
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2020

An experimental study of memory

management in Rust programming for

big data processing

https://hdl.handle.net/2144/41789

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BOSTON UNIVERSITY

METROPOLITAN COLLEGE

Thesis

AN EXPERIMENTAL STUDY OF MEMORY MANAGEMENT IN RUST

PROGRAMMING FOR BIG DATA PROCESSING

by

SHINSAKU OKAZAKI

B.S., Seikei University, 2018

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2020

c© 2020 by
SHINSAKU OKAZAKI
All rights reserved

Approved by

First Reader

Kia Teymourian, PhD
Assistant Professor of Computer Science

Second Reader

Eugene Pinsky, PhD
Associate Professor of the Practice

Third Reader

Reza Rawassizadeh, PhD
Assistant Professor of Computer Sicence

Acknowledgments

Foremost, I would like to show my appreciation to my advisor Prof. Kia Teymourian for his guid-

ance, encouragement and support. His expertise and insights were essential for this research work.

His passion for research and education motivates me and his experience is instrumental to the com-

pletion of the thesis.

I am especially thankful to Prof. Eugene Pinsky for accepting reviewing of this thesis. I also

thank Prof. Reza Rawassizadeh for review and advice on this thesis.

Finally, I would like to express special thanks to my parents for supporting this excellent edu-

cational opportunity.

iv

AN EXPERIMENTAL STUDY OF MEMORY MANAGEMENT IN RUST

PROGRAMMING FOR BIG DATA PROCESSING

SHINSAKU OKAZAKI

ABSTRACT

Planning optimized memory management is critical for Big Data analysis tools to perform faster

runtime and efficient use of computation resources. Modern Big Data analysis tools use application

languages that abstract their memory management so that developers do not have to pay extreme

attention to memory management strategies.

Many existing modern cloud-based data processing systems such as Hadoop, Spark or Flink

use Java Virtual Machine (JVM) and take full advantage of features such as automated memory

management in JVM including Garbage Collection (GC) which may lead to a significant overhead.

Dataflow-based systems like Spark allow programmers to define complex objects in a host language

like Java to manipulate and transfer tremendous amount of data.

System languages like C++ or Rust seem to be a better choice to develop systems for Big

Data processing because they do not relay on JVM. By using a system language, a developer has

full control on the memory management. We found Rust programming language to be a good

candidate due to its ability to write memory-safe and fearless concurrent codes with its concept of

memory ownership and borrowing. Rust programming language includes many possible strategies

to optimize memory management for Big Data processing including a selection of different variable

types, use of Reference Counting, and multithreading with Atomic Reference Counting.

In this thesis, we conducted an experimental study to assess how much these different memory

management strategies differ regarding overall runtime performance. Our experiments focus on

complex object manipulation and common Big Data processing patterns with various memory man-

agement. Our experimental results indicate a significant difference among these different memory

strategies regarding data processing performance.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Description . 2

2 Related Work 4

2.1 Introduction . 4

2.2 Operating Systems . 4

2.2.1 Memory and Process in Operating Systems 4

2.2.2 Multi-threading and Parallelism . 5

2.2.3 Memory management in Operating System 5

2.2.4 Demand Paging . 7

2.3 Linear Algebra Computation . 7

2.3.1 BLAS LAPACK . 7

2.3.2 Netlib-Java . 8

2.3.3 Matrix Computation and Optimization in Apache Spark 9

2.3.4 Memory Management of each Linear Algebra Library 10

2.4 Hadoop MapReduce to Spark . 10

2.5 Apache Spark . 12

2.5.1 Resilient Distributed Datasets . 12

2.5.2 Memory Management in Spark . 12

2.6 Garbage Collection Tuning . 14

2.7 Application to System Language . 15

2.8 Rust Memory Management . 16

2.8.1 Ownership . 16

vi

2.8.2 Move . 17

2.8.3 Borrowing . 21

2.9 LLVM . 21

2.10 Summary . 22

3 Conceptual Design of Experiments 24

3.1 Introduction . 24

3.2 Types of Variables . 24

3.3 Reference Count . 25

3.4 Multithread . 26

3.5 Tree-aggregate . 26

3.6 K-Nearest-Neighbors . 27

3.7 Complex Objects . 28

3.8 Summary . 29

4 Evaluation Result 31

4.1 Introduction . 31

4.2 Experimental Set and Detail . 31

4.2.1 Wikipedia Data Sets . 31

4.2.2 Experimental Details . 31

4.3 Experiment 1: Accessing Objects with Different Variable Types 32

4.3.1 Result . 32

4.3.2 Discussion . 33

4.4 Experiment 2: Assessment of different reference methods in Rust 33

4.4.1 Result . 34

4.4.2 Discussion . 35

4.5 Experiment 3: Merge-sort . 36

4.5.1 Result . 37

4.5.2 Discussion . 37

4.6 Experiment 4: Tree-aggregation . 38

vii

4.6.1 Result . 40

4.6.2 Discussion . 41

4.7 Experiment 5: K-Nearest-Neighbors . 42

4.7.1 Result . 44

4.7.2 Discussion . 45

4.8 Summary . 48

5 Conclusions 49

A Linear Algebra Computation 51

A.1 Create Java interface of CBLAS with JNI . 51

References 53

Curriculum Vitae 55

viii

List of Tables

4.1 Parameter of KNN algorithms . 43

4.2 Index of Algorithm . 45

ix

List of Figures

2·1 Java Heap Structure . 14

2·2 Java Garbage Collection . 15

2·3 Representation of Rust Vec<i32> . 17

2·4 Representation of Java ArrayList of String . 18

2·5 Representation of Java ArrayList of String after assignment to another variable . . 19

2·6 Representation of C++ vector of string . 20

2·7 Representation of C++ vector of string after assignment to another variable 20

2·8 Representation of Rust Vec<String> after assignment to another variable 21

3·1 Memory Representation of Owner, Reference, and Slice Type 25

3·2 Representation of aggregation strategies in Apache Spark: (a) Traditional Aggrega-

tion, (b) Tree Aggregation . 27

3·3 Representation of Customer objects Whose fields are different variable type: (a)

CustomerOwned struct whose fields are all owned (b) CustomerBorrowed struct

whose fields are borrowed with reference (c) CustomerSlice struct whose fields are

borrowed with slice for sequence value, otherwise reference (d) CustomerRc struct

whose fields are reference counting . 29

3·4 Representation of Order objects Whose fields are different variable type: (a) Or-

derOwned struct whose fields are all owned (b) OrderBorrowed struct whose fields

are borrowed with reference (c) OrderSlice struct whose fields are borrowed with

slice for sequence value, otherwise reference (d) OrderRc struct whose fields are

reference counting . 30

4·1 Runtime of Access to Different Pointer Types with Vec Size Initialization 33

4·2 Runtime of Access to Different Pointer Types without Vec Size Initialization 34

x

4·3 Runtime for dropping Customer Object . 35

4·4 Representation of Source Vector . 37

4·5 Runtime of Sorting Elements of Customer Vector 38

4·6 Aggregation function with Arc . 40

4·7 Aggregation function with deep-copy . 40

4·8 Runtime of Tree-aggregate algorithm . 41

4·9 Total runtime whole KNN algorithm (seconds) 46

4·10 Total runtime of preprocessing phase in KNN (seconds) 47

4·11 Total runtime of query phase in KNN (seconds) 48

A·1 Integration of Native Methods . 52

xi

1

Chapter 1

Introduction

1.1 Motivation

Cluster computing tools for Big Data Analysis have been more important as magnitude and qual-

ity of data that we can obtain increases. Recently, almost all businesses stand on data, from web

marketing analysis to factory automations. The leverage of data is ubiquitous, because there are

many open source tools to analyze data and cloud computer infrastructure which can support com-

putation for massive amount of data. The improvement of accessibility to these technologies has

democratized data driven businesses by eliminating significant amount of initial investment.

However these computation resources do not come for free; we need to pay money to use these

resources. Usually, users need to pay depending on usage of computational resources. If your

process of data analysis is too long or needs to use number of clusters with high speck specification,

the cost may end up significantly hight. To address these problems, the quality of analysis tool is

critical. If the tool can optimize the runtime performance and usage of computational resources, the

cost for running the businesses can become efficient.

Multiple cluster computing analysis tools have been developed, such as Hadoop MapReduce [2],

Apache Spark [3], and Apache Flink [1] [9]. These tools have brought reliable and scalable ways

to deal massive data. These has become widely popular, in which data-parallel computations are

executed on clusters of unreliable machines by systems that automatically provide locality-aware

scheduling, fault tolerance, and load balancing.

These tools are constructed on top of Java Virtual Machine (JVM). JVM abstracts hardware

and memory management from the developer so that the development is fairly easy. In addition,

Java or Scala compiled code is platform-independent, which can run on any machine with JVM.

However, these advantages may be really critical weaknesses when it comes to processing big data.

2

JVM abstract away most detail regarding memory management from the system designer, including

memory deallocation, reuse, and movement, as well as pointers, object serialization and deserial-

ization. Since managing and utilizing memory is one of the most important factors determining Big

Data systems’ performance, reliance on a managed environment can mean an order-of-magnitude

increase in CPU cost for some computations. This cost may be unacceptable for a high-performance

tool development by an expert.

To overcome these problems, one can use programming languages with more control on hard-

ware, system languages, for development of Big Data tools. For example, C++ is a general-purpose,

statically typed, compiled programming language which supports multiple programming paradigm.

It is also a system language which gives full control over hardware. There are several researches or

projects [22] where developers and researchers implement Big Data tools with this language. These

tools shows significantly better performances than those developed with application languages. Al-

though the evidence of the advantage of building high speed computational tools with C++ has been

discovered, the steep learning curve and difficulty of writing memory safe codes are barriers to

technology diffusion.

Rust is a system language which gives the similar performance and control of hardware to C++

or C and safety of runtime. The memory-safety, and fearless concurrently in Rust programming

make the language one of the ideal candidate for development of Big Data tools. Since the design

of the language is different from any other programming languages, implementations that can be se-

lected for algorithms can differ from existing ones. In this thesis, we focus on memory management

strategy for Big Data processing algorithms in development with Rust.

1.2 Problem Description

Even though Rust can be a great candidate to develop Big Data processing tools, there are few

studies for development on such tools with Rust programming.

Rust has various ways to manage memory. Rust has different variable types for values allo-

cated in sequence of memory region. Each variables take different memory representation that can

produce variation of operation time on the variable types.

3

In addition, Reference Counting takes an important role in Rust ownership concept. By using

Reference Counting, a value is able to have multiple owners. This situation may happen quite often,

when we want to acquire complex values from contiguous memory regions. Reference Counting

has both advantage and disadvantage. Reference count can share data which might decrease unnec-

essary copy of data, but checking reference count might be a overhead.

Atomic Reference Counting is ubiquitous in Rust multithreading program. Atomic Reference

Count also has similar features to Reference Counting. In addition, it can be used among different

threads. This may lead additional overhead from atomic operation.

As we can see, we can choose various memory management strategies in Rust programming.

Therefore, we assess following research question in this thesis.

• What are better memory management strategies for complex object processing to perform

faster runtime performance.

• How much impact do different variable types in Rust have in order to algorithms’ runtime

performance?

• How much can algorithms runtime be improved or degraded, if we use Reference Count?

• What are better memory management strategies for faster Big Data processing in Rust multi-

threading?

• How can we improve runtime performance of common Big Data algorithms by Rust memory

management?

To answer these question, we conduct 5 experiments.

4

Chapter 2

Related Work

2.1 Introduction

This chapter describes the related work and concepts to our research in this thesis. In Section 2.2,

some topics in Operating Systems are described focusing on memory management in operating sys-

tems. Knowledge of operating systems helps us to understand how operating systems handle mem-

ory management and how other technologies takes advantage of them. Even though this thesis does

not focus on technologies used for Linear Algebra Computation, there are some active researches

in technologies in Linear Algebra Computation for Big Data processing. It is worth studying these

concepts explained in Section 2.3. In Section 2.4, major Big Data processing tools and improve-

ment of these tools are introduced. Then, Section 2.5 details technologies used for Apache Spark,

which is one of the most popular tools for Big Data processing. In Section 2.7 and Section 2.8, the

advantages of using System Language and Rust for such tools are discussed respectively. Finally,

Section 2.9 describes how LLVM thrives computer language development.

2.2 Operating Systems

2.2.1 Memory and Process in Operating Systems

A process is a subsection of computation job. A process can work on a CPU core, we can divide

process as well. Basically, each process does not share their memory. However, for multiprocessing,

we could avoid this restriction. Processes can be represented as tree structures, because a process

may create other child processes. Processes have 4 states, new, running, waiting, and ready. Pro-

cesses are represented in process control block (PCB) with state type, process ID, registers, and so

on. The scheduling for processes assigning to CPU core is implemented in queues containing PCB.

5

There are two main queues in this scheduler: ready queue and wait queue. The head of process in

ready queue is selected for execution and once the process requested I/O request or production of

child process, the running process will be stored n wait queue. Once the request that the process is

waiting for its end, the waiting process will be pushed tail of ready queue.

Processes executing concurrently in the operating system may be either independent processes

or cooperating processes executing in the system. A process is independent if it does not share

data with any other processes. A process is cooperating if it can affect or be affected by the other

processed executing in the system. In cooperating processes, there are two kinds, shared memory

and message passing. In shared memory, it removes restriction of not interfering memory region.

Message passing can be useful for distribution systems as well.

For a pair of processes to communicate through message, a socket is needed to be established. A

socket is identified by an IP address concatenated with a port number. When two process communi-

cate, each process will have socket. If another process of the same machine wants to communicate,

we need a new socket to be established. The protocol used in the socket connection can be TPC and

UDP.

2.2.2 Multi-threading and Parallelism

A thread is a basic unit of CPU utilization, so that a process can have multiple thread. Threads

share mainly code and data. Multi-threading is increasingly popular as the multicore programming

becomes in common, because we can run multiple thread on different core. Creating threads is much

cheaper than creating processes and it shares resources so that we do not need additional methods

to allow threads to communicate each other, such as sharing memory and message passing.

2.2.3 Memory management in Operating System

In computer storage hierarchy, the closest storage to CPU is register. It is built into each CPU

core and accessible within one cycle of the CPU clock. However, the same cannot be said of main

memory, which is accessed via a transaction on the memory bus. This takes many cycles of the

CPU clock. The remedy is to add fast memory between the CPU and main memory, typically on

the CPU chip for faster access. Such a cache plays a role for this.

6

For the layout of main memory, it must be ensured that each process has a separate memory

space, including operation system. The base register and limit register, whose roles are lower bound

of memory region and specific size of range respectively, can achieve that goal.

Usually, a program resides on a disk as binary executable file. To run, the program must be

brought into memory and placed within the context of a process. The process is bound to corre-

sponding parts of the physical memory. Starting processes binds programs to the memory address.

There three stages: compile time, load time execution time. The source program is compiled by

compiler producing object file. After the compilation, the object file is linked with other object file

by linker creating executable file . Finally, the executable file will be loaded to run execute. At this

run time dynamic library link can be done.

If the process will reside in memory at compile time, absolute code is generated. If this is

unknown at the time, the binding will be done at load time. At this time, the compiler must generate

relocatable code. Otherwise, the binding will be done at execution time.

A process does not interact with addresses of physical memory, instead virtual memory. The

memory-management unit (MMU) takes roles to map logical address to physical address. OS needs

to ensure that any of physical memory spaces of processes do not overlap. Since one process can

be created and deleted and the corresponding memory space should be de/allocated, optimization

for use of physical memory space is important; we need to allocate memory contiguously avoiding

fragmentation.

There are several approaches to deal with this problems. However, we will focus on paging

here, which is the most used method OS use to manage memory. A frame and page are a unit of

Separated physical and virtual memory space in fixed size (4KB or 8KB) respectively. A process

can use as many as pages and corresponding frames obtained by page table matching. This strategy

does improve external fragmentation, but not for internal fragmentation. The smaller size of page

has smaller fragmentation, but mapping from page to frame has overhead and also disk I/O is more

efficient when the amount of data transfered is larger.

7

2.2.4 Demand Paging

A process can have multiple pages. However, loading entire executable code from secondary storage

to memory is not necessarily needed to get jobs done. A strategy used in several operating systems

is loading only the portion of programs that are needed, demand page.

In the storage, some pages currently used are in memory and the others are in secondary storage.

The page table specifies whether pages are valid or invalid, which means are in memory or not.

Access to a page marked invalid causes page fault and some steps to resolve the error will be

required.

The first part of process of demand paging would be that we check an internal table to check

whether the reference is valid or invalid. If the reference is valid, the process reads the content

from the memory. Otherwise, we terminate the process and find the free frame in physical memory.

Then, we schedule a secondary storage operation to read the desired page into newly allocated

frame. When the storage finished reading the page, we modify the internal table to indicate that the

page is now in memory. Finally, we restart the instruction that was interrupted.

However, there could be a case where the memory does not have any free frame. In this case,

a victim frame that will be replaced with new coming frame should be selected. To perform this

selection efficiently, a modify bit is tracked for each frame or page. The modify bit represents

whether the page is modified since it is loaded from secondary storage. If the page or frame is

modified, when we swap page we need to update the content in the secondary storage. However, if

it is not modified, we can simply delete the frame and replace it with new frame.

2.3 Linear Algebra Computation

2.3.1 BLAS LAPACK

Basic Linear Algebra Subprograms (BLAS) [12] are standard building blocks for basic vector and

matrix operations. There are 3 levels of operation. The level 1 BLAS performs scalar, vector and

vector-vector operations, the level 2 BLAS performs matrix-vector operation, and the level 3 BLAS

performs matrix-matrix operation.

LAPACK [7] is developed on BLAS and has advanced functionalities such as LU decomposition

8

and Singular Value Decomposition (SVD). Dense and banded matrices are handled, but not general

sparse matrices. The initial motivation of development of LAPACK was to make the widely used

EISPACK [17] and LINPACK [10] libraries run efficiently on shared-memory vector and parallel

processors. LINPACK and EISPACK are inefficient because their memory access patterns disregard

the multi-layered memory hierarchies of the machines, thereby spending too much time moving

data. LAPACK addresses this problem by recognizing the algorithms to use block matrix operations,

such as matrix multiplication, in the innermost loops. These block operations can be optimized for

each architecture to account for the memory hierarchy, and so provide a portable way to achieve

high efficiency on diverse modern machines. However, LAPACK requires that highly optimized

block matrix operations be already implemented on each machine.

ARPACK [13] is also a collection of linear algebra subroutines which is designed to compute a

few eigenvalues and corresponding eigenvectors from large scale matrix. ARPACK is based upon an

algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM).

When the matrix is symmetric it reduces to a variant of the Lanczos process called the Implicitly

Restarted Lanczos Method(IRLM). The Arnoldi process only interacts with the matrix via matrix-

vector multiplies. Therefore, this method can be applied to distributed matrix operations required

in big data analysis.

2.3.2 Netlib-Java

Netlib-java [5] is a Java wrapper of BLAS, LAPACK, and ARPACK. Netlib-java chooses imple-

mentation of linear algebra depending on installation of the libraries. First, if we have installed

machine optimized system libraries, such as Intel MKL and OpenBLAS, netlib-java will use these

as the implementation to use. Next, it try to load netlib references which netlib-java use CBLAS and

LAPCKE interface to perform BLAS and LAPACK native call. The last option is to use f2j which

is intended to translate the BLAS and LAPACK libraries from their Fortran77 reference source code

to Java class files, instead of calling native libraries by using Java Native Interface (JNI).

We can use JNI to call native libraries from Java. The JNI is a native programming interface

which allows Java code that runs inside a Java Virtual Machine (VM) to interoperate with applica-

9

tions and libraries written in other programming languages.

2.3.3 Matrix Computation and Optimization in Apache Spark

Matrix operation is a fundamental part of machine learning. Apache Spark provides implementation

for distributed and local matrix operation [20]. To translate single-node algorithms to run on a

distributed cluster, Spark addresses separating matrix operations from vector operations and run

matrix operations on the cluster, while keeping vector operations local to the driver.

Spark changes its behavior for matrix operations depending on the type of operations and shape

of matrices. For example, Singular Value Decomposition (SVD) for a square matrix is performed

in distributed cluster, but SVD for a tall and skinny matrix is on a driver node. This is because the

matrix derived among the computation of SVD for tall and skinny matrix is usually small so that it

can fit to single node.

Spark uses ARPACK to solve square SVD. ARPACK is a collection of Fortran77 designed to

solve eigenvalue problems. ARPACK is based upon an algorithmic variant of the Arnoldi process

called the Implicitly Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it re-

duces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM).

ARPACK calculate matrix multiplication by performing matrix-vector multiplication. So we can

distribute matrix-vector multiplies, and exploit the computational resources available in the entire

cluster. The other method to distribute matrix operations is Spark TFOCS. Spark TFOCS supports

several optimization methods.

To allow full use of hardware-specific linear algebraic operations on single node, Spark uses

the BLAS (Basic Linear Algebra Systems) interface with relevant libraries for CPU and GPU ac-

celeration. Native libraries can be used in Scala are ones with C BLAS interface or wrapper and

called through the Java native interface implemented in Netlib-java library and wrapped by the Scala

library called Breeze. Following is some of the implementation of BLAS.

• f2jblas - Java implementation of Fortran BLAS

• OpenBLAS - open source CPU-optimized C implementation of BLAS

• MKL - CPU-optimized C and Fortran implementation of BLAS by Intel

10

These have different implementation and they perform differently for the type of operation and

matrices shape. In Sark, OpenBlas is the default method of choice. BLAS interface is made specif-

ically for dense linear algebra. Then, there are few libraries that efficiently handle sparse matrix

operations.

2.3.4 Memory Management of each Linear Algebra Library

The pure Java linear algebra library, such as La4j, EJML, and Apache Common Math, use normal

GC performed by JVM to manage memory. This is because the implementation of these libraries

are in purely Java.

Netlib-java, Jblas or other simple Java wrapper of BLAS, LAPACK, and ARPACK with Java

Native Interface (JNI) use normal GC as well. This is because the native code deals with Java array

by obtaining a reference to it. After the operation, the native method releases the reference to the

Java array with or without returning new Java array or Java primitive type object.

ND4J [4] has two types of its own memory management methods, GC to pointer of off-heap

NDArray, and MemoryWorkspaces. ND4J used off-heap memory to store NDArrats, to provide

better performance while working with NDArrays from vative code such as BLAS and CUDA

libraries. Off-heap means that the memory is allocated outside of the Java heap so that it is not

managed by the JVM’s GC. NDArray itself is not tracked by JVM, but its pointer is. The Java

heap stores pointer to NDArray on off-heap. When a pointer is dereferenced, this pointer can be a

target of JVM’s GC and when it is collected, the corresponding NDArray will be deallocated. When

using MemoryWorkspaces, NDArray lives only within specific workspace scope. When NDArray

leaves the workspace scope, the memory is deallocated unless explicitly calling method to copy the

NDArray out of the scope.

2.4 Hadoop MapReduce to Spark

Among Big Data mining tools that have been developed, the most notable ones are MapReduce and

Spark. MapReduce is a cluster computing framework which supports locality-aware scheduling,

fault tolerance, and load balancing. Spark is designed to improve performance for iterative jobs

11

keeping features of MapReduce.

MapReduce provides a programming model where the user creates acyclic data flow graphs to

pass input data through a set of operations. This data flow programming model is useful for many

of query applications. However, MapReduce framework struggles from two of main resent data

mining jobs: iterative jobs and interactive analysis.

Iterative job is especially common in Machine Learning algorithms, such as learning a data

model using Gradient Descent. In traditional MapReduce framework, each iteration can be ex-

pressed as single MapReduce job so that each job must reload the data from disk. This leads I/O

overhead and deteriorates performance of iterative algorithms.

Interactive analysis is also an inevitable task in modern data science. A data scientist wants to

perform exploratory analysis in interactive way. Nevertheless, MapReduce is designed in a way

more stable for ad-hoc queries, so each analysis can be single MapReduce job. To perform multiple

analyses to explore dataset, the data needs to be written to and reloaded from disk many times.

To overcome these limitations, Spark has been developed as a new cluster computing framework

maintaining the innovative characteristics of MapReduce and improving its iterative and interactive

jobs with in-memory data structure.

Some of the notable improvements are shown here[16]. For aggregation operations, map out-

put selectivity, which is the ration of the map output size to the job input size, can be significantly

reduced by using Spark. Spark uses a map side combiner, hash-based aggregation which is more

efficient than sort-based aggregation used in MapReduce. For iterative operations, caching the in-

put as Resilient Distributed Datasets (RDDs) can reduce CRU and disk I/O overheads for sequence

iteration. This RDD caching takes a significant role to improve iterative job, because it is more effi-

cient than other low-level caching approaches such as OS buffer caches, and HDFS caching. These

caching strategy reduces disk I/O overhead, but CPU overhead, such as parsing text to objects.

12

2.5 Apache Spark

2.5.1 Resilient Distributed Datasets

Major methods in Spark are Resilient Distributed Datasets (RDDs), a data structure that abstracts

distributed memory across different clusters. The immutable coarse-grained transformation, spark-

scheduler with lazy-evaluation, and memory management with cacheing achieve computation with

fault-tolerance, fast execution, and moderate control on memory efficiency [21].

A RDD is essentially a multi-layer Java data structure. A top RDD object references Java array,

which in tern, references a set of tuple objects. The coarse-grained transformations and immutability

requires a RDD to be deep-copied to produce a new RDD, but efficiently offers fault tolerance. The

lost partitions of a RDD can be recomputed in parallel on different nodes rather than rolling back

the whole program.

Spark-pipeline consists of sequence of transformations and actions over RDDs. A transforma-

tion produces a new RDD from a set of existing RDD. An action is a method that computes statistics

from an RDD. Due to lazy-evaluation nature, transformations do not materialize the newly created

RDD. Instead, RDD Lineages are created. Lineage is a graph among parent and child RDDs which

represents logical execution plan. This enhance fault-tolerance and improve ability to optimize

execution plan.

RDDs can be cached in memory for faster access by persist method. Developers can specify

a storage level for a persisted RDD, in memory with serialized or deserialized, or on disk. Other

than persisted RDD, Spark generates a lot of intermediate RDDs during execution. Since RDD is a

Java object, they are managed by Garbage Collection (GC) in the JVM. However, persisted RDDs

are never collected by GC. This GC might cause significant deterioration of performance of Spark,

because GC shows heavy overhead when there are a number of objects.

2.5.2 Memory Management in Spark

Spark framework allocates multiple executors, JVMs, that run sequence of transformations and

actions. As we describe the previous section, data in Spark is mainly stored as Java objects in

memory, so that they are allocated on JVM heap and managed by JVM Garbage Collection. The

13

data may form three types [19] [18]: Cached data, Shuffled data, and Operator-generated data.

Spark can cache data in memory to reduce disk I/O. This Cached data usually long-lived Java

objects and span multiple stages in Spark-pipeline. Spark allocates a logical storage space to store

the cached data as shown in Figure. After aggregation, Spark generates Shuffled data. Shuffled

data is usually long-lived, because it need to be kept in memory until the task ends. Spark allocates

execution space to store Shuffled data. The storage space and execution space spans 60 % of JVM

heap space in default. Operator-generated data is data generated by user-defined operations. Since

Operator-generated data may or may not be used, after the operation finish, the data object can be

both short-lived or long-lived objects. These are stored in user space allocated on default 40 % of

JVM heap.

All data of these types on JVM heap is managed by JVM GC. GC check reference graphs

of objects, mark whether the objects are used and deallocate memory space occupied by unused

objects. There are three popular GCs: Parallel, CMS and G1. All of these methods track generation

of objects based on the region of memory. The Java logical heap structure is shown in Figure 2·1.

As the figure shows, Java logical heap can be separated into three main parts where store objects

for each corresponding generation: permanent generation, young generation, and old generation.

The region for permanent generation stores metadata required by JVM to describe class and method

used in application which will be permanently lived on the region of memory. The overview of Java

GC is shown in Figure 2·2. The outer box represents region for particular generation. The inner box

and the number represents object and its age in GC.

The region for young generation mainly consists of two parts: Eden and Survivor space. First,

Java objects are created in Eden space and promoted to Survivor space when survive from GC. After

objects survive several GCs in Survivor space, they are finally promoted to old generation.

In region of old generation, JVM lunches multi-thread to perform GC. GC with multi-threading

suffers from Stop-The-World (STW) pauses; GC may suspend application threads while performing

object marking and deallocation. Different GC algorithms try to solve this problem with trade-off

between GC frequency and memory utilization.

Because of the problem of STW and copying objects to different physical memory pages , JVM

14

GC cause huge overhead when number of objects is large. Therefore, GC becomes a severe issue in

Big Data processing where it might produce significant number of object.

eden S0 S1 Tenured Permanent

Young Generation

Survivor Space

Old Generation Permanent Generation

Figure 2·1: Java Heap Structure

2.6 Garbage Collection Tuning

There are many different ways that one can improve the performance of GC in Java. One of these is

for example avoiding pointer-based data structures, such as HashMap and LinkedList. These objects

have a "wrapper" object for each entry so that number of objects tends to be larger than when when

an array is used.

Caching serialized objects in memory also reduces the number of objects and memory usage

since the set of objects become a byte or binary array. Spark SQL applications use DataFrames[8],

whose intermediate data are managed by an optimized memory manager named Tungsten. Tungsten

stores the intermediate data in a serialized binary form and performs aggregation functions directly

on he serialized objects. Therefore, the number of Java objects in memory is reduced and it reduces

the DC frequency and object marking/sweeping.

In addition, developers can allocate data off-heap of JVM to avoid tracking by GC. Facade[15]

proposed a compiler and runtime system to bound the number of in-memory data objects, through

storing data in an off-heap region and manipulating the data with control interfaces.

Although these memory management solution for GC help developer improve performance of

Spark applications, the effort to discover the best GC tuning afflicts developers.

15

0 0 0 0 0 0 0

1 1 11 1 1 11

0 0 0 0 0 0

122

eden

S0 S0

eden

S0 S0

0000 0

122

eden

S0

S0

0 0 0 0 0

23 1 1

00 0 0

18

eden

S0 S0

00 0 0 0

2 13 485 1

Tenured 9 9

After several Miner Garbage Collection

Young Generation

Old Generation

Figure 2·2: Java Garbage Collection

2.7 Application to System Language

Considering the overhead produced by Memory Management in JVM, use of system language for

development of Big Data tools can be a better solution rather than application languages, such

as Java and Scala. System languages, such as C and C++, are languages that give developers total

control over the hardware and de/allocation of memory without GC. These features enable programs

written in system languages to optimize performance taking full advantage of hardware.

For example, one can build Big Data tools with C++. C++ is one of the most popular system

languages which has Object-oriented features. C++ has functions which provide control over mem-

ory to developers. In another words, it is responsible for managing memory properly and safely.

The functions, malloc() and free(), take roll for memory allocation and deallocation in respectively.

The manual memory de/allocation may cause several problems and require developers attention to

the problems with significant effort for debugging and testing. Here, we explain two of the most

16

common problems regarding memory management in existing system languages.

Dangling pointer or reference is a pointer or reference pointing to object that no longer exists.

The situation of dangling pointer happens because of deallocation of memory without modification

of value of the pointer. If the memory region is reallocated for other objects and the dangling pointer

tries to access the original object, the unpredictable behavior may result.

Memory leaks occur when memory is allocated and no longer referenced so that the object

in the memory location cannot be reached and released. This is result of dereferencing object

without deallocation. Memory leaks consume more memory than necessary by making unreachable

location.

Some solutions are established to address these problems. Actually, GC is a high-level solution

that guarantees memory safety. C++ has a different solution called Resource Acquisition is Ini-

tialization (RAII). In RAII, objects can live within the scope where they are created. The memory

is released when the object goes out of scope. This solution is more predictable and deterministic

than GC. However, it is problematic when we need the object out of the scope, returning a value

from a function. There are several ways to go around this problems, such as smart pointers, copy

constructors, and move semantics. Nevertheless, these non-orthogonal concepts may disorganize

code and lead to error prone implementation.

2.8 Rust Memory Management

Rust is a system programming language which provides memory safety without runtime checking

like GC and necessity of explicit memory de/allocation. To ensure memory safety, Rust provides

restrictive coding patterns and checks lifetime of value and memory safety at compile-time. The

restrictive patterns also enables a developer to write fearless concurrent code that is free of data

races. Main concepts of Memory Management in Rust are ownership, move, and borrowing.

2.8.1 Ownership

In ownership feature or Rust, each value has a variable called owner. This owner has information

about the value, such as location in memory, length and capacity of the value. For example, the ob-

17

ject representation of Vec<i32> is shown in Figure 2·3. The upper boxes represent owner variable

in stack frame. The lower boxes represent contiguous memory allocated to store i32. Its capacity

is specified 10, but 7 values of i32 are stored. Therefore, there are still spaces to store 3 values of

i32 without reallocation of memory. This owner can live on the scope associated with its lifetime.

When the owner is dropped, the value will be dropped too. This feature is similar to how RAII in

C++ works. However, acquisition of owner out of the scope where it was constructed is available in

Rust with the concept of move.

10 7

1 10 3 5 2 5 100

buffer

capacity

length

capacity

length

Figure 2·3: Representation of Rust Vec<i32>

2.8.2 Move

In Rust, for most types of operations like assigning a value to a variable, passing it to a function,

or returning it from a function does not copy the value: it moves it. With each move, a value can

be transferred from one owner to another. The previous variable does not have ownership of the

value; it is moved to a newly assigned variable. To understand how this assignment implementation

is unique from other programing languages, Java, C++, and Rust code example of assigning list or

vector of strings are shown.

Below a few lines of code are initialization of list of string and reassigning it to other variables.

18

L i s t < S t r i n g >s = new A r r a y L i s t < >(

A r r ay s . a s L i s t (" lemon " , " o r a ng e " , " a p p l e "))

L i s t < S t r i n g > t = s

L i s t < S t r i n g > u = s

Figure 2·4 represents the memory allocated after a Java ArrayList of strings is initialized and as-

signed to variable called s. After assigning s to t and to u, the memory representation become

Figure 2·5. The assignments are simply setting pointers to the ArrayList object and increment ref-

erence count.

s t u

1 3 4

1 5 lemon

1 6 orange

1 5 apple

Java local
variable

reference
count

length

capacity

 ArrayList

object

list elements

strings

reference
count

length
text

Figure 2·4: Representation of Java ArrayList of String

Now, the analogous C++ code is shown below.

v e c t o r < s t r i n g > s = {" lemon " , " o r a ng e " , " a p p l e " } ;

19

s t u

3 3 4

1 5 lemon

1 6 orange

1 5 apple

reference
count

length

capacity

list elements

strings

reference
count

length
text

Figure 2·5: Representation of Java ArrayList of String after assignment to another
variable

v e c t o r < s t r i n g > t = s ;

v e c t o r < s t r i n g > u = s ;

Figure 2·6 shows the memory allocated when the vector is initialized. Figure 2·7 is a representation

of after the assignments of s to t and to u. In C++, assigning value of vector to other variables

involves allocating memory for new vector and copying the contents of the original vector to newly

allocated one.

In Rust code, the code is like below,

20

4 3

5 5 8 6 5 5

buffer

capacity

length

lemon orange apple

stack
 frame

heap

s

Figure 2·6: Representation of C++ vector of string

l e t s = vec ! [" lemon " . t o _ s t r i n g ,

" o r an g e " . t o _ s t r i n g ,

" a p p l e " . t o _ s t r i n g] ;

l e t t = s ;

l e t u = s ;

The representation of the original Vec of String in Rust is the almost same in C++ vector of

string. Figure 2·8 however shows different behavior when Rust assigns s to t. The value is moved to

stack

 frame

s t u

lemon orange apple lemon orange apple lemon orange apple

Figure 2·7: Representation of C++ vector of string after assignment to another
variable

21

t from s so that the source variable s is uninitialized. The Rust code actually throws compile error,

because we are assigning uninitialized variable at the last line.

4 3

s t

5 5 8 6 5 5

lemon orange apple

heap

stack

 frame

Figure 2·8: Representation of Rust Vec<String> after assignment to another vari-
able

2.8.3 Borrowing

Borrowing lets code use a value temporarily without affecting its ownership so that it reduces un-

necessary movement of ownership. One use case is when value is used in function and needed to be

passed to the argument. If the argument takes ownership and the function does not return the value,

the ownership of value goes out of scope and the memory is deallocated. One can pass reference of

the value to the argument instead of owner. The reference goes out of scope, but ownership remains

the same.

2.9 LLVM

LLVM (Low Level Virtual Machine) [11] is an umbrella project which contains components of

compilation of programming languages. Existing compilers have tightly coupled functionalities so

that it is not possible to embed them into other applications. However, the abstract framework of

LLVM decouples the functionalities into pieces and the pieces of functionalities can be reused.

In structure of a compiler, there are three main components; frontend, optimizer, and backend.

22

In frontend, a developer designs the interface of source programming language in a way where it can

be optimized by an optimizer. Then, backend takes optimized code and produce the native machine

code.

This separation of functionalities gives reusability to parts of the compiler. Establishing new

programming language requires new frontend, but the existing optimizer and back end can be

reused. This speeds up processes of developing new programming languages.

The reusability of compiler leads to support multiple programming languages so that broader

set of programmers are involved in the development. For open source projects like Rust, This ends

up larger community of potential contributors to the development.

Since implementation of frontend can be independent on optimizer and backend, development

of programming languages becomes easy for people without skills required to implement optimizer

and backFend. This thrives new language development.

LLVM has a component called LLVM Intermediate Representation (IR), which places itself

across frontend to optimizer. IR is designed to host mid-level analyses and transformations that

you find in optimizer section of a compiler. High-level language has many common structures and

functionalities, so most of all high-level program languages can be represented with IR. Once source

code is represented with IR, optimizer can easily find pattern and optimize it in faster time. IR is

useful in terms of frontend. This is because developer of language frontend need to know only how

the IR works and use the framework to develop a language.

Thanks to emerging of LLVM, many new programming languages and compilers have been

developed. Rust compiler is also developed based on LLVM.

2.10 Summary

In this chapter, we cover some of main concepts to understand our research. The topics of Operating

Systems and Linear Algebra Computation are not directly relevant to our research, but it is worth

covering these topics for deep analysis of experimental result. The advantage and disadvantage

of modern Big Data processing tools are discussed and some solutions are introduced. Finally,

how Rust can be a good candidate for development of Big Data processing tools and details of its

23

technologies are described. In the next chapter, we discuss main concepts needed to understand

theoretical assumptions of our experiments.

24

Chapter 3

Conceptual Design of Experiments

3.1 Introduction

This chapter discusses the concepts studied in our experiments. Section 3.2 explains different vari-

able types we can use in Rust programming. In Section 3.3, we explain the advantages and disad-

vantages of Reference Count in Rust. Multithread programming in Rust is studied in Section 3.4.

Two algorithms are discussed used in Big Data processing and examined in our experiments: Tree-

aggregate in Section 3.5 and K-Nearest-Neighbors in Section 3.6. Finally, Section 3.7 shows com-

plex object representations used in our experiments.

3.2 Types of Variables

In Rust, there are three variable types: owner, reference, and slice (only for sequence of values).

A developer is sometimes forced to use specific variable types. For example, some of methods are

only implemented to specific variable types. However, one can select any variable type for operation

in most cases.

These variables have different memory representation shown in Figure 3·1. The owner has

a pointer pointing to the memory address of sequence values, length of the values, and capacity

allocated to store additional values. Reference and Slice are variables borrowing value owned by

other variable. The reference is a pointer that points to the owner. The slice is a pointer that points

to memory addresses of sequence values. It has values such as length of sequence values stored

in the memory. Since they have different memory representations, an assumption is that it takes

different time to access the contents of the memory among these pointer types. We examine this

by constructing complex objects whose fields are these variable types. The details are explained in

Section 4.3.

25

0

1

2

3

4

5

6

7

8

9

index value

h

e

l

l

o

w

o

r

l

10 d

ptr

len

name value

11

capacity 11

owner

ptr

len

name value

5

slice

ptr

name value

reference

Figure 3·1: Memory Representation of Owner, Reference, and Slice Type

3.3 Reference Count

References are useful to avoid movement of ownership. However, one needs to track its lifetime

and explicitly includes it in code, because Rust compiler cannot infer it. This can be another encum-

brance. We can instead acquire multiple owners to single value by using Reference Counting (Rc).

By leveraging Rc, a value can be shared like what borrowing plays the role in Rust programming.

The difference is that Rc checks the number of owners pointing to the actual data and makes

sure the data is not deleted until all the owners are dereferenced. Using Rc is sometimes the pre-

ferred approach for developers especially when lifetime planning is extremely difficult. However,

the possible problems regarding Rc are the cost for tracking the number of references and allocating

memory on heaps instead of stacks. Having these assumption, an experiment is conducted to exam-

ine difference of runtime performance of dropping reference and Rc. This is explained in section

3.2.

26

3.4 Multithread

In Rust programming, writing concurrent code is relatively easy. The care Rust takes with reference,

mutability, and lifetimes is valuable enough in single-threaded programs, but it also is in concurrent

programming. Rust has tools to write concurrent code, such as threads, locks, atomic reference. One

can implement various concurrent codes for the same purpose with different memory management

strategies. The most ubiquitous tool used in Rust concurrent code is Atomic Reference Counting

(Arc).

Arc is a simple interface that allows threads to share data. Arc allows multiple variable to

have ownerships of a particular value similarly to Rc, but also supports atomic feature enabling the

ownerships exist in different threads. In many situation where developers write a multithreading

code, the deletion of Arc happens a significant amount of times. Similarly to Rc, our assumption is

that deletion of Arc also has overhead when we compare to normal references. To assess runtime

performances of algorithm with Arc vs normal references, we implement merge-sort algorithm in

two different ways.

3.5 Tree-aggregate

Finally, we implement some of common algorithms in Big Data processing. One of them is tree-

aggregate.

Tree-aggregate is a communication patten heavily used for Machine Learning algorithms in

Spark (MLlib [14]). The topology of aggregation patterns in Apache Spark are shown in Figure 3·2.

In the traditional aggregation functions in Spark, results of aggregation in all executor clusters are

sent to the driver. That is why this operation suffers from the CPU cost in merging partial results

and the network bandwidth limit. Tree-aggregate is a communication pattern which overcomes

these problems by breaking aggregate operation in multi-level represented like tree structure.

Spark generates intermediate objects from RDDs. In Tree-aggregation, aggregated HashMap

like data structure is created in each thread or node. When it aggregates objects in RDD, copies of

objects should be performed to construct intermediate aggregated data structure. In another possible

way that might be implemented, one can use references to the objects to perform aggregation instead

27

of copying the values themselves. In Rust, we can clone or get Arc (Rc if in single thread) of objects

to implement these operations.

Since Tree-aggregation algorithms generate and delete a lot of intermediate data structures, how

the data structures are constructed and how they are deallocated is an important concern in memory

management in this algorithm. In our experiment, tree-aggregation algorithms are examined in

multi-threading. The detail is described in section 3.2.

Executer

Executer

Executer

Executer

Executer

Executer

Executer

Executer

Executer

Driver

(a)

Executer

Executer

Executer

Executer

Executer

Executer

Executer

Executer

Executer

Driver

(b)

Figure 3·2: Representation of aggregation strategies in Apache Spark: (a) Tradi-
tional Aggregation, (b) Tree Aggregation

3.6 K-Nearest-Neighbors

The other algorithm common in Big Data processing is K-nearest-neighbors (KNN). KNN is a

traditional Machine Learning algorithm which classifies targets into categories. In training KNN,

it simply stores all available training data without calculation. At prediction phase, targets are

given and similarity measures are calculated. Based on these similarities, the algorithm selects K

(user-defined number) training observations similar to each target. Then, it checks corresponding

categories of the K observations to determine predicted categories.

28

In brute force algorithm, KNN calculates similarity measures for all combinations among train-

ing and testing observations. If training data has N observations and test data has M observations,

KNN needs to calculate N ×M similarity measures. Sort or binary heaps can be used to select the

K most similar training observations.

In our experiment, KNN algorithms performs document classification and implemented in mul-

tithread. There are three phases in our algorithm: preprocessing, query, and combine phase. The

preprocessing phase, the algorithm calculates Term-frequencies (Tfs) to generate numeric feature

vectors and matrices. In the query phase, similarity measures are calculated and K nearest neighbors

are selected. For similarity measure, our choice is cosine similarity(3.1). In the combine phase,

results of query phase are gathered and combined from each threads.

Cos(~x,~t) =
∑

n
i=0(xiti)√

∑
n
i=0 x2

i

√
∑

n
i=0 t2

i

(3.1)

Even though the preprocessing phase is not specific process for KNN algorithm, it is common in

algorithms used in Natural Language Processing. Therefore, better memory management strategy

should be applied in this preprocessing phase. This preprocessing generates many intermediate data

structures and copies of String elements are used in these data structure again and again. We can

again either clone or get Arc of String.

Our KNN algorithms are implemented with batch processing. In query phase, we control batch

size to examine how size of objects allocated simultaneously in memory has impact to algorithm’s

runtime performance. The detailed implementation is explained in section 3.2.

3.7 Complex Objects

To conduct experiments for the above concepts, we use 4 types of complex objects: CustomerOwned,

CustomerBorrowed, CustomerSlice, and CustomerRc. These objects contain other type of objects:

OrderOwned, OrderBorrowed, OrderSlice, and OrderRc. The representation of these objects are

shown in Figure 3·3 and Figure 3·4. Three Customer objects have 15 fields: 3 fields for i32, 3

fields for f64, 8 fields for String, and 1 field for Order object. All fields of CustomerOwned and

OrderOwned are owned by the object. On the other hand, fields of CustomerBorrowed, Customer-

29

Slice, OrderBorrowed, and OrderSlice are borrowed. References of slices of values are used as the

fields and owners of actual values are stored differently in source Vec. CustomerRc acquires Rc of

values used for its fields from the source Vec.

s t r u c t CustomerOwned {
key : i32 ,
age : i32 ,
num_purchase : i32 ,
t o t a l _ p u r c h a s e : f64 ,
d u r a t i o n _ s p e n t : f64 ,
d u r a t i o n _ s i n c e : f64 ,
z i p _ c o d e : S t r i n g ,
a d d r e s s : S t r i n g ,
c o u n t r y : S t r i n g ,
s t a t e : S t r i n g ,
f i r s t _ n a m e : S t r i n g ,
l a s t _ n a m e : S t r i n g ,
p r o v i n c e : S t r i n g ,
comment : S t r i n g ,
o r d e r : OrderOwned

}

(a)

s t r u c t CustomerBorrowed < ’ a> {
key : &’a i32 ,
age : &’a i32 ,
num_purchase : &’a i32 ,
t o t a l _ p u r c h a s e : &’a f64 ,
d u r a t i o n _ s p e n t : &’a f64 ,
d u r a t i o n _ s i n c e : &’a f64 ,
z i p _ c o d e : &’a S t r i n g ,
a d d r e s s : &’a S t r i n g ,
c o u n t r y : &’a S t r i n g ,
s t a t e : &’a S t r i n g ,
f i r s t _ n a m e : &’a S t r i n g ,
l a s t _ n a m e : &’a S t r i n g ,
p r o v i n c e : &’a S t r i n g ,
comment : &’a S t r i n g ,
o r d e r : &’a OrderBorrowed < ’ a>

}

(b)

s t r u c t C u s t o m e r S l i c e < ’ a> {
key : &’a i32 ,
age : &’a i32 ,
num_purchase : &’a i32 ,
t o t a l _ p u r c h a s e : &’a f64 ,
d u r a t i o n _ s p e n t : &’a f64 ,
d u r a t i o n _ s i n c e : &’a f64 ,
z i p _ c o d e : &’a s t r ,
a d d r e s s : &’a s t r ,
c o u n t r y : &’a s t r ,
s t a t e : &’a s t r ,
f i r s t _ n a m e : &’a s t r ,
l a s t _ n a m e : &’a s t r ,
p r o v i n c e : &’a s t r ,
comment : &’a s t r ,
o r d e r : &’a O r d e r S l i c e < ’ a>

}

(c)

s t r u c t CustomerRc {
key : Rc< i32 > ,
age : Rc< i32 > ,
num_purchase : Rc< i32 > ,
t o t a l _ p u r c h a s e : Rc<f64 > ,
d u r a t i o n _ s p e n t : Rc<f64 > ,
d u r a t i o n _ s i n c e : Rc<f64 > ,
z i p _ c o d e : Rc< S t r i n g > ,
a d d r e s s : Rc< S t r i n g > ,
c o u n t r y : Rc< S t r i n g > ,
s t a t e : Rc< S t r i n g > ,
f i r s t _ n a m e : Rc< S t r i n g > ,
l a s t _ n a m e : Rc< S t r i n g > ,
p r o v i n c e : Rc< S t r i n g > ,
comment : Rc< S t r i n g > ,
o r d e r : Rc<OrderRc >

}

(d)

Figure 3·3: Representation of Customer objects Whose fields are different vari-
able type: (a) CustomerOwned struct whose fields are all owned (b) Customer-
Borrowed struct whose fields are borrowed with reference (c) CustomerSlice struct
whose fields are borrowed with slice for sequence value, otherwise reference (d)
CustomerRc struct whose fields are reference counting

3.8 Summary

We discussed some concepts to understand goals of our experiments. Theoretical discussions are

noted in this chapter, such as assumptions where behavior of different variable types differ from

each other, the impact of use of Reference Counting and Atomic Reference Counting, and the best

practice to implement algorithms used in Big Data processing. In Chapter4, we discuss detailed

settings of our experiments, their results and analysis.

30

s t r u c t OrderOwned {
o r d e r _ i d : i32 ,
num_items : i32 ,
payment : f64 ,
o r d e r _ t i m e : f64 ,
t i t l e : S t r i n g ,
comment : S t r i n g

}

(a)

s t r u c t OrderBorrowed < ’ a> {
o r d e r _ i d : &’a i32 ,
num_items : &’a i32 ,
payment : &’a f64 ,
o r d e r _ t i m e : &’a f64 ,
t i t l e : &’a S t r i n g ,
comment : &’a S t r i n g

}

(b)
s t r u c t O r d e r S l i c e < ’ a> {

o r d e r _ i d : &’a i32 ,
num_items : &’a i32 ,
payment : &’a f64 ,
o r d e r _ t i m e : &’a f64 ,
t i t l e : &’a s t r ,
comment : &’a s t r

}

(c)

s t r u c t OrderRc {
o r d e r _ i d : Rc< i32 > ,
num_items : Rc< i32 > ,
payment : Rc<f64 > ,
o r d e r _ t i m e : Rc<f64 > ,
t i t l e : Rc< S t r i n g > ,
comment : Rc< S t r i n g >

}

(d)

Figure 3·4: Representation of Order objects Whose fields are different variable
type: (a) OrderOwned struct whose fields are all owned (b) OrderBorrowed struct
whose fields are borrowed with reference (c) OrderSlice struct whose fields are
borrowed with slice for sequence value, otherwise reference (d) OrderRc struct
whose fields are reference counting

31

Chapter 4

Evaluation Result

4.1 Introduction

In this chapter, detailed experiment settings, executions and results are discussed. Section 4.2 details

hardware configurations and datasets we use. There are 5 experiments conducted. In Section 4.3,

we discuss the experiment where we assess runtime to access object’s fields with different variable

types. Section 4.4 shows details to examine how behaviors of normal reference and Reference Count

are different. Section 4.5 describes our Merge-sort experiment to examine behavior of Atomic Ref-

erence Counting. Two algorithms are used in Big Data processing and examined in our experiments:

Tree-aggregate in Section 3.5 and K-Nearest-Neighbors in Section 3.6.

4.2 Experimental Set and Detail

We have used two different datasets. One is a real-world data set, Wikipedia page data set, and

another is a syntactic randomized generated data set based on Complex objects described in Sec-

tion 3.7. We use one machine with particular specifications.

4.2.1 Wikipedia Data Sets

Wikipedia page data sets are used to perform document classification with KNN. We have separated

the data set into training and test data set, 105 pages are used for training data set, and 18724 pages

are used for target.

4.2.2 Experimental Details

All experiments are run on VM instances on Google Cloud Platform, n1-standard-8 which has 8

vCPU, 30 GB RAM, and 10 GB Standard persistent disk. In this thesis, we present the result of

32

runtime as the average of 5 separate runs for each experiment.

4.3 Experiment 1: Accessing Objects with Different Variable Types

This experiment is conducted to provide answers to the following two questions. One is how differ-

ent variable types impact runtime performance. The other is how initialization of Vec size impacts

runtime performance. In this experiment, we focus on owner, reference, and slice as variables of

sequence values. Since these variables have different memory representation, there might be differ-

ences among time for access to actual values of each variables.

To evaluate this assumption, we use the three types of complex objects: CustomerOwned, Cus-

tomerBorrowed and CustomerSlice. At first, we generate source Vecs for all fields, Vecs which

contain all elements used for corresponding fields of objects. For example, all of i32 elements used

for key field in 1 million Customer object are stored in Vec<i32> with 1 million i32 elements.

Later, these i32 elements are moved to be owned or borrowed by the objects’ fields.

Next, 3, 13, 23, 33 million Customer objects are created and stored in Vec. When a Customer

Vec is created, whether size of Vec is initialized is controlled. Finally, serialization of Customer

object is performed as an operation forcing the program to access all of fields in the object. This se-

rialization is performed for each Customer objects in the Vec. We measure total runtime to serialize

all of Customer objects stored in Vec.

4.3.1 Result

The result is shown in Figure 4·1 and Figure 4·2. Figure 4·1 is a comparison of the runtime perfor-

mance among different Customer object types with Vec size initialization. Figure 4·2 is a compari-

son in the same set of experiment except Vec size is not initialized. The blue, yellow, and green bars

represent runtime of access to fields of CustomerOwned, CustomerBorrowed, and CustomerSlice

objects respectively.

Whether Vec size is initialized or not, differences of runtime for accessing objects are not re-

markable among different object types. The memory usage for algorithms with 33 million of Cus-

tomer objects are about 26G bytes for any type of variable.

33

3M 13M 23M 33M
Number of Object Accessed.

0

25

50

75

100

125

150

175

Ru
nt
im
e
of
 A
cc
es
s t
o
Fi
el
ds
 o
f O

bj
ec
t(s

ec
on
ds
).

16.4

71.5

126.1

181.0

16.7

73.1

128.9

185.5

16.1

71.1

126.8

179.2

Runtime of Access to String fields of Customer Object.
own
reference
slice

Figure 4·1: Runtime of Access to Different Pointer Types with Vec Size Initializa-
tion

4.3.2 Discussion

Difference of variable types does not have huge impact to runtime of accessing to actual value.

Even though owner, reference , and slice have different memory representations, the access time

to its value is close to each other. As shown in Figure 3·1, the representations of owner and slice

are almost identical except slice does not have capacity for values. Reference is pointer pointing to

owner, so it has an additional step to access actual value. However, the result shows this additional

step does not have huge impact for runtime to access memory region of the value.

4.4 Experiment 2: Assessment of different reference methods in Rust

In this experiment, CustomerBorrowed and CustomerRc are used to see difference of dropping

time among reference and Rc. In the CustomerRc and OrderRc struct, all fields take Rc (Rc<T>).

Similarly to the experiment in the last section, sets of integer, float, and String vector are created

34

3M 13M 23M 33M
Number of Object Accessed.

0

25

50

75

100

125

150

175

Ru
nt
im
e
of
 A
cc
es
s t
o
Fi
el
ds
 o
f O

bj
ec
t(s

ec
on
ds
).

16.3

70.8

125.7

181.7

16.9

72.5

128.0

183.0

16.5

71.4

124.3

180.5

Runtime of Access to String fields of Customer Object.
own
reference
slice

Figure 4·2: Runtime of Access to Different Pointer Types without Vec Size Initial-
ization

and their elements are borrowed or reference counted to create CustomerBorrowed or CustomerRc

objects. The dropping of objects deletes references or Rcs used for fields of the objects. However, it

does not deallocate values to which they are pointing. Therefore, the evaluated runtime of dropping

objects only consists of dropping time of reference or Rc, but deallocation time. We generated 10,

20, 30, and 40 million CustomerBorrowed and CustomerRc objects and performed drop one by one.

4.4.1 Result

Figure4·3 shows comparison of runtime dropping CustomerBorrowed and CustomerRc objects. The

result shows significant difference of dropping time among the two objects; deletion of CustomerRc

is much slower than CustomerBorrowed. The runtime of dropping CustomerBorrowed is about

60 times faster than dropping CustomerRc. The memory usage for algorithms with 40 million of

Customer objects are about 26G bytes for both CustomerRc and CustomerBorrowed.

35

3M 13M 23M 33M
Number of Object Deleted.

101

102

103

Ru
nt
im
e
fo
r D
ro
pi
ng
 to
 F
ie
ld
s o
f O
bj
ec
t(m
illi
se
co
nd
s-
lo
g)
.

2.54

11.27

23.76
28.54

138.69

645.68

1246.75

1898.63
Runtime for Dropping to fields of Customer Object.

Borrowing
Rc

Figure 4·3: Runtime for dropping Customer Object

4.4.2 Discussion

In this experiment, an assessment is conducted to verify whether there is difference between be-

havior of reference and Rc. The reason why dropping Rc is much slower than dropping reference

is that Rc requires runtime overhead to check some states of the variable, but when to drop refer-

ence is already determined at compile time. When dropping Rc, Rc has to check the number of

variables pointing to the actual content and decide whether to deallocate the memory or not. How-

ever, memory management and lifetime strategy of reference is already determined at compile time.

This determination of memory management strategy at compile increases runtime performance of

dropping complex object constructed with reference type variable. This may say that we should use

reference whenever high performance computation is critical.

However, dealing with reference is sometimes cumbersome. Tracking lifetime of reference

can be done easily in simple situation. But, if we have complex objects constructed with fields

of reference, the lifetime tracking becomes extremely difficult. For example, constructing nested

36

objects with reference fields requires a developer to plan memory management with many lifetime

symbols. Using reference counting eliminates the developer’s responsibility to specify lifetime of

variables. This may ease and speed up development process, and increase understandability of

codes.

Even though we have stack allocated values, such as i32 and f64, in Rc in our experiment, one

should avoid wrapping stack allocated values in Rc. Wrapping value in Rc allocates heap memory

so that allocating Rc<i32> or Rc<f64> unnecessarily uses space of heap. Additionally, stack

allocated values are usually easy to be copied. Therefore, developer does not have to even use

reference; one can just copy the value. Copying value in Rust is to copy the original value and to

assign the copy to new owner variable.

4.5 Experiment 3: Merge-sort

Sorting algorithm like merge-sort is a very ubiquitous algorithm in any computation. Especially in

Big Data processing, merge-sort algorithms de/allocate contiguous memory for partitions of sorted

vector multiple times. We are interested in memory de/allocation patterns in merge-sort algorithm,

because it generates many intermediate data structures and deletes them many times.

As explained in Experiment 2 in Section 4.4, deletion of Rc has significant overhead than normal

reference. By learning this result, our assumption here is that deletion of Arc also has overhead when

we compare to normal reference. In many situations where a developer writes a multithreading code,

Arc is used and the deletion happens multiple times. To assess runtime overhead of algorithms with

Arc, we implement merge-sort algorithm in two different ways. One is sharing source vector with

Arc. The other is passing reference of source vector to child thread.

Our merge-sort algorithms are implemented with recursion. For each call of recursive function,

Arc or slice of the source vector needs to be passed and deleted when the function returns value.

These merge-sort algorithms trigger large number of Arc or reference deletion proportional to the

number of call recursive function. Merge-sort algorithm can be separated in three phases: splitting

phase, copying phase, and merging phase.

The splitting phase is merely acquiring index of range. At this phase, multiple threads are

37

generated and Arc or reference of source vector are passed by calling recursive function. Copying

phase occurs in the base case of the recursive call. The element in the source vector in a certain

index is deep-copied into newly allocated vector. At merge phase, merge function receives two

sorted independent vectors and merges them into a single new vector.

We use scope method from crossbeam crate to perform multithread programming. Scoped

thread can have reference to value from its parent thread by ensuring children threads are joined

before their parent thread returns value. By using scoped thread, we can implement two merge-sort

algorithms in an identical way except whether the function receives Arc or reference of source vec-

tor. The representations of source vectors for each algorithm are shown in Figure 4·4. The elements

of source vector are CustomerOwned objects. We generate source vectors in sizes 4, 8, 12 and 16

million. Finally, merge-sort is performed based on value of key field. The figure shows the result

for runtime performance of merge-sort algorithms on difference sizes of vectors.

/ / Source v e c t o r f o r a l g o r i t h m wi th Arc .
a r r : Arc <VecDeque <T>>

/ / Source v e c t o r f o r a l g o r i t h m wi th r e f e r e n c e (s l i c e) .
a r r : &[T]

Figure 4·4: Representation of Source Vector

4.5.1 Result

Figure 4·4 shows the runtime performance of our merge-sort algorithm with specified Vec sizes.

The blue and yellow bar charts represent the runtime performance of merge-sort algorithm using

reference and Arc respectively. The result says that algorithms with Arc is about 21% slower than

algorithms with reference. The memory usage for algorithms with 16 million Customer objects are

about 26G bytes.

4.5.2 Discussion

The reason why merge-sort algorithms with Arc is much slower than one with reference is the same

for the reason why dropping Rc shows overhead compared to dropping reference. Arc has to check

38

4M 8M 12M 16M
Number of Object

0

5

10

15

20

25

Ru
nt

im
e

of
 so

rtt
in

g
el

em
en

ts
 o

f C
us

to
m

er
 v

ec
to

r(s
ec

on
ds

)

6.17

11.36

17.16

22.54

7.48

13.57

20.87

27.42

Runtime of Sortting Elements of Customer Vector
Without Arc
With Arc

Figure 4·5: Runtime of Sorting Elements of Customer Vector

the number of variable pointing to the actual content and decide deallocate the memory or not.

In addition, Arc uses atomic operations for reference counting. Atomic operations bring thread-

safety, but they are more expensive than ordinary memory accesses. Therefore, when sharing refer-

ence counting between threads is not required, using Rc is the recommended way [6].

In situations like our experiment, normal reference can be used instead of Arc to share data

between threads. This solution results in better runtime performance in our experiment. Therefore,

one should use reference to share data among different threads whenever it is possible.

4.6 Experiment 4: Tree-aggregation

In our experiment, tree-aggregation algorithms are examined in multi-threading. This experiment

is to evaluate the impact of having Arc (Atomic Reference Counting) as elements of vectors. In

Big Data mining tools, such as Spark, it generates intermediate objects from the original source

vector. In tree-aggregation, aggregated HashMap like data structures is created in each step or node.

39

Acquisition of elements in the source vector is required to perform this aggregation. There are

several ways.

One way is to deep-copy elements of the vector. This solution allocates newly created objects

by deep-copy. Aggregation is performed on copied objects, they are stored in the data structure

and sent to next node. Deep-copying generates duplicates of objects in vectors and aggregated

data structure. This can lead to memory intensive moments when we need memory space for the

additional duplicated objects.

The other way is to get reference to the elements. Since an original source vector is deallocated

after a local aggregation, simple references to elements do not live long enough and allow the

aggregation result to be sent to next node. Instead of simple borrowing, we need owners in the

aggregation result. Reference Counting (Rc) in Rust is a way to have multiple owners to a value.

Since our experiment is implemented in multithreading, Arc (Arc) is used instead of Rc. With

Arc, multiple ownership pointers can be possessed by different variables across multiple threads.

Therefore, a value is not deallocated until all owners to it are dropped. This does not require extra

memory allocation, because only acquisition of new ownership to the value is needed. However, as

explained in the last section deletion of Arc type checks whether the value is still owned by other

variables. This checking may be an overhead in algorithms that generate a lot of intermediate data

structures, because deletion of the data structures occurs frequently.

Two algorithms are implemented using the above two methods and their runtime performance

is evaluated . We perform aggregation to CustomerOwned based on last_name field. Before tree-

aggregation algorithms are run, partitions of Vec<CustomerOwned> or of Vec<Arc<CustomerOwned>>

are created, serialized, and stored in disk. A tree-aggregate algorithm has main three phases: load-

ing, aggregating, and combining phase. At loading phase the algorithm generates threads. In each

node, it loads serialized CustomerOwned partition from disk and deserialize them. At aggregating

phase, aggregation is performed on each partition by last_name field. Once a node finishes aggre-

gation, it sends result to parent node. After parent nodes receive aggregation results from all of its

children nodes, it joins all aggregation results including its and sends to the next parent. This joining

aggregation results is considered as combining phase.

40

Two kinds of algorithms are implemented. One algorithm performs aggregation by deep-

copying elements from a source vector loaded from a disk. In the other algorithm, each element

of the source vector is wrapped in Arc, and its reference is acquired while aggregation. The differ-

ence between the both algorithm codes are represented in Figure 4·6 and in Figure 4·7. If we glance

at the codes, the notable difference is only when we acquire an element from CustomerOwned Vec

to construct an aggregated data structure. Therefore, there are few difference between the two kinds

of tree-aggregate algorithm in terms of code appearance.

Numbers of CustomerOwned objects aggregated in our experiment are 2, 4, 6, 8 million.

fn a g g r e g a t e _ l o c a l (a r r :&[Arc <CustomerOwned >])
{

l e t mut agg = HashMap : : new () ;
l e t n = a r r . l e n () ;
f o r i i n 0 . . n {

l e t c u s t o m e r = Arc : : c l o n e (& a r r [i]) ;
l e t l a s t _ n a m e = c u s t o m e r . l a s t _ n a m e . c l o n e () ;
l e t v e c t o r = agg . e n t r y (l a s t _ n a m e) . o r _ i n s e r t _ w i t h (Vec : : new) ;
v e c t o r . push (c u s t o m e r) ;

}
r e t u r n agg ;

}

Figure 4·6: Aggregation function with Arc

fn a g g r e g a t e _ l o c a l _ c o p y (a r r :&[CustomerOwned])
{

l e t mut agg = HashMap : : new () ;
l e t n = a r r . l e n () ;
f o r i i n 0 . . n {

l e t c u s t o m e r = a r r [i] . c l o n e () ;
l e t l a s t _ n a m e = c u s t o m e r . l a s t _ n a m e . c l o n e () ;
l e t v e c t o r = agg . e n t r y (l a s t _ n a m e) . o r _ i n s e r t _ w i t h (Vec : : new) ;
v e c t o r . push (c u s t o m e r) ;

}
r e t u r n agg ;

}

Figure 4·7: Aggregation function with deep-copy

4.6.1 Result

Figure 4·8 shows runtime performance of two tree-aggregate algorithms. The runtime of algorithm

with deep-copy is about 40 to 50% slower than algorithm with Arc for every vector size. The

memory usage of algorithm with Arc and size of 8 million is about 15G bytes. On the other hand,

the memory usage of algorithm with deep-copy and size of 8 million is about 26G bytes.

41

2M 4M 6M 8M
Number of Element

0

10

20

30

40

50

60

70

80
Ru
nt
im
e
of
 T
re
eA
gg
re
ga
te
 o
f C
us
to
m
er
 v
ec
to
r(s
ec
on
ds
)

19.18

38.11

59.42

78.54

12.78

25.91

42.07

52.9

Runtime of TreeAggregate of Customer Vector
Deep copy
Arc

Figure 4·8: Runtime of Tree-aggregate algorithm

4.6.2 Discussion

As we explained, Arc has overhead to be deleted because it has to check if the value is still referred.

The atomic operations are more expensive than ordinal memory access. Even though the use of Arc

slows down runtime performance, deep copy of complex objects has more impact in deterioration

of runtime performance.

At the aggregating phase, each object is deep-copied or acquired with Arc once during the

runtime in order to construct aggregated data structures. If total number of objects is 1 million,

the all of 1 million objects are deep-copied or cloned with Arc once during execution. Deep-copy

allocates new memory for copied object. On the other hand, clone with Arc is merely acquisition

of additional owner. Therefore, deep-copy is more expensive in terms of runtime and also use of

memory than clone with Arc. Deep-copy processes all the original objects to generate newly deep-

copied objects. This process has overhead and the existence of both original and copied objects

doubles its memory usage.

42

After construction of aggregated data structure, the dropping variables of original objects occurs

at the end of the aggregating phase. In the algorithm with deep-copy, these variables are owners

so that drop of variables triggers deallocation of actual values. In the algorithm with Arc, the

variables are Arc. The aggregated data structure contains Arc pointing to the same values pointed

by original Arc. Since the aggregated data structures continue to live after aggregating phase, drop

of original Arcs does not triggers deallocation of values. Therefore, drop of original variables can

shows overhead of memory deallocation in algorithm with deep-copy, and overhead of checking

reference count of Arc in algorithm with Arc.

In addition, memory access from Arc is slower than ordinal variables due to the atomic opera-

tions. This may be potential overhead of the algorithm with Arc.

Considered these theoretical analysis and result of our experiment, using Arc improves run-

time performance and memory usage compared to algorithms using deep-copy in tree-aggregate

algorithms.

4.7 Experiment 5: K-Nearest-Neighbors

Finally, we examine the performance of Machine Learning (ML) algorithms. The goal of this ex-

periment is to evaluate better memory management strategies in ML algorithms developed with

Rust. We employ K-Nearest-Neighbors (KNN) for ML algorithms to be studied in our experiments.

Our KNN algorithms perform document classification on Wikipedia page data set described in Sec-

tion 4.2.

The algorithms have 4 phases; load, preprocess, query, and combine phase. Before these phases,

we separate data sets into 8 partitions to run these in different threads. The algorithms spawn

threads at the beginning, and in the load phase partition of files are loaded in each threads. In the

preprocessing phase, the algorithm process document strings to generate Term-frequencies (Tfs)

matrices and other data structures. In the query phase, it calculates cosine similarities between all

combination of train and test observations and select to top K nearest neighbors. In combine the

phase, the results from each batch and from each thread are combined. Based on our experiment’s

result, the runtime in preprocess and query phase are significantly larger than other two phases.

43

Parameter Name Values and Description

Method
deep-copy: use deep-copy to generate intermediate objects
arc: use atomic reference count to generate intermediate objects

Strategy
1: keep intermediate objects in memory until owner is changed
2: remove intermediate objects as soon as it is not needed

Number of batch
2: generate 2 batches from each partition
3: generate 3 batches from each partition

k
15K: dimension of feature matrices is 15 thousands
20K: dimension of feature matrices is 20 thousands
25K: dimension of feature matrices is 25 thousands

Table 4.1: Parameter of KNN algorithms

Therefore, we focus our discussion in these two phases considering them bottlenecks in our KNN

algorithms.

KNN algorithms are implemented with different memory management strategies. We parametrize

these memory management and some other values. These parameters are listed in Table 4.1.

Method parameters are specified to select memory management strategy used in preprocess

phase. In preprocess the phase, the algorithm generates many intermediate data structures using

same String elements. Deep-copy method deeply copies String to generate intermediate data struc-

tures. Arc method use Atomic Reference Count (Arc) to wrap String elements in the original data

structure and clone Arc when the elements are used in other data structures. As Experiment 4 had

shown in in Section 4.6, deep-copy of complex objects is more expensive than cloning Arc. String

is a sort of object allocated in heap and copied many times in preprocess phase. Therefore, it is

worth assessing which method can be a better memory management strategy in our experiments.

Strategy parameter control memory management strategy used in both preprocess and query

phase. Strategy 1 keeps all intermediate data structures and numeric matrix objects from prepro-

cess to query phase. Strategy 2 removes these data structures and objects as soon as they are not

needed. These strategies differ from each other in terms of memory usage and frequency of memory

deallocations. These may cause significant runtime difference of the algorithms.

Number of batch controls number and size of batch for each partition. This parameter varies

size of intermediate data structures and numeric matrices, and frequency of memory deallocations.

44

The size of each batch is defined in 6,250 pages when we have 2 batches, and 4166 or 4167 when

we have 3 batches. The parameter k specifies the number of dimensions of feature matrices created

out of the preprocess phase. By controlling this, it determines size of intermediate data structures

and numeric matrices.

By controlling these parameter, we compare runtime and memory usage of KNN algorithms.

4.7.1 Result

Figures 4·9, 4·10, and 4·11 show the runtime performance of our KNN algorithms in total, prepro-

cess, and query phase respectively. The algorithms used in our experiments are indexed in Table 4.2.

We call each algorithm in algorithm number for easy understanding. The Algorithm 3 with 20K and

25K dimension, and the Algorithm 1 with 25K dimension whose runtime is showing 0 seconds are

algorithms that are terminated during execution due to fail of memory allocation.

Figure 4·9 shows Algorithm 8 shows much slower performance compare to the other algorithms.

Algorithm 7 also starts to slow down as we increase the number of dimensions.

As shown in Figure 4·10, the algorithms using Arc is much slower than using deep-copy in

preprocessing phase. Algorithm 8 is 38% slower than Algorithm 6 in dimension of 25K. In addition,

the algorithms with strategy 2 are slower than with strategy 1. For example, Algorithm 6 is about

85% slower than one Algorithm 2 in dimension of 25K. The algorithms with 3 batches are slower

that ones with 2 batches. Furthermore, as we increase the numbers of dimension, the number of

batches becomes more and more critical to runtime performance of the algorithms with deep-copy.

The runtime ratios of difference from Algorithm 7 to Algorithm 8 are about 44%, 28%, and 39%

for dimension of 15K, 20K, and 25K respectively. However, those from Algorithm 5 to Algorithm

6 are about 11%, 28%, and 54%. The ratios of difference increase proportionally to the number of

dimensions.

In query phase, Algorithm 8 is much slower than the others in different parameter settings.

Algorithm 7 starts to slow down as number of dimension is increased.

45

Algorithm number Method Strategy Number of batch

1 deep-copy 1 2

2 deep-copy 1 3

3 arc 1 2

4 arc 1 3

5 deep-copy 2 2

6 deep-copy 2 3

7 arc 2 2

8 arc 2 3

Table 4.2: Index of Algorithm

4.7.2 Discussion

In the preprocess phase, the algorithms using Arc method perform worse than ones with deep-

copy method. This result may seem to contradict to the result of Experiment 4 in Section 4.6.

In Experiment 4, complex objects, CustomerOwned, are cloned with Arc or deep-copied. In this

Experiment 5, we however get Arc or deep-copy of String instead of complex object. The result

explains deep-copying String is more inexpensive than deep-copying the complex object and using

deep-copy method is actually more efficient than using Arc to share String. Therefore, we need to

make decision which method to use depending on size and complexity of objects.

In addition, the use of different strategies in the preprocess phase explains how deallocations of

intermediate data structures and drops of their variables impact algorithm’s runtime performance.

The result shows deallocations of intermediate data costs a lot; Algorithm 6 is 85% slower than

Algorithm 2. This may be a more severe bottleneck for algorithms using Arc; Algorithm 8 is 102%

slower than Algorithm 4. This is the same reason explained in Experiment 4. Arc has to check

reference count and its atomic operation is expensive.

The impact of batch number can explain how frequency of memory de/allocation affects runtime

performance. Dealing with more number of batch has negative impacts on runtime performance

because it triggers more frequent memory de/allocation. In addition, as we increase the number of

dimension, the ration of runtime difference among different numbers of batch for the algorithms

with deep-copy, but not for ones with Arc. This is because algorithm with Arc does not de/allocate

46

15K 20K 25K
k

0

200

400

600

800

1000

1200

1400

1600

To
ta
l r
un
tim

e
in
 K
NN

(s
ec
on
ds
)

665.0

872.0

0.0

660.0

879.0

1099.0

726.0

0.0 0.0

657.0

899.0

1140.0

678.0

894.0

1112.0

692.0

907.0

1163.0

709.0

1190.0

1503.0

1004.0

1314.0

1682.0

Total runtime for whole algorithm
batch2/strategy1/deepcopy
batch3/strategy1/deepcopy
batch2/strategy1/arc
batch3/strategy1/arc
batch2/strategy2/deepcopy
batch3/strategy2/deepcopy
batch2/strategy2/arc
batch3/strategy2/arc

Figure 4·9: Total runtime whole KNN algorithm (seconds)

memory as much frequently as ones with deep-copy. The intermediate data structures merely get

reference to String values without actually allocating memory for copied Strings.

In query phase, most of our algorithms shows similar runtime performance among the same

number of dimension. Why such differences seen in preprocess phase are not shown in query

phase? This is because the data structures processed in this phase are numeric matrices and vectors.

These data structures do not contain String so that the selection of method parameter does not have

direct impact to algorithm’s runtime performance.

Furthermore, numeric matrices and vectors are contiguously allocated initializing their size, so

they are easy to be de/allocated. The computation needed for these de/allocations is fairly fast.

Therefore, setting parameters, such as number of batch and strategy, does not impacts runtime

performance.

However, we can see significant degradation in Algorithm 7 with 20K and 25K dimensions

and Algorithm 8 with 15K, 20K, and 25K dimensions. By using strategy 2, we deallocate the

47

15K 20K 25K
k

0

100

200

300

400

500

600

700

800

To
ta
l r
un
tim

e
of
 p
re
pr
oc
es
sin

g
ph
as
e
(T
fs
) i
n
KN

N(
se
co
nd
s)

223.0
260.0

0.0

247.0

289.0
327.0328.0

0.0 0.0

278.0

346.0

415.0

327.0

405.0 393.0
364.0

518.0

605.0

438.0

560.0

603.0
629.0

720.0

838.0

Total runtime for preprocessing
batch2/strategy1/deepcopy
batch3/strategy1/deepcopy
batch2/strategy1/arc
batch3/strategy1/arc
batch2/strategy2/deepcopy
batch3/strategy2/deepcopy
batch2/strategy2/arc
batch3/strategy2/arc

Figure 4·10: Total runtime of preprocessing phase in KNN (seconds)

numeric matrices and vectors in query phase. However, it is difficult to think that these contiguous

memory deallocations cause the degradation. If that is so, Algorithm 5 and 6 should also show

some overheads. No page-swapping happens during the execution. One possible reason is that these

algorithms suffer from the allocation of numeric matrices and vectors due to previous deallocation

of intermediate data structures in preprocess phase. The frequent deallocations and low locality

of Arc may lead long free-space-list making difficult to search enough spaces to allocate numeric

matrices and vectors. The other possibility is that the frequent deallocations and low locality of Arc

cause cache of numeric matrices and vectors. The computation on these numeric objects may slow

down due to their caching levels. To conclude this discussion, we need to conduct more experiments

and deeper analysis. However, we push those discussion to next paper.

As a part of the conclusion, using Arc to String may be overhead. Considering the result from

Experiment 4, we need careful consideration which object to use which strategy, deep-copy and

Arc. In addition, frequent memory deallocation can lead to slower runtime performance. Therefore,

48

15K 20K 25K
k

0

2000

4000

6000

8000

10000

12000

To
ta
l r
un
tim

e
of
 q
ue
ry
 p
ha
se
 in
 K
NN

(s
ec
on
ds
)

5043.0

6662.0

0.0

4975.0

6691.0

8434.0

5436.0

0.0 0.0

4908.0

6789.0

8661.0

5044.0

6707.0

8466.0

5076.0

6666.0

8642.0

5191.0

8879.0

11343.0

7301.0

9712.0

12486.0

Total runtime for query
batch2/strategy1/deepcopy
batch3/strategy1/deepcopy
batch2/strategy1/arc
batch3/strategy1/arc
batch2/strategy2/deepcopy
batch3/strategy2/deepcopy
batch2/strategy2/arc
batch3/strategy2/arc

Figure 4·11: Total runtime of query phase in KNN (seconds)

we need to decide when to deallocate unused values taking account of memory capacity.

4.8 Summary

In this chapter, we examine various memory management strategies for different algorithms in Rust

programming. There are many factors that might differ performance of algorithms: different vari-

able type, Reference Counting, Atomic Reference Counting, and frequency of memory de/alloca-

tion. We should select the best memory management strategies when developing Big Data process-

ing tools. Some tips for the development are proven in our experiments. We conclude this thesis in

Chapter 5.

49

Chapter 5

Conclusions

In this thesis, we have presented a number of experiments to assess better implementation of algo-

rithms when one develops Big Data analysis tools with Rust programming.

Differences between variable types do not have an impact on operations to access memory ad-

dress where a value is located. This result gives us freedom of choice for variable types to construct

complex objects in terms of runtime performance. However when we use borrowed types, such as

references and slices, their lifetime should be explicitly defined. Therefore, we may use owner type

variables to construct complex objects in order to facilitate lifetime tracking.

Runtime to drop Rc is 60 times slower than normal reference. This is because Rc needs to check

reference count to determine whether to deallocate its value. This result may say that we should use

normal reference whenever it is possible. Again, tracking lifetime of references used in complex

objects can be cumbersome. Choice of Rc and reference is dependent on complexity of objects

implemented.

In Rust, we can implement multithread programming by sharing data using Arc. In simple

multithread algorithms, one can write code that shares data with Arc and simple reference among

different threads. Merge-sort algorithms sharing data with Arc is 21% slower than normal reference.

In this situation, sharing data with normal reference require relatively easy lifetime tracking, so we

should use normal reference to share data among different thread whenever it is possible.

For more complex algorithms, like tree-aggregate and preprocess phase in KNN, one can im-

plement algorithms sharing data with Arc or simply deep-copy the values. The algorithms with

deep-copy are about 40 to 50% slower than the algorithms with Arc for complex objects. However

when we deal with String, the algorithms with deep-copy are faster than Arc. Therefore, the deci-

sion on whether to use deep-copy or Arc method should be determined based on the complexity of

50

objects.

Decreasing frequency of memory de/allocation may be an effective solution to improve runtime

performance of Big Data processing algorithms. There is a trade-off between memory usage and

frequency of memory de/allocation. That is why developers should conduct careful analysis of

algorithms’ memory usage pattern and timing of memory de/allocation.

As we can see in the results of our experiments, different memory strategies vary the perfor-

mance of algorithms in Rust programming. Which memory management strategy to take depends

on what objects to deal with. Therefore, development of Big Data analysis tools in Rust program-

ming should be started with objects implementation used in the systems. Next, one can select

suitable memory management strategies. Finally, algorithms can be optimized with more dedicated

strategies to application setting, such as capacity of memory.

51

Appendix A

Linear Algebra Computation

A.1 Create Java interface of CBLAS with JNI

1. Download BLAS and build using make file. In the figure2.1, the built file is libblas.a and the

header file is blas.h.

2. Download CBLAS and build using make file (I am not sure whether we should build archive

file or shared library). In figure, the build file would be libcblas.a or libcblas.dylib and header

file is cblas.h.

3. Create java file which will be the Java interface of CBLAS.

4. Compile java file with -h header flag to create class file (CBLASJ.class) and header file

(CBLASJ.h).
$ j a v a c −h . CBLASJ . j a v a

5. Create C file (CBLASJ.c) which will bind Java interface and CBLAS library. And compile it

with JNI to create object file (CBLASJ.o).
$ gcc −c−fPIC −I$ {JAVA_HOME} / i n c l u d e −I$ {JAVA_HOME} / i n c l u d e / da rwin CBLASJ . c

6. Compile shared library linking library (libcblas.a or libcblas.dylib) to object file (CBLASJ.o).
$ gcc −o l i b c b l a s . d y l i b (o r l i b c b l a s . a) CBLASJ . o

52

javac -h . CBLASJ.java

CBLASJ.java

CBLASJ.class CBLASJ.h

gcc -c -fPIC -I{JAVA_HOME}/include -I{JAVA_HOME}/include/darwin Clbas.c

libcblas.dylib or libcblas.a ?CBLASJ.c cblas.h

blas.h

blas.a

gcc -o libcblas.dylib CBLASJ.o

CBLAS.o

linking

Figure A·1: Integration of Native Methods

References

[1] Apache flink, 2020. https://flink.apache.org/.

[2] Apache hadoop, 2020. http://hadoop.apache.org/.

[3] Apache spark, 2020. http://spark.apache.org/.

[4] Nd4j, 2020. https://nd4j.org/.

[5] netlib, 2020. https://www.netlib.org.

[6] Rust arc documentation, 2020. https://doc.rust-lang.org/std/sync/struct.Arc.html.

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial
and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[8] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xian-
grui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. Spark SQL:
relational data processing in spark. In Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives,
editors, Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 1383–1394. ACM, 2015.

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas.
Apache flinkTM: Stream and batch processing in a single engine. IEEE Data Engineering. Bul-
letin., 38(4):28–38, 2015.

[10] Jack J. Dongarra. Performance of various computers using standard linear equations software.
SIGARCH Computer Architecture News, 20(3):22–44, 1992.

[11] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In 2nd IEEE / ACM International Symposium on Code Generation and Op-
timization (CGO 2004), 20-24 March 2004, San Jose, CA, USA, pages 75–88. IEEE Computer
Society, 2004.

[12] Charles L. Lawson, Richard J. Hanson, D. R. Kincaid, and Fred T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Transactions Mathmatical Software, 5(3):308–323, 1979.

[13] Richard B. Lehoucq, Danny C. Sorensen, and Chao Yang. ARPACK users’ guide - solution of large-
scale eigenvalue problems with implicitly restarted Arnoldi methods. Software, environments,
tools. SIAM, 1998.

53

https://flink.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/
https://nd4j.org/
https://www.netlib.org
https://doc.rust-lang.org/std/sync/struct.Arc.html

54

[14] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram Venkataraman, Davies
Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J.
Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache
spark. Journal of Machine Learning Research, 17:34:1–34:7, 2016.

[15] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing (Harry) Xu. FACADE:
A compiler and runtime for (almost) object-bounded big data applications. In Özcan Özturk,
Kemal Ebcioglu, and Sandhya Dwarkadas, editors, Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating Systems, ASP-
LOS ’15, Istanbul, Turkey, March 14-18, 2015, pages 675–690. ACM, 2015.

[16] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold Reinwald, and
Fatma Özcan. Clash of the titans: Mapreduce vs. spark for large scale data analytics. Pro-
ceedings of the VLDB Endowmen, 8(13):2110–2121, 2015. https://doi.org/10.14778/
2831360.2831365.

[17] Brian T. Smith, James M. Boyle, Jack J. Dongarra, Burton S. Garbow, Yasuhiko Ikebe, Virginia C.
Klema, and Cleve B. Moler. Matrix Eigensystem Routines - EISPACK Guide, Second Edition,
volume 6 of Lecture Notes in Computer Science. Springer, 1976.

[18] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur Mutlu, Fang Lv, Xiaobing
Feng, and Guoqing Harry Xu. Panthera: holistic memory management for big data processing
over hybrid memories. In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019, pages 347–362. ACM, 2019.

[19] Lijie Xu, Tian Guo, Wensheng Dou, Wei Wang, and Jun Wei. An experimental evaluation of
garbage collectors on big data applications. Proceedings of the VLDB Endowmen, 12(5):570–
583, 2019.

[20] Reza Bosagh Zadeh, Xiangrui Meng, Alexander Ulanov, Burak Yavuz, Li Pu, Shivaram Venkatara-
man, Evan R. Sparks, Aaron Staple, and Matei Zaharia. Matrix computations and optimization
in apache spark. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, pages 31–38. ACM, 2016.

[21] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Steven D. Gribble and Dina Katabi, editors,
Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2012, San Jose, CA, USA, April 25-27, 2012, pages 15–28. USENIX Association, 2012.

[22] Jia Zou, R. Matthew Barnett, Tania Lorido-Botran, Shangyu Luo, Carlos Monroy, Sourav Sik-
dar, Kia Teymourian, Binhang Yuan, and Chris Jermaine. Plinycompute: A platform for high-
performance, distributed, data-intensive tool development. In Gautam Das, Christopher M. Jer-
maine, and Philip A. Bernstein, editors, Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages
1189–1204. ACM, 2018.

https://doi.org/10.14778/2831360.2831365
https://doi.org/10.14778/2831360.2831365

CURRICULUM VITAE

56

