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ABSTRACT 

 Gene regulation is controlled by DNA-bound complexes of transcription factors 

(TFs) and indirectly recruited transcriptional cofactors (COFs). Understanding how and 

where these TF-COF complexes bind in the genome is fundamental to our understanding 

of the role of cis-regulatory elements (CREs) in gene regulation and our mechanistic 

interpretation of non-coding variants (NCVs) known to impact gene expression levels. In 

this thesis, I present three related array-based techniques for the high-throughput profiling 

of DNA-bound TFs and TF-COF complexes directly from cell nuclear extracts. 

 First, I describe the nuclear extract protein-binding microarray (nextPBM) 

approach to profile TF-DNA binding using nuclear extracts to account for cell-specific 

post-translational modifications and cofactors. By analyzing cooperative binding of 

PU.1/SPI1 and IRF8 in monocytes, I demonstrate how nextPBM can be used to delineate 

DNA-sequence determinants of cell-specific cooperative TF complexes. 

 Second, I present the CASCADE (Comprehensive ASsessment of Complex 

Assembly at DNA Elements) approach to simultaneously discover DNA-bound TF-COF 
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complexes and quantify the impact of NCVs on their binding. To demonstrate 

applicability of CASCADE to screen NCVs, I profile differential TF-COF binding to 

~1,700 single-nucleotide polymorphisms in human macrophages and discover a 

prevalence of perturbed ETS-related TF-COF complexes at these quantitative trait loci. 

 Third, I present the human TF array (hTF array) as a general platform for 

surveying COF recruitment to a panel of 346 non-redundant consensus TF binding sites 

(TFBSs). Using the hTF array, one can examine the activity of a diverse panel of TFs by 

profiling TF-COF complexes in a cell state-specific manner. In addition to the hTF 

microarray design, I have developed analysis and visualization software that allows users 

to explore COF recruitment profiling results interactively. 

 Collectively, nextPBM, CASCADE, and the hTF array represent a suite of new 

approaches to investigate TF-COF complex binding and their application will refine our 

understanding of CREs by linking NCVs with the biophysical complexes that mediate 

gene regulatory functions.  
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CHAPTER ONE: Introduction 

1.1 The role of transcription factors in enhancer selection and gene regulation 

 Transcription factors (TFs) are a class of DNA-binding proteins that are expressed 

and activated in response to developmental or environmental cues to regulate the 

expression of their target genes. TFs in turn influence gene regulatory activities through 

interactions with non-DNA-binding proteins and protein complexes referred to 

collectively as transcriptional cofactors (COFs). These COFs that are indirectly recruited 

to DNA via TFs are considered effectors of gene regulation since many have enzymatic 

activity required to facilitate gene expression, such as modification of histones and 

remodeling of chromatin (Fig. 1.1) (Reiter et al., 2017; Zabidi and Stark, 2016; Shlyueva 

et al., 2014). TFs bind throughout the genome in a DNA sequence-specific manner. The 

DNA sequence preferences of TF binding are typically modeled using position-weight 

matrices (PWMs) that represent binding using the probability of observing a given 

nucleotide at a given position within the binding sites of the TF (Fig. 1.1) (Stormo and 

Fields, 1998; Siggers and Gordân, 2014). These DNA-binding preferences can also be 

visualized using sequence logos (Fig. 1.1) (Schneider and Stephens, 1990). As the 

genome across all cell types within an individual is largely identical and the nucleotide 

composition of a DNA sequence determines which TFs can bind a given segment, 

deciphering the logic of gene regulation in diverse cell types and stimulus responses 

fundamentally depends on our ability to determine which TFs are expressed and active in 

a given context, what their binding preferences are, and which COFs are subsequently 

recruited to these sites. 
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Figure 1.1: Overview of transcriptional regulation by TFs and COFs 

COFs are recruited to TF sites on DNA (solid arrows) and have enzymatic activity such as 

histone modification and interaction with RNA polymerase II (RNAPII) and the general 

transcriptional machinery to influence how genes are expressed (mRNA). Different TFs display 

distinct DNA-binding preferences that can be modeled using PWMs and visualized using 

sequence logos. 

 

 TFs can be broadly classified by their functional properties and the role the play 

in gene regulation (Vaquerizas et al., 2009; Lambert et al., 2018; Smale, 2012). Many 

TFs for example are expressed in response to developmental cues and influence the 

regulatory potential of a given cell type or lineage (Heinz et al., 2013; Lin et al., 2010; 

Heinz et al., 2010; Johnson et al., 2018). For example, in monocytes and macrophages, 

important sentinel white blood cells of the immune system, the enhancer landscape is 

thought to be established by a small panel of lineage-determining transcription factors 

(LDTFs) including SPI1/PU.1 (Heinz et al., 2010). Once expressed, PU.1 uses its 

“pioneer” activity to bind to closed chromatin in a process thought to remodel local 

chromatin by displacing histones and exposing proximal regulatory binding sites to be 

targeted by TFs that do not possess this same pioneer capability (Heinz et al., 2010; 

Heinz et al., 2013; Heinz et al., 2015). This developmental process effectively establishes 

the regulatory potential of different cell types through the coordinated “selection” of 
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lineage- and cell type-specific enhancers that confer and maintain the identity of a given 

cell type. An additional class of TFs includes those that are activated or expressed in 

response to environmental stimuliA well-characterized example in macrophages is the 

NF-κB complex that is activated in response to diverse stimuli including the detection of 

bacterial lipopolysaccharide (LPS) found at the surface of harmful pathogens (Xie et al., 

1994; Hwang et al., 1997, Heinz et al., 2010; Heinz et al., 2013; Heinz et al., 2015). NF-

κB binding to the regulatory elements established by pioneer factors such as PU.1 results 

in the robust stimulus-dependent activation of programs of proinflammatory genes that 

function in concert to respond to the threat of a potential pathogen (Heinz et al., 2010; 

Natoli et al., 2011; Heinz et al., 2013; Ostuni et al., 2013; Heinz et al., 2015). 

 As TFs like PU.1 and NF-κB recruit transcriptional cofactors with enzymatic 

activities, regulatory elements established by these and other TFs can be located genome-

wide through profiling the chemical modifications that are introduced by these recruited 

COFs. For example, many of the myeloid regulatory elements established by PU.1 and 

subsequently bound by signal-dependent TFs such as NF-κB in macrophages are also 

marked with histone modifications characteristic of primed and active enhancers such as 

histone 3 lysine 4 mono-methylation (H3K4me1) and histone 3 lysine 27 acetylation 

(H3K27ac) as well as by the presence of the general histone acetyltransferase (HAT) 

p300 (Ghisletti et al., 2010; Natoli et al., 2011; Ostuni et al., 2013; Heinz et al., 2013). 

Beyond these two enhancer marks, there exists a number of additional histone 

modifications established by recruited enzymes whose combinations are thought to 

roughly delineate different types of regulatory elements (such as active promoters, 
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primed enhancers, poised enhancers, and active enhancers) (Heintzman et al., 2007; Ernst 

et al., 2011; Ernst and Kellis, 2012). Understanding the grammar of regulatory element 

selection and maintenance genome-wide is therefore a complex problem of understanding 

where and why a TF can bind to a given DNA site and which enzymatic COFs can be 

consequently recruited to these TF sites. 

 Due to the important role of TFs in establishing and maintaining regulatory 

elements, there exists massive cooperative efforts to map the genome-wide binding sites 

of different TFs and locations of non-coding regulatory elements in diverse cell types and 

contexts (for example ENCODE and modENCODE) (Feingold et al., 2004; Birney et al., 

2007; Gerstein et al., 2010). In addition, as TFs are sequence-specific DNA binding 

proteins, there also exists community resources and databases such as JASPAR (Sandelin 

et al., 2004; Fornes et al., 2020) , CIS-BP (Weirauch et al., 2014), Transfac (Wingender 

et al., 2000), UNIPROBE (Newburger and Bulyk, 2009), HOCOMOCO (Kulakovskiy et 

al., 2013; Kulakovskiy et al., 2018), and MotifDb (Shannon and Richards, 2018) 

dedicated to the collection of PWM models for different TFs that can be used to predict 

the binding sites of these factors. These community efforts to dissect the complex 

grammar of gene regulation at the level of non-coding DNA elements underscore the 

importance of TFs and exist due to the availability of diverse and effective methods to 

map the genome-wide binding sites of TFs and characterize the nucleotide determinants 

of their sequence-specific DNA binding. 
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1.2 Current methods to profile TF-DNA binding preferences 

 Several methods currently exist to profile the binding locations of TFs such as 

ChIP-seq (reviewed in Furey, 2012) and elucidate the nucleotide determinants of their 

binding (reviewed in Inukai et al., 2017). Each of these methods have their own 

advantages and drawbacks. The protein-binding microarray (PBM) for example is an in 

vitro method for measuring TF-DNA binding preferences (Mukherjee et al., 2004; Berger 

and Bulyk, 2006). In brief, a protein of interest is either expressed/tagged and incubated 

on a double-stranded DNA microarray consisting of up to hundreds of thousands of 

unique sequences. The TF of interest is subsequently probed with a primary antibody 

(specific to that TF) and binding of the primary antibody is detected in turn using a 

fluorophore-conjugated secondary antibody. Intensity of the fluorescence is measured 

and has been shown to be proportional to the TF’s affinity for a given DNA probe. A 

distinct advantage of the PBM over other technologies, such as the widely used genomic 

chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) 

assay (discussed below), is the customizability of the DNA probes on the array. As any 

set of customized DNA probes can be included on the array (within a probe number 

limit), groups have developed creative designs to elucidate the DNA-binding preferences 

of TFs using the PBM platform (Berger and Bulyk, 2009; Newburger and Bulyk, 2009). 

The Universal PBM design for example uses a k-mer-based approach to directly compare 

TF binding intensities at a “seed” reference DNA probe and all of its single nucleotide 

variants providing a method to determine the single nucleotide determinants of TF 

binding. This profiling resolution comes at the cost however of having to profile in a non-
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cellular context (an in vitro setting) where the potential influence of all cellular post-

translational modifications (PTMs) and cooperative/collaborate protein cofactors on the 

binding of a TF of interest cannot be taken into account. Nonetheless, the PBM has 

facilitated efforts to characterize the DNA-binding models of TFs. The aforementioned 

Universal PBM design for example has been used to characterize the binding models of 

hundreds of TFs which are compiled in the widely used UNIPROBE resource 

(Newburger and Bulyk, 2009) which is in turn included in meta-databases such as 

MotifDb (Shannon and Richards, 2018).  

 Similar in vitro techniques to the PBM exist, such as high-throughput systematic 

evolution of ligands by exponential enrichment (HT-SELEX) and the related SELEX-

seq, which in place of a microarray use a library of DNA probes (Jolma et al., 2010; 

Riley et al., 2014). These probes are incubated with TFs of interest and undergo multiple 

rounds of selection in order to identify the DNA probes preferentially bound by the 

protein of interest. These probes are then sequenced and analyzed to determine the 

binding preferences of the given TF. As with the PBM, the probe selection does not need 

to be limited to genomic sequences, allowing researchers to screen the impact of different 

DNA variants on the binding of a TF and develop customized library designs to fit their 

research questions. However, HT-SELEX and SELEX-seq suffer from many of the same 

caveats as the PBM since they are both in vitro techniques. The impact of cell-specific 

phenomena such as PTMs and cofactors are therefore not taken into account in these 

SELEX-based techniques either. 
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 In addition to in vitro techniques used to study TF-DNA binding, such as the 

PBM and HT-SELEX/SELEX-seq, there exists in vivo techniques such as the widely 

used ChIP-seq (Birney et al., 2007; Johnson et al., 2007). Briefly, TFs in cells are cross-

linked to DNA using a fixing agent, the DNA is fragmented, and DNA segments bound 

by a TF of interest are precipitated using an antibody (similar to how the TF of interest is 

detected in the PBM assay). The precipitated DNA is then purified, amplified, and 

sequenced. Computational methods to map these sequencing reads back to a reference 

genome and determine areas of locally enriched mapped reads (often termed ‘peaks’) 

allow researchers to determine likely binding sites for their TF of interest (Zhang et al., 

2008; Guo et al., 2012; Xing et al., 2012). Models for the DNA-binding preferences of 

TFs can be computed using de novo motif inference techniques based predominantly on 

the occurrence and frequency of k-mers within the peaks uncovered (Heinz et al., 2010; 

Bailey et al., 2009; Machanick and Bailey, 2011; Ma et al., 2014). Relative to in vitro 

techniques, ChIP-seq offer the distinct advantage of profiling in the cellular context 

where the influence of cell-specific phenomena such as PTMs and 

cooperative/collaborative cofactors. In addition, determining the genomic binding sites of 

a TF can inform additional analyses and integration with other modalities such as RNA-

seq to infer the target genes of a TF and map gene regulatory networks in response to 

stimuli (reviewed in Adigun et al., 2015). However, in regards to determining the TF 

binding specificities, the technique possesses certain limitations. For example, many of 

the ‘peaks’ found in a ChIP-seq experiment will not contain an identifiable binding site as 

determined by the DNA-binding model and many will contain multiple possible binding 
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sites where the individual contributions of these sites toward TF binding and cis-

regulatory element (CRE) function cannot be distinguished without additional 

experimentation (Inukai et al., 2017; MacQuarrie et al., 2011). Furthermore, the binding 

data is limited to the sequences naturally occurring within the genetic sequence within the 

organism being profiled. Therefore, elucidating the impact of a specific hypothetical 

DNA nucleotide variant of interest is not possible if the variant does not already occur in 

the cell being interrogated whereas with in vitro assays, binding to DNA variants can be 

directly interrogated. Due to its many advantages and applications, ChIP-seq has been 

widely employed by the community and coordinated efforts to map the genome-wide 

binding of TFs in diverse cell types and contexts, such as the ENCODE (Feingold et al., 

2004) and modENCODE consortia (Gerstein et al., 2010), have contributed 

immeasurably to our understanding of TF binding and gene regulatory function. 

 Thus far, the methods of profiling TF binding discussed have been limited to one 

TF per experiment. Recently, a high-throughput (HT) electrophoretic mobility shift assay 

(EMSA) and mass spectrometry-based technique called Active TF Identification (ATI) 

was developed to profile the binding preferences of all TFs in the cell (Wei et al., 2018). 

This is achieved by incubating DNA oligomers with nuclear extracts, isolating all 

protein-DNA complexes by EMSA, and then analyzing the captured DNA sequences 

using HT sequencing and the captured proteins by mass spectrometry. Computational 

approaches are then used to infer the various DNA binding models (i.e. PWMs) and to 

match them with the TFs identified by mass spectrometry. The ATI method offers an 

interesting alternative to other techniques like ChIP-seq where only a single TF can be 
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profiled at a time. This increased profiling throughput at the TF-level however comes 

with the cost of not being able to directly identify the genomic binding sites of the TFs 

with certainty. Together, these methods are effective but demonstrate a historical focus at 

characterizing TF binding preferences and binding sites over the functional potential of 

different sites. Comparatively less effort has been placed in developing techniques for 

determining mapping the nucleotide determinants of functional higher-order regulatory 

complexes and the recruitment sites of transcriptional COFs, the enzymatic effectors of 

gene regulatory processes like histone modification and chromatin remodeling. 

1.3 Importance of studying DNA-binding preferences of TFs and higher-order 

complexes 

 An important reason to study the DNA-binding preferences of TFs and higher 

order gene regulatory complexes is their potential role in aberrant cell states and disease. 

A key finding from over a decade’s worth of genome-wide association studies (GWAS) 

is that the vast majority of  DNA sequence polymorphisms linked to disease occur in 

non-coding sections of the genome (Gallagher and Chen-Plotkin, 2018). These non-

coding polymorphisms do not affect the sequence of an expressed protein but can instead 

perturb how the expression of a protein (or multiple proteins) is/are regulated resulting in 

consequences at the phenotype level. Of the disease-associated polymorphisms that occur 

within the non-coding genome, a substantial portion have been demonstrated to occur 

within cell type-specific gene regulatory elements (Maurano et al., 2012; Farh et al., 

2015). Understanding the role of genetics in disease therefore depends on our ability 

study the mechanistic effects of DNA variants on the function gene regulatory elements 
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such as promoters and enhancers and with particular focus on cell type-specific 

regulatory elements. 

 A primary mechanism by which DNA variants alter gene expression is by altering 

the DNA binding of TFs. Previous studies conducted to estimate the prevalence of 

disease-associated variants in suspected TF binding sites have found that only 10-20% 

likely perturb the binding of a TF with a previously characterized binding model (Farh et 

al., 2015). Our inability to link variants with altered TF binding has contributed to a 

widening gap between the ease with which we can statistically associate a non-coding 

DNA variant with a phenotypic outcome and our ability to functionally determine the 

molecular mechanisms that explain these associations (Gallagher and Chen-Plotkin, 

2018). For example, there exists HT techniques to link DNA variants uncovered in 

GWAS with gene expression outcomes. RNA-seq can be combined with genotyping for 

example in a cell-specific manner to uncover expression quantitative trait loci (eQTLs) to 

statistically associate DNA variants with some allelic change in gene expression (Sun and 

Hu, 2013; Majewski and Pastinen, 2011). Recently, massively parallel reporter assays 

(MPRAs) have become a popular HT tool to move beyond statistical association and 

directly measure the impact that single DNA variant has on reporter activity (Tewhey et 

al., 2016). These types of studies that seek to link GWAS variants (and other DNA 

variants such as somatic mutations suspected to drive cancer development) with gene 

expression changes however do not explain the mechanism through which these variants 

act to affect gene expression. 
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 Assaying the effects of a DNA variant on the binding of a TF or the subsequent 

recruitment of a higher-order gene regulatory complex is comparatively a more difficult 

task than associating variants with gene expression changes. Methods such as EMSA 

exist to study protein-DNA interaction and can be used to study the mechanistic effects of 

a variant on protein binding (Hellman and Fried, 2007) but is intractable to perform 

larger scale analyses on variants of interest. Larger scale analysis techniques that use 

ChIP-seq data exist to study the effects of different alleles on the binding of a TF exist 

(Harley et al., 2018; Van De Geijn et al., 2015) but only one TF or chromatin feature can 

be investigated at a time. These allelic imbalance approaches are therefore not suitable 

for more discovery-based work which is the nature of trying to uncover potential 

molecular mechanisms for GWAS and/or disease-associated variants. To address the 

widening gap between studies performed to uncover these variants and those performed 

as functional follow-ups, there is a need for more high-throughput and discovery-based 

methods to study the link between DNA variants and protein-DNA binding. 

1.4 Transcriptional cofactors – linking DNA variants and TFs to gene regulatory 

activities 

 As altered TF binding alone is thought to be an underlying molecular mechanism 

of only a fraction of disease-associated DNA variants (Farh et al., 2015), there must be an 

alternate (or several) mechanism(s) to functionally explain why a given variant can affect 

the expression of a gene. A potential explanation could be that the allosteric effect of a 

DNA variant could affect the optimal recruitment of a COF complex without itself 

affecting the binding efficacy of an underlying TF (or TF complex). This is supported by 



 

 

12 

the finding that though disease-associated variants often do not occur within a known 

DNA-binding motif, they often appear proximal (Farh et al., 2015). 

 COFs are thought of as the effectors of gene expression change as they have 

enzymatic activities that mediate diverse gene regulatory functions such as histone 

modification, chromatin remodeling, as well as formation of the transcription 

preinitiation complex (Reiter et al., 2017; Shlyueva et al., 2014;, Zabidi and Stark, 2018, 

Haberle and Stark, 2018). An example of a COF with a critical function in gene 

regulation is the coactivator p300 (Goodman and Smolik, 2000; Gerritsen et al., 1997). 

Though it is often thought of as a histone acetyltransferase, it has been shown to confer 

acetyl groups to many additional proteins in a gene regulatory context (Weinert et al., 

2018). P300 is a key activator widely found at enhancers (Raisner et al., 2018) and 

known to be recruited to DNA through protein-protein interactions with DNA-bound TFs 

through various interaction domains (Vo and Goodman, 2001). The p300 example 

demonstrates several general principles of the transcriptional COFs; they are 

promiscuously recruited by diverse TFs and since they are recruited to DNA indirectly, 

their sequence specificity is conferred by the TFs with which they interact (Zabidi and 

Stark, 2016; Haberle and Stark, 2018; Reiter et al., 2017). Though COFs are thought of as 

the components with effector function, focus has traditionally been placed on TFs with 

massive international efforts and community resources dedicated to understanding their 

binding preferences (Feingold et al., 2004) though TF binding alone does not necessarily 

result in known function (MacQuarrie et al., 2011) and COFs are known in turn to 

influence the binding of TFs (Siggers et al., 2011; Siggers and Gordân, 2014). 
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 As the binding preferences of COFs have been historically understudied 

compared to TFs, the potential role of perturbed COF recruitment at disease-associated 

DNA variants is not completely understood (Lee and Young, 2013). In addition, 

consistent with the current methods to profile the role of DNA variants in TF binding, the 

methods that exist to profile COF recruitment are not suited for the analyses that need to 

be performed to associate DNA variants with altered COF recruitment or TF-COF 

complex formation. Similar to TFs, ChIP-seq can also be used to determine the genome-

wide COF recruitment locations of a COF of interest. Methods to examine allelic 

imbalance however are impractical (as discussed above) and would not suggest a 

complete mechanism. For example, measuring perturbed COF recruitment at a locus 

would not indicate which TF or TF(s) is/are involved. The approach also requires the 

variant to naturally occur in the population of cells being studied. In comparison, 

techniques such as yeast two-hybrid (Y2H) (Kohalmi et al., 1998) and mammalian two-

hybrid (M2H) (Riegel et al., 2017) can precisely map the interactors of a COF of interest 

but these techniques are limited to assaying binary protein-protein interactions and are 

not suited for analysis involving single DNA variants. The related immunoprecipitation 

mass spectrometry (IP mass spec) identifies the TFs that interact with a COF but does not 

explicitly assay DNA-bound complexes (Mohammed et al., 2016). Despite the 

availability of these methods, there does not currently exist any methods to interrogate 

the individual nucleotide determinants of COF recruitment events in a cell-based and HT 

manner. 
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1.5 The need for new cell-based allelic-resolution COF recruitment profiling and 

analysis techniques 

 Our inability to mechanistically explain why a DNA variant correlates with a 

disease outcome and the unstudied potential role of higher order protein-DNA complexes 

(Lee and Young, 2013) suggest that the current methods available are not suited to study 

the impact of single nucleotide variants on COF recruitment in a cell-specific manner. 

 As many of the potential COF recruitment requirements, such as nuclear 

localization, PTMs, and auxiliary TFs, depend on the cellular context (Zabidi and Stark, 

2016; Haberle and Stark, 2018; Reiter et al., 2017), in vitro methods would potentially 

miss important COF recruitment events or provide misleading or incorrect results. New 

methods and investigations into the role of DNA variants in the recruitment of COFs (or 

the assembly of higher order TF-COF complexes) should therefore strive to be more cell-

based. However, cell-based assays, such as ChIP-seq for example, require that the variant 

or variants being interrogated exist naturally within the cells being assayed which is not 

always possible or realistic. An ideal new method to screen the effects of DNA variants 

on the recruitment of gene regulatory complex would thereby combine the advantages of 

both in vitro and cell-based modalities as is the case with MPRAs and gene expression 

(Tewhey et al., 2016). In order to bridge the gap between DNA variant association with 

disease and causal mechanism, new allelic resolution COF recruitment profiling 

techniques must be developed and combine a more cellular context with the 

customizability and ease-of-use of in vitro platforms. 
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1.6 Introduction to the novel methods developed for this dissertation 

 Motivated by the lack of methods to profile the nucleotide determinants of 

regulatory complex binding, this dissertation proposes three related methods to perform 

these analyses in a cell-based but highly customizable manner in terms of the DNA 

sequences being profiled. 

 In Chapter 2, we discuss the development of the nuclear extract protein-binding 

microarray (nextPBM) as an extension of the traditional PBM. In place of tagged or 

purified proteins, nextPBM profiles protein-DNA binding from whole nuclear extract. 

This allows researchers to characterize the binding of a protein of interest in the presence 

of possible cooperative-acting factors at their relative endogenous levels and with cellular 

their PTMs present. We use the nextPBM platform to characterize binding of myeloid 

LDTF PU.1 from nuclear extracts compared to in vitro transcribed/translated (IVT) at 

both its canonical binding sites as well as the composite PU.1-IRF8 binding site. We 

leverage the customizability of the DNA probes included to elucidate site- and context-

specific single nucleotide binding preferences of PU.1 and the PU.1-IRF8 cooperative 

complex to these different sites. We propose nextPBM as a general purpose protein-DNA 

binding assay that combines the flexibility of a customizable in vitro system with a more 

biologically relevant profiling context. 

 In Chapter 3, we present CASCADE (Comprehensive Assessment of Complex 

Assembly at DNA Elements). With CASCADE, we extend the nextPBM platform from 

profiling TF-TF cooperative complexes to profiling indirect recruitment of COFs from 

cell nuclear extract. Using a single variant (SV) DNA probe approach, we show how 
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CASCADE can be used to profile the nucleotide determinants of COF recruitment to 

both large CREs as well as known functional single-nucleotide polymorphisms (SNPs) in 

myeloid cells. By comparing the COF recruitment models to previously characterized 

binding models, we infer the identity of TFs underlying COF recruitment events observed 

demonstrating how CASCADE can be used to characterize TF-COF binding. 

Importantly, we show how a 2-step approach that includes CASCADE can be used to 

rapidly screen the mechanistic effects of functional SNPs on TF-COF 

binding/recruitment in a cell- and stimulus-dependent manner thus providing the field 

with an HT assay to characterize SNPs. 

 In Chapter 4, we present the human transcription factor (hTF) array as a 

standardized array design to profile the recruitment of COFs to a diverse panel of TFs. To 

analyze results of these COF recruitment experiments, we designed a full software suite 

complete with an interactive user interface to enable researchers to explore their TF-COF 

binding data. In addition, we discuss the construction of cell state-level recruitment 

“signatures” and how these could eventually be used to study the TF-COF complexes 

active in disease cell states to inform COF- and TF-level biomarkers. 

 In Chapter 5, we conclude this work by summarizing the advances presented by 

the development of these three novel methods (nextPBM, CASCADE, and the hTF array) 

and outline future work. With plans to expand our approaches to characterize more COFs 

and further integrate our COF profiling measurements with other modalities, we hope to 

further establish CASCADE and the hTF array as transformative approaches that will 
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enable researchers to investigate TF-COF complex binding in ways that were not 

previously achievable.
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CHAPTER TWO: nextPBM - a platform to study cell-specific transcription factor 

binding and cooperativity 

Note: A substantial portion of this chapter was previously published in a peer-reviewed 

journal (Mohaghegh et al., 2019) with Nima Mohaghegh (NM) and David Bray (DB) 

featured as co-first authors and equal contributors. The optimized nuclear extraction 

protocol that made the nextPBM technique possible was developed by NM with input 

from Trevor Siggers (TS) and DB. DB performed all of the computational work including 

the design and analysis of all ChIP-seq experiments, selection of DNA probes to include 

in the pilot nextPBM design, development of the nextPBM analysis and visualization 

pipelines, and the generalizable framework to discover and characterize cooperative TF-

TF complex binding. All experimental work (including ChIP-seq, nextPBM, and 

validation assays) were performed by NM and TS. Individual contributions to the results 

outlined in each figure are included in the corresponding figure legend. The manuscript 

was written by DB, NM, and TS.  Supplementary data published alongside the paper can 

be found in the online version of the article. 

 
2.1 Abstract 

 HT in vitro methods for measuring protein-DNA binding have become invaluable 

for characterizing TF complexes and modeling gene regulation. However, current 

methods do not utilize endogenous proteins and, therefore, do not quantify the impact of 

cell-specific PTMs and cooperative cofactors. We introduce the HT nextPBM (nuclear 

extract protein-binding microarray) approach to study DNA binding of native cellular 

TFs that accounts for PTMs and cell-specific cofactors. We integrate immune-depletion 
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and phosphatase treatment steps into our nextPBM pipeline to characterize the impact of 

cofactors and phosphorylation on TF binding. We analyze binding of PU.1/SPI1 and 

IRF8 from human monocytes, delineate DNA-sequence determinants for their 

cooperativity, and show how PU.1 affinity correlates with enhancer status and the 

presence of cooperative and collaborative cofactors. We describe how nextPBMs, and 

our accompanying computational framework, can be used to discover cell-specific 

cofactors, screen for synthetic cooperative DNA elements, and characterize TF 

cooperativity. 

2.2 Introduction 

 Defining the principles that govern TF binding and the assembly of multi-protein 

TF complexes remains a challenge (Siggers and Gordân, 2014; Slattery et al., 2014). HT 

in vitro techniques (both microarray- and sequencing-based) exist to characterize the 

DNA binding of TFs (Slattery et al., 2014; Andrilenas et al., 2015) and cooperative TF 

complexes (Siggers et al., 2011; Slattery et al., 2011; Jolma et al., 2015). Current 

approaches assay the binding of purified or in vitro produced protein samples (Slattery et 

al., 2011; Berger et al., 2006; Badis et al., 2009), or tagged protein overexpressed in cells 

(e.g. HEK293) (Jolma et al., 2013; Fang et al., 2012). Consequently, these approaches do 

not assay the impact of cell-specific PTMs, which are known to have diverse effects on 

TF binding and function (Tootle and Rebay, 2005; Filtz et al., 2014), and do not account 

for the impact of cell-specific cofactors that can bind cooperatively with TFs. 

 To characterize cell-specific TF binding features and account for the impact of 

cofactors and PTMs, we have developed nextPBMs. PBMs are double-stranded DNA 
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microarrays that allow in vitro measurement of protein binding to tens of thousands of 

unique DNA sequences (Berger et al., 2006). NextPBM extends the PBM methodology 

by using total nuclear extracts in place of purified, IVT, or over-expressed proteins 

(Materials and Methods). To test the impact of specific cofactors and PTMs on binding, 

we have developed immune-depletion and phosphatase treatment steps into our nextPBM 

pipeline. We describe a computational framework based on binding to single-nucleotide 

variant (SNV) sites that provides a powerful approach to study DNA-binding specificity 

and protein cooperativity when assaying heterogenous NEs. We use nextPBMs to analyze 

the DNA binding of the myeloid cell-lineage factors PU.1 and IRF8, and discuss our 

results. We outline how nextPBMs can be used to discover cooperative TF binding and to 

infer the identity of cooperative-acting factors. Finally, we demonstrate how nextPBMs 

can be used to screen for cooperatively bound synthetic DNA elements. NextPBMs are 

an extendible and robust HT method to assay the binding of proteins to genomic or 

synthetic sites that can capture the impact of cell-specific cofactors and PTMs on TF-

DNA binding. 

2.3 Results 

2.3.1 Genome-wide binding of PU.1, C/EBPa, and IRF8 in a human monocyte line 

 To demonstrate the nextPBM approach, we examined binding of PU.1/SPI1 from 

human monocytes as a test case. PU.1 is a master regulator of the myeloid lineage 

(Nerlov and Graf, 1998; Rosenbauer and Tenen, 2007; Scott et al., 1994) and functions to 

establish localized histone modifications that define the cell-specific enhancer repertoire 

(Heinz et al., 2010; Ghisletti et al., 2010; Barozzi et al., 2014). In myeloid cells, PU.1 can 
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bind DNA autonomously to 5’-GGAA-3’ ETS motifs, or cooperatively with IRF8 to 5’-

GGAANNGAAA(C/G)-3’ ETS-IRF composite elements (EICEs) (Rehli et al., 2000; 

Eklund et al., 1998; Merano et al., 1999). In order to select PU.1 binding sites to examine 

using our nextPBM assay, we first sought to determine the in vivo genomic instances of 

these sites. To define the PU.1 binding landscape in human monocytes, and co-

occupancy with cofactors, we performed ChIP-seq on PU.1, C/EBPα and IRF8 in resting 

THP-1 cells (Materials and Methods). We observed widespread binding for each factor 

and significant overlap in their binding profiles (Fig. 2.1A), consistent with previous 

studies (Ghisletti et al., 2010; Heinz et al., 2010; Langlais et al., 2016; Mancino et al., 

2015). We identified 47,799 PU.1, 26,648 C/EBPα and 2,588 IRF8 binding loci (i.e., 

ChIP-seq peaks) in resting THP-1 cells. The number of PU.1 binding sites is consistent 

with numbers reported for human peripheral blood monocytes (Pham et al., 2012) and 

mouse macrophages (Ghisletti et al., 2010; Heinz et al., 2010; Mancino et al., 2015). 

Critically, we observed near complete overlap of IRF8 binding sites (95%) with PU.1 

binding sites, supporting the model that in vivo IRF8 must bind as a complex with PU.1 

in these resting cells. 
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Figure 2.1: Genome-wide binding for PU.1, C/EBPα and IRF8 in human monocytes 

(A) Overlap of genome-wide ChIP-seq peaks discovered for PU.1, C/EBPα, and IRF8. De novo 

motifs discovered within each PU.1-containing intersection are shown on the right. Numbers in 

brackets indicate the percentage of peaks containing the de novo motif (left) compared to 

background (right). Grey bars in the motif logos represent bit values of 0 (bottom), 1 (middle), 

and 2 (top). When a ChIP-seq peak overlapped multiple peaks from another experiment we 

aggregated them into a single overlapping region. (B) Distributions of motif scores obtained for 

ChIP-seq peaks categories described in (A). ChIP-seq peaks were scanned with each motif and 

assigned the maximum log-odds score (see Materials and Methods). Contributions: ChIP-seq 

experiments were designed by NM, DB, and TS and performed by NM. ChIP-seq analysis and 

subsequent motif finding and scoring was performed by DB with input from TS. 
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 To characterize the DNA sequence motifs that define PU.1, C/EBPα and IRF8 

binding we performed de novo motif analysis on defined subsets of the bound genomic 

loci (Materials and Methods). Binding motifs determined for genomic loci bound by 

PU.1 alone or with other factors agree well with known motifs (Fig. 2.1A). At loci bound 

by PU.1 alone we identify a canonical PU.1 binding motif. At loci shared with IRF8 (or 

IRF8 and C/EBPα) the dominant motif is the EICE bound cooperatively by IRF8 and 

PU.1. At loci bound with C/EBPα we identify a PU.1 motif, supporting the idea that 

collaboration between these factors is not via direct cooperative DNA binding but rather 

through synergistic effects on chromatin (Feng et al., 2008; Ghisletti et al., 2010). We 

find that the PU.1 motif identified on loci co-occupied with C/EBPα is slightly more 

degenerate than for PU.1 alone, suggesting that PU.1 binding sequences may be lower 

affinity at loci shared with C/EBPα. 

 To determine the specificity of TF motifs for their respective in vivo binding 

profiles we scored bound regions using the individual TF motifs (Fig. 2.1B). For both 

PU.1 and C/EBPα we observe that their binding motif is highly predictive of their ChIP-

seq peaks. However, for both TFs, motif scores are lower for loci bound with the other 

factors. For IRF8, we find that the EICE motif scores are much higher for IRF8 ChIP-seq 

peaks than for peaks from other factors. These analyses demonstrate that motifs identified 

for each TF are specific for their genomic binding loci, and that TF binding at loci co-

occupied with either a collaborating or a cooperative cofactor can be lower scoring. 
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2.3.2 Nuclear extract protein-binding microarrays (nextPBM) 

 To define PU.1 binding sites for our nextPBM assay (Fig. 2.2A), we selected 

2,499 DNA sites in ChIP-positive regions that matched a PU.1 PWM (Materials and 

Methods, Supplementary File 1 from Mohaghegh et al., 2019). To identify composite 

PU.1-IRF8 EICE elements, we selected 116 EICE sites from regions bound by both PU.1 

and IRF8. Nuclear extracts from human THP-1 monocyte cells were made using a 

detergent-based cell lysis and extraction procedure and incubated with the double-strand 

DNA microarrays (Materials and Methods). As proteins in the assay are not epitope-

tagged, primary antibodies were used to label PU.1, followed by fluorescently labeled 

secondary antibodies (Materials and Methods). 
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Figure 2.2: Nuclear extract protein-binding microarrays (nextPBMs) 

(A) Workflow schematic for the nextPBM protocol. (1) Cultured cells can be stimulated or 

treated with a drug prior to nuclear extraction. (2) Total soluble protein content is harvested from 

cell nuclei using an optimized protocol (see Materials and Methods). (3) Nuclear extract can be 

treated in parallel enzymatically (i.e. by phosphatase treatment) and components of interest can 

be depleted (i.e. by immune-depletion using a targeted antibody) depending on goals of the 

experiments. (4) DNA binding affinity of one or more transcription factors of interest are profiled 

in parallel directly from nuclear extract. (B) Density of PU.1 nextPBM z-scores obtained at 

random background probes (n = 500) and at genomic PU.1 binding sites (n = 2,615). (C) 

Scatterplot of PU.1 binding z-scores obtained by DNA probes corresponding to random 

background (black) and genomic PU.1 sites (blue) in different biological replicates. (D) Left: 

Schematic representation of the SNV probes corresponding to an example PU.1 seed probe. 

Genomic sequence corresponding to the PU.1 motif is highlighted in sky blue within a larger 

20bp sequence. SNVs within a given SNV probe are shown in dark blue. Right: Sequence logos 

obtained for the same genomic PU.1 seed probe using a PU.1 antibody (top) and an FLI1 

antibody (bottom). Δz-scores are computed relative to the median score obtained within a given 

column. Contributions: nextPBM workflow was developed jointly by NM, DB, and TS. NM and 

TS performed the nextPBM experimental work. nextPBM microarray design, analysis, and 

visualization pipelines were developed by DB with input from TS. 

 

 PU.1 binding was detected to genome-derived sites significantly above 

background sites (Fig. 2.2B), demonstrating that there is sufficient endogenous protein in 

nuclear extracts to quantify TF binding using our assay. PU.1 binding profiles for 

individual replicate experiments were highly correlated, demonstrating high 

reproducibility between nextPBM experiments (Fig. 2.2C). To assess the sensitivity of 

our nextPBM assay, we generated a PU.1 DNA-binding logo using a SNV probe-based 

approach (Materials and Methods) (Andrilenas et al., 2018). Briefly, we measured PU.1 

binding to a 20 bp-long seed sequence and all 60 SNV sequences (Fig. 2.2D); logos were 

generated from binding scores to each SNV sequence (Fig. 2.2D). The PU.1 binding logo 

agreed well with the established ETS-type motif (Wei et al., 2010), demonstrating that we 

can accurately measure the TF binding specificity using nextPBMs. As the nuclear 

extract is highly heterogenous and contains other ETS family proteins, we asked whether 
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the binding of another ETS factor could be assayed in parallel using the same DNA sites. 

Probing the nextPBM with antibodies to FLI1, another ETS factor expressed in THP-1 

monocytes, we were able to define the FLI1 binding motif (Wei et al., 2010) using the 

same seed and SNV probes as used for PU.1. We note that PU.1 and FLI1 are related 

ETS factors and exhibit only minor differences in their DNA binding specificity, namely 

the 2–3 bases upstream of the 5’-GGAA-3’ core element (Fig. 2.2D); however, we were 

able to resolve their distinct motifs in parallel using the SNV approach. These results 

show that robust and sensitive quantification of TF binding can be performed for TFs at 

endogenous levels in heterogeneous nuclear extracts. 

2.3.3 Characterizing the DNA binding of PU.1 and IRF8 in monocytes using nextPBM 

 To identify monocyte-specific features of PU.1 binding, we compared monocyte 

nextPBM data for PU.1 with binding data using IVT PU.1 (Fig. 2.3A). Binding to 

genomic PU.1 sites was highly correlated between extract PU.1 and IVT PU.1 (Fig. 2.3A, 

highlighted in blue); however, binding of extract PU.1 was enhanced to the EICEs 

present in genomic regions co-occupied by PU.1 and IRF8 (Fig. 2.3A, highlighted in 

red). We confirmed that IRF8 was also bound to the EICE sites using an IRF8 nextPBM 

(Fig. 2.3B). IRF8 binds almost exclusively to the EICEs, consistent with the known 

requirement for cooperative binding with PU.1 in monocytes. The enhanced PU.1 

binding to EICEs (Fig. 2.3A) suggests cooperative binding with a monocyte-specific 

cofactor. These results demonstrate that using nextPBMs to compare the TF binding 

profiles from nuclear extracts and purified/IVT protein provides a HT approach to 

identify cell-specific cooperative binding. 
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Figure 2.3: DNA sequence determinants of PU.1-IRF8 cooperative binding 
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(A) Scatterplot of PU.1 binding z-scores obtained from nuclear extract (nextPBM) versus IVT 

PU.1 for random background probes (n = 500), EICE probes (n = 116), and canonical PU.1 

probes (n = 2,499). (B) Scatterplot of IRF8 binding z-scores in nuclear extract versus PU.1 

binding z-scores in nuclear extract for the same sets of probes as in (A). (C) Left – scatterplot of 

PU.1 binding z-scores in nuclear extract versus IVT PU.1 for probes included in (A) and SNV 

probes corresponding to the EICE seed probe shown right. Highlighted probes correspond to 

SNV probes containing variations in either the ETS core half-site (blue), IRF core site (red), or 

flanking and linker bases (yellow). Right - schematic of EICE seed probe and bases comprising 

individual sub-elements. (D) Sequence logos obtained using a canonical PU.1 seed probe (left 

column) and a cooperative ETS-IRF composite element (EICE) probe (right column) from 

nuclear extract (top row) and from IVT PU.1 (bottom row). (E) Workflow schematic for 

identifying cooperative binding sites using nextPBM. 1 – ChIP-seq sites for a given transcription 

factor of interest (TF1) can be sampled and used to construct probes for a microarray design. The 

sample will contain sites where TF1 is cooperatively bound with other factors. 2 – TF1 sample 

probes are combined with a set of random background probes against which binding z-scores are 

computed to form the basis of a microarray design. 3 – Profiling binding of TF1 in nuclear extract 

versus IVT allows for the discovery of cooperative binding sites bound higher in nuclear extract 

(shown above the diagonal). 4 – Cooperative sites identified can be used as seed probes in a 

subsequent experiment where SNV probes are included in the microarray and profiled. 5 – 

Binding to SNV probes is used to model and compare seed- and context-specific DNA binding 

preferences of TF1 to identify composite elements and likely binding partners. Contributions: 

nextPBM experimental work was performed by NM and TS. nextPBM design, analysis, and 

visualization pipelines were developed by DB with input from TS. 

 

2.3.4 Defining DNA-sequence determinants of PU.1-IRF8 cooperativity 

 To examine determinants of PU.1-IRF8 cooperativity we visualized the impact of 

SNVs on PU.1 binding (Fig. 2.3C). We highlighted SNVs that occur in different regions 

of an EICE site: ETS/PU.1 half-site (blue); IRF half-site (red); flanking and linker 

sequence (yellow) (Fig. 2.3C). SNVs in the ETS half-site abrogate PU.1 binding for both 

IVT and nuclear extract samples as expected (Fig. 2.3C, blue). SNVs in the IRF half-site 

affect the cooperative binding but do not affect the binding of IVT PU.1, capturing the 

impact of IRF8 present in the extract samples (Fig. 2.3C, red). SNVs in the flanking and 

linker sequence affect PU.1-IRF8 complex affinity but largely do not abrogate the 

cooperative interactions (i.e., most yellow data points are above the diagonal), 
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demonstrating that cooperative binding does not require specific sequence features 

outside of the core half-sites (Fig. 2.3C, yellow). This analysis highlights that nextPBMs 

can be used to dissect the determinants of cooperativity for a single DNA binding site. 

 Binding specificity can also be visualized as DNA-binding logos, providing a way 

to easily reveal binding differences to distinct classes of DNA sites under different 

sample conditions (Fig. 2.3D). PU.1 binding logos generated for a seed sequence that was 

not bound cooperatively match canonical PU.1 logos for both the nuclear extract and IVT 

experiments (Fig. 2.3D, left). In contrast, the PU.1 binding logos for a cooperatively 

bound seed sequence differ between the conditions: the logo from the nuclear extract 

experiment resembles the composite EICE element, showing the influence of the IRF8 

binding, while the logo from the IVT experiment shows just the PU.1 logo (Fig. 2.3D, 

right). We note that we obtain consistent motifs when using other high-scoring seed 

sequences (Supplementary Fig. 2.3 and Supplementary Fig. 2.4). The impact of cofactors 

on binding to the distinct classes of DNA sites can be easily visualized using SNV-based 

logo analysis. Using this approach we can analyze multiple TF binding modes in parallel 

in a single experiment (i.e., the PU.1 logos for cooperative and non-cooperative binding 

were determined using a single experiment). 

2.3.5 Approach to identify and characterize cooperative binding 

 Our results provide an approach for the identification and characterization of cell-

specific cooperative binding (Fig. 2.3E). Briefly, putative DNA binding sites of a TF can 

be identified from genomic data (e.g. ChIP-seq combined with motif analysis, etc.) or be 

designed synthetically based on prior knowledge, and can be incorporated into a 
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nextPBM microarray (Fig. 2.3E, steps 1 and 2). For example, scanning PU.1 ChIP-seq 

data with a PU.1 PWM with relaxed cutoff scores can be used to identify both 

autonomous and cooperatively bound sites. Next, comparison of binding profiles between 

nuclear extract and purified TF experiments can be used to identify cooperatively bound 

sites (Fig. 2.3E, step 3). Based on this data, one can design SNV probes for target DNA 

sites and perform a follow-up nextPBM experiment to define DNA-binding logos that 

reveal the cooperative binding specificity and provide information about the identity of 

cooperatively acting factors. For example, monitoring PU.1 binding revealed the 5’-

GAAACT-3’ IRF logo (Fig. 2.3D), which could be matched to PWMs from databases to 

make predictions about the PU.1 cooperative binding partner. The outlined approach 

provides a HT assay to identify and characterize cooperative TF complexes in a cell-

specific manner. 

2.3.6 Sensitivity of cooperative binding to nuclear extract concentration 

 To test the sensitivity of our results on nuclear extract concentration, we 

performed nextPBM experiments at successive dilutions of monocyte nuclear extract. We 

quantified PU.1 cooperativity as the off-diagonal displacement of the 116 EICE sites 

from the autonomously bound PU.1 sites (as in Fig. 2.3A, Materials and Methods). We 

found that PU.1-IRF8 cooperativity decreased with decreasing extracts concentrations 

(Fig. 2.4A). We also assessed cooperativity by monitoring the PU.1 DNA binding logo 

for an EICE site as extract concentration varied. We observed a consistent PU.1 element 

(i.e. 5’-GGAA-3’ core) with a successively weaker IRF8 element (i.e., 5’-GAACT-3’) 

(Fig. 2.4B, left). As PU.1 can bind to DNA in an autonomous or cooperative fashion, 
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both the bound PU.1 and PU.1-IRF8 complexes contribute to the microarray spot 

intensity in a PU.1 nextPBM. Therefore, observing PU.1 cooperativity requires that the 

increase in spot intensity due to the presence of PU.1-IRF8 complexes must be discerned 

beyond the signal intensity from PU.1 binding alone, leading to the observed 

concentration dependence in our assay. In contrast, IRF8 is an obligate dimer in this 

context; therefore, all signal in an IRF8 nextPBM is due to PU.1-IRF8 complexes. As 

such, the binding logos for an IRF8 nextPBM are much more robust to extract 

concentrations and we can discern cooperative EICE logos for all extract concentrations 

(Fig. 2.4B, right). The results demonstrate that the concentration dependence of 

cooperative binding in our assay will depend on the characteristics of the individual 

binding partner. 
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Figure 2.4: Effects of different nuclear extract treatments on PU.1-IRF8 cooperative 

binding 

(A) Boxplot of PU.1-IRF8 cooperativity scores (see Materials and Methods) for a set of EICE 

probes (n = 116) in various listed nuclear extract (NE) conditions and treatments including a 

gradient of 2-fold dilutions (1:1, 1:2, 1:4, and 1:8), an extract where IRF8 has been immune-

depleted (IRF8 immune-depletion), an extract treated with a broad-spectrum phosphatase 

(phosphatase), and an extract generated from a line of cells where IRF8 has been knocked out 

(IRF8 CRISPR KO). Boxplot elements – center line: median, box limits: first and third quartiles, 

whiskers: 1.5x interquartile range, individual points: data points beyond end of whiskers. (B) 

Sequence logos obtained by profiling PU.1 binding (left column) and IRF8 binding (right 

column) to the same sample EICE seed probe in the corresponding nuclear extract 

treatments/conditions from (A). Contributions: nextPBM experimental work including the nuclear 

extract treatments were performed by NM and TS. nextPBM design, analysis, and visualization 

pipelines were developed by DB with input from TS. 

 

2.3.7 Assessing the impact of cofactors and post-translational modifications 

 To determine whether the cooperative PU.1 binding to EICEs was solely due to 

IRF8 we used CRISPR/Cas9 to mutate the IRF8 gene in THP-1 monocyte cells and 
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performed nextPBM using nuclear extracts from IRF8-deficient cells. Cooperative 

binding of PU.1 was lost in the absence of IRF8 protein (Fig. 2.4A and Fig. 2.4B, 

bottom), consistent with reduced PU.1 ChIP-seq to EICEs reported for Irf8-null mouse 

macrophages (Mancino et al., 2015). CRISPR/Cas9-based deletion of target TFs remains 

a labor-intensive process; therefore, we sought to develop a more rapid approach for 

testing the impact of cofactors on cooperative TF binding. We developed an immune-

depletion protocol to deplete a TF from the nuclear extracts in the nextPBM pipeline 

(Fig. 2.2A). NextPBM with IRF8-depleted extracts showed similar abrogation of the 

enhanced PU.1 binding (Fig. 2.4A and Fig. 2.4B), corroborating the CRISPR/Cas9-based 

results that IRF8 is solely responsible for PU.1 cooperativity. Our depletion step removed 

>90% of the IRF8 from the extract sample (Supplementary Fig. 2.5); however, an IRF8 

nextPBM was still successful and we were able to generate an EICE logo, demonstrating 

that for obligate heterodimers such as IRF8, cooperative binding can be detected even 

with low levels of protein in the extract. NextPBM with an immune-depletion treatment 

provides rapid assay for the impact of cofactor proteins on cooperative TF complexes. 

 PTMs play a central role in the regulation of TF function and cooperative TFs 

complexes in vivo. Cooperative binding of PU.1 and IRF8 has been reported to involve 

phosphorylation of IRF8 (Sharf et al., 1997). To test the impact of phosphorylation on 

PU.1 cooperativity we incubated our extract sample with a broad-spectrum phosphatase 

prior to the nextPBM (Fig. 2.2A, Supplementary Fig. 2.6, Materials and Methods). 

Phosphatase treatment of our extract samples abrogated PU.1 cooperative binding to the 

EICEs (Fig. 2.4A), showing the dependence of PU.1-IRF8 cooperativity on 
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phosphorylation. The disruption of cooperative binding can also be seen in the PU.1 

binding logo as an absence of the IRF8 half-site (Fig. 2.4B). We note that this treatment 

had no effect on autonomous PU.1 binding. Therefore, nextPBM with an enzymatic 

treatment of the extract provides a rapid assay for the PTM-dependence of TF binding to 

diverse DNA sequences.  

2.3.8 Screening synthetic DNA elements for cooperative binding 

 NextPBMs present an opportunity to screen synthetic DNA elements (i.e., mutant 

or novel sequences) for cooperative TF binding in a more cell-native context that may be 

used to probe the rules of cooperativity or to design synthetic genetic regulatory 

elements. We first tested our ability to screen for the impact of half-site ablations on 

cooperative binding. We compared the binding of PU.1 and IRF8 to 60 EICE elements 

and matched mutants with an ablated ETS or IRF site (Fig. 2.5A and Fig. 2.5B). Mutating 

the ETS half-site abrogates PU.1 binding, whereas mutating the IRF half-site only affects 

the observed cooperativity (Fig. 2.5B). In contrast, IRF8 binding is abrogated with 

mutations to either the ETS or the IRF half-site (Fig. 2.5C). These results demonstrate 

that IRF8 binding is dependent on cooperativity with PU.1, but not vice versa, consistent 

with observations in vivo (Rehli et al., 2000; Eklund et al., 1998; Merano et al., 1999). 

We next tested our ability to screen for new cooperative sites and generated 199 synthetic 

EICEs by combining low-affinity PU.1 sites with a consensus IRF8 site (Fig. 2.5A). An 

adjacent IRF8 site greatly enhanced PU.1 binding to all sites in the presence of the 

nuclear extract but not for IVT PU.1 (Fig. 2.5B). Similarly, IRF8 bound strongly to these 

synthetic EICEs, and at levels higher than seen for the genomic EICEs (Fig. 2.5C). 



 

 

35 

NextPBMs provide a platform for HT screening of DNA sequences for cooperative 

binding that can account for the impact of the native cell-specific protein environment. 

 

Figure 2.5: Screening synthetic cooperative elements and binding from different genomic 

contexts 
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(A) Schematic showing representative probe sequences and corresponding mutated elements. For 

each genomic EICE from active enhancers in our array design (n = 60), there is a corresponding 

probe with the ETS and IRF core sites independently mutated to contain a different k-mer. For 

each canonical PU.1 probe with a weak motif (n = 199), there is a corresponding probe with an 

IRF half-site added. (B) Distributions of PU.1 binding z-scores for DNA probe groups in (A) in 

nuclear extract (blue) compared to IVT. BG – random background probe set (n = 500). Boxplot 

elements – center line: median, box limits: first and third quartiles, whiskers: 1.5× interquartile 

range, individual points: data points beyond end of whiskers. (C) Distributions of IRF8 binding z-

scores to the same DNA probe groups as in A and B. Boxplot elements: same as in (B). (D) 

Distributions of PU.1 binding z-scores for DNA probe categories defined by ChIP-seq co-

occupancy with cofactors (PU.1 binding context) and/or histone modifications (enhancer state). 

‘NOT MARKED’ indicates the absence of H3K4me1 and H3K27ac histone modifications. 

‘SINGLE REP’ designates a category of probes designed using PU.1 ChIP-seq peaks that were 

discovered in a single biological replicate but were not observed in a duplicate experiment. The 

dashed black line denotes an approximate ChIP-seq reproducibility threshold corresponding to 

the median z-score obtained for the PU.1 SINGLE REP group in IVT. Boxplot elements: same as 

in (A) and (B). Contributions:  Integrative genomics analyses and categorization of PU.1 sites 

was performed by DB with input from TS. nextPBM experimental work was performed by NM 

and TS. nextPBM design, analysis, and visualization pipelines were developed by DB with input 

from TS. 

 

2.3.9 Binding affinity of PU.1 correlates with enhancer state and cofactor occupancy 

 To examine how nextPBM data can inform genomic analysis of TF binding, we 

examined PU.1 binding to sites from genomic regions defined by distinct chromatin 

states and cofactor occupancy. In addition to IRF8, PU.1 functions with C/EBPα to bind 

chromatin and establish macrophage-specific genes expression (Heinz et al., 2010; Feng 

et al., 2008; Laiosa et al., 2006; Xie et al., 2004). PU.1 does not bind DNA cooperatively 

with C/EBPα; rather they function collaboratively through mutual effects on repressive 

chromatin environments. We performed ChIP-seq on C/EBPα and identified PU.1 

binding sites in regions co-occupied by both PU.1 and C/EBPα, or by all three factors 

(PU.1, C/EBPα and IRF8) (Fig. 2.1A). To examine the relation between chromatin state 

on PU.1 binding, we also performed ChIP-seq for H3K4me1 and H3K27ac that define 
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poised (H3K4me1 only) and active (H3K4me1 and H3K27ac) enhancer states 

(Heintzman, et al., 2007; Creyghton et al., 2010). 

 We first examined PU.1 binding to distinct enhancer states: primed, active, or 

unmarked (no H3K4me1 or H3K27ac marks) (Fig. 2.5D). To control for the effect of 

cofactors we limited our analysis to sites from PU.1-only occupied regions. PU.1 binding 

affinity shows a clear trend with enhancer state. High-affinity PU.1 binding to unmarked 

loci is in agreement with previous studies (Pham et al., 2013) and suggests that PU.1 

occupancy to less biophysically accessible chromatin regions requires high-affinity sites. 

Low-affinity PU.1 binding in active enhancers reveals that functional PU.1 sites are not 

the highest affinity, and that genome-wide analyses of the highest affinity TF sites may 

be enriched for non-functional binding. Binding to all sites agrees between the nuclear 

extract and IVT samples, suggesting that there is no influence of cooperative binding to 

these genomic elements and that the binding trends are defined by autonomous PU.1 

binding. 

 We next examined PU.1 binding at active enhancers co-occupied by collaborative 

(C/EBPα) or cooperative (IRF8) cofactors (Fig. 2.5D). We observe a clear trend in 

affinity for the PU.1 IVT data that suggests an impact of cofactors on PU.1 binding. First, 

PU.1 binding sites are lower affinity in regions co-occupied by either cofactor than in 

regions occupied by PU.1 alone (Fig. 2.5D). For example, in regions co-occupied with 

C/EBPα, PU.1 binding sites have Δz-scores ∼ 0.5 lower than for PU.1-only regions (P-

value < 0.001), and in regions co-occupied with IRF8 the affinity is even lower (Δz-score 

∼ 2.0, P-value < 0.001). Unexpectedly, in regions co-occupied by both cofactors 
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(C/EBPα and IRF8) PU.1 binding is the lowest affinity (Δz-score ∼ 2.5, P-value < 

0.001), suggesting that the effects of collaborative and cooperative cofactors on PU.1 

binding are independent and additive. However, when analyzing the nextPBM data, we 

observe that cooperativity with IRF8 significantly increases the PU.1 binding to EICE 

sites. For perspective, we examined PU.1 binding to sites from genomic regions 

identified as PU.1-bound in only a single ChIP-seq replicate experiment (SINGLE REP), 

which we found to be lower affinity than for reproducible PU.1 ChIP sites. We observe 

that, in the absence of IRF8, PU.1 affinity falls below this ‘reproducible level’, which 

may explain the drop in PU.1 ChIP-seq signal observed in IRF8 knock-out mouse 

macrophages (Mancino et al., 2015). Our results demonstrate that cooperative binding 

with IRF8 or collaborative function with C/EBPα allow PU.1 binding sites to be much 

lower affinity than an optimal site, and highlight the perspective gained by analyzing TF 

binding using both purified/IVT and nuclear extract samples.  

2.4 Discussion 

 HT methods for characterizing TF-DNA binding provide critical biophysical data 

for genomic analyses of gene regulation (Siggers and Gordân, 2014; Slattery et al., 2014; 

Andrilenas et al., 2015). Cell-specific PTMs (Tootle and Rebay, 2005; Filtz et al., 2014) 

and cofactors (Siggers and Gordân, 2014; Garvie and Wolberger, 2001) can affect TF 

binding, but are not implicitly accounted for in current HT methods. Here we describe the 

nextPBM methodology for the characterization of protein-DNA binding that uses nuclear 

extracts to account for the impact of cell-specific PTMs and cofactors. We show that a 

direct comparison of binding profiles between nuclear extract of purified/IVT samples 
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can reveal cooperative binding activity and cooperatively bound sites. Using an SNV-

based approach to query sequence specificity and generate binding logos we can examine 

binding and cooperativity for individual genomic sites. The flexibility to analyze binding 

specificity for individual sites allows multiple binding modes to be directly studied in 

parallel in a single experiment. This approach is analogous to the seed-and-wobble 

approach previously described for universal PBMs that quantify TF binding to k-mers 

(Berger et al., 2006). We note that DNA shape is known to play an important role in TF 

binding specificity (Andrabi et al., 2017; Zhou et al., 2015; Yang et al., 2014), and future 

studies that examines the role of DNA shape in the context of multi-protein complexes 

and cell-specific extracts will be informative. We anticipate that this approach will be 

particularly useful when studying TFs that function as obligate heterodimers and may 

have multiple binding partners in a complex nuclear extract and, therefore, interact with 

DNA using distinct binding modes. To address the impact of cofactors and 

phosphorylation on TF binding we have incorporated immune-depletion and 

phosphatase-treatment steps into our nextPBM pipeline. Incorporation of additional 

enzymatic treatment steps will allow us to expand our assay to study other PTMs (e.g., 

demethylases to study impact of methylation, etc.). NextPBMs provide an extendible 

platform to study the DNA binding of endogenous TF complexes in a cell-specific 

manner. We anticipate that nextPBM-based comparison of cell-specific TF binding and 

cooperative assembly will be particularly informative when applied to comparisons of 

different cell types, cell-stimulation conditions, and to cells from disease contexts. 
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 Our study outlines a new approach to identify cooperative binding TFs and 

cooperatively bound sites. First, by sampling from bound genomic loci identified by 

ChIP-seq experiments, one can design a nextPBM microarray to survey a diverse set of 

binding sites for a TF. Currently, using available microarray platforms (Materials and 

Methods), and accounting for replicate probes, we can assay up to ∼18 000 unique 

genomic sites in an experiment, which is sufficient to thoroughly sample (or even 

completely cover) most TF cistromes. Direct comparison of nextPBM binding profiles 

from nuclear extract and purified protein can then reveal differentially bound DNA sites. 

Enhanced binding in nextPBM experiments indicates potential cooperative binding, and 

by reanalyzing these binding sites with a subsequent SNV-based array design we can 

generate binding logos on a per-site basis that can be used to make predictions about the 

possible cooperative binding partners. The identity of binding partners can then be tested 

using nextPBMs with an immune-depletion step. Using nextPBMs to compare the 

binding profiles of TFs from different cells will be particularly useful for studying the 

TFs that function as obligate heterodimers and may utilize different partner proteins in 

different cell types. While the cooperative complex examined in this manuscript involves 

two proteins (PU.1 and IRF8), this approach can, in principle, be used to examine 

cooperative assembly of more than two proteins as all constituents are available in the 

nuclear extract. We have previously demonstrated that cooperative complexes of more 

than two purified proteins can be assayed using the PBM technology (Siggers et al., 

2011). This approach to identify cooperative binding can also be used to screen novel 

DNA elements for cooperative binding activity (Fig. 2.5), providing an HT method for 
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the design and testing of cell-specific cooperative elements that can be used to construct 

synthetic gene regulatory elements for mammalian cells. 

 We examined the binding of PU.1 and IRF8 from human monocytes, and 

identified the known composite EICE binding logos using nextPBMs probing either PU.1 

or IRF8. Using CRISPR/Cas9-based IRF8 knockout and immune-depletion we 

demonstrated that IRF8 is the only cooperative binding partner for PU.1 in human 

monocytes. Investigating the relationship between binding, cooperativity and genomic 

occupancy we found that PU.1 binding affinity exhibits a clear trend with both enhancer 

type and cofactor co-occupancy. We found that the highest affinity PU.1 sites are in 

genomic regions not containing the H3K4me1 and H3K27ac histone modifications for 

active enhancers, and lowest affinity sites are in active enhancers. Furthermore, co-

occupancy with either collaborating (C/EBPα) or cooperative (IRF8) cofactors correlated 

with lower affinity binding sites, suggesting that cofactor occupancy allows for the 

evolutionary selection of lower affinity binding sites. Surprisingly, coincident binding of 

PU.1 with both C/EBPα and IRF8 allowed for still lower affinity sites to be utilized. 

These results highlight that functional binding sites are not the highest affinity, and that 

genomic analyses biased to high affinity may miss functionally relevant sites. 

Furthermore, the nextPBM-based functional characterization of low affinity PU.1 binding 

sites proximal to cooperative and collaborative TF sites in active enhancers supports the 

findings from recent investigations into the genome-wide presence of low affinity PU.1 

sites proximal to other TF binding motifs (Pham et al., 2013) and the discordance 

between TF binding affinity and transcriptional output (Grossman et al., 2017; 



 

 

42 

Andrilenas et al., 2018; Penvose et al., 2019). Finally, comparing binding profiles for 

nextPBM and IVT samples across stratified genomic sites demonstrated that PU.1 

binding was autonomous on all sites except for the EICEs where it was cooperative with 

IRF8. NextPBM-based binding analysis of genome-derived sites provides insights into 

the biophysical determinants of TF binding. We anticipate that similar studies that 

compare TF binding profiles from different cellular conditions will provide new insights 

into the mechanisms of cell-specific binding and gene regulation. 

2.5 Materials and Methods 

2.5.1 Cell culture 

 THP-1 cells were purchased from ATCC (cat # TIB-202) and cultured in RPMI 

1640 media with 10% FBS supplemented by 50 unit/ml Penicillin and 50 μg/ml 

Streptomycin. HEK293T cells for Lentivirus packaging (gift from Thomas Gilmore, 

Boston University) were cultured in DMEM media with 10% FBS supplemented by 50 

unit/ml Penicillin and 50 μg /ml Streptomycin. 

2.5.2 Protein samples 

 IVT samples of PU.1 (full-length, untagged) were generated using 1-Step Human 

Coupled IVT Kit – DNA (Thermo Fisher Scientific cat # 88881) following the provider’s 

instructions. Protein expression was confirmed by Western analysis. 

2.5.3 Antibodies 

 PU.1 (Santa Cruz sc-352x, used for ChIP and nextPBM); C/EBPα (Santa Cruz sc-

61x, used for ChIP); IRF8 (Santa Cruz sc-6058x, used for ChIP and nextPBM); human 
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H3K4me1 (Abcam ab8895, used for ChIP); H3K27ac (Abcam ab177178, used for ChIP); 

alexa488-conjugated anti-goat (Life Technologies A11055, used for nextPBM); 

alexa647-conjugated anti-rabbit (Life Technologies A32733, used for nextPBM); and 

FLI1 (ABclonal A5644, used for nextPBM) was a gift from ABclonal. 

2.5.4 Plasmids 

 Lentiviral plasmid constructs were prepared following Feng Zhang Lab 

(Massachusetts Institute of Technology) protocol. Briefly, to target IRF8 gene a pair of 

gRNAs were synthesized for exon 5 of the IRF8 gene (Primers: 5’-

CACCGCTTCTGTGGACGATTACATG-3’ and 5’-

AAACCATGTAATCGTCCACAGAAGC-3’) with overhangs and ligated into BsmBI 

digested pLentiCRISPRv2.0. 

2.5.5 Nuclear extracts 

 5 × 106 THP-1 cells were pelleted at 500 × g for 5 min at 4°C in a 15 ml conical 

tube. The pellet was resuspended and washed twice with PBS. Cell pellet was 

resuspended in 1 ml of ‘low-salt buffer’ (10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 10 

mM KCl plus 1 μl protease inhibitor cocktail (Sigma-Aldrich, cat # P8340) and incubated 

for 10 min on ice. 50 μl of 5% IGEPAL (Sigma-Aldrich, cat # I8896) was added to the 

cell suspension and vortexed for 10 seconds. Released nuclei were pelleted at 750 × g for 

5 min at 4°C. The supernatant was saved as the ‘cytosolic fraction’. To wash the 

remaining cytosolic proteins from the surface of the nuclear pellet, 100 μl of the low-salt 

buffer was gently pipetted onto the side of the tube and allowed to wash the pellet, 
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making sure to not disrupt the pellet. This wash was then gently transferred to the 

cytosolic fraction without dislodging the nuclear pellet. 200 μl of ‘high-salt buffer’ (20 

mM HEPES (pH 7.9), 25% glycerol, 1.5 mM MgCl2, 0.2 mM EDTA, 420 mM NaCl plus 

1 μl protease inhibitor cocktail) was pipetted on the pellet and the tube went through a 

vigorous vortex for 30 s followed by nutation at 4°C for 1 h. The nuclei were pelleted at 

4°C for 20 min at 21,000 × g. The supernatant was transferred into another tube as the 

nuclear soluble protein fraction. Final nuclear extract samples used in nextPBM assays 

were 9.6 mg/ml. 

2.5.6 CRISPR-mediated IRF8-knockout in THP-1 cells 

 To generate Lenti-CRISPR viruses, HEK293T cells were seeded in a 10 cm dish 

at 75% confluence a day before transfection. The next day, the confluent cells were co-

transfected with 4μg of pCMV-VSV-G, 2 μg pCMV-ΔR8.91 and 1 μg plentiCRISPR v2- 

gRNA using a Lipofectamin-3000 kit and following the provider’s instructions. The 

transfection mixture was replaced by fresh media after 6 h and the virus-containing 

supernatant was collected after 48 h. Virus was concentrated by ultracentrifugation at 

50,000 × g for 3 h at 4°C. The viral pellet was re-suspended in 500 μl complete medium 

(RPMI, 10% FBS) with 8 μg/ml Polybren and added to one million THP-1 cells in a 

microcentrifuge tube with 1.5 ml of complete media and shaken at 150 rpm for 30 min at 

room-temperature, followed by centrifugation at 850 × g for 30 min at 32°C. The THP-1 

cell pellet was re-suspended in 2 ml of complete medium and was seeded in a 3 cm dish 

and incubated at 37°C with 5% CO2 for 6 days. At day 6, infected cells were selected in 

0.5 μg/ml puromycin (final concentration). The media was exchanged with fresh 
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complete media containing 0.5 μg/ml puromycin every four to six days and for a total of 

30 days. Cell confluence was maintained between 3 × 105 cells/ml to 9 × 105 cells/ml 

through the selection procedure and the culture volume was scaled up as necessary. 

Knockout efficiency in the pool of the infected cells was defined by Western analysis. 

2.5.7 Nuclear extract treatments 

 Immune depletion of IRF8 – 7.5 μg of IRF8 antibody (abcam, ab207418) was 

added to 300 μL of diluted THP-1 nuclear extract (2 mg/ml total protein in nextPBM 

binding buffer (described below), 115 mM NaCl). The mixture was nutated at 4°C for 1 

h. 75 μl of Dynabeads® Protein A slurry (Thermo Fisher Scientific, 10001D) was washed 

once using 1 ml of nextPBM binding buffer with 115 mM salt and collected by DynaMag 

magnet (ThermoFisher Scientific, cat # 12321D). Collected beads were re-suspended in 

the nuclear extract plus antibody mixture and transferred onto HulaMixer (ThermoFisher 

Scientific cat # 15920) to be rotated at 4°C for 2 h at 25 rpm. DynaMag magnet was used 

to collect the beads and the remaining nuclear extract was checked for the depletion of 

IRF8 by Western analysis. Phosphatase treatment – A general phosphatase (Lambda 

protein phosphatase kit, New England Biolabs, p0753) was added to 300 μl of diluted 

THP-1 nuclear extract (2 mg/ml total protein in nextPBM binding buffer (described 

below), 115 mM NaCl), and the reaction was carried out according to the provider’s 

instructions. Phosphatase efficiency was checked by Western analysis for phospho-RNA 

polymerase II (abcam 5131). 
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2.5.8 Chromatin immunoprecipitation (ChIP-seq) 

 Soluble chromatin was prepared from 4×107 THP-1 cells according to previously 

described protocols (Lee et al., 2006) with some modifications (outlined below). Briefly, 

cells were crosslinked with 1% formaldehyde (final concentration) (Fisher Scientific, cat 

# F79-500) for 10 min at room temperature with gentle shaking. Crosslinking was 

stopped by adding 125 mM final concentration of glycine solution in PBS. Fixed cells 

were pelleted at 800 × g for 5 min at 4°C and washed twice with 10 ml of cold PBS in a 

15 ml conical tube and pelleted at 800 × g for 5 min at 4°C. Washed cell pellet was re-

suspended in 10 ml of Lysis Buffer 1 (Lee et al., 2006), nutated for 10 min at 4°C, and 

pelleted at 2,000 × g for 5 min at 4°C. The same procedure was repeated with lysis buffer 

2 at room temperature followed by pelleting at 2,000 × g for 5 min at 4°C. To release 

nuclei from hard-to-disrupt THP-1 membranes, cells were re-suspended in 10 ml of Lysis 

Buffer 3 (Lee et al., 2006) and were shaken vigorously (225 rpm) at room temperature for 

30 min. Cells were then passed through an 18-gauge needle (VWR, cat # BD305195) 25 

times using a 10ml syringe. Nuclei were pelleted at 3,000 × g for 20 min at 4°C and re-

suspended in 500 μl of Lysis Buffer 3 and then transferred into a 1.5 ml microfuge tube 

placed in Benchtop 1.5 ml Tube Cooler (Active Motif, cat # 53076). The nuclei were 

sonicated using Active Motif Q120AM sonicator with a 3.2 mm Probe (Active motif cat 

# 53053) at 25% amplitude for 15 min with 20 s ON and 30 s OFF cycles (45 cycles 

total). Cell debris was pelleted at 21,000 × g for 30 min at 4°C. 50 μl of the combined 

soluble chromatin was saved to be used as the input DNA upon reverse-crosslinking. For 

IP, 500 μl of the soluble chromatin was mixed with 30 μg of either PU.1, C/EBPα, 
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H3K4me1 or H3K27ac antibodies (60 μg of IRF8 antibody was mixed with 1 ml of the 

soluble chromatin), and tubes were rotated at 25 rpm for one hour at 4°C using 

HulaMixer (ThermoFisher Scientific cat # 15920). 125 μl of the protein A Dynabead 

slurry (ThermoFisher Scientific cat # 10001D) per each rabbit antibody (PU.1. C/EBPα, 

H3K4me1 or H3K27ac), and 250 μl of the protein G Dynabead slurry (ThermoFisher 

Scientific cat # 10003D) for the goat-IRF8 antibody, were transferred into 1.5 ml 

microfuges and placed on DynaMag magnet (ThermoFisher Scientific, cat # 12321D) 

until all beads collected on the side of tubes. The solution was gently aspirated off from 

each tube and the beads were re-suspended in 1 ml of the Lysis Buffer 3 with several 

gentle inversions; beads were re-pelleted using the magnet and the lysis buffer was 

aspirated. Beads were then re-suspended in 50 μl of Lysis Buffer 3 and returned to 

HulaMixer to rotate at 35 rpm overnight at 4°C. Beads were collected and washed 6 

times with 1 ml of the Lysis Buffer 3 and two times with 1 ml of the Wash Buffer 

(RIPA). All ChIP samples along with the 50 μl of the soluble chromatin were reverse-

crosslinked by adding 200 μl of the Elution buffer and 3 μl of 20 mg/ml Proteinase K 

(ThermoFisher Scientific, cat # AM2546) and incubated at 65°C for overnight. Beads 

were collected and the solutions were transferred into a new 1.5 microfuge tube 

containing 1 μl of 10 mg/ml RNase A (ThermoFisher Scientific, cat # EN0531) and left 

at room temperature for an hour. The ChIP and input DNA were purified using QIAquick 

PCR Purification Kit (QIAGEN, cat # 28104) and eluted in 50 μl of 50°C Nuclease-Free 

Water (Thermo Fisher Scientific, AM9932). The concentration and size distribution of 

the ChIP-DNA samples were defined using Agilent 2100 Bioanalyser. DNA libraries 
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were prepared using NEBNext Ultr II DNA Library Prep kit (NEB, E7645S) following 

the provider’s instruction manual. Amplified libraries were Bioanalyzed again to check 

the size selection efficiency and to define the concentrations of libraries before preparing 

the library pool involving the same molarity of each library and sequenced by Illumina 

HiSeq 4000. An additional biological replicate for IRF8 (and corresponding input DNA) 

was sequenced using the Illumina NextSeq 500. 

2.5.9 ChIP-seq analysis 

 ChIP-seq reads were aligned to the human reference genome (hg19) using 

Bowtie2 (Langmead and Salzberg, 2012). Aligned reads were filtered for high quality 

and uniquely mappable reads (MAPQ > 30) using samtools (Li et al., 2009). Peak calling 

for TFs was performed using MACS2 (Zhang et al., 2008) with relaxed parameters on 

single experiments (P-value < 0.01) and peaks were filtered using the irreproducible 

discovery rate (IDR < 0.05) across biological duplicates (Landt et al., 2012). Peak calling 

for histone marks was performed using MACS2 (Zhang et al., 2008) with relaxed 

parameters on single experiments (P-value < 0.01) and experiments were filtered 

requiring identification in both biological duplicates (i.e. IDR was not used for histone 

marks analysis). Peaks were further filtered if they occurred in the ENCODE consortium 

blacklisted regions. Peak intersections were computed using bedtools (Quinlan and Hall, 

2010) by first merging the peaks from all TF ChIP-seq experiments into continuous 

genomic loci and identifying which TF(s) contained a peak within this union set. Raw 

and processed ChIP-seq data is available in the NCBI GEO database (Accession: 

GSE123872). 
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2.5.10 Motif discovery and scoring 

 De novo motifs within peak sets were discovered using HOMER (Heinz et al., 

2010) (parameters: -size given -noweight -nlen 0 -len 6,8,10,12,14,16 -S 5) and 

subsequently used for motif scoring across all peaks. We also performed de novo motif 

analysis using MEME (Bailey et al., 2009) (meme-chip parameters: -dna -meme-mod 

zoops) and found consistent motifs (Supplementary Fig. 2.1). Log-odds scoring 

thresholds determined by HOMER against a set of random background sequences were 

used as significance thresholds for motif scanning. Motif scans on individual peaks were 

performed using a custom R script that implements the same scoring scheme as HOMER 

and reports the maximum log-odds score in each peak (available on Github: 

https://github.com/david-bray/nextPBM-paper). Uniform background probability for each 

nucleotide (0.25) at each position was used for log-odds scoring. We chose a uniform 

base-frequency background model to be consistent with that used by the HOMER 

algorithm, and to better support our biophysical interpretation of the nextPBM data, that 

is based solely on the contribution of each base to binding affinity. Motif logos were 

generated using the ggseqlogo R package (Wagih, 2017). Motifs and thresholds used for 

ChIP-seq analysis and PBM microarray design are provided (Supplementary File 2 from 

Mohaghegh et al., 2019). 

2.5.11 PBM design 

 PBM experiments were performed using custom-designed microarrays (Agilent 

Technologies Inc. AMADID 085624 and 085106, 8 × 60K format). 2,615 PU.1 binding 

sites identified in ChIP-seq peaks were extracted from the genome as 20-bp genomic 
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fragments and placed into a fixed position in the PBM probe sequence. For each unique 

probe sequence, 5 replicate probes were included in each orientation (10 probes per 

unique site). For select genomic seed sequences, 60 matching SNV probes were included 

to assay all SNVs at the 20 positions of the binding site (Fig. 2.2). All SNV sites were 

also included with 5 replicates and in each orientation (10 probes per unique SNV site). 

Probes for assaying binding site ablations and synthetic EICE sites were similarly 

included with 10 probes per unique DNA site. Selection of binding sites from ChIP-seq 

data – Binding sites were only included from PU.1 ChIP-seq peaks demonstrating high 

reproducibility across biological duplicates (IDR < 0.01), with the exception of probes 

included specifically to assay binding to single-replicate regions. PU.1 ChIP-seq sites 

were categorized based on their log-odds motif score, proximity to cofactors, and 

enhancer state. PU.1 binding sites were selected from the PU.1 ChIP-seq peaks 

containing exactly one significant PU.1 site (see 2.5.10 Motif discovery and analysis 

above). For the genomic loci in the ‘weak PU.1 motif’ category we identified no 

significant PU.1 site and, therefore, used the PU.1 site with maximum log-odds score 

(Fig. 2.5). EICE sites were selected from PU.1-IRF8 co-occupied regions containing 

exactly one EICE site (see 2.5.10 Motif discovery and analysis above). Co-occupancy 

PU.1 with cofactors (C/EBPα and/or IRF8) was determined if a highly reproducible 

ChIP-seq peak (IDR < 0.01) for each factor overlapped by at least one base. A PU.1 

ChIP-seq peak was annotated as ‘PU.1-alone’ if it was located greater than 200 bases 

away from the nearest cofactor ChIP-seq peak (in all experiments, including duplicates, 

with peaks called using relaxed parameters as detailed above). Enhancer states were 
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annotated using histone modification ChIP-seq data from biological duplicates and 

publicly available mRNA-seq data for THP-1 monocytes (GEO accession GSM927668). 

PU.1 sites were annotated as active if they occurred within 200 bases of the nearest 

H3K4me1 and H3K27ac peaks, and if the nearest gene was located between 2–500kb 

away and expressed above the median RPKM value. PU.1 sites were annotated as primed 

if they occurred within 200 bases of the nearest H3K4me1 peak only, and if the nearest 

gene was located between 2–500kb away and expressed below the median RPKM value. 

A full list of DNA probes used, their corresponding probe category and additional 

annotation can be found in the supplemental data (Supplementary File 1 from 

Mohaghegh et al., 2019). 

2.5.12 NextPBM and PBM experiments and analysis 

 Microarray DNA double stranding and basic PBM protocols are as previously 

described (Berger and Bulyk, 2009; Andrilenas et al., 2015). All wash steps were carried 

out in coplin jars on an orbital shaker at 125 rpm. Double-stranded DNA microarrays 

were first pre-washed in PBS containing 0.01% Triton X-100 (5 min), rinsed in a PBS 

bath, and then blocked with 2% milk in PBS for 1 hour. Following the blocking step, 

arrays were washed in PBS containing 0.1% Tween-20 (5 min), then in PBS containing 

0.01% Triton X-100 (2 min), and finally briefly rinsed in a PBS bath. Protein binding – 

Arrays were then incubated with the protein sample (IVT protein or THP-1 nuclear 

lysate, details in Supplementary File 3 from Mohaghegh et al., 2019) for one hour in a 

binding reaction buffer containing: 2% milk (final concentration); 20 mM HEPES buffer, 

pH 7.9; 100 mM NaCl; 1 mM DTT; 0.2 mg/mL BSA; 0.02% Triton X-100; and 0.4 
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mg/mL salmon testes DNA (Sigma D7656). Primary antibody – After protein incubation, 

microarrays were washed with PBS containing 0.5% Tween-20 (3 min), then in PBS 

containing 0.01% Triton X-100 (2 min), followed by a brief PBS rinse. Microarrays were 

then incubated with 10 μg/mL of primary antibody (see Supplementary File 3 from 

Mohaghegh et al., 2019) in 2% milk in PBS (20 min). Secondary antibody - After 

primary antibody incubation, microarrays were washed with PBS containing 0.5% 

Tween-20 (3 min), then in PBS containing 0.01% Triton X-100 (2 min), followed by a 

brief PBS rinse. Microarrays were then incubated with 7.5 μg/mL of alexa488-conjugated 

secondary antibody or alexa647-conjugated secondary antibody (see Supplementary File 

3 from Mohaghegh et al., 2019) in 2% milk in PBS (20 min). Excess antibody was 

removed by washing with PBS containing 0.05% Tween-20 (3 min), then PBS (2 min). 

PBM data analysis - Microarrays were scanned with a GenePix 4400A scanner and 

fluorescence was quantified using GenePix Pro 7.2. Exported data were normalized using 

MicroArray LINEar Regression (Berger et al., 2006). Microarray probe sequences are 

provided (Supplementary File 1 from Mohaghegh et al., 2019). PBM data analysis and 

SNV approach for logo generation is as previously described (Andrilenas et al., 2018). 

Similarity between the DNA binding models generated using nextPBM and those from 

previously published studies was computed using the PWMSimilarity function from the 

TFBSTools R bioconductor package (Tan et al., 2016) (Supplementary Fig. 2.2). A 

threshold binding z-score of 2.0 (at the seed probe) was imposed to ensure accurate 

binding models. Processed PBM z-score data is available in the supplementary data 

(Supplementary File 1 from Mohaghegh et al., 2019), and all raw PBM data has been 
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deposited in the NCBI GEO database (Accession: GSE123946). Scatterplots and 

boxplots were generated using the ggplot2 R package (Wickham, 2016). Motif logos 

were generated using the ggseqlogo R package (Wagih, 2017). The significance of PU.1 

binding affinity and motif scores between groups was calculated using the two-sided 

Wilcoxon–Mann-Whitney test implemented in R. 

2.5.13 PU.1-IRF8 cooperativity score 

 PU.1-IRF8 cooperativity was scored by quantifying the deviation of the observed 

EICE z-scores from an extract experiment from the expected z-scores based on the IVT 

sample experiment. To define the expected EICE z-scores a second degree polynomial 

model was fit to the z-scores for the canonical PU.1 probes as follows: 

 𝑦1 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥1
2 + 𝜀1 

where y1 is the vector of PU.1 z-scores observed in the extract sample, x1 is the vector of 

PU.1 z-scores observed for the IVT sample, β0 ⁠, β1 and β2 are coefficients of the best-fit 

polynomial model and ε1 is the vector of error terms needed to equate y1 to the function 

of x1 ⁠. A polynomial model was used to fit the canonical PU.1 site z-scores in place of a 

linear model to allow for non-linearity due to PU.1 concentration differences between 

experiments. 

 The coefficients fit above are then used to compute the expected EICE z-scores 

for the extract experiment based on the IVT experiment z-scores: 

 𝑦2 = 𝛽0 + 𝛽1𝑥2 + 𝛽2𝑥2
2 + 𝜀2 

where y2 is the vector of PU.1 z-scores observed at EICE probes in the extract sample, x2 

is the vector of PU.1 z-scores observed for the IVT sample, ε2 is the vector of error terms 
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needed to equate y2 to the function of x2 comprised of the coefficients fit using the 

canonical PU.1 probes. 

 The error vectors ε1 and ε2 are then used to compute the PU.1-IRF8 cooperativity 

scores: 

𝑠𝑐𝑜𝑟𝑒𝑠 =
|𝜀2|

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜀1)
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2.6 Supplementary Information 

 

 

Supplementary Figure 2.1: PU.1 de novo motifs obtained using HOMER and MEME 

HOMER and MEME (meme-chip) de novo motifs for PU.1 ChIP-seq peaks with cross-replicate 

IDR < 0.01 (top row) and IDR < 0.05 (bottom row). Pearson correlation summarizing the 

similarity between the HOMER and MEME motifs for a given IDR threshold is shown. 
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Supplementary Figure 2.2: Similarity between nextPBM binding models and existing 

database entries 

(A) Similarity between a representative PU.1 binding model obtained with nextPBM using the 

SNV probe approach (see 2.5 Materials and Methods) and PU.1 binding models obtained in 

previously published in vivo (ChIP-seq) and in vitro (SELEX) investigations (CIS-BP motifs). 

Similarity is measured using the maximum Pearson correlation computed between the nextPBM 

PWM and the database PWM. Label above the nextPBM binding model corresponds to the 

identifier of the ChIP-seq peak from which the PU.1 seed probe was selected (see Supplementary 

File 1 from Mohaghegh et al., 2019). (B) Similarity between an FLI1 binding model generated as 

in (A) and FLI1 binding models obtained in previous investigations. Similarity is computed as in 

(A). (C) Similarity between a representative PU.1 binding model using an EICE seed probe and 

characterized EICEs from previous investigations. Similarity is computed as in (A) and (B). 
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Supplementary Figure 2.3: PU.1 and IRF8 binding models at canonical PU.1 seed probes 

Left: nextPBM PU.1 binding models obtained using binding of PU.1 to 8 canonical seed probes 

and each of the single nucleotide variants of the seed sequence. Label above the model 

corresponds to the identifier of the ChIP-seq peak from which the PU.1 seed probe was selected. 

The score shown to the top right of each model is the PU.1 binding z-score obtained at the seed 

probe. Low-scoring models (binding with z-score < 2.0), where PU.1 does not bind well to the 

seed probe are highlighted in red and the corresponding model is tinted red. The Δz-score values 

are computed relative to the positional median score (see Methods). Right: IRF8 binding models 
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obtained using the same 8 canonical PU.1 seeds. Low-scoring models (also with z-score < 2.0), 

where IRF8 does not bind well to the seed probe are also tinted red. 
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Supplementary Figure 2.4: PU.1 and IRF8 binding models at EICE seed probes 

Left: PU.1 binding models obtained using binding of PU.1 to 4 EICE seed probes and each of the 

SNV probes of the seed sequence. Labels and z-scores are shown as in Supplementary Figure 2.3. 

Identical z-score thresholds are used as in Supplementary Figure 2.3. Right: IRF8 binding models 

obtained using the same 4 EICE seeds. 
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Supplementary Figure 2.5: Immune-depletion of IRF8 from nuclear extract 

Western blot comparing IRF8 protein levels in untreated nuclear extract (NE) to NE where IRF8 

has been immune-depleted (Imm. Depl.). CBP protein levels were used as a loading control. Each 

sample includes 60µg of total nuclear extract protein. The Western blot has been cropped for 

clarity. Contributions: Experimental work was performed by NM. 
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Supplementary Figure 2.6: Phosphatase assay validation 

Western blot comparing protein levels of phosphorylated RNA polymerase II (pPolII) in 

untreated nuclear extract to nuclear extract treated with broad-spectrum phosphatase. IRF8 

protein levels were used as a loading control. The Western blot has been cropped for clarity. 

Contributions: Experimental work was performed by NM.
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CHAPTER THREE: CASCADE – Customizable high-throughput platform for 

profiling cofactor recruitment to DNA to characterize cis-regulatory elements and 

screen non-coding single-nucleotide polymorphisms 

Note: A substantial portion of this chapter is based on a pre-print manuscript uploaded to 

the biorXiv with David Bray (DB) and Heather Hook (HH) featured as co-first authors 

and equal contributors. The CASCADE hybrid experimental/computational technique 

was jointly conceived by DB, HH, and Trevor Siggers (TS). All the experimental work, 

including the CASCADE/nextPBM array experiments and validation, was performed by 

HH. nextPBM and CASCADE microarrays, analysis algorithms, and visualizations were 

designed and implemented by DB with input from TS. Individual author contributions to 

figures are noted in each respective figure legend. Supplementary data published 

alongside the pre-print version of the manuscript can be found with the online biorXiv 

pre-print. 

 
3.1 Abstract 

 Determining how DNA variants affect the binding of regulatory complexes CREs 

and non-coding single-nucleotide polymorphisms (ncSNPs) is a challenge in genomics. 

To address this challenge, we have developed CASCADE (Comprehensive ASsessment 

of Complex Assembly at DNA Elements), which is a PBM-based approach that allows 

for the high-throughput profiling of COF recruitment to DNA sequence variants. The 

method also enables one to infer the identity of the TF-COF complexes involved in COF 

recruitment. We use CASCADE to characterize regulatory complexes binding to CREs 

and SNP quantitative trait loci (SNP-QTLs) in resting and stimulated human 
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macrophages. By profiling the recruitment of the acetyltransferase p300 and MLL 

methyltransferase component RBBP5, we identify key regulators of the chemokine 

CXCL10, and by profiling a set of five functionally diverse COFs we identify a 

prevalence of ETS sites mediating COF recruitment at SNP-QTLs in macrophages. Our 

results demonstrate that CASCADE is a customizable, high-throughput platform to link 

DNA variants with the biophysical complexes that mediate functions such as chromatin 

modification or remodeling in a cell state-specific manner. 

3.2 Introduction 

 Determining the impact of genetic variation on CREs, such as enhancers and 

promoters that control gene expression, remains a challenge in modern genomics. 

GWASs have identified thousands of SNPs associated with human diseases, but the 

causal variants and their biological effects remain largely unknown (Chen et al., 2016; 

Gallagher and Chen-Plotkin, 2018; Alasoo et al., 2018). Variants underlying disease risk 

often function by altering CRE function and gene expression. For example, >50% of 

causal SNPs for autoimmune diseases are ncSNPs mapping to immune gene enhancers 

(Farh et al., 2015). Therefore, a major challenge in understanding disease susceptibility is 

to determine how non-coding DNA variants disrupt CREs. A further challenge is that 

DNA variants, such as eQTLs, often have effects in a single cell type (Alasoo et al., 

2018) or stimulation condition (Schmiedel, et al., 2018; Fairfax et al., 2014). Such studies 

highlight the need for experimental approaches to characterize the impact and 

mechanisms of non-coding DNA variants on CRE function in a cell state-specific 

manner. 
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 Current high-throughput approaches to study the molecular mechanisms by which 

ncSNPs alter gene expression are based primarily on computational predictions of TF 

binding (Farh et al., 2015; Harley et al., 2018; Rojano et al., 2019) or on allelic imbalance 

in genomic assays of TF binding and chromatin state (Harley et al., 2018; Bailey et al., 

2015; Buchkovich et al., 2015; Kumasaka et al., 2016; Shi et al., 2016; Valouev et al., 

2008). However, these approaches have various limitations. Genomic assays based on 

allelic imbalance are impractical as a general approach to study candidate ncSNPs 

because each DNA variant must be present in the assayed cells and each experiment can 

examine only a single TF or chromatin feature. Computational approaches that use PWM 

models to assess the impact of ncSNPs on TF binding offer a parallelizable approach, but 

can predict altered TF binding for only a fraction of ncSNPs (Farh et al., 2015; Soccio et 

al., 2015). Additionally, PWM-based approaches do not account for changes in TF 

activity, such as TF nuclear localization or interactions with COFs, that occur in response 

to cell-state changes and are known to affect ncSNP function (Schmiedel et al., 2018; 

Fairfax et al., 2014). 

3.3 Results 

3.3.1 The CASCADE approach 

 To address these challenges in ncSNP annotation, we have developed 

CASCADE– a PBM-based high-throughput approach to profile the DNA binding of TF-

COF complexes from cell nuclear extracts. PBMs are double-stranded DNA microarrays 

that allow protein-DNA binding to be assayed to thousands of DNA sequences (Berger et 

al., 2006; Berger and Bulyk, 2009). Recently, we developed nextPBM approach 
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(Mohaghegh et al., 2019) to study DNA binding of TFs present in nuclear extracts. 

However, TFs function by recruiting COFs, which subsequently alter gene expression 

through diverse mechanisms such as histone modification or chromatin remodeling (Fig. 

3.1a) (Kouzarides, 2007). To directly interrogate TF-COF complexes, in CASCADE we 

extend nextPBM to profile recruitment of COFs to DNA variants using nuclear extracts 

(Fig. 3.1b). As many COFs, such as the acetyltransferase EP300/CBP, interact broadly 

with multiple TFs (Vo and Goodman, 2001; Goodman and Smolik, 2000; Janknecht and 

Hunter, 1996), we can assay many TF-COF complexes in a parallel manner by profiling 

recruitment of a single COF, without requiring previous knowledge of the TFs involved. 

Critically, by assaying COF recruitment to SNVs of a DNA sequence, we can determine 

a COF recruitment motif whose specificity allows us to infer the identity of the TF (or TF 

family) by comparison against TF motif databases (Fig. 3.1b). Therefore, conceptually, 

by profiling the recruitment of a limited set of COFs we can characterize the DNA 

binding of a much larger set of TF-COF complexes. Here, we demonstrate that 

CASCADE can be used to profile the DNA-sequence dependence of TF-COF complex 

binding to CREs or ncSNPs in a cell-state specific manner (Fig. 3.1c), providing a high-

throughput approach to address the biophysical impact of non-coding DNA variants on 

gene regulatory complexes. 
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Figure 3.1: CASCADE approach and applications 

(a) COFs affect transcription and chromatin state. (b) COF recruitment to DNA is assayed by 

nextPBM. COF recruitment is assayed to a ‘seed’ probe (e.g., genomic-derived TF binding site 

sequence) and all SV probes. COF recruitment to SV probes yields nucleotide preferences along 

DNA sequence. Preferences are transformed to COF recruitment motif (i.e., a logo). Motifs are 

matched to TF motif databases to infer TF identity. (c) Overview of CASCADE applications. 

CASCADE can be applied to CREs or reference (REF) / ncSNP pairs. For CREs, tiling probes 

are used to span the genomic region, and COF motifs for each tiling probe are integrated into a 

CRE-wide COF motif. For ncSNP/REF pairs, COF motifs are determined for both and compared. 

Contributions: CASCADE concept and workflow was conceived jointly by DB, HH, and TS. 

 

3.3.2 Application of CASCADE to characterize cis-regulatory elements 

 To demonstrate the use of CASCADE to characterize CREs, we profiled the 

recruitment of the COF EP300, hereafter p300, to a promoter segment of the chemokine 
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gene CXCL10 in resting and LPS-stimulated human THP-1 macrophages. CXCL10 is 

important for mediating the inflammatory response by promoting activation and 

recruitment of several types of immune cells, such as monocytes. The expression of 

CXCL10 is often dysregulated in autoimmune diseases and has been implicated in cancer 

pathogenesis (Lee et al., 2009; Liu et al., 2011). In LPS-induced activation of CXCL10 in 

macrophages, three separate TF binding sites in the promoter are required for full 

activation, two NF-κB binding sites and an interferon-sensitive response element (ISRE) 

(Majumder et al., 1998; Ohmori and Hamilton, 1993) (Fig. 3.2a), providing a test case for 

our CASCADE approach. p300 is a broadly acting acetyltransferase that is recruited by 

diverse TFs, including both NF-κB and IRF3 that function at the CXCL10 promoter Vo 

and Goodman, 2001; Majumder et al., 1998; Ohmori and Hamilton, 1993). 
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Figure 3.2: CASCADE-based characterization of COF recruitment to the CXCL10 

promoter 
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(a) Schematic of LPS-inducible recruitment of p300 to CXCL10 promoter in macrophages. (b) 

CRE-wide p300 recruitment motif and TFs IRF3 and p65/RELA across CXCL10 promoter. 

Experiments using extracts from LPS-stimulated or untreated (UT) macrophages are indicated 

with colored bars. p300 motifs are shown for biological replicate experiments (Replicate 1 and 2). 

(c) Schematic of condition-independent recruitment of RBBP5 to CXCL10 promoter. (d) CRE-

wide motifs for COF RBBP5 and TF IRF2 across the CXCL10 promoter segment. Experimental 

conditions as in (b). Contributions: CASCADE experimental work was performed by HH. 

CASCADE array design, analysis, and visualization was developed and implemented by DB with 

input from TS. 

 

3.3.3 Characterization of the recruitment of COFs to the CXCL10 promoter 

 To query p300 recruitment across the CXCL10 promoter segment (166 bp), we 

assayed recruitment to 29 tiling probes (each 26 bp long) generated at 5 bp intervals 

across the target promoter region (Fig. 3.1c, see 3.5 Materials and Methods, 

Supplementary Data 1 from Bray et al., 2020). For each tiling probe on our microarray, 

we also included all SV probes to allow a COF recruitment motif to be determined every 

5 bp (Fig. 3.1c). A CRE-wide p300 recruitment motif was then generated for each 

experimental condition by integrating these individual motifs across their overlapping 

positions (Fig. 3.2b, tracks 1-4, see 3.5 Materials and Methods). 

 Our CRE-wide recruitment motif revealed p300 recruitment to the three 

previously characterized TF binding sites occurred in an LPS-inducible manner (Fig. 

3.2b, tracks 1-4). These results are consistent with previous studies that demonstrated the 

LPS-inducible binding of IRF3 and NF-κB to the CXCL10 promoter (Ohmori and 

Hamilton, 1993; Tamura et al., 2008; Medzhitov and Horng, 2009; Sakaguchi et al., 

2003; Hagemann et al., 2009). To infer the identity of the TFs involved, we compared the 

p300 recruitment motifs to a database of previously characterized TF binding motifs (see 

3.5 Materials and Methods) and identified IRF3 and NF-κB as high-scoring matches 
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(Supplementary Fig. 3.1a, track 1, Supplementary Fig. 3.1b, track 2) with known LPS-

dependent activity (Smale, 2012; Medzhitov and Horng, 2009). To confirm the binding 

of NF-κB and IRF3 at these sites, we also performed CASCADE experiments directly for 

the TFs RELA (the p65 subunit of NF-κB) and IRF3, using antibodies against the TFs 

instead of p300. p65 bound specifically to the previously characterized NF-κB sites and 

exhibited the expected DNA binding site specificity (Fig. 3.2b, track 6, Supplementary 

Fig. 3.2, track 14). IRF3 bound specifically to the ISRE (Sakaguchi et al., 2003; Honda 

and Taniguchi, 2006) and weakly to the two NF-κB sites, which is consistent with the 

indirect tethering of IRF3 by NF-κB previously reported in LPS-stimulated macrophages 

(Fig. 3.2b, track 5) (Ogawa et al., 2005; Leung et al., 2004). Critically, the binding motifs 

determined for IRF3 (Fig. 3.2b, track 5) and p65 (Fig. 3.2b, track 6) agree strongly with 

those for p300 (Fig. 3.2b, tracks 1-2) demonstrating that COF recruitment motifs can 

accurately capture the binding motifs for the underlying TFs. 

 To determine whether additional COFs with different effector functions are also 

recruited to the CXCL10 promoter segment, we profiled the recruitment of RBBP5, a 

core subunit of the MLL histone lysine methyltransferase complex (Fig. 3.2c, 

Supplementary Data 1 from Bray et al., 2020). Unlike the LPS-inducible recruitment of 

p300, RBBP5 is constitutively recruited to the CXCL10 promoter sequences at 

comparable levels in the presence or absence of LPS (Fig. 3.2d, tracks 7-8). RBBP5 is 

recruited only to the ISRE element, and not the NF-κB sites, demonstrating a different 

recruitment preference than p300. However, as IRF3 binding to the ISRE is LPS-induced 

(Fig. 3.2b, track 5, Supplementary Fig. 3.2, track 13), our data suggests recruitment of 
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RBBP5 to this site is dependent on a different TF. Furthermore, the COF recruitment 

motifs for p300 and RBBP5 at the ISRE site exhibit clear differences in nucleotide 

preference (e.g., RBBP5 prefers a 5’-AAANCGAAA-3’ consensus whereas p300 prefers 

a 5’-GAACGGAAA-3’ consensus; Fig. 3.2b, tracks 1-2, Fig. 3.2d, tracks 7-8). 

Comparing the RBBP5 recruitment motifs against a TF motif database (see 3.5 Materials 

and Methods), we identified IRF2 as a high-scoring match (Supplementary Fig. 3.1c, 

track 7, Supplementary Fig. 3.1d, track 8). IRF2, and the related IRF8, are both 

constitutively expressed in THP-1 macrophages, which would support the LPS-

independent RBBP5 recruitment. CASCADE analysis of both IRF2 and IRF8 yielded 

CRE-wide motifs that closely matched those obtained for RBBP5 (Fig. 3.2d, tracks 9-10, 

Supplementary Fig. 3.2, tracks 11-12). These results show that applying CASCADE to 

different COFs can reveal TF-COF complexes with distinct compositions and DNA-

binding specificities.  

3.3.4 A two-step CASCADE-based approach to characterize ncSNPs 

 To investigate the extent to which ncSNPs function by perturbing TF-COF 

complex binding, we used nextPBM/CASCADE approaches to screen ncSNPs for altered 

COF recruitment. To increase the number of ncSNPs that we could screen, we developed 

a hierarchical two-step approach to identify and characterize SNPs that affect binding of 

TF-COF complexes (Fig. 3.3a). In step one, COF recruitment to pairs of reference and 

SNP alleles is screened in order to identify variants that lead to significant differential 

COF recruitment (Fig. 3.3, step 1). In step two, to infer the identity of the TFs involved at 

each SNP locus, a second microarray is used to perform a CASCADE-based analysis for 
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these significant loci (Fig. 3.3, step 2). The COF recruitment motifs generated for each 

SNP locus can then be compared to TF motif databases to infer the identity of the TF 

family and to provide additional context for assessing the impact of each SNP. 
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Figure 3.3: CASCADE-based analysis of SNP-QTLs in human macrophages 
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(a) Overview of 2-step, CASCADE-based approach to characterize 1,712 SNP-QTLs. (1) Step 1: 

screen for differential COF recruitment to SNP-QTL/REF probe pairs. Number of probe pairs in 

each QTL class for which significant COF recruitment was identified in at least one experiment. 

(2) Step 2: CASCADE-based motifs are generated for SNPs identified as significantly bound. 

COF motifs are compared against TF-motif databases to infer TF identity. (b) Comparison of 

p300 differential recruitment across biological replicates. Comparison of q-values for replicates is 

shown (left). Comparison of differential nextPBM z-scores for SNP/REF pairs against p-values 

(combined across probe orientations – see 3.5 Methods) is shown for replicate experiments 

(right). Dashed lines represent a -log10(q-value) of 1.3 (equivalent to q < 0.05). QTL class for 

each SNP is indicated. (c) Comparison of differential COF recruitment across biological 

replicates is shown for candidate COFs and the TF PU.1. Contributions: 2-step differential COF 

screen and CASCADE follow-up concept was conceived jointly by DB, HH, and TS. 

Experimental work was performed by HH. Design and analysis of the screening and CASCADE 

experiments was performed by DB with input from TS and HH. 

 

 We used this two-step approach to profile COF recruitment to 1,712 SNP-QTLs 

associated with gene expression (eQTLs) and chromatin accessibility (caQTLs) changes 

in myeloid cells (Alasoo et al., 2018; Schmiedel et al., 2018; Fairfax et al., 2014) (Fig. 

3.3a, Supplementary Data 2 from Bray et al., 2020). We performed our analysis with 

nuclear extracts from THP-1 macrophages stimulated with IFN-γ and LPS (see 3.5 

Materials and Methods). To assess the impact of SNPs on different cellular functions, we 

profiled recruitment of five COFs from different functional categories: p300, a histone 

acetyltransferase; SMARCA4/BRG1, a subunit of the SWI/SNF chromatin remodeling 

complex; TBL1XR1, a subunit of the nuclear receptor corepressor (NCoR) complex; 

RBBP5, a subunit of the MLL histone lysine methyltransferase complex; and GCN5, a 

histone acetyltransferase. In addition to these COFs, we screened for differential binding 

of the TF PU.1 due to its known role in establishing the myeloid enhancer landscape and 

the previously demonstrated prevalence of the PU.1 binding motif at macrophage SNP-

QTLs (Alasoo et al., 2018; Ghisletti et al., 2010; Heinz et al., 2013).  
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3.3.5 Screening known myeloid SNP-QTLs for differential COF recruitment 

 Our step-one screen identified 164 total SNP alleles that reproducibly altered the 

recruitment of at least one of the tested COFs (Fig. 3.3b, Fig. 3.3c), representing 9.6% of 

the sites examined. 

 With the exception of the GWAS caQTL category, comparable proportions of the 

SNP-QTL categories tested reproducibly altered COF recruitment: 136 basal eQTLs 

(9.4%), 7 caQTL-eQTLs (8.6%), 1 GWAS eQTL (7.1%) and 20 response eQTLs 

(12.5%). Profiling the TF PU.1, we also observed widespread differential PU.1 binding at 

95 SNP-QTLs (Fig. 3.3c) including 23 that coincided with the differential recruitment of 

at least one of the COFs screened. 

 By examining the direction of the differential recruitment, we identified SNPs that 

caused gain or loss of TF-COF binding (Fig. 3.3b, Supplementary Fig. 3.3). For example, 

our screen identified 63 SNP alleles that led to statistically significant gain of p300 

recruitment (Fig. 3.3b, rightmost two panels, positive Δz-score) and 35 SNP alleles that 

led to a significant loss relative to the reference allele (Fig. 3.3b, rightmost two panels, 

negative Δz-score). In total, across all COFs and TFs screened, we observed differential 

recruitment/binding at 243 of the 1,712 SNP-QTLs (14.2%) with 134 gains, 108 losses, 

and one SNP demonstrating both. Of note, for each SNP exhibiting significant 

reproducible differential recruitment of more than one COF (40 total), the direction of the 

effect, either gain or loss, was consistent across each COF. These results demonstrate that 

our nextPBM COF-based approach can be used to reproducibly screen broad classes of 

ncSNPs for both gains or losses of TF-COF complex binding.  
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3.3.6 Inference of TF families underlying differential cofactor recruitment at ncSNPs 

 For step two of our SNP analysis we used CASCADE to determine COF 

recruitment motifs at select loci. These motifs allow us to infer the identity of the TFs 

mediating differential COF recruitment at each locus (Fig. 3.3a, step 2). We selected 158 

basal eQTLs, 8 caQTL-eQTLs, 1 GWAS caQTL, 1 GWAS eQTL, and 22 response 

eQTLs, as these loci showed significant differential recruitment of one or more of the 

regulators screened (see 3.5 Materials and Methods, Supplementary Data 3 from Bray et 

al., 2020). To determine our COF recruitment motifs, we profiled the base preferences of 

the local genomic region (26 bp) centered at each of these SNP-QTLs. Consistent with 

our observed differential PU.1 binding, the COF recruitment motifs for many loci 

matched ETS-type binding motifs (Fig. 3.4). COF motifs were also identified that 

matched TBX/KLF/EGR zinc finger motifs, IRF/STAT motifs, and two motifs that did 

not match a known TF motif even at a relaxed stringency threshold (Fig. 4.4, see 3.5 

Materials and Methods). Comparing the recruitment motifs generated at a given SNP 

locus, we found the motif base preferences and alignment were consistent across COF 

and PU.1 experiments, confirming a common underlying TF-COF complex. Examining 

SNPs specifically affecting ETS motifs, we found that SNPs can impact different 

positions along the ETS motif, including both the variable 5’ flanking region 

(rs11940944, rs72755909, rs2526718) and the core ETS 5’-GGAA-3’ element (rs873458, 

rs1250568). These results highlight that COF recruitment motifs can provide a means to 

understand the biophysical mechanism for a SNP-QTL. 
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Figure 3.4: CASCADE-determined motifs at SNP loci 

COF recruitment motifs for p300, SMARCA4, TBL1XR1, GCN5, and RBBP5 are shown for 10 

SNP-QTL loci. PU.1 binding motifs at each locus are also shown. Position of the SNP location 

within each motif is shown with a shaded rectangle. QTL type of each SNP is indicated (left-hand 

side, colored dots). Only sites that met an imposed seed z-score threshold were plotted (see 3.5 

Materials and Methods). Corresponding reference and SNP are shown beneath each rsID. (-) 

denotes a site plotted as its reverse complement relative to the reference strand. For these sites, 

the reference and SNP alleles are also indicated as their complementary nucleotides. 

Contributions: CASCADE experimental work was performed by HH. CASCADE analysis and 

motif similarity analysis was performed by DB. 

 

3.3.7 Comparison of TF binding models associated with site-specific COF recruitment 

preferences 

 We highlight two gain-of-recruitment SNP-eQTLs identified in our screen to 

demonstrate how CASCADE can be used to generate mechanistic models of ncSNPs. 
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Our analysis for rs11950944 (G/A), a basal SNP-eQTL in myeloid cells (Schmiedel et al., 

2018), found that p300 (z-score: 2.36), SMARCA4 (z-score: 2.99), and TBL1XR1 (z-

score: 2.61) are recruited to the SNP allele but are either not recruited or are below our 

detection threshold for the reference allele (p300: z-score: - 0.13, SMARCA4: z-score: -

0.38, TBL1XR1: z-score: 0.37) (Fig. 3.5a left, Supplementary Data 3 from Bray et al., 

2020). The COF recruitment motifs for all three COFs matched significantly with ETS-

factor motifs (Fig. 3.5a, right). Consistent with our motif-based inferences, the ETS 

factor PU.1 preferentially bound the SNP allele (z-score: 5.99) though it could also be 

detected at the reference allele (z-score: 4.04). These results suggest a model where the 

SNP allele enhances the DNA binding of an ETS-family TF, possibly PU.1, which leads 

to enhanced recruitment of these COFs (Fig. 3.5c). We note that enhanced binding of 

PU.1 at DNA variants in murine myeloid cells has been previously shown to correlate 

with increased local histone modifications characteristic of primed and active regulatory 

elements as well as with increased transcriptional output (Heinz et al., 2013). 
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Figure 3.5: Constructing models with CASCADE for SNP-eQTLs 

(a) Left column: CASCADE-determined COF recruitment motifs for p300, SMARCA4, 

TBL1XR1, GCN5, and RBBP5 at the local genomic region surrounding rs11950944. PU.1 

binding motif is also shown. Right column: TF binding motif with the strongest association to 

each corresponding CASCADE COF recruitment motif. Statistical significance (p-value) for TF 

matching is shown below each TF motif (see 3.5 Materials and Methods). Position of the SNP 

location within each motif is shown in the shaded area. QTL type and inferred TF category are 

indicated by the same color scheme as in Fig. 3.4. (b) Same as in (a) but for the local genomic 

region surrounding rs10833823. Only sites that met an imposed z-score threshold were plotted 

and used for motif analysis (see 3.5 Materials and Methods). (c) Integrative model for COF 
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recruitment changes at SNP-eQTL rs11950944. (b) Same as in (c) but for SNP-eQTL 

rs10833823. Contributions: CASCADE experimental work was performed by HH. CASCADE 

analysis and motif similarity analysis was performed by DB. DB, HH, and TS jointly interpreted 

the results to posit mechanistic models. 

 

 Our analysis for a second basal SNP-eQTL rs10833823 (A/G) in myeloid cells 

(Schmiedel et al., 2018) identified a different scenario in which the entire panel of COFs 

tested were recruited to the reference allele, but the SNP allele caused significantly higher 

recruitment for three of the COFs: TBL1XR1 (z-scores: WT = 9.71, SNP = 28.49), 

GCN5 (z-scores: WT = 1.54 to SNP = 3.36), and RBBP5 (z-scores: WT = 10.56 to SNP 

= 15.82) (Fig. 3.5b left, Supplementary Data 3 from Bray et al., 2020). The COF 

recruitment motifs for all COFs matched GA-rich IRF/STAT-family motifs (Fig. 3.5b, 

right), and consistent with our inference of recruitment by IRF/STAT-type TFs, we did 

not observe PU.1 binding at this site (Fig. 3.5b, left). Notably, while the variant G allele 

enhanced COF recruitment in our assay, it occurred at a low-information position in the 

IRF/STAT binding motifs that did not appreciably affect the PWM scores for these TFs 

(Fig. 3.5b, left, highlighted position; Fig. 3.5b, right). The PWM binding models for 

several inferred TFs (Fig. 3.5b, right, IRF1, IRF4, STAT2) thereby predict that the 

variant position (Fig. 3.5b, left, highlighted position) does not affect TF binding but can 

alter the recruitment of several COFs (Fig. 3.5d) possibly by a mechanism involving 

DNA-based allostery (Meijsing et al., 2009; Gronemeyer and Bourguet, 2009). The 

functional consequences of this variant on COF recruitment would thereby not be 

captured by traditional computational annotation techniques based on PWM motif 

scanning and predicted differential TF binding (Grant et al., 2011; Coetzee et al., 2015; 
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Touzet and Varre, 2007; Claeys et al., 2012; reviewed in Gan et al., 2018). It is also 

possible that binding of these TFs (e.g. IRF1, IRF4, and STAT2) is optimized by the 

variant G at that specific binding site (flanking rs10833823) which highlights an 

advantage of generating site-specific recruitment and binding models compared to PWMs 

that are constructed by aggregating information across many binding sites and genomic 

contexts. These results demonstrate how the CASCADE approach, based on site-specific 

COF-recruitment profiling, can generate biophysical, mechanistic models for how 

ncSNPs can alter the binding of TF-based regulatory complexes. 

3.4 Discussion 

 Characterizing the effects of DNA variants, such as ncSNPs, on gene regulatory 

complexes is a challenge in our efforts to explain the genetic contributions to human 

disease. A bottleneck in the field is that studies identifying the mechanisms by which 

ncSNPs function greatly lag studies identifying ncSNPs associated with traits or diseases 

(Gallagher and Chen-Plotkin, 2018). To address this need for high-throughput approaches 

to characterize ncSNPs, we developed CASCADE as a high-throughput, customizable 

platform for profiling the impact of DNA variants on TF-COF complexes. By measuring 

the DNA recruitment of broadly interacting COFs (i.e., that form complexes with many 

TFs), this approach can assay multiple TF-COF complexes in a multiplexed manner. 

Furthermore, as CASCADE queries the binding of TF-COF complexes, as opposed to 

just TFs, it can suggest a link between DNA variants and the biological functions 

mediated by each COF. In this work, we have applied CASCADE to the study of 

ncSNPs, but the approach can be customized to study any non-coding DNA variants, 
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such as rare variants associated with disease or somatic mutations associated with cancer. 

We envision that using CASCADE in conjunction with other high-throughput, cell-based 

methods, such as MPRAs that assess gene expression (Melnikov et al., 2012; Tewhey et 

al., 2016; Ernst et al., 2016) will provide exciting new approaches to characterize 

function and mechanism of DNA variants at a genomic scale. 

 As disease-associated ncSNPs often reside within CREs (Alasoo et al., 2018; Farh 

et al., 2015; Fairfax et al., 2014; Maurano et al., 2012) the characterization of ncSNPs is 

directly related to the problem of delineating the mechanisms of CREs. Here, we 

demonstrate that CASCADE can be applied to this fundamental problem and can be used 

to identify TF binding sites within CREs and the TF-COF complexes that bind to these 

sites under different cellular conditions. Using CASCADE to characterize an LPS-

inducible segment of the CXCL10 promoter, we identified the three previously validated 

NF-κB and IRF sites involved and TF-COF complexes bound to each individual site. In 

this work, we profiled a limited set of COFs, but the approach can be applied to other 

COFs where native antibodies are available, or COFs have been affinity tagged. We also 

demonstrated that we can identify site-specific recruitment of COFs that are annotated as 

subunits of larger, multi-protein COF complexes (e.g., RBBP5, Fig. 3.2c). Currently it is 

unclear the extent to which these multi-protein COF complexes are assembled on our 

microarrays, or whether we are assaying the recruitment of smaller sub-complexes or 

even single COFs (i.e., binary TF-COF interactions). Future studies will address the 

extent to which recruitment of larger COF complexes is being assayed and how 

CASCADE-identified TF-COF interactions reflect interactions critical for CRE function 
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in vivo. Finally, we note that CASCADE provides the first, high-throughput approach to 

establish the link between individual CRE binding sites, TFs, and COFs. We anticipate 

that CASCADE will allow for renewed examination of the role COFs play in the cis-

regulatory logic that governs CRE function, which has primarily focused on TFs and 

binding sites alone. 

 We recognize that there are technical limitations to the CASCADE approach in 

the detection of differential COF recruitment events and the motif-based analyses used to 

infer TFs underlying these differential COF recruitment sites. The paired 

reference/alternate allele screening procedure successfully identified differential COF 

recruitment sites that, when profiled using the full CASCADE procedure, demonstrated 

COF recruitment preferences consistent with previous TF binding models. Although, we 

acknowledge that agreement across technical replicates of the screening procedure was 

generally poor in particular when profiling COF recruitment (Fig. 3.3b, Fig 3.3c). We 

therefore selected only the sites that demonstrated reproducible COF recruitment 

differences for downstream analyses (see 3.5 Materials and Methods). Furthermore, 

motif-based inferences identifying TFs underlying differential COF recruitment events 

could largely only be resolved at the TF family-level (e.g. IRF or ETS). COF recruitment 

and TF binding motifs, such as those involving IRF3 at the CXCL10 promoter, 

demonstrated consistent nucleotide preference differences (Fig. 3.2b, tracks 1 and 5) that 

differed relative to the reference IRF3 binding model (Supplementary Fig. 3.1). Though 

these may indicate some influence of the p300 cofactor on altering the binding preference 

of IRF3, we cannot eliminate the possibility in this case that these preference differences 
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are required by IRF3 to bind to the CXCL10 promoter in a site-specific manner that is not 

captured by a PWM (or similar binding model) that aggregates nucleotide preference 

information over many binding sites. Furthermore, PWMs for related TFs, such as the 

IRFs, can closely resemble one another and ignore additional biological contexts such as 

the cell state-specific activation or upregulation of signal-dependent TFs as well as their 

potential dimerization partners. For these reasons, associating a site-specific COF 

recruitment or TF binding model with a specific member of a TF family based on motifs 

alone remains difficult. In this study, we integrated the motif-level inferences with 

additional biological insight, such as the known LPS-inducibility of IRF3, to support our 

predictions. Exploring methods to address these limitations and improve the detection of 

differential COF recruitment and inference of underlying TFs will be the focus of future 

investigations. For example, our group has begun exploring alternate screening 

procedures that include additional replicate probes and allow for differential COF 

recruitment to be computed across several adjacent sites that we expect will result in 

more robust detection of differential COF recruitment based on our preliminary 

experiments (discussed later in Chapter 5, section 5.4). In addition, more objective and 

quantitative methods to integrate motif-level information with additional biological 

context, such as expression or activity levels of a TF within the condition being profiled, 

will be explored in order to improve the inference of TFs underlying observed COF 

recruitment sites. 

 The CASCADE approach introduced here is a scalable, customizable platform to 

study TF-COF complexes and the impact of DNA variants on these gene regulatory 
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complexes. In this study, we demonstrate its application to the functional characterization 

of CREs and ncSNPs. However, it can be customized and applied to many other types of 

DNA variants and elements in a cell-specific manner, such as mutations in different 

cancers or synthetic regulatory elements designed to drive a cell-specific response. We 

show the application of CASCADE to nuclear extracts from a human macrophage cell 

line, but conceptually the approach can be used with nuclear extracts from any cell or 

tissue type. Finally, the ability to profile COF recruitment to DNA sites provides an 

opportunity to link DNA variants with therapeutic intervention. COFs are often 

enzymatic (e.g., methyltransferases, histone deacetylases, etc.) and therapeutic inhibitors 

for many COFs are available (Altucci and Rots, 2016; Cortez and Jones, 2008). 

Identifying the TF-COF complexes whose binding site is created by a DNA variant may 

allow for the identification of therapeutic antagonists to counteract their effects. Future 

studies applying CASCADE in these diverse scenarios should help to develop the 

approach and provide insights into the roles of TF-COF complexes in cell signaling and 

disease. 

3.5 Materials and Methods 

3.5.1 Cell culture 

 THP-1 cells, a human monocyte cell line, were obtained from ATCC (TIB-202). 

The cells were grown in suspension in RPMI 1640 Glutamax media (Thermofisher 

Scientific, Catalogue #72400120) with 10% heat-inactivated FBS (Thermofisher 

Scientific, Catalogue #11360070) and 1mM sodium pyruvate (Thermofisher Scientific, 

Catalogue #16140071). T175 (Thermofisher Scientific, Catalogue #132903) non-treated 



 

 

86 

flasks were used when culturing THP-1 cells for experiments. Cells were grown in 50mL 

of media when being cultured in T175 flasks. 

 To differentiate THP-1 cells into adherent macrophages, cells were grown to a 

density of 8.0 × 105 cells/mL and treated with 25ng/mL Phorbol 12-Myristate 13-Acetate 

(PMA) (Sigma-Aldrich, Catalogue #P8139) for 4 days. Following the 4 days of PMA 

treatment, the media was replaced with fresh RPMI media with 10% heat-inactivated 

FBS and 1mM sodium pyruvate. The cells rested for two days in the fresh media before 

being stimulated with various reagents. 

 THP-1 cells differentiated with PMA were treated with either LPS (Sigma-

Aldrich, L3024) or interferon gamma (IFN-γ) (Thermofisher Scientific, Catalogue 

#PHC4031) in combination with LPS. PMA treated THP-1 cells were treated with 

1ug/mL of LPS for 45 min or with 100ng/mL IFN-γ for 2 h followed by 1ug/mL LPS for 

1 h. For each condition, nuclear lysates were harvested. For all nuclear lysates assayed 

using PBM experiments, the expression levels of COFs and TFs profiled with 

CASCADE were confirmed by western blotting (Supplementary Fig. 3.4). 

3.5.2 nextPBM experimental methods 

 The nuclear extract protocols are as previously described (Mohaghegh et al., 

2019). Changes to the previously published protocols are detailed. To harvest nuclear 

extracts from THP-1 cells, the media was aspirated off and the cells were washed once 

with 1X PBS (Thermofisher Scientific, cat #100010049). Once the 1X PBS used to wash 

the cells was aspirated off, enough 1X PBS was mixed with 0.1mM Protease Inhibitor 

(Sigma-Aldrich, cat #P8340) to cover the cells was added to each flask. A cell scraper 
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was then used to dislodge the cells from the flask. The cells were collected in a Falcon 

tube and placed on ice. To pellet the cells, the cell volume was centrifuged at 500xg for 5 

min at 4°C. Once the cells were pelleted, the supernatant was aspirated off. The pellet 

was resuspended in Buffer A and incubated for 10 min on ice (10mM HEPES, pH 7.9, 

1.5mM MgCl, 10mM KCl, 0.1mM Protease Inhibitor, Phosphatase Inhibitor (Santa-Cruz 

Biotechnology, Catalogue #sc-45044), 0.5mM DTT (Sigma-Aldrich, Catalogue #4315)) 

to lyse the plasma membrane. After the 10 min incubation, a final concentration of 0.1% 

Igepal detergent was added to the cell and Buffer A mixture and vortexed for 10 sec. To 

separate the cytosolic fraction from the isolated nuclei, the sample was centrifuged at 

500xg for 5 min at 4°C. The cytosolic fraction was collected into a separate 

microcentrifuge tube. The pelleted nuclei were then resuspended in Buffer C (20mM 

HEPES, pH 7.9, 25% glycerol, 1.5mM MgCl, 0.2mM EDTA, 0.1mM Protease Inhibitor, 

Phosphatase Inhibitor, 0.5mM DTT, and 420mM NaCl) and then vortexed for 30 sec. 

The nuclei were incubated in Buffer C while mixing at 4°C. To separate the nuclear 

extract from the nuclear debris, the mixture was centrifuged at 21,000xg for 20 min at 

4°C. The nuclear extract was collected in a separate microcentrifuge tube and flash frozen 

using liquid nitrogen. Nuclear extracts were stored at -80°C until used for experiments. 

 Microarray DNA double stranding and PBM protocols are as previously described 

(Berger et al., 2006; Berger and Bulyk, 2009; Mohaghegh et al., 2019). Any changes to 

the previously published protocols are detailed. Double-stranded microarrays were pre-

wetted in HBS (20mM HEPES, 150mM NaCl) containing 0.01% Triton X-100 for 5 min 

and then de-wetted in an HBS bath. Next the array was incubated with nuclear extract for 
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1 h in the dark in a binding reaction buffer (20mM HEPES, pH 7.9, 100mM NaCl, 1mM 

DTT, 0.2mg/mL BSA, 0.02% Triton X-100, 0.4mg/mL salmon testes DNA (Sigma-

Aldrich, cat #D7656)). The array was then rinsed in an HBS bath containing 0.1% 

Tween-20 and subsequently de-wetted in an HBS bath. After the protein incubation, the 

array was incubated for 20 min in the dark with 20ug/mL primary antibody for the TF or 

COF of interest (Supplementary Table 3.1). The primary antibody was diluted in 2% milk 

in HBS. After the primary antibody incubation, the array was first rinsed in an HBS bath 

containing 0.1% Tween-20 and then de-wetted in an HBS bath. Microarrays were then 

incubated with 10ug/mL of either alexa488 or alexa647 conjugated secondary antibody 

(Supplementary Table 3.1) for 20 min in the dark. The secondary antibody was diluted in 

2% milk in HBS. Excess antibody was removed by washing the array twice for 3 min in 

0.05% Tween-20 in HBS and once for 2 min in HBS in coplin jars as described above. 

After the washes, the array was de-wetted in an HBS bath. Microarrays were scanned 

with a GenePix 4400A scanner and fluorescence was quantified using GenePix Pro 7.2. 

Exported fluorescence data were normalized with MicroArray LINEar Regression 

(Berger et al., 2006). 

3.5.3 CASCADE microarray designs and analyses 

 A known LPS-responsive segment of the CXCL10 promoter (hg38: chr4) from 

76023583 to 76023748 was used for the basis of this array design (Majumder et al., 

1998). The genomic region was tiled through using 26-base “target” probe sequences 

with a 5-base step forward between sequential tiles. In total, 29 of these tile probes were 

needed to span the LPS-responsive CXCL10 promoter segment. “Target” sequences 
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corresponding to the genomic locus were obtained from the hg38 genome fasta file 

included with Bowtie2 (Langmead and Salzberg, 2012) using the “fastaFromBed” 

function from bedtools v2.26.0 (Quinlan and Hall, 2010). For each tile probe and each 

position along the corresponding 26-base target region, a probe was included in the array 

design consisting of each possible nucleotide variant (at that position) in order to employ 

the variant probe analysis approach (see below). A total of 2,291 targets were therefore 

used to model the CXCL10 promoter segment (29 tiles + 29 × 3 variant probes x 26 

positions). 500 additional 26-base target regions were randomly selected from the hg38 

using the bedtools “shuffleBed” function and included in the array design to build a 

background distribution of fluorescence intensity. Each 26-base target region in the array 

design was embedded in a larger 60-base PBM probe as follows: 

 

“GCCTAG” 5’ flank – 26-base target region – “CTAG” 3’ flank – 

“GTCTTGATTCGCTTGACGCTGCTG” double-stranding primer 

 

 Each target region was included in its reference (+) orientation as well as the 

reverse complement (-) orientation. 5 replicate spots of each probe (in each orientation) 

were included in the final array design. PBM microarray probes, relevant annotation for 

each, and the experimental results are provided (Supplementary Data 1 from Bray et al., 

2020). The microarrays were purchased from Agilent Technologies Inc. (AMAID: 

085605, format: 8×60K). 
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 To design the nextPBM-based screen for differential COF recruitment at ncSNPs, 

the lead SNPs uncovered in previous studies were included in our high-throughput screen 

as follows: 1,446 basal eQTLs (Schmiedel et al., 2018) (randomly selected from the 

“classical monocytes” category), 81 caQTL-eQTLs, 11 GWAS caQTLs, 14 GWAS 

eQTLs, and 160 response eQTLs (Alasoo et al., 2018). Chromosomal coordinates (hg38) 

for each SNP were obtained using the biomaRt R package from Ensembl (Durinck et al., 

2009). 26-base DNA probe target regions centered at the SNP position (relative to + 

strand: 13 bases + SNP location + 12 bases) were obtained for each reference (REF) 

allele using bedtools as above. For each REF allele probe, a probe with the corresponding 

SNP allele was also included in the design such that each rsID is represented by a pair of 

REF and SNP probes. 500 background target regions were also included using the same 

procedure as above. The 26-base target regions were embedded in larger 60-base PBM 

DNA probes as above. 5 replicates of each probe (in both orientations) were included in 

the final design. The microarrays were purchased from Agilent Technologies Inc. 

(AMAID: 085920, format: 8×60K). 

 Each REF/SNP pair was screened for differential recruitment of p300, 

SMARCA4, TBL1XR1, RBBP5, and GCN5 as well as differential binding of 

representative ETS factor PU.1 nextPBM experimental results were preprocessed as 

above. Z-scores were obtained for each probe as previously described (Andrilenas et al., 

2018) against the distribution of fluorescence intensities obtained at the set of background 

probes for a given experiment. For each REF and SNP allele pair in the design, a t-test 

was used to compare the fluorescence intensity distributions between the 5 REF probes 
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and 5 SNP probes for a given COF/TF assayed. To mitigate the influence of probe 

orientation-specific effects, t-tests were performed independently for each probe 

orientation with the p-values combined using Fisher’s method. The Benjamini-Hochberg 

method was used to adjust the individual p-values for a REF/SNP pair for multiple 

hypothesis testing. The fluorescence intensity z-score difference for a given REF and 

SNP allele probe pair (termed Δz-score) was computed by subtracting the mean REF z-

score from the mean SNP z-score such that a positive Δz-score represents a gain-of-

recruitment introduced by the SNP allele and a negative Δz-score represents a loss. 

Scatterplots based on the screening results (Fig. 3.3b-c) were plotted using the ggplot2 

(Wickham, 2016), RColorBrewer (Neuwirth, 2014), and cowplot (Wilke, 2019) R 

packages. A full data file including the statistics from the high-throughput differential 

recruitment screen is included in the supplementary materials (Supplementary Data 2 

from Bray et al., 2020). 

 Reference and SNP allele pairs exhibiting reproducible significant differential 

COF recruitment and/or TF binding were selected for this CASCADE array design in 

order to infer regulators responsible for the differential activity observed. Inclusion 

criteria was as follows: the difference in recruitment (or binding) of a given COF (or TF) 

between corresponding REF and SNP allele probes must have obtained an adjusted p-

value (q-value) < 0.05 independently in both technical replicates with a concordant 

direction of effect. Single variant probes for the 26-base target regions (centered at the 

SNP position – as described above) were generated using the same procedure as above 

but without the tiling needed to span larger genomic loci such as the CXCL10 promoter 
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segment used previously. In addition, only 291 background probes were included due to 

probe number limitations. PBM microarray probes, relevant annotation for each probe, 

and the experimental results are provided (Supplementary Data 3 from Bray et al., 2020). 

The microarrays were purchased from Agilent Technologies Inc. (AMAID: 086248, 

format: 4×180K). 

 Motif modeling using SV probes was performed as previously described 

(Mohaghegh et al., 2019; Andrilenas et al., 2018; Penvose et al., 2019) for the SNP-QTL 

sites profiled in detail using CASCADE. For the multi-tile design used to model extended 

loci such as the LPS-responsive CXCL10 promoter segment, a weighted mean approach 

was applied as follows to overlapping positions in order to integrate results across 

sequential tiles: all variant probes corresponding to a given nucleotide at a given position 

within the promoter segment were averaged using each probe’s corresponding seed 

(reference genomic) z-score as a weight. Further, if a given SV probe’s z-score was 

above 1.645 (above approximately 95% of the fluorescence intensities obtained using 

background probe distribution - assuming a normal distribution) and the SV probe’s 

corresponding reference probe z-score was less than or equal to 1.645, the SV probe’s z-

score was reset to the reference seed value. This procedure ensured that the SV probe 

modeling approach was used to characterize true genomic recruitment sites and reduce 

the influence of COF recruitment sites gained specifically via a non-reference (non-

genomic) variant. Sequence logo plots for the COF recruitment and TF binding motifs 

were generated using the ggseqlogo R package (Wagih, 2017) and arranged using 

cowplot (Wilke, 2019). The Δz-scores of each nucleotide represent the difference relative 
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to the median z-score obtained across all possible nucleotides at that position and was 

computed after the weighted averaging procedure described previously. The Δz-score 

axis limits for the logo tracks (Fig. 3.2, Supplementary Fig. 3.2) were determined using 

the minimum and maximum Δz-scores obtained for a given COF/TF (across experiments 

within an array design) to enable comparisons across stimulus conditions assuming 

matched total protein concentrations across experiments. 

3.5.4 Motif similarity analysis 

 For CASCADE recruitment motifs obtained at the CXCL10 locus, to simplify the 

analysis and reduce the number of comparisons, the promoter segment was first separated 

into 3 motifs broadly corresponding to each previously characterized TF site (ISRE, NF-

κB-2, and NF-κB-1). For CASCADE profiling of the SNP-QTLs, a minimal seed z-score 

of 1.5 was enforced for motif analysis. Recruitment energy matrices obtained from 

CASCADE cofactor profiling (fluorescence intensity z-scores) were converted to a 

probability-based matrix using the Boltzmann distribution as previously described 

(Andrilenas et al., 2018) to be more directly comparable to previous TF binding models: 

 

 zik is the z-score for nucleotide variant k at position i within the motif window. β 

transformation parameters for the Boltzmann equation were scaled using the maximum z-

score obtained in a given experiment using the following equation in order to account for 

differences in antibody efficiencies across cofactors: 
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 Resulting position-weight matrices were compared against the complete 

HOCOMOCOv11 database (Kulakovskiy et al., 2018) of TF binding models (771 total) 

using TOMTOM from the MEME suite (Gupta et al, 2007) version 5.0.3. Euclidean 

distance was used as the similarity metric with a relaxed minimal reporting q-value of 

0.25 (-dist ed -thresh .25). 

3.5.5 Data availability 

The results of all nextPBM/CASCADE array experiments performed here have 

been deposited in the Gene Expression Omnibus (GEO accession: GSE148945). An R 

script that implements CASCADE to generate the plots shown in this study using the 

Supplementary Data files has been made available on Github (https://github.com/Siggers-

Lab/CASCADE_paper). All other data is available upon request.  
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3.6 Supplementary Information 

Antibody Catalog Number Application 

Primary Antibodies 

P300 ab14984 PBM Experiment/Western 

Blot 

SMARCA4 sc17796 PBM Experiment/Western 

Blot 

GCN5 sc-365321x PBM Experiment/Western 

Blot 

RBBP5 a300-109A PBM Experiment/Western 

Blot 

TBLX1R1 sc-100908 PBM Experiment 

HDAC1 ab7028 PBM Experiment 

P65 sc-372X PBM Experiment 

P65 sc-8008 Western Blot 

IRF8 sc-6058X PBM Experiment 

IRF3 D83B9 PBM Experiment 

IRF2 sc-374327 PBM Experiment 

PU.1 sc-352X PBM Experiment 

Secondary Antibodies 
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Donkey anti-goat IgG (H+L) 

Cross-Adsorbed Secondary 

Antibody, Alexa Fluor 488 

A11055 PBM Experiment 

Goat anti-mouse IgG (H+L) 

Highly Cross-Adsorbed 

Secondary Antibody, Alexa 

Fluor 488 

A11029 PBM Experiment 

Goat anti-rabbit IgG (H+L) 

Highly Cross-Adsorbed 

Secondary Antibody, Alexa 

Fluor 488 

A11034 PBM Experiment 

Goat anti-mouse IgG (H+L) 

Highly Cross-Adsorbed 

Secondary Antibody, Alexa 

Fluor 647 

A32728 PBM Experiment 

Goat anti-rabbit IgG (H+L) 

Highly Cross-Adsorbed 

Secondary Antibody, Alexa 

Fluor 647 

A32733 PBM Experiment 

HRP conjugated Goat anti-

mouse 

G-21234 Western Blot 

HRP conjugated Goat anti-

rabbit 

G-21040 Western Blot 

Supplementary Table 3.1: Antibodies used for experiments 

The antibodies listed were used for the PBM experiments or Western blots as listed. 
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Supplementary Figure 3.1: Model-based inference of transcription factors associated with 

CXCL10 promoter COF recruitment motifs 

(a) TF motifs matched to p300 recruitment preferences in LPS-stimulated macrophages 

(Replicate 1). (b) TF motifs matched to p300 recruitment preferences in LPS-stimulated 

macrophages (Replicate 2). (c) TF motif matched to RBBP5 recruitment preferences in LPS-

stimulated macrophages (d) TF motif matched to RBBP5 recruitment preferences in untreated 

macrophages. All COF recruitment preference tracks were converted to probability-based models 

(see 3.5 Materials and Methods) prior to comparison. Similarity comparisons to known TF 
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binding models was performed using TOMTOM and the full HOCOMOCOv11 motif database 

(771 total motifs – see Materials and Methods). 
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Supplementary Figure 3.2: Additional CASCADE-based analyses of TF binding to the 

CXCL10 promoter segment 

Nucleotide binding preferences of IRF8 to the CXCL10 promoter segment in paired LPS-

stimulated (track 11 - continued from Fig. 3.2) and untreated (track 12) macrophages. Binding 

preferences of IRF3 (track 13) and p65 (track 14) in UT macrophages. 
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Supplementary Figure 3.3: Statistical significance and direction-of-effect for changes in 

COF recruitment and TF binding across reference and SNP probe pairs screened 

Rows represent volcano plots obtained for different COFs (SMARCA, TBL1XR1, RBBP5, 

GCN5) and TF PU.1. Left column shows the volcano plots obtained in a first replicate and right 

column shows the volcano plots obtained in a technical replicate experiment. Statistical 

significance threshold for each experiment (q < 0.05, see 3.5 Materials and Methods) is shown as 

a grey dashed line. 
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Supplementary Figure 3.4: Western blot of PMA-treated THP-1 NEs 

The protein expression levels of p300, SMARCA4, GCN5, RBBP5, and p65 of PMA treated 

THP-1 cells were evaluated by western blotting. 30ug of nuclear extract were loaded for all 

samples. PMA treated THP-1 cells were treated with LPS for 45 min to induce p65 expression. 

PMA treated THP-1 cells were treated with IFNγ for 3 h to prime the immune response. PMA 

treated THP-1 cells were treated with IFNγ for 1 h and LPS were treated with IFNγ for 2 h 

followed by LPS stimulation for 45 min. Ponceau S staining was used as a loading control. 

Contributions: Experiments were performed by HH and interpreted jointly by HH, DB, and TS.
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CHAPTER FOUR: The human TF array – surveying cofactor recruitment to the 

binding sites of human transcription factors 

Note: The human transcription factor (hTF) microarray design idea was jointly conceived 

by David Bray (DB), Heather Hook (HH), Rose Zhao (RZ) and Trevor Siggers (TS) 

based on a pilot series of microarray designs and analyses by RZ and Jessica Keenan 

(JK). All pilot experimental work on the immune TF-centric coregulator recruitment 

(CoRec) array series of experiments prior to the development of the hTF array was 

performed by RZ and JK with input from TS. The pilot experimental work on the hTF 

microarray design was performed by RZ with input from HH and TS. The specific hTF 

array design, software used to design the array, and interactive array analysis and 

visualization software were designed and implemented by DB with input from HH, RZ, 

and TS. Individual author contributions to figures are noted in each respective figure 

legend.  

4.1 Abstract 

 COFs recruited to TF binding sites (TFBSs) are the effectors of gene regulatory 

activities such as histone modification and chromatin remodeling. Despite the importance 

of TF-COF complex assembly on the activity of a TF, existing assays to measure TF 

activity have focused traditionally only on TF binding or on the presence/translocation of 

TFs into the nucleus. We propose that a more functionally relevant assessment of TF 

activity is to identify TF-COF complexes present in the cell nucleus and capable of 

binding to DNA. As a general framework to map such TF-COF complexes in cells, we 

extend our COF recruitment profiling approaches to survey COF recruitment to an 
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expansive panel of 346 non-redundant consensus TFBSs and their SNVs. This array 

design (the human TF – or hTF array) allows users to examine the activity of a wide 

panel of human TFs by profiling TF-COF complexes in any cell type or condition. To 

facilitate the application of this experimental approach, we have developed an analysis 

suite to allow users to explore COF recruitment results obtained using the hTF 

microarray. In pilot experiments exploring LPS-dependent coactivator and corepressor 

recruitment to the hTF panel, we use our analysis software to generate condition-specific 

COF recruitment comparisons at the DNA probe-level, visualize the sequence 

determinants of COF recruitment at the TF-level, and delineate condition-specific TF-

COF complex “signatures” across all TFs included in our panel. We anticipate that the 

hTF platform and the concept of TF-COF recruitment signatures will provide a valuable 

annotation layer to refine our understanding of cell- and state-specific gene regulatory 

logic. 

4.2 Introduction 

 COFs present at CREs such as promoters and enhancers are key effectors in gene 

regulation. Individual COFs and multi-protein COF complexes recruited to DNA by 

sequence-specific TFs have diverse roles in histone modification, chromatin remodeling, 

and assembling the transcription preinitiation complex through their enzymatic activities 

(Kouzarides, 2007; Vo and Goodman, 2001). As COF recruitment to cell type- or 

context-dependent CREs can depend on the expression, nuclear localization, and PTMs 

of signal-dependent TFs (Zabidi and Stark, 2016; Haberle and Stark, 2018; Reiter et al., 

2017), a complete understanding of gene regulation depends on our ability to determine 
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which TF-COF complexes are capable of assembling at CREs under diverse cellular 

conditions. 

 To address important limitations to existing methods to profile the assembly of 

TF-COF complexes at DNA, our group recently developed the CoRec (Cofactor 

Recruitment) method (Keenan, 2019). CoRec is an HT extension to our PBM-based COF 

recruitment approaches such as CASCADE (Bray et al., 2020). Prior to CoRec, assays to 

investigate the TFs active in a given cellular context have been limited to TF activation 

profiling arrays that assay the presence of up to hundreds of TFs in cell nuclei (Luminex 

200 from Active Motif; Zhou et al., 2017; Ding et al., 2013). Unlike CoRec, these 

methods do not explicitly interrogate TF-COF complexes nor do they quantify the effects 

of DNA variants on the binding of these complexes. Methods such as M2H allow for the 

characterization of binary interactions between proteins but do not capture specific 

differences attributable to different cell-specific conditions (Riegel et al., 2017). 

Moreover, cell-based HT methods such as COF ChIP-seq provide stimulus-specific 

genome-wide maps of COF locations (Raisner et al., 2018; Blow et al., 2010; Ramos et 

al., 2010)  but the peaks can span hundreds of bases and multiple TF binding motifs 

making it difficult to infer causality between TF binding and TF-COF complex assembly. 

Furthermore, it is difficult to manipulate the cellular and genomic context, as in assays 

such as ChIP-seq, to further probe the sequence- or context-dependent determinants of 

COF recruitment and TF-COF complex assembly beyond the nucleotides occurring 

naturally in the genome. 
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 To address the aforementioned limitations of these assays, the CoRec approach 

was developed as an HT cell-based method to survey recruitment of a COF of interest to 

a panel of known TFBSs in a given cellular context. To demonstrate the utility of the 

method we profiled the recruitment of a diverse set of COFs (including coactivators, 

corepressor subunits, chromatin remodeling enzyme subunits, and more) to a panel of 91 

known immune-centric TFBSs in different immune cell contexts (Keenan, 2019). By 

comparing the TF-COF complexes active in resting macrophages, LPS-stimulated 

macrophages, resting T cells, and TCR-stimulated T cells, we characterized and 

recapitulated known key differences in cell- and stimulus-dependent TF-COF complexes 

(Keenan, 2019). 

 Here we present the hTF array which extends our pilot CoRec array design, that 

was focused on 91 immune-related TFBSs, to a panel of 346 non-redundant consensus 

TFBSs selected algorithmically to represent the known binding repertoire of the human 

TFs. In addition to the standardized and open-source microarray design, we present an 

hTF array analysis framework designed to provide researchers with rapid insight into the 

TF-COF complexes active in different cell states through interactive data analysis and 

visualization modules. We demonstrate the utility of the hTF array and the dedicated 

interactive analysis software by characterizing the diversity of TF-COF complexes active 

in a pilot series of COF recruitment experiments in human macrophages. Furthermore, 

we demonstrate how the interactive analysis modules can be used in conjunction to 

investigate differences in COF recruitment logic at the DNA probe-level, the TF-level, 

and the array-level. The hTF array and accompanying analysis framework thereby 
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represent an attempt to expand our group’s COF recruitment profiling techniques in order 

to enable researchers to investigate the TF-COF complexes active in their system of 

interest (beyond the immune context) as well as enable the development of TF-COF 

biomarkers/signatures. We propose that these TF-COF signatures will provide a valuable 

annotation layer in our efforts to understand context-dependent gene regulation and 

understand the TF-COF complexes mediating aberrant cell states in disease. 

4.3 Results 

4.3.1 The human TF array – scaling CoRec up to a general panel of TFBSs 

 Given the initial success in using the pilot CoRec array design to profile cell type- 

and stimulus-dependent COF recruitment to a panel of 91 immune-related TF sites 

(Keenan, 2019) we sought to expand the approach to a larger panel of TFs relevant 

beyond the immune context. To this end, we have designed the hTF array algorithmically 

in order to cover as many of the TFs as we could while ensuring accurate COF 

recruitment models (see 4.5 Materials and Methods). Briefly, starting with the 452 non-

redundant human TF binding models from the open-source JASPAR 2018 CORE (Khan 

et al., 2018), we further collapsed this set down to 346 non-redundant consensus 

sequences since multiple related TF binding models can be represented by a single 

consensus DNA microarray probe (Fig. 4.1, step 1). For each of these 346 non-redundant 

consensus sequences, on the final microarray design, we included probes corresponding 

to the consensus sequence itself as well as every SNV along the consensus sequence in 

order to allow us to determine COF recruitment motifs (as with CASCADE in Chapter 

3). This probe design allows us to profile COF recruitment by any TFs that can bind one 
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of our 346 consensus probes representative of the human TF binding repertoire. This hTF 

probe set can be accommodated in the Agilent 4x180K microarray format, which 

contains 4 replicate copies of each probe set on a single array. Therefore, using this 

microarray design, one can profile COF recruitment in a multiplexed fashion (Fig. 4.1, 

step 2). The example in the schematic shows profiling the recruitment of 2 different 

COFs of interest across 2 cell types in a single set of experiments (Fig. 4.1, step 2). TF-

COF recruitment is profiled in a cell state-specific manner using a nextPBM-based 

approach as with CASCADE in Chapter 3. The hTF array design thereby allows for 

multiplexed COF recruitment investigations across an expansive and diverse panel of 346 

TFs that can be used across any cell type or state of interest. 

 

Figure 4.1: hTF array design overview 

(1) Consensus binding sites from JASPAR CORE set of human TF binding models were 

redundancy reduced. For each consensus site, DNA probes corresponding to the site itself as well 

as all possible single nucleotide variants form the basis of the hTF array design. (2) The 4-
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chamber microarray design allows for multiplexed COF recruitment profiling against the same 

core set of TFBS and SNV probes. 

 

4.3.2 A dedicated interactive software suite to analyze hTF array data 

 As the hTF array was designed to be applied across cell types, conditions, and 

COFs of interest for any research application of interest, we sought to create an 

interactive software suite in order to analyze new results and integrate with previous 

experiments. In order to make analysis of hTF array data more interactive and accessible 

to the researchers who perform the experiments, we developed the hTF array analyzer in 

R Shiny. Through a series of interactive modules such as a dedicated data explorer, 

pairwise scatterplot visualizations, a grid of COF recruitment motifs, and an experiment-

wide recruitment heatmap, the hTF array analyzer software allows researchers to quickly 

explore their results and gain valuable insight into TF-COF recruitment phenomena 

within their cell types or states of interest. 

4.3.3 Exploration of hTF array experimental results using the array analyzer 

 To begin using the hTF array analyzer, experimental data can be uploaded by 

selecting the “Browse…” button within the “Data explorer” tab (Fig. 4.2a, orange arrow). 

Clicking the “Browse…” button opens a file browser where the user is prompted to select 

their formatted hTF array experimental results (Fig. 4.2b). In this example, the user is 

uploading real pilot experimental data obtained using the hTF array design previously 

detailed (Fig. 4.2b). Specific metadata regarding the experimental details and microarray 

design, such as which TF sites are included and which COFs were profiled, are read 

directly from the uploaded data file. Opening a dataset within the analyzer generates an 
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interactive table where the user can explore the full details of their COF recruitment data 

(Fig. 4.2c). Each of the 346 TF probe sets present on the pilot hTF array design contains 

an entry in the table and can be searched for using the “Search” bar at the top right of the 

analyzer window. Optionally, the user may select the “consensus + single variants” tab 

which displays the experimental results for each individual probe in the array design, not 

just the consensus TF sites. 

a 

b 

 

 

 



 

 

111 

c 

 

Figure 4.2: Exploring experimental data with the hTF array analyzer software 

(a) Data can be uploaded to the hTF array analysis analyzer using the “Browse…” button (orange 

arrow). (b) Selecting “Browse…” opens a dialog box that prompts the user to select their z-score 

normalized hTF array results. (c) The interactive “Data explorer” is automatically generated once 

data has been loaded. Users can interact with their experimental results by sorting the columns by 

recruitment strength to the consensus site (orange arrow) or using the search feature to subset the 

full table. Contributions: pilot hTF experiments were performed by RZ with input from DB and 

TS. DB designed the hTF array, the analysis pipeline, and the interactive analyzer software. 

 

 As many of the possible applications of the hTF array platform are discovery-

based in nature, an interactive sorting method is implemented in the “Data explorer” so 

that users may explore which TF sites produced the highest COF recruitment z-scores in 

the experiments performed. For example, sorting the TF entries by the 

“LPS_PMA_P300” column, a label assigned to an experiment used to profile the 

recruitment of coactivator p300 in PMA-differentiated macrophages stimulated with LPS, 

the highest consensus probe z-scores are obtained overwhelmingly by the IRFs (Fig 4.2c, 

orange arrow) which are known LPS-responsive TFs (O’Neill, 2006; Sakaguchi et al., 

2003; Jefferies 2019, Lawrence and Natoli, 2011; Mogensen, 2019). The “Data explorer” 

module allows users to gain immediate insight into interesting TF-COF recruitment 

phenomena. In the same example, though the IRFs appear to be strong recruiters of p300 
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in the LPS-stimulated cells, in the column labeled “UT_PMA_P300”, an unstimulated 

control cell population, these same consensus sites do not appear to recruit p300 (Fig. 

4.2c). As there are 346 total TF models to consider, the “Data explorer” tab provides an 

initial portal through which users can interact with their data and decide which TFs to 

include in the downstream analysis steps. 

4.3.4 Generation of probe-level pairwise COF recruitment comparisons 

 Common analyses performed in TF-COF recruitment experiments are pairwise 

comparisons of COF recruitment data at the DNA probe level in order to visualize the 

relative recruitment preferences of different COFs to the full array of TFBSs, or the cell 

state-dependent recruitment of a given COF. To facilitate these types of pairwise 

analyses, the hTF array analyzer includes a “Scatterplots” module. Selecting the 

“Scatterplots” panel opens a page where the user is prompted to select two experiments to 

compare as Y and X variables in a dynamically generated scatterplot. For example, to 

explore whether TFs of interest recruit the COF p300 in a condition-specific or 

constitutive manner, a user can select the LPS-stimulated macrophage experiment as the 

Y variable and the experiment from untreated macrophages as the X variable (Fig. 4.3a) 

from the set of experiments included in their uploaded data. The TF selection box is 

implemented with an auto-complete feature to facilitate searching for a TF of interest 

from the full hTF array design (Fig. 4.3a). With each new TF site selected (or deleted), 

the scatterplot is dynamically regenerated to include changes in the z-score axes limits as 

well as the TF site color palette (Fig. 4.3a). 

a 
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Figure 4.3: Interactive TF-COF recruitment analyses using the hTF array analyzer 

(a) Scatterplots demonstrating a pairwise probe-level comparison between p300 in LPS-

stimulated macrophages (y-axis) versus unstimulated macrophages (x-axis) for a subset of TFs 

listed. The probe colors correspond to the consensus site and all single variant probes for the TFs 

listed. (b) Same as in (a) but at the TF family level. (c) Interactive motif grid displaying the full 

COF recruitment models for p300 recruitment in unstimulated (column 1) macrophages, LPS-

stimulated (column 2), and for NCoR recruitment in unstimulated (column 3) macrophages and 

LPS-stimulated (column 4) for SPI1/PU.1 (top row), RELA/p65 (middle row), and 

RARA::RXRA (bottom row). The JASPAR CORE 2018 reference model for each TF is shown in 

column 5. The search field has an implemented “autocomplete” feature that suggests TF sites 

based on what is currently being typed (highlighted yellow). Contributions: hTF pilot data was 

generated by RZ with input from DB and TS. DB designed the hTF array, analysis pipeline, and 

interactive software. 

 

 By selecting various TF sites interactively within the “Choose TFs to compare” 

box, a researcher can readily identify which TFs (or TF families) likely recruits a given 

COF under the analyzed conditions (Fig 4.3a, p300 recruitment example). To indicate 

general data trends, we display the consensus site and all single nucleotide variant probes 

for a given TF as a single color. In the example shown, the probes representing the IRF 

model (Fig. 4.3a, IRF3 and IRF7) have low p300 recruitment z-scores in the untreated 

condition and high z-scores in the LPS condition, illustrating the strongly LPS-dependent 

p300 recruitment sites which is consistent with the consensus site-level results previously 
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highlighted in the “Data explorer” tab (Fig. 4.3c). In contrast, ETS factor probes 

representing the models for ELF1 and ETV2 appear to recruit p300 in a more constitutive 

manner (i.e., these ETS probes have similar z-scores in both resting and stimulated 

conditions) whereas p300 recruitment to SPI1 and SPIB probes occurs more exclusively 

in unstimulated macrophages (Fig. 4.3a). We note that ETS factors have been previously 

demonstrated to interact with the CBP/p300 coactivators (Vo and Goodman, 2001; Yang 

et al., 1998). 

 In more involved analyses with increased numbers of TFs that may obfuscate the 

automatically generated color palette, a user can instead use the “Family-level 

comparison” tab to automatically assign colors to all consensus and single variant probes 

associated with the different TF families included in the pairwise analysis (Fig. 4.3b). As 

an additional layer of abstraction, the analyses can also be performed at the class level by 

selecting the “Class-level comparison” tab (Fig. 4.3b). Overall, the “Scatterplots” module 

within the hTF array analyzer provides users with a quick and user-friendly method to 

generate publication-quality graphs that demonstrate pairwise COF recruitment 

comparisons across TF probe sets of interest. 

4.3.5 Integration of probe-level data to generate TF site COF recruitment models 

 An advantage of using the hTF array platform over other technologies, such as 

genomic COF recruitment profiling techniques like ChIP-seq, is the ability to use SNV 

probes to define COF recruitment motifs that identify the recruiting TFs and quantify the 

impact of nucleotide variants on COF recruitment. The “Motif grid” portal integrates the 

COF recruitment results and allows the user to generate the COF recruitment models and 
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visualize them as sequence logos (Fig. 4.3c). The sequence logos are arranged in a grid 

where rows represent the selected TF probe sets and columns correspond to the different 

COF recruitment experiments of interest in order to allow researchers to visually compare 

recruitment models (Fig. 4.3c). The user can either select to view the models as “Energy 

logos”, which visualize change in recruitment intensity for each nucleotide variant or as a 

more traditional PWM logo that represent TF binding probabilities and enables a more 

direct comparison to the PWM models compiled in large public database such as 

JASPAR (Khan et al., 2018), CIS-BP (Weirauch et al., 2014), UNIPROBE (Newburger 

and Bulyk, 2009; Hume et al., 2015), HOCOMOCO (Kulakovskiy et al., 2013; 

Kulakovskiy et al., 2018), and MotifDb (Shannon and Richards, 2018). In addition to the 

COF recruitment logos obtained experimentally, the “Motif grid” module displays the 

reference JASPAR 2018 CORE binding model for each user-selected TF to enable 

comparisons between empirical COF recruitment models to their corresponding expected 

binding model. 

 The “Motif grid” module allows for sophisticated comparison of COF recruitment 

preferences at different TFBSs of interest. For example, a user might be interested in the 

coactivator p300 or the corepressor NCoR is recruited to diverse TFBSs such as the SPI1, 

RELA, and RARA::RXRA consensus sites in both unstimulated and LPS-stimulated 

macrophages. As shown in the dynamically generated motif grid for this analysis 

example, both the coactivator p300 and the NCoR corepressor complex can be recruited 

to the SPI1 site albeit with distinct nucleotide preferences (Fig. 4.3c, top row). The 

cytosine-rich preferences 5’ relative to the GGAA core element observed in three of the 
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experiments (Fig. 4.3c, columns 3-5) match a different subclass of ETS factor (e.g., 

ELF1, discussed in 4.3.7 below) than the motif in column 1 which more closely 

resembles the SPI1 logo (Fig. 4.3c). These results suggest that different ETS factors may 

be recruiting p300 under different conditions and may be recruiting p300 and NCoR 

under unstimuluated conditions (Fig. 4.3c). In contrast to the SPI1 consensus site, the 

RELA site supports only the recruitment of p300 and in an LPS-dependent manner (Fig. 

4.3c, middle row). This is consistent with NF-κB activation and translocation into the 

nucleus during the pro-inflammatory response. The recruitment model obtained for the 

RELA probes by integrating results over all single nucleotide variant probes associated 

with the RELA consensus is concordant with the expected RELA TF binding model (Fig. 

4.3c, middle row, rightmost column) (Siggers et al., 2012). Finally, though the 

RARA::RXRA complex does not appear to recruit p300 in either condition, it 

demonstrates moderate constitutive recruitment of the NCoR corepressor complex (Fig. 

4.3c, bottom row). The empirical NCoR recruitment models for these sites are concordant 

across cell states (LPS-stimulated and untreated macrophages) and strongly resemble 

canonical nuclear receptor binding models (Fig. 4.3c, bottom row, rightmost column) 

(Penvose et al., 2019). This represents only a few of the numerous comparisons possible 

within a single set of hTF array experiments but provides a valuable example of the 

insight a researcher can gain about the TF-COF complexes and individual preferences 

present in a cell type or state of interest. 
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4.3.6 Generating cell state-level recruitment signatures using the hTF array analyzer 

 An advantage of having a standardized platform that profiles the same set of TF 

consensus sites in each experiment is the possibility of developing cell state-level TF-

COF signatures or biomarkers using the collection of TF-COFs active in a given cell 

state. This would enable researchers to then investigate TF-COF complexes that are 

affected in aberrant cell states (cancer, autoinflammatory, etc.) that may play a role in 

mediating these cell states or whose interactions may be perturbed relative to a matched 

“healthy” cell state. To enable investigations of cell state-specific TF-COF signatures and 

visually summarize the results of a set of hTF array experiments at the complete array-

level, we developed the interactive COF recruitment heatmap as a module of the array 

analyzer software (Fig. 4.4a). The plots display the intensity of a hybrid scoring 

mechanism that scales the COF recruitment strength at a given TF consensus site by the 

Pearson similarity obtained when comparing the empirical COF recruitment model to its 

corresponding expected TF binding model (see 4.5 Materials and Methods). The score 

thereby distinguishes strong consensus models from recruitment sites of similar strength 

that do not produce the expected model at a given TF site. Hovering the cursor over a 

given element within the full heatmap displays this score obtained by a given TF-COF 

complex in a given experiment (Fig. 4.4a, SREBF2 shown). Representing TF-COF 

complexes using this hybrid scoring metric also allows for similarity-based clustering of 

the TF sites (rows) in addition to the collection of experiments performed in a given array 

run (columns) (Fig. 4.4a). Users have the option to deselect experiments (to omit them 

from the recruitment heatmap) which automatically recomputes the TF-level and 



 

 

119 

experiment-level similarities, performs the clustering steps again, and plots an updated 

COF recruitment heatmap. 

 

Figure 4.4: Using cell state-level TF-COF recruitment signatures to guide hTF analyses 

(a) Interactive TF-COF recruitment heatmap demonstrating similarity-scaled (see 4.5 Materials 

and Methods) z-scores for consensus TF sites (rows) exhibiting a minimal hybrid score of 2 
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across the pilot experiments performed. COF recruitment experiments included in this figure are 

shown in the box to the left (all performed using macrophages – see 4.5 Materials and Methods). 

(b) Motif grid comparing the recruitment models obtained at 4 related ETS factor consensus sites 

(rows: SPI1/PU.1, SPIB, SPIC, ELK3). COF recruitment experiments (columns) are as follows: 

P300 (untreated), P300 (LPS-stimulated), BRG1 (LPS-stimulated), TBLR (LPS-stimulated), 

NCoR, NCoR (LPS-stimulated), RBBP5 (LPS-stimulated). The rightmost column displays the 

JASPAR 2018 CORE reference model for each TF. Contributions: DB developed the interactive 

heatmap module with input from RZ, RM, HH, JLK, and TS. Experiments were performed by 

RZ. 

 

 Overall, expressing the results of a given set of hTF array experiments using a 

summary heatmap and clustering TFs and experiments by similarity allows for immediate 

insight that researchers can inspect visually to determine TF-COF recruitment differences 

in their set of experiments. For example, it is apparent in the pilot experiments performed 

that there is a cluster of interferon regulatory factors (IRF8, IRF3, IRF4, IRF9) that 

recruit p300 in a predominantly LPS-inducible manner (Fig. 4.4a) that is stronger in 

intensity relative to other LPS-inducible factors such as RELA, NFKB1, REL, and RELB 

(Fig. 4.4a). The recruitment heatmap thereby represents a powerful method to investigate 

the TF-COF complexes active in a given cell state as well as the state’s similarity or 

dissimilarity to other experiments of interest. In future experiments, this will enable 

researchers to rapidly define the TF-COF complexes active in a cell state and identify 

important differences between “healthy” and “disease” cell states to define TF-COF-level 

biomarkers and signatures. 

4.3.7 Distinct COF recruitment logic mediated by closely related ETS factors 

 Given the scale of the TFBSs profiled on the hTF array (346 total), an important 

function of the “Recruitment heatmap” module is the ability to identify potentially 

interesting TFs and TF families that recruit a given COF and suggest hypotheses to 
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further investigate. For example, the TFBSs demonstrating strong COF recruitment in 

experiments of interest can be further investigated using the “Motif grid” module to 

compare and contrast the individual COF recruitment models generated and provide 

insight into the TF-COF complexes active and the nucleotide preferences resulting in 

their recruitment. An interesting test case identified in the pilot hTF array experiments is 

the distinct COF recruitment logic at closely related ETS factor sites that is suggested by 

the recruitment heatmap (Fig. 4.4a). 

 The TF-level (rows) and experiment-level (columns) similarity-based clustering 

in the recruitment heatmap for the pilot series of hTF array experiments shows a clear 

difference between the COF recruitment differences between ETS factors (Fig 4.4a). For 

example, ETV2, ELK3, ELK4, and ELK1 all cluster together based on similarity and 

appear to support the recruitment of several COFs such as p300, TBLR, RBBP5, BRG1, 

and NCoR at moderate levels and consistent with their expected binding models (Wei et 

al., 2010). In comparison, the closely related ETS factors SPIB, SPIC, and SPI1/PU.1 do 

not appear to support the recruitment of TBLR, RBBP5 or BRG1 despite the known 

similarity in their binding preference to the other aforementioned ETS factors (Fig. 4.4a) 

(Wei et al., 2010). Furthermore, SPI1 and SPIC appear to demonstrate distinct NCoR 

recruitment preferences where SPI1 recruits NCoR preferentially in LPS-stimulated 

macrophages and SPIC recruits NCoR preferentially in the unstimulated control 

macrophages. To investigate these phenomena further at the level of these individual 

models, we compared representative ETS factors using the hTF array analyzer “Motif 

grid” module. Consistent with what is conveyed in the recruitment heatmap (Fig 4.4a), 
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ELK3 recruits each of the COFs tested (with the exception of GPS2) at moderate-to-high 

levels with recruitment preferences consistent with its canonical binding model (Fig. 

4.4b, bottom row). Similarly, the COF recruitment experiments for TBLR, BRG1, and 

RBBP5 do not pass the minimal motif plotting threshold (z-score of 1.5) for SPIB and 

SPIC as is shown in the experiment-level recruitment heatmap (Fig. 4.4b, middle rows). 

Though BRG1, TBLR, and RBBP5 are all recruited to the SPI1 consensus site, the 

preferred models for the recruitment of these COFs have a prominent C-rich preference 

5’ relative to the GGAA core ETS element (Fig. 4.4b, top row) which is a feature that is 

inconsistent with the canonical SPI1 binding model (Wei et al., 2010; Mohaghegh et al., 

2019) and explains why the similarity-scaled z-score for these experiments is low (Fig. 

4.4a). In this case, the site is likely being used by another ETS factor with a C-rich 5’ 

preference flanking the core GGAA site, such as the ELK factors, as this preference is 

more consistent with the canonical TF binding models for this ETS sub-family (Fig. 4.4b, 

bottom row) (Wei et al., 2010). Similarly, comparing the NCoR recruitment preferences 

for the closely related SPI1 and SPIC produce a logo more consistent with the SPI1 

binding model in untreated macrophages (Fig. 4.4b, rows 1 and 3, column 5) whereas the 

recruitment logo produced in LPS-stimulated macrophages is more consistent with the 

ELK factors (Fig. 4.4b, rows 1 and 3, column 6) which explains the discrepancies 

observed for SPIC and SPI1 NCoR recruitment observed in the experiment-level 

recruitment heatmap (Fig. 4.4a). Together, these observations demonstrate that the hTF 

array can be used to discern subtle (albeit mechanistically important) differences in COF 

recruitment preferences within a given TF family. Combining the experiment-level 
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recruitment heatmap with the motif grid feature thereby enables sophistical investigations 

into TF-COF complex recruitment logic even for closely related TFs with similar binding 

preferences. 

4.4 Discussion 

 In this work, we present the hTF array as an extension of our group’s existing 

CoRec approach to survey TF-COF recruitment beyond a small panel of immune-centric 

TFBSs to an expansive panel of non-redundant TFs relevant to any cell type or context in 

humans. This represents a first attempt to expand our TF-COF recruitment profiling 

techniques through a standardized microarray design and an accompanying interactive 

analysis software suite that are both freely available and open-source. The hTF array 

design can be applied in its current iteration to investigate diverse research questions 

related to COF recruitment but can also be improved upon in the future. Though effort 

was made to algorithmically include a diverse and non-redundant panel of TFs, future 

experiments beyond the pilot data presented here will allow for further refinement and 

possibly point to redundant sites than can eliminated from the design and updated in 

future iterations. As the software determines the TFs included in the design at runtime, 

any future iterations, custom alterations, and improvements to the hTF array design will 

be compatible with the existing analysis software. 

 The hTF array analyzer was developed to allow analysis of COF recruitment 

datasets in a more interactive, user-friendly, and accessible to the experimentalists and 

researchers who perform the COF recruitment experiments. The interactive analysis 

software combines multiple modules that allow for the inspection of experimental results 
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at several different scales. To inspect data at the probe-level, scatterplots that visualize 

the COF recruitment intensities at the consensus and SV probes for TFs of interest across 

pairs of experiments can be used. The data explorer and motif grid modules allow users 

to gain additional insight at the TF-level. And finally, the recruitment heatmaps provide 

an array-level summary of TF-COF recruitment across all TFs included in the hTF design 

and all experiments performed. Through examples using pilot hTF array data generated 

from unstimulated and LPS-stimulated macrophages, we demonstrated that these scales 

provide complementary analyses and insight. The data explorer can be used to suggest 

TFs to investigate further using probe-level scatterplots and the motif grid module as 

demonstrated with the example of investigating distinct p300 and NCoR recruitment 

models at diverse TF sites (SPI1, RELA, and RARA::RXR) with different binding and 

recruitment preferences. We further demonstrated utility of the analysis modules by 

inspecting the array-level recruitment heatmap that suggested a distinct recruitment logic 

between closely-related ETS factors. We confirmed the similar but distinct recruitment 

models at the motif-level using the interactive motif grid. We anticipate that these types 

of interactive complementary analyses will empower researchers to gain insight on the 

TF-COF complexes active in their samples and provide actionable hypotheses for further 

analysis and experimentation. 

 In addition to the open-source hTF array design and analysis software, we have 

also introduced the concept of cell state-level TF-COF recruitment signatures which we 

visualized using COF recruitment heatmaps across the panel of TFs. Profiling the 

recruitment of COFs to the same diverse panel of TFs will eventually enable 
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investigations into differential COF recruitment between cell types/states as well as the 

development of COF recruitment “biomarkers” that can be used to investigate the TF-

COF complexes involved in mediating or maintaining aberrant cell states compared to 

healthy controls. In this pilot study, we have demonstrated that our profiling approach 

captures TF-COF binding events that implicitly account for cell state-specific phenomena 

such as PTMs and differing protein levels in the nucleus. For example, the NF-κB 

complex translocates into the nucleus in macrophages following LPS stimulation (Smale, 

2012; Medzhitov and Horng, 2009) and this presence (or absence in the case of control 

unstimulated macrophages) is reflected in the LPS-specific recruitment of p300 to the 

RELA consensus site (Fig. 4.3c, middle row). Furthermore, LPS-dependent recruitment 

of p300 is detected at IRF3, a TF that requires phosphorylation in order to dimerize in 

vivo (Andrilenas et al., 2018; Tamura et al., 2008; Smale, 2012; Medzhitov and Horng, 

2009), thereby demonstrating that the impact of PTMs are implicitly measured (Fig. 

4.3a). Additional experiments will be required to determine the extent to which changes 

in PTMs or protein levels across cell states are captured in the individual COF 

recruitment motifs (beyond simple presence/absence) and whether the profiling method is 

sensitive enough to detect small changes. Our previous investigations into TF binding 

from nuclear extracts indicate that PTM and protein level changes can be reflected in the 

binding motif obtained (Mohaghegh et al., 2019). Differences were especially evident at 

sites bound by complexes formed by more than one TF where the binding partner is only 

moderately expressed - such as with IRF8 at the cooperative PU.1-IRF8 composite 

element (Mohaghegh et al., 2019). Whether this sensitivity of the motifs to PTMs and 
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protein levels generalizes to COF recruitment motifs across the surveyed TFBSs in the 

hTF array design remains an open question.  

Furthermore, though the TFBSs included in the hTF array design were selected 

from human experiments, the JASPAR2018 CORE database, from which the models 

were selected, contains non-redundant consensus TF models across many vertebrate 

species including mouse. Of the 119 non-redundant mouse-specific models in the 

database, 38 (32%) have a consensus site that is equivalent to one represented by the 

TFBSs already included on the pilot hTF array design (Supplementary Table 4.1). As the 

motif database used to compute PWM similarities of the COF recruitment motifs to 

reference TF binding models is read at runtime, in order to investigate the application of 

hTF to study COF recruitment in other vertebrate models, an expanded database can be 

used without having to alter the hTF array design or analysis software. The applicability 

of the hTF array to study TF-COF binding in other vertebrate cell sources (such as mice) 

will be the topic of future investigations. 

In addition to allowing experimentalists to define TF-COF recruitment signatures 

in cell states of interest, the hTF array platform will provide a means to screen 

compounds to “reverse” these aberrant signatures as many of these enzymatic COFs can 

be targeted using existing compounds (Lasko et al., 2017; Fedorov et al., 2015; Yoon and 

Eom, 2016). These TF-COF signatures/biomarkers will provide an important and 

understudied annotation layer that can be further integrated with other 

technologies/modalities such as RNA-seq and ChIP-seq to enable sophisticated 

integrative analyses into the molecular mechanisms underlying disease cell states. Future 
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studies using the hTF array will investigate this translational potential of the platform as 

well as the concordance with paired COF ChIP-seq data for COFs/conditions of interest 

in order to compare and contrast TF-COF recruitment potential (using hTF array) with 

genome-wide incidence (using ChIP-seq). Overall, we anticipate the standardized hTF 

array design and the accompanying interactive analysis software will be applied to study 

diverse research questions in basic research and translational applications alike. 

4.5 Materials and Methods 

4.5.1 Cell culture 

 THP-1 human monocyte cells (ATCC TIB-202) were cultured in RPMI-1640 

(Thermo #72400120) with 1 mM sodium pyruvate (Thermo #16140071) and 10% heat-

inactivated FBS (Thermo #11360070) in a 37°C incubator with 5% CO2. To prepare 

nuclear lysates, three 50 ml suspension cultures maintained in T-175 flasks were used for 

each stimulation condition. Cells were differentiated at a cell density of 8 x 105 cells/ml 

into adherent macrophages using 25 ng/ml PMA and incubated for 96 hours. After 96 

hours, cells were washed with 1X PBS, fresh growth media was applied, and cells rested 

for 48 hours before stimulation. Differentiated THP-1 cells were stimulated with 1 ug/ml 

LPS for 45 min before harvesting. This section was included and modified from its 

original source with permission from the author (Zhao, 2020). 

4.5.2 Nuclear extract preparation 

 To collect cells after stimulation treatments, THP-1 adherent macrophages were 

washed in PBS and placed on ice. Cells were dislodged from the flask using a cell scraper 
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in cold PBS supplemented with 0.1 mM protease inhibitor cocktail (Sigma-Aldrich 

#P8340). Cells from three T-175 cultures were collected in 50 ml tubes and pelleted at 

500xg for 5 min at 4°C. Once cell pellets were obtained, to rupture the cell membrane, 

the cell pellet was resuspended in 2 ml of a hypotonic Buffer A (10 mM HEPES (pH 

7.9), 1.5 mM MgCl2, 10 mM KCl, 0.1 mM protease inhibitor cocktail, 0.1 mM 

phosphatase inhibitor cocktail (Sigma-Aldrich #4315), 0.5 mM DTT) and incubated for 

10 min on ice. 20 ul of 10% IGEPAL (Sigma-Aldrich I8896) was added, and the cell 

suspension was vortexed for 10 s. Released nuclei were observed under a 

hemocytometer. Nuclei were pelleted at 500xg for 5 min at 4°C. The nuclear pellet was 

then resuspended in 100 ul hypertonic Buffer C (20 mM HEPES (pH 7.9), 25% glycerol, 

1.5 mM MgCl2, 0.2 mM EDTA, 420 mM NaCl, 0.1 mM protease inhibitor cocktail, 0.1 

mM phosphatase inhibitor cocktail, 0.5 mM DTT). The nuclei suspension was vortexed 

for 30 s, followed by nutation for 1 hour at 4°C on a Hula mixer. The insoluble nuclear 

components were pelleted at 21,000xg for 20 min at 4°C. The supernatant containing 

soluble nuclear proteins was collected, flash-frozen using liquid nitrogen, and stored at -

80°C. Protein concentration of nuclear lysates was quantified by A280 measurement. 

This section was included and modified from its original source with permission from the 

author (Zhao, 2020). 

4.5.3 nextPBM experimental methods 

 PBM experiments were performed on a custom designed single-stranded DNA 

microarray (Agilent Technologies, Design ID 082690, 4 x 180k format). DNA 

microarray double stranding and nextPBM protocols were performed as previously 
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described (Berger et al., 2006; Berger and Bulyk, 2009; Mohaghegh et al. 2019). PBM 

wash steps were performed in coplin jars on an orbital shaker at 125 rpm, and all PBM 

steps were performed at room temperature. Briefly, double-stranded DNA microarrays 

were first washed in 0.01% Triton X-100 in HBS (HEPES-buffered saline, pH 7.4) for 5 

min, followed by blocking with 2% NFDM in HBS for 1 hour. Next, arrays were rinsed 

in HBS and incubated with nuclear protein lysate in a binding buffer (0.3% NFDM, 20 

mM HEPES, 100 mM NaCl, 1 mM DTT, 0.2 mg/ml BSA, 0.02% Triton X-100, and 0.4 

mg/ml salmon testes DNA (Sigma D7656)) for 1 hour in the dark. After protein binding, 

arrays were incubated with 20 ug/ml of primary antibody in 2% milk in HBS for 20 min, 

followed by an HBS rinse and 20 ug/ml secondary antibody incubation for 20 min. 

Antibodies used included anti-p300 (Abcam #ab149848), anti-BRG1 (Santa Cruz 

#sc11796), anti-NCoR (Bethyl Laboratories #A301-145A), anti-TBL1XR1 (Santa Cruz 

#sc100908), anti-RBBP5 (Bethyl Laboratories #A300-109A), anti-GPS2 (Abclonal 

#A3901), Alexa488 anti-mouse (Invitrogen #A11131), and Alexa647 anti-rabbit 

(Invitrogen #A21245). Finally, arrays were washed twice in 0.05% Tween-20 for 3 min 

and once in HBS for 3 min before scanning. Arrays were scanned using a GenePix 

4400A scanner, and fluorescence was quantified using GenePix Pro 7.2. Fluorescence 

data was exported and normalized using MicroArray LINEar Regression (Berger et al., 

2006). This section was included and modified from its original source with permission 

from the author (Zhao, 2020). 
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4.5.4 hTF array design 

 Non-redundant TF binding models from the JASPAR 2018 core vertebrate set 

were obtained using the JASPAR2018 R bioconductor package. The total 1,564 models 

across model organisms were filtered to those obtained using a human source (human cell 

lines/tissues used for the characterization) resulting in 452 models from different TFs. 

The resulting motifs were then collapsed into consensus sequences using the top-scoring 

base preference at each position and filtered for equivalence based on nucleotide identity 

as well as size of the consensus sequence using a relative size filter of 0.9. Similar size 

was considered along with equivalent consensus sequences in order to avoid the scenario 

where a half-site within a composite site would be eliminated from the final design. 

Filtering by similar size and nucleotide identity resulted in 346 TF models to be included 

in the final design. To account for possible additional nucleotide determinants beyond the 

positions covered by the TF consensus binding sites, a random non-repeating 2 base pad 

was added to both ends of each consensus sequence. For each of these 346 modified 

consensus sequences, DNA probes corresponding to each possible SNV across these 

sequences were also generated. To account for size differences between probes, a 34-base 

backbone sequence was generated algorithmically such that the nucleotide at each 

position was generated randomly with the constraint that sequential positions contain 

non-repeating nucleotides. Each consensus and SNV sequence generated was then 

inserted into the backbone sequence beginning at the 5’ end such that the site being 

profiled is located at the end furthest away from the glass slide that the probe is fixed to. 
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These full 34-base targets were then embedded within a larger probe (total: 60 bases) as 

follows: 

GC cap + 34 base target region (TF site or SNV within backbone) + 24 base primer 

261 background target DNA probes were also included in the design in order to 

be able to estimate background fluorescence intensities in the experiments. These regions 

were selected as 34-base genomic segments from the human genome (hg38). The final 

design as well as the script used to design the array are open source and have been made 

freely available on Github (https://github.com/Siggers-Lab/hTF_array). 

4.5.5 hTF array analyzer interactive software 

The hTF array analyzer software is written using the shiny interactive web 

programming framework in R (RStudio Inc., 2013) with the visual theme “flatly” from 

the shinythemes R package (Chang, 2018). As with the final microarray design and the 

script used to generate the design, the hTF array analyzer is open source and has been 

made available on Github (https://github.com/Siggers-Lab/hTF_array). Normalized 

fluorescence datasets obtained from hTF array experiments are first log-transformed and 

z-scores are computed against the distribution of 261 background probes as previously 

described (Mohaghegh et al., 2019; Penvose et al., 2019; Keenan et al., 2020; Bray et al., 

2020). The “Data explorer” module uses the javaScript DT package (Xie et al., 2020) to 

display interactive data tables of the COF fluorescence z-scores obtained at each of the 

346 TF consensus sites. The “Scatterplot” module compares user-selected COF 

recruitment experiments at user-selected TF sites to compare z-scores obtained across 

experiments in a pairwise manner. The scatterplots are plotted using the ggplot2 package 

https://github.com/Siggers-Lab/hTF_array
https://github.com/Siggers-Lab/hTF_array
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(Wickham, 2016) with automatically generated colors for probes belonging to each TF 

group. The “family-level” and “class-level” tab regroups the user-selected probe groups 

based on their family or class annotation respectively and recolors the probe sets 

accordingly. The “Motif grid” module displays COF recruitment logos obtained at user-

selected TFs and user-selected experiments plotted using the ggseqlogo R package 

(Wagih, 2017) and arranged as grids using the gridExtra package (Auguie, 2017). The 

COF recruitment “energy” logos summarize the z-scores obtained at a given TF 

consensus binding site (within a given experiment) as well as all of the probes 

corresponding to single nucleotide variants along the profiling region as previously 

described (Andrilenas et al., 2018; Mohaghegh et al., 2019; Penvose et al., 2019). In the 

“Recruitment heatmap” module, the “energy” motifs obtained at each TF (and in each 

experiment) within an array are first transformed into probability-based position-weight 

matrices using the Boltzmann energy distribution as previously described (Andrilenas et 

al., 2018; Mohaghegh et al., 2019; Penvose et al., 2019). To obtain the hybrid scores 

displayed in the “Recruitment heatmap” module, the motif database used in the initial 

generation of the array design (a filtered version of the JASPAR 2018 CORE) is first 

loaded using the universalmotif package (Tremblay, 2019). The z-score obtained 

experimentally for COF recruitment at each TF consensus site (and each experiment) is 

then scaled using the corresponding similarity of the COF recruitment PWM to its 

expected TF binding model (computed as a length-normalized Pearson correlation 

coefficient across binding site positions) to generate each hybrid score using the 

TFBSTools R package (Tan et al., 2016). The heatmaply package is used to generate the 
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interactive heatmap plots (Galili et al., 2017). Default distance metric (Euclidean) 

and clustering function (complete) are used in the plots generated.  
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4.6 Supplementary Information 

ID TF name Consensus 

sequence 

Species Equivalent hTF 

model 

MA0004.1 Arnt CACGTG Mus musculus BHLHE40,BHLHE4

1,CLOCK,HES5,HE

S7,HEY1,MAX,MA

X::MYC,MITF,ML

X,MNT,MXI1,MYC

,MYCN,TFE3,USF1

,USF2 

MA0006.1 Ahr::Arnt TGCGTG Mus musculus EGR1,EGR2,EGR3,

EGR4,PAX1,Pax6 

MA0029.1 Mecom AAGATAA

GATAACA 

Mus musculus   

MA0063.1 Nkx2-5 TTAATTG Mus musculus BSX,ESX1,RAX 

MA0067.1 Pax2 AGTCACGC Mus musculus   

MA0078.1 Sox17 CTCATTGT

C 

Mus musculus   

MA0087.1 Sox5 ATTGTTA Mus musculus   

MA0092.1 Hand1::Tcf

3 

GGTCTGGC

AT 

Mus musculus   

MA0111.1 Spz1 AGGGTAA

CAGC 

Mus musculus   

MA0125.1 Nobox TAATTGGT Mus musculus ESX1,GBX2 

MA0135.1 Lhx3 AAATTAAT

TAATC 

Mus musculus   

MA0142.1 Pou5f1::Sox

2 

CTTTGTTA

TGCAAAT 

Mus musculus   

MA0062.2 Gabpa CCGGAAGT

GGC 

Mus musculus ZBTB7A 
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MA0002.2 RUNX1 GTCTGTGG

TTT 

Mus musculus   

MA0047.2 Foxa2 TGTTTACT

TAGG 

Mus musculus   

MA0065.2 Pparg::Rxra GTAGGGC

AAAGGTC

A 

Mus musculus   

MA0151.1 Arid3a ATTAAA Mus musculus ALX3,DUX4,DUX

A,GSX1,GSX2,MN

X1,PHOX2A 

MA0152.1 NFATC2 TTTTCCA Mus 

musculus,Rattus 

norvegicus,Homo 

sapiens 

NFATC2,NFATC3 

MA0158.1 HOXA5 CACTAATT Mus 

musculus,Homo 

sapiens 

HOXA5 

MA0160.1 NR4A2 AAGGTCAC Mus 

musculus,Rattus 

norvegicus,Homo 

sapiens 

ESR1,MITF,NR4A1

,NR4A2 

MA0164.1 Nr2e3 CAAGCTT Mus musculus   

MA0259.1 ARNT::HIF

1A 

GGACGTGC Mus 

musculus,Rattus 

rattus,Homo 

sapiens,Oryctolag

us cuniculus 

ARNT::HIF1A 

MA0146.2 Zfx GGGGCCG

AGGCCTG 

Mus musculus   

MA0463.1 Bcl6 TTTCCTAG

AAAGCA 

Mus musculus   
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MA0467.1 Crx AAGAGGA

TTAG 

Mus musculus   

MA0480.1 Foxo1 TCCTGTTT

ACA 

Mus musculus   

MA0482.1 Gata4 TCTTATCT

CCC 

Mus musculus   

MA0483.1 Gfi1b AAATCACA

GCA 

Mus musculus   

MA0485.1 Hoxc9 GGCCATAA

ATCAC 

Mus musculus   

MA0493.1 Klf1 GGCCACAC

CCA 

Mus musculus KLF9 

MA0494.1 Nr1h3::Rxr

a 

TGACCTAA

AGTAACCT

CTG 

Mus musculus   

MA0499.1 Myod1 TGCAGCTG

TCCCT 

Mus musculus   

MA0500.1 Myog GACAGCTG

CAG 

Mus musculus   

MA0503.1 Nkx2-

5(var.2) 

AGCCACTC

AAG 

Mus musculus   

MA0505.1 Nr5a2 AAGTTCAA

GGTCAGC 

Mus musculus   

MA0509.1 Rfx1 GTTGCCAT

GGCAAC 

Mus musculus RFX2 

MA0514.1 Sox3 CCTTTGTT

TT 

Mus musculus   

MA0515.1 Sox6 CCATTGTT

TT 

Mus musculus   

MA0518.1 Stat4 TTTCCAGG

AAATGG 

Mus musculus   

MA0519.1 Stat5a::Stat

5b 

ATTTCCAA

GAA 

Mus musculus   

MA0520.1 Stat6 CATTTCCT

GAGAAAT 

Mus musculus   

MA0521.1 Tcf12 AACAGCTG

CAG 

Mus musculus   

MA0035.3 Gata1 TTCTTATC

TGT 

Mus musculus   
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MA0150.2 Nfe2l2 CAGCATGA

CTCAGCA 

Mus musculus   

MA0143.3 Sox2 CCTTTGTT Mus musculus   

MA0591.1 Bach1::Maf

k 

AGGATGA

CTCAGCAC 

Mus musculus   

MA0594.1 Hoxa9 GCCATAAA

TCA 

Mus musculus   

MA0601.1 Arid3b ATATTAAT

TAA 

Mus musculus   

MA0602.1 Arid5a CTAATATT

GCTAAA 

Mus musculus   

MA0603.1 Arntl GGTCACGT

GC 

Mus musculus   

MA0604.1 Atf1 ATGACGTA Mus musculus FOSL1::JUND(var.2

) 

MA0605.1 Atf3 GATGACGT Mus musculus ATF7,BATF3,CRE

B3,CREB3L1,FOS::

JUN(var.2),FOSL2::

JUNB(var.2),FOSL2

::JUND(var.2),XBP1 

MA0607.1 Bhlha15 CCATATGT Mus musculus BHLHE22 

MA0608.1 Creb3l2 GCCACGTG

T 

Mus musculus   

MA0609.1 Crem TATGACGT

AA 

Mus musculus   

MA0611.1 Dux CCAATCAA Mus musculus   

MA0614.1 Foxj2 GTAAACA

A 

Mus musculus FOXC2,FOXF2,FO

XG1,FOXK1,FOXK

2,SRY 
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MA0615.1 Gmeb1 GAGTGTAC

GTAAGATG

G 

Mus musculus   

MA1099.1 Hes1 GGCACGC

GTC 

Mus musculus   

MA0616.1 Hes2 TAACGACA

CGTGC 

Mus musculus   

MA0617.1 Id2 GCACGTGA Mus musculus   

MA0622.1 Mlxip GCACGTGT Mus musculus HEY1 

MA0623.1 Neurog1 ACCATATG

GT 

Mus musculus OLIG2 

MA0626.1 Npas2 GGCACGTG

TC 

Mus musculus HEY1 

MA0627.1 Pou2f3 TTGTATGC

AAATTAGA 

Mus musculus   

MA0629.1 Rhox11 AAGACGCT

GTAAAGC

GA 

Mus musculus   

MA0631.1 Six3 GATAGGGT

ATCACTAA

T 

Mus musculus   

MA0632.1 Tcfl5 GGCACGTG

CC 

Mus musculus HES5,HES7 

MA0633.1 Twist2 ACCATATG

TT 

Mus musculus BHLHE22 

MA0007.3 Ar GGGAACA

CGGTGTAC

CC 

Mus musculus   

MA0643.1 Esrrg TCAAGGTC

AT 

Mus musculus ESRRB 

MA0676.1 Nr2e1 AAAAGTC

AA 

Mus musculus   

MA0677.1 Nr2f6 GAGGTCA

AAGGTCA 

Mus musculus   

MA0681.1 Phox2b TAATTTAA

TTA 

Mus musculus PHOX2A 

MA0682.1 Pitx1 TTAATCCC Mus musculus PITX3 
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MA0075.2 Prrx2 CCAATTAA Mus musculus BSX,ESX1,RAX 

MA0512.2 Rxra GGGGTCA

AAGGTCA 

Mus musculus RXRB 

MA0704.1 Lhx4 TTAATTAA Mus musculus LMX1A,POU6F1 

MA0705.1 Lhx8 CTAATTAG Mus musculus EMX2,EN1,GBX1 

MA0709.1 Msx3 CCAATTAA Mus musculus BSX,ESX1,RAX 

MA0124.2 Nkx3-1 ACCACTTA

A 

Mus musculus NKX3-2 

MA0720.1 Shox2 CTAATTAA Mus musculus ALX3,GSX1,GSX2,

ISX,LHX2,MEOX1,

MIXL1 

MA0592.2 Esrra TTCAAGGT

CAT 

Mus musculus   

MA0114.3 Hnf4a GGGGTCA

AAGTCCAA

T 

Mus musculus   

MA0728.1 Nr2f6(var.2

) 

GAGGTCA

AAAGGTC

A 

Mus musculus RARA 

MA0739.1 Hic1 ATGCCAAC

C 

Mus musculus   

MA0742.1 Klf12 GACCACGC

CCTTATT 

Mus musculus   

MA0769.1 Tcf7 AAAGATC

AAAGG 

Mus musculus LEF1,TCF7L1,TCF

7L2 

MA0816.1 Ascl2 AGCAGCTG

CT 

Mus musculus   

MA0461.2 Atoh1 AACATATG

TT 

Mus musculus BHLHE23,OLIG1 

MA0829.1 Srebf1(var.

2) 

ATCACGTG

AC 

Mus musculus BHLHE40 

MA0832.1 Tcf21 GCAACAG

CTGTTGT 

Mus musculus   

MA0840.1 Creb5 AATGACGT

CACC 

Mus musculus   
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MA0117.2 Mafb AAAATGCT

GACT 

Mus musculus   

MA0851.1 Foxj3 AAAAAGT

AAACAAA

CAC 

Mus musculus   

MA0853.1 Alx4 CGCATTAA

TTAATTAC

C 

Mus musculus   

MA0854.1 Alx1 CGAATTAA

TTAATCAC

C 

Mus musculus   

MA0857.1 Rarb AAAGGTC

AAAAGGT

CA 

Mus musculus   

MA0858.1 Rarb(var.2) AGGTCAAC

TAAAGGTC

A 

Mus musculus   

MA0859.1 Rarg AAGGTCA

AAAGGTC

AA 

Mus musculus   

MA0860.1 Rarg(var.2) AAGGTCAC

GAAAGGT

CA 

Mus musculus   

MA0869.1 Sox11 AACAATTT

CAGTGTT 

Mus musculus   

MA0870.1 Sox1 AACAATA

ACATTGTT 

Mus musculus   

MA0874.1 Arx GTCCATTA

ATTAATGG

A 

Mus musculus   

MA0877.1 Barhl1 GCTAATTG

CT 

Mus musculus   

MA0879.1 Dlx1 CCTAATTA

TC 

Mus musculus   

MA0880.1 Dlx3 CCAATTAC Mus musculus DLX6 

MA0881.1 Dlx4 CCAATTAC Mus musculus DLX6 
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MA0883.1 Dmbx1 TGAACCGG

ATTAATGA

A 

Mus musculus   

MA0885.1 Dlx2 GCAATTAA Mus musculus   

MA0896.1 Hmx1 ACAAGCA

ATTAATGA

AT 

Mus musculus   

MA0897.1 Hmx2 ACAAGCA

ATTAAAGA

AT 

Mus musculus   

MA0898.1 Hmx3 ACAAGCA

ATTAAAGA

AT 

Mus musculus   

MA0904.1 Hoxb5 ACGGTAAT

TAGCTCAT 

Mus musculus   

MA0910.1 Hoxd8 TAAATAAT

TAATGGCT

A 

Mus musculus   

MA0911.1 Hoxa11 GGTCGTAA

AATT 

Mus musculus   

MA0912.1 Hoxd3 TTGAGTTA

ATTAACCT 

Mus musculus   

MA0913.1 Hoxd9 GCAATAA

AAA 

Mus musculus   

MA1153.1 Smad4 TGTCTAGA Mus musculus SMAD3 

 
Supplementary Table 4.1: Mouse-specific TF models from JASPAR2018 included in hTF 

array design 

The table lists mouse-specific TF model accessions from the JASPAR2018 database (119 total) 

and indicates equivalent hTF array models (if applicable). TF-COF binding for mouse TF models 

that have an equivalent hTF model can therefore be profiled from mouse cells using hTF array 

probe sets
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CHAPTER FIVE: Discussion and future work 

5.1 New methodologies for analyzing TF and TF-COF binding 

 Motivated by the widening gap between the identification of disease-associated 

non-coding variants and our ability to mechanistically characterize them (Gallagher and 

Chen-Plotkin, 2018), the collection of work presented here represents a novel toolkit for 

researchers to begin to study the link between DNA variants and the aberrant recruitment 

of COFs. In Chapter 2, I presented the nextPBM as an improvement over the traditional 

PBM protocol using integrative genomics approaches to select the sequences profiled in 

the pilot microarray design. In addition to the improvements observed using nuclear 

extract in place of IVT proteins for profiling experiments, we investigated NE 

modifications such as enzymatic treatment using a phosphatase as well as immune-

depletion of a cooperative factor providing researchers with a versatile toolkit to study 

protein-DNA complexes of interest through manipulation of the wild-type NE. In 

addition, the integrative genomics techniques used to select the sites included in the pilot 

nextPBM array to characterize the cooperative binding between PU.1 and IRF8 in 

monocytes provides researchers with a general framework through which they can screen 

suspected cooperative elements of interest and characterize the nucleotide determinants 

of TF-TF cooperativity to those sites. We expect that users will continue to expand the 

nextPBM toolkit in new and interesting ways in order to tackle their research questions as 

we have done in our own group with the CASCADE and hTF array approaches. 

 As an extension of the nextPBM platform, in Chapter 3, I presented CASCADE 

as a technique to profile the indirect recruitment of COFs to DNA via TFs in a stimulus-
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dependent manner. In our investigations using the technique to characterize COF 

recruitment to CREs and ncSNPs, we demonstrated that COF recruitment to these 

elements can be characterized at nucleotide resolution directly from cell NEs. Using an 

SV probe technique, we simultaneously uncovered the nucleotide determinants of COF 

recruitment to these locations as well as the regulators underlying their recruitment, thus 

providing researchers with a blueprint for future mechanistic characterizations of CREs 

and non-coding polymorphisms using this site-specific COF recruitment motif approach. 

In addition, using a combined nextPBM-based differential COF recruitment screen and 

subsequent CASCADE-based follow-up we also developed an HT approach to 

mechanistically annotate ncSNPs and link these polymorphisms to the complexes that 

mediate the effector functions of gene regulation. This combined 2-step screening and 

follow-up approach has the potential to be widely adopted for research involving DNA 

variants in the non-coding genome. Overall, based on our own demonstrations in Chapter 

3, we envision CASCADE, and other nucleotide resolution techniques like it, will be 

instrumental in efforts to mechanistically annotate the effects of NCVs to provide more 

rapid and facilitated functional characterizations of the backlog of disease-associated 

variants uncovered by GWAS. 

 With the design of the human TF array in Chapter 4, we hoped to further 

standardize our COF recruitment approaches so that a breadth of research questions 

related to TF-COF complexes and DNA variants could be addressed using a single 

expansive array design. Toward this goal of expanding our approach, we designed the 

array using open-source TF binding models and released the full design as well as the 
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software used to algorithmically generate it. In addition, we designed an analysis 

software to allow users to interact with the results of their hTF array experiments. We 

also present the concept of a COF recruitment “signature” and provide users with the 

means to build these signatures within our software. Ultimately, we hope that other 

researchers will begin to explore their systems using our standardized COF recruitment 

platform and we expect the concept of a COF recruitment signature to be important in 

future investigations to define TF-COF interactions within normal cell states and aberrant 

cell states alike. 

 With our future plans to further integrate our COF recruitment profiling 

approaches with existing orthogonal techniques and our planned improvements to the 

platforms presented in this work (discussed at length later in this chapter), we hope to 

further demonstrate the utility and versatility of these COF-centered approaches and 

provide the research community with a toolkit to facilitate investigation into the role of 

TF-COF complexes and NCVs in gene regulation and disease. 

5.2 TF-COF complexes – moving beyond TF binding 

 High-throughput methods for studying TF-DNA binding (e.g., MITOMI, SMiLE-

seq, CSI, PBM, SELEX-seq, etc.) (Berger et al., 2006; Berger and Bulyk, 2009; Maerkl 

and Quake, 2007; Isakova et al., 2017; Puckett et al., 2007; Warren, 2005; Jolma et al., 

2010; Slattery et al., 2011) have had a tremendous impact on our understanding of TF 

function and genome-scale analysis of gene regulation, leading to large databases of 

widely-used TF binding models (Fornes et al., 2020; Weirauch et al., 2014; Wingender, 

2008; Kulakovskiy et al., 2018). In addition, more recent approaches such as ATI (Wei et 
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al., 2018) have been used to study TF-DNA binding in a more native cellular context by 

using TFs directly from cell nuclear extracts instead of using purified TF samples. 

However, COF recruitment and the assembly of TF-COF complexes in a cell type- and 

state-specific manner have not been examined using these approaches. Together, this 

demonstrates a historical focus on TF binding where the nucleotide determinants of COF 

recruitment and the assembly of TF-COF complexes in the cellular context has remained 

largely unexplored due in part to technological limitations.  

 In this work, we have demonstrated with CASCADE (in Chapter 3) and the hTF 

array (in Chapter 4) that COF recruitment, and by extension the assembly of TF-COF 

complexes, can be directly profiled in an HT manner using cell NEs representing an 

important technological and conceptual advance. Analogous to TF binding motifs, we 

have also introduced the concept of a COF recruitment motif that represents the DNA 

sequence-specificity of COF recruitment. The concept of a recruitment motif can be used 

to describe COF recruitment to TF sites in a local region (as with the TFBSs included on 

the hTF array or the genomic NCVs investigated with CASCADE) as well as larger 

CREs (for example, the CXCL10 promoter segment characterized with CASCADE). We 

have demonstrated as well that COF motifs can be used to infer the identity of the TF (or 

TF family) recruiting a COF to a particular DNA sequence. We note that this approach is 

different from COF ChIP-seq, which identifies the genomic loci to which a COF is 

recruited but does not identify the TFs involved at individual loci nor the DNA-sequence 

dependence of COF recruitment at single-nucleotide resolution. Given that COFs can be 

recruited by multiple TFs, by assaying recruitment of a single COF we also demonstrated 
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the ability to profile numerous TF-COF complexes in parallel – an approach we 

expanded to 346 TFBSs with the hTF array. 

 The COF recruitment profiling techniques developed for this work, such as 

CASCADE and the hTF array, thereby offer conceptually new high-throughput 

approaches to study gene regulatory complexes that move beyond traditional TF binding 

investigations. We anticipate that the ability to assay COF recruitment afforded by 

CASCADE and the hTF array will provide a deeper general understanding of how DNA 

sequence and regulatory complexes control gene expression and will enable researchers 

to investigate new types of questions about the relationship between DNA variants, 

regulatory complexes, chromatin/histone modification, and gene expression. 

5.3 Mapping regulatory inputs to CREs 

 One of the major applications of CASCADE, detailed extensively in Chapter 3 of 

this work, is profiling COF recruitment to large CREs to comprehensively examine the 

nucleotide determinants of these recruitment events in a cell type- and stimulus-

dependent manner. To create more comprehensive models of the role of TF-COF 

complexes in gene expression, CASCADE will be integrated with modalities such as 

mass spec and MPRA (discussed below). In addition, to increase the throughput of 

CASCADE to profile more CREs, we discuss the CASCADE XL concept as a 2-step 

alternative to the CASCADE CRE characterization technique presented in Chapter 3. 

 The requirement for COF antibodies may preclude the use of CASCADE in more 

discovery-based applications where prior knowledge of the COFs mediating gene-

regulatory function at a CRE of interest is not known. To compare our COF profiling 
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techniques with an antibody-free proteomics approach, mass spec will be used to identify 

the key components of the complexes assembling at CREs of interest. Integration of 

CASCADE with mass spec will allow us to determine the extent to which full gene 

regulatory complexes are assembled on our arrays and provide the additional benefit of 

suggesting COFs that may be of interest to profile. Comparison of CASCADE with mass 

spec will thereby allow us to build more complete models of gene regulatory complex 

binding to CREs. 

 An open question in gene regulation is how transcriptional output is mediated by 

both TF affinity-dependent and independent mechanisms (Grossman et al., 2017; 

Andrilenas et al., 2018; Penvose et al., 2019; Kribelbauer et al., 2019; Louphrasitthiphol 

et al., 2020). To investigate the concordance (and discordance) between CASCADE-

based COF recruitment results and changes in gene expression, CASCADE will be 

compared with MPRA reporter output. Since the input sequence library for MPRAs can 

be customized, probe sets including all single variants within a CRE can be screened for 

COF recruitment (using CASCADE) and gene expression changes (using MPRA) in 

matched cell types and stimulation conditions. Furthermore, cell state-specific integration 

of COF recruitment with reporter activity will further clarify an emerging role for PTMs 

in regulating TF activity given that a recent study has demonstrated that state-specific 

p300-mediated acetylation of a TF can both reduce its DNA-binding affinity while 

increasing transcriptional output (Louphrasitthiphol et al., 2020). These investigations 

relating COF recruitment with reporter activity will provide detailed gene regulatory 

models for CREs that link DNA variants to perturbations in TF-COF complex binding 
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and gene expression changes. These gene regulatory models will also help clarify 

whether COF recruitment is mediated by single sites within a CRE or cooperatively 

distributed across several closely interspersed TF sites (Giorgetti et al., 2010; Kribelbauer 

et al., 2019; Louphrasitthiphol et al., 2020). We anticipate that integrating our 

CASCADE results with MPRA results will further position CASCADE as a useful assay 

to map the functional inputs of CREs. 

 A limitation of the CASCADE approach to characterize CREs is the number of 

DNA probes needed to employ the combined CRE tiling and SV probe approach to 

generate full CRE-wide recruitment motifs. To address this limitation, we have designed 

an alternate approach to screen a CRE (or group of CREs) of interest for COF 

recruitment prior to employing the full CASCADE approach. This concept, called 

CASCADE XL (Fig. 5.1), effectively leverages the success of the 2-step screening 

approach previously used in Chapter 3 to screen ncSNPs for differential COF 

recruitment. As with the differential COF ncSNP screen, a panel of COFs can be used to 

determine which overlapping tile probes within a CRE support the recruitment of these 

COFs. Only the tiles exhibiting significant COF recruitment are then included in a 

follow-up array where the full CASCADE SV probe approach is used to uncover the 

nucleotide determinants of COF recruitment and enable an inference as to the specific TF 

or TF family underlying the COF recruitment event (Fig. 5.1, part 2). 
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Figure 5.1: CASCADE XL concept for screening and characterizing CREs with increased 

throughput 

(1) CRE CASCADE tiling procedure as used previously in Chapter 3 of this work. SV probes for 

each position on each tile were included in a CASCADE array design to generate continuous 

CRE-wide COF recruitment motifs. (2) CASCADE XL concept pre-screens the same tile probes 

for COF recruitment prior to the full CASCADE procedure enabling an increased screening 

throughput with the caveat that gapped CRE COF recruitment motifs are generated for significant 

sites only. Contributions: CASCADE XL concept was developed by DB with input from TS and 

HH. 

 

 Use of the CASCADE XL approach in place of the full CRE CASCADE 

technique outlined in Chapter 3 would result in an increased CRE screening throughput at 

the expense of profiling resolution. In place of a continuous CRE-wide COF recruitment 

motif (Fig. 5.1, part 1), the 2-step CASCADE XL approach would produce “gapped” 

CRE recruitment motifs that specifically examine local regions within the CRE that 

support the recruitment of one or more COFs screened (Fig. 5.1, part 2). Though we have 

yet to deploy the CASCADE XL technique, we believe that CASCADE XL will provide 
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a useful means to investigate groups of related CREs, such as the collection of all 

cytokine/chemokine promoters, in a single array design to compare and contrast the use 

of these CREs in different cell types and conditions. 

5.4 Screening NCVs for COF recruitment 

 As one of the major innovations presented in this work was the development of an 

HT differential COF recruitment screen, we have already performed a series of 

experiments design to test possible improvements in the detection of significant 

differential COF recruitment events. Within the probes used in the differential COF 

recruitment screen in Chapter 3, the variant position being profiled was located at the 

center of the profiling target region (Fig. 5.2a). Placement of the variant position within 

the center of the target region ultimately may result in suboptimal detection of COF 

recruitment at TFBS positions that are not centered. To address this possible bias, we 

designed an improved screen and tested it for the detection of differential COF 

recruitment at promoter variants associated with the development of cancer. 

 To circumvent the possible biases associated with having the variant position 

occur in the middle of the profiling region (Fig. 5.2a), we now include 3 pairs of probes 

representing the same variant but in different registers - with the variant position 

centered, shifted 5 bases to the left, and 5 bases to the right  (Fig. 5.2b-c). In a pilot test 

where we compared the results of a triple register differential COF recruitment screen 

against the reference single register design for a set of NCVs associated with cancer 

development and control NCVs. In the triple register screening design, we observe 

widespread improvements in detection over our reference screen design from Chapter 3 
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(Fig. 5.2d). The improvements to our NCV screening method outlined here should result 

in a more robust differential COF recruitment detection screen that is better suited for 

more discovery-based research projects. 

 

Figure 5.2: Improved COF recruitment screen overview and application to study cancer 

promoter variants 

(a) Previous differential COF recruitment screen design used thus far. The reference and variant 

alleles being assayed appear exclusively at the center of the DNA probe target region. (b) An 

improved screen design uses 3 different “registers” to assay the variant position toward the 5’ 

end, in the middle, and at the 3’ end of the probe target region. (c) Assaying TF-COF complex 

formation at 3 different registers allows for more robust detection of statistically significant 

differences. (d) Statistically significant differential COF recruitment detected using the improved 

triple register design (y-axis) versus the previous single register design (x-axis) for SMARCA4 

(left), TBL1XR1 (middle), and HDAC1 (right). Sites assayed represent promoter mutations 

associated with cancer development and altered TF binding (red) and control mutations not not 

associated with cancer development or predicted to alter TF binding (blue) profiled using HT29 

cell nuclear extracts. Contributions: The improved triple register screen was designed by David 

Bray with input from Trevor Siggers and Heather Hook (HH). Sites profiled were selected by 

Sebastian Carrasco Pro and Juan Fuxman Bass as part of an ongoing collaboration. HH 

performed the experimental work. 
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Consistent with our efforts to improve our differential COF recruitment screens, 

an exciting future avenue will be to use our NCV screening approach to investigate 

compounds for potential therapeutic intervention. Many COFs mediate gene-regulatory 

functions enzymatically and commercially available compounds exist to inhibit these 

enzymatic functions (Yoon and Eom, 2016; Lasko et al., 2017; Fedorov et al., 2015). We 

explored the idea of using our platform to screen therapeutics briefly in Chapter 2 with 

the initial introduction of the nextPBM platform where we used a general phosphatase to 

disrupt the post-translational modifications required for cooperative interaction between 

PU.1 and IRF8. We can extend this concept in the future to our NCV differential COF 

recruitment screens to determine whether we can use compounds to target aberrant COF 

recruitment events gained with NCVs. 

5.5 Expanding our repertoire of COF antibodies 

A focus of our research moving forward will be the screening and validation of an 

increased number of COF antibodies for use in our array-based assay. The hTF array 

approach detailed in Chapter 4 represents the ideal platform to use in such investigations. 

By its nature, the hTF array can be used to rapidly screen the use of COF antibodies and 

since the set of TFs profiled is the same across experiments, the results across different 

antibodies for the same COF can in principle be compared in order to determine which 

would be best to use for research purposes. The hTF platform will thereby enable both 

rapid expansion in our repertoire of COF antibodies as well as optimization of the choice 

of antibody to profile for a given COF. 
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 Though we envision that our repertoire of COF antibodies will undoubtedly 

increase as we scale up our investigations using the hTF array platform, we are currently 

inherently limited to COFs with available antibodies. As an alternative to using 

antibodies against the native COF complexes or subunits, we have begun investigations 

into using GST-tagged cloned COF subdomains in place of the native COF complexes. 

Not only will this allow us to expand our antibody repertoire, but this approach will also 

enable investigations into domain-specific recruitment of COFs to TF sites. Mapping the 

recruitment of subdomains within a given COF and comparing these results to those 

obtained with the native COF should provide a more nuanced view of the logic of TF-

COF interactions. Early preliminary experiments into mapping the TFs that recruit 

individual subdomains of the p300 histone acetyltransferase in LPS-stimulated 

macrophages have been promising. Using GST-tagged subdomain clones of the p300 

coactivator (Fig. 5.3a), we recapitulated known domain-TF interactions (Fig. 5.3b). 

Larger scale experiments are needed in order to determine whether these exogenously 

introduced components will accurately recapitulate the recruitment logic of the native 

complex from which they were designed. 
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Figure 5.3: COF subdomain-specific recruitment profiling using GST-tagged clones 

(a) Subdomains of a larger coactivator can be cloned and GST-tagged to enable subdomain-

specific recruitment experiments. (b) Pilot recruitment data comparing the native p300 

recruitment to CH1, KIX, and CH3 subdomains for NF-κB (top row) and ETS (bottom row) from 

the original CoRec array design. Contributions: Subdomain-specific CoRec pilot experiments 

were performed by Rose Zhao with input from Trevor Siggers and Jessica Keenan. David Bray 

designed and performed the automated CoRec analysis. 

 

 These additional investigations into expanding our COF repertoire will also 

enable interesting new profiling strategies. For example, pooling several of the GST-

tagged subdomain components into a single experiment would allow for the examination 

of several COF complexes implicitly using a single anti-GST antibody. For example, 

pooling tagged subunits designed from various HATs such as p300, CBP, and their 

associated cofactors such as PCAF, and profiling their collective recruitment using the 

anti-GST antibody could enable to the construction of an “activation” signature that 

reveals the TFs responsible for mediating activator COF recruitment in a given cell type 

or context. Similarly, activator, repressor, and chromatin remodeling subunits could all be 

pooled into a single microarray chamber to build a signature of TFs broadly responsible 

for coordinating the major gene-regulatory effector functions in a cell type/context. As 

we expand our COF repertoire, we envision that these “meta”-signature approaches will 

become invaluable in determining which TFs most contribute to gene-regulatory function 

in a given condition. These signatures will provide a valuable annotation layer to be 

integrated with other modalities such as gene expression profiling and chromatin 

accessibility profiling to create detailed gene regulatory models.
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