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Abstract— An analytical model of a network with 2-dim torus 

topology and virtual cut-through routing has been considered in 

order to find out and analyze certain relationships between 

network parameters, load and performance. An exact expression 

for the saturation point (message generation rate at which 

network saturates) and expressions for the latency as a function of 

the message generation rate under the assumptions of the “mean 

field” theory have been obtained. It has been found that the 

saturation point is inversely proportional to the message length 

and to the distance between the source and destination. The 

theoretical results are in a good agreement with small-scale 

simulation experiments. 

Keywords— computer interconnection networks, network-on- 

chip, network torus topology, cut-through routing, latency, 
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I. INTRODUCTION  

Modern approach to supercomputer design relies on 
massively parallel computers (MPCs) characterized by scalable 
architecture. As a result, these computers offer corresponding 
gains in performance as the number of processors is increased. 
Parallel code execution in such systems requires extensive 
communications between otherwise independent nodes. Since 
memory is not shared between node processors, interprocessor 
communications are achieved by passing messages between 
nodes through a communications network. This 
communications network is implemented as a network of 
interconnected routers (each having its local processor) (e.g., [1-
31]). Many commercially available parallel computers use 
hypercube or mesh networks configuration. The same principles 
are observed in popular network-on-chip (NoC) architecture and 
routing techniques. These network configurations provide 
convenient modularization and required scalability. 

Various routing techniques are used in interconnection 
networks (e.g., [2-8, 13-29]). Store-and-forward approach is 
based on the assumption that an entire message must be received 
at any intermediate node before it can be forwarded to the next 
node. Obviously, for a long message, the total delivery time may 
turn out to be quite large. To the contrary, in wormhole routing, 
each message is divided into small packets – flits. The header 
flit contains information about source and destination, and is 
routed through the network according to this information and 
routing algorithm. Other flits of the message follow the header 

flit. When header flit of the message is blocked at an 
intermediate node because the requested link is occupied by 
another message, the flits are buffered at each node along the 
path up to the current node. This forms a long “worm” which 
remains in the network blocking other messages, thereby 
increasing their delivery time. Also, the problem of deadlocks 
emerges in this approach and should be dealt with (e.g., [21-24]). 

Virtual cut-through (VCT) routing algorithm is supposed to 
mitigate the drawbacks of both the above-mentioned techniques 
(e.g., [6, 8, 14-17, 19, 25-27]). Unlike the wormhole approach, 
in VCT routing, if the next node cannot accept the message, the 
current node must still be able to buffer the rest of the incoming 
message from previous nodes. Thus the VCT algorithm achieves 
a much higher throughput and avoids deadlocks at the expense 
of increased buffer capacity. 

Several papers were devoted to the comparison between 
different routing techniques (e.g., 15, 19). Analytical models of 
interconnection networks were considered in (2, 3, 26, 31). 
Certain practical implementations were described in (6, 7, 20, 
25, 27). 

Network latency in VCT networks is defined as the average 
time from the moment a message is generated by the source 
processor to the moment when the last flit of the message enters 
the consumption channel of the destination processor. The 
network latency consists of propagation delay, router delay, and 
contention (blockage) delay. 

In this paper, we study network latency and saturation using 
the VCT routing policy. At each network node, we introduce an 
(unlimited) storage buffers.  The “unlimited” buffer model 
means in practice that the network throughput is limited by the 
link occupancy (utilization), rather than by the buffer capacity. 
So, after the header is blocked, the “worm” collapses 
(“condenses”) into the storage buffer. This method prevents 
deadlocks and improves network performance (increases 
bandwidth, decreases latency, delays saturation).  

II. COMMUNICATION NETWORK MODEL  

The following assumptions have been made for the network 
model implementation: 

• The storage buffers are unlimited and use FIFO (first-in, 
first-out) policy. 
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• The same clock is used for all network nodes. 

• When message is generated, it takes one time unit for its 
header (if not blocked) to appear at the router internal 
input port. 

• It takes two time units (a time unit can include one or 
more clock cycles) to move a header flit from a router 
input port to its output port. 

• It takes one time unit to move a flit (except the header) 
from a router input port to its output port. 

• It takes one time unit to move a flit from the router output 
port to the input port of the next node (to go through the 
link). 

A. Network topology model 

In many systems where the VCT routing may be used, the 
physical distance between communication nodes is small and 
thus unimportant. In such systems, real network topology can be 
abstracted without loss of generality as easily constructed lower-
dimension meshes and tori. This paper deals with two-
dimensional torus networks. The symmetry of toroidal networks 
leads to a more balanced utilization of communication links than 
“open” mesh topologies and improves scalability. 

Each node in such a network consists of a router and a local 
processor. Each router has four external input/output (I/O) 
channels, and one internal input/output channel to the local 
processor. All I/O channels are bidirectional so that two 
messages may travel simultaneously in the opposite directions 
between the nodes. 

B. Routing 

Each input/output port of the router contains three buffers: 
input buffer, output buffer and output storage buffer.  

All input and output buffers can hold only one flit at a time. 
In our model, the storage buffer (which is an extension of the 
output buffer) is assumed to be “unlimited”. This means that it 
can hold as many messages as needed at each moment of time. 
The local processor has the same one-flit sized input and output 
buffers. Suppose that the local processor generates message M1 
at time t1, and another message M2 at time t2 (t2 > t1). It is 
possible that at time t2 the router is still processing message M1 
and link from the local processor to the router is busy. To handle 
this situation, let’s introduce an unlimited storage buffer like 
the one at the external port, so the local processor can store the 
message M2 in its output storage buffer until the link is free. As 
a result, external and internal ports have the same three-buffer 
architecture. This enabled us to use the same software 
implementation for external and internal ports. 

It is believed that in real-life implementation the router 
processor needs more time (more time units) to route header flit 
(to decode destination, look up routing table, and decide on 
which output port to send) then to route remaining flits. This 
asymmetry is modeled by assigning two time units in the router 
for routing the header flit. Because all other flits of the message 
just follow the header, it takes one time unit in the router to send 
them to the correct output port. 

Network contention occurs if two messages compete for the 
same channel. VCT networks generally outperform 
store­and­forward networks when the traffic patterns are sparse, 
but suffer substantial contention (leading to performance 
degradation) when the traffic is heavy. One way to address the 
issue of contention is to use adaptive routing, which allows a 
message to take an alternative path when primary path (defined 
in the routing table) is blocked by another message. 

The deadlock-free adaptive unicast VCT routing algorithm 
is described below. 

• Every router has a (static) two-dimensional routing table 
relating minimum length path from each of the router’s 
four output ports to each network node. 

• The routing table is used to perform dynamic routing 
based on the following set of rules: 

o If the current node (node to which the 
message header has arrived) is the 
destination, the header is routed to the internal 
port connecting to the local processor. 

o Else header of the message is sent from the 
input port to the output port which has the 
shortest path to the destination node.  

o In general, more than one output port may 
have the minimum distance to destination, so 
the header is routed to the first available (free) 
port, where “first” refers to the port with the 
smallest number. 

o If all ports with minimum distance to the 
destination are busy, the router sends the 
header to the storage buffer of that one from 
these ports whose number is the largest one. 

• If more than one simultaneously arrived headers should 
be routed to the same output port based on the rules 
described above, the header of the message with the 
smallest identification number will be processed first, 
and the header(s) of message(s) with larger identification 
number(s) will remain in the output storage buffer.  

• Flits follow the header. If header motion is blocked, the 
header is routed to the storage buffer, all flits follow the 
header and accumulate (condense) in the storage buffer.  

This routing algorithm assures that every link in the 
message path is occupied no longer than time equal to the 
message length. 

C. Message generation 

Assume that at each time unit, every node in the network 

can generate a message with probability  independently of all 
other nodes. Destination nodes for generated messages are 
selected randomly among nodes having the specified distance l 

from the source node. Obviously, increasing  increases the 
network load (the number of messages simultaneously traveling 
in the network), which, in turn, leads to the latency growth until 
network saturation is reached. 



III. THEORETICAL CONSIDERATIONS 

A. Network states 

Consider three different network states: startup, steady 
state, and saturation. 

When network simulation starts up, initially there are no 
messages in the system. Then, new messages start appearing in 
the network. Even in the absence of other messages, certain 

time min is required for a message to reach its destination. 
During this time more messages can be generated, so initially 
after the startup the number of messages in the network 
increases. When network reaches its steady state, the average 

number of messages generated during time t equals the 

average number of messages delivered during the same time t, 
so that the number of messages in the system (in transit from 
source to destination) becomes approximately constant over 
time. For a meaningful evaluation of the latency, network must 
reach its steady state before data on the network behavior 
should be collected. 

The network load increases with the number of messages 
present in the network and with the message length, since 
longer messages occupy links for longer time. As a result, for 
each message length, the network can accommodate only a 
limited range of message generation rates. If message 
generation rate is too high, the number of messages generated 

during time t exceeds the number of messages that can be 
delivered during this time, and the number of messages in the 
system is increasing with time with no bound. Thus, the latency 
tends to infinity, and network becomes dysfunctional.  This is 
the state of saturation. 

The rigorous theoretical analysis of the network 
performance with the VCT routing is a challenging problem 
that, as far as it is known to us, has not yet been done even under 
the conditions of Jackson’s theorem [29]. Here our task is 
restricted to deriving an expression for the saturation point 
(message generation rate at which network saturates) and 
approximate expressions for the latency. 

B. Latency and saturation point 

The goal of our analysis is to find out how the network 
performance characteristics, such as latency and saturation 
point, depend on the parameters of communication, in 
particular, the message length m and the distance from the 
source to destination l. Therefore, we follow the classical rule 
“change the factors by one” and assume the values of m and l 
fixed for a particular communication session.  

Let m be the length (the number of flits) of a message, n − 

the number of nodes, N − the number of messages in the 

network at a given moment of time,   − the network latency, as 

defined in section 1, and  − the link utilization (the probability 
that a link is occupied during a unit time interval).  

Let min be the minimum time required for a message to 
reach the destination (the so called base latency). Consider the 

case of very small  (no blockages). A header needs one time 
unit to move from the output port of a router to the input port 
of the next one, two time units to move from the input port to 
the output port in the same router and m time units to move all 

m flits through the consumption channel into the local 

processor at the destination node. It follows that min= 3(l + 1) 

+ m. Obviously, in the case of contention,   ≥ min. 

Denote by L the total average number of links occupied by 

a message during all its average lifetime . Then, in the steady 

state,  𝑁
𝐿

𝜏
= 4𝑛𝜌, where 4n is the number of links (in both 

directions) in a 2-dim toroidal mesh. By Little’s theorem, N = 

n. Hence 

𝜆𝐿

4
= 𝜌       (1) 

Equation (1) is exact and is fulfilled for the whole range of 

values of  provided the network is in the steady state. In 

general, both L and  are functions of  Consider the case 

when  is close to the critical value cr  that corresponds to 

saturation. Then  → 1,which means almost no free links exist 
in the system. As a result, the delay at every router becomes very 
long, so that all flits of a message get condensed in the output 
buffer of the router and after that do not occupy any links. It 
follows that at any time interval at most one link is occupied by 
a message. Because of the “condensation”, the total number of 
links occupied by a message during all the time the header 
spends in one router is 3 + (m – 3) = m. Thus 

lim
𝜌→1

𝐿 = 𝐿lim = 𝑙𝑚    (2) 

By (1) and (2), an expression is obtained for the critical value 

cr  

𝜆𝑐𝑟 =
4

𝑙𝑚
                  (3) 

In the spirit of Jackson’s theorem [29], let’s assume that all 
events when a link is free or occupied are independent. (This 
assumption is analogous to the “mean field theory” in statistical 
physics). Then the probability p(i) of delay i due to blockage is  

𝑝(𝑖) = (1 − 𝜌)𝜌𝑖  (i = 0, 1, 2, …)         (4) 

The average time delay d() in a router due to contention is 

𝑑 = 𝑑(𝜌) = (1 − 𝜌) ∑ 𝑖𝜌(𝑖) =
𝜌

1−𝜌

∞
𝑖=0    (5) 

An approximation for latency   as a function of the 

generation rate  can be obtained based on following analysis. 

Let message length m satisfy inequality 𝑚 ≥ 2𝑙 + 2. Let us 
assume for the moment that d is the exact value of the blocking 
delay at every router k (k is the number of links from the source 
to the router). Then the general expression for the latency is 

𝜏 = (𝑙 + 1)(𝑑 + 3) + 𝑚  (6) 

The details of the propagation of the message along its path 
are different for three different ranges of values of d. 

1. Small d:  𝑑 ≤  
𝑚+1

𝑙+1
  ̶ 3 

2. Intermediate 𝑑: 
𝑚+1

𝑙+1
  ̶ 3 < 𝑑 < 𝑚 − 2 

3. Large 𝑑: 𝑑 ≥ 𝑚 − 2 

Consider these three cases separately. 



1. 𝑑 ≤  
𝑚+1

𝑙+1
  ̶ 3. Then, at the end of the period of d +3 time 

units when the header remains in router k, the message 

occupies all k links. Because of condensation there are d + 2 

flits in the router k and d + 3 flits in routers from 0 to k – 1. 

The number of flits remaining in the local processor of the 

source is 𝑚 − (𝑘 + 1)(𝑑 + 3) + 1. It is readily seen that the 

total number L of links occupied by the message during its 

lifetime is 

𝐿 = (𝑑 + 3) ∑ 𝑘 
𝑘𝑑
𝑘=1 + 𝑙[(𝑚 − (𝑙 + 1)(𝑑 + 3) + 1] +

          (𝑑 + 3) ∑ 𝑘 
𝑘𝑑
𝑘=1 − 𝑙 = 𝑙𝑚                                        (7) 

2. 
𝑚+1

𝑙+1
  ̶ 3 < 𝑑 < 𝑚 − 2 . The dynamics of propagation is 

different in this case. Let kd be the number of the router for 

which 𝑘𝑑 =
𝑚−𝑑−2

𝑑+3
. Then, the message always occupies k 

links when the header is in the router k if k ≤ kd . The message 

occupies kd + 1 links during d + 2 time units and kd links 

during one time unit, when the header is in router k, 𝑘𝑑 +
1 ≤ 𝑘 ≤ 𝑙 . It follows that the total number L of occupied 

links is 

𝐿 = (𝑑 + 3) ∑ 𝑘 + (𝑑 + 2)(𝑙 − 𝑘𝑑) + (𝑙 − 𝑘𝑑)𝑘𝑑 +
𝑘𝑑
𝑘=1

(𝑑 + 3) ∑ 𝑘
𝑘𝑑
𝑘=1 − 𝑘𝑑 = 𝑙𝑚                           (8) 

3. 𝑑 ≥ 𝑚 − 2 . In this case, all flits condense in one router 
before the header propagates to the next router. As discussed 
above, the total number of occupied links is the same, as in 
two other cases: L = lm.  

Thus, in general, the total number of links occupied by a 

message during all its average lifetime   does not depend on :  

L = lm   (9) 

In fact, the blockage delay is not a constant, but a random 
variable i distributed according to (4), with the expected value 

given by (5): 𝑑 =
𝜌

1−𝜌
. Hence, the average delivery time (the 

latency)  being a linear function of the delay, can be expressed 
as  

𝜏 = (𝑙 + 1)(𝑑 + 3) + 𝑚 = (𝑙 + 1) (
𝜌

1−𝜌
+ 3) + 𝑚     (10) 

Substituting L = lm in (1), an expression for utilization is 
obtain: 

𝜌 =
𝜆𝑙𝑚

4
=

𝜆

𝜆𝑐𝑟
       (11) 

It follows from (10) and (11) that 

𝜏 = (𝑙 + 1) (
𝜆𝑙𝑚

4−𝜆𝑙𝑚
+ 3) + 𝑚     (12) 

Expression (12) shows that transition to saturation is a 
second-order (continuous) phase transition with a critical 
exponent equal to 1, in agreement with the “mean field” theory. 

Note that for small  ( 𝜆 ≪
4

𝑙𝑚
), the latency is a linear 

function of  and depend linearly also on the length of the 
message m, while the dependence on the distance l has a small 
quadratic term. For illustration purposes it is convenient to use 
expression (10) that yields the latency in terms of utilization ρ. 

The plots of τ as function of ρ with m and l as parameters are 
given in Figure 1. 

Consider now which buffer capacity is sufficient to justify 
our idealization of “unlimited buffers”. According to Little’s 
theorem [1], the average number of messages in the system 
under the steady-state condition is 𝑁 = 𝜆𝑛𝜏 . Assuming the 
worst case, when all messages are collapsed in storage buffers,  

 

Figure 1. Theoretical evaluation of latency  as a function of utilization ρ. l = 2, 
3 hops, m = 5, 10, 20 flits. 

the average number of flits per buffer is 
1

4
𝓂𝜆𝜏. Therefore, the 

required buffer size depends critically on how close is the 

working range of  to 𝜆𝑐𝑟: 

𝐵 ≈
1

4
𝑚𝜆𝜏 =

𝜆

𝜆𝑐𝑟
[(1 −

1

𝑙
) (

𝜆
𝜆𝑐𝑟

⁄

1−𝜆
𝜆𝑐𝑟

⁄
) +

𝑚

𝑙
]         (13) 

If, e.g., 𝜆 ≤ 0.9𝜆𝑐𝑟 =
3.6

𝑙𝑚
, then the buffer capacity B should be 

of order of 𝐵 ≈ 8.1 (1 +
1

𝑙
) + 0.9

𝑚

𝑙
. If 𝜆 ≤ 0.99𝜆𝑐𝑟, then 𝐵 ≈

98 (1 +
1

𝑙
) +

𝑚

𝑙
. 

IV. SIMULATION 

A brief review of our simulation experiments is given here. 
More results and an extended presentation included in [32]. 

A. Simulation procedure 

The relatively small network sizes have been chosen in order 
to reduce the simulation time. The distances from source to 
destination and the message lengths varied for different 
experiments, but were assigned prior to the simulation and kept 
constant during simulation run. 

The network performance is characterized by latency 
(average delivery time) as a function of the network load, and 
by its saturation load, which describes maximum network 
capacity. The latency is obtained by averaging delivery times 
for all messages generated during time T. The time T is selected 

according to the value of  so that the total number of messages 
generated in the system during time T per each destination node 

will be about the same for all values of  (this number is about 
120 in our experiments). Since the average number of messages 



generated per unit of time is proportional to  the following 
empirical formula has been used to estimate T: T ≈ 10×4l/λ. 

To ensure that the network is in its steady state during data 
collection period, the delivery time was recorded for messages 
generated within time interval (tmin, tmin + T), where tmin was 
sufficiently large. Time interval tmin = 50000 time units was used 
in our experiments. 

 Message latencies for the 2-hop path in 4×4, 6×6 and 8×8 

meshes are shown in Figure 2 for message lengths m = 5 
(blue), m = 10 (red), and m = 20 (green). Results are shown 
using star symbols (٭) for 4×4 mesh, circles (○) for 6×6 mesh, 
and crosses (×) for 8×8 mesh. Similar results for 3 hops paths 
are shown in Figure 3. 

 
Figure 2. Latency as function of  for l = 2 and various message lengths: m = 5 

(blue lines), m = 10 (red lines), m = 20 (green lines). Mesh sizes: 4x4(•), 6x6(○), 
8×8(×). 

 
Figure 3: Latency as function of  for l = 3 and various message lengths: m = 5 

(blue lines), m = 10 (red lines), m = 20 (green lines). Mesh sizes: 4×4(•), 6x6 
(○), 8×8 (×). 

Obviously, the network load increases with the message 
length. Let’s hypothesize that the network load is proportional 
to the product of the message length m and the message 

generation rate . Then one can expect that the message 

generation rate at which network saturates (cr) is inversely 

proportional to the message length m. The theoretical foundation 
for the hypothesis is given in Section 3. 

The results of our numerical experiments are in a good 
agreement with this hypothesis (see Figure 4). It is seen that for 

all cases, when s ≥ 2l the dependence of cr of the message 

length m can be closely approximated as cr = 0.8/m (solid red 
line in Figure 4). 

 

 
Figure 4. Message generation probability at which network saturates (cr) as a 

function of the inverse message length 1/m. Red line sat = 0.8/m shown for 
reference. 

B.  Number of Messages as a Function of Message Load 

In the steady state, the relationship between the average 
number of messages in the system and the latency is given by 

Little’s theorem [1] N = λnτ. Here N and  are expected values 
of two random variables: number of messages in the network Ns, 
sampled over the total period of observation, and the sample 

delivery time s. Therefore, the values of Ns and s fluctuate with 

time and the relationship between Ns and s satisfies Little’s 
theorem only approximately.  

 

Figure 5. The number of the messages in the network as function of . Solid 

line: measured during simulation; dashed line: calculated by the use of Little’s 

theorem; message length m = 5 flits; path length l = 2 hops. 

 



Values of Ns have been measured by averaging the number 
of messages in the network from tmin up to the end of simulation, 
as well as calculated the number of messages in the network 

using the observed values of s. As shown in Figures 5 and 6, the 
directly measured values of Ns and those calculated by the use 
of Little’s theorem are in a very good agreement, which supports 
the validity of the simulation experiments. However, note that 
when network state is closed to saturation, the calculated 
number of messages usually exceeds the measured value.    

 
Figure 6. he number of messages in the network as function of . Mesh size 

8×8. Message length m = 10 flits. Path length l = 3 hops. Solid line: measured, 

dashed line: calculated. 

V. CONCLUSION 

An analytical model of a 2-dimensional toroidal 
interconnection network with virtual cut-through routing has 
been studied. Exact analytical expression for the saturation 
point and expressions for the latency as a function of the 
message generation rate under the mean field theory 
approximation have been obtained. 

• The critical value of the probability of message 

generation  = cr is inversely proportional to the 
distance between the source and the destination l and the 

length of messages m: 𝜆𝑐𝑟 =
4

𝑙𝑚
 . 

• The latency  at the saturation point experiences a 
second-order (continues) phase transition with the 
critical exponent equal to 1. 

• For small values of , the latency grows as a linear 

function of . 

Simulation experiments have been performed in order to 
find out and analyze certain empirical relationships that can 
be used as a starting point for a deeper theoretical analysis 
and further research. In particular, the following results have 
been obtained. 

• Network behavior (latency and saturation point) does not 
depend on the mesh size if the mesh is “large enough” 
compared to the path length. As an appropriate criterion, 
the mesh linear dimension should be at least twice as 

large as the message path length: s ≥ 2l. 

• If the network is in the steady state, the independently 
measured number of messages Ns and the average 

delivery time s are in a good agreement with Little’s 
theorem for their expected values N = λnτ. 
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