear. Over the full 800 nm scan range, it

is observed that V0 varies by 9 % and γ varies by 20 %, with average values of 0.21 V

and 33.5 pN/mV, respectively.

3.5 Results and discussion

3.5.1 Casimir force measurement

The procedure for a single measurement is as follows–first the plate is moved by steps

of 20 nm towards the sphere until contact is sensed. The plate is then retracted by

1 µm and Vbias is swept, tracing out a parabola as shown in 3·2c, according to equa-

tion 3.3. More sweeps are taken as the plate is moved closer by steps of 100 nm.

Every data point is the average of 50,000 samples taken in 0.5 s by the ADC with

standard deviations between 0.6 and 0.7 mV. The whole electrostatic measurement
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takes 3.5 min. Over this period of time, thermal drift is negligible (see appendix A.3).

Fitting a second-order polynomial to these data sets provides measurements of the

residual potential, V0, as well as the sensitivity, γ, according to equations 3.5 and 3.6.

These values are plotted in figure 3·2.

Immediately following the electrostatic measurement, the plate is retracted back

1 µm away from the sphere and then stepped forward by 1 nm increments as Vbias

is adjusted according to the linear fit, ensuring that the first term of equation 3.1 is

minimized at every position. At each plate position, 50,000 samples are taken in 0.5 s

using the ADC. This measurement takes 20 min, which requires that the enclosure

temperature remain within 3 m◦C to avoid unwanted thermal drift (see appendix A.3).

After subtracting the zero-force signal (c3), the measured data is scaled to units

of force using the calibration factor γ(d) measured from the electrostatic data. It is

then fit to either the ideal Casimir theory (equation 2.24) or the corrected Casimir

theory (equation 2.28), with xs as the only free parameter. These results can be seen

in figure 3·3.

The data in figure 3·3 is a measurement of the force applied to the proof-mass

along its X axis as a function of separation between the Ag-coated microsphere (which

is attached directly to the proof-mass) and an external Au-coated plate. Electrostatic

contributions have been minimized by adjusting Vbias to be equal and opposite to V0

at each plate position. The red and black data points are the same set of data fit

to either the ideal Casimir force theory (solid red line) given by equation 2.24 or the

corrected Casimir force theory (solid black line) given by equation 2.28 with only xs

(i.e., where separation d = 0) as a free parameter. According to the ideal fit, the

last measured data point at 635.5 pN is 65 nm away from d = 0. According to the
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Figure 3·3: Measurement of the Casimir force using the modified ac-
celerometer device. Actual measured data (dots) are compared with
ideal theory (equation 2.24, red line) and theory for real metals (equa-
tion 2.28. Inset shows the highlighted section of the data in log–log
scale for better comparison between data and theory at small separa-
tions. The two sets of data are identical but shifted by 2 nm along the
abscissa because of the different values of xs returned from the fits to
equations 2.24 and 2.28.
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corrected Casimir fit, the last measured data point is 63 nm away from d = 0.

3.5.2 Discussion

Distance dependence of residual potential and sensitivity

The separation dependence of the residual potential is a well-known occurrence [Kim

et al., 2008,De Man et al., 2009,Behunin et al., 2012] as the potential measured is an

effective sum of the contributions from different regions across the surfaces of each

metal. As the separation changes, these contributions will sum differently due to

the inverse square dependence of the electrostatic force. The linear dependence of

the force sensitivity of the device is due to the interaction of the grounded silicon

plate with the fringe fields of the interdigitated capacitor fingers of the sensor. The

capacitive sensing relies on a small AC signal applied between the fixed fingers and

the movable fingers. Because the plate is held at the same ground as the device, it

will deflect fringe field lines from this applied voltage and result in an out-of-plane

force exerted on the grounded fingers [Tang et al., 1992,Imboden et al., 2014c]. As the

plate’s position is varied it will overlap with more fringe fields, thus exerting a larger

out of plane force and decreasing the sensitivity. This effect is more prominent the

closer the plate is to the fingers (see appendix A.2). Therefore, there is an ideal range

of plate heights at which the experiment can be performed, where the fringe field

interactions are minimized while also ensuring adequate area of interaction between

the side of the sphere and the plate.

Casimir force comparison with theory

In figure 3·3 it can be observed that the measured data is modeled more accurately

by the ideal Casimir theory (root mean squared error of 7.4 pN) compared to the cor-

rected theory (root mean squared error of 10.5 pN). While the corrected theory takes

into account the finite conductivity and non-zero temperature of the surfaces, the
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perturbation approach used in [Geyer et al., 2002] is in fact only valid for separations

ranging from a few hundred nanometers to several micrometers. At short separations,

the dielectric permittivity of the respective metals at high frequencies contributes to

the force magnitude and changes the scaling with separation (V.M. Mostepanenko,

personal communication, October 26, 2018). As a result, although the ideal theory

overestimates the measured force in the 80 to 200 nm range, the corrected model in

equation 2.28 underestimates it by far greater. More accurate fitting may be possible

by performing a numerical calculation of the Lifshitz formula using optical data for

the complex index of refraction of the metal surfaces, but such analysis is outside the

scope of this study.

Considering random measurement errors, the linear fits shown in figure 3·2d returned

root mean square errors to the data of 1.8 mV and 0.6 pN/mV for V0 and γ, respec-

tively. Assuming a mis-calculated V0 off by three standard deviations (5.4 mV) at the

closest point of approach of 60 nm, we would be introducing an unwanted additional

electrostatic force of 0.74 pN, which is just 0.1 % of the Casimir force measured at that

point. This value is also much less than the random error in the force measurement

due to uncertainty in the product γSX (whose combined errors propagate to as high

as 60 pN at the closest measured point). It is therefore likely that the discrepancy

between measurement and theory in this distance range is not due to imperfectly

canceled electrostatic forces, as the Casimir force is the dominant interaction.

The reason for this discrepancy is most likely due to the assumptions of the geometry

of the cavity, both at the microscale (i.e., sphere and plate shapes and arrangement)

and at the nanoscale (surface roughness). The sphere radius, R, is used in both the

electrostatic calibration analysis as well as the theoretical Casimir fits. In both cases,
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we use R in the framework of the PFA, which assumes a perfectly spherical surface

and an infinite plane in the d� R limit [Derjaguin, 1934]. Because of this, both the

calibration factor and the Casimir force are proportional to R, so any errors in the

value of R (which was measured optically) do not affect the fitting. However, if the

sphere is not perfectly spherical, then we would expect both the electrostatic force

and the Casimir force to scale differently depending on the exact shape [Gies and

Klingmüller, 2006]. Additionally, due to physical constraints of our setup, the plate

is limited to extend only 80 − 90 µm below the central plane of the sphere. Because

the PFA assumes an infinite plane, this asymmetry may result in a systematically

overestimated force sensitivity of the device.

The surface roughness also becomes very important in Casimir interactions at sep-

arations less than ∼ 100 nm [Van Zwol et al., 2008, Broer et al., 2012]. The AFM

scans taken were on separate samples (see appendix A.1), which went through the

same coating processes as the sphere and plate used in this device. While this may

be useful for capturing average roughness values, it is not specific to this exact cav-

ity, which may have extreme asperities that cause deviation from the expected scal-

ing below 100 nm separations and also invalidate the PFA assumption. To improve

both of these geometry-related systematic uncertainties, characterization of individ-

ual spheres would need to be done prior to subsequent assembly.

Nevertheless, our results show that a Ag surface and a Au surface in our atmo-

spheric MEMS system exhibit an interaction that can be described quite well by the

ideal Casimir force model. This is a promising finding for future work with Casimir-

enabled sensing devices, such as that described by [Imboden et al., 2014b]. The results

presented here imply that approximating this interaction as a simple inverse cubic
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relation is quite sufficient for further analysis and modeling.
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Chapter 4

Casimir Energy Detection

4.1 Experimental concept

As explained in section 2.3, it is thought that the sharp response of a superconducting

phase transition may allow us to detect slight variations in the Casimir Energy [Bi-

monte et al., 2005c]. Other work that has attempted to measure this has made use of

rigid cavities with dielectric media in between [Bimonte et al., 2005b,Bimonte et al.,

2005a]. These cavities can be fabricated with different gap sizes, and it is thought

that by measuring several of these “stacks”, one might be able to see a shift of the

transition correlated with the gap size. A problem with this approach, however, is

the highly process-dependent characteristics of superconducting thin films. Even on

a single die, different regions of deposited material may display a slightly different

superconducting transition temperature due to thickness variation, local roughness,

or temperature gradients during deposition. In order to see a change in Tc from a

varying Casimir energy, it is estimated that one must be able to measure Tc with

a resolution on the order of µK [Bimonte et al., 2008]. It is therefore necessary, in

our opinion, that the measurement be done on a single sample with a dynamically

tunable cavity, rather than on several different samples with differently sized rigid

cavities. This nano-electromechanical approach allows for measurement of one single

film with a resolution of around 5 µK.

The goal of this project is to monitor the superconducting transition temperature
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of a thin film, which constitutes one half of a Casimir cavity, as the size of the cavity

is varied. To do this, a nano-mechanical structure is required which consists of a

mechanically fixed film of Type-I superconducting material in close proximity to a

movable metal plate. If the film and plate are separated by an air gap, the metal

plate can be actuated electrostatically by applying a voltage on nearby fixed elec-

trodes, thus changing the size of the cavity. Some requirements of the device are as

follows:

• the gap must be on the order of 10s of nanometers

• the transition temperature of the film must be greater than 4K due to limitations

of the cryostat

• the film must be smooth and continuous

• both the plate and the film should be pure materials with no oxidation layers

To meet these requirements, Au was chosen for the plate material as it is a noble

metal with very good chemical resistance to oxidation, is straightforward to pattern

at the sub-micron scale, and is commonly studied as a Casimir material [Decca et al.,

2003,Laurent et al., 2012,Rioux et al., 2014,Klimchitskaya et al., 2009].

Another key aspect of the device is the film itself. Depositing very smooth thin

films is often difficult with conventional cleanroom methods due to the tendency for

the atoms to cluster and form non-continuous islands of material upon landing on

the target surface [Neugebauer and Webb, 1962]. This is due to the relatively high

kinetic energies of the vaporized atoms landing on a substrate which gives them the

mobility to re-arrange and cluster together. It has been shown that evaporating onto

a cryogenically cooled surface allows for quench condensation of the material, and



48

can form very smooth, amorphous films [Ekinci and Valles, 1999, Imboden et al.,

2017]. For this reason, an in situ deposition method is developed in which the super-

conducting film is deposited at the chip scale, below the superconducting transition

temperature. This “fab-on-a-chip” methodology is explained further in section 4.3 as

well as in [Imboden et al., 2014a,Han et al., 2015, Imboden et al., 2017].

For the superconducting material, the requirements of Type I and Tc > 4K allows

for Lanthanum, Lead, Tantalum, and Titanium Nitride. Ta and TiN are difficult to

evaporate due to their high melting points [Leichtfried et al., 2004] and La displays

two different critical temperatures depending on its crystal structure [Ziegler et al.,

1953]. For these reasons, Pb, whose bulk structure displays a superconducting tran-

sition at 7.196 K was chosen.

In order to deposit a continuous Pb film underneath a Au layer, a three-die configu-

ration was developed (as shown in figure 4·1) in which one target die (the “target”

onto which material will be evaporated) is centered between two source dies (material

“sources”). The flux of material being evaporated diagonally from each source die

will reach the target die and form a continuous film underneath the center of the top

Au layer. This top Au layer on the target die serves as both a movable plate and a

physical mask. The source dies essentially consist of an array of micro-scale heaters

that serve as crucibles for evaporation. Their design and fabrication are explained

further in section 4.2.2.
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Figure 4·1: Schematic of the cryogenic die arrangement for low tem-
perature Pb deposition and Casimir measurement. On the target die
is the nano-mechanical cavity. This consists of a movable Au top sur-
face (a), actuated and sensed by electrodes b and c. Au guard rings
(d) surround the electrodes, reducing stray electric fields. The top Au
layer also functions as a shadow mask for Pb deposition. Short silicon
dioxide pillars are left over from the release process which prevent stick-
down and allow for accurate gap size measurements. Two micro-source
dies are mounted 1 mm away and laterally spaced by dsources in order
to create the required angle θ that results in a continuous Pb film (e)
deposited underneath the top Au layer. The top Au layer is spaced
from the bottom Au and Pb by an silicon dioxide layer of height g0.
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Figure 4·2: Nano-cavity fabrication process. a. bottom metal is
patterned into electrode, guard, and 4-point leads. b. Oxide, Au, and
PMMA is deposited. (c). EBL patterning and subsequent ion milling
of the top Au layer to form shadow mask and allow for plate movement.
d. The device is released in BOE. This process was developed by Diego
Perez at NIST.

4.2 Device design and fabrication

4.2.1 Target

The nano-electromechanical target die is fabricated using a custom layer-by-layer pro-

cessing method developed and carried out by Diego Perez at the National Institute

of Standards and Technology (NIST). A schematic of the process is shown in figure

4·2. First, a 50 nm thick SiN layer on an n-type Si wafer. Next, positive photoresist is

patterned to define the bottom metal layer containing the bonding pads, electrodes,

guards, and 4-point leads. A layer of 10 nm Cr followed by 50 nm Au is deposited by

e-beam evaporation followed by a lift-off (shown in figure 4·2a. Next, 286 nm of sili-

con dioxide is deposited using a plasma enhanced chemical vapor deposition, defining

the nominal spacing of the cavity. On top of this oxide layer, 10 nm of Cr followed

by 100 nm Au is deposited with e-beam deposition. PMMA is then spin coated to

create a resist layer for EBL patterning (see figure 4·2b). After EBL patterning and
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development of the PMMA layer, a Ar ion mill dry etch is used to create holes in the

top Au layer to define the shadow mask pattern (figure 4·2c). Finally, the devices are

released by removing the oxide in a BOE for 6.5 - 7.5 min.

A closer look at the EBL pattern and post-release nano-mechanical cavity can be

seen in figure 4·3. The EBL pattern is designed to form a continuous thin film of Pb

in a ‘H’ shaped pattern for an angled deposition at θ = 35◦. This corresponds to a

center-to-center spacing of the micro-source dies dsources = 1.1 mm. The ‘H’ pattern

will connect the four 4-point measurement leads as well as create one continuous line

of Pb down the middle. Once released, the Au plate has a slight bit of curvature,

concave towards the direction of actuation. The non-linear dynamics of pre-curved

doubly clamped MEMS beam structures has been studied [Younis et al., 2010] and

in certain cases shown to introduce more non-linearities than what is captured in

the Duffing model. However, in the limit of small initial curvature, (in our case

30 nm of vertical displacement over 25 µm of beam length) the system shows typical

spring hardening behavior as predicted by equation 2.36. This is confirmed in our

observations of the resonance of the Au plate (section 4.5.2).

4.2.2 Sources

The evaporation of the Pb is done from two different dies, a left and a right. By ad-

justing the center-to-center spacing between the left and right die (dsources), one can

tune the angle of evaporation through the mask (see figure 4·1). The mask geometry

used on the target die is designed for a center to center spacing of 1.1 mm. Each

source die is 2.5 mm × 2 mm and consists of four individually addressable groups,

each containing 24 micro-sources. Current is run in parallel through each group of 24

heaters individually. Figure 4·4a shows a colorized CAD file depicting the layout of

the two micro-source dies and each of the 8 groups.
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Figure 4·3: To-scale diagrams and images of released nano-mechanical
cavity for Casimir energy detection. a. top view schematic of the target
die geometry. The bottom Au layer (in yellow) consists of two sets of
electrodes and guards, and four leads for the 4-point measurement of
the PB film. The black pattern is the EBL pattern which defines the
holes opened up in the top Au layer. The ‘H’ pattern with dashed
center results in a flexible Au plate that simultaneously serves as a
shadow mask for angled Pb deposition. b. Height map of a released
cavity taken from white light interferometer data. The slice indicated
on the 3D plot is shown in c.
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In order to get enough Pb material through the shadow mask and onto the tar-

get, a large area of the source dies must be covered in the MEMS heaters. Therefore,

there is actually a large range of angles at which Pb gets deposited through the

mask pattern. The actual center-to-center spacing of the micro-source dies is around

1.9 mm and the heaters are spaced over a distance of 2 mm which results in an angular

deposition range of 24◦ to 58◦. The Pb flux reaching the target at around θ = 35◦

is what contributes to the Pb side of the cavity, while the flux at smaller and larger

angles contributes to making a good connection between the Pb film and the four Au

measurement leads.

Prior to loading into the cryostat, 500-600 nm of Pb is evaporated onto the micro-

source dies by heating a resistive thermal crucible inside a vacuum chamber. Some

SEM images of pre-loaded micro-sources can be seen in figure 4·4b and 4·4c. The

heaters consist of a poly-silicon square suspended on two ends by a serpentine connec-

tion. The small cross-sectional area of these connections causes Joule heating which

radiates into the squares, and its serpentine shape allows for deformation and stress

relief as it expands due to this heating.

4.3 In Situ deposition

The technique used to evaporate Pb from the micro-sources involves applying very

small, very short pulses of power to the heaters in order to sublime very low volumes

of material from the evaporated Pb. In this regime, very low atomic fluxes can be

achieved, and high quality, thin films can be deposited on the target. Because the



54

Figure 4·4: Micro-sources for quench condensed Pb deposition. a.
Images of MEMS design files arranged to depict the actual micro-source
configuration in the experiment. Two sets of dies, a left and a right,
each contain 4 individually addressable groups of heaters, labelled A,
B, C, D and color coded. By pulsing current through each group to
ground (white bonding pads), we can sequentially deposit Pb from large
angles towards small angles. b. SEM image of one set of 4 heaters.
Current runs from the center of the quadrant in parallel through each
heater to ground through serpentine connections. c. Zoomed in SEM
image of the serpentine connection with Pb already loaded. The light
material laying on top is Pb (about 750 nm thick) and the suspended
poly-silicon structure can be seen beneath it.



55

system is at cryogenic temperature (about 2.9 K), the vacuum is very high, and there

is minimal conductive heating between the micro-source poly-silicon and the sub-

strate, or any other large heat-sinks. Therefore, very low power is required to heat

the sources. Voltage pulses are applied to each group of sources sequentially, start-

ing from the outside (groups A) and moving inwards towards groups D (see figure

4·4a). The reason for this is that as more and more Pb is deposited over the mask

on the target, the holes will eventually fill up, reducing the amount of material that

will make it through. Since more material is able to be deposited through the holes

from directly above, it is desirable to start with the high angles, and finish with the

deposition from above.

The waveform of the applied pulses is essentially a very low duty cycle square wave.

There is a DC baseline voltage of 0.1 V upon which pulses are added. These pulses

have a height of Vpulse, a duration of 10 ms and are applied every 2 s. To ensure a qual-

ity film is deposited, Vpulse begins at 0 V and is very slowly increased to 6 V - 6.5 V in

steps of 0.01 V. At each new voltage level, 5 pulses are applied. As mentioned above,

this process is repeated for each group of sources for a total of 8 depositions. As Vpulse

is increased, the resistance of a group of sources, Rsource changes, due to heating, and

due to the changing amount of Pb on them. This resistance versus pulse height plot

is shown in figure 4·5.

A typical plot of Vpulse is shown in figure 4·5. Certain characteristic points in the

plot indicate important points in the deposition process. When deposition begins, a

continuous layer of Pb coats the poly-silicon and the resistance is very low, allowing

a high amount of current to flow. At around 2 V, (point A) some area of the Pb

film melts due to this excessive current and now the current flows primarily through
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Figure 4·5: Plot of pulse height (Vpulse) versus resistance Rsource for
a typical deposition of Pb from a group of poly-silicon micro-sources.
The resistance value indicates which stage of the heating and deposition
process the system is at. At point A, the current is enough to cause one
area of the Pb to melt, breaking the continuous layer and increasing
the measured resistance. At point C, the current melts one or more of
the poly-silicon springs.
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the poly-silicon. This local melting likely occurs at a spring (not on the heater plate

itself) where the current is highest. Consequently, the overall resistance increases

substantially to 60-80 Ω. Beyond this point, as Vpulse increases, the poly-silicon plates

begin to heat up. At around 5 V (point B), Pb material begins to deposit onto the

target. This is not evident in the Vpulse vs. Rsource plot, however a separate experiment

was done in which the MEMS micro-sources were placed opposite a phase-locked

crystal resonator (see appendix B.1). As material leaves the hot sources and lands

on the resonator, the resonator mass increases, leading to a decrease in the measured

frequency. This change was observed to begin at 5.1 V. Between points B and C,

Pb flux is going through the target mask and landing on the substrate, forming a

film. Eventually, the current going through the poly-silicon is enough to melt one

of the poly-silicon springs (point C). This typically happens around 6 V, and this is

indicated by a sharp jump in Rsource to a few hundred Ω.

4.4 Plate actuation and sample measurements

As mentioned previously, the function of the top Au plate on the target is both to

serve as a physical mask for the Pb deposition, but also to provide a movable reflec-

tive surface to tune the Casimir cavity. Actuation and sensing of the position of the

plate is done using two Au electrodes, edrive and esense. We consider two actuation

schemes of the Au plate, static and dynamic. In the static scheme, a DC voltage is ap-

plied to the electrode causing an electrostatic force which pulls down on the Au plate.

The dynamic scheme involves applying an AC voltage (and therefore force) to the

plate that coincides with its natural resonance. Because the plate geometry is close

to that of a doubly clamped beam, the dynamic behavior is well described by a Duffing

Oscillator model (see section 2.4.3 for further explanation).
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Figure 4·6: 4-point resistance detection scheme. Current is applied
through an external resistance and the voltage drop across the Pb sam-
ple is measured. Here, the external 1 MΩ resistor and 1 kΩ resistor have
been lumped together into one resistor.

In each of these actuation schemes, the resistance of the Pb film is measured using

a 4-point configuration, shown schematically in figure 4·6. An excitation current, Iex

is applied at lead I+ (in series with an external 1 MΩ resistor) and travels through the

central portion of the sample to I-, which is grounded through a 1 kΩ resistor. A volt-

age difference is then measured between the other two leads, V+ and V-. Iexcite is a low

frequency AC voltage of 5-20 nA at 37.7 Hz. The differential voltage measurement is

measured using a lock-in amplifier and the resistance of the sample is then Vdiff/Iexcite.

In the DC detection scheme, the sample resistance, Rs, is obtained by considering

a simple voltage divider between the sample and the external resistor, according to:

Rs = 1.001 MΩ× Vdiff

Vexcite − Vdiff

(4.1)
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With this measurement, two experiments can be done. First, a measurement of

the superconducting transition of the Pb film can be characterized by measuring Rs

as a function of temperature. This provides the slope of the transition, dRs

dT
as well as

Tc. Then, changes in Tc can be measured by setting the temperature of the system to

just below Tc where dRs

dT
is maximum and applying a DC bias to the drive electrode.

As the DC voltage on the electrode increases, the plate is pulled downwards. If this

change in position causes a change in Tc, this would manifest itself as a change in the

measured resistance of the sample. We would be able to measure changes in Tc with

a resolution given by the slope of the sample transition and the thermal noise in the

cryostat.

The AC scheme involves detecting Vout at the same frequency the plate is moving.

Again, if we set the cryostat temperature to the steepest part of the transition, the

resistance measurement will be most sensitive to changes in temperature. Then, if the

position of the plate does indeed influence the sample resistance due to the Casimir

effect, we would expect a small modulation of Rs at the plate frequency. The voltage

difference measured would then be:

Vdiff = Iex ×Rs,0 (1 + ∆R(t)) (4.2)

Where Rs,0 is the nominal resistance and ∆R(t) is the small variation due to the

plate. We can further break down ∆R:

∆R(t) =
∂R

∂T︸︷︷︸
transition slope

× ∂T

∂d︸︷︷︸
Casimir

× d(t)︸︷︷︸
plate position

(4.3)

The ‘Casimir’ term is some change in Tc of the Pb sample due to the changing

position of the plate, d(t). This is what we hope to detect. Thus, if we consider only
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the component of Vdiff at the plate frequency, whose amplitude we will label |Vdiff|plate,

we can re-arrange equation 4.3 to obtain the amplitude of this expected effect:

∣∣∣∣∂T∂d
∣∣∣∣ =

|Vdiff|plate

|Iex(t)| × ∂R
∂T
× |d(t)|

(4.4)

In this case, a more complex detection circuit is required. In figure 4·7, a high

frequency AC drive signal is used to actuate the plate at its resonance. The plate

amplitude is detected at twice this drive frequency using LIA 1. Simultaneously, a

current is going through the sample at a low frequency, while Vdiff is being measured

at the same frequency as the plate using LIA 2. The output of LIA 2 is then fed into

LIA 3 which is locked into the low frequency of the excitation signal. The DC output

of LIA 3 is then equal to the amplitude |Vdiff|plate.



61

Figure 4·7: High frequency detection circuit. The cryostat is held at
a constant temperature just below Tc on the slope of the transition.
The high frequency Vdrive signal is applied to the drive electrode and
swept at frequency f2. The plate then feels an electrostatic force at
frequency 2f2. The amplitude of the plate is monitored by measuring
the AC current going through the sense electrode using a current-to-
voltage amplifier and a lock-in referenced to 2f2 (LIA 1). The voltage
drop across the Pb sample is also being detected at 2f2. If there is
any change in Tc due to the Casimir cavity size, this is the frequency
it would occur at. Because the excitation current, Iex, is cycling at f1,
the DC output of LIA 2 is fed into a third lock-in, LIA 3, which is
referenced at f1.

4.5 Results and discussion

4.5.1 Superconducting transition of quench condensed Pb film

The micro-sources are heated according to the methods explained above, and a thin

Pb film forms in a ‘H’ shape, connecting the leads and allowing a 4-point resistance
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Figure 4·8: Superconducting transition of the quench condensed Pb
film. Data points (gray dots) are taken both sweeping up and down
through the transition and the black line is a smoothed average of these
data points. The slope of the transition is calculated to be 10 kΩ/K
and the steepest point is at 6.88 K.

measurement to be made using the circuit shown in figure 4·6 with Vexcite = 5 mV at

37.7 Hz. The temperature is swept from 4 K to 9.5 K and back down. This data is

plotted in figure 4·8. The temperature at which the Pb film begins to condense into

the superconducting phase is 7.05 K, just under the bulk value of 7.162 K indicating

a thicker film (likely around 20 nm [Imboden et al., 2017]). The resistance of the film

above Tc is 3.4 kΩ and the slope of the transition is 10 kΩ/K.
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4.5.2 Plate mechanics

To measure the motion of the plate, a detection circuit is used in which the current

between the grounded Au plate and esense is monitored as a constant AC voltage

is applied to edrive and swept in frequency (see figure 4·7). At room temperature,

plate resonance is typically measured to be 690 kHz and at low temperature the

resonance (before depositing Pb) is typically 1.8 MHz. This implies significant changes

in stress going on in the cavity as the device is cooled. Because the structure is a

suspended Au film anchored on its sides by silicon dioxide, the different coefficients of

thermal expansion of the two materials greatly change its internal stresses. Although

the resonance and therefore stiffness are different between room temperature and

cryogenic temperature, the amplitude of oscillation can still be determined from the

amplitude of the sense electrode signal and an accurate estimate of the plate position

can be determined upon observing contact with the oxide stops (see appendix B.2.2).

DC actuation and temperature sweeps

In these experiments, a DC voltage is applied to the sense electrode and drive electrode

from 0 V to 4 V and sweeping the temperature across the superconducting transition.

Meanwhile, a current is being applied through the sample and the voltage drop is

measured according to the configuration in figure 4·6. Vexcite is set to 1 mV and

is purely AC at 37.7 Hz. Vdiff is measured with a lock-in amplifier at 37.7 Hz then

converted to a resistance by considering a simple voltage divider circuit between the

sample and the external resistance of 1.001 MΩ. The advantage of this method is

that the full transition curve can be mapped out, so features like slope, and Tc can be

extracted, which were measured to be 2.5 kΩ/K and 6.88 K respectively. When the

excitation voltage is increased to 5 mV the slope of the transition is measured to be

10 kΩ/K As we can see in figure 4·10, it was observed that varying the DC bias on
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Figure 4·9: Resonant response of movable Au plate. a. Plate reso-
nance at room temperature. b. Plate resonance (and second mode)
at 3 K. In both figures, the y-axis is the amplitude of current (scaled
by 20 µA V−1) at the sense electrode (at twice the drive frequency).
This signal is proportional to plate position, indicating typical spring
hardening non-linearity. The resonant frequencies of the fundamental
mode of plate at room temperature and low temperature are 690 kHz
and 1.8 MHz respectively.

the electrodes has no measurable affect on these values however.
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Figure 4·10: Quench condensed Pb film transition at different plate
bias voltages.

4.5.3 High frequency detection of Tc shift

This detection method is inherently higher resolution due to its high frequency. Ad-

ditionally, detecting only the component of the voltage drop across the sample at the

same frequency means that our measurement is only sensitive to the effect we are

looking for. Plotted in figure 4·11 are three trials using this detection method, Trial

1, Trial 2, and Trial 3. In Trial 3, the scan stops just after the frequency jump of

the plate however a few useful data points are still obtained. The voltage difference

measurement is scaled to resistance by Iex and then into units of temperature change

based on the slope of the transition. One data point is taken every 90 s. The time

constants on LIA 1 and LIA 3 are set to 30 s but the time constant on LIA 2, where

the differential voltage measurement is detected, is set to 10 ms in order to resolve

the 37.7 Hz modulation of the high frequency signal, which is occurring due to the

AC excitation frequency. The frequency values in the x-axis of these plots refer to the
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Figure 4·11: High frequency detection of superconducting Pb film
and cavity size. Here, any changes in resistance are scaled to units of
temperature change using the slope of the superconducting transition.
Note that ∆T = 0 is arbitrary from plot to plot. The regions where the
plate is reaching contact with the oxide stops are highlighted in red.

frequency of the signal being applied at the drive electrode, so the plate is actually

moving at twice this value. In these experiments, we also monitor the temperature

of the cold finger of the cryostat (measured by an internal thermometer) as well as

the temperature of the room of our apparatus (measured by a calibrated resistance

temperature detector). The room temperature may have some influence the excita-

tion current (because of the temperature dependence of the external resistors) so this

measurement is useful to log as well.

Also plotted in figure 4·12 is the same data as figure 4·11 but zoomed in to the

region of interest (where the amplitude drops). In addition to plotting the data points,

we include two sliding average curves to help visualize trends in the noisy data. For

each point, xi, the sliding average value for a given integer n is just:
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Si(n) =
1

2n+ 1

n∑
j=−n

xi+j (4.5)

Figure 4·12: A closer look at high frequency results. Only the regions
before, during, and after contact are plotted. Note the differing scales
of ∆T between trials due to measurement instabilities. In addition to
data points, sliding averages are plotted with n = 1 (thin line) and
n = 3 (thick line).

4.5.4 Discussion of results

Two different experiments are done to measure the resistance of the superconducting

Pb film as the cavity size is changed. In the first set of experiments, a full temperature

sweep is made at different static plate positions. The plate is actuated by applying a

DC bias to the electrodes between 0 V and 4 V. This results in a maximum plate de-

flection of only a few nanometers at 4 V (see appendix B.2). Any voltages above this

value risk shorting between bonding pads on the device. Given that the nominal gap

between the sample and the plate is around 260 nm, it is unlikely that any Casimir

induced changes from this small displacement would be large enough to measure.

Additionally, because the resistance of the sample is being measured at essentially DC
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(37.7 Hz) it is prone to low frequency fluctuations in temperature. The main source of

this unwanted noise is actually due to the cyclic pumping of the closed-cycle cryostat,

and results in ±0.1 K fluctuations at around 1 Hz. These fluctuations can be averaged

out with sufficiently long time constants on the resistance measurement, however the

maximum temperature resolution with this scheme is still a few mK.

The AC method involves using the natural resonance of the plate to detect changes

in the sample resistance at the frequency of the plate. One interesting point to note

is that the resonant frequency has shifted down by roughly 170 kHz due to the added

mass from the deposited Pb (see figure 4·9 for pre-deposition dynamics). In this set of

experiments, the temperature of the cryostat is set to the steepest part of the transi-

tion (6.88 K) and three long sweeps are made driving the plate to resonance from low

to high frequency until it abruptly loses amplitude. An important feature in the plate

response is the evidence in all three trials of a sudden change in the amplitude and

phase behavior occurring at around 811.2 kHz. This is due to the onset of some new

interaction with the plate, which we believe is indication of contact with the oxide

stops. Any additional non-linearities in the plate mechanics due to deformation alone

would not appear in this manner, but instead would be gradual. Also, the amplitude

is nearly fixed beyond this point, which is further indication of contact. Because the

drive is large however, the oscillations into contact are still stable, so the 90◦ phase

shift before the jump is still reached.

So, to interpret these results in terms of real displacement, the plate likely reaches

a minimum separation of between 80 nm and 100 nm when in contact with the ox-

ide stops (see analysis in appendix B.2.2). Then, when the jump occurs around

815 kHz, the separation abruptly increases from this spacing to the initial gap size–



69

about 260 nm. This large and sudden change in gap size is where we might expect to

see a shift in the sample resistance if there were indeed a dependence of the super-

conducting transition temperature on the cavity size.

Another feature of the high frequency results are seemingly random jumps of 30 -

40 µK. We are not sure what the origin of these instabilities are, however based on

analyzing the three trials, we do not believe it is anything related to the plate posi-

tion. For example, in trial #1, we observe a large displacement at 820 kHz, which is

well after the large plate oscillations have ceased. In trial #2, there is a large jump

that is interestingly close to the contact range, but a closer inspection of the data in

figure 4·12 shows that it lags the plate contact by 5 or 6 points (corresponding to 7.7

- 9 min), which is impossible for the effect we are looking for. Finally, in trial #3,

the ∆T measurement seems to be tracking the plate amplitude, but then after the

oscillations jump down, the signal does not follow.

In all three trials, no clear correlation between plate amplitude and transition temper-

ature is observed within a resolution of 5 µK both during the slow approach where the

plate finally reaches just under 100 nm of separation, and during abrupt jump where

the plate amplitude drops to 260 nm separation. There are a few reasons which may

explain this null result. No observation of this effect may be due to one or more of the

following reasons: device limitations, superconductor limitations, or lack of parallel

magnetic field.

Firstly, the device geometry may not allow for a small enough cavity to observe

a shift. The minimum cavity size we are able to achieve with this system is just

under 100 nm. Furthermore, the patterning of the shadow mask results in an inter-
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acting area between the Au and Pb that more closely resembles two parallel wires,

rather than two parallel plates. These geometrical limitations, as evidenced simply

by equation 2.2 (small A and large d), likely produce a small shift if any.

Regarding the superconducting film itself, there are certain key material properties

to consider when conducting this type of experiment. First of all, a low Tc value is

generally desired because the condensation energy, εcond goes as T 2.6
c [Lewis, 1956]. It

is the ratio of the Casimir free energy to the condensation energy that determines the

magnitude of the shift in critical field, so generally speaking, the lower Tc the better.

In the case of the experiment presented here, Pb has a relatively high Tc value, but

was chosen for other experimental advantages. Future work may involve investigat-

ing lower Tc materials. One caveat to this point however, is that some low Tc type

I superconductors, such as Beryllium, are actually found to have an increased Tc for

thin films [Adams et al., 1998], which is opposite to what is observed in Pb. Another

important material property is the plasma frequency. Bimonte et al. show that high

plasma frequency materials can change the strength of the Casimir free energy term

by almost one order of magnitude [Bimonte et al., 2005c]. Many of the calculations

in their work assume Be, which has a plasma frequency of around 18 eV compared to

Pb which has a value of roughly 8 eV [Ordal et al., 1985].

Finally, there is the question of what we expect theoretically in the limit of zero

applied field. As discussed previously in section 2.3.2, the theory behind this exper-

iment is for shifts in parallel critical field, not critical temperature. Because of the

methods used for the calculations, in the low field, it is not exactly clear what one

might expect the critical temperature to do when the Casimir cavity varies. What

our experiment shows is that for our geometry, materials, and in the range of temper-
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atures we can resolve, it does nothing. Most certainly, the next step in this project

will be to include magnetic characterization as well as thermal. Including coils in the

setup would allow for critical field shifts to be measured, and perhaps an experimental

result that can be more directly compared to theory will be obtained.
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Chapter 5

Related MEMS Projects

5.1 Micro-gluing enabled devices

In order to realize the modified accelerometer device discussed in chapter 3, techniques

were developed to carefully place and glue micro-sized objects onto the post-release

MEMS (discussed in section 3.3). This micro-gluing methodology is not just limited

to Casimir force devices, however, and has in fact led to some other sensing devices

currently being developed and researched.

5.1.1 Gradient magnetometer

Device concept and fabrication

An accelerometer senses external accelerations applied to the body of the device by

means of a physical displacement of the proof-mass. However, if one ignores inertial

forces and instead directly, mechanically couples an external force to the proof-mass,

that force will also be sensed by the device. This idea was used for the Casimir force

measurement device, and it also applies here. By gluing a permanent magnet to an

ADXL203 proof-mass, we can sense any force applied to that magnet, i.e. gather

information about the magnetic field of the environment. In these devices, the direc-

tion of magnetization of the micro-magnets is aligned with either the X or Y sensing

axis of the accelerometer.

Approximating the magnet as a dipole moment, ~µ, an external field, ~B will pro-
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Figure 5·1: SEM image of an ADXL203 accelerometer re-purposed
into a magnetometer. The moment of the magnet is aligned along one
of the sensing directions of the accelerometer and rigidly attached to
the proof-mass (blue) by using three micro-spheres as supports.

duce both a torque and a force on the moment, given respectively by:

τ = ~µ× ~B (5.1)

F = ∇
(
~µ · ~B

)
(5.2)

Because the ADXL203s are designed to be sensitive to linear motion, not rotation,

a magnetometer device like the one shown in figure 5·1 will be inherently a gradient

field sensor. Its output is proportional to the gradient (along the direction of the

magnet) of an external magnetic field.

Modifying an accelerometer to become a gradient magnetometer involves several of

same techniques as building the Casimir force sensor. Based off of the assembly of
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the prototype device shown in figure 5·1, a fabrication process for assembling the

micro-objects required to achieve a robust, highly sensitive gradient magnetometer

has since been developed [Javor et al., 2019]. This process, developed by Josh Ja-

vor at Boston University, is shown in figure 5·2. First, four individual microspheres

are glued with UV curable epoxy onto a platform designed to fit onto the ADXL203

proof-mass. Next, this platform is flipped over so it is resting on the four support

spheres. By pulling vacuum through an angled micro-pipette, a permanent micro-

magnet (NdBFe N52 grade) can be picked up, dipped in UV curable glue, and placed

onto the center of the platform. After curing the glue, the magnet is again picked up

and the whole assembly is glued with the same UV epoxy onto the proof-mass of the

accelerometer. Continuously monitoring the output of the sensor provides feedback

for this attachment process, indicating the moment the spheres have contacted the

proof-mass.

Figure 5·2: Assembly process for MEMS gradient magnetometer. i.
custom-made suspended poly-silicon platforms with tethers are fabri-
cated. ii. using UV epoxy and pick-and-place, micro-spheres are po-
sitioned onto dedicated locations on the platform and cured in place
(iii.). iv.-v. platform is picked up with vacuum and flipped over. vi.
micro-magnet is glued onto top of platform and then the whole assem-
bly is placed onto ADXL203 proof-mass (inset SEM image).
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a b

Figure 5·3: MEMS gradient magnetometer performance. a. plot
of sensor output amplitude versus magnetic field gradient amplitude.
Each data point is taken by driving the MEMS device to its mechan-
ical resonance with an AC magnetic field. b. Raw sensor output in
response to an arbitrary magnetic field waveform resembling an elec-
trocardiogram signal. Near perfect tracking is achieved in the sensing
direction (X) with essentially no cross-talk along the Y direction.

Characterization of this device is done by placing the device equidistant and along

the axis of two sets of coils in an anti-parallel configuration. In this arrangement, the

uniform field magnitude is zero at the center but the field gradient is maximum.

Then, the current through the coils can be driven to apply a translational force on

the magnet. Measurements are made in air, in air with magnetic shielding, and in

vacuum with magnetic shielding.

Device performance and applications

Figure 5·3 shows data taken with one of the devices assembled using the process

shown in figure 5·2. When driven at its mechanical resonance, the sensor can resolve

magnetic field gradients down to 1.05 nT cm−1, 700 pT cm−1, and 100 pT cm−1 in air,

air with magnetic shielding, and vacuum with magnetic shielding respectively. To put

these values into perspective, the magnetic field gradients produced by the human

heart and brain are around 100 pT cm−1 and 200 fT cm−1 respectively. Currently,

these types of biomagnetic measurements are made with superconducting quantum
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interference devices (SQUIDs), which are high cost, large, and require a relatively

large amount of power to run, due to the requirement for low temperatures. Addi-

tionally, SQUIDs and other advanced magnetic sensing devices will pick up uniform

magnetic fields, including earth’s field, which is always present. This can severely

limit resolution if the measurement is not done in a heavily shielded room. Because

the MEMS device presented here is much more sensitive in a linear direction than

rotationally, it is inherently less responsive to these uniform fields.

The performance of the MEMS gradient magnetometer is remarkable, considering

its footprint, cost, and room temperature operation. Improvements to this device are

currently being made, but in theory, its sensitivity could be able to compete with

the current state-of-the-art technologies and potentially be integrated into cheap,

wearable medical devices.

5.1.2 Large angle micro-mirror

Device concept and fabrication

In this project, the methods developed for pick-and-placing micro-objects onto post-

release MEMS (described in 3.3 and 5.1.1) are used to build a magnetically actuated

micro-mirror [Pollock et al., 2019b]. Compared to commonly used actuation forces in

MEMS devices (electrothermal, electrostatic, e.g.), magnetic forces can be relatively

large–especially on permanent NdFeB magnets with very high magnetic moments.

Using such a high force allows for very large range, very fast driving of a compliant

poly-silicon platform.

The structure of this device can be seen in the colorized SEM images in figures

5·4a and 5·4b along with a schematic for how it is actuated in figure 5·4c. The micro-

magnet (aligned vertically) is glued on top of a circular poly-silicon platform which

is raised a few hundred µm off of the substrate with four bimorphs. Each bimporh
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Figure 5·4: Magnetically driven micro-mirror

obtains this extreme curvature due to the two-layer stack of materials they consist

of: poly-silicon and Au. Because the Au is evaporated onto the poly-silicon at a high

temperature, as it solidifies and cools to room temperature, it contracts more than

the poly-silicon it is adhered to due to their different coefficients of thermal expansion.

This residual tensile stress causes the bimorph structures to bend upwards when the

devices are released. Each bimorph is then connected to the platform with a thin

serpentine spring. It is the combination of raised initial height, soft spring constants,

and large magnetic forces, that allow this magnet to be actuated to such large angles.

The final component is a Au-coated poly-silicon mirror that is glued on top of the

magnet for an optically reflective top surface.

The magnet (and therefore mirror) is actuated in the radial and azimuthal direc-

tions by controlling the current going through two sets of coils, an ‘X’ directed pair,

and a ‘Y’ directed pair (where X and Y are the cardinal axes in the plane of the die).

A finite element simulation of how the magnet is steered can be seen in figure 5·5.
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Figure 5·5: Steering the magnetically actuated micro-mirror. In the
finite element plot, the relative magnetic field strength is indicated by
the colorbar and the direction of the field is indicated by the arrows.
In this example, the X and Y coils are both set to the same current,
so a diagonal field is produced. The zoomed in plot also shows how a
vertically aligned magnet would rotate in such a field. The top right
image is the actual setup with the die in the center and 4 coils on each
side.

This figure plots the magnetic field vectors in the X and Y directions from a top-down

view of the device. As long as the X pairs have the same current (IX1 = IX2), and

the Y pairs have the same current (IY 1 = IY 2), the field in the center will uniform

(i.e. have zero spatial gradient). By adjusting the relative magnitudes of the X and

Y currents, we can rotate the direction of the magnetic field and steer the magnet.

Although the field strength varies close to the coils, in the center, where the device

is, it is very uniform.

If we consider one dimension of rotation, the tilt angle, θ (azimuthal direction),

of the platform can be approximated by assuming a linear rotational spring and

magnetic torque balancing each other. The spring constant is defined by the stiffness

of the springs, and is linear with θ. The torque is defined by the cross product of the
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Figure 5·6: Magnetically driven micro-mirror range results. a. Top-
down optical microscope images of the mirror driven over several an-
gular positions. b. Azimuthal tilt angle versus drive current. c. Az-
imuthal tilt and rotation for X drive only, Y drive only, and combina-
tions of maximum X,Y.

magnetic moment with the magnetic field vector (see equation 5.1). This torque will

then scale as I cos(θ) where I is the applied current through the coils. Equating the

torque with the spring restoring force, we find:

I ∝ θ

cos θ
(5.3)

Device performance and applications

By simply changing the currents through the X and Y coils, we can steer the mirror

over a radial range of 360◦ and an azimuthal range of ± 60◦. Figure 5·6a contains

several top-down microscope images displaying this range, with corresponding angular

measurements in figures 5·6b and 5·6c.

Reaching ±60◦ of mechanical angle is significant because it corresponds to ±120◦

of optical angle (if one considers an incident beam coming down on the mirror from
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directly above the device). This means one could direct a laser to cover an entire

hemisphere (and more) with this mirror. This would have significant technological

advantages in imaging, optical communication (allowing for more routing paths for

beams) and LIDAR (by being to map out the environment in front and around the

sensor).

5.2 MEMS drive techniques

5.2.1 Open loop driving for fast step-and-settle times

In MEMS actuators there is often a trade-off between actuation range and settling

time. Settling time is directly related to the amount of damping in the system (see

section 2.4.1). For many actuators, a short settling time is desired. However, the

more damping is present in a system, the more force is required to move it from

one point to another. Engineers will often design a system which is some bargain

between the two. However, as we show in the following work, it is possible to reshape

the impulse of the driving force to reduce this settling time and get the system to

move from point A to point B much much faster than the ring down time defined by

1/λ [Imboden et al., 2016,Pollock et al., 2018].

In this section, we only consider one-sided driving, which is often found in most

MEMS systems. This means when we apply a force to our MEMS, it is only in one di-

rection (this would be the case for parallel plate electrostatic actuation for example).

In this system, we have control over how fast moves towards our desired equilibrium

point (from A to B), but not how fast it slows down to reach there. In this case, we

must anticipate the deceleration of the system due to damping and restoring spring

force such that the mass is no longer in motion when it reaches point B. In the limit of

zero damping, this is a simple problem: how much force should we apply to our mass

such that it reaches our desired equilibrium point with zero velocity? The answer is
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Figure 5·7: Simulations of under-damped system response to one-
sided advanced drive pulses. a. double-step pulse technique moving
the mass from 0 to X0. b. single-step pulse technique for moving the
mass from 0 to X0.

half of whatever force it needs to get to B. To see why this is the case, we can refer to

figure 5·7a. We see that driving the mass with half of the final force (red pulse) will

cause the mass to overshoot, and then stop at exactly the position we want it to be in,

with zero velocity. If at this moment the force is then switched to the full amount, the

mass will remain in place with no ringing. This means that we will have moved and

settled an under-damped system to a new position in time time of one-half of a period.

Such a driving method requires that we have some way of controlling the magni-

tude force in an analog way on the driven mass. If, say, we only have a ‘digital’

driving force, on or off, the timing is slightly different. In this scenario, shown in fig-

ure 5·7b, the full force is turned on for 1/6th of a period, then turned off for another

1/6th of a period. After this total of 1/3rd of a period, the mass will have reached the

desired position and will have zero velocity. Further discussion of the theory behind

this model can be found in [Imboden et al., 2016].

Depending on how under-damped a MEMS system is, a typical response to a step
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input may involve ring down over hundreds or even thousands of oscillations, so cut-

ting this down to 1/2 or 1/3 of a period is significant. For example, the magnetically

actuated micro-mirror presented in section 5.1.2 takes 1.35 s to ring down to 2 % of

the final position with a simple step input. Using a one-sided advanced driving pulse,

we can move and settle it in 4.5 ms.

5.2.2 Pulse width modulation for analog positioning

Pulse width modulation is a technique seen in many electronic drive systems which

involves varying the duty cycle of a square wave–that is, the percentage of the period

of the signal at which it is on versus off. PWM is a convenient way of producing

a psuedo-analog signal from a digital one. To see why this is so, let’s examine the

following square wave shown in figure 5·8.

Figure 5·8: Plot of a typical PWM signal. The duty cycle is equal to
τ/T and the frequency is 1/T .

In figure 5·8 we have a square wave that goes from 0 to Vmax, with a period of T

and a duty cycle given by τ/T . The Fourier series for this waveform can be written

as:

V (t) = V0
τ

T
+ V0

∞∑
n=1

2

nπ
sin
(
nπ

τ

T

)
cos

(
2nπ

T
t

)
(5.4)
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In equation 5.4 we see a leading static term followed by an infinite series of har-

monics that sum to create the sharp edges of our pulses. The lowest frequency in this

series (when n = 1) is 1/T , or the same frequency as the square wave, which makes

sense. To isolate the leading static term from this square wave, one simply needs to

filter out these higher harmonics. Then, the value of that static term can be adjusted

by simply varying the duty cycle of the square wave. This is the essence of PWM–in

any linear system that is too slow to respond to the frequency of the PWM wave,

the alternating PWM input will act as if it is a constant signal. The value of this

constant signal is then linearly proportional to the duty cycle.

PWM control can be found in thermal systems, electrical systems, and lighting. An

under-used application however, is in MEMS. A convenient system to use for this

study is the ADXL203 accelerometer from Analog Devices–the same device used in

the work described in chapter 3. These devices have a digital input pin known as

“self-test” which will applies a constant electrostatic force to the proof-mass when

above a certain threshold (around 2.5 V). If the pin is above that threshold, a DC

force is applied, moving the proof-mass. This feature is intended to be a simple check

that the device is functioning properly, but as shown below, it can also be used to

demonstrate PWM analog driving of MEMS [Pollock et al., 2018] and to even enhance

the range of the sensor.

Because the self-test pin is digital, we can use it to apply force to the proof-mass

in a digital manner (i.e. either high or low). In order for a PWM signal to appear like

a constant force on the proof-mass, the frequency needs to be much faster than the

mechanics of the MEMS can respond. If we call the position of the proof-mass with

self-test off A and the position of the proof-mass with the self-test pin high B, high
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Figure 5·9: PWM enabled analog positioning of an accelerometer. a.
Proof-mass position versus PWM wave duty cycle. b. A sinusoidally
varied duty cycle is used to drive the accelerometer at 20 Hz.

frequency PWM driving allows us to position the proof-mass anywhere in between

points A and B by simply varying the duty cycle. Some results of this are shown in

figures 5·9a and 5·9b.

PWM can also be used when an analog method of driving already exists, but

it’s not linear. For example, let us consider a parallel plate capacitor on a spring.

Schematically, this will look exactly like the accelerometer shown in figure 2·9 but

instead of a sensor, we are interested in positioning the movable mass by applying a

voltage between the plates, V . As mentioned in section 2·10, the force scales as V 2/d.

The position of the mass is then:

x(V ) =
ε0AV

2

d
(5.5)

Of course, d is itself a function of x, and as x becomes larger, the effective spring

constant of the system will go to zero leading to an instability causing the plate

to pull-in [Zhang et al., 2014]. However, for x � d, we can assume the force is
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Figure 5·10: Comparison of DC voltage control (black) with PWM
control at different pulse hights in a parallel plate system.

linear, and x simply scales as V 2. Therefore, if one wanted to position the plate

in an accurate manner, the corresponding analog voltage would need to be applied

between the plates according to equation 5.5. Generally speaking, the precision of

the positioning is set by the precision of the applied analog voltage. If instead we

replace the static voltage with a high frequency PWM signal, this required precision

in voltage amplitude is replaced by precision in pulse timing [Pollock et al., 2019a].

There is also the added benefit of linearization of the forcing–that is, changing the

input (duty cycle) by a factor of two for example, will change the output (position) of

the system by a factor of 2, which is not the case for the x ∝ V 2 method of driving. In

figure 5·10 we plot the response of a parallel plate capacitor on a spring driven with

both an analog voltage (black curve) and by PWM signals of varying pulse heights

(red, blue, pink, and green curves).
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It is evident from figure 5·10 that the PWM drive effectively linearizes the po-

sitioning of the system. When the duty cycle is equal to 100 %, the position is the

same as it would be for DC voltage control with V = Vpulse height. In this sytem,

electrostatic pull-in occurs at around 2.7 V, so only PWM drives whose pulse height

is less than that value (red and blue curves) will be linear across the whole range. It

is possible to use pulse heights larger than the pull-in voltage, but the linear range

will only occur for smaller duty cycle values (as seen in the pink and green curves).

The great advantage of this method is that the problem of precise positioning comes

down to precise, high-speed timing, rather than precise, analog voltage control. In

modern digital circuitry, the former is a much easier and cheaper problem to solve.

This methodology was implemented in a commercial MEMS deformable mirror device

(BMC MultiDM) built by Boston Micromachines Corporation. A high speed switch-

ing circuit was built to produce high speed, high voltage digital pulses whose duty

cycle could be varied. The difference in cost between the original analog circuitry and

the PWM circuit was estimated to be $980 [Pollock et al., 2019a].
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Chapter 6

Conclusions and future outlook

6.1 Summary of Casimir force measurement with a commer-

cial MEMS sensor

In chapter 3, a commercial MEMS accelerometer was modified to perform a measure-

ment of the Casimir force between a Ag-coated microsphere and a Au-coated plate.

In order to do this, a feedback-enabled pick-and-place system was developed to as-

semble micro-scale objects onto the post-release proof-mass of the accelerometer. The

required components of this assembly were a smooth, Ag-coated microsphere and a

very soft, electrically conducting wire in order to cancel out unwanted residual po-

tential on the sphere. The Au-coated plate was then positioned near the sphere with

piezoelectric actuators in order to control the separation between the two surfaces.

First, a force calibration of this device was performed in which a known electro-

static force was applied between the sphere and the plate and the voltage was varied.

This was repeated over a range of sphere-plate separations. This calibration was used

to determine the sensitivity of the device and also to find the bias which would cancel

out the residual potential between the two surfaces.

Next, ensuring that the system was properly biased, the plate was stepped care-

fully towards the sphere and the remaining force on the sphere was measured. This

data was fit to the theory for the Casimir force in this system with only the initial
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separation as a free parameter. The results agreed excellently with theory, resulting

in a root mean squared error of just 7.4 pN.

The importance of this work is that it showed it is possible to perform highly sen-

sitive quantum metrology in ambient conditions with off-the-shelf consumer MEMS

sensors, which are widely available and very inexpensive. Once functionalized, these

devices can be used as a novel tool for experimenters—a literal platform capable of

performing a variety of interesting micro- and nanoscale low-force experiments. Using

the feedback-assisted micro-gluing process we have developed, one can re-purpose the

sensor to transduce any measurand that can be coupled into a displacement of the

proof-mass.

The micro-gluing work developed for this project also enabled the creation of two other

MEMS devices: a gradient magnetometer capable of measuring down to 100 pT cm−1

and a magnetically actuated micro-mirror capable reaching ± 60◦ mechanical tilting

and therefore full hemispheric optical coverage.

6.2 Summary of Casimir energy detection with superconduc-

tor in a tunable cavity

In chapter 4 we present a chip-scale system which, at cryogenic temperatures, can

deposit and measure a superconducting thin film while simultaneously actuating and

sensing a nano-mechanical metal plate. The in situ deposition process is achieved

with two arrays of MEMS heaters that have been pre-loaded with a thick film of

Pb, and can be pulsed at low temperature to evaporate small amounts of material.

The thin film is produced by using a shadow mask to define a precise pattern of

the evaporated Pb (incident on the mask from two sides), that connects four metal-
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lic measurement leads and also creates a thin section of Pb directly underneath the

movable Au plate.

By driving a current with two sets of leads and measuring the voltage drop with

the other two, we can measure the resistance of the Pb. We monitor this resistance

as we vary the temperature of the cryostat and also the height of the plate. There was

no observed change in the resistance vs. temperature behavior during this actuation.

We also drove the Au plate to its mechanical resonance and simultaneously moni-

tored the resistance of the sample at that same frequency, while the temperature of

the cryostat was just below Tc. Then, any Casimir induced changes on the Tc of the

sample would manifest as changes in this resistance measurement. This technique

resulted in much higher resolution, and larger plate displacements. In these experi-

ments, the gap size was decreased until the Pb and Au surfaces were between 80 nm

and 100 nm apart, but no effect on the Tc of the sample greater than 5 µK was ob-

served. Our experiments conclude that for a Pb and Au cavity, with an interacting

area of approximately 4 µm2, the Casimir energy does not shift the relative critical

temperature of the superconductor (∆Tc/Tc) by more than 0.7 µK/K at zero applied

field.

6.3 Future outlook

6.3.1 Searching for evidence of the Casimir energy

The carefully designed and executed Casimir energy experiments, both from other re-

search groups and our own, have so far all come up short [Bimonte et al., 2008,Norte

et al., 2018]. These null results are still useful however as they put upper bounds on

the magnitude of the effect in a given system, and help guide the on-going theoretical
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work as well as inspire future experiments.

For example, in our device discussed in chapter 4, there are indeed future improve-

ments to be made and experiments to try, including modified plate geometries al-

lowing for greater actuation range, different superconducting materials, and critical

magnetic field studies. Theory has implied that in low field limit, a 14 nm thick film

of Al would shift by a few µK when an Au plate is brought to 6 nm away [Bimonte

et al., 2008]. The required order of magnitudes in this theory are all achievable with

our system and an observed shift may be possible to measure with just a few more

iterations of the design and methodology.

As experimentalists, we hope to provide incremental pieces of concrete information

that can be used to either confirm or challenge the theoretical picture of the world

around us. What goes on energetically in the empty vacuum is one of the biggest ques-

tions in physics and we believe the apparatus and measurement technique presented

here may be a useful piece in this puzzle.

6.3.2 The Casimir Effect in technology

Sensing the Casimir effect with an accelerometer is important for a couple of reasons.

First of all, this platform for Casimir studies could allow experimenters to more easily

investigate the Casimir Effect with non-trivial geometries, materials, or surface mor-

phologies such as nanostructures or chiral metamaterials [Zhao et al., 2009,Van Zwol

and Palasantzas, 2010, Intravaia et al., 2013,Woods et al., 2016,Tang et al., 2017].

Research applications aside, however, this work is particularly important because

it is a stepping stone towards using the Casimir Effect as an engineering tool. By

demonstrating that this quantum phenomenon can be harnessed in a commercially
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available platform, we believe it could lead to a new class of ‘Casimir-enabled’ de-

vices. The Casimir force is known to scale with separation as d−4 compared to d−2

for electrostatics, so enhancements in sensitivity could be significant. The MEMS

industry has already solved many of the engineering problems of producing reliable,

high-performance devices at scale, so the jump necessary to incorporate this fascinat-

ing and practical quantum effect into MEMS may not be a very far one to make.
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Appendix A

Supplementary information for Casimir

force measurement

A.1 Surface roughness measurements

 

 

 

 

  

S2: Data illustrating the effect of the plate height on 
the sensor output due to interactions with the fringe 
fields of the sensing electrodes. These scans were 
taken with the plate starting at approximately 12 μm 
above the proof-mass (black) and decreasing in 
height by 1 μm for each dataset. At each height, the 
plate is scanned by 3 μm in the X direction with the 
piezo stack actuator. Data was taken over a portion 
of the proof-mass far away from the sphere with the 
sphere and plate both grounded.  
 

S1: SEM and AFM characterization of typical spherical and planar surfaces used in the device. The 
gold spheres had abnormally distributed roughness and tended to contain large (> 1 μm) debris and 
were therefore only used for structural purposes. The silver spheres and gold coated silicon plate 
showed much lower RMS roughness and were used to construct the Casimir cavity. The data shown 
are taken of samples prepared in the same manner as those used in the experiment but are not scans 
of the specific surfaces in our Casimir cavity. 
 
 

Figure A·1: SEM and AFM characterization of typical spherical and
planar surfaces used in the device. The gold spheres had abnormally
distributed roughness and tended to contain large (> 1 µm) debris and
were therefore only used for structural purposes. The silver spheres
and gold coated silicon plate showed much lower RMS roughness and
were used to construct the Casimir cavity. The data shown are taken of
samples prepared in the same manner as those used in the experiment
but are not scans of the specific surfaces in our Casimir cavity.
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A.2 Plate height sensitivity

 

 

 

 

  

S2: Data illustrating the effect of the plate height on 
the sensor output due to interactions with the fringe 
fields of the sensing electrodes. These scans were 
taken with the plate starting at approximately 12 μm 
above the proof-mass (black) and decreasing in 
height by 1 μm for each dataset. At each height, the 
plate is scanned by 3 μm in the X direction with the 
piezo stack actuator. Data was taken over a portion 
of the proof-mass far away from the sphere with the 
sphere and plate both grounded.  
 

S1: SEM and AFM characterization of typical spherical and planar surfaces used in the device. The 
gold spheres had abnormally distributed roughness and tended to contain large (> 1 μm) debris and 
were therefore only used for structural purposes. The silver spheres and gold coated silicon plate 
showed much lower RMS roughness and were used to construct the Casimir cavity. The data shown 
are taken of samples prepared in the same manner as those used in the experiment but are not scans 
of the specific surfaces in our Casimir cavity. 
 
 

Figure A·2: Data illustrating the effect of the plate height on the
sensor output due to interactions with the fringe fields of the sensing
electrodes. These scans were taken with the plate starting at approx-
imately 12 µm above the proof-mass (black) and decreasing in height
by 1 µm for each dataset. At each height, the plate is scanned by 3 µm
in the X direction with the piezo stack actuator. Data was taken over
a portion of the proof-mass far away from the sphere with the sphere
and plate both grounded.
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A.3 Casimir force sensor temperature stability

Figure A·3: Stability of the temperature and the sensor output in the
temperature controlled enclosure over a 6.5 h period. The periodicity
of both datasets is a result from the heaters in the building turning on
and off every two hours. Long term drift in the ADXL signal is also
apparent. Between these unstable periods (red inset), our PID system
is able to hold the temperature to within 3 m◦C for 0.5 h within the
length of a full experiment. For this data, the plate is placed 1 µm away
from the sphere and a bias of 1 V is applied between the two surfaces
resulting in an applied electrostatic force of approximately 1 nN.
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Appendix B

Supplementary information for Casimir

energy detection

B.1 Deposition characteristics of MEMS micro-sources

A simple experiment was carried in a cryostat out to determine the deposition char-

acteristics of the micro-sources. The pulse widths applied to the sources were fixed

at 10 ms and the spacing between pulses was fixed at 2 s while the pulse height was

slowly increased. A quartz crystal resonator is mounted opposite to the sources while

oscillating at its natural frequency driven by a phase-locked loop circuit. In this loop,

the output signal of the oscillator is converted a series of digital pulses with a zero-

crossing detector and then a time delay is applied. This pulse signal is then used to

trigger a wave function generator which drives the oscillator. An optimal delay can

be found which maximizes the amplitude of the resonance. The measured frequency

of this loop is therefore the natural resonance of the system. When mass is added

to the resonator, the frequency shifts, and we can use this shift to determine when

Pb begins to evaporate off of the micro-sources. Figure B·1 shows a schematic of

this set-up as well as a plot of the pulse height along with the frequency. The sharp

drop-off indicates that Pb has been added to the resonator, which happens around

5.1 V. The temperature of the cryostat is also monitored to ensure the frequency drop

is not due to some heating effects from the pulsing.
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Figure B·1: Characterizing the micro-source deposition with a quartz
crystal resonator and PLL. a. Micro-source die and un-capped quartz
crystal resonator are placed opposite each other within the cryostat.
The oscillator is driven with a phase-locked loop. The micro-sources are
heated up with increasing pulse heights and the frequency is monitored.
b. Plots of pulse height and frequency over time. Drop in frequency
corresponds to onset Pb deposition which occurs at around 5.1 V. c.
Plotting frequency versus cryostat temperature.

B.2 Determining plate height

B.2.1 Static actuation

Plotted in figure B·2 is data taken using a white light interferometer on a released

plate on a Casimir cavity device. A full height map is taken while applying different

DC voltages to the electrodes. The data is taken at room temperature, however, so

comparing the voltage vs. displacement here will not be the same as comparing volt-

age to displacement at 3 K. When the device is cooled to low temperature, we observe
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Figure B·2: White light interferometry data of a released Au plate
at room temperature. As the DC bias voltage is increased, the electro-
static force pulls the plate downwards.

a 2X increase in resonant frequency. All other things equal, this would correspond to

a 4X increase in structure stiffness. While it is difficult to make an accurate estimate

of how far the plate deflects for a given applied voltage, it is correct to assume it will

be less than what is observed at room temperature.

B.2.2 Post-experimental sample characterization and estimate of mini-

mum gap size

After completing the experiment in the cryostat, AFM characterization of the nano-

cavity (with the top Au surface removed) is performed. Figure B·3 shows height

measuremnts of the sample and the oxide stops. The sample height is measured to

vary between 20 nm and 30 nm and the height of the oxide stops is 160 ± 1 nm.

Because the plate comes into contact with the pillars, it is possible to estimate

the vertical displacement of the center of the plate, however in order to do this, an
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Figure B·3: AFM analysis of the cavity. The Pb sample and several
oxide stops are visible in this scan. The height data corresponding to
the red profile is plotted on the right.

assumption of the shape of the deformed Au plate needs to be made. In figure B·4,

three models for the shape of the deformed plate are considered. The difficulty of this

estimate is that the stress state of the suspended Au layer at cryogenic temperature

is unknown. Therefore, by plotting a few different scenarios, a likely range of gap size

can be obtained.

In all three models, no matter the deformed shape, the curve of the Au plate al-

ways goes through two points: the edge of the cavity (where the height is equal to

286 nm) and the top of the pillar (where the height is equal to 162 nm) First, a simple

doubly-clamped linear beam model is considered. In this case, the gap size would

be equal to 99 nm. In the next two models, the entire geometry is modeled in 3D in

a finite element analysis program (COMSOL). First, the shape of the fundamental

resonant mode is solved for with no initial stress on the Au. In this model, the re-

ported frequency of this mode is only 400 kHz which does not agree with experiment

(the measured resonance was approximately 1 MHz). This is because there is likely a

large amount of uniaxial stress being applied to the Au plate along the direction in

which it is anchored (due to the thermal contraction of the surrounding oxide). The
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Figure B·4: Modeling the shape of the deformed Au plate. The ana-
lytical expression for a doubly-clamped beam is plotted in black, while
results from FEA computations considering a zero-stress condition and
a stressed condition are plotted in green and pink respectively.

second model adds in this external stress until the resonant frequency reaches 1 MHz.

In this case, the shape of the deformed plate changes, leading to a gap size of 96 nm.

The results of these three models are shown in figure B·4. Based on this analysis, we

infer that the minimum gap size achieved in our system is likely somewhere between

80 nm and 100 nm.
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